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Abstract: Long time existence and uniqueness of solutions to the Yang-Mills heat
equation is proven over a compact 3-manifold with smooth boundary. The initial data
is taken to be a Lie algebra valued connection form in the Sobolev space H1. Three
kinds of boundary conditions are explored, Dirichlet type, Neumann type and Marini
boundary conditions. The last is a nonlinear boundary condition, specified by setting
the normal component of the curvature to zero on the boundary. The Yang-Mills heat
equation is a weakly parabolic nonlinear equation. We use gauge symmetry breaking to
convert it to a parabolic equation and then gauge transform the solution of the parabolic
equation back to a solution of the original equation. Apriori estimates are developed
by first establishing a gauge invariant version of the Gaffney-Friedrichs inequality. A
gauge invariant regularization procedure for solutions is also established. Uniqueness
holds upon imposition of boundary conditions on only two of the three components of
the connection form because of weak parabolicity. This work is motivated by possible
applications to quantum field theory.
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1. Introduction

1.1. Nonlinear distribution spaces. This paper is intended as a first step in constructing
nonlinear distribution spaces for Yang-Mills fields over three dimensional space.

Heat equations have been used to characterize various function spaces by identifying
these function spaces with the initial data space for a parabolic equation. This method of
characterizing function spaces goes back at least to the 1961 paper of Lions [27][Sect. 5],
the 1960s papers, [54–56], of Taibleson and to the 1980s papers, [34–36], of Matsuzawa.
The papers of Matsuzawa characterize an ultradistribution u on a compact subset of R

n

by properties of the solution to the heat equation with initial data u. See the classic book
[5] for early work and the paper [1] for some recent history.

By way of a simple example, consider a non-negative unbounded self-adjoint oper-
ator A acting on a Hilbert space H . Assume for simplicity that A ≥ I . Let α > 0. The
easily verified identity,

‖A−αu0‖2 = Cα

∫ ∞

0
s2α−1‖e−s Au0‖2ds, Cα = constant (1.1)

shows that the norm u0 → ‖A−αu0‖ on H can be characterized in terms of solutions to
the initial value problem

u′(s) = −Au(s), for s > 0, u(0) = u0, (1.2)

since the solution is just u(s) = e−s Au0. In fact it is clear that the initial value problem
(1.2) sets up a one-to-one correspondence between the space of those solutions of the
equation u′(s) = −Au(s) for which the right side of (1.1) is finite, and the large initial
data space consisting of the completion of H in the norm ‖A−αu0‖. If H is an L2 space
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over some Riemannian manifold and −A is a second order elliptic operator then these
completed spaces are just negative Sobolev spaces and the correspondence u0 ↔ u(·),
set up by (1.2), identifies these Sobolev spaces with certain spaces of solutions of the
heat equation for −A. In general H may be some other kind of Banach space or Frechet
space, and the completion spaces need not be Sobolev spaces, [1].

Some quantum field theories seem to require use of large completions of spaces which
are not linear spaces. Most important is the example in which the space to be completed
is a space A of connections on R

3 modulo a gauge group G . Whatever smoothness one
imposes on A and G , the space A /G is not a linear space in generic cases of interest.
See e.g. [51,52,42] for discussions of the geometry of this space in case R

3 is replaced
by a compact manifold.

The reason for the need to complete such a quotient space is that the quantum theory
requires a space large enough to support certain measures of physical interest. Typically,
the measures arising in quantum field theory need some negative Sobolev space to live
on. In the preceding gauge field example some kind of nonlinear negative Sobolev space
seems to be required. We are going to explore the (nonlinear) Yang-Mills heat equation as
a replacement for the linear equation (1.2). The measure theoretic difficulties increase
with spatial dimension as does the difficulty in proving existence of solutions to the
Yang-Mills heat equation. For example no completion is necessary for addressing the
measure theory in one spatial dimension, i.e., two space-time dimensions, even though
study of the associated stochastic process presents severe problems of its own. See, e.g.,
A. Sengupta, [49,50]. We are going to address the Yang-Mills heat equation in three
space dimensions only, with intended application to the canonical formalism over R

3

or the Euclidean formalism over four dimensional space-time. The corresponding exis-
tence and uniqueness theorems are simpler in two space dimensions and follow easily
from our techniques.

