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Abstract: We consider a general class of discrete nonlinear Schrödinger equations
(DNLS) on the lattice hZ with mesh size h > 0. In the continuum limit when h → 0,
we prove that the limiting dynamics are given by a nonlinear Schrödinger equation (NLS)
on R with the fractional Laplacian (−�)α as dispersive symbol. In particular, we obtain
that fractional powers 1

2 < α < 1 arise from long-range lattice interactions when pass-
ing to the continuum limit, whereas the NLS with the usual Laplacian −� describes the
dispersion in the continuum limit for short-range or quick-decaying interactions (e. g.,
nearest-neighbor interactions).

Our results rigorously justify certain NLS model equations with fractional Laplacians
proposed in the physics literature. Moreover, the arguments given in our paper can be
also applied to discuss the continuum limit for other lattice systems with long-range
interactions.

1. Introduction

In the present paper, we show how PDEs with fractional Laplacians (−�)α can be rigor-
ously derived as the continuum limit of certain discrete physical systems with long-range
lattice interactions. In fact, this theme is of interest in the recent physics literature, where
only formal arguments are presented; see, e. g., [5,6,9,12,16,17]. In this work our rigor-
ous arguments are for the derivation of these nonlocal continuum dynamics in the case
of fractional NLS-type equations, for the sake of simplicity. But in fact, the arguments
developed below will have applications to continuum limits for other types of discrete
evolution equations with long-range interactions.

As a specific physical example, we take a family of models for charge transport
in biopolymers like the DNA; see, e. g., [5,6,12]. Here, the starting point is a discrete
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nonlinear Schrödinger equation (DNLS) with general lattice interactions as follows. We
consider a 1-d lattice hZ with mesh size h > 0, which is assumed to be less than some
fixed small constant: h < h0 � 1. Moreover, we denote xm = hm with m ∈ Z in the
following, and we consider discrete wave functions uh : R × hZ → C that satisfy the
discrete NLS-type equation of the form

i
d

dt
uh(t, xm) = h

∑

n �=m

uh(t, xm) − uh(t, xn)

|xm − xn|1+2s
± |uh(t, xm)|2uh(t, xm). (1.1)

Here 0 < s < ∞ is a fixed parameter controlling the decay behavior of the lattice
interactions. In fact, we will formulate below a generalized version of problem (1.1),
where we allow for more general interaction terms of the form β(h)−1 J (|n −m|), where
J is defined below, in place of the kernel h(|xm − xn|)−(1+2s).

Indeed, the discrete NLS equation (1.1) can be viewed as a family of models for
quantum particles on a lattice with a three wave interaction set up which gives rise to
the cubic nonlinearity, where the + sign represents a repulsive on-site self-interaction
and − describes the focusing case. We consider the cubic interaction for simplicity, but
what follows can be easily generalized to different nonlinearities. In terms of DNA, the
cubic nonlinearity models a self-interaction for a base pair of the strand with itself, and
the summation term models interactions between base pairs decaying like an inverse
power of the distance along the strand [12]. The complex coiling of a DNA strand in
three dimensions is what makes it plausible for base pairs to interact with others even a
long distance away.

We are interested in the continuum limit, h → 0+, where we expect that uh tends
(in a weak sense specified below) to a solution u = u(t, x) of the fractional NLS of the
form

i∂t u = c(−�)αu ± |u|2u (1.2)

with u : R × R → C, a constant c depending only on s, and α depending on s appropri-
ately. Here, as usual, the fractional Laplacian (−�)α on R is defined via its multiplier
|k|2α in Fourier space. Our main results in Theorem 2.1 below show that the solution
uh(t, xm) of the discrete equation tends in the limit h → 0+ to u = u(t, x) solving (1.2),
where the following holds:

• For s below 1 in (1.1), the long-range interactions in the discrete NLS-type equa-
tion remain long-range in the continuum limit, producing a fractional NLS with a
nonlocal character coming from the Laplacian of order α = s.

• For s above 1 in (1.1), the interaction strength decays quickly enough that only local
effects survive in the continuum limit, which is exactly the “classical” NLS, α = 1.

• For s = 1 in (1.1), we get the classical NLS in the continuum limit, with a logarithmic
factor appearing in the scaling constants, see e.g. (2.7) below.

This should be compared with numerical evidence in the physics literature that says
there is a critical value sc, numerically calculated to be near 1, above which the behavior
of the discrete long-range interactions is qualitatively like the (non-fractional) NLS [5].

2. Formulation of the Main Result

We start by introducing a broad class of discrete evolution equations, thereby generaliz-
ing problem (1.1). On the discrete one-dimensional lattice hZ, we consider the evolution



Continuum Limit for Discrete NLS with Long-Range Lattice Interactions 565

problem for the discrete wave function uh : [0, T )×hZ → C satisfying the initial value
problem

{
i d

dt uh(t, xm) = 1
β(h)

∑
n �=m J|n−m|

[
uh(t, xm) − uh(t, xn)

] ± |uh(t, xm)|2uh(t, xm)

uh(0, xm) = vh(xm), xm = mh with m ∈ Z.

(2.1)

Here we use the notation Jn = J (|n|) to indicate the sequence, vh : hZ → C is a given
initial datum, and β(h) > 0 denotes the scaling factor depending on the lattice spacing
constant h > 0. In fact, for a suitable choice of β(h) > 0 depending on the behavior of
J = (Jn)∞n=1 for large n, we will see below that the evolution problem (2.1) exhibits a
reasonable behavior in the “continuum limit” as h → 0+. It turns out that it is natural
to assume that J = (Jn)∞n=1 belongs to the class Ks for some 0 < s � +∞, which we
define as follows.

Definition 2.1. Interaction of class Ks Let J = (Jn)∞n=1 be a sequence with Jn � 0 for
all n � 1. We say that J is an s-kernel, or J ∈ Ks with 0 < s < ∞ if

lim
n→∞ n1+2s Jn = A for some finite A > 0.

Moreover, we say that J is an ∞-kernel, or J ∈ K∞ if

lim
n→∞ n1+2s Jn = 0 for all s > 0.

Remark 2.1. 1) The pure-power case Jn = |n|−1−2s clearly satisfies (Jn)∞n=1 ∈ Ks .
2) Any (Jn)∞n=1 ∈ K∞ provided that Jn �= 0 for only finitely many n. In particular, the

case of nearest-neighbor interactions when Jn = 1 for n = ±1 and Jn = 0 otherwise
belongs to K∞. Note also that the class of exponentially decaying Jn ∼ e−cn with
some c > 0 belongs to K∞.

Assuming that J = (Jn)∞n=1 belongs to Ks for some 0 < s � +∞, it follows from
standard arguments, see Proposition 4.1 below, that we have global well-posedness for
the initial-value problem (2.1) in the space L2

h defined as

L2
h = {vh ∈ C

hZ : (vh, vh)2
L := h

∑

m∈Z

|vh(xm)|2 < +∞}.

In addition, it is straightforward to check that (2.1) exhibits conservation of energy

E(uh) = 1

2β(h)

∑

m,n:n �=m

J|n−m|
∣∣uh(xm) − uh(xn)

∣∣2 ± h

4

∑

m

|uh(xm)|4,

and conservation of the (discrete) L2-mass given by

N (uh) = h
∑

m

|un(xm)|2.

Here, the overall factor of h > 0 appearing in E(uh) and N (uh) is a convenient con-
vention when we discuss the continuum limit when h → 0+.
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Associated to (2.1), we now turn to its tentative continuum problem for the wave
function u : [0, T ) × R → C. More specially, we consider NLS-type initial-value
problems of the form

{
i∂t u = c(−�)αu ± |u|2u,

u(0, x) = v(x), u : [0, T ) × R → C.
(2.2)

Here c > 0 is some fixed constant determined below, and (−�)α denotes the (fractional)
Laplacian on R given by its Fourier multiplier |k|2α , where we assume that 0 < α � 1
holds in what follows. Note that α = 1 corresponds to the “classical” NLS, whereas the
range 0 < α < 1 can be regarded as the “fractional” NLS. In the focusing case when the
minus sign stands in front of the nonlinearity in (2.2), there exist ground state solitary
wave solutions. For uniqueness (and further properties) of such ground states, we refer
to [4].

Regarding the well-posedness for (2.2), we record the following simple fact.

Proposition 2.1. Suppose that 1/2 < α � 1, c > 0, and let v ∈ Hα(R) be an ini-
tial datum for (2.2). Then the initial-value problem (2.2) has a global unique solution
u ∈ C0([0,∞); Hα(R)). Moreover, we have conservation of energy and L2-mass given
by

E(u) = c

2

∫

R

u(−�)αu ± 1

4

∫

R

|u|4, N (u) =
∫

R

|u|2. (2.3)

Finally, we have the following global a-priori bound

‖u‖L∞
t Hα

x
� C(u(0)). (2.4)

Proof. Thanks to the Sobolev embedding Hα(R) ⊂ L∞(R) when α > 1
2 , this follows

standard arguments of abstract evolution equations; see, e. g., [2]. Indeed, by a simple
fixed point argument, we deduce existence and uniqueness of u ∈ C0([0, T ]; Hα(R))

solving (2.2) for T > 0 sufficiently small, by using the integral equation

u(t) = e−i t (−�)αv − i
∫ t

0
e−i(t−s)(−�)α |u(s)|2u(s) ds.

