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Abstract: We consider topologically non-trivial Higgs G-bundles over Riemann sur-
faces �g with marked points and the corresponding Hitchin systems. We show that if G
is not simply-connected, then there exists a finite number of different sectors of the Higgs
bundles endowed with the Hitchin Hamiltonians. They correspond to different character-
istic classes of the underlying bundles defined as elements of H2(�g,Z(G)), (Z(G) is a
center of G). We define the conformal version CG of G - an analog of GL(N) for SL(N),
and relate the characteristic classes with degrees of CG-bundles. We describe explicitly
bundles in the genus one (g = 1) case. If �1 has one marked point and the bundles
are trivial then the Hitchin systems coincide with Calogero-Moser (CM) systems. For
the nontrivial bundles we call the corresponding systems the modified Calogero-Moser
(MCM) systems. Their phase space has the same dimension as the phase space of the
CM systems with spin variables, but less number of particles and greater number of spin
variables. Starting with these bundles we construct Lax operators, quadratic Hamiltoni-
ans, and define the phase spaces and the Poisson structure using dynamical r-matrices.
The latter are completion of the classification list of Etingof-Varchenko corresponding
to the trivial bundles. To describe the systems we use a special basis in the Lie algebras
that generalizes the basis of ’t Hooft matrices for sl(N). We find that the MCM sys-
tems contain the standard CM subsystems related to some (unbroken) subalgebras. The
configuration space of the CM particles is the moduli space of the stable holomorphic
bundles with non-trivial characteristic classes.
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1. Introduction

The paper conventionally speaking contains two types of results. First, we construct
topologically nontrivial holomorphic G-bundles over Riemann surfaces �g , where G is
a complex non-simply-connected Lie group. The topological types of the bundles are
characterized by elements of H2(�g,Z(G)), where Z(G)) is a center of G. We call
them the characteristic classes of the bundles, since for G =SOn they coincide with
the Shtiefel-Whitney classes. We define the conformal version CG of G - an analog of
GL(N) for SL(N), and relate the characteristic classes with degrees of CG-bundles. For
genus one surfaces with a single marked point we describe a big cell in the moduli space
of stable holomorphic bundles with arbitrary characteristic classes.

Then, on the basis of these results, we construct a family of classical integrable sys-
tems - the Hitchin systems. The phase spaces of these systems are the Higgs G-bundles.
For non-simply-connected groups the Higgs bundles have different sectors correspond-
ing to the characteristic classes of the underlying bundles. The similar phenomena was
observed in the WZW theory in [21]. For bundles over elliptic curves with one marked
point the corresponding systems are analogues of the elliptic Calogero-Moser systems.
The standard Calogero-Moser systems are related to the trivial bundles. We define the
Lax operators, quadratic Hamiltonians and the classical dynamical elliptic r -matrices.
The latter completes the classification list of classical elliptic dynamical r - matrices [17],
where the underlying bundles are topologically trivial.

1. Non-trivial bundles over Riemann surfaces �g. Let P be a principal G-bundle over
�g , π is a representation of G in V , and E = P ×G V . According with [52] the stable
holomorphic G-bundles can be defined using representations of the fundamental group
π1(�g). This group has 2g generators {aα, bα} with the relation

g∏

α=1

[bα, aα] = 1, [bα, aα] = bαaαb−1
α a−1

α . (1.1)

Let ρ be a representation of π1 in V such that ρ(π1) ⊂ π(G). Due to (1.1) we have

g∏

α=1

[ρ(bα), ρ(aα)] = I d. (1.2)

The G-bundles described in this way are topologically trivial. To consider a less triv-
ial situation assume that G has a non-trivial center Z(G). It means that G is a classical
simply-connected group, or some of its subgroups, or a simply-connected group of type
E6 or E7. In what follows we use the following notations:

Ḡ − simply− connected group, Gad − adjoint group, Ḡ ⊇ G ⊇ Gad ,

and Z(G) is a center of G. Let ζ ∈ Z(G). Replace (1.2) by

g∏

α=1

[ρ(bα), ρ(aα)] = ζ. (1.3)
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Table 1. �0-invariant subgroups and subalgebras

G ord (�0) g̃0 g0

SL(N ,C) (N = pl) N/p slp slp ⊕l−1
j=1 glp

SO(2n + 1) 2 so(2n − 1) so(2n)

Sp(2l) 2 so(2l) gl2l

Sp(2l + 1) 2 so(2l + 1) gl2l+1

SO(4l + 2) 4 so(2l − 1) so(2l)⊕ so(2l)⊕ 1

SO(4l + 2) 2 so(4l − 1) so(4l)⊕ 1

SO(4l) 2 so(2l) so(2l)⊕ so(2l)

SO(4l) 2 so(4l − 3) so(4l − 2)⊕ 1

E6 3 g2 so(8)⊕ 2 · 1
E7 2 f4 e6 ⊕ 1

Since Z(SO(4l)) = μ2 ⊕ μ2 we take two different �0
a , (a = 1, 2)

Sp(n) is a group preserving the antisymmetric bilinear form in C
2n

Then the pairs (ρ̂(aα), ρ̂(bβ)), satisfying (1.3), cannot describe transition matrices of
G-bundle, but can serve as transition matrices of the Gad = G/Z(G)-bundle. The bun-
dle E in this case is topologically non-trivial and ζ represents the characteristic class
of E . It is an obstruction to lift the Gad bundle to the G bundle. The topologically
non-trivial G-bundles are characterized by elements of H2(�,Z(G)).

If g > 1 we cannot find general solutions of (1.2), but in the case g = 1 we found
almost all solutions. In this case we deal with the elliptic curve �1 ∼ �τ = C/(Z + τZ)

and the bundle E can be described by two operators Q(z) and �(z), that satisfy the
equation Q(z + τ)�(z)Q(z)−1�−1(z + 1) = ζ . It follows from [52] that it is possible
to choose the constant transition operators. Then we come to the equation on G,

Q�Q−1�−1 = ζ. (1.4)

As in [52] we define the moduli space of stable holomorphic G-bundles as

M(G) = (solutions of (1.4))/(conjugation). (1.5)

Assume that Q is a semisimple element (Q ∈ HḠ , where HḠ is a Cartan subgroup).
It means that we consider an open subset M(G) ⊃M(G)0 = {(Q,�)}. The elements
Q and � can be represented as

Q = exp
(

2π i
ρ∨

h

)
U, � = �0V,

ρ∨ is a half-sum of positive coroots, h is the Coxeter number,�0 is an element of the Weyl
group defined by ζ . It is a symmetry of the extended Dynkin diagram of g = Lie(Ḡ).
V and U are arbitrary elements of the Cartan subgroup H̃0 ⊂ HḠ commuting with
�0 and H̃0 = Lie (H̃0) is a Cartan subalgebra corresponding to a simple Lie subgroup
G̃0 ⊂ Ḡ.

Since (�0)l = 1 for some l, the adjoint action of�0 on g is an automorphism of order
l. All such automorphisms are described in [30]. Ad(�0) induces aμl = Z/ lZ gradation

in g g = ⊕l−1
k=0gk , where g0 is a reductive subalgebra. The Lie algebra g̃0 = Lie(G̃0) in

its turn is a subalgebra of g0. The concrete forms of invariant subalgebras are presented
in Table 1. They are calculated in [48–50].
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For trivial holomorphic bundles over an elliptic curve M(G)0 is a quotient of the
Cartan subalgebra H of G under the action of some discrete group. For G = GL N
the moduli space was described by M.Atiyah [1]. For trivial G-bundles, where G is a
complex simple group, it was done in [6,44]. Nontrivial G-bundles and their moduli
spaces were considered in [22,23,60].

It is important for applications to consider the holomorphic bundles with quasi-para-
bolic structures at marked points at �τ . It means that the automorphisms of the bundles
(the gauge transformations) preserve flags Fla located at n marked points [61]. The struc-
ture of a big cell M0

g,n (g = 1) in the moduli space of these bundles can be extracted
from the moduli space M(G) of solutions of (1.4). In the simplest case n = 1,

M̃0
1,1 =

(
H̃0/× (Fl/H̃0)

)
/W̃BS, (1.6)

where W̃BS are the Bernstein-Schwarzman generalizations [6] of the affine Weyl groups
W a f f (G̃0) corresponding to different sublattices of the coweight lattice. W̃BS acts on
(Fl/H̃0) only by the Weyl subgroup W̃ . Note that for the trivial bundles �0 can be
chosen as I d. In this case

M0
1,1 = (H× Fl/HḠ)/WBS, (1.7)

where H = Lie(HḠ). Thus, the big cell M̃0
1,1 for the nontrivial G bundles is the same

as the big cell M0
1,1 for trivial G̃0-bundles. A detailed description is given in Sect. 3.2.

As by product, we obtained some additional results related to this subject. We describe
a relation between the characteristic classes and degrees of some bundles. In the AN−1
case this relation is simple. The center of G = SL(N ,C) is the cyclic group μN =
Z/NZ. The cohomology group H2(�,Z(SL(N ,C))) is isomorphic to μN . Represent
elements of μN as exp 2π i

N j, j = 1 . . . , N − 1. Let ζ be a generator of μN . Consider
a principal PGL(N ,C) bundle with the characteristic classes ζ . It cannot be lifted to a
SL(N ,C)-bundle, but can be lifted to a GL(N ,C) bundle. The degree of its determinant
bundle degE is−1 and ζ = exp (− 2π i

N ) = exp ( 2π i degE
rank E ). We generalize this construc-

tion to other simple groups. To this end for a simple group G we define its conformal
version CG (Definition 3.2). In particular, for the symplectic and orthogonal groups
their conformal versions are groups preserving (anti)symmetric forms up to dilatations.
It allows us to relate the characteristic classes of G-bundles to degrees of the determinant
bundles of CG (Theorem 3.1).

We introduce a special basis in g = Lie G. In the AN−1 case it is the basis of the finite-
dimensional sin-algebra [18], generated by the t’Hooft matrices Q, � (Q�Q−1�−1 =
exp ( 2π i

N )). We call it the generalized sin (GS) basis and use it in the context of integrable
systems.

2. Integrable systems. Generically, the Hitchin systems come up as a result of the Ham-
iltonian reduction of the cotangent bundles to the stable holomorphic bundles [27]. The
Higgs bundles are a result of the reduction. If the Riemann surface has not marked
points the Higgs bundles are cotangent bundles to the moduli space of stable holomor-
phic bundles. For bundles with quasi-parabolic structures the Higgs bundles are principal
homogeneous spaces over cotangent bundles to the moduli spaces. After the reduction we
obtain an integrable system in the Lax form, with the Lax operator given by the Higgs field
where the spectral parameter plays the role of a local coordinate on the Riemann surface.

Using the above construction we find that the Hitchin systems have different sectors
corresponding to characteristic classes. It means down to earth that the Lax operators
have different quasi-periodicities, corresponding to (1.3).
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Table 2. Integrable systems corresponding to different characteristic classes of SL(N ) bundles

1 2 3

ζ 1 exp (− 2π i p
N ), N = pl exp (−2π i

N )

System SLN -CM system SLp-CM-system + interacting SLl EA-tops SLN -EA-top

In the elliptic case we describe the Lax operators explicitly.1 Using the above
construction we describe a new class of the finite-dimensional classical completely
integrable systems related to simple Lie groups with nontrivial centers. They are gen-
eralizations of the elliptic Calogero-Moser systems, in general with spin degrees of
freedom. Calogero-Moser systems (CM) were originally defined in quantum case by
Francesco Calogero [11] and in classical case by Jurgen Moser [47], as an integrable
model of one-dimensional nuclei. Now they play an essential role both in mathematics
and in theoretical physics.2

Their generalizations as integrable systems related to simple Lie groups has a long
history. It was started more than thirty years ago [54], but the classical integrability
was proved there only for the classical groups. It was done later in [8,28]. They are
the so-called spinless CM systems. The case of the An−1 type (SL(n)) systems is very
special. The integrability of these systems for rational and trigonometric potentials has
a natural explanation in terms of Hamiltonian reduction [32,55]. Later this approach
was generalized for a wide class of classical integrable systems - the so-called Hitchin
systems [27]. It was realized in [14,26,36,46,53] that the An−1 type CM systems with
elliptic potential are particular examples of the Hitchin systems. Note, that long before
these works the Lax matrix with a spectral parameter for the elliptic CM system was
constructed by Krichever [34].

From the point of view of the Hitchin construction it is more natural to consider CM
systems with spin, introduced in the An−1 case in [24,64].3 Their description for all
simple Lie algebras can be found in [45].

As we said, the standard classification of the CM systems is based on topologically
trivial bundles. As a result we obtain a classification of the Modified Calogero Moser
(MCM) systems related to topologically non-trivial bundles. Some particular examples
related to SL(N ,C) are known. If the characteristic class of the bundle ζ = exp (− 2π i

N ),
then instead of the interacting CM particles we get the Euler-Arnold (EA) top [2] related
to SL(N ,C) [33,35,57]. This top describes the classical degrees of freedom on a vertex
in the vertex spin chain. The corresponding classical r matrix is non-dynamical [5]. But
if N = pl there exists an intermediate situation [43] described in column 2 (Table 2):

In this paper we construct Lax operators, quadratic Hamiltonians and corresponding
classical dynamical r -matrices for any simple complex Lie group G with a non-trivial
center and arbitrary characteristic classes ζ ∈ H2(�τ ,Z(G)). The obtained elliptic
r -matrices complete the list [17,45], because the dynamical parameters belong to the
Cartan subalgebra H̃0 ⊂ HG . This type of r -matrices in the trigonometric case were
constructed in [16,59], using an algebraic approach.

