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Abstract: We consider a system of particles confined in a boxΛ ⊂ R
d interacting via a

tempered and stable pair potential. We prove the validity of the cluster expansion for the
canonical partition function in the high temperature - low density regime. The conver-
gence is uniform in the volume and in the thermodynamic limit it reproduces Mayer’s
virial expansion providing an alternative and more direct derivation which avoids the
deep combinatorial issues present in the original proof.

1. Introduction

The quantitative prediction of macroscopic properties of matter through its microscopic
structure has been a main challenge for statistical mechanics. In this direction a very
important theoretical as well as practical contribution is the work of J. E. and M. G.
Mayer [13] (see also Ursell [19]) in the theory of non-ideal gases where they derive a
full series expansion correcting the equation of state for the ideal gas (p = kTρ, where
p is the pressure of the system at temperature T with density ρ, k being the Boltzmann
constant) to all orders in ρ obtaining the famous virial expansion. Convergence of this
series has been addressed later (see [9] and [16]). The main idea in [13], (see also [12])
is to describe all possible interactions among the particles of the non-ideal gas by repre-
senting them as linear graphs, which has later led to a main tool in statistical mechanics,
namely the cluster expansion method. The thermodynamic pressure is computed as the
infinite volume limit of the logarithm of the grand canonical partition function, which
is however a function of the activity of the system. To get an expansion with respect to
the thermodynamic density, one needs to further express the latter in a power series of
the activity, invert it and replace it in the equation for the pressure. This gives the virial
expansion after using (for the inversion) some interesting combinatorial properties of
enumeration of graphs which finally express the coefficients of the virial expansion to
be sums over only “irreducible graphs”.
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This road which leads to an expansion of the free energy versus the density is evi-
dently not the straight one! The direct and natural way is to take the density ρ instead of
the activity as order parameter and correspondingly to work in the canonical rather than
in the grand canonical ensemble, which however rests on the possibility to cluster expand
the canonical partition function. We came to this problem from other directions, see the
end of the Introduction, and found, to our surprise, that the problem is not only solvable
but easy. It fits in fact beautifully in the theory of cluster expansion for abstract polymer
models, as developed in all details by many authors after the pioneering work of [6,7].
The exponentiation procedure in this theory produces a lot of diagrams which are not
present in the Mayer expansion and which therefore must vanish in the thermodynamic
limit. As we shall see in Sect. 5, the origin of such cancellations is closely related to
the basic property of the cluster expansion (from which the expansion takes its name),
namely, that the only chains of graphs (clusters) that survive in the expansion are made
of “incompatible” graphs.

The validity of the cluster expansion for the canonical ensemble opens the way to
attack several other problems (which was actually our initial motivation) such as the
finite volume corrections to the free energy, the radius of convergence of the expansion
in powers of the density (rather than the activity) for both the general model and the partic-
ularly interesting case of hard spheres, the construction of coarse-grained Hamiltonians
via multi-canonical constraints as required by the Lebowitz-Penrose Theorem [10] for
Kac interactions with applications to the LMP model [8] and its variants. We hope to
further address these issues in subsequent papers.

2. The Model and the Result

We consider a configuration (p,q) ≡ {p1, . . . , pN , q1, . . . , qN } of N particles (where
pi and qi are the momentum and the position of the i th particle), each of mass m, con-
fined in a box Λ(�) := (− �

2 ,
�
2 ]d ⊂ R

d (for some � > 0), which we will also denote
by Λ when we do not need to make explicit the dependence on �. The particles interact
with a stable and tempered pair potential V : R

d → R ∪ {∞}, i.e., there exists B ≥ 0
such that:

∑

1≤i< j≤N

V (qi − q j ) ≥ −B N , (1)

for all N and all q1, . . . , qN and the integral

C(β) :=
∫

Rd
|e−βV (q) − 1|dq (2)

is convergent for some β > 0 (and hence for all β > 0). Since in this paper we are
interested in the infinite volume limit of the free energy density, we can assume periodic
boundary conditions since it is a general result (see e.g. [16] and [5]) that the thermo-
dynamic limit is independent of the choice of the boundary conditions. This particular
choice in the present paper is not essential, periodic boundary conditions are used in
order to obtain translation invariance in some cases (see e.g. Lemma 1 and formula (42)).
Furthermore, our result remains valid with other boundary conditions by slightly chang-
ing the proof and we hope to address it in a subsequent work where we will consider the
finite volume corrections as well.
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We obtain the periodic boundary conditions by covering R
d with boxesΛ and adding

all interactions. Let

V per (qi , q j ) :=
∑

n∈Zd

V (qi − q j + nL), (3)

where apart from assuming stability and temperedness, we further need to guarantee
convergence of the above sum by imposing a condition on the decay properties of V . A
potential V is called lower regular if there exists a decreasing function ψ : R+ → R+
such that V (x) ≥ −ψ(|x |) for all x ∈ R

d and
∫ ∞

0 ψ(s)sd−1ds < ∞. Then V will be
called regular if it is lower regular and there exists some rV < ∞ such that V (x) ≤
ψ(|x |) whenever |x | ≥ rV and this is our extra assumption (see also the discussion
in [5]).

