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Abstract: This paper analyzes the action δ of a Lie algebra X by derivations on a
C*–algebra A. This action satisfies an “almost inner” property which ensures affiliation
of the generators of the derivations δ with A, and is expressed in terms of correspond-
ing pseudo–resolvents. In particular, for an abelian Lie algebra X acting on a primitive
C*–algebra A, it is shown that there is a central extension of X which determines alge-
braic relations of the underlying pseudo–resolvents. If the Lie action δ is ergodic, i.e.
the only elements of A on which all the derivations in δX vanish are multiples of the
identity, then this extension is given by a (non–degenerate) symplectic form σ on X .
Moreover, the algebra generated by the pseudo–resolvents coincides with the resolvent
algebra based on the symplectic space (X, σ ). Thus the resolvent algebra of the canonical
commutation relations, which was recently introduced in physically motivated analyses
of quantum systems, appears also naturally in the representation theory of Lie algebras
of derivations acting on C*–algebras.

1. Introduction and Framework

In quantum physics, symmetry transformations are often given in terms of their infin-
itesimal action on the algebra of observables, i.e. as a Lie action of derivations on the
observables. It is not always clear that there is a faithful representation of the observ-
ables in which the Lie algebra is represented by (selfadjoint) operators implementing the
given Lie action by commutators. In fact, such covariant representations may not exist
and one needs to take a cocycle representation of the Lie algebra to obtain the imple-
menting property, or equivalently replace the Lie algebra by a central extension of it. Two
prominent examples are first, the abelian group of position and velocity transformations
in quantum mechanics and second, the conformal transformations in two–dimensional
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quantum field theory. For these, the central extensions are the Heisenberg algebra and
the Virasoro algebra, respectively. Which central extensions appear seems to be fixed by
the structure of the underlying algebra A. This fact has been observed in the context of
quantum anomalies in many examples; but there does not yet exist a systematic inves-
tigation of it. It is the aim of the present article to begin such a study in a setting based
on the following assumptions.

(I) Let X be a (finite or infinite dimensional) real Lie algebra with Lie–bracket [·, ·]
and let A be a unital C*-algebra which is primitive (i.e. it has a faithful irreduc-
ible representation). Let A0 ⊂ A be a norm dense unital *-subalgebra, and let
δ : X → DerA0 be an injective Lie homomorphism into the Lie algebra DerA0 of
*-derivations of A0, i.e. δ is real linear and

δ f ◦ δg − δg ◦ δ f = δ[ f,g], f, g ∈ X. (1.1)

Such a pair (X,A) will be called a Lie C*–system. The action δ is said to be
ergodic if δ f (A0) = 0 for all f ∈ X implies that A0 is a multiple of the identity.

This framework covers quantum physics, where algebras of observables are generally
constructed in some distinguished irreducible representations, e.g. the Fock representa-
tion. On the other hand, it excludes classical physics, where the observable algebras are
abelian and symmetries act in a non–trivial manner. The intermediate cases, where the
underlying algebras of observables have a center on which δ acts trivially, such as in
the presence of superselected charges, can usually be reduced to the present setting by
proceeding to suitable quotient algebras.

Of particular interest for physics are Lie C*–systemswhere the action δ is induced
by selfadjoint generators which can be interpreted as observables. The simplest case is
if the derivations δ f are inner, i.e. if for each f ∈ X there are operators G f = G f

∗ ∈ A
such that δ f (A0) = i [G f , A0] for all A0 ∈ A0. However, generically the generators
of symmetries are unbounded operators and hence are not elements of the underlying
C*–algebra. In order to see how to deal with these cases we rewrite the preceding equa-
tion in terms of the resolvents of the generators G f :

(iλ1 + G f )
−1δ f (A0)(iλ1 + G f )

−1 = i[A0, (iλ1 + G f )
−1]

for λ ∈ R\{0}. This equation can be generalized so as to cover the case of unbounded
generators which are affiliated with A by making use of the notion of pseudo–resol-
vent [7]; it replaces the familiar concept of the resolvent of a selfadjoint operator in the
abstract C*–setting.

Definition. Let A be a C*-algebra. A pseudo–resolvent is a function R : R\{0} → A
such that

R(λ) − R(μ) = i(μ − λ)R(λ)R(μ), R(λ)∗ = R(−λ) for λ,μ ∈ R\{0}.
Any pseudo–resolvent can be analytically continued to the domain C\iR. By some abuse
of terminology, we will use the term pseudo–resolvent also for its values R(z), z ∈ C\iR.