In fact, H̃0 is the same Cartan subalgebra that participates in the definition of the mod-
uli space (1.6). Let us explain this phenomena. The phase space of the Hitchin systems

1 For simplicity we consider only one mark point. For many marked points we come to generalized Gaudin
systems.

2 The mathematical aspects of the systems are discussed in [15].
3 The spinless CM systems considered in [8,28] were described as some sort of Hitchin systems in [29].
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is the moduli space MH
�n

of the Higgs bundles over a curve �n with the quasi-parabolic

structure at n marked points. It is a fibration over the moduli space MH
� of the Higgs

bundles over the compact curve �. The base MH
� can be interpreted as the phase space

of interacting particles. It is the cotangent bundle to the moduli space M� holomorphic
bundles over �. The fibers MH

�n
→MH

� are coadjoint G-orbits located at the marked

points. The coordinates on the orbits are called the spin variables.4 If the number of the
marked points n = 1 and the G-bundle over the elliptic curve has a trivial characteristic
class, then the spin variables can be identified with angular velocities of the EA top
related to G. The inertia tensor of the top depends on the coordinates of CM particles
related to the same group G. The configuration spaces of particles are the quotient of
the Cartan algebra as in (1.7). It is the space of dynamical parameters of r .

For the non-trivial bundles the configuration space of particles is a quotient of the
Cartan subalgebra H̃0 ⊂ H and the dynamical r -matrix depends on variables belonging
to H̃0. The integrable system looks like interacting EA tops with parameters depending
on coordinates of the CM system related to G̃0. For this reason we call G̃0 the unbroken
subgroup (see Table 1).

Solutions of (1.4) allow us to define the Lax operators and the classical dynami-
cal r-matrix for non-trivial bundles. We prove that the r-matrices satisfy the classical
dynamical Yang-Baxter equation [20]. We describe the Poisson brackets for matrix ele-
ments of the Lax operators in terms of the classical dynamical r-matrix as was done
in [3,7,10,19,20,45,62], where the systems corresponding to the trivial bundles were
considered.

It is worthwhile to emphasize that for the standard CM systems we deal in fact with
a few different systems. More exactly, we have as many configuration spaces as a num-
ber of non-isomorphic moduli spaces. It amounts to existence of different sublattices
in the coweight lattice containing the coroot lattice. A naive explanation of this fact is
as follows. The potential of the system has the form

∑
℘(〈u, α〉), where u is a coordi-

nate vector, the sum is taken over positive roots α, and ℘ is the Weierstrass function.5

Adding to u any combination γ1 + γ2τ , where γ j ∈ Q∨-coroot lattice, does not change
the potential, because ℘(〈u, α〉) is doubly-periodic on the lattice τZ ⊕ Z and 〈γ, α〉
is an integer. Thus, the configuration space is the quotient H/(τQ∨ ⊕ Q∨). It is the
largest configuration space. But we can harmlessly shift as well by the coweight lattice
τ P∨ ⊕ P∨. Then we come to a different configuration space (the smallest one). For
AN−1 root systems we describe in this way the SL(N ,C) and PSL(N ,C) CM systems.
Their configuration spaces are different, while the Hamiltonians are the same. Evidently,
this fact becomes important for the quantum systems. The same is valid for the systems
with non-trivial characteristic class. But now one should consider the lattices related to
the unbroken subgroups.

Finally, we should mention the following fact. As we said the obtained integrable
systems correspond to different sectors of the Higgs bundles. It turns out that in spite
of the apparent distinction, corresponding to Lax operators and the Hamiltonians, the
integrable systems are symplectomorphic. These symplectomorphisms are not smooth
but singular, and in this way change the topological type of the bundle. In particular,
the MCM systems are symplectomorphic to the standard spin CM systems. The symp-
lectomorphisms are provided by the so-called Symplectic Hecke Transformation [35].

4 For elliptic curves the phase space of the spin variables is a result of a Hamiltonian reduction of the
coadjoint orbits with respect to the action of the Cartan subgroup.

5 In what follows we use the second Eisenstein function E2(z). It differs from ℘ on a constant.
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In terms of the Lax operators the symplectomorphisms are defined by acting on them
by special singular gauge transformations. A particular example of such transformation
establishing an equivalence of the SL(N ,C) CM system and the SL(N ,C) EA top was
given in [35].

In the theory of integrable models of statistical mechanics this Hecke transformation
defines a twist providing a passage from the so-called IRF type models to the Vertex
type models. The isomonodromic deformations problem corresponding to the Hitchin
systems [36] on elliptic curves relates the Painlevé VI equation and the nonautonomous
Zhukovsky-Volterra gyrostat [37,38]. The field (1+1) generalizations of the Hitchin-
Nekrasov (Gaudin) models are discussed in [35,39]. In terms of a gauge field theory
the Hecke transformation can be explained as a monopole solution of the Bogomolny
equation [31]. Details can be found in [40].

In our next publications we plan to obtain the quantum dynamical elliptic R-matrices
[41] and Knizhnik-Zamolodchikov-Bernard equations [42] corresponding to the non-
trivial characteristic classes of GL(N ,C)-bundles.

2. Holomorphic Bundle

Global description of holomorphic bundles. Let G be a complex simple Lie group and
K its maximal compact subgroup. According to Narasimhan and Seshadri [52] (see also
[58]) stable holomorphic G bundles over a Riemann surface �g of genus g arise from
flat K -bundles over �g . Then the stable holomorphic bundles can be described in the
following way.

Let π1(�g) be a fundamental group of�g . It has 2g generators {aα, bα} , correspond-
ing to the fundamental cycles of �g with the relation

g∏

α=1

[bα, aα] = 1, (2.1)

where [bα, aα] = bαaαb−1
α a−1

α is the group commutator.
Consider a finite-dimensional representationπ of G in a space V . Let P be a principal

G-bundle over �g . We define a holomorphic vector G-bundle E = P×G V (or in more
detail EG or EG(V )) over �g . The bundle EG has the space of sections �(EG) = {s},
where s takes values in V . Let ρ be a homomorphism from π1(�g) to G. The bundle
EG is defined by transition matrices of its sections. Let z ∈ �g be a fixed point. Then

s(aαz) = π(ρ(aα))s(z), s(bβ z) = π(ρ(bβ))s(z). (2.2)

Thus, the sections are defined by their quasi-periodicities. Due to (2.1) we have

g∏

α=1

[ρ(bα), ρ(aα)] = I d. (2.3)

The G-bundles described in this way are topologically trivial. To consider a less triv-
ial situation assume that G has a non-trivial center Z(G). Let ζ ∈ Z(G). Replace (2.3)
by

g∏

α=1

[ρ(bα), ρ(aα)] = ζ. (2.4)



8 A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov

Then the pairs (ρ(aα), ρ(bβ)), satisfying (2.4), cannot describe transition matrices of
the G-bundle, but can serve as transition matrices of the Gad = G/Z(G)-bundle. The
bundle EG in this case is topologically non-trivial and ζ represents the characteristic
class of EG . It is an obstruction to lift the Gad bundle to the G bundle. We will give a
formal definition in Sect. 4.

The transition matrices can be deformed without breaking (2.3) or (2.4). Among
these deformations are the gauge transformations

ρ(aα)→ f −1ρ(aα) f, ρ(bβ)→ f −1ρ(bβ) f. (2.5)

The moduli space of stable holomorphic bundles Mg is the space of transition matrices
defined up to the gauge transformations. Its dimension is independent on the character-
istic class and is equal to

dim (Mg) = (g − 1) dim (G). (2.6)

It means that the nonempty moduli spaces arise for the holomorphic bundles over
surfaces of genus g > 1.

To include into the construction the surfaces with g = 0, 1 consider a Riemann
surface with n marked points and attribute E with what is called the quasi-parabolic
structure at the marked points. Let B be a Borel subgroup of G. We assume that the
gauge transformation f preserves the flag variety Fl = G/B. It means that f ∈ B at
the marked points. It follows from (A.25),

dim (Mg,n) = (g − 1) dim (G) + n dim (Fl)

= (g − 1) dim (G) + n
rank G∑

j=1

(d j − 1). (2.7)

In the important for applications case, g = 1, n = 1 dim (M1,1) = dim (Fl).

Local description of holomorphic bundles and modification. There exists another
description of holomorphic bundles over �g . Let w0 be a fixed point on �g and Dw0

(D×w0
) be a disc (punctured disc) with a center w0 with a local coordinate z. Consider a

G-bundle EG over �g . It can be trivialized over D and over �g\w0. These two trivi-
alizations are related by a G transformation π(g) holomorphic in D×w0

, where Dw0 and
�g\w0 overlap. If we consider another trivialization over D then g is multiplied from
the right by h ∈ G. Likewise, a trivialization over �g\w0 is determined up to the mul-
tiplication on the left g → hg , where h ∈ G is holomorphic on �g\w0. Thus, the set
of isomorphism classes of G-bundles is described as a double-coset

G(�g\w0)\G(D×w0
)/G(Dw0), (2.8)

where G(U ) denotes the group of G-valued holomorphic functions on U .
To define a G-bundle over �g the transition matrix g should have a trivial monodr-

omy around w0 g(ze2π i ) = g(z) on the punctured disc D×w0
. But if the monodromy is

nontrivial

g(ze2π i ) = ζg(z), ζ ∈ Z(G),
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then g(z) is not a transition matrix. But it can be considered as a transition matrix for
the Gad -bundle, since Gad = G/Z(G). This relation is similar to (2.4).

Our aim is to construct from a bundle E with a fixed characteristic class a new bundle
Ẽ which can have a different characteristic class. This procedure is called a modification
of the bundle E . The modification is trivial if the characteristic class is not changed. The
modification is defined by a singular gauge transformation at some point, say w0. Since
it is a local transformation we replace�g by a sphere�0 = CP1, wherew0 corresponds
to the point z = 0 on CP1. Since z is a local coordinate, we can replace G(�g\w0) in
(2.8) by the group G(C((z))). It is the group of Laurent series with G valued coefficients.
Similarly, G(Dw0) is replaced by the power series G(C[[z]]). Then instead of (2.8) we
have

G(C[[z−1]])\G(C((z)))/G(C[[z]]). (2.9)

Replace g(z) by g(z)h(z), where h(z) can be singular at z = 0. It is a singular gauge
transformation mentioned above. Due to (2.9), h(z) is defined up to the multiplication
from the right by f (z) ∈ G(C[[z]]). On the other hand, as the original g(z) is defined
up to the multiplication from the right by an element from G(C[[z]]), h(z) is an element
from the double coset

G(C[[z]])\G(C((z)))/G(C[[z]]).
In particular, h(z) is defined up to a conjugation. It means that as a representative of

this double coset one can take a co-character (A.35) h(z) ∈ t (G),

g(z)→ g(z)zγ , (zγ = e(ln (zγ ))), (e(x) = exp(2π i x)), (2.10)

where γ belongs to the coweight lattice (γ = (m1,m2, . . . ,ml) ∈ P∨) (A.12).
The monodromy of zγ is exp −(2π ıγ ). Since 〈α, γ 〉 ∈ Z for any x ∈ g we have
Adexp −(2π ıγ )x = x. Then exp −(2π ıγ ) is an element of Z(Ḡ) (A.39). If the transi-
tion matrix g(z) defining E has a trivial monodromy, the new transition matrix (2.10)
acquires a nontrivial monodromy. In this way we come to a new bundle Ẽ with a non-
trivial characteristic class. The bundle Ẽ is called the modified bundle. It is defined by
the new transition matrix (2.10). If γ ∈ Q∨, then ζ = 1 and the modified bundle Ẽ has
the same type as E .

This transformation of the bundle E corresponds to the following transformations of
its sections Ẽ :

�(E)

(γ )−→�(Ẽ), (
(γ ) ∼ π(zm1, zm2 . . . zml )). (2.11)

We say that this modification has a type γ = (m1,m2, . . . ,ml). Another name of the
modification is the Hecke transformation. It acts on the characteristic classes of bundles
as follows:


(γ ) : ln ζ(E)→ ln ζ(Ẽ) = ln ζ(E) + 2π iγ, γ ∈ P∨. (2.12)

Consider the action of modification on sections (2.11) in more details. Let V be a
space of a finite-dimensional representation π of G with a highest weight ν and ν j
( j = 1, . . . , N ) is a set of its weights

ν j = ν −
∑

αm∈�
cm

j αm, ck
j ∈ Z, ck

j ≥ 0. (2.13)
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It means that for x ∈ H π(x)|ν j 〉 = 〈x, ν j 〉|ν j 〉. The weights belong to the weight
diagram defined by the highest weight ν ∈ P of π . The space V has the weight basis
(|νs1

1 〉, . . . , |νsN
N 〉) in V , where s1 = 1, . . . ,m1, . . . sN = 1, . . . ,m N and m1, . . . ,m N

are multiplicities of weights. Thus, M = dim V =∑
m j .

Let us choose a trivialization of E over D by fixing this basis. Thereby, the bundle
E over D is represented by a sum of M line bundles L1 ⊕ L2 ⊕ . . .⊕ LM . The Cartan
subgroup H acts in this basis in a diagonal way: for s = (|νs1

1 〉, . . . , |νsN
N 〉),

π(h) : |νs j
j 〉 → e〈x, ν j 〉|νs j

j 〉, h = e (x), x ∈ H, (e(x) = exp (2π ix)).

Assume for simplicity that in (2.10) g(z) = 1. Then the modification transformation
(2.11) of the sections assumes the form


(γ ) : |νs j
j 〉 → z〈γ,ν j 〉|νs j

j 〉, j = 1, . . . , M.

It means that away from the point z = 0, where the transformations are singular, the
sections of Ẽ are the same as of E . But near z = 0 they are singular with the leading
terms |νs j

j 〉 ∼ z−〈γ,ν j 〉.
It is sufficient to consider the case when γ = �∨i is a fundamental coweight and π

is a fundamental representation ν = �k . Then from (2.13) we have

z〈γ,ν j 〉 = z〈�
∨
i ,�k−∑

αm∈� cm
j αm 〉.

The weight �k can be expanded in the basis of simple roots �k = ∑
k Akmαm , where

A jk is the inverse Cartan matrix (A jkaki = δ j i ). Its matrix elements are rational numbers
with the denominator N = ord (Z). Then from (A.12),

z〈γ,ν j 〉 ∼ z
l
N +m, l,m ∈ Z.

Note, that the branching does not happen for Gad -bundles, because the corresponding
weights ν j belong to the root lattice Q and thereby 〈γ, ν j 〉 ∈ Z.