The canonical partition function of the system with periodic boundary conditions is
given by

Z per
β,Λ,N := 1

N !
∫

ΛN
dp1 . . . dpN dq1 . . . dqN e−βH per

Λ (p,q), (4)

where H per
Λ is the energy of the system with periodic boundary conditions given by

H per
Λ (p,q) :=

N∑

i=0

p2
i

2m
+

∑

1≤i< j≤N

V per (qi , q j ). (5)

Integrating over the momenta in (4), we get:

Z per
β,Λ,N := λN

N !
∫

ΛN
dq1 . . . dqN e−βH per

Λ (q), (6)

where λ := ( 2mπ
β
)d/2 and, with an abuse of notation,

H per
Λ (q) =

∑

1≤i< j≤N

V per (qi , q j ). (7)

Given ρ > 0 we define the thermodynamic free energy by

fβ(ρ) := lim|Λ|,N→∞, N=
ρ|Λ|� fβ,Λ(N ), where fβ,Λ(N ) := − 1

β|Λ| log Z per
β,Λ,N . (8)

The main result in this paper, given in Theorem 1, is that, for values of the density
small enough, the thermodynamic free energy is an analytic function of the density. In
addition, the coefficients of the resulting series are given by the well-known irreducible
coefficients of Mayer that we will denote by βn ,

βn := 1

n!
∑

g∈Bn+1
V (g)�{1}

∫

(Rd )n

∏

{i, j}∈E(g)

(e−βV (qi −q j ) − 1)dq2 . . . dqn+1, q1 ≡ 0, (9)

where Bn+1 is the set of 2-connected graphs g on (n + 1) vertices and E(g) is the set
of edges of the graph g. We define a 2-connected graph to be a connected graph which
by removing any single vertex and all related edges remains connected. The precise
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definitions are given in the next section. In the literature such a graph is also known as
irreducible. Note the unfortunate coincidence of notation between the inverse temper-
ature β and the irreducible coefficients βn , which however we keep in agreement with
the literature.

Theorem 1. There exists a constant c0 ≡ c0(β, B) > 0 independent of N and Λ (see
Remark 1 for the explicit value) such that if ρ C(β) < c0 then

1

|Λ| log Z per
β,Λ,N = 1

|Λ| log
|Λ|NλN

N ! +
N

|Λ|
∑

n≥1

Fβ,N ,Λ(n), (10)

with N = 
ρ|Λ|� and in the thermodynamic limit

lim
N ,|Λ|→∞, N=
ρ|Λ|� Fβ,N ,Λ(n) = 1

n + 1
βnρ

n+1, (11)

for all n ≥ 1 and βn given in (9). Furthermore, there exist constants C, c > 0 such that,
for every N and Λ, the coefficients Fβ,N ,Λ(n), n ≥ 1, (which are given by the explicit
formulas in (53) and (54)) satisfy

|Fβ,N ,Λ(n)| ≤ Ce−cn . (12)

Remark 1. The condition of convergence (as it will be proved in Lemma 1) is that,
given β, B, any c > 0 and for δ′ := ρC(β)e2βB+1+c < 1, the following should be true:

1 +
e2

2
√
π

log(1 − 1

2
e2βB+1+cδ′) ≥ eδ′. (13)

It is easy to see that (13) is satisfied if, e.g., e2βB+1+cδ′ ≤ 0.45796, in which case
c0 ≡ 0.45796 e−2(2βB+1+c) (not an optimal bound). Note also that convergence holds
for c = 0 as well, but a positive value of c results in some bounds used in the sequel.

To prove Theorem 1 we first establish in Sect. 3 the set-up of the cluster expansion for
the canonical partition function in the context of the abstract polymer model following
[1,14 and 7]. Note that we could also work with more general formulations such as in
[3,15 or 17]. In Sect. 4 we prove the convergence condition and as a corollary of the
cluster expansion theorem we prove (12). The discussion of the thermodynamic limit is
left for Sect. 6 where we prove (11). The investigation of the cancellations that lead to
the “irreducible” coefficients βn is a property that takes place already for finite volume
and we study it before the thermodynamic limit in Sect. 5. This latter fact is the result of
some special structure (that we call “product structure”) which may occur already in the
abstract formulation of the polymer model and in this general context we address it in
Appendix 1. Last, in Appendix 2 we give the main ideas of the original virial expansion
and connect it to our approach. In particular, for the inversion of the series representation
of the density with respect to the activity, a number of interesting combinatorial issues
arise, many of which have been extensively studied in graph theory. With no intention
of being exhaustive we just refer to [11] which is also inspired by the virial expansion.

3. Cluster Expansion for the Canonical Partition Function

We view the canonical partition function Z per
β,Λ,N as a perturbation around the ideal case,

hence normalizing the measure by multiplying and dividing by |Λ|N in (6) we write

Z per
β,Λ,N = Zideal

Λ,N Zint
β,Λ,N , (14)
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where

Zideal
Λ,N := |Λ|NλN

N ! and Zint
β,Λ,N :=

∫

ΛN

dq1

|Λ| . . .
dqN

|Λ| e−βH per
Λ (q). (15)

For Zint
β,Λ,N we use the idea of Mayer in [13] which consists of developing e−βH per

Λ (q)

in the following way:

e−βH per
Λ (q) =

∏

1≤i< j≤N

(1 + fi, j ) =
∑

E⊂E(N )

∏

{i, j}∈E

fi, j , (16)

where E(N ) := {{i, j} : i, j ∈ [N ], i �= j}, [N ] := {1, ..., N } and

fi, j := e−βV per (qi −q j ) − 1 (17)

(here it is implicitly assumed that V per is an even function). Note that in the last sum in
Eq. (16) we have also the term with E = ∅ which gives 1.

A graph is a pair g ≡ (V (g), E(g)), where V (g) is the set of vertices and E(g) is the
set of edges, with E(g) ⊂ {U ⊂ V (g) : |U | = 2}. A graph g = (V (g), E(g)) is said
to be connected if for any pair A, B ⊂ V (g) such that A ∪ B = V (g) and A ∩ B = ∅,
there is a link e ∈ E(g) such that e ∩ A �= ∅ and e ∩ B �= ∅. Singletons are considered
to be connected. We use CV to denote the set of connected graphs on the set of vertices
V ⊂ [N ].

Two sets V, V ′ ⊂ [N ] are called compatible (denoted by V ∼ V ′) if V ∩ V ′ = ∅;
otherwise we call them incompatible (�). This definition induces in a natural way the
notion of compatibility between graphs with a set of vertices V (g), V (g′) ⊂ [N ], i.e.,
g ∼ g′ if V (g) ∩ V (g′) = ∅.