Note that the map u 	→ |u|2u is locally Lipschitz on Hα(R) ⊂ L∞(R) when α > 1
2 .

This shows local well-posedness for (2.2). Moreover, it easy to check that E(u) and N (u)

are conserved quantities. Finally, the global a-priori bound supt�0 ‖u‖Hα � C(u(0))

follows from conservation of E(u) and N (u) combined with the fractional Gagliardo–
Nirenberg inequality

∫

R

|u|4 � C

(∫

R

|(−�)
α
2 u|2

) 1
2α

(∫

R

|u|2
)2− 1

2α

.

Using now the a-priori bound supt�0 ‖u‖Hα � C , we deduce that any local solution
u ∈ C0([0, T ]; Hα(R)) extends to all times t � 0. 
�
Remark 2.2. The above well-posedness result for (2.2) can be easily generalized to
power-type nonlinearities f (u) = ±|u|2σ u with 0 < σ < +∞, instead of ±|u|2u.
More precisely, one obtains local well-posedness in H �(R) with � � α, and the solution
u ∈ C0([0, T ); H �(R)) extends globally in time in the case when f (u) = −|u|2σ u
with 0 < σ < 2α (focusing L2-subcritical case) or when f (u) = +|u|2σ u with any
0 < σ < +∞ (defocusing case).
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Let us now formulate the main result. Given a lattice function fh : hZ → C, we
define (see also [8, Chap. V] and [15]) its piecewise linear interpolation ph : R → C to
be given by

(ph fh)(x) := fh(xm) + (D+
h fh)(xm)(x − xm), for x ∈ [xm, xm+1). (2.5)

Here D+
h denotes the discrete right-hand derivative on hZ defined as

(D+
h fh)(xm) := f (xm+1) − f (xm)

h
.

On the other hand, given a locally integrable function f : R → C, we define its discret-
ization fh : hZ → C by setting

fh(xm) := 1

h

∫ xm+1

xm

f (x) dx, with xm = mh and m ∈ Z. (2.6)

It is easy to see that ‖ fh‖L2
h

� ‖ f ‖2 (see Lemma 3.6). Moreover, as we will detail
below (see Lemma 3.6 and Lemma 3.7) some straightforward calculations combined
with interpolation theory show that

‖ph fh‖Hα � C‖ f ‖Hα ,

for every 0 � α � 1, where C > 0 is some constant independent of h > 0.
The main result of this paper now reads as follows.

Theorem 2.1 (Continuum Limit). Let J = (Jn)∞n=1 ∈ Ks for some 1
2 < s � +∞, where

we assume that J1 > 0 holds.1 Furthermore, we define

α :=
{

s, for 1
2 < s < 1,

1, for s � 1.

Now suppose that v ∈ Hα(R) and consider its discretization vh : hZ → C defined as
in (2.6). Finally, let uh = uh(t, xm) denote the corresponding unique global solution to
(2.1) with initial datum vh ∈ L2

h given by Proposition 4.1 below, where we choose

β(h) :=
⎧
⎨

⎩

h2s, for 1
2 < s < 1,

(− log h)h2, for s = 1,

h2, for s > 1.

(2.7)

Then, for every 0 < T < +∞ fixed, we have the convergence

phuh ⇀ u weakly − ∗ in L∞([0, T ]; Hα(R)) as h → 0+.

Here u ∈ C0([0,∞); Hα(R)) is the unique global solution of the initial-value problem
(2.2) with α > 1

2 defined above and some constant c > 0 that only depends on J .

1 This is a convenient and physically reasonable assumption, saying that at least neighboring lattice sites
interact.
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Remark 2.3. We also expect a similar weak-∗ convergence result in the range 1
4 � s � 1

2 .
Note that for s < 1

4 , the cubic nonlinearity |u|2u becomes supercritical. Moreover, for
s = 1

2 the problem (2.2) becomes L2-critical and thus a smallness condition on the

initial datum v must be imposed to have global well-posedness in H
1
2 (R); see [7]. Also

note that for 0 < s < 1
2 , it is presently not known whether the initial value problem (2.2)

is locally well-posed in Hs(R). In particular, the continuum limit may depend on the
chosen subsequence hn → 0. Furthermore, as a related problem, it would be desirable
to understand the case of higher space dimensions d � 2.

In some sense, some arguments we use below hinge on the fact that we require
Hs(Rd) ⊂ L∞(Rd), which forces us to assume that s > 1

2 and d = 1 at the moment.
We leave the extension to higher space dimensions or small s as an interesting open
problem.

Plan of the paper. This paper is organized as follows. In Sect. 3, we introduce a class
of fractional Sobolev type norms on the discrete lattice hZ. Moreover, we prove some
uniform embedding and interpolation estimates that are uniform with respect to the
lattice constant h ∈ (0, h0] with 0 < h0 < 1 being some fixed constant. In Sect. 4,
we discuss the discrete evolution problem (2.1). Furthermore, we derive a-priori bounds
for uh = uh(t, xm) that are uniform in h ∈ (0, h0]. Finally, we prove Theorem 2.1 in
Sect. 5 by convergence results for the discrete equation derived below, combined with
a suitable weak compactness arguments (inspired by the work of Sulem-Sulem-Bardos
[15] on the Landau-Lifshitz equation).

In Appendix A–C, we collect and prove some technical results needed in this paper.

3. Preliminaries

In this section, we state and prove some technical results that will be needed in the
proof of Theorem 1. Throughout this section, we suppose that 0 < h0 < 1 is a fixed
constant and we consider the family of lattices hZ with h ∈ (0, h0]. All constants C > 0
appearing in the following inequalities can be chosen to depend only on h0 > 0.

3.1. Discrete uniform Sobolev inequalities. In the following, we denote xm = mh with
m ∈ Z. For sequences uh, vh ∈ C

hZ, we define the inner product and norm

(vh, uh)L2
h

:= h
∑

m∈Z

uh(xm)vh(xm), ‖uh‖2
L2

h
:= (uh, uh)L2

h
,

and we set L2
h := {uh ∈ C

hZ : ‖uh‖L2
h

< +∞}. For uh ∈ L2
h , we define its Fourier

transform ûh : [−π, π ] → C by

ûh(k) := 1√
2π

∑

m∈Z

uh(xm)e−imk .

Since uh ∈ L2
h , we have ûh ∈ L2([−π, +π ]). Moreover, we have the inversion formula

uh(xm) = 1√
2π

∫ +π

−π

ûh(k)eimk dk,
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and Parseval’s identity gives us

(vh, uh)L2
h

= h
∫ +π

−π

v̂h(k)ûh(k) dk.

Using this observation, we introduce the following fractional Sobolev type norm for
lattice functions uh ∈ L2

h . Let 0 � σ � 1 be given. We define the norm ‖uh‖Hσ
h

for

uh ∈ L2
h by setting

‖uh‖2
Hσ

h
:= h

∫ +π

−π

(
1 + h−2σ |k|2σ

)|ûh(k)|2 dk. (3.1)

Clearly, we have ‖uh‖H0
h

= ‖uh‖L2
h
. Also, we note that ‖uh‖Hσ

h
< +∞ for any uh ∈ L2

h .

However, we shall need precise uniform bounds as h → 0+.

Remark 3.1. Note that ‖uh‖Hσ
h

� C‖uh‖Hρ
h

for 0 � σ � ρ � 1, where the constant
C > 0 is independent of h > 0. Furthermore, by a simple interpolation argument, we
deduce that

‖uh‖H
σ0
h

� ‖uh‖σ0/σ

Hσ
h

‖uh‖1−σ0/σ

L2
h

for 0 � σ0 � σ � 1.

We have the following (discrete) Sobolev estimate that is uniform in h > 0.

Lemma 3.1 (Discrete uniform Sobolev inequality). For every 1
2 < σ � 1, there exists

a constant C = C(σ ) > 0 independent of h > 0 such that

‖uh‖L∞
h

� C‖uh‖Hσ
h

for all uh ∈ L2
h. Here ‖uh‖L∞

h
= supm∈Z |u(xm)|.

Proof. By the Fourier inversion formula and the Cauchy–Schwarz inequality,

‖uh‖L∞
h

� 1√
2π

∫ +π

−π

|ûh(k)| dk � C

(∫ +π

−π

dk

1 + h−2σ |k|2σ

)1/2

h−1/2‖uh‖Hσ
h

� C

(
h

∫ +∞

−∞
dz

1 + |z|2σ

)1/2

h−1/2‖uh‖Hσ
h

� C‖uh‖Hσ
h
,

with some finite constant C = C(σ ) > 0 independent of h > 0. 
�
Next, we prove the following discrete Gagliardo–Nirenberg type inequality uniform

with respect to h > 0.