In contrast with the simple example of (1.2), the flow equation associated to such
a nonlinear distribution space will itself be nonlinear. In the case of a Yang-Mills field
the natural equation is the gradient flow equation of the magnetic energy (which is the
square of the L2 norm of the curvature). Elsewhere, the nonlinear sigma model will be
investigated from this same point of view and the nonlinear equation will again be a gra-
dient flow equation of a non-quadratic energy. Thus in each of the examples of interest
the flow equation is a geometric flow given as the gradient flow of some natural energy
functional on some nonlinear manifold. It is the intention of this program to realize the
required nonlinear distribution spaces as complete “Riemannian” infinite dimensional
manifolds whose elements are geometric flows and which support genuine functions,
such as gauge invariantly regularized Wilson loop variables.

In order to understand the spaces of flows for which there is no identifiable initial
data it is first necessary to understand those flows for which there is an identifiable
initial value. Unlike the linear case a proper understanding of the space of initial data
for some class of flows requires treating both the space of flows and the initial data
space as infinite dimensional Riemannian manifolds: one needs to know not only which
initial data propagates to a flow but also which variations of the initial data propagate
to a solution of the variational equation along the flow. In the linear case there is no
distinction between the flow equation and its variational equation. In the nonlinear case,
when the initial data is singular, the variational equation will have singular coefficients
at time zero, and a variation of the initial data may not propagate past the singularity.
This issue will be treated in a separate work. In the present paper we are going to prove
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existence and uniqueness of solutions to the Yang-Mills heat equation, (1.3), with initial
data in Sobolev class 1.

We will also establish some apriori estimates aimed at extending the class of initial
data to connection forms of Sobolev class 1/2. Sobolev class 1/2 is the natural class
for initial data from the point of view of relativity theory because it is the unique class
whose hyperbolic flow by Maxwell’s equations is Lorentz invariant. Furthermore, for
initial data of Sobolev class 1/2, three spatial dimensions is the critical dimension for
the Yang-Mills heat equation. We will pursue the extension of our results to initial data
of Sobolev class 1/2 in a future work.

1.2. Manifolds with boundary and local observables. We are going to consider the
Yang-Mills heat equation in a product bundle over a compact Riemannian 3-manifold
M with smooth boundary. The case of interest for quantum field theory is that in which
M is the closure of a bounded open set O in R

3 with smooth boundary. Roughly, our
main theorem asserts that if K is a compact, connected Lie group with Lie algebra k
and if A0 is a k valued connection form over M , lying in the first order Sobolev space
W1(M), then there exists a unique solution to the Yang-Mills heat equation

∂A(t)/∂t = −d∗
A(t)B(t), t > 0 with A(0) = A0, (1.3)

satisfying Dirichlet type or Neumann type boundary conditions. Here B(t) is the cur-
vature 2-form, B(t) = d A(t) + A(t) ∧ A(t), of the connection form A(t) and d∗

A(t) is
the gauge covariant coderivative. Equation (1.3) is the gradient flow equation for the
magnetic energy ‖B‖2

L2(M)
.

In addition to Neumann and Dirichlet boundary conditions, we are also going to
examine a purely nonlinear boundary condition, which is specified by requiring that the
normal component of the curvature be zero. Such a boundary condition was first studied
by A. Marini [31–33] in the context of elliptic boundary value problems for Yang-Mills
connections over four dimensional manifolds. We will henceforth refer to this boundary
condition as Marini boundary conditions.