With this concept we can express the assumption that there exist (possibly unbounded)
generators of the action δ which are affiliated with the algebra A.
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(II) Let (X,A) be a Lie C*–system. The underlying action δ is said to be almost inner
if, for each f ∈ X , there is a pseudo–resolvent R(λ, f ) ∈ A, λ ∈ R\{0} such
that

R(λ, f ) δ f (A0) R(λ, f ) = i [A0, R(λ, f )], A0 ∈ A0. (1.2)

Remarks. It can be seen that relation (1.2) holds for all values of λ if it holds for one.
As a matter of fact, by analytic continuation in λ, it holds on the entire domain C\iR.
Moreover, the relation implies that R(λ, 0) is contained in the center of A and hence
must be a multiple of 1 since A is primitive. Assuming that this multiple is different from
0, it follows from the defining relations of pseudo–resolvents that one can consistently
put R(λ, 0) = −(i/λ)1, λ ∈ R\{0}.

We will show below that Condition (II) implies that δ is induced by selfadjoint gen-
erators in every faithful irreducible representation of A. This observation is the key to
analyzing the algebraic properties of the pseudo–resolvents inherited from the Lie struc-
ture of the derivations. For this analysis we need the following technical assumption
which holds only for a restricted class of Lie algebras X , such as compact or abelian
ones.

(III) Let (X,A) be a Lie C*–system satisfying (II). For each f ∈ X , there is a pseudo–
resolvent satisfying relation (1.2) which is in the domain A0, i.e. R(z, f ) ∈ A0
for all z ∈ C\iR.

Having stated the general framework, we now restrict the subsequent analysis to the
simple but physically important case of abelian Lie algebras X . In this case the action
δ is flat, i.e. the right hand side of Eq. (1.1) vanishes, and this explains the terminology
used in the following definition.

Definition. Let X be a real abelian Lie algebra. The pair (X,A) is said to be a flat Lie
C*–system if it satisfies Conditions (I), (II) and (III).

Given any flat Lie C*–system (X,A), we will determine the structure of the algebra
R ⊂ A generated by the associated pseudo–resolvents. It contains information about the
commutation relations of the generators which implement the action δ and hence about
the possible appearance of central extensions of X . We will see that for any such system
there is a unique skew symmetric bilinear form σ : X × X → R fixing an extension.
If δ acts ergodically on A, the form σ is non–degenerate and (X, σ ) is a symplectic
space. The algebra R then coincides with the resolvent algebra R(X, σ ), defined in [2].
Moreover, if X is finite–dimensional, then its dimension must be even and the algebra R
is the unique Heisenberg algebra of canonical commutation relations in resolvent form.

The article is organized as follows. The basic framework and assumptions are speci-
fied in this Introduction. In Sect. 2 we work out the algebraic consequences, and establish
existence of a skew symmetric bilinear form σ on X × X entering into the commuta-
tion relations of the pseudo–resolvents. In Sect. 3 we show by standard cohomological
arguments that the pseudo–resolvents can be chosen in such a way that they also encode
linearity of the action δ on X . We obtain therefore all the defining relations of the
resolvent algebra on (X, σ ) and hence this algebra is a subalgebra of A. We also show
uniqueness of this subalgebra relative to the initial action.

2. Algebraic Structure

Henceforth, we will assume that (X,A) is a flat Lie C*–system. As A is a primitive
unital C*–algebra, it has by definition a faithful irreducible representation. Thus we may
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assume without loss of generality that we have concretely A ⊆ B(H) for some Hilbert
space H and A− = B(H), where the bar denotes weak closure.

Lemma 2.1. Let f ∈ X and λ ∈ R\{0}.
(i) There is a selfadjoint operator (generator) G f with domain D f = R(λ, f )H such

that R(λ, f ) = (iλ1 + G f )
−1.

(ii) For each A0 ∈ A0 there are B0, C0 ∈ A0 such that

A0 R(λ, f ) = R(λ, f ) B0 and R(λ, f ) A0 = C0 R(λ, f ).

Proof. (i) From relation (1.2) we see that ker R(λ, f ) ⊂ H, the kernel of R(λ, f ),
is stable under the action of A0 and, by continuity, also under the action of A. As
A is irreducible, the kernel can only consist of {0}. However ker R(λ, f ) = {0}
iff R(λ, f ) is a resolvent R(λ, f ) = (iλ + G f )

−1 by [5, Cor. 1], and G f has
domain D f = R(λ, f )H. Now G f is symmetric by

G∗
f =

(
R(1, f )−1 − i1

)∗ ⊇ i1 +
(

R(1, f )−1
)∗ = i1 + R(−1, f )−1 = G f .

That it is also selfadjoint follows from the equality of ranges Ran (±i1+G f )
−1 =

Ran R(±1, f ), the latter being dense by [5, Thm. on p. 467] since ker R(λ, f )=
{0}.

(ii) It follows from relation (1.2) that

A0 R(λ, f ) = [A0, R(λ, f )]+ R(λ, f )A0 = R(λ, f )
(−iδ f (A0) R(λ, f ) + A0

)
.