Lemma 3.2 (Discrete uniform Gagliardo–Nirenberg inequality). Define the discrete

norm ‖uh‖L4
h

= (h
∑

m |uh(xm)|4) 1
4 . Then for any 1

4 < σ0 � 1, there exists a con-
stant C = C(σ0) > 0 independent of 0 < h � h0 such that

‖uh‖L4
h

� C‖uh‖σ0/σ

Hσ
h

‖uh‖1−σ0/σ

L2
h

,

for every σ0 � σ � 1.
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Proof. Using the Hausdorff–Young inequality and Hölder’s inequality, we conclude that

(
∑

m

|uh(xm)|4
)1/4

� C

(∫ +π

−π

|ûh(k)|4/3 dk

)3/4

� C

(∫ +π

−π

(1 + h−2σ0 |k|2σ0)|ûh(k)|2 dk

)1/2

·
(∫ +π

−π

dk

(1 + h−2σ0 |k|2σ0)2

)1/4

� Ch−1/2‖uh‖H
σ0
h

(
h

∫ +∞

−∞
dz

(1 + |z|2σ0)2

)1/4

� Ch−1/4‖uh‖H
σ0
h

,

where C = C(σ0) > 0 is independent of h > 0. This is the desired estimate when
σ = σ0 holds. To complete the proof of Lemma 3.2 for σ0 < σ � 1, we simply use the
interpolation estimate from Remark 3.1 above. 
�

3.2. Discrete Energy Norm and Estimates. Throughout this subsection, we assume that
the sequence nonnegative numbers J = (Jn)∞n=1 satisfies the following conditions:

(A1) J ∈ Ks for some 0 < s � +∞;
(A2) J1 > 0.

Next, we define the linear operator LJ
h : L2

h → L2
h by setting

(LJ
h uh)(xm) := 1

β(h)

∑

n �=m

J|m−n|
[
uh(xm) − uh(xn)

]
. (3.2)

Here and in what follows, we choose β(h) to be given by

β(h) =
⎧
⎨

⎩

h2s, if J ∈ Ks with some 0 < s < 1,

(− log h)h2, if J ∈ Ks with s = 1,

h2, if J ∈ Ks with some s > 1.

(3.3)

Note that we always impose (without loss of generality) that 0 < h � h0 < 1 holds.
In particular, we have that β(h) > 0 is positive. By changing the summation index, we
deduce that

(LJ
h uh)(xm) = 1

β(h)

∑

n �=0

J|n|
[
uh(xm) − uh(xm − xn)

]
. (3.4)

Clearly, the operator LJ
h is bounded on L2

h with ‖LJ
h uh‖L2

h
� Cβ(h)−1‖uh‖L2

h
, using

that the sum
∑∞

n=1 Jn is finite. Also, we easily check that LJ
h is self-adjoint; that is, we

have that (LJ
h )∗ = LJ

h holds on L2
h . Furthermore, a simple calculation shows

(uh,LJ
h uh)L2

h
= 1

2β(h)

∑

n,m:n �=m

J|n|
∣∣uh(xm) − uh(xm − xn)

∣∣2
. (3.5)
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Since Jn � 0 by assumption, this shows that LJ
h � 0 is nonnegative as an operator. In

particular, for any uh ∈ L2
h , we can define the norm

‖uh‖2
H J

h
:= (uh, uh)L2

h
+ (uh,LJ

h uh)L2
h
. (3.6)

Below, the norm ‖ · ‖H J
h

will play the role of an energy norm for the discrete evolution
problem (2.1). We have the following norm equivalence uniform in h > 0.

Lemma 3.3 (Uniform Norm Equivalence). Suppose J = (Jn)∞n=1 satisfies (A1) and (A2)
above for some 0 < s � +∞ with s �= 1. Let

α =
{

s, for 0 < s < 1,

1, for s � 1.
(3.7)

Then there exist constants A, B > 0 independent of h > 0 such that

A‖uh‖Hα
h

� ‖uh‖H J
h

� B‖uh‖Hα
h
,

for all uh ∈ L2
h.

Proof. By using (3.4) together with the Fourier inversion formula and Parseval’s for-
mula, we notice that

(uh,LJ
h uh)L2

h
= h

∫ +π

−π

ω(k)

β(h)
|ûh(k)|2 dk,

where

ω(k) = 2
∞∑

n=1

Jn
[
1 − cos(nk)

]
.

In view of the definition of ‖ · ‖Hα
h

it remains to show that, for |k| � π and h > 0,

A
(

1 + h−2α|k|2α
)

�
(

1 +
ω(k)

β(h)

)
� B

(
1 + h−2α|k|2α

)
, (3.8)

for some constants A, B > 0 independent of h > 0, where we define α = s for
0 < s < 1 and α = 1 for s > 1.

Let us first prove the lower bound in inequality (3.8). From Lemma A.1, we recall
that

C

2
|k|2α � ω(k) � C |k|2α, for |k| � k0, (3.9)

with some constant C > 0 and k0 > 0 sufficiently small. Furthermore, using that
(1 − cos z) � 0 for all z ∈ R and (1 − cos z) � 2

π2 z2 for |z| � π , we find that

ω(k) = 2
∞∑

n=1

Jn
[
1 − cos(nk)

]
� 4J1

π2 k2, for |k| � π. (3.10)
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Note that J1 > 0 by assumption. Combining the lower bound in (3.9) with (3.10) and
using that α � 1, we infer that

ω(k) � δ|k|2α, for |k| � π. (3.11)

Here δ = min{C
2 , 4J1

π2 |k0|2−2α} > 0 with C > 0 taken from (3.9). Using (3.11) and

recalling that β(h) = h2α , we derive

1 +
ω(k)

β(h)
� 1 + δh−2α|k|2α � A

(
1 + h−2α|k|2α

)
,

for all |k| � π and h > 0, where we also used that (1 + δ|z|2α) � A(1 + |z|2α) for all
z ∈ R with the constant A = min{δ, 1} > 0. This shows that the lower bound in (3.8)
holds.

To prove the upper bound in (3.8) in the case s �= 1, we argue as follows. First, by
the upper bound in (3.9), we conclude that, for all h > 0,

ω(k)

β(h)
� Ch−2α|k|2α � C(1 + h−2α|k|2α), for |k| � k0. (3.12)

On the other hand, we recall the global upper bound ω(k) � 4
∑∞

n=1 Jn � C for |k| � π .
Hence we find that, for any h > 0,

ω(k)

β(h)
� Ch−2α � C(1 + h−2α|k0|2α) � C(1 + h−2α|k|2α), for |k| � k0. (3.13)

Combining now (3.12) and (3.13), we deduce that the upper bound in (3.8) holds. This
completes the proof of Lemma 3.3. 
�

Next, we treat the special case when J = (Jn)∞n=1 belongs to Ks with s = 1.

Lemma 3.4 (Norm equivalence for s = 1). Suppose that J = (Jn)∞n=1 satisfies (A1)
and (A2) above with s = 1. Then we have

‖u‖H J
h

� C‖u‖H1
h
,

with some constant C > 0 independent of h > 0. Moreover, for every 0 < σ < 1 and
h0 > 0 sufficiently small, there exists a constant K > 0 independent of 0 < h � h0
such that

‖u‖Hσ
h

� K‖u‖H J
h
.

Proof. Similar as in the proof of Lemma 3.3, we have to show that

A
(

1 + h−2σ |k|2σ
)

�
(

1 +
ω(k)

β(h)

)
� B

(
1 + h−2|k|2

)
, for |k| � π, (3.14)

with some constant A > 0, which may depend on 0 < σ < 1, and some constant B > 0
independent of h > 0. Recall that β(h) = −(log h)h2 > 0, since we can assume that
0 < h � h0 < 1 holds. For later use, we recall from Lemma A.1 the bound

− c(log |k|)|k|2 � ω(k) � −C(log |k|)|k|2, for |k| � k0, (3.15)
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where c > 0 and C > 0 are some constants and k0 > 0 is sufficiently small. Note that
c > 0, C > 0 and k0 > 0 only depend on J = (Jn)∞n=1.

First, we prove the upper bound in (3.14). If we now let z = h−1|k| with |k| � k0,
then the upper bound in (3.15) gives us

ω(k)

β(h)
� C

|log(hz)|
|log h| z2 = C

|log z + log h|
|log h| z2 � C

( |log z|
|log h| z2 + z2

)
. (3.16)

We will show that

|log z|
|log h| z2 � C(1 + z2), for z � h−1k0 and 0 < h � h0 < 1, (3.17)

where C > 0 only depends on k0 > 0 and h0 > 0, which allows us to conclude that

ω(k)

β(h)
� C

(
1 + z2

)
= C

(
1 + h−2|k|2

)
, for |k| � k0, (3.18)

with some constant C > 0 that only depends on h0 > 0 and k0 > 0. To show (3.17), we
first note that |log z| z2 � C for z � 1 and hence

|log z|
|log h| z2 � C

|log h| � C

|log h0| , for z � 1,

using also that |log h|−1 � |log h0|−1 for 0 < h � h0 < 1. On the other hand, we have
that z 	→ | log z| is monotone increasing on the interval [1, h−1k0]. Therefore,

|log z|
|log h| z2 �

∣∣log(h−1k0)
∣∣

|log h| z2 = |log h − log k0|
|log h| z2

�
(

1 +
|log k0|
|log h0|

)
z2 � Cz2, for 1 � z � h−1k0.

Combining the previous estimates, we see that (3.17) follows.
To complete the proof of the upper bound in (3.14), we recall that ω(k) � C for

|k| � π . This yields that

ω(k)

β(h)
� C

|log h0| h2 � Ch−2 � C
(

1 + h−2|k0|2
)

� C
(

1 + h−2|k|2
)

, for |k| � k0, (3.19)

using again that |log h|−1 � |log h0|−1. From (3.18) and (3.19), we deduce that the
upper bound in (3.14) holds.