With these definitions, to any set E in Eq. (16) we can associate a graph, i.e., a pair
g ≡ (V (g), E(g)), where V (g) := {i : ∃e ∈ E with i ∈ e} ⊂ [N ] and E(g) =
E . Note that the resulting graph does not contain isolated vertices. It can be viewed
as the pairwise compatible (non-ordered) collection of its connected components, i.e.,
g ≡ {g1, . . . , gk}∼ for some k, where each gl , l = 1, . . . , k, belongs to the set of all
connected graphs on at most N vertices and it contains at least two vertices. Hence,

e−βH per
Λ (q) =

∑

{g1,...,gk }∼
gl connected

k∏

l=1

∏

{i, j}∈E(gl )

fi, j , (18)

where again the empty collection {g1, . . . , gk}∼ = ∅ contributes the term 1 in the sum.
Therefore, observing that integrals over compatible components factorize, we get

Zint
β,Λ,N :=

∑

{g1,...,gk }∼
gl connected

k∏

l=1

ζ̃Λ(gl) =
∑

{V1,...,Vk }∼|Vl |≥2,∀l

k∏

l=1

ζΛ(Vl), (19)

where

ζΛ(V ) :=
∑

g∈CV

ζ̃Λ(g), ζ̃Λ(g) :=
∫

Λ|g|

∏

i∈V (g)

dqi

|Λ|
∏

{i, j}∈E(g)

fi, j . (20)
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We also denote by |g| the cardinality of V (g), i.e., |g| := |V (g)|. Both expressions in
(19) are in the form of the abstract polymer model which we specify next.

An abstract polymer model (Γ,GΓ , ω) consists of (i) a set of polymers Γ :=
{γ1, . . . , γ|Γ |}, (ii) a binary symmetric relation ∼ of compatibility between the poly-
mers (i.e., on Γ ×Γ ) which is recorded into the compatibility graph GΓ (the graph with
vertex set Γ and with an edge between two polymers γi , γ j if and only if they are an
incompatible pair) and (iii) a weight function ω : Γ → C. Then, we have the following
formal relation which will become rigorous by Theorem 2 below (see [1,7 and 14]):

ZΓ,ω :=
∑

{γ1,...,γn}∼

n∏

i=1

ω(γi ) = exp

{
∑

I∈I
cIω

I

}
, (21)

where

cI = 1

I !
∑

G⊂GI

(−1)|E(G)|, (22)

or equivalently ([1,2])

cI = 1

I !
∂

∑
γ I (γ ) log ZΓ,ω

∂ I (γ1)ω(γ1) · · · ∂ I (γn)ω(γn)

∣∣∣
ω(γ )=0

. (23)

The sum in (21) is over the set I of all multi-indices I : Γ → {0, 1, . . .}, ωI =∏
γ ω(γ )

I (γ ), and, denoting supp I := {γ ∈ Γ : I (γ ) > 0},GI is the graph with∑
γ∈supp I I (γ ) vertices induced from Gsupp I ⊂ GΓ by replacing each vertex γ by the

complete graph on I (γ ) vertices.
Furthermore, the sum in (22) is over all connected subgraphs G of GI spanning the

whole set of vertices of GI and I ! = ∏
γ∈supp I I (γ )!. Note that if I is such that Gsupp I

is not connected (i.e., I is not a cluster) then cI = 0.
We state the general theorem as in [1,14] but in a slightly different form. Let

L = L(δ) = sup
x∈(0,δ)

{− log(1 − x)

x

}
= − log(1 − δ)

δ
, (24)

for δ ∈ (0, 1). Notice that for δ small we have L = 1 + O(δ). The optimal bound for the
convergence radius is beyond the scope of the present paper, however, we hope to come
back to this issue, also in the particular case of hard spheres, in a subsequent work.

Theorem 2 (Cluster Expansion). Assume that there are two non-negative functions
a, c : Γ → R such that for any γ ∈ Γ, |ω(γ )|ea(γ )+c(γ ) ≤ δ holds, for some δ ∈ (0, 1).
Moreover, assume that for any polymer γ ′,

∑

γ�γ ′
|ω(γ )|ea(γ )+c(γ ) ≤ 1

L
a(γ ′), (25)

where L is given in (24). Then, for any polymer γ ′ ∈ Γ the following bound holds
∑

I : I (γ ′)≥1

|cIω
I |e

∑
γ∈supp I I (γ )c(γ ) ≤ L|ω(γ ′)|ea(γ ′)+c(γ ′), (26)

where cI are given in (23).
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Proof. Apply Theorem 1 in [1] with activities ω(γ )ec(γ ). ��
In view of (19) we can represent the partition function Zint

β,Λ,N both as a polymer

model on connected graphs with weights ζ̃Λ and as a polymer model on V(N ) := {V :
V ⊂ {1, . . . , N }, |V | ≥ 2} with weights ζΛ and compatibility graph GV .

4. Convergence of the Cluster Expansion

In this section we check the convergence condition of Theorem 2. We work in the case
where polymers are subsets of vertices, which in the abstract polymer formulation is
given by the space (V(N ), GV , ζΛ). Then, as a corollary of Theorem 2 we prove (12).

Lemma 1. There exists a constant c0 = c0(β, B) > 0 such that for ρC(β) < c0 there
exist two positive constants a, c and δ ∈ (0, 1) such that

sup
Λ⊂Rd

sup
V ∈V(N )

|ζΛ(V )|ea|V |+c|V | ≤ δ (27)

holds, where N = 
ρ|Λ|�. Moreover, for any set V ′ ∈ V(N ):

sup
Λ⊂Rd

∑

V : V �∼V ′
|ζΛ(V )|ea|V |+c|V | ≤ 1

L
a|V ′|, (28)

where L is given in (24).