It is possible to go around the branching by multiplying the sections on a scalar matrix
of the form diag(z−Aik , . . . , z−Aik ). This matrix no longer belongs to the representation
of Ḡ, because it has the determinant z−M Aik (M = dim V ). It can be checked that M Aik
is an integer number.

If G = SL(N ,C) the scalar matrix belongs to GL(N ,C). Thereby, after this trans-
formation we come to a GL(N ,C)-bundle. But this bundle is topologically non-triv-
ial, because it has a non-trivial degree. In this way the characteristic classes for the
SL(N ,C)-bundles are related to another topological characteristic, namely to degrees
of the GL(N ,C)-bundles. We describe below the similar construction for other simple
groups.

3. Holomorphic Bundles over Elliptic Curves

Hereinafter we consider the bundles over an elliptic curve, described as the quotient
�τ ∼ C/(τC ⊕ C), (I m τ > 0). There are two generators of the fundamental group
corresponding to the shifts z → z + 1 and z → z + τ . Let G be a complex simple Lie
group. Sections of a G-bundle EG(V ) over �τ satisfy the quasi-periodicity conditions
(2.2)

s(z + 1) = π(Q) s(z), s(z + τ) = π(�) s(z), (3.1)
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where Q, � take values in G. A bundle Ẽ is equivalent to E if its sections s̃ are related
to s as s̃(z) = f (z)s(z), where f (z) is an invertible operator in V . It follows from (3.1)
that the transition operators, have the form

Q̃ = f (z + 1)Q f −1(z), �̃ = f (z + τ)� f −1(z). (3.2)

As we have mentioned, the moduli space M1,n is the quotient space of pairs (Q,�)
with respect to this action. In what follows we consider the simplest case n = 1, though
our construction is applicable for arbitrary n.

The transition operators define a trivial bundle if [Q,�] = I d. Let ζ be an element
of Z(Ḡ). To come to a nontrivial bundle we should find solutions �,Q ∈ Ḡ of the
equation

�Q�−1Q−1 = ζ. (3.3)

It follows from (A.38) that the r.h.s. can be represented as ζ = e(−�∨), where
�∨ ∈ P∨ (A.12). Then (3.3) takes the form

�Q�−1Q−1 = e(−�∨), (e (x) = exp (2π i x)). (3.4)

It follows from [52] that the transition operators can be chosen as constants. There-
fore, to describe the moduli space of stable holomorphic bundles we should find a pair
Q, � ∈ G satisfying (3.4) and defined up to the conjugation

�→ f� f −1, Q→ f Q f −1. (3.5)

Let G = Ḡ be a simply-connected group. Let us fix a Cartan subgroup HḠ ⊂ Ḡ.
Assume that Q is semisimple, and therefore is conjugated to an element from HḠ . We
will see that by neglecting non-semisimple transition operators we still define a big cell
in the moduli space. Our goal is to find solutions of (3.3), where Q is a generic element
of a fixed Cartan subgroup H ⊂ Ḡ.

Algebraic equation.

Proposition 3.1. Solutions of (3.4) up to the conjugations have the following descrip-
tion:

• The element� has the form� = �0V , where�0 is defined uniquely by the coweight
�∨j (�0 = �0

j ). It is an element from the Weyl group W preserving the extended
coroot system �∨ext = �∨ ∪ α∨0 , and in this way is a symmetry of the extended
Dynkin diagram. V ∈ HḠ commutes with �0.

•• The element Q has the form Q = Q0U, where

Q0 = exp 2π iκ, κ = ρ∨

h
∈ H, (3.6)

where h is the Coxeter number, ρ∨ = 1
2

∑
α∨∈(R∨)+ α∨ and U commutes with �0.6

Proof. In (3.6) κ can be chosen from a fixed Weyl chamber (A.9). From (A.34) and
(A.36) we find that if κ0 ∈ Q∨ then e (κ0) = I d. Therefore, by shifting κ → κ + γ ,
γ ∈ Q∨, κ can be put in Calc (A.16). Rewrite (3.3) as

6 The first statement can be found in [9] (Prop. 5 in VI.3.2). We give another proof because it elucidates
the proof of the second statement.
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�Q�−1 = ζQ, ζ = e (−ξ). (3.7)

Here � is defined up to multiplication from HḠ and we write it in the form �0V ,
V ∈ HḠ .

Lemma 3.1. There exists a conjugation f (3.5) such that Q→ Q and �0V → �0Vλ,
and �0Vλ = Vλ�0.

Proof. Let us take f ∈ HḠ . Then f preserves Q. It acts on the second transition operator
as

�0V → f�0 f −1V = �0(�0)−1 f�0 f −1V .

Define Vλ as Vλ = (�0)−1 f�0 f −1V . Our goal is to prove that there exists such f
that Vλ commutes with �0. In other words, f�0 f −1V = �0)−1 f�0 f −1V�0. Let
V = e(x), f = e(y), x, y ∈ H, λ = Ad�0 . Then the commutativity condition takes the
form (λ− 1)x = (λ−1 − 1)y + (λ− 1)y.

Let l be an order of �0, ((�0)l = 1). Then a solution of this equation is given by a
sum

y = 1

l

l∑

i=1

iλi (x).

Thus �0 and V defines Vλ = e(p) commuting with �0, where p is the average along
the λ-orbit

p = 1

l

l−1∑

i=0

λi (x). (3.8)

��
On the next step we find �0. Rewrite (3.4) in the form

λ(κ) = κ − ξ, ξ = �∨j , λ = Ad�, (3.9)

where κ ∈ Calc. Define a subgroup�Calc of the affine Weyl group W ′a (A.18) �Calc ⊂ W ′a
that preserves Calc (A.17). It acts by permutations on its vertices (A.17). Equivalently,
�Calc acts by permutations of nodes of the extended Dynkin graph. The face of Calc
belonging to the hyperplane 〈αi , x〉 = 0 contains all vertices except �∨i /ni . Similarly,
the face belonging to the hyperplane (α0, x) = 1 contains all vertices except 0. By this
duality the permutations of vertices by g = (λ, ξ) ∈ �Calc correspond to permutations
of the faces, and in this way to permutations of the coroots �∨ext .

Instead of (3.9) consider λ(Calc) + ξ = Calc. The left-hand side of this equation is
a transformation g = (λ, ξ) ∈ �Calc . Let us take ξ = �∨j , where �∨j is a fundamental
coweight that is a vertex of Calc (n j = 1 in (A.17)). Remember, that only these �∨j
define nontrivial elements of the quotient P∨/Q∨. Then we have

λ j (Calc) = Calc −�∨j ≡ C ′alc. (3.10)

The node 0 of C ′alc is an image of the node �∨j of Calc after the shift. Let us define λ j .
The Weyl group W action on the Weyl alcoves that contains 0 is simple transitive. There-
fore, there exists a unique λ j ∈ W such that λ j (Calc) = C ′alc. Then (λ j ,�

∨
j ) ∈ �Calc
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defines a transformation of Calc, which is a permutation of its vertices (A.17) such that
�∨j → 0. Taking into account the action of �Calc on the extended Dynkin graph we find

λ∗j (αk) =
{
αm k �= j
−α0 k = j αk, αm ∈ �. (3.11)

Thus, taking ξ = �∨j we find � j .
Fixed points of the �alc-action are solutions of (3.9). It will give us κ and in this way

Q. Let us prove that a particular solution of (3.9) is

κ = ρ∨

h
, (3.12)

where h is the Coxeter number (A.8). Equation (3.9) is equivalent to

〈κ, λ∗j (αk)〉 = 〈κ, αk〉 − δ jk, αk ∈ �, k = 1, . . . , l. (3.13)

Since ρ∨ =∑l
m=1 �

∨
m (see (A.13)) for k �= j (3.13) becomes a trivial identity. For

k = j using (A.7) we obtain − 1
h

∑l
m=1 nm − 1

h = −1. It follows from (A.8) that it is
again identity.

An arbitrary solution of (3.9) takes the form

κ = ρ∨

h
+ q, q ∈ K er(λ j − 1).

In other words, the Weyl transformation λ j should preserve q.
Thus, taking in (3.3) ζ = exp −(2π i�∨j )we find solutions (� j = �0

j Vλ,Q), where

�0
j is a symmetry of the extended Dynkin graph corresponding to �∨j and

Q = exp 2π i(
ρ∨

h
+ q). (3.14)

The pair (p,q) (3.8), belonging to the Cartan subalgebra H, plays the role of the
moduli parameters of solutions to (3.4). ��
Remark 3.1. For Spin(4n) there are two generators ζ1 and ζ2 of Z(Spin(4n)) ∼ μ2⊕
μ2 corresponding to the fundamental weights �a , �b of the left and the right spinor
representations. Arguing as above we will find two solutions �a and �b of (3.4), while
Q is the same in both cases.

Consider a group G, (Ḡ ⊃ G ⊇ Gad) and let �,Q ∈ G. Let us choose ξ = � such
that it generates the group t (G) of co-characters t (G) = P∨l (A.33), (A.34) t (G) =
� + Q∨, l� ∈ Q∨. Then ζ = e (−�) is a generator of center Z(G) ∼ P∨/t (G) = μl
(see (A.38)). Arguing as above we come to

Proposition 3.2. • The element� is defined by the coweight �∨ ∈ W . It is a symmetry
of the extended Dynkin diagram. � is defined up to invariant elements from HG.
•• Let

(λ(G)− 1)q = 0, q ∈ H, λ(G) = Ad�(G). (3.15)

A general solution of (3.4) is

κ = ρ∨

h
+ q, (3.16)
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Therefore, the group of cocharacters t (G) defines a Weyl symmetry �0(G) of the
extended Dynkin diagram �∨ext such that (�0)l(G) = I d.

�(G) and Q play the role of transition operators of G-bundles over �τ . A generator
ζ = e (�) defines a characteristic class of the bundles. It is an obstruction to lift the
G-bundle to the Ḡ-bundle.

Remark 3.2. If ξ ∈ Q∨ then ζ = I d. It means that we can take ξ = 0 as a representative
of P∨/Q∨. Then λ = 1 (see (3.10) and K er (λ− 1) = H. In this case the bundle has a
trivial characteristic class, but has holomorphic moduli defined by the vector q ∈ H. The
corresponding Higgs bundle over �τ/(z = 0) defines the elliptic spin Calogero-Moser
system.

The moduli space. We have described a G-bundle EG(V ) by the transition operators
(� = �0e (p),Q = e ( ρ

∨
h + q), where �0 corresponds to the coweight �∨ ∈ P∨.

The topological type of E is defined by an element of the quotient P∨/t (G). Let us
transform (�,Q) taking in (3.2) f = e (−qz). Since f commutes with �0 we come
to new transition operators Q = e (κ + q)→ Q = e (κ), �→ �0e (p − qτ). Denote
p− qτ = ũ.7 Then sections of EG(V ) assume the quasi-periodicities

s(z + 1) = π(e (κ)) s(z), s(z + τ) = π(e (ũ)�0) s(z). (3.17)

Thus, we come to the transition operators

Q = e (κ), � = e (ũ)�0. (3.18)

Here ũ plays the role of a parameter in the moduli space. In this subsection we describe
it in details.

Trivial bundles. Consider first the simplest case � = I d and u ∈ H (see Remark 3.2)).
It means that E has a trivial characteristic class. The transition transformations π(e (κ)),
π(e (u)) lie in the Cartan subgroup HG of G.

Consider first a bundle EḠ for a simply-connected group Ḡ. Since t (Ḡ) ∼ Q∨ (A.36)
and due to (A.34), e (u + γ ) = e (u) for γ ∈ Q∨. Taking into account that u lies in
a Weyl chamber we conclude that in fact u ∈ Calc as it was already established. Now
apply the transformation e (γ z),

s(z)→ π(e (γ z))s(z), γ ∈ Q∨. (3.19)

The sections are transformed as

s(z + 1) = π(e (κ)) s(z), s(z + τ) = π(e (u + γ τ)) s(z). (3.20)

Thus, transition operators, defined by parameters u and u + τγ1 + γ2 (γ1,2 ∈ Q∨),
describe equivalent bundles. The semidirect product of the Weyl group W and the lattice
τQ∨ ⊕ Q∨ is called the Bernstein-Schwarzman group [6],

WBS = W � (τQ∨ ⊕ Q∨).
7 We will write ũ for nontrivial bundles reserving u for trivial bundles.
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Thereby, u can be taken from the fundamental domain C (sc) of WBS . Thus,

C (sc) = H/WBS is the moduli space of trivial Ḡ − bundles. (3.21)

Consider the Gad bundle and let e (u) ∈ Gad . In this case e (γ ) = 1 if γ ∈ P∨
(A.36), (A.34). Define the group

W ad
BS = W � (τ P∨ ⊕ P∨).

As above, we come to the similar conclusion:

C (ad) = H/W ad
BS is the moduli space of trivial Gad − bundles. (3.22)

Consider a coweight �∨ ∈ P∨ such that l�∨ ∈ Q∨, the coweight lattice P∨l =
Z�∨ ⊕ Q∨ (A.37). Thus, P∨/P∨l ∼ μl . Consider a group Gl (A.29). The coweight
sublattice P∨l is the group of its cocharacters t (Gl) (A.33). Representations of Gl are
defined by the dual to t (Gl) groups of characters �(Gl) (A.30). The dual to P∨l lattice
Pp ⊂ P has the form

Pp = Z� + Q, p� ∈ Q.

By means of P∨l define the affine group of the Bernstein-Schwarzman type

W (l)
BS = W � (τ P∨l ⊕ P∨l ).

Making use of the gauge transform e (γ z) ∈ Gl , (γ ∈ P∨l ) we find that

C (l) = H/W (l)
BS is the moduli space of trivial Gl − bundles. (3.23)

Consider the dual picture and the lattice P∨p . It is formed by Q∨ and a coweight �∨,

P∨p = Z�∨ + Q∨, p�∨ ∈ Q∨.