It remains to establish the lower bound in (3.14), which is slightly more tedious. We

argue as follows. First, we notice that we can assume 0 < h0 < 1 satisfies (h0)
1
2 � k0,

where k0 > 0 is the constant in (3.15). Recalling (3.15) and using the fact that |k| 	→
|(log |k|)| is monotone decreasing on the interval (0, h

1
2 ] where h < 1, we obtain the

lower bound

|(log |k|)|
|log h| �

∣∣log(h1/2)
∣∣

|log h| = 1

2
, for |k| � h

1
2 .
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As a consequence for all 0 < h � h0,

ω(k)

β(h)
� c

2
h−2k2, for |k| � h

1
2 . (3.20)

Next, by the same argument as in the proof of Lemma 3.3, we have the general lower
bound ω(k) � Ck2 for |k| � π with some constant C > 0. Therefore,

ω(k)

β(h)
� C

|log h|h−2k2, for |k| � π. (3.21)

Note that −(log h) = |log h|, since in particular h < 1. Next, let 0 < σ < 1 be given.
We claim that, for h0 > 0 sufficiently small, there exists a constant A > 0 (depending
only on h0 > 0 and 0 < σ < 1) such that

1

|log h|h−2k2 � Ah−2σ |k|2σ , for |k| � h
1
2 . (3.22)

Indeed, let ε = 1 − σ . For |k| � h
1
2 , we see that

1

|log h|
h−2k2

h−2σ |k|2σ
= h−2ε|k|2ε

|log h| � h−2εhε

|log h| = h−ε

|log h| =: f (h).

Since ε > 0, we see that f (h) → +∞ as h → 0+. Hence, by choosing h0 > 0
sufficiently small, we obtain that

f (h) � A, for 0 < h � h0,

where A > 0 is some positive constant that depends only on h0 > 0 and 0 < σ < 1.
This proves that estimate (3.22) holds. In view of (3.21), we deduce that

ω(k)

β(h)
� Ch−2σ |k|2σ , for h

1
2 � |k| � π, (3.23)

where C > 0 only depends on h0 > 0 and 0 < σ < 1.
Finally, we recall (3.20) and deduce that

1 +
ω(k)

β(h)
� C

(
1 + h−2σ |k|2σ

)
, for |k| � h

1
2 , (3.24)

where we use that 1 + δt2 � C(1 + |t |2σ ) for all t ∈ R with 0 < σ < 1 and δ > 0, where
C > 0 only depends on σ and δ. Combining now (3.24) and (3.23), we conclude that
the lower bound in (3.14) holds. This completes the proof of Lemma 3.4. 
�

Next, we proceed to study the relation of the scale of discrete Sobolev type norms
‖ · ‖Hs

h
to the following (classical) discrete Sobolev norm given by

‖uh‖2
H̃1

h
:= (uh, uh)L2

h
+ (D+

h uh, D+
h uh)L2

h
. (3.25)

Here D+
h denotes the discrete right-hand derivative on the lattice hZ, i. e., we have

(D+
h uh)(xm) := uh(xm+1) − uh(xm)

h
.

For later use, we also derive the following uniform embedding estimate.
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Lemma 3.5. For every 0 < σ � 1, there exists a constant C = C(s) > 0 independent
of h > 0 such that

‖uh‖Hσ
h

� C‖uh‖H̃1
h
, ‖uh‖H̃1

h
� C‖uh‖H1

h
,

for all uh ∈ L2
h.

Proof. Using the Fourier transform and Parseval’s identity, we find that

‖uh‖2
H̃1

h
= h

∫ +π

−π

(
1 + h−2�(k)

)|ûh(k)|2 dk,

where

�(k) := 2 − 2 cos(k) = 4 sin2(k/2).

The claimed bound follows from Parseval’s identity, provided we can show that

(1 + h−2σ |k|2σ ) � C(1 + h−2�(k)), for |k| � π and h > 0,

with some constant C = C(σ ) > 0 independent of h > 0. Indeed, we simply note
that �(k) = 4 sin2(k/2) � 4

π2 k2 for |k| � π . Hence first of the desired inequalities

follows from the fact that (1 + |z|2σ ) � C(1 + z2) for all z ∈ R, with some constant
C = C(σ ) > 0, provided that 0 � σ � 1 holds. Moreover, it is easy to see that we
have (1 + h−2�(k)) � C(1 + h−2k2) for |k| � π and h > 0. This shows the second
inequality stated in Lemma 3.5. 
�

3.3. Interpolations and norm estimates. In this subsection we collect some technical
results about the discretization and interpolation of functions. More precisely, for a
locally integrable function f : R → C, we recall that its discretization fh : hZ → C is
given by

fh(xm) = 1

h

∫ xm+1

xm

f (x) dx, with xm = hm and m ∈ Z.

Following [8], we define piecewise constant interpolation qh fh by

(qh fh)(x) := fh(xm), for x ∈ [xm, xm+1). (3.26)

Furthermore, we recall its piecewise linear interpolation ph fh introduced in (2.5). We
begin with the following simple fact.

Lemma 3.6. For any 0 � σ � 1 and f ∈ Hs(R), we have that

‖ fh‖Hσ
h

� C‖ f ‖Hσ ,

where the constant C > 0 is independent of h > 0 and f .
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Proof. First, we note that, by standard interpolation theory, we have (with norm equiv-
alences) that

Hσ (R) =
[

L2(R), H1(R)
]

σ,2
, Hσ

h =
[

L2
h, H1

h

]

σ,2
, for 0 � σ � 1.

Hence, it suffices to prove the claimed bound for the endpoint cases s = 0 and s = 1.
Indeed, by the Cauchy–Schwarz inequality,

‖ fh‖L2
h

= h
∑

m

1

h2

∣∣∣∣∣

∫ (m+1)h

mh
f (x) dx

∣∣∣∣∣

2

�
∑

m

∫ (m+1)h

mh
| f (x)|2 dx = ‖ f ‖2

2.

To deal with the case when s = 1, we note that, by the generalized mean-value theorem
and the Cauchy-Schwarz inequality, we have

∫

I
| f (x + h) − f (x)|2 dx � h2

∫

I

∫ 1

0
| f ′(x + th)|2 dt dx,

for any interval I ⊂ R. Using this bound, the Cauchy-Schwarz inequality again and
Fubini’s theorem, we deduce that

‖D+
h fh‖2

L2
h

= h
∑

m

1

h4

∣∣∣∣∣

∫ (m+1)h

mh
( f (x + h) − f (x)) dx

∣∣∣∣∣

2

� h
∑

m

1

h4 · h · h2 ·
∫ (m+1)h

mh

∫ 1

0

∣∣ f ′(x + th)
∣∣2

dt dx

=
∫ 1

0

∑

m

∫ (m+1)h

mh
| f ′(x + th)|2 dx dt =

∫ 1

0
‖ f ′‖2

L2 dt = ‖ f ′‖2
L2 ,

which shows that ‖D+
h fh‖L2

h
� ‖ f ′‖L2 . Finally, with help of Lemma 3.5, we obtain

‖ fh‖H1
h

� C‖ fh‖H̃1
h

� C‖ f ‖H1 ,

with C > 0 independent of h > 0 and f . The proof of Lemma 3.6 is now complete. 
�
As a next result, we derive uniform estimates with respect to (fractional) Sobolev

norms.

Lemma 3.7. For all 0 � σ � 1, we have the bounds

‖qh fh‖2 � ‖ fh‖L2
h
, ‖ph fh‖Hσ � C‖ fh‖Hσ

h
,

with some constant C > 0 independent of h > 0 and f .

Proof. The bound for qh fh follows readily from

‖qh fh‖2
2 =

∑

m

∫ (m+1)h

mh
| fh(mh)|2 dx = h

∑

m

| fh(xm)|2 = ‖ fh‖2
L2

h
.
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To prove the claimed bounds for ph fh , we argue as follows. As in the proof of Lemma
3.6, we can use interpolation of norms to conclude that it suffices to prove the bounds
for σ = 0 and σ = 1, i. e.,

‖ph fh‖2 � C‖ fh‖L2
h
, ‖ph fh‖H1 � C‖ fh‖H1

h
, (3.27)

with C > 0 independent of h > 0 and f . Indeed, we note that

ph fh(x) = qh fh(x) +
∑

m

(D+
h fh)(xm)1[xm ,xm+1)(x)(x − xm).

Hence, using that ‖qh fh‖ � ‖ fh‖L2
h
, we find that

‖ph fh‖2 � ‖qh fh‖2 + A � ‖ fh‖L2
h

+ A,

where

A2 =
∑

m

∫ xm+1

xm

|D+
h fh(xm)|2(x − xm)2 dx =

∑

m

h3

3
|D+

h fh(xm)|2

= h

3

∑

m

| fh(xm+1) − fh(xm)|2 � 2h

3

∑

m

| fh(xm)|2 = 2

3
‖ fh‖2

L2
h
.

Thus we obtain that ‖ph fh‖2 � C‖ fh‖L2
h
, which proves the first bound in (3.27).