Proof. Let α := a + c. To bound |ζΛ(V )| we use a version of the tree-graph inequality
(proved in this form in [15], Prop. 6.1(a)) which states that for a stable and tempered
potential, we have the following bound:

∣∣∣
∑

g∈Cn

∏

{i, j}∈E(g)

fi, j

∣∣∣ ≤ e2βBn
∑

T ∈Tn

∏

{i, j}∈E(T )

| fi, j |, (29)

where Tn and Cn are respectively the set of trees and connected graphs with n vertices
and B is the stability constant given in (1). Then, considering a fixed V with |V | = n,

|ζΛ(V )|eα|V | ≤ e(2βB+α)n
∑

T ∈Tn

∫

Λn

dq1

|Λ| · · · dqn

|Λ|
∏

{i, j}∈E(T )

| fi, j |. (30)

Given a rooted tree T let us call (i1, j1), (i2, j2), . . . , (in−1, jn−1) its edges. We have:

∫

Λn

dq1

|Λ| · · · dqn

|Λ|
∏

{i, j}∈E(T )

| fi, j | = 1

|Λ|n
∫

Λn
dq1 · · · dqn

n−1∏

k=1

| fik , jk |

≤ 1

|Λ|n
∫

Λ

dqi1

∫

Λ

dy2 · · ·
∫

Λ

dyn

n∏

k=2

|e−βV per (yk ) − 1|

≤ |Λ|
|Λ|n

[∫

Λ

dx |e−βV per (x) − 1|
]n−1

=: |Λ|
|Λ|n CΛ(β)

n−1,
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(note that the choice of V per makes CΛ(β) independent of x) where we considered qi1

as the root and we used the change of variables:

yk = qik − q jk , ∀k = 2, . . . , n. (31)

We choose ρ C(β) such that:

δ′ := ρe2βB+αC(β) < 1, α = a + c. (32)

Then, since the number of all trees in Tn is nn−2, from (30) we obtain (recalling that
N = 
ρ|Λ|�):

|ζΛ(V )|eα|V | ≤ nn−2

|Λ|n−1 e(2βB+α)nCΛ(β)
n−1 ≤ 1

2
ρ CΛ(β)e

2(2βB+α), (33)

by using the bound 2 ≤ n ≤ N and the fact that ρe2βB+αCΛ(β) < 1. The latter is
true considering that inequality (32) still holds with CΛ(β) for Λ large enough, since
limΛ→∞ CΛ(β) = C(β). Then defining δ := 1

2ρ C(β)e2(2βB+α), (27) is satisfied.
Moreover, for any fixed i we have:

∑

V : V �i

|ζΛ(V )|eα|V | ≤
∑

n≥2

(
N − 1

n − 1

)
nn−2

|Λ|n−1 e(2βB+α)nCΛ(β)
n−1

≤ e(2βB+α)
∑

n≥2

nn−2

(n − 1)!
(

N

|Λ|
)n−1 (

e(2βB+α)CΛ(β)
)n−1

≤ 1

2
√
π

e2δ

1 − eδ′
, (34)

where in the last inequality we have used Stirling’s bound: n! ≥ nne−n
√

2πn.
Choosing a = 1 and δ′ such that (for any given c > 0)

1 +
e2

2
√
π

log(1 − 1

2
e2βB+1+cδ′) ≥ eδ′, (35)

we obtain that 1
2
√
π

e2δ
1−eδ′ ≤ 1

L , where L is given in (24). A sufficient condition for (35)

is that e2βB+1+cδ′ ≤ 0.45796 in which case c0 = 0.45796 e−2(2βB+1+c) for any given
c > 0. Then, since {V �∼ V ′} ⊂ ⋃

i∈V ′ {V � i} we get (28) and conclude the proof of
the lemma. ��

The way we chose to present the cluster expansion as well as its convergence can by
no means give the best radius of convergence. Our goal was merely to obtain (giving up
the search for the best radius) the consequence of the cluster expansion theorem, given in
(26), which we use in order to establish (10). Nevertheless, our condition is comparable
with the ones in the literature (see [9], Eq. (3.15), and in [16], Thm. 4.3.2) and we will
clarify these issues in a subsequent work. Moreover, for the particular case of the hard
spheres, having established the cluster expansion in the canonical ensemble, one can
obtain the improved radius as in [4] but for the density ρ rather than the activity.
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After proving the convergence condition in Lemma 1, an immediate consequence of
Theorem 2 is that for all V ′ ∈ V(N ) and by choosing c(V ) := c|V | and a(V ) := |V |
the following bound is true:

∑

I : I (V ′)≥1

|cI ζ
I
Λ|ec‖I‖ ≤ L|ζΛ(V ′)|eα|V ′|, ‖I‖ :=

∑

V ∈supp I

I (V )|V |, (36)

where we also reminded that α = 1 + c.

Proof of (10) and (12). Let [N ] ≡ {1, . . . , N } and A(I ) := ∪V ∈supp I V ⊂ [N ] be the
area of the union of V ’s in the support of I . Noticing that cI �= 0 only if |A(I )| ≥ 2, we
have:

1

|Λ|
∑

I

cI ζ
I
Λ = 1

|Λ|
∑

n≥1

∑

A⊂[N ]
|A|=n+1

∑

I : A(I )=A

cI ζ
I
Λ

= N

|Λ|
∑

n≥1

1

n + 1

∑

A�1|A|=n+1

∑

I :A(I )=A

cI ζ
I
Λ = N

|Λ|
∑

n≥1

1

n + 1

∑

I :A(I )�1
|A(I )|=n+1

cI ζ
I
Λ. (37)

Passing to the second line, we replaced the sum over sets A ⊂ [N ] by N times the sum
over classes of equivalence of sets A under permutations that can be pinned down by
choosing a point from A and fixing it to equal 1 (over-counting, however, by |A| = n+1).
This leads to the following definition:

Fβ,N ,Λ(n) := 1

n + 1

∑

I : A(I )�1
|A(I )|=n+1

cI ζ
I
Λ, (38)

and hence we obtain the representation (10). The function Fβ,N ,Λ(n) is uniformly
bounded for all N ,Λ as well as absolutely summable over n, namely from (36) with
V ′ ≡ {1} we get:

|Fβ,N ,Λ(n)| ≤ e−cn

n + 1

∑

I : A(I )�1
|A(I )|=n+1

|cI ζ
I
Λ|ecn ≤ e−cn Leα, (39)

which concludes the proof of (12). ��

5. Mayer’s Cancellations for Finite Volume

In this section, before proceeding with the thermodynamic limit in Sect. 6, we investigate
some cancellations (presented in Lemma 2 and Corollary 1) occurring already for finite
volume for the cluster expansion series (37). These cancellations arise once we group
together some terms of the series after expressing them in terms of ζ̃Λ, i.e., on the level
of the graphs. We fix some V ∗ ∈ V(N ) and consider the truncated series

∑

I : A(I )⊂V ∗
cI ζ

I
Λ
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to which we apply the transformation (20). We also recall the notation A(I ) :=
∪V ∈supp I V . The resulting series with respect to the new (finitely many since V ∗ is
fixed) variables ζ̃Λ(g′), for g′ ∈ CV with V ∈ supp I and I : A(I ) ⊂ V ∗, is still abso-
lutely convergent (with a smaller radius of convergence). Our goal is to prove that the
new series enjoys some special cancellations among its terms. We start with a definition:

Definition 1. Given a connected graph, a vertex is said to be an articulation point if
removing it and all edges incident to it, the graph results in a non-connected graph.

For any g ∈ CV ∗ we define the set of graphs B(g) := {b1, . . . , bk}, where bi are the
2-connected components of g. Note that two elements of this set can be either compati-
ble, or incompatible, in the latter case their intersection being necessarily an articulation
point. We denote by F�(g) the collection of all F ⊂ B(g) such that ∪b∈F b is a connected
graph, where we use the notation ∪b∈F b := (∪b∈F V (b),∪b∈F E(b)) for the union of
graphs. We also define H(g) to be the collection of all such graphs:

H(g) := {g′ : g′ =
⋃

b∈F

b, F ∈ F�(g)}. (40)

Similarly,

A(g) := {V (g′), g′ ∈ H(g)} (41)

is the collection of the corresponding subsets of the set of labels. The key property for the
cancellations is the fact that for any g′ ∈ H(g), with g′ = ⋃

b∈F b for some F ∈ F�(g),
the following factorization holds:

ζ̃Λ(g
′) =

∏

b∈F

ζ̃Λ(b), (42)

for all finite Λ. This is due to the fact that the intersection points of the 2-connected
components b in g′ are articulation points and that for the integration in ζ̃Λ we assume
periodic boundary conditions. The main result of the present section is summarized in
the following lemma:

Lemma 2. For any V ∗ ∈ V(N ) and any g ∈ CV ∗ , let B(g) = {b1, . . . , bk} be the set of
its 2-connected components. Then there exists �0 > 0 such that for all � > �0 the coeffi-
cient multiplying the monomials ζ̃Λ(b1)

n1 . . . ζ̃Λ(bk)
nk (whereΛ ≡ Λ(�)), for any ni ∈

{1, 2, . . .}, i = 1, . . . , k, in the series
∑

I : A(I )⊂V ∗ cI ζ
I
Λ with ζΛ(V ) = ∑

g′∈CV
ζ̃Λ(g′),

is equal to zero except when k = 1, i.e., when g is itself a 2-connected graph.

Proof of Lemma 2. Given g ∈ CV ∗ we collect all possible terms that can produce
ζ̃Λ(b1)

n1 . . . ζ̃Λ(bk)
nk . These terms can be obtained by putting ζ̃Λ(g′) ≡ 0 for all

g′ /∈ H(g) into the series
∑

I : A(I )⊂V ∗ cI
∏

V ∈supp I

(∑
g′∈CV

ζ̃Λ(g′)
)I (V )

and collect-

ing all remaining terms. An equivalent way is to introduce a new weight function
ζ̂Λ : V(N ) → R:

ζ̂Λ(V ) =
{
ζ̃Λ(g′), if V = V (g′), where g′ ∈ H(g)
0, otherwise

, (43)
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where there is a unique g′ with V (g′) = V . To prove uniqueness suppose that there
are two collections F ′, F ′′ ⊂ B(g) (corresponding to two different g′ and g′′). Without
loss of generality, suppose that there exists a b ∈ B(g) such that b ∈ F ′′\F ′. Since
V (g′) = V (g′′) any vertex in b should be an articulation point. Moreover, b is con-
nected, hence there is at least a pair of vertices i and j with an edge between them. But
i, j ∈ V (g′) and, since g′ is connected, there should be a set of edges in g′ connecting i
and j that together with the edge {i, j} ∈ b form a 2-connected graph. This graph union
b is still 2-connected therefore it should be part of some b′ ∈ B(g). But then b′ ⊃ b,
thus, either b ∈ F ′ or it can not be an element of B(g), with both cases leading to a
contradiction.

We construct the series
∑

I cI ζ̂
I
Λ, where now the constraint I : A(I ) ⊂ V ∗ is redun-

dant since each element V ∈ V(N ) with V \V ∗ �= ∅ has by definition ζ̂Λ(V ) = 0.
Hence, if we define the remainder

RΛ :=
∑

I : A(I )⊂V ∗
cI ζ

I
Λ −

∑

I

cI ζ̂
I
Λ (44)

the previous discussion shows that it does not contain any term of the type
ζ̃Λ(b1)

n1 . . . ζ̃Λ(bk)
nk . Thus, to find the coefficients that multiply the fixed monomi-

als it suffices to look at the new series
∑

I cI ζ̂
I
Λ and to conclude the proof it remains

to show that the new series is absolutely convergent (Lemma 3) and that it has the
announced properties (Lemma 4).