The lattice P∨p plays the role of the group of cocharacters for the dual group L Gl =
G p = Ḡ/μp, (A.29), while Pl defines characters of G p. Again by means of the group,

W (p)
BS = W � (P∨p ⊕ P∨p τ),

we find that

C (p) = H/W (p)
BS is the moduli space of trivial G p − bundles. (3.24)

Thus, for the Ḡ,Gl ,G p,Gad trivial bundles we have the following interrelations
between their moduli space

C (sc)

↙ | ↘
C (l) | C (p)

↘ ↓ ↙
C (ad)

(3.25)
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Here arrows mean coverings. Note that C (sc),C (ad) and as well as C (l),C (p) are dual
to each other in the sense that in defining them the lattices are dual.

Let Fl be a flag variety located at the marked point. In this way we have defined
a space M̃1,1 = (Ca, Fl) (a = (sc), (l), (ad)) related to the moduli space of triv-
ial bundles over �τ with one marked point. But we still have freedom to act on Fl
by constant conjugations from the Cartan subgroup Ha . Thus, eventually we come to
M0

1,1 = (Ca, Fl/Ha). It has dimension M1,1 (2.7). It is a big cell in M1,1. In our
construction we have excluded non-semisimple elements Q.

Nontrivial bundles. Consider a general case �0 �= I d. It was explained above that �0

corresponds to some characteristic class related to �∨ ∈ P∨, and �∨ /∈ Q∨. In this
case ũ ∈ K er(λ− 1), and in fact ũ ∈ Calc ∩ H̃0, where H̃0 is the invariant subalgebra
λ(H̃0) = H̃0. There is a basis in H̃0 defined by a system of simple coroots �̃∨ (see
Sect. 5.4). Moreover, the corresponding root system defines a simple Lie algebra g̃0.

Let W̃ be the Weyl group W of the root system R̃ = R̃(�̃),

W̃ = {w ∈ W̃ |w(R̃) = R̃ }, (3.26)

and

Q̃∨ = {γ =
p∑

j=1

m j α̃
∨
j , m j ∈ Z} (3.27)

is the coroot lattice generated by �̃∨ (5.26). Consider first EḠ bundles. As above,
e (ũ + γ ) = e (ũ), γ ∈ Q̃∨. The automorphism (3.19) for γ ∈ Q̃∨ commutes with
�. Thus, ũ and ũ + τγ1 + γ2 γ1,2 ∈ Q̃∨ define equivalent Ḡ-bundles. Consider the
semidirect products

W̃BS = W̃ � (τ Q̃∨ ⊕ Q̃∨). (3.28)

The fundamental domain in H̃ under the W̃BS action is the moduli space of Ḡ-bundles
with characteristic classes defined by �∨,

C̃sc = H̃/W̃BS is the moduli space of nontrivial Ḡ − bundles . (3.29)

Consider EGad -bundles. Let �̃∨j be fundamental coweights (〈�̃∨j , α̃k〉 = δ jk) and

P̃∨ = {γ =
p∑

j=1

m j�̃
∨
j , m j ∈ Z} (3.30)

is the coweight lattice in H̃0. Define the semidirect product

W̃ ad
BS = W̃ � (τ P̃∨ ⊕ P̃∨). (3.31)

A fundamental domain under its action

C̃ad = H̃0/W̃ ad
BS is the moduli space of nontrivial Gad − bundles (3.32)

is a moduli space of a Gad -bundle with characteristic class defined by�∨. If ord(Z( ¯̃G)
is not a primitive number then we again come to the hierarchy of the moduli spaces
similar to (3.25).

As above the space M0
1,1 = (Ca, Fl/H̃0) is a big cell in the moduli space of non-

trivial bundles.
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4. Characteristic Classes and Conformal Groups

Characteristic classes. Let EG be is a principal G-bundle over �. Consider a finite-
dimensional representation of complex group G in a space V and let EG(V ) be the
vector bundle EG(V ) = EG ×G V induced by V .

The first cohomology H1(�g,G(O�)) of � with coefficients in analytic sheaves
defines the moduli space M(G, �) of holomorphic G-bundles. Let Ḡ be a simply-con-
nected group and Gad be an adjoint group. Using (A.28) and (A.29) we write three exact
sequences:

1→ Z(Ḡ))→ Ḡ(O�)→ Gad(O�)→ 1,

1→ Zl → Ḡ(O�)→ Gl(O�)→ 1,

1→ Z(Gl)→ Gl(O�)→ Gad(O�)→ 1,

where Gl = Ḡ/Zl . Then we come to the long exact sequences

→ H1(�g, Ḡ(O�))→ H1(�g,Gad(O�))→ H2(�g,Z(Ḡ)) ∼ Z(Ḡ))→ 0,

(4.1)

→ H1(�g, Ḡ(O�))→ H1(�g,Gl(O�))→ H2(�g,Zl) ∼ μl → 0, (4.2)

→ H1(�g,Gl(O�)→ H1(�g,Gad(O�))→ H2(�g,Z(Gl)) ∼ μp → 0. (4.3)

The elements from H2 are obstructions to lift bundles, namely

ζ(EGad ) ∈ H2(�g,Z(Ḡ))− obstructions to lift EGad − bundle to EḠ − bundle,

ζ(EGl ) ∈ H2(�g,Zl)− obstructions to lift EGl − bundle to EḠ − bundle,

ζ∨(EGad ) ∈ H2(�g,Z(Gl))− obstructions to lift EGad − bundle to EGl − bundle.

Definition 4.1. Images of H1(�g,G(O�)) in H2(�g,Z) are called the characteristic
classes ζ(EG) of G-bundles.

Since Zl → Z(Ḡ)→ Z(Gl). we have the following relations between these character-
istic classes ζ∨(EGad ) = ζ(EGad )mod Zl , and the characteristic class ζ(EGl ) coincides
with ζ(EGad ) as an obstruction to lift a EGl -bundle, treated as a EGad -bundle to a EḠ-
bundle.

Consider a particular case Ḡ = SL(N ,C), Gad = PSL(N ,C). Then the elements
ζ ∈ Z(SL(N ,C)) ∼ μN are obstructions to lift PSL(N ,C)-bundles to SL(N ,C)-bun-
dles. They represent the characteristic classes of PSL(N ,C)-bundles. On the other hand,
the exact sequence

1→ O∗ → GL(N ,C)→ PGL(N ,C)→ I d (4.4)

gives rise to the exact sequence of cohomology

H1(�g,GL(N ,C))→ H1(�g,PGL(N ,C))→ H2(�g,O∗). (4.5)

The Brauer group H2(�,O∗) vanishes and, therefore, there are no obstructions to lift
PGL(N ,C) ∼ PSL(N ,C)-bundles to GL(N ,C)-bundles. A topological characteristic
of a GL(N ,C)-bundle is the degree of its determinant bundle. In the following subsec-
tions we will construct an analog of GL(N ,C) for other simple groups. We call them
the conformal groups. The main goal is to relate the characteristic classes to the degrees
of some line bundles connected to the conformal groups.
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Conformal groups. Here we introduce an analog of the group GL(N ,C) for other simple
groups apart from SL(N ,C). Let

φ : Z(Ḡ) ↪→ (
C
∗)r (4.6)

be an embedding of the center Z(Ḡ) into an algebraic torus (C∗)r of minimal dimension
(r = 1 for a cyclic center and r = 2 for μ2 × μ2). Note that any two embeddings for
Z(Ḡ), (Ḡ �= SL(N ,C)) are conjugate from the left: φ1 = Aφ2 for some automorphism
A of the torus (C∗)r . For these groups we deal with μ2, μ3, μ4 or μ2 × μ2. In these
cases nontrivial roots of unity coincide or they are inverse to each other. In the latter
case A : x → x−1.

Consider the “anti-diagonal” embedding Z(Ḡ)→ Ḡ × (C∗)r , ζ �→ (ζ, φ(ζ )−1),

ζ ∈ Z(Ḡ). The image of this map is a normal subgroup since Z is the center of Ḡ.

Definition 4.2. The quotient

CḠ = (
Ḡ × (

C
∗)r )

/Z(Ḡ)

is called the conformal version of Ḡ.

Similarly the conformal version can be defined for any G with a non-trivial center.
If the center of G is trivial as for Gad then CG = G × C

∗.
The group CḠ does not depend on embedding in C

r due to above remark about
conjugacy of φ’s. We have a natural inclusion Ḡ ⊂ CḠ.

Consider the quotient torus Z∨ = (C∗)r /Z(Ḡ) ∼ (C∗)r . The last isomorphism is
defined by λ→ λN for cyclic center and (λ1, λ2)→ (λ2

1, λ
2
2) for Deven . The sequence

1→ Ḡ → CḠ → Z∨ → 1 (4.7)

is the analogue of

1→ SL(N ,C)→ GL(N ,C)→ C
∗ → 1.

On the other hand, we have embedding of (C∗)r → CḠ with the quotient
CḠ/ (C∗)r = Gad . Then the sequence

1→ (
C
∗)r → CḠ → Gad → 1 (4.8)

is similar to the sequence

1→ C
∗ → GL(N ,C)→ PGL(N ,C)→ 1.

Let π be an irreducible representation of Ḡ and χ be a character of the torus (C∗)r .
It follows from (4.7) that an irreducible representation π̃ of CḠ is defined as

π̃ = π � χ((C∗)r ), such that π |Z(Ḡ) = χφ, (φ (4.6)). (4.9)

Assume for simplicity thatπ is a fundamental representation. It means that the highest
weight ν of π is a fundamental weight. Let �∨ be a fundamental coweight generat-
ing Z(Ḡ) for r = 1. In other words, ζ = e(�∨) is a generator of Z(Ḡ) (ζ N = 1,
N =ord(Z(Ḡ)). Then π |Z(Ḡ) acts as a scalar e〈�∨, ν〉. The highest weight can be
expanded in the basis of simple roots ν =∑

α∈� cναα. Then the coefficients cνα are rows
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of the inverse Cartan matrix. They have the form k/N , where k is an integer. Therefore
the scalar

e〈�∨, ν〉 = e
(∑

α∈�
cναδ〈�∨,α〉

)
(4.10)

is a root of unity. On the other hand, let χm(C
∗) = wm (w ∈ C

∗) be a character of
C
∗, and φ(ζ ) = e (l/N ). In terms of weights the definition of π̃ (4.9) takes the form

e〈�∨, ν〉 = e
(

ml
N

)
. It follows from this construction that characters of CḠ are defined

by the weight lattice P and the integer lattice Z with an additional restriction

χ(γ,m)(x, w) = exp 2π i〈γ, x〉wm, 〈γ,�∨〉 = ml

N
+ j, γ ∈ P, m, j ∈ Z, x ∈ H.

The case Deven (r = 2) can be considered similarly.

Remark 4.1. Simple groups can be defined as subgroups of GL(V ) preserving some
multi-linear forms in V . For examples, in the defining representations these forms are
bilinear symmetric forms for SO , bilinear antisymmetric forms for Sp, a trilinear form
for E6 and a form of fourth order for E7. In a generic situation G is defined as a subgroup
of GL(V ) preserving a three tensor in V ∗ ⊗ V ∗ ⊗ V [25]. The conformal versions of
these groups can be alternatively defined as transformations preserving the forms up to
dilatations. We prefer to use here the algebraic construction, but this approach justifies
the name “conformal version”.

The conformal versions can be also defined in terms of exact representations of Ḡ.
Let V be such a representation and assume that Z(Ḡ) is a cyclic group. Then CḠ is a
subgroup of GL(V ) generated by G and dilatations C

∗. The character det V is equal to
λdim (V ), where λ is equal to (4.10) for fundamental representations.

For Deven we use two representations, f.e. the left and right spinors SpinL ,R . The
conformal group C Spin4k is a subgroup of GL(SpinL ⊕ SpinR) generated by Spin4k
and C

∗ × C
∗, where the first factor C

∗ acts by dilatations on SpinL and the second

factor acts on SpinR . The character det SpinL (det SpinR) is equal to λ
dim (SpinL

4k )

1

(λ
dim (SpinR

4k )

2 ), (dim (SpinL ,R
4k ) = 22k−1).

Characteristic classes and degrees of vector bundles. From the exact sequence (4.8)
and vanishing of the second cohomology of a curve H2(�,O∗) = 0 with coefficients
in the analytic sheaf we get that any Gad(O)-bundle (even a topological non-trivial one
with ζ(Gad(O) �= 0) can be lifted to a CḠ(O)-bundle.

Let V be an exact representation either irreducible or with the sum SpinL ⊕ SpinR

for D2k . Then from (4.6) one has an embedding of Z(Ḡ) to the automorphisms of V

φV : Z(Ḡ) ↪→ (
C
∗)r = AutḠ(V ). (4.11)

In a particular case, when V is a fundamental defining representation the center acts by
multiplication on (4.10).

Let PCḠ be a principal CḠ(O)-bundle. Denote by E(V ) = PCḠ ⊗CḠ V (or
E(SpinL ,R)) a vector bundle induced by a representation V (SpinL ,R for Deven).
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Theorem 4.1. 8 Let Ead = E(Ad) be the adjoint bundle with the characteristic class
ζ(Ead). The image of ζ(Ead) under φV (4.11) is

φV (ζ(Ead)) =
{

exp
(−2π i deg (EḠ(V ))/dim V

)
Z(Ḡ)− is cyclic,

exp
(−2π ideg (ESpinL ,R

4k
)/22k−1

)
.