To show the second bound in (3.27) we argue as follows. From [8, Chap. VI], we
recall that

d

dx
phuh = qh(D+

h uh),

where qh fh is the piecewise constant interpolation of fh defined in (3.26). Using the
previous bounds, we have

‖ph fh‖H1 � ‖ph fh‖L2 + ‖qh(D+
h fh)‖L2

� C(‖ fh‖L2
h

+ ‖D+
h fh‖L2

h
) � C‖ fh‖H̃1

h
� C‖ fh‖H1

h
,

where we used Lemma 3.5 in the last inequality. This completes the proof of the second
bound in (3.27), and hence Lemma 3.7 is proven. 
�

We conclude this subsection with a technical fact that will be used below.

Lemma 3.8. For any f ∈ L2(R) and g ∈ H1(R), we have

‖ph fh − f ‖2 → 0 and ‖ph gh − g‖H1 → 0 as h → 0+.

Moreover, if v ∈ Hσ (R) for some 0 < σ < 1, then phvh ⇀ v weakly in Hσ (R) as
h → 0+.

Proof. For the strong convergence results in L2(R) and H1(R), we refer to [8, Chap. VI,
Lem. 4.1].

The weak convergence result can be seen as follows. Suppose that v ∈ Hσ (R) for
some 0 < σ < 1. Then phvh → v strongly in L2(R) as h → 0+. Let hn → 0+ be some
sequence. By Lemma 3.6 and 3.7, we have that supn�1 ‖phn vhn ‖Hσ < +∞. Hence,
after passing to a subsequence if necessary, we can assume that phn vhn ⇀ w weakly
in Hσ (R) as n → ∞ for some w ∈ Hσ (R). But since phvh → v strongly in L2(R)

as h → 0+, we conclude by a density argument that w ≡ v holds. Hence phvh ⇀ v

weakly in Hσ (R) as h → 0+. 
�
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3.4. Strong convergence for LJ
h as h → 0+. In this subsection, we study the “continuum

limit” of the operator LJ
h defined in (3.2). To this end, we extend the action of LJ

h to
functions φ ∈ L2(R) by setting

(LJ
h φ)(x) := 1

β(h)

∑

n �=0

J|n|
[
φ(x) − φ(x − nh)

]
, (3.28)

where β(h) is given in (3.3).
We readily check that ‖LJ

h φ‖2 � Cβ(h)−1 ∑∞
n=1 Jn‖φ‖2 � Cβ(h)−1‖φ‖2, and

thus the operator LJ
h is bounded on L2(R). Moreover, we easily check that (LJ

h )∗ = LJ
h

is self-adjoint. Furthermore, recalling the averaged discretization of v ∈ L2(R), which
is vh(xm) = h−1

∫ xm+1
xm

v(x) dx, we see that ‖vh‖L2
h

� ‖v‖2 by Lemma 3.6. Moreover,
a simple calculation shows that

(
LJ

h v
)

h
(xm) =

(
LJ

h vh

)
(xm). (3.29)

This identity says that we can first let LJ
h act on v ∈ L2(R) and then discretize, or

equivalently first discretize v and let the discrete operator LJ
h act on vh ∈ L2

h . This fact
will be needed further below when we discuss the continuum limit.

We conclude this section with the following convergence result.

Lemma 3.9. Let 0 < s � +∞ and suppose that J = (Jn)∞n=1 ∈ Ks with J �≡ 0. Define
α as in (3.7). Then, for every φ ∈ C∞

0 (R),

LJ
h φ → c(−�)αφ strongly in L2(R) as h → 0+.

Here c > 0 is some constant that only depends on s and J .

Remark 3.2. Putting it differently, this lemma says that the family of bounded self-adjoint
operators LJ

h converges strongly as h → 0+ to the unbounded self-adjoint operator
c(−�)α acting on L2(R) with dense domain C∞

0 (R).

Proof. By taking the Fourier transform F on R, we find that

F(LJ
h φ)(k) = ω(hk)

β(h)|k|2α
|k|2αφ̂(k), for a. e. k ∈ R,

where φ̂ = F(φ) and ω(z) := 2
∑∞

n=1 Jn[1 − cos(nz)] with z ∈ R. Let k ∈ R with
k �= 0 fixed. If s �= 1, then β(h) = h2α and hence, by Lemma A.1,

lim
h→0

ω(hk)

β(h)|k|2α
= lim

z→0

ω(z)

|z|2α
= c,

for some constant c > 0. If s = 1, we have β(h) = − log(h)h2. Letting z = hk with
k �= 0 fixed, we conclude in this case, by using Lemma A.1 again,

lim
h→0

ω(hk)

β(h)|k|2 = − lim
z→0

ω(z)

log(z/k)|z|2 = c,
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for some constant c > 0. In summary, we conclude that for any 0 < s � +∞ the
pointwise convergence

F(LJ
h φ)(k) → c|k|2αφ̂(k) for a. e. k ∈ R as h → 0+.

To turn this into strong convergence in L2(R), we derive bounds uniform in h > 0 and
then use the dominated convergence theorem. First, we assume that s �= 1 and hence
β(h) = h2α . In this case, we have, by Lemma A.1,

∣∣∣∣
ω(hk)

|hk|2α

∣∣∣∣ � 2c, for |hk| � z0,

where z0 > 0 is some small constant depending only on J . On the other hand, we have
the upper bound |ω(hk)| � 4

∑∞
n=1 Jn � A for some A > 0. Therefore,

∣∣∣∣
ω(hk)

|hk|2α

∣∣∣∣ � A

|z0|β � C, for |hk| � z0.

Combining these bounds, we conclude that | ω(hk)

β(h)|k|2α | � C for all h > 0 and k ∈ R.
Hence,

|F(LJ
h φ)(k)| � C |k|2α|φ̂(k)|, for a. e. k ∈ R,

with some constant C > 0 depending only on s and J , provided that s �= 1 holds. Note
that

∫ |k|2α|φ̂(k)|2 < +∞, since φ belongs to C∞
0 (R). By the dominated convergence

theorem, we deduce that
∫

R

∣∣∣F(LJ
h φ)(k) − c|k|2αφ̂(k)

∣∣∣
2

dk → 0 as h → 0+,

which completes the proof of Lemma 3.9, provided that s �= 1 holds.
To complete the proof for the special case s = 1, we note that β(h) = (− log h)h2.

Since | ω(z)
log(z)z2 | � C for |z| � z0 with some constant z0 > 0 by Lemma A.1, we deduce,

for |hk| � z0, that
∣∣∣∣

ω(hk)

β(h)|k|2
∣∣∣∣ =

∣∣∣∣
ω(hk) log(hk)

log(h) log(hk)|h2k2|
∣∣∣∣ � C

|log(hk)|
|log(h)| � C

|log h0| (1 + |log k|) ,

where we assume without loss of generality that 0 < h � h0 < 1. On the other hand,
using that |ω(hk)| � 4

∑
n Jn � C , we find that

∣∣∣∣
ω(hk)

β(h)|k|2
∣∣∣∣ � C∣∣log(h)h2k2

∣∣ � C∣∣log(h0)z2
0

∣∣ , for |hk| � z0,

and 0 < h � h0 < 1. In summary, we have shown in the case s = 1 that

|F(LJ
h φ)(k)| � C(1 + |log k|)|k|2|φ̂(k)|, for a. e. k ∈ R,

with some constant C > 0 depending only on J and h0 > 0. We easily check that
the integral

∫
(1 + |log k|)2|k|4|φ̂(k)|2 dk is finite, since φ ∈ C∞

0 (R). By dominated
convergence, we deduce that Lemma 3.9 also holds when s = 1. 
�
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4. Discrete Evolution Problem and A-Priori Bounds

Suppose that J = (Jn)∞n=1 ∈ Ks for some 0 < s � +∞. Let LJ
h be the discrete operator

defined (3.28) above. We consider the initial-value problem
{

i d
dt uh(t, xm) = (LJ

h uh)(t, xm) ± |u(t, xm)|2u(t, xm),

uh(0, xm) = vh(xm) with m ∈ Z.
(4.1)

We record the following simple fact.

Proposition 4.1 (GWP in L2
h). The initial-value problem (4.1) is globally well-posed

in L2
h. That is, for every initial datum vh ∈ L2

h, there exists a unique global classical
solution uh ∈ C1([0,∞); L2

h) that solves (4.1).
Moreover, we have conservation of energy and L2

h-mass given by

Eh(uh) = 1

2
(uh,LJ

h uh)L2
h
± 1

4
‖uh‖4

L4
h
,

N (uh) = (uh, uh)L2
h
.

Proof. This follows from standard arguments. Indeed, we consider the integral formula

uh(t) = e−i tLJ
h v ∓ i

∫ t

0
e−i(t−s)LJ

h |uh(s)|2uh(s) ds.

Note that {e−i tLJ
h }t∈R is a strongly continuous unitary one-parameter group on L2

h , since
LJ

h is self-adjoint. Moreover, note that uh 	→ |uh |2uh is locally Lipschitz on L2
h thanks

to the embedding ‖ · ‖�∞ � ‖ · ‖�2 for sequences. A simple fixed point argument now
yields local well-posedness in L2

h , where the local time of existence only depends on
‖uh‖L2

h
. Global extension then follows from L2

h-conservation. Finally, note that any

solution uh ∈ C0(R; L2
h) is automatically a strong classical solution, since d

dt uh ∈ L2
h

by the equation itself, since LJ
h uh ∈ L2

h (because LJ
h is a bounded operator on L2

h) and
|uh |2uh ∈ L2

h as previously remarked.
The proof of the conservation laws follows from a simple calculation. 
�
Next, we derive the following a priori bounds for solutions uh to (4.1).