But B0
.= (−iδ f (A0) R(λ, f ) + A0

) ∈ A0 since, by assumption, A0 is stable under
the action of the derivations and the resolvents are elements of this algebra by Condition
(III). This proves the first part of the statement; the second part follows by a similar
argument. 	


Note that D f = R(λ, f )H does not depend on λ. It is also noteworthy that the first
part of the lemma holds for arbitrary Lie C*–systems satisfying (II), only in the second
part did we use Assumption (III). From this lemma we obtain:

Lemma 2.2. Let f ∈ X. Then A0 D f ⊂ D f and

[G f , A0] � = −iδ f (A0)�, A0 ∈ A0, � ∈ D f . (2.1)

Proof. It follows from part (ii) of the preceding lemma that A0 R(λ, f )H ⊂ R(λ, f )H,
proving the stability of the domain D f under the action of A0. Now let A0 ∈ A0 and
� ∈ D f , i.e. � = R(λ, f )� for some � ∈ H. Then, using computations in the
preceding lemma,

G f A0� + iλA0�

= (iλ1 + G f )A0 R(λ, f )�

= (iλ1 + G f )R(λ, f )
(−iδ f (A0) R(λ, f ) + A0

)
�

= (−iδ f (A0) R(λ, f ) + A0
)
�

= (−iδ f (A0) + A0(iλ1 + G f )
)

R(λ, f )�

= (−iδ f (A0) + A0G f
)
� + iλA0�,

proving relation (2.1). 	
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To analyze the commutation relations between the generators G f , Gg , one needs
more detail about their domains. The following result provides the relevant information.

Lemma 2.3. Let f, g ∈ X and let λ,μ ∈ R\{0}. Then

D f,g, f
.= R(λ, f )R(μ, g)R(λ, f )H

is dense in H. Moreover, A0 D f,g, f ⊂ D f,g, f and D f,g, f is contained in the domains
of G f , Gg as well as of their products in either order.

Proof. Since the resolvents are bounded and have dense range it follows that D f,g, f
is dense. Next, by threefold application of Lemma 2.1, there exists for any A0 ∈ A0
some B0 ∈ A0 such that A0 R(λ, f )R(μ, g)R(λ, f ) = R(λ, f )R(μ, g)R(λ, f )B0,
proving the stability of D f,g, f under the action of A0. Finally, it follows from its very
definition that D f,g, f lies in the domains of G f and GgG f ; for the proof of the remain-
ing assertion one makes use again of Lemma 2.1 which implies, bearing in mind that
A0

.= R(λ, f ) ∈ A0 according to Condition (III),

R(λ, f )R(μ, g)R(λ, f ) = R(μ, g)B0 R(λ, f ) = R(μ, g)R(λ, f )C0

for certain specific operators B0, C0 ∈ A0. Hence D f,g, f ⊂ R(μ, g)R(λ, f )H also
lies in the domains of Gg and G f Gg , completing the proof of the statement. 	


Below in Lemma 3.1 we will have to establish a stronger version of this lemma.
Making use of the above result one can now compute the commutator of [G f , Gg] with
the elements of A0.

Lemma 2.4. Let � ∈ D f,g, f and let A0 ∈ A0. Then

[G f , Gg] A0 � = A0 [G f , Gg] �.

Proof. The following computation relies on the preceding lemmata:

G f Gg A0� = G f
(−iδg(A0) + A0 Gg

)
�

= (−δ f ◦ δg(A0) − iδg(A0)G f − iδ f (A0)Gg + A0 G f Gg
)

�.

Interchanging f and g one obtains an analogous equality. By subtraction one arrives at

[G f , Gg] A0� = −(δ f ◦ δg − δg ◦ δ f )(A0)� + A0 [G f , Gg] �.

But δ f ◦ δg − δg ◦ δ f = 0, completing the proof. 	

It follows from this result and the assumption that A is irreducible that the commu-

tator of G f , Gg is a c–number. The argument is based on a generalization of Schur’s
Lemma adapted to unbounded operators. As it will be applied at various places, we recall
here the well–known proof.

Lemma 2.5. Let f, g ∈ X. There is a constant σ( f, g) ∈ R, antisymmetric in f, g, such
that

[G f , Gg]� = iσ( f, g)� for all � ∈ D f,g, f .
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Proof. Let K
.= −i [G f , Gg] on the domain D f,g, f . According to the preceding lemma

we have 〈�, A0 K�〉 = 〈�, K A0�〉 for all A0 ∈ A0 and �, � ∈ D f,g, f . Taking also
into account Lemma 2.3 and the fact that the generators are selfadjoint, we can proceed
to 〈�, K A0�〉 = 〈K�, A0�〉. As A0 is dense in A this implies that

〈K�, A�〉 = 〈�, AK�〉, A ∈ A, �,� ∈ D f,g, f .