Lemma 3. For any V ∗ ∈ V(N ) and for any connected graph g ∈ CV ∗ there exists �0 > 0
such that the series

∑
I cI ζ̂

I
Λ, where ζ̂Λ is defined in (43), is an absolutely convergent

series for all Λ ≡ Λ(�) with � > �0. Moreover,
∑

I

cI ζ̂
I
Λ = log Ẑ(g), (45)

where

Ẑ(g) :=
∑

{V1,...,Vk }∼
Vi ∈A(g)

∏

i

ζ̂Λ(Vi ), (46)

and A(g) is defined in (41).

Proof of Lemma 3. We consider the partition function Ẑ(g) and we prove conditions
(27) and (28) which in this case are trivial since we have only a fixed number of “poly-
mers” V to consider. Letting α(V ) := α|V |, for a polymer V ∈ A(g)which corresponds
to some g′ ∈ H(g), with V (g′) = V , we have:

|ζ̂Λ(V )|eα|V | ≤ eα|V |
∫

Λ|V |
dq1

|Λ| · · · dq|V |
|Λ|

∏

{i, j}∈E(g′)
| fi, j | ≤ eα|V | cβ(g′)

|Λ||V |−1 , (47)

where the integral gives the constant cβ(g′) which depends on g′, but it is independent
of the volume |Λ|. Hence, defining

δ := max
V ∈A(g)

(eα|V | 1

|Λ(�0)||V |−1 ) max
g′∈H(g)

cβ(g
′) (48)

(for some �0 to be chosen at the end), we obtain (27) uniformly inΛ ≡ Λ(�), for � > �0.
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Furthermore, fixing a point i the set {V : V ∈ A(g), V � i} has cardinality indepen-
dent of N , say C , thus one can write:

∑

V : V �i

|ζ̂Λ(V )|eα|V | ≤ C max
V ∈A(g)

|ζ̂Λ(V )|eα|V | ≤ Ceα|V | cβ(g′)
|Λ(�0)||V |−1 ≤ Cδ. (49)

��
For α = 1 we choose δ (or equivalently �0) such that Cδ < 1. Then both (28) and (27)
are true for all � > �0.

On the other hand, since for all V ∈ A(g) the activities ζ̂Λ have the factorization
property (42) we obtain the following lemma:

Lemma 4. For any V ∗ ∈ V(N ) and any connected graph g ∈ CV ∗ we have that:

Ẑ(g) =
∏

b∈B(g)

(ζ̃Λ(b) + 1), (50)

where Ẑ(g) is defined in (46) and B(g) is the set of the 2-connected components of g.

Proof of Lemma 4.

Ẑ(g) :=
∑

{V1,...,Vk }∼
Vi ∈A(g)

∏

i

ζ̂Λ(Vi ) =
∑

{g1,...,gk }∼
gi ∈H(g)

∏

i

ζ̃Λ(gi )

=
∑

A:A⊂B(g)

∏

b∈A

ζ̃Λ(b) =
∏

b∈B(g)

(ζ̃Λ(b) + 1), (51)

where the first equality is true by definition of ζ̂Λ(V ), the second by the factorization
property (42) and the last is an identity. ��

Comparing (45) to the logarithm of (50) we conclude the proof of Lemma 2. ��
In particular, in the next section we will use a special case of Lemma 2, given in the

following corollary:

Corollary 1. For all V ∗ ∈ V(N ) and any connected but not 2-connected graph g ∈ CV ∗
we have that

∑

I : supp I⊂A(g), A(I )=V ∗
|V ∩V ′|=1,∀V,V ′∈supp I

cI = 0, (52)

where A(g) is defined in (41).

Proof. A multi-index I with I (V ) = 1 for all V ∈ supp I contributes to
∏

b∈B(g) ζ̃Λ(b),
if, first, V ∈ A(g),∀V ∈ supp I (so that (42) applies) and second if it is a partition of
V ∗ in the sense that |V ∩ V ′| = 1,∀V, V ′ ∈ supp I and ∪V ∈supp I V = V ∗. Then we
apply Lemma 2. ��

We conclude this section with some remarks:

Remark 2. Note that Lemma 2, as it is stated, is true for any choice of the volume Λ
bigger than some Λ(�0) subject to the convergence conditions in Lemma 3. Neverthe-
less, this hypothesis is irrelevant since the conclusion is a property of the coefficients
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cI (as it is also seen in Corollary 1) which do not depend on the activities, but only
on the multi-indices. Hence we will have the same coefficient multiplying the term
ζ̃Λ(b1)

n1 · · · ζ̃Λ(bk)
nk for every choice of Λ.

Remark 3. In the proof of Lemma 2 we used the key property of factorization of activi-
ties. The existence of polymers with this property, that we call “product structure” (see
Appendix 1 and Definition 2), can be more general and we prove it in its general form
in Lemma 5 for an abstract polymer model. Moreover it is unrelated to the fact that the
elements over which the activities factorize are 2-connected graphs. It does not depend
on the nature of the polymers, but only on their relation through the activities.

Remark 4. A more general case in which Corollary 1 is true is when we have different
boundary conditions. In that case the factorization property is not valid anymore, but still,
since the coefficients cI in the cluster expansion do not depend on boundary conditions,
Eq. (52) holds.