Proof. Consider the commutative diagram

1 1
�⏐⏐

�⏐⏐

1 −−−−→ Z∨(O�)
∼−−−−→ Z∨(O�) −−−−→ 1

�⏐⏐[N ]
�⏐⏐

�⏐⏐

1 −−−−→ (
O∗�

)r −−−−→ CḠ(O�) −−−−→ Gad(O�) −−−−→ 1
�⏐⏐

�⏐⏐
�⏐⏐

1 −−−−→ Z(Ḡ) −−−−→ Ḡ(O�) −−−−→ Gad(O�) −−−−→ 1
�⏐⏐

�⏐⏐
�⏐⏐

1 1 1

and the corresponding diagram of Ĉech cochains. Let ψ be a 1-cocycle with values
in Gad(O�). Consider its preimage as a cocycle with values in CḠ(O�). Due to the
definition of CḠ this cocycle is a pair of cochains (�, ν) with values in Ḡ(O�) and(
O∗�

)r such that φV (d�)dν = 1 ∈ (O∗)r , where d is the Ĉech coboundary operator.
The cohomology class of d� by definition is the characteristic class c, so φV is opposite
to the class of dν: φV (ζ(Ead)) = (dν)−1. Since ν acts in V as a scalar νdimV , it is a
one-cocycle as a determinant of this action. It represents the determinant of the bundle
E(V ). In this way ν is a preimage of the cocycle νdimV , taking N = dim (V ) power

O∗ [N ]→ O∗, ν → νN , N = dim (V ). ��
Consider the long exact sequence

1→ μN → O∗�
[N ]→ O∗� → 1, (μN = Z/NZ).

It induces the map H1(�,O∗�) →H2(�,μN ). The cocycle dν lies in the cohomol-
ogy class which is an image of the class of det E(V ) = νN under the coboundary
map H1(�,O∗)→ H2(�,μN ). Denote it by InvN =Image(det E(V )). Thus, by the
definition, the class of dν equals InvN (det E(V )) = InvN (ζ1(E(V ))).

The statement of the theorem follows from the following proposition

Proposition 4.1. Let γ be a 1-cocycle with values in O∗. Then InvN (γ ) =
exp

( 1
N 2π i deg(γ )

)
.

8 For G = GL(N ,C) this theorem was proved in [52].
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Table 3. Degrees of bundles for conformal groups

Ḡ ν, V deg (E(V ))

SL(n,C) �∨1 n −1 + kn

Spin2n+1(C) �∨n 2n 2n−1(1 + 2k)

Mpn(C) �∨1 2n n(1 + 2k)

SpinL ,R
4n (C) �∨n,n−1 22n−1 22n−2(1 + 2k)

Spin4n+2(C) �∨n 2n 2n−2(1 + 4k)

E6(C) �∨1 27 9(1 + 3k)

E7(C) �∨1 56 28(1 + 2k)

Mpn(C) is the universal covering of Spn(C)
(k ∈ Z)

Proof. Consider the diagram

0 −−−−→ μN −−−−→ O∗�
[N ]−−−−→ O∗� −−−−→ 0

�⏐⏐exp
�⏐⏐exp

0 −−−−→ O�
×N−−−−→ O� −−−−→ 0

�⏐⏐
�⏐⏐

2π iZ
×N−−−−→ 2π iZ

Let γ be a 1-cocycle of O∗� . By definition its image in H2(X, μN ) is equal to the
coboundary of 1-cochain γ 1/N of O∗� , (γ 1/N )N = γ . Let log(γ ) be a preimage of the
cycle γ under an exponential map; log(γ ) is a 1-cochain of O� and its coboundary
equals the degree of γ times 2π i . As the multiplication by N is invertible on O� , the
cochain 1

N log(γ ) is well-defined; due to commutativity of the diagram we can choose
exp

( 1
N log(γ )

)
as γ 1/N . Hence, the image of γ in H2(X, μN ) equals the coboundary

of exp
( 1

N log(γ )
)

equals exponential of coboundary of 1
N log(γ ) equals the exponential

of degree of γ times 2π i
N .

The case r = 2, can be analyzed in the same way. The theorem is proved. ��
Let as above �∨ be a fundamental coweight generating a center Z(Ḡ) and ν is

weight of the representation of Ḡ in V . Then it follows from Theorem 4.1 and (4.10)
that

deg (E(V )) = dim (V )(〈�∨, ν〉 + k), k ∈ Z. (4.12)

Then for the fundamental representations of Ḡ we have the following realization of this
formula.

It follows from our considerations that replacing the transition matrix

�→ �̃ = e (〈�∨, ν〉(z +
τ

2
))�

defines the bundle of conformal group CG of degree (4.12) (Table 3).
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5. GS-Basis in Simple Lie Algebras

We pass from the Chevalley basis (A.20) to a new basis that is more convenient to define
bundles corresponding to nontrivial characteristic classes. We call it the generalized sin
basis (GS-basis), because for the An case and degree one bundles it coincides with the
sin-algebra basis (see, for example, [18]).

Let us take an element ζ ∈ Z(Ḡ) of order l and the corresponding �0 ∈ W from
(3.3). Then �0 generates a cyclic group μl = (�0, (�0)2, . . . , (�0)l = 1) isomorphic
to a subgroup of Z(Ḡ). Note that l is a divisor of ord(Z(Ḡ)). Consider the action of �0

on g. Since (�0)l = I d we have a l-periodic gradation

g = ⊕l−1
a=0ga, λ(ga) = ωaga, ω = exp

2π i

l
, λ = Ad�0 , (5.1)

[ga, gb] = ga+b (mod l), (5.2)

where g0 is a subalgebra g0 ⊂ g and the subspaces ga are its representations.
Since �0 ∈ W it preserves the root system R. Define the quotient set Tl = R/μl .

Then R is represented as a union of μl -orbits R = ∪Tl O. We denote by O(β̄) an orbit
starting from the root β,

O(β̄) = {β, λ(β), . . . , λl−1(β)}, β̄ ∈ Tl .

The number of elements in an orbit O (the length of O) is l/pα = lα , where pα is a
divisor of l. Let να be a number of orbits Oᾱ of the length lα . Then � R =∑

ναlα . Note,
that if O(β̄) has length lβ (lβ �= 1), then the elements λkβ and λk+lβ β coincide.

Basis in L (A.19). Transform first the root basis E = {Eβ, β ∈ R} in L. Define an orbit
in E ,

Eβ̄ = {Eβ, Eλ(β), . . . , Eλl−1(β)},
corresponding to O(β̄). Again E = ∪β̄∈Tl

Eβ̄ .

For O(β̄) define the set of integers

Jpα = {a = mpα |m ∈ Z, a is defined mod l }, (pα = l/ lα). (5.3)

“The Fourier transform” of the root basis on the orbit O(β̄) is defined as

ta
β̄
= 1√

l

l−1∑

m=0

ωma Eλm (β), ω = exp
2π i

l
, a ∈ Jβ. (5.4)

This transformation is invertible Eλk (β) = 1√
l

∑
a∈Jl

ω−kata
β̄

, and therefore there is

the one-to-one map Eβ ↔ {ta
β̄
, a ∈ Jβ}. In this way we have defined the new basis

{ta
β̄
, (a ∈ Jl , β̄ ∈ Tl)}. (5.5)

Since λ(Eα) = Eλ(α), we have for �e(ũ) (ũ ∈ H̃0),

Ad�(t
a
β̄
) = e(〈ũ, β〉 − a

l
)ta
β̄
, e(x) = exp (2π i x). (5.6)
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It means that ta
β̄
(β̄ ∈ Tl) is a part of basis in gl−a (5.1). Moreover,

AdQ(t
a
β̄
) = e(〈κ, β〉)ta

β̄
. (5.7)

This relation follows from (3.7) and (3.14). We also take into account that Q and �

commute in the adjoint representation and e (x)Eαe (−x) = e 〈x, α〉Eα for x ∈ H̃0.
Picking another element �′ generating a subgroup Zl ′1 (l

′ �= l) we come to another
set of orbits and to another basis. We have as many types of bases as non-isomorphic
subgroups in Z(Ḡ).

The Killing form. Consider two orbits O(ᾱ) and O(β̄), passing through Eα and Eβ .
Assume that there exists such integer r that α = −λr (β). It implies that elements of
two orbits are related as λn(α) = −λm(β) if m − n = r . In other words, −β ∈ O(ᾱ).
In particular, it means that orbits have the same length. It follows from (5.4) and (A.24)
that

(t
c1
ᾱ , t

c2

β̄
) = δα,−λr (β)δ

(c1+c2,0 (mod l))ω−rc1
2pα
(α, α)

, (5.8)

where pα = l/ lα , and lα is the length of O(ᾱ). In particular, (ta
ᾱ, t
−a
−ᾱ) = 2pα

(α,α)
.

In what follows we need a dual basis Tb
ᾱ ,

(T
b1
ᾱ1
, t

b2
ᾱ2
) = δ(b1+b2,0 (mod l))δᾱ1,−ᾱ2 , Tb

ᾱ = t−b
−ᾱ

(α, α)

2pα
. (5.9)

The Killing form in this basis is inverse to (5.8),

(T
a1
ᾱ1
,T

a2
ᾱ2
) = δα1,−λr (α2)δ

(a1+a2,0 (mod l))ωra1
(α1, α1)

2pα1

.

In particular,

(Ta
α,T

−a−α) =
(α, α)

2pα
. (5.10)

A basis in the Cartan subalgebra. Almost the same construction exists in H. Again let
�0 generate the group μl . Since �0 preserves the extended Dynkin diagram, its action
preserves the extended coroot system �∨ext = �∨ ∪ α∨0 in H. Consider the quotient
Kl = �∨ext/μl . Define an orbit H(ᾱ) of length lα = l/pα in �∨ext passing through
Hα ∈ �∨ext ,

H(ᾱ) = {Hα, Hλ(α), . . . , Hλl−1(α)}, ᾱ ∈ Kl = �∨ext/μl .

The set �∨ext is a union of H(ᾱ),

(�∨)ext = ∪ᾱ∈Kl H(ᾱ).

Define “the Fourier transform”

hc
ᾱ =

1√
l

l−1∑

m=0

ωmc Hλm (α), ω = exp
2π i

l
, c ∈ Jα (5.3). (5.11)
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The basis hc
ᾱ , (c ∈ Jα, ᾱ ∈ Kl) is over-complete in H. Namely, let H(ᾱ0) be an orbit

passing through the minimal coroot {Hα0 , Hλ(α0), . . . , Hλl−1(α0)
}. Then the element h0

ᾱ0

is a linear combination of elements h0−ᾱ , (α ∈ �) and we should exclude it from the
basis. We replace the basis �∨ in H by

hc
ᾱ, (c ∈ Jα),

{
ᾱ ∈ K̃l = Kl\H(ᾱ0), c = 0
ᾱ ∈ Kl , c �= 0.

(5.12)

As before there is a one-to-one map �∨ ↔ {hc
ᾱ}.

The elements (ha
ᾱ, t

a
ᾱ) form the GS basis in gl−a (5.1).

The Killing form. The Killing form in the basis (5.12) can be found from (A.23),

(ha
ᾱ, h

b
β̄
) = δ(a+b,0 (mod l))Aa

α,β, Aa
α,β =

2

(β, β)

l−1∑

s=0

ω−saaβ,λs (α), (5.13)

where aα,β is the Cartan matrix (A.4).
The dual basis is generated by elements Ha

ᾱ ,

(Ha
ᾱ, h

b
β̄
) = δ(a+b,0 (mod l))δα,β, Ha

ᾱ =
∑

β∈�
(Aa

α,β)
−1h−a

β̄
, ha

β̄
=

∑

α∈�
(A−a

α,β)H
−a
ᾱ .

(5.14)

The Killing form in the dual basis takes the form

(H
a1
ᾱ1
,H

a2
ᾱ2
) = δ(a1+a2,0 (mod l))(Aa1

ᾱ1,ᾱ2
)−1. (5.15)

In summary, we have defined the GS-basis in g,

{ta
β̄
, hc

ᾱ, (a, β̄, c, ᾱ) are defined in (5.5), (5.12)}, (5.16)

and the dual basis

{Ta
β̄
,Hc

ᾱ, (a, β̄, c, ᾱ) are defined in (5.9), (5.14)}, (5.17)

along with the Killing forms.

Commutation relations. The commutation relations in the GS basis can be found from
the commutation relations in the Chevalley basis (A.21). Taking into account the invari-
ance of the structure constants with respect to the Weyl group action Cλα,λβ = Cα,β it
is not difficult to derive the commutation relations in the GS basis using its definition in
the Chevalley basis (5.4), (5.11). In the case of root-root commutators we come to the
following relations:

[ta
α, t

b
β ] =

⎧
⎨

⎩

1√
l

∑l−1
s=0 ω

bs Cα, λsβ ta+b
α+λsβ, α �= −λsβ

pα√
l
ωs b ha+b

α α = −λsβ.
(5.18)
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The Cartan-root commutators are:

[
h k
α, t

m
β

]
= 1√

l

l−1∑

s=0

ω−ks 2(α, λsβ)

(α, α)
tk+m
β ,

[
H k
α, t

m
β

]
= 1√

l

l−1∑

s=0

ω−ks (α, α)

2
(α̂, λsβ) tk+m

β .

(5.19)

Here we denote by α̂ the dual to the simple roots elements in the Cartan subalgebra:

(α̂i , β j ) = δi j . (5.20)

In Sect. 7 for explicit computations with Lax operators and r -matrices, it will be much
more convenient to use the following normalized basis for Cartan subalgebra:

h̄ k
α =

(α, α)

2
h k
α, H̄ k

α =
2

(α, α)
H k
α. (5.21)

This reparametrization leads to the following commutation relations:

[
h̄ k
α, t

m
β

]
= 1√

l

l−1∑

s=0

ω−ks (α, λsβ) tk+m
β ,

[
H̄ k
α, t

m
β

]
= 1√

l

l−1∑

s=0

ω−ks (α̂, λsβ) tk+m
β .