There is a fundamental conceptual reason for considering the Yang-Mills heat equa-
tion over a bounded open set O in R

3 rather than over all of R
3 or over a closed 3-manifold

such as T 3: Suppose that γ is a piecewise smooth closed curve in R
3. Denote by Wγ (A)

the composition of a character of K with the parallel transport around γ by a connec-
tion form A defined in a neighborhood of γ . That is, Wγ (A) ≡ trace (//A

γ ), where

the trace is computed in some finite dimensional unitary representation of K and //A
γ

denotes parallel transport. Then the holonomy function A �→ Wγ (A) (the Wilson loop
variable) is gauge invariant and descends to a function on a quotient manifold A /G
such as discussed above. In the sought for space of connection forms, on whose moduli
space the desired ground state measure lives, a typical connection form A is not even
an almost everywhere defined form, let alone continuous, and the function Wγ (A) is
therefore not well defined. This is known from the electromagnetic case, K = U (1), for
which the measure theory is explicitly solvable. Nevertheless similar holonomy func-
tions on A /G have been used extensively both for formulation of a mathematical theory
[52, Chap. 8, 48], and for computational comparisons with experiment [26,28,29]. If
A(·) solves the Yang-Mills heat equation (1.3), with initial data A0, which, in the spirit
of Sect. 1.1 we take to be some kind of generalized connection form on R

3, then, for
any t > 0, A(t) will be (essentially) a C∞ 1-form and the map A0 �→ Wγ (A(t)) will
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be well defined and gauge invariant. Thus the Yang-Mills heat equation offers a gauge
invariant regularization procedure for some class of irregular connection forms.

The regularizing effect of the flow has already been pointed out in both the lattice
and continuum quantized theories, [28–30], where it also appears as a first order approx-
imation in a method aimed at implementing a Monte Carlo computational protocol for
lattice gauge theory.

However, since the (weakly) parabolic equation (1.3) propagates information with
infinite speed, the map A0 �→ Wγ (A(t)) depends on A0 over all of R

3. This is unsat-
isfactory from the point of view of local quantum field theory, which requires use of
“local observables”, [18,53], that is, functions of A0 which depend only on the behavior
of A0 in some specified (say bounded) open set O ⊂ R

3. Now solving Eq. (1.3) over
O , rather than over R

3, with initial data A0|O , produces a function Wγ (A(t)) depend-
ing only on A0|O , when γ ⊂ O . In this way one can hope to construct useful “local
observables”. Of course it is essential that this regularization procedure commutes with
gauge transformations in the sense that, for a (think C∞) connection form A0 on R

3,
and any function g ∈ C∞(R3; K ), one has

(Ag
0 |O)(t) = (A0|O)(t)g,

where (A0|O)(t) refers to the solution in O of (1.3) at time t > 0 with initial condition
A0|O . The superscript g refers to the usual gauge transformation of the connection form.
(See e.g. after Eq. (2.17).) Such commutativity will hold for Marini boundary conditions
but not for Dirichlet or Neumann boundary conditions. For this reason we expect that
Marini boundary conditions will be the most important ones for our purposes.

We anticipate that the conventional lattice regularization of Yang-Mills quantum field
theory, [19,25,28,29,59,48], will mesh well with the present continuum regularization.

1.3. Technical description and history. The Yang-Mills heat equation has a long history
[3,6,9,10,21–24,44,46]. While most of these works were aimed at immediate applica-
tion in mathematics, some, e.g. [46], were aimed primarily at application to physics.

Standard methods for proving existence and uniqueness for nonlinear parabolic equa-
tions do not seem applicable to Eq. (1.3) because the equation is only weakly parabolic
and the functional A �→ ‖d A + A ∧ A‖2

L2(M)
, whose flow we are following, is not (even

weakly) convex. We are going to adapt a method that has its origin in papers of Zwanzi-
ger, [60], Donaldson, [9], and Sadun, [46]. This consists in adding a term −dAd∗ A to the
right side of (1.3), which makes the equation parabolic. A time dependent gauge trans-
formation can then be constructed which changes the solution of the modified equation
into a solution of the original equation, (1.3).