Now as A ⊂ B(H) is irreducible, hence algebraically irreducible [6], for any given
one–dimensional projection E ∈ B(H) and finite dimensional subspace K ⊂ H there
exists an operator AE,K ∈ A which acts like E on K, i.e. AE,K � K = E � K, cf. [4,
Thm. 2.8.3(i)]. So one can replace in the above equality the operator A by the projections
onto the rays of � and �, respectively (assuming �,� = 0), giving

〈�, K�〉 = 〈�,�〉〈�, K�〉/‖�‖2 = 〈�,�〉〈�, K�〉/‖�‖2.

As K is a symmetric operator, it follows from this equality that σ( f, g)
.=

〈�, K�〉/‖�‖2 is real and does not depend on the choice of � ∈ D f,g, f . Hence
〈�, K�〉 = σ( f, g)〈�,�〉 and, since D f,g, f is dense, this implies that K� = σ( f, g)�

for � ∈ D f,g, f , as claimed. The antisymmetry of σ( f, g) in f, g follows from its defi-
nition. 	


This result allows us to establish corresponding algebraic properties of the resolvents.

Lemma 2.6. Let f, g ∈ X. Then

[R(λ, f ), R(μ, g)] = iσ( f, g) R(λ, f )R(μ, g)2 R(λ, f ), λ, μ ∈ R\{0}.
Furthermore,

δ f (R(μ, g)) = σ( f, g) R(μ, g)2, μ ∈ R\{0}.
Proof. Let � ∈ D f,g, f . Then, by Condition (III) and Lemma 2.3, R(μ, g)R(λ, f )� ∈
D f,g, f and one can compute

iσ( f, g) R(λ, f )R(μ, g)2 R(λ, f )�

= R(λ, f )R(μ, g) [G f , Gg] R(μ, g)R(λ, f )�

= R(λ, f )R(μ, g) [(iλ1 + G f ), (iμ1 + Gg)] R(μ, g)R(λ, f )�

= [R(λ, f ), R(μ, g)] �.

Since D f,g, f is dense in H the first part of the statement follows. For the proof of the
second part one makes use of Condition (III), the preceding result and Lemma 2.2, giving

− iδ f (R(μ, g))R(λ, f )�

= (iλ1 + G f )R(μ, g)R(λ, f )� − R(μ, g)�

= (iλ1 + G f )R(λ, f )
(

R(μ, g) − iσ( f, g)R(μ, g)2 R(λ, f )
)

� − R(μ, g)�

= −iσ( f, g) R(μ, g)2 R(λ, f )�.

Since the resolvent R(λ, f ) is bounded and has dense range, the space R(λ, f )D f,g, f
is dense in H, and so the second part of the statement follows. 	

Remark. It is an immediate consequence of the second statement that the resolvents are
analytic elements for the derivations.
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The preceding lemma allows one to establish further properties of the form σ . Recall
that X is a real vector space, and by Condition (I), the map δ : X → DerA0 is real
linear. Let f, g, h ∈ X, κ ∈ R\{0} and c ∈ R. Then

σ( f + cg, h) R(κ, h)2

= δ f +cg(R(κ, h)) = δ f (R(κ, h)) + c δg(R(κ, h))

= (σ ( f, h) + c σ(g, h)) R(κ, h)2.

Hence σ( f + cg, h) = σ( f, h) + c σ(g, h) and, by the antisymmetry of σ established in
Lemma 2.5, one also has σ(h, f + cg) = σ(h, f ) + c σ(h, g). Thus σ is real linear in
both entries. Furthermore, if there is some g ∈ X such that σ( f, g) = 0 for all f ∈ X ,
one also has δ f (R(μ, g)) = 0, f ∈ X . If δ acts ergodically on A it follows that g = 0,
since otherwise R(μ, g) is different from a multiple of the identity. So the form σ is
non–degenerate in this case. We summarize these results.

Proposition 2.7. Let (X,A) be a flat Lie C*–system, i.e. X is a real abelian Lie algebra
and the pair (X,A) satisfies Conditions (I), (II) and (III). Then there is an antisymmetric
bilinear form σ : X × X → R such that for λ,μ ∈ R\{0}, f, g ∈ X,

(i) [R(λ, f ), R(μ, g)] = iσ( f, g) R(λ, f )R(μ, g)2 R(λ, f ),
(ii) δ f (R(μ, g)) = σ( f, g) R(μ, g)2.

If δ acts ergodically, then σ is non–degenerate, i.e. (X, σ ) is a symplectic space.

These results show that the underlying C*–algebraic structure determines a central exten-
sion of the Lie algebra X which is fixed by the form σ . In a faithful irreducible repre-
sentation of A this extension of X manifests itself in the commutation relations of the
generators of the action δ, given in Lemma 2.5. The preceding proposition expresses
these relations in representation independent C*–algebraic terms.