(5.22)

The following simple formula expresses the decomposition of Cartan element in the
basis of simple roots:

h̄k
β =

∑

α∈�
(α̂, β) h̄k

α, β ∈ R, (5.23)

the connection of dual bases is clear from the following expression:
∑

β∈�
(α̂, β) h̄k

β =
∑

β∈�
(α, β) H̄k

β. (5.24)

The Cartan elements have the following symmetry property:

h̄k−α = −h̄k
α, H̄k−α = −H̄k

α, (5.25)

Invariant subalgebra. Consider the invariant subalgebra g0. It is generated by the basis
(t0
β̄
, h0

ᾱ) (5.16). In particular, {h0
ᾱ} (5.11), (5.12) form a basis in the Cartan subalgebra

H̃0 ⊂ H (dim H̃0 = p < n).
We pass from {h0

ᾱ} to a special basis in H̃0,

�̃∨ = {α̃k
∨ | k = 1, . . . , p}. (5.26)

It is constructed in the following way. Consider a subsystem of simple coroots

�∨1 = �ext∨\O(ᾱ∨0 ) (5.27)
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(see (5.12)). In other words,�∨1 is a subset of simple coroots that does not contain simple
coroots from the orbit passing through α0. For AN−1, Bn , E6 and E7 the coroot basis
�̃∨ (5.26) is a result of averaging along the λ orbits in �∨1 ,

α̃∨ =
l−1∑

m=1

Hλm (α), Hα ∈ �∨1 . (5.28)

In the Cn and Dn cases this construction is valid for almost all coroots except the
last on the Dynkin diagram (see Remark 10.1 in [48–50]). Consider the dual vectors
�̃ = {α̃k | k = 1, . . . , p, 〈α̃k, α̃k

∨〉 = 2} in H̃∗0.

Proposition 5.1. The set of vectors in H̃∗0,

�̃ = {α̃k | k = 1, . . . , p}, (5.29)

is a system of simple roots of a simple Lie subalgebra g̃0 ⊂ g0 defined by the root system
R̃ = R̃(�̃) and the Cartan matrix 〈α̃k, α̃ j

∨〉.
The check this statement case by case is done in [48–50].
Let R1 = R1(�1) be a subset of roots generated by simple roots �1 = �ext\O(α0).

It is invariant under the λ action. The root system R̃ of g̃0 corresponds to the λ invariant
set of R1. Consider the complementary set of roots R\R1 and the set of orbits

T ′l = (R\R1)/μl . (5.30)

It is a subset of all orbits Tl = R/μl . Therefore, Tl = R̃ ∪ T ′l . The λ-invariant
subalgebra g0 contains the subspace

V = {
∑

β̄∈T ′l
aβ̄ t0

β̄
, aβ̄ ∈ C}. (5.31)

Then g0 is a sum of g̃0 and V ,

g0 = g̃0 ⊕ V . (5.32)

The components of this decomposition are orthogonal with respect to the Killing form
(5.13), and V is a representation of g̃0. We find below the explicit forms of g0 for all
simple algebras from our list.

Let H′ be a subalgebra of H with the basis hc
ᾱ c �= 0 (5.11) and H̃ is a Cartan

subalgebra of g̃0. Then

H = H̃0 ⊕ H′. (5.33)

We summarize the information about invariant subalgebras in Table 4.
In the invariant simple algebra g̃0 instead of the basis (h0

ᾱ, t
0
β̄
) we can use the Chev-

alley basis and incorporate it in the GS-basis,

{h0
ᾱ, t

0
β̄
} → {g̃0 = (Hα̃, α̃ ∈ �̃, Eβ̃ , β̃ ∈ R̃), V = (t0

β̄
, β̄ ∈ T ′)}. (5.34)

Remark 5.1. For any ξ ∈ Q∨ a solution of (3.10) is � = I d. In this case g̃0 = g and the
GS-basis is the Chevalley basis.

The GS basis from a canonical basis in H. Let (e1, e2, . . . , en) be a canonical basis
in H, ((e j , ek) = δ jk).9 Since � preserves H we can consider the action of μl on

9 For An and E6 root systems it is convenient to choose canonical bases in H⊕ C.
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Table 4. Invariant subalgebras g̃0 = g
�̃

and g0 of simple Lie algebras

� Z(Ḡ) �∨j �1 l=ord (�) g̃0 g0

1 2 3 4 5 6 7
AN−1, (N = pl) μN �∨N−1 ∪l

1 A p−1 N/p slp slp ⊕l−1
j=1 glp

Bn μ2 �∨n so2n−1 2 so(2n − 1) so(2n)

C2l , (l > 1) μ2 �∨2l A2l−1 2 so(2l) gl2l

C2l+1 μ2 �∨2l+1 A2l 2 so(2l + 1) gl2l+1

D2l+1, (l > 1) μ4 �∨2l+1 A2l−2 4 so(2l− 1) so(2l)⊕ so(2l)⊕ 1

D2l+1, (l > 1) μ4 �∨1 D2l 2 so(4l− 1) so(4l)⊕ 1

D2l , (l > 2) μ2 ⊕ μ2 �∨2l A2l−1 2 so(2l) so(2l)⊕ so(2l)

D2l , (l > 2) μ2 ⊕ μ2 �∨1 D2l−1 2 so(4l− 3) so(4l− 2)⊕ 1

E6 μ3 �∨1 D4 3 g2 so(8)⊕ 2 · 1
E7 μ2 �∨7 e6 2 f4 e6 ⊕ 1

The coweights generating central elements are displaced in column 3

the canonical basis. Define an orbit of length ls = l/ps passing through es O(s) =
{es, λ(es), . . . , λ

(l−1)es)}.
The Fourier transform along O(s) takes the form

hc
s =

1√
l

l−1∑

m=0

ωmcλm(es), c ∈ Jps , ω = exp (
2π i

l
), (5.35)

where Jps = {c = mps mod(l) |m ∈ Z}. Consider the quotientCl = (e1, e2, . . . , en)/μl .
Then we can pass from the canonical basis to the GS basis,

(e1, e2, . . . , en)←→ {hc
s , s ∈ Cl}.

The Killing form is read of from (5.35),

(hc1
s1
, hc2

s2
) = δ(s1,s2)δ

(c1,−c2). (5.36)

Then the dual generators are

Hc
s = h−c

s . (5.37)

The commutation relations in g in this form of GS basis take the form

[hk1
s , t

k2

β̄
] = 1√

l

l−1∑

r=0

ω−rk1〈λr (β), es〉tk1+k2

β̄
, (5.38)

[tk1
ᾱ , t

k2

β̄
] = 1

pα
√

l
ωrk2

∑

s

(α∨, es)h
k1+k2
s , if α = −λr (β) for some r.

We obtain the last relation from (5.4) and from the expansion hk
α =

∑
s(α
∨, es)h

k
s .

Alternatively, the same relations can be written as given in (5.18)–(5.19):
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[ta
α, t

b
β ] =

⎧
⎪⎨

⎪⎩

1√
l

∑l−1
s=0 ω

bs Cα, λsβ ta+b
α+λsβ, α �= −λsβ

pα√
l
ωs b ha+b

α α = −λsβ,

[
h k
α, t

m
β

]
= 1√

l

l−1∑

s=0

ω−ks 2(α, λsβ)

(α, α)
tk+m
β ,

[
H k
α, t

m
β

]
= 1√

l

l−1∑

s=0

ω−ks (α, α)

2
(α̂, λsβ) tk+m

β .

6. General Description of Systems with Non-trivial Characteristic Classes

The Lax operators and symplectic Hecke correspondence. Consider a meromorphic
section � of the adjoint bundle End EG ⊗ K , where K is a canonical class. � is called
a Higgs field. The set of pairs (�, EG) defines a cotangent bundle to the space of holo-
morphic bundles equipped with a canonical symplectic structure. Evidently, the gauge
transformations (2.5) can be lifted to the cotangent bundle as canonical transformations
with respect to the symplectic form. The hamiltonian reduction of the cotangent bundle
under this action leads to the Higgs bundles Hig(Mg). The Higgs bundles are principle
homogeneous spaces over the cotangent bundles to the moduli space of holomorphic
bundles over �g . The Higgs bundles are phase spaces of the Hitchin integrable sys-
tems [27], and the Higgs field becomes the Lax operator L . This construction is valid
for curves with marked points. In this case we deal with the Higgs bundle with quasi-
parabolic structures at the marked points. It implies that the Lax operators have first
order poles at the marked poles with residues belonging to generic coadjoint orbits O.
The coadjoint orbits are affine spaces over the flag varieties mentioned in Sect. 2. The
dimension of the Higgs bundle Hig(Mg,n) is twice that of dim Mg,n (2.7),

dim (Hig(Mg)) = 2(g − 1) dim (G) + n dim (O).

Below we consider the case g = 1, n = 1. Then the phase space has dimension of a
coadjoint orbit (A.26) 2

∑rankG
j=1 (d j − 1). In this case L satisfies the conditions

L(z + 1) = QL(z)Q−1, L(z + τ) = �L(z)�−1, (6.1)

where Q and � are solutions of (3.3), and

∂̄L(z) = Sδ(z, z̄). (6.2)

In other words Res|z=0 L(z) = S. These conditions fix L .

To make dependence on the characteristic class ζ(EG) explicit we will write L(z)�
∨
j ,

if the Lax matrix satisfies the quasi-periodicity conditions with � = ��∨j , Q�∨j , where

��∨j Q�∨j are solutions of (3.3) with ζ = e(−�∨j ), �∨j ∈ P∨.

The modification 
(γ ) of EG changes the characteristic class (2.12). It acts on L�∨j
as follows

L�∨j 
(γ ) = 
(γ )L�∨j +γ
. (6.3)

It is the singular symplectic transformation mentioned in the Introduction.
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The action (6.3) allows one to write down the condition on 
(γ ). Since L�∨j has a

simple pole at z = 0 the modified Lax matrix L�∨j +γ should have also a simple pole at

z = 0. Decompose L�∨j and L�∨j +γ in the Chevalley basis (A.19), (A.20),

L�∨j = LH(z) +
∑

α∈R

Lα(z)Eα, L�∨j +γ = L̃H(z) +
∑

α∈R

L̃α(z)Eα.

Expand α in the basis of simple roots (A.2) α = ∑l
j=1 f αj α j and γ in the basis of

fundamental coweights γ = ∑l
j=1 m j�

∨
j . Assume that 〈γ, α j 〉 ≥ 0 for simple α j . In

other words γ is a dominant coweight. Then 〈γ, α〉 =∑l
j=1 m j nαj is an integer number,

positive for α ∈ R+ and negative for α ∈ R−. From (2.11) and (6.3) we find

L
�∨j +γ

H (z) = L
�∨j
H (z), L

�∨j +γ
α (z) = z〈γ,α〉L

�∨j
α (z). (6.4)

In a neighborhood of z = 0, Lα(z) should have the form

L
�∨j
α (z) = a〈γ,α〉z−〈γ,α〉 + a〈γ,α〉+1z−〈γ,α〉+1 + · · · , (α ∈ R−), (6.5)

otherwise the transformed Lax operator becomes singular. It means that the type of the
modification γ is not arbitrary, but depends on the local behavior of the Lax operator. It
allows one to find the dimension of the space of the Hecke transformation. We do not
need it here.

Now consider a global behavior of L(z) (6.1). Then we find that 
(γ ) should inter-
twine the quasi-periodicity conditions


(γ, z + 1)Q�∨j = Q�∨j +γ 
(γ, z), 
(γ, z + τ)��∨j = ��∨j +γ 
(γ, z).

For G = SL(N ,C), γ = �∨1 and the special residue of L solutions of these equations
were found in [35].

The Lax matrix. Explicit form. Assume that L has a residue at z = 0 taking values in a
coadjoint orbit O ⊂ g∗,

Res L|z=0 = S =
∑

α∈�

1

2
(α, α)SH

α

∑

β∈�
a−1
α,β Hβ +

∑

β∈R

SL
β

(β, β)

2
E−β

=
n∑

j=1

S j e j +
∑

β∈R

SL
β

(β, β)

2
E−β. (6.6)

We identify g∗ and g by means the Killing form (A.23), (A.24). Then the coordinates
are linear functionals on g,

SH
α = (S, Hα), or S j = (S, e j )), SL

β = (S, Eβ). (6.7)

The Poisson brackets for SH
α , (S j ), SL

β have the same structure constants as g (A.21).
To define a generic orbit O we fix the Casimir functions C j (S).
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Rewrite (6.6) in the dual GS-basis. We use the gradation (5.1) to define the Lax matrix

L(z) =
l−1∑

a=0

La(z), (6.8)

where the zero component is decomposed according to (5.32) L0(z) = L̃0(z) + L ′0(z).
Then

S = Res L|z=0 = Res L̃0|z=0 + Res L ′0|z=0 +
l−1∑

a=1

Res La |z=0 = S̃0 + S′0 +
l−1∑

a=1

Sa,

where

S̃0 =
∑

α̃,β̃∈�̃
S̃H
α̃

(α, α)(β, β)

4(α̃, β̃)
Hβ̃ +

∑

β̃∈R̃

S̃L
β̃

(β̃, β̃)

2
E−β̃ ,

S′0 =
∑

β̄∈T ′l
S
′
β̄
T0
β̄
, Sa =

∑

ᾱ∈Kl

SH,a
ᾱ Hl−a

ᾱ +
∑

β̄∈Tl

SL,a
β̄

Tl−a
−β̄ , (6.9)

(see (5.30), (5.31)). Again, as in (6.7), the coordinates are defined as

SH,a
ᾱ = (S, ha

ᾱ), S
′
β̄
= (S, t0

β̄
), SL,a

β̄
= (S, ta

β̄
) S̃H

α̃
= (S, Hα̃), SL

β̃
= (S, Eβ̃ ).

(6.10)

We also will use another basis in H (5.21). Then

S̄H,a
ᾱ = (S, h̄a

ᾱ) (6.11)

have the structure constants of the Poisson brackets as in (5.18), (5.19), (5.38). We can
pass from one data to another by the Fourier transform introduced above. We rewrite S̃0

in terms of a canonical basis (e1, . . . , ep) in the invariant Cartan algebra h̃0,

S̃0 =
p∑

j=1

S̃H
j e j +

∑

β̃∈R̃

S̃L
β̃

(β̃, β̃)

2
E−β̃ . (6.12)

It follows from (5.6), (5.7) and from the definition of the dual basis (5.9), (5.14) that

Ad�(T
c
β̄
) = e (

c

l
− 〈ũ, β〉)Tc

β̄
, Ad�(H

c
β̄
) = e (

c

l
)Hc

β̄
, (e (x) = exp (2π i x)).