Lemma 4.1 (A priori bounds). Let uh ∈ C1([0,∞); L2
h) solve (4.1). Suppose that J =

(Jn)∞n=1 belongs to Ks with some 1
2 < s � +∞ and assume that J1 > 0. Define σ = s

if 0 < s < 1, σ = 1 − ε for some ε > 0 small if s = 1, and σ = 1 if s > 1. Then if
s > 0 and s �= 1 we have the uniform a-priori bound

sup
t�0

‖uh(t, ·)‖Hσ
h

� C(‖vh‖Hσ
h
).

If s = 1, for any 0 < T < ∞, we have the bound

sup
t∈[0,T ]

‖uh(t, ·)‖H1
h

� C(T, ‖vh‖H1
h
).

Here the constants C > 0 are independent of 0 < h � h0 with h0 > 0 sufficiently small.
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Proof. The global a-priori bounds follow from conservation of Eh(uh) and Nh(uh) and
Lemmas 3.2 and 3.3. Indeed, in the defocusing case (with + sign), we immediately obtain
the a-priori bound

‖uh(t, ·)‖2
Hσ

h
� C‖uh(t, ·)‖2

H J
h

� C(E(vh) + N (vh)) � C(‖vh‖Hσ
h
),

where we used Lemmas 3.2 and 3.3. In the focusing case, we use Lemmas 3.2 and 3.3
and (uh, uh)L2

h
= const., to deduce that

E(uh) � 1

2
‖uh‖2

Hσ
h

− C‖uh‖4σ0/σ

Hσ
h

for any fixed 1 � σ0 > 1
4 . Since σ > 1

2 by assumption, we can ensure that 4σ0
σ

< 2
holds. From this bound we deduce that ‖uh‖Hσ

h
→ +∞ implies that E(uh) → +∞.

Hence, by energy conservation and E(uh) < +∞, we can deduce the a-priori bound

sup
t�0

‖uh(t, ·)‖Hσ
h

� C(‖vh‖Hσ
h
).

Now we turn to the a-priori bound for the integer discrete (classical) Sobolev norm
‖uh(t, ·)‖H1

h
defined in (3.25). By Lemma 3.5, we can use the equivalent norm ‖ · ‖H̃1

h
instead of ‖ · ‖H1

h
.

By Duhamel’s formula,

uh(t) = e−i tLJ
h vh ∓ i

∫ t

0
e−i(t−s)LJ

h |uh(s)|2uh(s) ds,

where we write uh(t) to denote uh(t, xm) with m ∈ Z, etc. Taking the discrete right-hand
derivative D+

h , we obtain that

‖D+
h uh(t)‖L2

h
� ‖D+

h e−i tLJ
h vh‖L2

h
+

∫ t

0
‖D+

h {e−i(t−s)LJ
h |uh(s)|2uh(s)}‖L2

h
ds.

We have that D+
h e−i tLJ,β

h = e−i tLJ
h D+

h , since LJ
h commutes with translations on hZ.

Moreover, recall that e−i tLJ
h is unitary on L2

h . Hence,

‖D+
h uh(t)‖L2

h
� ‖D+

h vh‖L2
h

+
∫ t

0
‖D+

h {|uh(s)|2uh(s)}‖L2
h

ds.

By the Leibniz product formula for D+
h ,

D+
h (uhvh)(s) = uh(s)D+

h vh(s) + D+
h uh(s)vh(s + h),

and the uniform embedding Lemma 3.1 for σ > 1
2 , we deduce that

‖D+
h {|uh(s)|2uh(s)}‖L2

h
� C‖uh‖2

L∞
h

‖D+
h uh(s)‖L2

h
� C(‖vh‖Hσ

h
)‖D+

h uh(s)‖L2
h
,

where we also used Lemma 3.3 and the a-priori bound on ‖uv‖Hσ
h

derived above. In
summary, we see that

‖D+
h uh(t)‖L2

h
� ‖D+

h vh‖L2
h

+ C
∫ t

0
‖D+

h uh(s)‖L2
h

ds.
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By Gronwall’s estimate, this implies that

sup
t∈[0,T ]

‖D+
h uh(t)‖L2

h
� C(T, ‖vh‖H̃1

h
, ‖vh‖Hσ

h
),

for any fixed T > 0. Noting that ‖vh‖Hσ
h

� C‖vh‖H1
h

by Lemma 3.5, we complete
the proof of the desired a-priori bound for ‖uh‖H̃1

h
. The proof of Lemma 4.1 is now

complete. 
�

5. Proof of Theorem 2.1

For the reader’s convenience, we first recall the hypotheses and definitions from Theorem
2.1. We suppose that J = (Jn) ∈ Ks for some 1

2 < s � +∞ and J1 > 0. Let

α :=
{

s if 1
2 < s < 1,

1 if s � 1.

Let β(h) as in Theorem 2.1. Assume that 0 < h0 < 1 is sufficiently small and consider
the lattice hZ with 0 < h � h0. Suppose that v ∈ Hα(R) and let vh = vh(xm) be its
discretization defined in (2.6). Note that by Lemma 3.8 we have phvh ⇀ v weakly in
Hα(R) as h → 0+, where ph is the piecewise linear interpolation defined in (2.5) above.
Finally, let uh = uh(t, xm) denote the corresponding global solution to the discrete
evolution problem (2.1) with initial datum vh ∈ L2

h .
Let T > 0 be a fixed (but otherwise arbitrary) time. As a first step in the proof of

Theorem 2.1, we derive the following uniform bounds for phuh(t) and ∂t phuh(t).

Bounds for phuh(t) in Hα(R) Let M := sup0<h�h0
‖phvh‖Hα . Note that M < +∞ for

h0 > 0 sufficiently small, since phvh ⇀ v weakly in Hα(R) as h → 0+ as mentioned
above. Now, we claim that

sup
t∈[0,T ]

‖phuh(t)‖Hα � C, (5.1)

where C > 0 is some constant that only depends on h0, s, T and M . To prove (5.1), we
first recall from Lemma 3.7 that

‖phuh(t)‖Hα � C‖uh(t)‖Hα
h
.

Next, by Lemma 4.1, we have the a-priori bound on [0, T ] given by2

sup
t∈[0,T ]

‖uh(t)‖Hα
h

� C(T, ‖vh‖Hα
h
).

Finally, we have the general bound ‖vh‖Hα
h

� C‖v‖Hα by Lemma 3.6 with C > 0
independent of h > 0. Hence, we deduce that (5.1) holds.

2 To be precise the time dependence on T only appears when s = 1.
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Bounds for ∂t phuh(t) in H−α(R). We claim that

sup
t∈[0,T ]

‖∂t phuh(t)‖H−α � C, (5.2)

with some constant C > 0 that only depends on h0, s, T and M = sup0<h�h0
‖phvh‖Hα

< +∞. Indeed, from (2.1) we obtain the estimate

‖∂t uh(t)‖H−α
h

� ‖LJ
h uh(t)‖H−α

h
+ ‖|uh(t)|2uh(t)‖H−α

h
,

where we refer to the definition of the dual norm ‖ · ‖H−α
h

in Appendix B below. By
Proposition B.2 and the previous bounds, we conclude

‖LJ
h uh(t)‖H−α

h
� C sup

t∈[0,T ]
‖uh(t)‖Hα

h
� C(T, ‖vh‖Hα

h
).

Furthermore, we deduce that

‖|uh(t)|2uh(t)‖H−α
h

� ‖|uh(t)|2uh(t)‖Hα
h

� C(T, ‖vh‖Hα
h
),

where in the last step we used the Leibniz rule, the uniform embedding Lemma 3.1, and
again the uniform bound on ‖uh(t)‖Hα

h
on [0, T ]. Hence, we have shown that

sup
t∈[0,T ]

‖∂t uh(t)‖H−α
h

� C

for some constant C > 0 that only depends on h0, s, T and M = sup0<h�h0
‖phvh‖Hα .

From Proposition B.1 we have

‖ph fh‖H−α � C‖ fh‖H−α
h

,

with some constant C > 0 independent of h > 0, and the fact that ph commutes with
∂t , we deduce that (5.2) holds.

Weak-∗ compactness. By the uniform bounds (5.1) and (5.2), we deduce by the Banach-
Alaoglu theorem that

phn uhn ⇀ u weakly − ∗ in L∞([0, T ]; Hα(R)) as n → ∞, (5.3)

∂t phn uhn ⇀ ∂t u weakly − ∗ in L∞([0, T ]; H−α(R)) as n → ∞, (5.4)

with some sequence hn → 0 as n → ∞. Note that, by standard arguments, the fact that
u ∈ L∞([0, T ]; Hα(R))∩W 1,∞([0, T ]; H−α(R)) implies that u ∈ C0([0, T ]; L2(R)).
In particular, the notion of an initial condition for u(0) is well-defined. Next, we recall that
phuh(0) ⇀ v weakly in Hα(R) by Lemma 3.8, we deduce that u ∈ C0([0, T ]; L2(R))

satisfies

u(0) = v ∈ Hα(R).

Next, we claim that the limit u = u(t, x) solves the following initial-value problem:
⎧
⎨

⎩

u ∈ L∞([0, T ]; Hα(R)) ∩ W 1,∞([0, T ]; H−α(R)),

i∂t u = c(−�)αu ± |u|2u, for a. e. t ∈ [0, T ],
u(0) = v ∈ Hα(R).