3. Cohomology

In this section we continue our analysis of flat Lie C*–systems and establish relations for
pseudo–resolvents which express additivity and homogeneity properties of the underly-
ing action δ. Since the pseudo–resolvents are not uniquely fixed by Condition (II), it is
clear that we may have to adjust them to establish such a result. In the proofs we make
use of standard arguments from cohomology theory, the main problem being the control
of domains of the generators in the chosen Hilbert space representation of A. For this,
we need the following technical lemma.

Lemma 3.1. Let n ∈ N, let f1, . . . , fn ∈ X and let λ1, . . . λn ∈ R\{0}. The linear
manifold D f1,..., fn

.= R(λn, fn) · · · R(λ1, f1)H is dense in H; it neither depends on the
choice of λ1, . . . , λn nor on the particular order of f1, . . . , fn. Moreover, A0 D f1,..., fn ⊂
D f1,..., fn , D f1,..., fn ⊂ D f1,..., fn−1 and D f1,..., fn ⊂ ⋂

k=1,...,n D fk is a core for all oper-
ators G fk , k = 1, . . . , n.

Proof. The first part of the statement follows by another application of the fact that
resolvents are bounded operators with dense range. For the proof that the parameters in
R\{0} can be arbitrarily chosen we use induction. The statement is clear for n = 1 so,
in view of the induction hypothesis, it suffices to show that λn+1 can be replaced by any
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other parameter μn+1 without changing the respective domain. To verify this one makes
use of the resolvent equation

R(μn+1, fn+1) = R(λn+1, fn+1) (1 + i(λn+1 − μn+1) R(λn+1, fn+1)) .

Since (1 + i(λn+1 − μn+1) R(μn+1, fn+1)) ∈ A0 by Condition (III) one arrives, by
repeated application of Lemma 2.1, at the inclusion

R(μn+1, fn+1)R(λn, fn) · · · R(λ1, f1)H ⊂ R(λn+1, fn+1)R(λn, fn) · · · R(λ1, f1)H.

Interchanging λn+1, μn+1 one obtains the opposite inclusion, proving the independence
of the domain on the choice of parameters. For the proof that the order of the chosen
elements of X does not matter either, it suffices to show that one can permute fn+1 and
fn without changing the domain. Now according to Lemma 2.6 and Condition (III)

R(λn, fn)R(λn+1, fn+1)

= R(λn+1, fn+1)R(λn, fn) (1 − iσ( fn+1, fn) R(λn, fn)R(λn+1, fn+1))
.= R(λn+1, fn+1)R(λn, fn) A0,

where A0 ∈ A0. By another application of Lemma 2.1 it thus follows that

R(λn, fn)R(λn+1, fn+1) · · · R(λ1, f1)H ⊂ R(λn+1, fn+1)R(λn, fn) · · · R(λ1, f1)H.

According to the preceding step one can interchange λn, λn+1 in this inclusion and inter-
changing also the role of fn, fn+1 one obtains the opposite inclusion, proving equality.
The proof of the independence features of the domains D f1,... fn with regard to the ele-
ments entering into their definition is therewith complete.

The stability of D f1,... fn under the action of A0 follows by still another application
of Lemma 2.1. Hence, in particular, D f1,..., fn ⊂ D f1,..., fn−1 . Finally, since D f1,... fn =
R(λ, fn)D f1,... fn−1 for arbitrary λ ∈ R\{0}, it is clear that this domain is a core for G fn .
But, as it is invariant under permutations of the elements f1, . . . , fn , it is a core for all
generators G fk , k = 1, . . . , n. 	


Making use of this lemma we can establish the existence of generators of the action δ

which are additive on X .

Lemma 3.2. There is a function γ : X → R such that the “improved” generators

G f
.= G f − γ ( f ) 1, f ∈ X,

are additive, i.e.
(

G f + Gg

)
� = G f +g�, f, g ∈ X, � ∈ D f,g, f +g. (3.1)

Moreover, these generators have the same domain and commutation properties as the
given ones. The resulting resolvents

R(λ, f )
.= (iλ1 + G f )

−1 = ((iλ − γ ( f ))1 + G f )
−1, f ∈ X, λ ∈ R\{0},

satisfy condition (1.2), Lemma 2.6 and they are elements of A0.
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Proof. Let f, g ∈ X, � ∈ D f,g, f +g and A0 ∈ A0. Then

[(G f + Gg − G f +g
)
, A0] � = −i

(
δ f (A0) + δg(A0) − δ f +g(A0)

)
� = 0,

where we used Lemma 3.1 and Lemma 2.2. Thus by the generalized Schur’s Lemma
there is a constant ξ( f, g) ∈ R, symmetric in f, g, such that

(
G f + Gg − G f +g

)
� = ξ( f, g)� for all � ∈ D f,g, f +g. (3.2)

Next, let f, g, h ∈ X and pick any non–zero vector

� ∈ D f,g,h, f +g,g+h, f +g+h ⊂ D f,g, f +g ∩ D f +g,h, f +g+h ∩ Dg,h,g+h ∩ D f,g+h, f +g+h .