In addition, we have

AdQ(H
c
β̄
) = Hc

β̄
, AdQ(Hα̃) = Hα̃, (6.13)

AdQ(T
c
β̄
) = e (−〈κ, β〉)Tc

β̄
, AdQ(Eα̃) = e 〈κ, α̃〉Eα̃ . (6.14)

Using (A.14) we obtain 〈κ, α〉 = fα/h. Then the last relation assumes the form

AdQ(T
c
β̄
) = e (− fβ/h)Tc

β̄
, AdQ(Eα̃) = e ( fα/h)Eα̃ . (6.15)
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There are also the evident relations:

Ad�(Eα̃) = e (〈ũ, α̃〉)Eα̃, Ad�(Hα̃) = Hα̃, ũ ∈ H̃.

The quasi-periodicity conditions and the existence of pole at z = 0 dictate the form
of the components for a �= 0. We define the matrix element of Lax the operator using
φ(u, z) (B.3). Let

ϕa
β(x, z) = e (〈κ, β〉z)φ(〈x + κτ, β〉 +

a

l
, z) = e (z fβ/h)φ(〈x, β〉 + τ fβ/h +

a

l
, z).

(6.16)

The last equality follows from the identity 〈κ, α〉 = 1
h 〈ρ∨, α〉 = fα/h (see (A.14)). It

follows from (B.6) that ϕa
β(x, z + 1) = e (〈κ, β〉)ϕa

β(x, z), ϕa
β(x, z + τ) = e (−〈x, β〉 −

a
l )ϕ

a
β(x, z).

Then from (6.1) we find

La(z) =
∑

ᾱ∈Kl

SH,a
ᾱ φ(

a

l
, z)Hl−a

ᾱ +
∑

β̄∈Tl

SL,a
β̄

ϕa
β(−ũ, z)Tl−a

−β̄ , (6.17)

and L ′0(z) =
∑

ᾱ∈T ′l S
′
ᾱϕ

0
α(−ũ, z)T0−ᾱ .

In the canonical basis in H (5.35), La(z) takes the form

La(z) =
∑

s∈Cl

SH,a
s φ(

a

l
, z)h−a

s +
∑

β̄∈Tl

SL,a
β̄

ϕa
β(−ũ, z)Tl−a

−β̄ .

It follows from (6.16), (B.4) and (B.5), and that La(z) has the required quasi-periodicities
and the residues.

We replace the basis on the dual basis using (5.9) and (5.37) and finally obtain

La(z) =
∑

s∈Cl

SH,a
s φ(

a

l
, z)h−a

s +
∑

β̄∈Tl

SL,a
β̄

ϕa
β(−ũ, z)ta

β̄

(β, β)

2pβ
, (6.18)

L ′0(z) =
∑

ᾱ∈T ′l
S
′
ᾱϕ

0
α(−ũ, z)t0

ᾱ

(α, α)

2pα
. (6.19)

Consider the invariant subalgebra g̃0. For g̃0 we write down the Lax matrix in the
Chevalley basis. Let p ≤ n be a rank of g̃0, (e1, . . . , ep) is a canonical basis in H̃0, and
Eα̃ are generators of the root subspaces. The matrix elements of L̃0 are constructed by
means of ϕ0

β (6.16) and the Eisenstein functions (B.9):

L̃0(z) =
p∑

j=1

(v j + S̃H
j E1(z))e j +

∑

β̃∈R̃

S̃L
β̃
ϕ0
α̃(−ũ, z)Eβ̃ . (6.20)

Here ṽ = (v1, . . . , vp) are momenta vectors dual to ũ = (u1, . . . , u p). The Lax operator
(6.20) differs from the standard Lax operator related to g̃0:

L̃0(z) =∑p
j=1(v j + S̃H

j E1(z))e j +
∑

α̃∈R̃ S̃L
α̃
φ(〈−ũ, α̃〉, z)Eα̃ . It is gauge equivalent

to the previous one after ũ→ ũ +κ . For this reason we call g̃0 the unbroken subalgebra.
The operator L̃0(z) has the needed residue (see (B.4) and (B.14)). However, the Cartan
term containing E1(z) breaks the quasi-periodicities (see (B.13)), because there are no
double-periodic functions with one pole on �τ . To go around this problem we use the
Poisson reduction procedure.
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The Lax matrix. Poisson reduction. The Lax element we have defined depends on the
spin variables representing an orbit O, on the vector ũ in the moduli space described in
Sect. 5, and the dual covector ṽ. It is a Poisson manifold P with the canonical brackets
for ṽ, ũ and the Poisson-Lie brackets for S.

P = T ∗C ×O = {ṽ, ũ,S}, ũ ∈ C, S ∈ O. (6.21)

It has dimension dim (O) + 2 dim (H̃0).
Consider the Poisson algebra A = C∞(P) of smooth function on P. Let ε ∈ H̃0

and γ be a small contour around z = 0. Consider the following function με =∮
γ
(ε, L(ṽ, ũ,S)) = (ε,SH

0 ), SH
0 =

∑p
j=1 SH

j e j . It generates the vector field on P
Vε : L(ṽ, ũ,S)→ {με, L(ṽ, ũ,S)} = [ε, L(ṽ, ũ,S)].

Let Ainv be an invariant subalgebra of A under the Vε action. Then I =
{μεF(ṽ, ũ,S) | F(ṽ, ũ,S) ∈ A} is the Poisson ideal in Ainv . The reduced Poisson
algebra is the factor-algebra

Ared = Ainv/I = A//H̃0, (H̃0 = exp H̃0).

The reduced Poisson manifold Pred is defined by the moment constraint S̃H
s = 0 and

dim H̃ gauge fixing constraints on the spin variables that we do not specify,

Pred=P//H̃0 = P(S̃H
s = 0)/H̃0, dim (Pred)=dim (P)− 2 dim (H̃0) = dim (O).

(6.22)

Due to the moment constraints we come from (6.20) to the Lax operator that has the
correct periodicity. It depends on variables {ṽ, ũ,S} ∈ Pred ,

L̃red
0 (z) =

p∑

j=1

v j e j +
∑

β̃∈R̃

SL
β̃
ϕ0
α̃(−ũ, z)Eβ̃ . (6.23)

Here SL
β̃

are not free due to the gauge fixing.

Thus, after the reduction we come to the Poisson manifold that has dimension of the
coadjoint orbit O, but the Poisson structure on Pred is not the Lie-Poisson structure. The
Poisson brackets on Pred are the Dirac brackets [12,13].

Hamiltonians. To find an integrable hierarchy we construct on the phase space Pred

a family of independent commuting integrals. For this purpose consider the ring SW

of invariant polynomials on H with the basis P1, P2, . . . , Pn (A.5). It follows from the
RLL relations (see below (7.8)) that Pj (L(z)) generate commuting integrals. They are
double periodic meromorphic functions on �τ and thereby can be expanded in the basis
of elliptic functions,

1

m j
Pj (L(z)) = I j,0 + I j,2 E2(z) + · · · + I j, j E j (z).

The coefficients I j,k (0 ≤ k ≤ m j , k �= 1) become commuting independent integrals.
The highest order coefficients I j, j are the Casimir functions fixing the orbits. The coeffi-
cient I j,1 vanishes, because there are no double periodic functions with one simple pole.
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The number of remaining coefficients is equal to 1
2 dim (O). Thus, on Pred the system

becomes completely integrable.
Consider the Hamiltonian H = I1,0 coming from the expansion 1

2 P1(L(z)) = H +
I2,2 E2(z). We represent it in the form

H = H̃0 + H ′ +
M∑

a=1

Ha, M =
[ l

2

]
. (6.24)

Due to the orthogonality of La and Lb (a �= −b mod l) with respect to the Killing form
the Hamiltonians H̃ , H ′ and Hk are determined by pairing of the corresponding Lax
operators,

H̃0 = 1

2
(L̃0(z), L̃0(z))|const , H ′ = 1

2
(L ′0(z), L ′0(z))|const ,

Ha = 1

2
(La(z), Ll−a(z))|const .

To calculate the Hamiltonians we use (5.10), (5.36) (B.15). Then we come to the fol-
lowing expressions10

H̃0 = 1

2

ñ∑

s=1

v2
s −

∑

β̃∈R̃

1

(β̃, β̃)
S̃L
β̃

S̃L
−β̃E2(〈ũ− κτ, β̃〉). (6.25)

As it was noted above H̃0 is the elliptic CM Hamiltonian related to g̃0.
Using (5.8) we find

H ′ = −
∑

ᾱ,β̄∈T ′l ,
δβ=−λr (α)

(β, β)

pβ
S
′
ᾱS
′
β̄

E2(〈ũ− κτ, β〉). (6.26)

Similarly, from (5.15), (5.10) and (5.13),

Ha = −1

2

∑

s∈Cl

E2

(a

l

)
SH,a

s SH,l−a
s

−
∑

ᾱ,β̄∈Tl

δα,−λr (β)ω
−ar (α, α)

pα
SL,a
β̄

SL,l−a
ᾱ E2(〈ũ− κτ, β〉). (6.27)

The Hamiltonians H ′, Ha are the Hamiltonians of the EA tops with the inertia tensors
depending on ũ.

On the reduced space Pred the equations of motion corresponding to integrals I jk
acquire the Lax form ∂t jk L = [L , M jk]. The operator M jk is reconstructed from L and
the r -matrix defined below as in [4].

7. Classical RLL-Relation and Classical Dynamical Yang-Baxter Equation

Using the commutation relations in the GS basis (5.18)–(5.19) we find the Poisson-Lie
brackets on P (6.21):

10 In what follows we shall use the standard CM Hamiltonians, where the coordinate vector is shifted
ũ→ ũ + κτ .
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{
SL,a
α , SL,b

β

}
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
l

l−1∑
s=0

ωbs Cα, λsβ SL,a+b
α+λsβ, α �= −λsβ

pα√
l
ωs b Sh,a+b

α , α = −λsβ

{
S̄Hk
α , SL,m

β

}
= 1√

l

l−1∑
s=0

ω−ks (α̂, λsβ) SL,k+m
β

{
v̄H
α , uβ

}
= 1√

l

l−1∑
s=0

(α̂, λsβ)

{
vα, SL,a

α

}
=

{
vα, SH,a

α

}
=

{
vα, Sh,a

α

}
= 0

{
uα, SL,a

α

}
=

{
uα, SH,a

α

}
=

{
uα, Sh,a

α

}
= 0

(7.1)

We demonstrate here that these relations can be reformulated in the form of the RLL
relations. To this end define the classical dynamical r-matrix using GS basis:

r(z, w) = rL(z, w) + rH(z, w), (7.2)

where

rL(z, w) = 1

2

l−1∑

a= 0

∑

α ∈ R

|α|2 ϕ a
α(ũ, z − w) t a

α ⊗ t−a−α,

rH(z, w) =
l−1∑

a= 0

∑

α ∈�
φ(

a

l
, z − w)H a

α ⊗ h−a
α .

(7.3)

The defined above L-operator has a form:

L(z) = L R(z) + LH(z) + L0
H(z), (7.4)

with

L R(z) = 1

2

l−1∑

a= 0

∑

β ∈ R

|β|2 ϕ a
β(ũ, z) SL,−a

−β t a
β,

LH(z)=
l−1∑

a= 1

∑

α ∈�
φ(

a

l
, z) SH,−a

α h a
α, L0

H(z)=
∑

α ∈�

(
vH
α + E1(z) SH,0

α

)
h 0
α.

(7.5)

We prove two statements:

Proposition 7.1. The r-matrix (7.2)–(7.3) and the Lax operator (7.4)–(7.5) described
above define the Poisson brackets (7.1) via RL L-equation:
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{L(z)⊗ 1, 1⊗ L(w)} = [L(z)⊗ 1 + 1⊗ L(w), r(z, w)]

−
√

l

2

l−1∑

k=0

∑

α∈ R

|α|2 ∂ũ ϕ
k
α(ũ, z − w) S̄h0

α t k
α ⊗ t−k−α. (7.6)

Here L has the g̃0 part L̃0 (6.20).
The Jacoby identity for the brackets (7.6) is provided by the following statement:

Proposition 7.2. The r-matrix (7.3) satisfies the classical dynamical Yang-Baxter equa-
tion:

[r12(z, w), r13(z, x)] + [r12(z, w), r23(w, x)] + [r13(z, x), r23(w, x)]

−√l
l−1∑

k=0

∑

α∈ R

|α|2
2

t k
α ⊗ t−k−α ⊗ h̄0

α ∂ũϕ
k
α(ũ, z−w)− |α|

2

2
t k
α ⊗ h̄0

α ⊗ t−k−α ∂ũϕ
k
α(ũ, z−x)

+
|α|2

2
h̄0
α ⊗ t k

α ⊗ t−k−α ∂ũϕ
k
α(ũ, w − x) = 0. (7.7)

The last term in (7.6) prevents the system to be integrable on P. As explained, after
reduction with respect to H̃0 (6.22) we come to Pred . On Pred this term vanishes. Then
(7.7) becomes the standard classical Yang-Baxter equation, providing integrability

{
Lred(z)⊗ 1, 1⊗ Lred(w)

}
=

[
Lred(z)⊗ 1 + 1⊗ Lred(w), r̃(z, w)

]
. (7.8)

Here the r - matrix is replaced on r̃ , because the Poisson structure on Pred differs from
the Poisson structure on P. We don’t need its explicit form. Note that Lred(z) has the g̃0

part L̃red
0 (6.20).

The classical dynamical r-matrices corresponding to trivial bundles were found in
[17]. In this case the dynamical parameter u belongs to the Cartan subalgebra H ⊂ g.
The problem of classifications of r-matrices if u ∈ H̃ ⊂ H was formulated in [17]. For
trigonometric r-matrices without the spectral parameter it was done in [59]. Here we
give a classification of such types of r-matrices based on a topological classification of
stable holomorphic bundles.

We omit the proofs of these statements because they are long and straightforward.
They can be found in [48–50].
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8. Appendix A. Simple Lie Groups. Facts and Notations, [9,54]

Roots and weights.
V - a vector space over R, dim V = n.

V ∗ is its dual and 〈 , 〉 is a pairing between V and V ∗. R = {α} is a root system
in V ∗.
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The dual system R∨ = {α∨} is the root system in V .
If V and V ∗ are identified by a scalar product ( , ), then α∨ = 2α

(α,α)
.