Techniques of proof of existence for solutions of parabolic equations over closed
manifolds extend in a well understood way to manifolds with boundary when the solu-
tions sought are real valued. But in our setting the components of the connection form
A are mixed up by the nonlinear differential equation, and, in the case of Marini bound-
ary conditions, are also mixed up by these boundary conditions. Moreover, the apriori
energy estimates that we will need must be formulated in terms of gauge covariant deriv-
atives because neither the connection form nor its curvature is smoothed by the flow. To
this end, it is necessary to express Sobolev inequalities in terms of the gauge covariant
exterior derivative dA and its adjoint. For real valued functions this is accomplished
by the Gaffney-Friedrichs inequality [13,12,39–41,57]. In our case we will need to
prove a gauge invariant version of the Gaffney-Friedrichs inequality. Not surprisingly,
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the curvature of the connection form A enters these inequalities in a substantial way and
contributes to some of the technical problems to be resolved. It is the need to adhere to
gauge invariant estimates that is responsible for much of the novelty in this work.

J. Råde, [44], has proven existence and uniqueness of solutions for the Yang-Mills
heat equation on a closed 3-manifold and investigated the longtime behavior of the solu-
tions. The method used by Råde to solve the problem of lack of parabolicity is quite
different from the method of Donaldson and Sadun. The curvature, FA, of the 1-form A
is taken as an unknown, L , independent of A, and a joint system of equations for A and
L is solved. The joint system is parabolic. Råde proved that the solution L(t) agrees with
FA(t) for all time if they agree at time zero. This method seems to go back to Ginibre and
Velo, [16,17], in the context of the hyperbolic Yang-Mills equations and to De Turck,
[8], in the context of the parabolic Ricci flow problem. Råde’s method might offer some
advantages in our circumstance. But the presence of boundary conditions seems to add
considerable difficulty.

The transition from short time existence to long time existence is carried out in dif-
ferent ways in the various works [9,10,44,46] and in the present paper. In addition,
semi-probabilistic methods have also been used: See, e.g., Arnaudon et al. [2], and
Pulemotov, [43], for a very different approach to long time existence.

Compactness of the manifold M is not really needed. We have included it as a hypoth-
esis to simplify some statements and arguments. However we want to emphasize that all
estimates derived here will also hold for a complete open manifold without boundary
as long as the Bochner-Weitzenboch tensor (which is zero on R

3) is bounded and the
appropriate Sobolev inequalities and heat kernel bounds hold, which they do on R

3. The
same estimates will also hold on a manifold with boundary if the second fundamental
form is bounded below.

2. Statement of Results

Notation 2.1. M will denote a compact Riemannian 3-manifold with smooth boundary.
K will denote a compact connected Lie group. Without loss of generality we may and
will identify K with a subgroup of the orthogonal group, respectively unitary group,
of some finite dimensional real, respectively complex, inner product space V . The Lie
algebra of K , denoted k, may then be identified with a real subspace of End V . We will
be concerned only with a product bundle M × V → M over M . We assume given an
Ad K invariant inner product 〈·, ·〉 on k with norm denoted by |ξ |k for ξ ∈ k. We will
not distinguish between |ξ |k and |ξ |EndV , which are equivalent norms.

If ω and φ are k valued p-forms define (ω, φ) = ∫
M 〈ω(x), φ(x)〉Λp⊗kdx and

‖ω‖2
2 = (ω, ω). Define also ‖ω‖∞ = supx∈M |ω(x)|Λp⊗k and

‖ω‖2
W1(M) =

∫
M

|∇ω|2Λp⊗kd Vol + ‖ω‖2
2, (2.1)

where∇ is the Riemannian gradient on forms. Define W1 = W1(M) = {ω : ‖ω‖W1(M) <∞}. The notation H1 will be used later for forms in W1 which satisfy specified boundary
conditions. Since we are concerned only with a product bundle, a connection form can
be identified with a k valued 1-form. For a connection form A, given in local coordinates
by A = ∑3

j=1 A j (x)dx j , its curvature (magnetic field) is given by

B = d A + (1/2)[A ∧ A], (2.2)
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where [A ∧ A] = ∑
i, j [Ai , A j ]dxi ∧ dx j and [Ai (x), A j (x)] is the commutator in

k. B is a k valued 2-form. For ω ∈ W1 we define dAω = dω + (ad A) ∧ ω and
d∗

Aω = d∗ω + (ad A∧)∗ω. No boundary conditions are implied on these operators in
this section. The domains of these operators will be discussed further in Sect. 3.