Because of the associativity of the addition of operators on a common domain the pre-
ceding result entails

(
G f + Gg + Gh

)
�

= (
G f +g + Gh + ξ( f, g)1

)
� = G f +g+h � + (ξ( f, g) + ξ( f + g, h))�

= (
G f + Gg+h + ξ(g, h)1

)
� = G f +g+h � + (ξ( f, g + h) + ξ(g, h))�.

Hence ξ : X × X → R satisfies the cocycle equation

ξ( f, g) + ξ( f + g, h) = ξ( f, g + h) + ξ(g, h), f, g, h ∈ X.

It is well known that for any abelian group X , all real symmetric solutions ξ of this equa-
tion are coboundaries [1]. More concretely, for any such ξ there is a function γ : X → R

such that ξ( f, g) = γ ( f ) + γ (g)−γ ( f + g), f, g ∈ X . This is the γ in the statement of
the lemma, because G f

.= G f −γ ( f ) 1, f ∈ X, has the same domain and commutation
properties as G f , and

(
G f + Gg

)
� = G f +g � + (ξ( f, g) − γ ( f ) − γ (g))� = G f +g�

for f, g ∈ X and � ∈ D f,g, f +g . This establishes the claim (3.1). Since R(λ, f ) =
R(λ + iγ ( f ), f ) is contained in {R(z, f ) : z ∈ C\iR, f ∈ X}, the last claim is also
clear. 	


The next result expresses the additivity property (3.1) in terms of the modified resol-
vents.

Lemma 3.3. Let f, g ∈ X and let λ,μ, (λ + μ) ∈ R\{0}. Then

R(λ + μ, f + g)
(

R(λ, f )+ R(μ, g)+iσ( f, g) R(λ, f )2 R(μ, g)
)
= R(λ, f )R(μ, g).

Proof. Let � ∈ D f,g, f +g , then

R(λ + μ, f + g)
(
R(λ, f ) + R(μ, g)

)
�

= R(λ + μ, f + g) R(λ, f )
(

i(λ + μ)1 + G f + Gg

)
R(μ, g)�

=
(

R(λ, f ) R(μ, g) + R(λ + μ, f + g) [R(λ, f ), G f +g] R(μ, g)
)

�

=
(

R(λ, f ) R(μ, g) + R(λ + μ, f + g)
(

iσ(g, f )R(λ, f )2
)

R(μ, g)
)

�,

where in the second equality relation (3.1) was used and in the third one Lemmata 2.1
and 2.6. The statement then follows. 	
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By Condition (I), the map δ : X → DerA0 is linear, and this raises the question
whether there are underlying generators which are not only additive but also homoge-
neous on X . An affirmative answer is given in the following lemma.

Lemma 3.4. There is a function ϑ : X → R such that the “improved” generators

G f �
.=

(
G f − ϑ( f )1

)
�, � ∈ D f

are real linear, i.e.
(
G f + c Gg

)
� = G f +cg�, f, g ∈ X, c ∈ R, � ∈ D f,g, f +cg,

and they have the same domain and commutation properties as G f . The resulting re-
solvents

R(λ, f )
.= (iλ1 + G f )

−1 = (
(iλ − γ ( f ) − ϑ( f ))1 + G f

)−1

satisfy condition (1.2), Lemma 2.6 and Lemma 3.3 and they are elements of A0.

Proof. Every vector space has a Hamel basis. Thus for X there is some index set I and
a subset {hι ∈ X : ι ∈ I }, such that every element f ∈ X can be represented in a unique
way as a finite sum f = ∑

ι c f
ι hι with coefficients c f

ι ∈ R, ι ∈ I . This basis will be
kept fixed below.

We prove homogeneity in analogy to relation (3.1). Let f ∈ X, c ∈ R, � ∈ D f,c f
and A0 ∈ A0, then by linearity of δ : X → DerA0 we have

[(c G f − Gcf
)
, A0] � = (

c δ f (A0) − δc f (A0)
)
� = 0.

Hence by the generalized Schur Lemma we get that for given ι ∈ I and c ∈ R there is
some number ζ ι(c) ∈ R such that

(
Gchι

− c Ghι

)
� = ζ ι(c)�, � ∈ Dhι, chι . (3.3)

Clearly ζ ι(1) = 0, and ζ ι(0) = 0, since G0 = ζ ι(0)1 on Dhι , and G f is additive in f .
Using this additivity, we also obtain for c, c′ ∈ R and � ∈ Dhι, chι, c′hι, (c+c′)hι

that

ζ ι(c + c′)� = (
G(c+c′)hι

− (c + c′) Ghι

)
�

= (
Gchι

− c Ghι
+ Gc′hι

− c′ Ghι

)
�

= (
ζ ι(c) + ζ ι(c

′)
)
�.