The group of automorphisms of V ∗ generated by reflections

sα : x �→ x − 〈x, α〉α∨ (A.1)

the Weyl group W (R).
Simple roots � = (α1, . . . , αl) form a basis in R,

α =
n∑

j=1

f αj α j , f αj ∈ Z, (A.2)

and all f αj are positive (in this case α ∈ R+ is a positive root), or negative (α is a negative
root). R = R+ ∪ R−.

The level of α is the sum

fα =
∑

α j∈�
f j . (A.3)

The Cartan matrix is

a jk = 〈α j , α
∨
k 〉, α j ∈ �, α∨k ∈ �∨. (A.4)

SW is a ring of polynomials on V invariant with respect to W -action. The ring SW is
generated by n homogeneous polynomials of degrees d1 = 2, d2, . . . , dn ,

SW = {P1, . . . , Pn}. (A.5)

The number of roots can be read off from the degrees

� R = 2
n∑

i=1

(di − 1). (A.6)

The simple roots generate the root lattice Q =∑n
j=1 n jα j , (n j ∈ Z, α j ∈ �) in V ∗.

There exists a unique maximal root in −α0 ∈ R+,

− α0 =
∑

α j∈�
n jα j . (A.7)

Its level is equal to h − 1, where

h = 1 +
∑

α j∈�
n j (A.8)

is the Coxeter number.
The positive Weyl chamber is

C+ = {x ∈ V | 〈x, α〉 > 0, α ∈ R+}. (A.9)
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The Weyl group acts simply-transitively on the set of the Weyl chambers. The simple
coroots �∨ = (α∨1 , . . . , α∨l ) form a basis in V and generate the coroot lattice

Q∨ =
n∑

j=1

n jα
∨
j ⊂ V, n j ∈ Z. (A.10)

The fundamental weights: � j ∈ V ∗, ( j = 1, . . . , n) 〈� j , α
∨
k 〉 = δ jk, , α

∨
k ∈ �∨.

The weight lattice P = ∑n
j=1 m j� j ⊂ V ∗, m j ∈ Z is dual to the coroot lattice

(A.10).
The fundamental coweights are

〈αk,�
∨
j 〉 = δk j . (A.11)

The coweight lattice

P∨ =
l∑

j=1

m j�
∨
j , m j ∈ Z, 〈�∨j , αk〉 = δ jk (A.12)

is dual to the root lattice Q.
The half-sum of positive roots is ρ = 1

2

∑
α∈R+ α = 1

2

∑n
j=1 � j .

The dual vector in V

ρ∨ = 1

2

∑

α∈R∨+

α∨ =
n∑

j=1

�∨j . (A.13)

Then from (A.2) and (A.3) the level of α is equal

fα = 〈ρ∨, α〉. (A.14)

Affine Weyl group.
The affine Weyl group Wa is Q∨ � W ,

x → x − 〈α, x〉α∨ + kβ∨, α∨, β∨ ∈ R∨ k ∈ Z. (A.15)

The Weyl alcoves are connected components of the set V \{〈α, x〉 ∈ Z}. Their closure
are fundamental domains of the Wa-action.

An alcove belonging to C+ (A.9),

Calc = { x ∈ V | 〈α, x〉 > 0, α ∈ �, (α0, x) > −1 }, (A.16)

has the nodes

Calc = {0,�∨1 /n1, . . . ,�
∨
n /n j }. (A.17)

Here n j are the coefficients of expansion of the maximal root (A.7).
The shift operator x → x + γ, γ ∈ P∨ generates a semidirect product

W ′a = P∨ � W. (A.18)

The factor group is isomorphic to the center W ′a/Wa ∼ P∨/Q∨ ∼ Z(Ḡ).
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Chevalley basis in g.
Let g be a simple Lie algebra over C of rank n and H is a Cartan subalgebra. Let
H = V + iV , where V is the vector space defined above with the root system R. The
algebra g has the root decomposition

g = H + L, L =
∑

β∈R

Rβ, dimC Rβ = 1. (A.19)

The Chevalley basis in g is generated by

{Eβ j ∈ Rβ j , β j ∈ R, Hαk ∈ H, αk ∈ �}, (A.20)

where Hαk are defined by the commutation relations

[Eαk , E−αk ] = Hαk , [Hαk , E±α j ] = akj E±αk , αk, α j ∈ �,
[Hα j , Eαk ] = akj Eαk , [Eα, Eβ ] = Cα,βEα+β, (A.21)

where Cα,β are structure constants of g. They possess the properties

Cα,β = −Cβ,α,

Cλα,β = Cα,λ−1β, λ ∈ W,

Cα+β,−α = |β|2
|α + β|2 C−α,−β.

(A.22)

If ( , ) is a scalar product in H then Hα can be identified with coroots as Hα = α∨ =
2α
(α,α)

and

(Hα, Hβ) = 4(α, β)

(α, α)(β, β)
= 2

(α, α)
aα,β . (A.23)

The Killing form in the subspace L is expressed in terms of (α, α),

(Eα, Eβ) = δα,−β
2

(α, α)
. (A.24)

Flags and coadjoint orbits.
Borel subgroup B of G is generated by the Cartan subgroup H(G) of G and by negative
root subspaces exp (

∑
α∈R− Eα). The flag variety is the coset space Fl = G/B. It has

dimension (see (A.6))

dim Fl =
l∑

j=1

(d j − 1). (A.25)

The coadjoint orbits,

O = {Ad∗g S0 | g ∈ G, S0 is afixed element of g∗}. (A.26)

is a generalization of a cotangent bundle to the flag varieties,11 and for generic orbits

dim O = 2
l∑

j=1

(d j − 1). (A.27)

Centers of simple groups.
A simply-connected group Ḡ in all cases apart from G2, F4 and E8 has a non-trivial
center Z(Ḡ) ∼ P∨/Q∨ (Table 5).

11 It is a cotangent bundle if S0 is a Jordan element. If S0 is semisimple, then O is the torsor over Fl.
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Table 5. Centers of universal covering groups (μN = Z/NZ)

Ḡ Lie (Ḡ) Z(Ḡ)

SL(n,C) An−1 μn

Spin2n+1(C) Bn μ2

Spn(C) Cn μ2

Spin4n(C) D2n μ2 ⊕ μ2

Spin4n+2(C) D2n+1 μ4

E6(C) E6 μ3

E7(C) E7 μ2

Z(Ḡ) is a cyclic group except g = D4l , and ord (Z(Ḡ)) = det (akj ), where (akj ) is
the Cartan matrix,

Gad = Ḡ/Z(Ḡ). (A.28)

In the cases An−1 (n is non-prime), and Dn the center Z(Ḡ) has non-trivial subgroups
Zl ∼ μl = Z/ lZ. Then there exists the factor groups

Gl = Ḡ/Zl , G p = Gl/Zp, Gad = Gl/Z(Gl), (A.29)

where Z(Gl) is the center of Gl and Z(Gl) ∼ μp = Z(Ḡ)/Zl .
The group Ḡ = Spin4n(C) has a non-trivial center

Z(Spin4n) = (μL
2 × μR

2 ), μ2 = Z/2Z,

where three subgroups can be described in terms of their generators as

μL
2 = {(1, 1), (−1, 1)}, μR

2 = {(1, 1), (1,−1)}, μ
diag
2 = {(1, 1), (−1,−1)}.

Therefore there are three intermediate subgroups between Ḡ = Spin4n(C) and Gad

Spin4n
↙ ↓ ↘

SpinR
4n = Spin4n/�

L SO(4n) = Spin4n/�
diag SpinL

4n = Spin4n/�
R

↘ ↓ ↙
Gad = Spin4n/(μ

L
2 × μR

2 )

Characters and cocharacters.
Let H be a Cartan subgroup H ⊂ G. Define the group of characters12

�(G) = {χ : H→ C
∗}. (A.30)

This group can be identified with a lattice group in H∗ as follows. Let x =
(x1, z2, . . . , xn) be an element of H, and exp 2π ix ∈ H. Define γ ∈ V ∗ such that
χγ = exp 2π i〈γ, x〉 ∈ �(G). Then

�(Ḡ) = P, �(Gad) = Q, (A.31)

12 The holomorphic maps of H to C
∗ such that χ(xy) = χ(x)χ(y) for x, y ∈ H.
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and �(Gad) ⊆ �(Gl) ⊆ �(Ḡ). The fundamental weights �k (k = 1, . . . , n) (simple
roots αk) form a basis in �(Ḡ) (�(Gad)). Let Z(Ḡ)) be a cyclic group and p be a divisor
of ord (Z(Ḡ)) such that l = ord (Z(Ḡ))/p. Then the lattice �(Gl) is defined as

�(Gl) = Q + �Z, p� ∈ Q. (A.32)

Define the dual groups of cocharacters t (G) = �∗(G) as holomorphic maps

t (G) = {C∗ → H}. (A.33)

In another way

t (G) = {x ∈ H |χ(e2π ix) = 1}. (A.34)

A generic element of t (G) takes the form

zγ = exp 2π iγ ln z ∈ HG, γ ∈ �(G), z ∈ C
∗. (A.35)

In particular, the groups t (Ḡ) and t (Gad) are identified with the coroot and the coweight
lattices

t (Ḡ) = Q∨, t (Gad) = P∨, (A.36)

and t (Ḡ) ⊆ t (Gl) ⊆ t (Gad). It follows from (A.32) that

t (Gl) = Q∨ + �∨Z, l�∨ ∈ Q∨. (A.37)

The center Z(G) of G is isomorphic to the quotient

Z(G) ∼ P∨/t (G), (A.38)

while π1(G) ∼ t (G)/Q∨. In particular,

Z(Ḡ) = P∨/t (Ḡ) ∼ P∨/Q∨. (A.39)

Similarly, the fundamental group of Gad is π1(Gad) ∼ t (Gad)/Q∨ ∼ P∨/Q∨.
The triple (R, t (G), �(G)) is called the root data. A Langlands dual to G group L G

is defined by the root data (R∨, t (L G), �(L G)), where

t (L G) ∼ �(G), �(L G) ∼ t (G). (A.40)

In particular, in the simply-laced cases L Ḡ = Gad (Table 6).

9. Appendix B. Elliptic Functions, [49,61]

The basic function is the theta-function,

ϑ(z|τ) = q
1
8
∑

n∈Z

(−1)neπ i(n(n+1)τ+2nz). (B.1)

It is a holomorphic function on C with simple zeroes at the lattice τZ + Z and the
quasi-periodicities,
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Table 6. Duality in simple groups

Root system G L G

An , N = n + 1 = pl Gl = SL(N ,C)/μl G p = SL(N ,C)/μp

Bn Spin(2n + 1) Sp(n)

Cn Mp(n) SO(2n + 1)

Dn , n = 2l + 1 Spin(4l + 2) SO(4l + 2)/μ2

SO(4l + 2) SO(4l + 2)

Dn , n = 2l Spin(4l) SO(4l)/μ2

SO(4l) SO(4l)

l = 2m SpinL (8m) SpinL (8m)

SpinR(8m) SpinR(8m)

l = 2m + 1 SpinL (8m + 2) SpinR(8m + 2)

E6 E6 E6/μ3

E7 E7 E7/μ2

ϑ(z + 1) = −ϑ(z), ϑ(z + τ) = −q−
1
2 e−2π i zϑ(z). (B.2)

Define the ratio of the theta-functions

φ(u, z) = ϑ(u + z)ϑ ′(0)
ϑ(u)ϑ(z)

. (B.3)

It follows from (B.1) and (B.2) that it is a meromorphic function of z ∈ C with simple
poles at the lattice τZ + Z and

Res φ(u, z)|z∈(τZ+Z) = 1, (B.4)

and the quasi-periodicities

φ(u, z + 1) = φ(u, z), φ(u, z + τ) = e−2π iuφ(u, z). (B.5)

Since φ(u, z) = φ(z, u),

φ(u + 1, z) = φ(u, z), φ(u + τ, z) = e−2π i zφ(u, z). (B.6)

We also need two Fay identities for φ(z, w), the first one:

φ(u1, z1)φ(u2, z2)− φ(u1 + u2, z1)φ(u2, z2 − z1)

−φ(u1 + u2, z2)φ(u1, z1 − z2) = 0, (B.7)

and its degenerate form:

φ(u1, z)φ(u2, z)− φ(u1 + u2, z)(E1(u1) + E1(u2))− ∂zφ(u1 + u2, z) = 0, (B.8)

where E1(z) is the first Eisenstein function

E1(z) = ∂z logϑ(z). (B.9)

The second Eisenstein function is

E2(z) = ∂2
z logϑ(z) = −∂z E1(z). (B.10)
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They are related to the Weierstrass functions as follows:

ζ(z|τ) = E1(z|τ) + 2η1(τ )z, (B.11)

and

℘(z|τ) = E2(z)− 2η1(τ ). (B.12)

Here

η1(τ ) = 24

2π i

η′(τ )
η(τ )

, η(τ ) = q
1
24

∏

n>0

(1− qn),

and η(τ) is the Dedekind function.
E1(z) is quasi-periodic

E1(z + 1|τ) = E1(z|τ), E1(z + τ |τ) = E1(z|τ)− 2π i, (B.13)

and has simple poles at the lattice τZ + Z,

Res ζ(z|τ)|z∈(τZ+Z) = 1. (B.14)

E2(z) is double-periodic with second order poles at the lattice. It is related to φ(u, z) as

φ(u, z)φ(−u, z) = E2(z)− E2(u). (B.15)

E2(z) and its derivatives ∂k
z E2(z) form a basis in a space of double periodic function on

�τ = C/(τZ + Z).
The most important object for construction of Lax operators and r -matrices is the

function defined as follows:

ϕk
α(z) = e2π i 〈κ,α〉 zφ

(
〈u + κ τ, α〉 +

k

N
, z

)
.

Here u and κ are vectors defined in Proposition 3.1, α is a root of the corresponding
Lie algebra. Note that to save space we omit the u-dependence of the function in its
definition.
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