Definition 2.2. Let 0 < T ≤ ∞. By a strong solution to the Yang-Mills heat equation
over [0, T ) we mean a continuous function

A(·) : [0, T ) → W1 ⊂ k-valued 1-forms (2.3)

such that

a) B(t) ∈ W1 for each t ∈ (0, T ), where B(t) = curvature of A(t), (2.4)

b) the strong L2(M) derivative A′(t) ≡ d A(t)/dt exists on (0, T ), (2.5)

c) A′(t) = −d∗
A(t)B(t) for each t ∈ (0, T ). (2.6)

A strong solution will be called locally bounded if

d) ‖B(t)‖∞ is bounded on each bounded interval [a, b) ⊂ (0, T ) and (2.7)

e) t3/4‖B(t)‖∞ is bounded on some interval (0, b)with 0 < b < T . (2.8)

Remark 2.3. The condition e) allows the degree of singular behavior near t = 0 that is to
be expected in three dimensions. We will prove long time existence and uniqueness of
locally bounded strong solutions under various boundary conditions. The local bound-
edness is a vital ingredient in our uniqueness proof. We don’t know if uniqueness holds
in the absence of some such regularity condition. See Remark 8.18 for further discussion
of this point.

Usually A′(t) will signify ∂A(t)/∂t . But in b) we are regarding A(·) as a function
into L2(M;Λ1 ⊗ k).

2.1. Dirichlet, Neumann and Marini boundary conditions.

Notation 2.4 (Tangential and normal components). At a point x ∈ ∂M denote by n
the outward drawn unit normal and by ν the dual unit conormal. Any p-form γ over
Tx (M) can be written uniquely as γ = α ∧ ν + β, where β(n, X1, . . . , X p−1) =
α(n, X1, . . . , X p−2) = 0 for all X j ∈ Tx (M). As is customary, we will write γnorm =
α ∧ ν and γtan = β. The restriction maps α → i∗α and β → i∗β are clearly isomor-
phisms on these classes of forms when i : Tx (∂M) → Tx (M) is the inclusion map.
Moreover γtan = 0 if and only if γ ∧ ν = 0. A coordinate based description of these
two components of γ will be given in Sect. 4.

Theorem 2.5 (Neumann boundary conditions). Suppose that A0 ∈ W1 and (A0)norm =
0. Then there is a locally bounded strong solution A(·) over [0,∞) such that A(0) = A0
and that satisfies the boundary conditions

i) A(t)norm = 0 for all t ≥ 0 and (2.9)

i i) B(t)norm = 0 for all t > 0. (2.10)

Uniqueness: If A1 and A2 are two locally bounded strong solutions which agree at time
zero and satisfy (2.10) then A1 = A2 on [0,∞).
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Remark 2.6. Notice that for uniqueness the condition (2.9) is not required, even for
t = 0. For an explanation of the terminology “Neumann boundary conditions” for the
pair of conditions (2.9) and (2.10) see Remark 2.11.

Theorem 2.7 (Dirichlet boundary conditions). Suppose that A0 ∈ W1 and (A0)tan = 0.
Then there is a locally bounded strong solution over [0,∞) such that A(0) = A0 and
that satisfies the boundary conditions

i) A(t)tan = 0 for all t ≥ 0 and (2.11)

i i) B(t)tan = 0 for all t > 0. (2.12)

Uniqueness: If A1 and A2 are two locally bounded strong solutions which agree at time
zero and satisfy (2.11) then A1 = A2 on [0,∞).

Remark 2.8. Notice that for uniqueness the condition (2.12) is not required. In fact
A(t)tan = 0 implies B(t)tan = 0 when B(t) ∈ W1. (See, e.g., (3.22)). So the latter is
not an independent condition.