6. The Thermodynamic Limit, Proof of (11)

Having proved (12), by dominated convergence we can look at the thermodynamic limit
of each individual term Fβ,N ,Λ(n). The sum in the definition of these terms does not
depend on the labels of the extra n particles (we have already chosen label 1). Thus,

Fβ,N ,Λ(n) = 1

n + 1

(
N − 1

n

) ∑

I : A(I )=[n+1]
cI ζ

I
Λ = 1

n + 1
PN ,|Λ|(n)Bβ,Λ(n), (53)

where

PN ,|Λ|(n) := (N − 1) . . . (N − n)

|Λ|n and Bβ,Λ(n) := |Λ|n
n!

∑

I : A(I )=[n+1]
cI ζ

I
Λ. (54)

While obviously PN ,|Λ|(n) → ρn , for Bβ,Λ(n) we investigate the order of |Λ| in the
products ζ I

Λ and split the sum into the part that eventually will give βn and a remainder
which will tend to zero at the thermodynamic limit. The power of |Λ| in each term of
the sum in Bβ,Λ(n) is n −∑

V ∈supp I (|V |−1)I (V ), since for every V ∈ supp I we have

ζΛ(V ) ∼ |Λ|1−|V |. Moreover, since it is always true that n +1 ≤ ∑
V ∈supp I (|V |−1)+1

(by the fact that all V ∈ supp I should be incompatible, i.e., they should have at least
one common label) it is implied that non-negligible terms (in the limitΛ → ∞) should
satisfy:

I (V ) = 1, ∀V ∈ supp I, and (55)

n + 1 =
∑

V ∈supp I

(|V | − 1) + 1. (56)

Thus, for all n ≥ 2 we split Bβ,Λ(n) as follows:

Bβ,Λ(n) = B∗
β,Λ(n) + RΛ(n), B∗

β,Λ(n) := |Λ|n
n!

∗∑

I : A(I )=[n+1]
cI ζ

I
Λ, (57)

where the
∑∗ contains all the multi-indices I which satisfy properties (55) and (55).

Note that while this sum is finite (since the two properties (55) and (55) are satisfied
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only by a finite number of multi-indices with area A(I ) = [n + 1]), the term RΛ(n) is
an infinite series of the remaining multi-indices. Nevertheless it has a vanishing limit by
applying (36) and the dominated convergence theorem.

Thus, it suffices to prove that limΛ→∞ B∗
β,Λ(n) = βn , which is an immediate con-

sequence of Lemma 2, or more specifically of Corollary 1 for V ∗ = [n + 1]. Indeed,
after substituting (20), because of the condition ∗ and the factorization property (42) all
terms in the sum in (57) are of the type ζ̃Λ(b1) . . . ζ̃Λ(bk), where {b1, . . . , bk} = B(g)
for some g ∈ Cn+1. It is easy to see that these terms are produced by the multi-indices
I : supp I ⊂ A(g) which are also partitioning V ∗ in the sense |V ∩ V ′| = 1,∀V, V ′ ∈
supp I and ∪V ∈supp I V = V ∗. Thus, by Corollary 1 all terms should be zero except when
g ∈ Bn+1, i.e.,

B∗
β,Λ(n) = |Λ|n

n!
∑

g∈Cn+1

ζ̃Λ(g)
∑

I : supp I⊂A(g), A(I )=V ∗
|V ∩V ′|=1,∀V,V ′∈supp I

cI = |Λ|n
n!

∑

g∈Bn+1

ζ̃Λ(g) (58)

Taking the limit we obtain βn as defined in (9). ��
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7. Appendix 1: The “Product Structure”

Coming back to the general polymer model (Γ,GΓ , ω), for any incompatible set
Γ ′ ⊂ Γ we define the set of all incompatible sequences that can be constructed out
of elements of Γ ′ by:

Γ ′
� := {A : A ⊂ Γ ′, incompatible}. (59)

Recall that every single element γ ∈ Γ ′ is considered incompatible, hence the singleton
{γ } is an element in Γ ′

�.

Definition 2. Given (Γ,GΓ , ω), we say that the incompatible set Γ b ⊂ Γ has a “prod-
uct structure” if:

– there exists a one-to-one function φ : Γ b
� → Γ , with φ({γ }) = γ , if γ ∈ Γ b,

– for any A ∈ Γ b
�, we have the factorization

ω(φ(A)) =
∏

γ ′∈A

ω(γ ′). (60)

We also define the range of φ by:

RΓ b (φ) := {φ(A),∀A ∈ Γ b
�} ⊂ Γ. (61)

We are interested in all multi-indices I such that every γ ∈ supp I is the image of some
A ∈ Γ b

�, i.e., we are working on the space RΓ b (φ) ⊂ Γ with graph structure GΓ |R
Γ b (φ)

and variables ω(γ ′)|γ ′∈Γ b with the remaining ones {ω(γ ′) with γ ′ ∈ RΓ b (φ)\Γ b}
satisfying the factorization property (60). We have:
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Lemma 5. If Γ b ⊂ Γ has a product structure then in the expansion (21) we have:

∑

I : I (γ ′)=0,∀γ ′ /∈R
Γ b (φ)

cIω
I =

∑

I : supp I≡{γ ′}, γ ′∈Γ b

cIω
I . (62)

Proof. Given Γ b ⊂ Γ with product structure, using (61), we define

Z∗(Γ b) := ZΓ,{ω(γ )≡0,∀γ /∈R
Γ b (φ)} ≡

∑

{γ1,...,γk }∼
γi ∈R(φ)

k∏

i=1

ω(γi )

=
∑

{A1,...,Ak }∼
φ(Ai )=γi ,∀i

k∏

i=1

ω(φ(Ai )) =
∏

γ ′∈Γ b

(1 + ω(γ ′)). (63)

The first equality of (63) is due to the fact that φ is one-to-one, i.e., for any γi ∈ R(φ)
there is a unique Ai ∈ Γ b