(5.5)

Here c > 0 is some suitable constant chosen below.
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Proposition 5.1. Let T > 0 be given and suppose that u = u(t, x) solves (5.5). Then u ∈
C0([0, T ]; Hα(R)) holds and u = u(t, x) is the unique solution given by Proposition
2.1 above.

Proof. From standard theory for abstract evolution equations, we deduce that u = u(t, x)

solving (5.5) satisfies the integral equation

u(t) = e−i t (−�)αv − i
∫ t

0
e−i(t−s)(−�)α |u(s)|2u(s) ds.

Note that the map u 	→ |u|2u is locally Lipschitz on Hα(R) ⊂ L∞(R) when s > 1
2 .

Hence we deduce that u ∈ C0([0, T ]; Hα(R) and we can now apply Proposition 2.1. 
�
To conclude the proof that the limit u = u(t, x) in (5.3) and (5.4) is the unique

solution of (5.5), it remains to show that

i∂t u = c(−�)αu ± |u|2u, for a. e. t ∈ [0, T ], (5.6)

where c > 0 is some constant. Note that, by (5.4), we directly have that
∫ T

0
〈�, i∂t phn uhn (t)〉 dt →

∫ T

0
〈�, i∂t u(t)〉 dt as n → ∞, (5.7)

for every � ∈ L1([0, T ]; Hα(R)), where 〈·, ·〉 denotes the usual inner product on L2(R).
Next, we claim that

∫ T

0

〈
�, phn LJ

hn
uhn (t)

〉
dt →

∫ T

0

〈
�, c(−�)αu(t)

〉
dt as n → ∞, (5.8)

for every � ∈ L1([0, T ]; Hα(R)). By a density argument, it suffices to prove this claim
for �(t, x) = f (t)w(x) with f ∈ C∞

0 ([0, T ]) and w ∈ C∞
0 (R). For h > 0, we define

the usual discretization wh ∈ L2
h by setting

wh(xm) = 1

h

∫ xm+1

xm

w(x) dx .

Since α � 1 and w ∈ C∞
0 (R) ⊂ H1(R), we can apply Lemma 3.8 to conclude

‖phwh − w‖Hα � C‖phwh − w‖H1 → 0 as h → 0+.

Furthermore, recall the uniform bound ‖phLJ
h uh(t)‖H−α � C . Hence

〈phn whn − w, phn LJ
hn

uhn (t)〉 � C‖phn whn − w‖Hα → 0 as n → ∞,

for every t ∈ [0, T ]. Thus it suffices to show that
∫ T

0

〈
f phn whn , phn LJ

hn
uhn (t)

〉
dt →

∫ T

0

〈
f w, c(−�)αu(t)

〉
dt as n → ∞, (5.9)

for every f = f (t) ∈ C∞
0 ([0, T ]) and w = w(x) ∈ C∞

0 (R). Next, by Lemma B.1, we
see that

〈
phn whn , phn LJ

hn
uhn (t)

〉
=

〈
phn LJ

hn
whn , phn uhn (t)

〉
for every t ∈ [0, T ].
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From (5.3) we can assume that phn uhn (t) ⇀ u(t) weakly in Hα(R) for a. e. t ∈ [0, T ].
Furthermore, we now claim that

phLJ
h wh → c(−�)αw strongly in L2(R) as h → 0+. (5.10)

To show (5.10), we first recall from (3.29) that

(LJ
h wh)(xm) = (LJ

h w)h(xm),

where the action of LJ
h on the function w = w(x) is given by

(LJ
h w)(x) = 1

β(h)

∑

n �=0

J|n|(w(x) − w(x − nh)).

Applying Lemma 3.9, we obtain that

‖LJ
h w − c(−�)αw‖2 → 0 as h → 0+, (5.11)

where c > 0 is some constant. Using the bound ‖ph fh‖2 � C‖ f ‖2 by Lemma 3.7, we
conclude

‖phLJ
h wh − c(−�)αw‖2 =‖ph(LJ

h w)h − c(−�)αw‖2

�‖ph(LJ
h w−c(−�)αw)h‖2+‖ph(c(−�)αw)h −c(−�)αw‖2

�C‖LJ
h w−c(−�)αw‖2+o(1),

where o(1) → 0 as h → 0+, thanks to the fact that ‖ph fh − f ‖2 → 0 as h → 0+ for
any f ∈ L2(R) by Lemma 3.8. (Note that (−�)αw ∈ L2(R) since w ∈ C∞

0 (R).) Using
now (5.11), we deduce that (5.10) holds.

In view of (5.10) and by the dominated convergence theorem for the integral with
respect to t , we find that

∫ T

0

〈
f phn whn , phn LJ

hn
uhn (t)

〉
dt →

∫ T

0

〈
f c(−�)αw, u(t)

〉
dt as n → ∞,

for every f = f (t) ∈ C∞
0 ([0, T ]) and w = w(x) ∈ C∞

0 (R). By density this extends
to w ∈ Hα(R). Since u(t) ∈ Hα(R) for a. e. t ∈ [0, T ], we can integrate by parts to
conclude that (5.9) holds, and hence the claim (5.8) follows.

It remains to show weak-∗ convergence for the nonlinear part. That is, we have to
show

±
∫ T

0

〈
�, phn (|uhn (t)|2uhn (t))

〉
dt →±

∫ T

0

〈
�, |u(t)|2u(t)

〉
dt as n →∞, (5.12)

for every � ∈ L1([0, T ]; Hα(R)). Again, by a density argument, it suffices to show this
claim for �(t, x) = f (t)w(x) with f ∈ C∞

0 ([0, T ]) and w ∈ C∞
0 (R).

Next, we note that
∥∥∥ph(|uh(t)|2uh(t))

∥∥∥
2

� C‖|uh(t)|2uh(t)‖L2
h

� C‖uh(t)‖2
L∞

h
‖uh(t)‖L2

h
� C,

using Lemma 3.7 and the fact that ‖uh(t)‖L∞
h

� C by Lemma 3.1 and 4.1. In particular,

we can assume that ph(|uh(t)|2uh(t)) converges weakly in L2(R) for a. e. t ∈ [0, T ].
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However, from [8], we recall that ph fh ⇀ f weakly in L2(R) if and only if qh fh ⇀ f
weakly in L2(R), where the piecewise constant interpolation qh fh was defined in (3.26).
Thus it remains to show that

〈w, qhn (|uhn (t)|2uhn (t))〉 → 〈w, |u(t)|2u(t)〉 as n → ∞, (5.13)

for every w ∈ C∞
0 (R) and for a. e. t ∈ [0, T ].

Indeed, from (5.3) and by local Rellich compactness, we can assume that
phn uhn (t) → u(t) strongly in L2

loc(R) for a. e. t ∈ [0, T ]. Next, from [8], we recall
the general fact that ph fh → f strongly in L2

loc(R) if and only if qh fh → f strongly in
L2

loc(R). Since we clearly have that qhn (|uhn (t)|2uhn (t)) = |qhn (uhn (t))|2qhn (uhn (t))
and using the uniform bound ‖uh(t)‖L∞

h
� C , we can use the dominated convergence

theorem to deduce that (5.13) holds. This completes the proof of claim (5.12) above.
We are now ready to complete the proof of Theorem 2.1. From the previous discussion

we know that the limit u ∈ L∞([0, T ]; Hα(R))∩W 1,∞([0, T ]; H−α(R)) given in (5.3)
and (5.4) satisfies

∫ T

0
〈�, i∂t u〉 dt =

∫ T

0
〈�, c(−�)αu〉 dt ±

∫ T

0
〈�, |u|2u〉 dt,

for every � ∈ L1([0, T ]; Hα(R)). In particular, we deduce that (5.6) holds. This com-
pletes the proof that the limit u = u(t, x) solves the initial-value problem (5.5). By
Proposition 5.1, the solution u = u(t, x) is unique and satisfies u ∈ C0([0, T ]; Hα(R)).
In particular, the limit u = u(t, x) is independent of the chosen subsequence hn → 0.
The proof of Theorem 1 is now complete. 
�
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Appendix A. Asymptotics for ω(k)

Lemma A.1. Let J = (Jn)∞n=1 ∈ Ks for some 0 < s � +∞ and suppose J �≡ 0. Define
the function

ω(k) :=
∞∑

n=1

Jn
[
1 − cos(nk)

]
.

Then there exists some finite constant C > 0 such that

lim
k→0

ω(k)

δ(k)
= C,

where

δ(k) =
⎧
⎨

⎩

|k|2s, if 0 < s < 1,

(− log |k|)|k|2, if s = 1,

|k|2, if 1 < s � +∞.

Remark A.1. In the case when Jn = n−1−2s , this result could be inferred from known
expansions of ω(k) in terms of the polylogarithm. Below, we give a proof that rests on
more elementary arguments.
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Proof. By symmetry, it suffices to study the limit as k → 0+. We divide the proof into
the following steps. First, we treat the special cases, where

Jn = n−1−2s,

treating the subcases 0 < s < 1, s = 1, and s � 1 separately. Finally, we turn to the
general case J ∈ Ks .