Hence ζ ι : R → R is additive. Now let f ∈ X with corresponding decomposition
f = ∑

ι c f
ι hι. Since this decomposition is unique and only a finite number of coefficients

c f
ι are nonzero we may define ϑ( f )

.= ∑
ι ζι(c

f
ι ) which produces a map ϑ : X → R.

Let g = ∑
ι cg

ι hι ∈ X , then f + g = ∑
ι(c

f
ι + cg

ι ) hι and so

ϑ( f + g) =
∑

ι

ζ ι(c
f
ι + cg

ι ) =
∑

ι

(
ζ ι(c

f
ι ) + ζ ι(c

g
ι )

) = ϑ( f ) + ϑ(g),

hence ϑ is additive. Since G f is also additive in f , it follows that the operators

G f : D f → H given by

G f �
.=

(
G f − ϑ( f )1

)
�, � ∈ D f (3.4)

are additive as well. They have the same domain and commutation properties as G f .
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For the proof that the generators G(c f ), c ∈ R, are homogeneous in c, consider first
the case where f = hι, in which case ϑ(chι) = ζ ι(c) and ϑ(hι) = ζ ι(1) = 0. Then

(
Gchι − c Ghι

)
� = (

(Gchι
− ζ ι(c) 1) − c (Ghι

− ζ ι(1) 1)
)
� = 0,

making use of (3.3) and ζ ι(1) = 0. For the general case we make use of the full power
of Lemma 3.1 for arbitrary n ∈ N. Let f = ∑

ι c f
ι hι. Since only a finite number of

the terms c f
ι hι is different from zero there is some dense domain D ⊂ D f,c f which

is stable under the action of A0 and it lies in the domains of all generators Gk with
k ∈ {c f

ι hι, cc f
ι hι : ι ∈ I } as well as k being a sum of these. Hence one obtains for

� ∈ D,

(
Gcf − c G f

)
� =

(
G∑

ι cc f
ι hι

− c G∑
ι c f

ι hι

)
�

=
∑

ι

(
G

cc f
ι hι

− c G
c f
ι hι

)
� =

∑
ι

(
cc f

ι Ghι − c c f
ι Ghι

)
� = 0,

where in the second equality the additivity of G was used and in the third equality
homogeneity w.r.t. hι. Since D is a core for the underlying generators, it follows that
Gcf = c G f on D f, c f .

As before we define the improved resolvents

R(λ, f )
.= (iλ1 + G f )

−1 = (
(iλ − γ ( f ) − ϑ( f ))1 + G f

)−1

which still satisfy condition (1.2) and Lemma 2.6. Since the generators G are additive,
the corresponding resolvents also satisfy the relation given in Lemma 3.3. The last claim
is clear in view of Condition (III). 	


The homogeneity of the generators manifests itself in further algebraic properties.

Lemma 3.5. Let f ∈ X and let λ, c ∈ R\{0}. Then

c R(cλ, c f ) = R(λ, f ).

Proof. Pick any vector � ∈ D f,c f , then it follows from Lemma 3.1 that

(
c R(cλ, c f ) − R(λ, f )

)
�

= R(cλ, c f )
(
c(iλ1 + G( f )) − (icλ1 + G(c f ))

)
R(λ, f )� = 0,

where the second equality follows from the homogeneity of the generators. 	

We summarize our findings. Let R ⊂ A be the C*–algebra generated by the range

of the underlying resolvents R. In the preceding discussion we have shown that one can
proceed from these resolvents by analytic continuation to improved resolvents R ∈ R,
in which the vector space structure of X manifests itself by additional relations. We have
worked in a concrete representation of A. But since this representation was faithful the
above results can be reformulated in the abstract setting.
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Theorem 3.6. Let (X,A) be a flat Lie C*–system, i.e. X is a real abelian Lie algebra and
the pair (X,A) satisfies Conditions (I), (II) and (III). Let R ⊂ A be the C*–algebra gen-
erated by the corresponding pseudo–resolvents. There are a skew–symmetric bilinear
form σ : X×X → R and pseudo–resolvents {R(λ, f ) : λ ∈ R\{0}, f ∈ X} ⊂ R⋂ A0
such that

R(λ, f ) δ f (A0) R(λ, f ) = i [A0, R(λ, f )], A0 ∈ A0,

and, for f, g ∈ X, λ, μ ∈ R\{0} and λ + μ = 0 in item (ii),

(i) [R(λ, f ), R(μ, g)] = iσ( f, g) R(λ, f )R(μ, g)2 R(λ, f ),
(ii) R(λ+μ, f +g)

(
R(λ, f )+ R(μ, g)+iσ( f, g) R(λ, f )2 R(μ, g)

)= R(λ, f )R(μ, g),
(iii) c R(cλ, c f ) = R(λ, f ) for c ∈ R\{0},
(iv) δ f (R(μ, g)) = σ( f, g) R(μ, g)2, μ ∈ R\{0} .