� with φ(Ai ) = γi . Then using the factorization property,
i.e., ω(φ(Ai )) = ∏

γ ′∈Ai
ω(γ ′), the second equality is due to the fact that

∏
γ ′∈Γ b (1 +

ω(γ ′)) = ∑
A⊂Γ b

∏
γ ′∈A ω(γ

′), where the latter sum is over subsets A (compatible or

incompatible) of the set of vertices in Γ b. Then the set A can be uniquely decomposed
into k compatible components A ≡ {A1, . . . , Ak}∼ with Ai ∈ Γ b

� for all i .
Then if we take the logarithm of the last expression of (63) we obtain the right hand

side of (62), while if we take the logarithm of ZΓ,{ω(γ )≡0,∀γ /∈R(φ)} (by first using (23)
and then evaluating) we obtain the left hand side of (62). ��
Remark 5. Observe that in the case of Lemma 2 the incompatible set B(g) = {b1, . . . , bk}
has, according to Definition 2, product structure with φ(A) := (∪b∈AV (b),∪b∈A E(b))
for all incompatible sets A ⊂ B(g) and it also satisfies the factorization property (42)
by construction.

8. Appendix 2: Mayer’s Virial Expansion

The approach introduced by Mayer, see [13], is to work with the grand canonical mea-
sure whose restriction on the space of configurations (p,q) with N particles is given
by:

Gβ,z,Λ(N ; dp; dq) := 1

�β,Λ(z)
eβμN e−βHΛ(p,q)dp1 . . . dpN

1

N !dq1 . . . dqN , (64)

where μ is the chemical potential and �β,Λ(z) is the grand canonical partition function
given by:

�β,Λ(z) :=
∑

N≥0

zN Zβ,Λ,N . (65)

The new variable z = λeβμ is the activity of the system times the constantλ := ( 2πm
β
)d/2,

as obtained after integrating out (with respect to the momenta) the kinetic part of the
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hamiltonian (as in (6)). The thermodynamic pressure is defined as the infinite volume
limit of the logarithm of the grand canonical partition function:

pβ(z) := lim|Λ|→∞ pβ,Λ(z), where βpβ,Λ(z) = 1

|Λ| log�β,Λ(z). (66)

The idea in [13] consists of developing e−βHΛ(q) (note that here: HΛ(q) =∑
1≤i< j≤N V (qi , q j )) in the following way

e−βHΛ(q) =
∏

1≤i< j≤N

(1 + fi, j ) =
∑

g∈GN

∏

{i, j}∈E(g)

fi, j , (67)

where by GN we denote all graphs on N vertices, E(g) is the set of edges of a graph
g ∈ GN and

fi, j := e−βV (qi −q j ) − 1. (68)

Then the grand canonical partition function becomes

�β,Λ(z) =
∑

N≥0

zN

N !
∑

g∈GN

wΛ(g), with wΛ(g) :=
∫

Λ|g|

∏

{i, j}∈E(g)

fi, j

|g|∏

i=1

dqi , (69)

where by |g| we denote the cardinality of the graph g and we define it to be the num-
ber of vertices. Using the fact that the weight wΛ(g) is multiplicative on disconnected
components a general theorem on enumeration of graphs gives (see e.g. [18] where it is
stated as “The first Mayer Theorem”)

∑

N≥0

zN

N !
∑

g∈GN

wΛ(g) = exp

⎧
⎨

⎩
∑

n≥1

zn

n!
∑

g∈Cn

wΛ(g)

⎫
⎬

⎭ , (70)

where Cn is the set of connected graphs on n vertices. This is the predecessor of the
Cluster Expansion Theorem 2! Then defining

bn(Λ) := 1

|Λ|n!
∑

g∈Cn

wΛ(g) (71)

(which is normalized in the volume and hence it has a limit bn := lim|Λ|→∞ bn(Λ)),
Eq. (66) gives

pβ,Λ(z) = 1

β|Λ|
∑

n≥1

|Λ|bn(Λ)z
n → 1

β

∑

n≥1

bnzn ≡ pβ(z). (72)

In the thermodynamic limit the canonical free energy is the Legendre transform of the
pressure, namely

β fβ(ρ) = sup
z

{ρ log z − βpβ(z)} = ρ log z(ρ)− βpβ(z(ρ)), (73)

where z(ρ) is given by the inversion of the relation ρ = zp′
β(z). Note that this is also

equivalent to first defining the finite volume density by

ρΛ(z) := EGβ,z,Λ[N ] = zp′
β,Λ(z), (74)
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and then passing to the limit |Λ| → ∞. In [18] this inversion is referred to as “The Sec-
ond Mayer Theorem” and it is again a result on enumerating connected and 2-connected
graphs, where the latter means all graphs which cannot be reduced to connected graphs
by removing a point and all related edges. Under again the assumption that wΛ(g) is
multiplicative (see in our case see formula (42)), we have that

∂

∂z

⎛

⎝
∑

n≥1

zn

n!
∑

g∈Cn

w(g)

⎞

⎠ = exp

⎧
⎨

⎩
∂

∂ρ

⎛

⎝
∑

m≥2

ρm

m!
∑

g∈Bm

w(g)

⎞

⎠
∣∣∣
ρ: z=z(ρ)

⎫
⎬

⎭ , (75)

where Bm is the set of 2-connected graphs on m vertices. Note that this is the combina-
torial counterpart of our discussion in Sect. 5. From (75) we have that

ρ = zp′
β(z) ⇔ z(ρ) = ρe−∑

m≥2 βm−1ρ
m−1
, (76)

where

βm := lim|Λ|→∞
1

|Λ|m!
∑

g∈Bm+1

wΛ(g). (77)

Replacing z = z(ρ) into pβ(z) we obtain the famous virial expansion:

βpβ(ρ) = ρ −
∑

m≥1

m

m + 1
βmρ

m+1. (78)

Overall, (73), gives

fβ(ρ) = 1

β

⎧
⎨

⎩ρ(log ρ − 1)−
∑

m≥1

1

m + 1
βmρ

m+1

⎫
⎬

⎭ . (79)
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