CaseJn = n−1−2s with 0 < s < 1. Let k > 0 in what follows. For Jn = n−1−2s with
0 < s < 1, we write ω(k) as

ω(k) = k2s
∞∑

n=1

k

(kn)1+2s

[
1 − cos(nk)

]
.

Passing to the limit k → 0+, we notice that

lim
k→0+

∞∑

n=1

k

(kn)1+2s

[
1 − cos(nk)

] =
∫ ∞

0

1 − cos x

x1+2s
dx,

which can be easily deduced from [3]. Integrating by parts and using an integral table,
we find

∫ ∞

0

1 − cos x

x1+2s
dx = 1

2s

∫ ∞

0

sin x

x2s
dx = π

4s�(2s) sin(sπ)
=: Cs, (A.1)

where we clearly Cs > 0 holds. Hence, we conclude that limk→0+ k−2sω(k) = 2Cs > 0
holds in this case.

CaseJn = n−2. First, we recall that
∑∞

n=1 n−1 cos(nk) = − log(2 sin(k/2)) for 0 <

k � π holds. Integrating this identity twice, we obtain

∞∑

n=1

1

n3

[
1 − cos(nk)

] = −
∫ k

0

∫ z

0
log(2 sin(t/2)) dt dz, for 0 < k � π.

Clearly, we have log(2 sin(t/2)) = log 2+log(sin(t/2)) and moreover
∫ k

0

∫ z
0 log 2 dt dz =

log 2
2 k2 = O(k2). Hence it remains to consider the integral involving log(sin t/2) only.

Now we substitute u = sin(t/2) and integrate by parts, which yields that

∫ z

0
log(sin(t/2)) dt =

∫ sin(z/2)

0
log(u)

2du√
1 − u2

= log(sin(z/2))z − 2
∫ sin(z/2)

0

1

u
arcsin(u) du.

Using the series expansion arcsin u = u + O(u3), we find that

∫ k

0

∫ z

0
log(sin(t/2)) dt dz =

∫ k

0
log(sin(z/2))z dz + O(z2).
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Next, we integrate by parts again in the integral over z to conclude that
∫ k

0
log(sin(z/2))z dz = 1

2
log(sin(k/2))k2 − 1

4

∫ k

0
cot(z/2)z2 dk

= 1

2
log(sin(k/2))k2 + O(k2),

where we used that cot(z/2) = 2/z +O(z). Since limk→0+
log(sin(k/2))

log(k)
= 1, we conclude

that

lim
k→0+

ω(k)

log(k)k2 = −1

2
.

This completes the proof of Lemma A.1 for Jn = n−2.

CaseJn = n−1−2s with s > 1. Since
∑∞

n=1 n1−2s is finite in this case, we deduce that
ω′(k) and ω′′(k) both exist and are given by

ω′(k) =
∞∑

n=1

sin(nk)

n2s
, ω′′(k) =

∞∑

n=1

cos(nk)

n2s−1 .

Note that ω(0) = 0 and ω′(0) = 0. By l’Hospital’s rule, we find that

lim
k→0+

ω(k)

k2 = ω′′(0)

2
= 1

2

∞∑

n=1

1

n2s−1 = 1

2
ζ(2s − 1),

which is finite, since 2s−1 > 1 by assumption. This proves Lemma A.1 for Jn = n−1−2s

when s > 1.

CaseJ = (Jn)∞n=1 ∈ Ks . First, we consider the case such that 0 < s � 1 holds. Let
A = limn→∞ n−1−2s Jn . Note that 0 < A < +∞ since J ∈ Ks . Let ε > 0 be given. We
claim that we can find k0 > 0 such that

− ε + (A − ε)Cs � ω(k)

δ(k)
� ε + (A + ε)Cs, for 0 < k < k0, (A.2)

where Cs > 0 is the constant in (A.1) and δ(k) denotes the function introduced in Lemma
A.1 above. Since ε > 0 can be made arbitrarily small, this estimate would show that
limk→0+ δ(k)−1ω(k) = Cs A, as desired.
To prove (A.2), we note that, since Jn ∈ Ks by assumption, there exists an integer
N = N (ε) � 1 such that

A − ε

n1+2s
� Jn � A + ε

n1+2s
, for n � N .

Splitting ω(k) = ∑
n<N . . . +

∑
n�N . . . and using that Jn � 0 and 1 − cos(nk) � 0,

we deduce that

ω(k) �
∑

n<N

Jn
[
1 − cos(nk)

]
+ (A + ε)

∑

n�N

1

n1+2s

[
1 − cos(nk)

]

=
∑

n<N

(
Jn − A + ε

n1+2s

) [
1 − cos(nk)

]
+ (A + ε)

∞∑

n=1

1

n1+2s

[
1 − cos(nk)

]

=: I (N , ε, k) + I I (ε, k).
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Since I (N , ε, k) is a sum of finitely many terms, we can expand cos(nk) to conclude
that I (N , ε, k) = O(k2) as k → 0+. Since moreover 0 < s � 1, we can find k0 > 0
such that

I (N , ε, k)

δ(k)
� ε, for 0 < k < k0.

Moreover, from the previous discussion, we deduce that I I (ε,k)
δ(k)

→ (A+ε)Cs as k → 0+,
where Cs > 0 is given by (A.1). Hence, by choosing k0 > 0 sufficiently small, we deduce

ω(k)

δ(k)
� ε + (A + ε)Cs, for 0 < k < k0,

which is the claimed upper bound in (A.2). The proof of the lower bound follows from
analogous arguments using that Jn � A−ε

n1+2s for n � N (ε).
Thus we have shown that (A.2) holds for arbitrary ε > 0, and this completes the proof
of Lemma A.1 for J ∈ Ks with 0 < s � 1.
Finally, it remains to treat the case J ∈ Ks with 1 < s � +∞. Since

∑∞
n=1 n2 Jn < +∞

in this case, we can deduce in a similar fashion as for Jn = n−1−2s with s > 1 that

lim
k→0

ω(k)

|k|2 = ω′′(0)

2
= 1

2

∞∑

n=1

n2 Jn < +∞.

The proof of Lemma A.1 is now complete. 
�

Appendix B. Dual Bounds and Integration by Parts

Recall the definition of ‖ · ‖Hσ
h

in (3.1) with 0 � σ � 1. We define the corresponding
dual norm by setting

‖uh‖H−σ
h

:= sup
‖vh‖Hσ

h
�1

∣∣∣(vh, uh)L2
h

∣∣∣ .

We have the following fact.

Proposition B.1. For any 0 � σ � 1, we have

‖ph fh‖H−σ � C‖ fh‖H−σ
h

with some constant C > 0 independent of h > 0 and fh.

Proof. This claim is easily verified for σ = 0 (see Lemma 3.6) and σ = 1 (by calculation
using also the equivalence of the norms ‖·‖H̃1

h
and‖·‖H1

h
by Lemma 3.5). By interpolation

of norms (as in the proof of Lemma 3.6) we deduce the bound for all 0 � σ � 1. 
�
Next, we have the following estimate.

Proposition B.2. Suppose that J = (Jn)∞n=1 satisfies (A1) and (A2) with some 0 < s �
+∞. Let α = s for 0 < s < 1 and α = 1 for s � 1. Then there exists a constant C > 0
independent of h > 0 such that

‖LJ
h uh‖H−α

h
� C‖uh‖Hα

h

for all uh ∈ L2
h.
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Proof. This follows from estimates derived in the proofs of Lemma 3.3 and 3.4. Indeed,
with the notation used there, we find that
∣∣∣(vh,LJ

h uh)L2
h

∣∣∣ � h
∫ +π

−π

(
1 +

ω(k)

β(h)

) ∣∣v̂h(k)
∣∣ ∣∣ûh(k)

∣∣ dk

� Ch
∫ π

−π

(
1 + h−2α|k|2α

) ∣∣v̂h(k)
∣∣ ∣∣ûh(k)

∣∣ dk � C‖vh‖Hα
h
‖uh‖Hα

h
,

with some constant C > 0 independent of h > 0. Here we used the estimates for
(1 + ω(k)

β(h)
) derived in the proofs of Lemma 3.3 and 3.4. 
�

We have the following technical result.

Lemma B.1. Let LJ
h be as above. For any wh, uh ∈ L2

h, we have the identity
〈
phwh, phLJ

h uh

〉
=

〈
phLJ

h wh, phuh

〉
,

where 〈 f, g〉 = ∫
R

f (x)g(x) dx is the usual inner product on L2(R).

Proof. First, we recall that (with x = mh and m ∈ Z)

(phwh)(x) =
∑

m

wh(xm)1[xm ,xm+1)(x) +
∑

m

(D+
h wh)(xm)1[xm ,xm+1)(x)(x − xm),

where 1A(x) denotes the characteristic function of the set A ⊂ R. Using this, we
conclude that

〈
phwh, phLJ

h uh

〉
= h

∑

m

wh(xm)(LJ
h uh)(xm)

+
1

2
h2

∑

m

(D+
h wh)(xm)(LJ

h uh)(xm)

+
1

2
h2

∑

m

wh(xm)(D+
h LJ

h uh)(xm)

+
1

3
h3

∑

m

(D+
h wh)(xm)(D+

h LJ
h uh)(xm).

Since (LJ
h )∗ = LJ

h is self-adjoint on L2
h and using the commutation relation D+

h LJ
h =

LJ
h D+

h , we easily derive the claimed identity. 
�
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