If δ acts ergodically on A, then σ is non–degenerate.

As the range of the analytic continuations of the resolvents is contained in R, this
algebra is generated by the improved resolvents as well. Moreover, if δ acts ergodical-
ly, the relations obtained above show that the algebra R is just the resolvent algebra
R(X, σ ), defined in [2]. It is noteworthy that R(X, σ ) is primitive since its Fock repre-
sentation is faithful. Finally, we show that in general the algebra R is independent from
the choice of pseudo–resolvents satisfying relation (1.2).

Proposition 3.7. Let (X,A) be a flat Lie C*–system and let {R(λ, f ) ∈ A0 : λ ∈
R\{0}, f ∈ X} and {R ′(λ, f ) ∈ A0 : λ ∈ R\{0}, f ∈ X} be two families of pseudo–
resolvents satisfying relation (1.2). Then the respective C*–algebras generated by these
families coincide.

Proof. As before, assume without loss of generality that we have concretely A ⊆ B(H)

for some Hilbert space H and A− = B(H), where the bar denotes weak closure. Thus
there are selfadjoint generators G f (resp. G ′

f ) which are densely defined on the domain

D f
.= R(λ, f )H (resp. D ′

f
.= R ′(λ, f )H) and satisfy R(λ, f ) = (iλ1 + G f )

−1 (resp.

R ′(λ, f ) = (iλ1 + G ′
f )

−1).
Let D .= R(λ, f )R ′(λ, f )H for fixed λ ∈ R\{0}, f ∈ X . Since resolvents are

bounded and their range is dense, it is clear that D is dense in H. By Lemma 2.1, we
also have that for any A0 ∈ A0 there is a B0 ∈ A0 such that A0 R(λ, f ) = R(λ, f )B0
and also the analogous statement for R ′(λ, f ). Thus we obtain stability of D under the
action of A0. By definition D ⊂ D f is a core for G f . If we let A0 = R(λ, f ), then
R(λ, f )R ′(λ, f ) = R ′(λ, f )B0 for some B0 ∈ A0, hence D ⊂ R ′(λ, f )H = D ′

f .
Moreover, as R ′(λ, f ) ∈ A0 it is also clear that R ′(λ, f )D ⊂ D, and hence D is a core
for G ′

f as well. Now observe that for � ∈ D and A0 ∈ A0 we have via Lemma 2.2 that

[(G ′
f − G f ), A0] � = −i(δ f (A0) − δ f (A0))� = 0.

Thus by the generalized Schur Lemma there is some c f ∈ R such that
(G ′

f − G f − c f 1) � D = 0. Since D is a core for G f and G ′
f it follows that

G ′
f = G f + c f 1, proving that

R ′(λ, f ) = (
(iλ + c f )1 + G f

)−1 ∈ {R(z, f ) : z ∈ C\iR} ⊂ R.

Thus the C*–algebra generated by {R ′(λ, f ) ∈ A0 : λ ∈ R\{0}, f ∈ X} is contained
in the C*–algebra generated by {R(λ, f ) ∈ A0 : λ ∈ R\{0}, f ∈ X} and by symmetry
of the argument we also have the reverse inclusion, hence equality. 	
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4. Concluding Remarks

We have established above a C*–algebraic framework for the systematic study of the
representation theory of Lie–algebras of derivations tailored to the needs of quantum
physics. For the simple case of flat Lie C*–systems (X,A) arising from actions of abe-
lian Lie algebras X on primitive C*–algebras A, we were able to completely determine
the algebraic structure of the generators. It turned out that this structure provides in
general a central extension of X whose specific form is fixed by some skew–symmetric
bilinear form σ : X × X → R encoded in the underlying algebraic data. Remarkably,
the C*–algebra generated by the resolvents of the generators coincides with the resol-
vent algebra R(X, σ ), invented in [2] as a convenient framework for the description of
quantum systems.

In view of these results it seems worthwhile to extend this study of representations of
Lie algebras of derivations to the non–abelian case. It has to be noted that the technical
Condition (III) would no longer be meaningful in this general context, i.e. the pseudo–
resolvents do not need to belong to the domain of the action δ. As a matter of fact, as
these pseudo–resolvents are assumed to be elements of A, cf. Condition (II), one may
even have to relax the assumption that the domain A0 of δ is norm dense in A. It would
still be meaningful to require that this domain is weakly dense in some faithful irreduc-
ible representation of A. In fact, the present results can be established under this weaker
assumption. A solution of these mathematical problems would be rewarding since it
would shed new light on the appearance of central extensions of symmetry groups in
the context of quantum physics.
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