Remark 2.9 (Weak parabolicity and regularization). Suppose that g ∈ C2(M; K ) and
is the identity element of K in a neighborhood of ∂M . Let A0 = g−1dg. Then A0 ∈
C1(M : Λ1 ⊗ k) ⊂ W1 and is zero in a neighborhood of ∂M . Define A(t) = A0 for all
t ≥ 0. A(t) has curvature zero and satisfies all of the Neumann and Dirichlet bound-
ary conditions, (2.9), (2.10), (2.11) and (2.12), including the initial conditions. It is the
unique locally bounded strong solution specified in Theorems 2.5 and 2.7. Thus the
Yang-Mills heat equation does not regularize all initial data, reflecting the well known
fact that it is only weakly parabolic. The weak parabolicity will be particularly visible in
Eq. (7.5) and the discussion following it. There is a gain of regularity for the curvature,
however, and this will allow the strong sense of solution specified in Definition 2.2.
Nevertheless, for t > 0, the curvature B(t) itself will not be smooth under our initial
conditions. For example if g is as above and A0 is any initial condition in W1(M) then
the gauge transform Ag

0 is also in W1 while the curvature Bg(t)(x) = g(x)−1 B(t)g(x),
of Ag(t), need not be smooth even if B(t) is smooth.

Remark 2.10 (Weak parabolicity and uniqueness). Theorems 2.5 and 2.7 show that for
both Dirichlet and Neumann type boundary conditions, uniqueness follows from the
imposition of only two boundary conditions on the three component connection form
A(t), in contrast to what one expects for parabolic equations. This effect can be attrib-
uted to the fact that the Yang-Mills heat equation is only weakly parabolic. It is well
known that degeneracy of an elliptic operator L on a manifold with boundary can force
uniqueness on solutions of the weakly parabolic equation ∂u/∂t = Lu under fewer
boundary conditions on u than usual. See [37, Sect. 7.2] for a recent work discussing
this issue for scalar functions. See also Remark 8.18 for further discussion in our case.

Remark 2.11. (Neumann and Marini boundary conditions.) In Theorem 2.7 the bound-
ary condition A(t)tan = 0, t ≥ 0, appears in both the existence and uniqueness portion
of the theorem, whereas in Theorem 2.5 the initial boundary condition (A0)norm = 0 is
needed for the existence proof while A(t)norm = 0, t > 0 is not needed for uniqueness.
If A(t)norm = 0 for t > 0 then [A(t) ∧ A(t)]norm = 0 and consequently B(t)norm =
(d A(t))norm . Thus in the presence of (2.9) the nonlinear boundary condition B(t)norm =
0 in (2.10) is equivalent to the pure Neumann boundary condition (d A(t))norm = 0.

A. Marini, [31–33], has explored the nonlinear boundary condition Fnorm = 0 in
the context of the weakly elliptic boundary value problem d∗

A F = 0, where F = FA
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is the curvature of a connection A over a 4-manifold with boundary. In the context of
Theorem 2.5, the corresponding Marini boundary condition, B(t)norm = 0, is fully
gauge invariant and does not depend on the choice of a fiducial gauge, unlike the pair
of conditions Anorm = 0, (d A)norm = 0, to which the pair of Eqs. (2.9) and (2.10) is
equivalent.

The Marini boundary condition will ultimately be the case of interest for the intended
application to quantum field theory, as explained in Sect. 1.2. Theorem 2.5 easily yields
the following existence and uniqueness theorem with the pure nonlinear boundary con-
dition B(t)norm = 0 by itself. The restrictive regularity of the initial data will be removed
in a later work.

Theorem 2.12 (Marini boundary conditions) Suppose that A0 ∈ C2(M;Λ1 ⊗ k). Then
there is a unique locally bounded strong solution over [0,∞) such that A(0) = A0 and

B(t)norm = 0 for all t > 0. (2.13)

Theorems 2.5, 2.7 and 2.12 will be proven in Sect. 9.

2.2. Existence by symmetry breaking. If one adds a term −dAd∗ A to the right side of the
Yang-Mills heat equation (2.6) the equation becomes strictly parabolic but is no longer
gauge invariant. Remarkably, a solution to the modified equation can be transformed to
a solution of the original equation by a time dependent gauge transformation. This was
first observed by D. Zwanziger, [60], in the context of stochastic quantum field theory.
Donaldson, [9], independently added such a term to the evolution equation of a classi-
cal Yang-Mills heat equation and similarly “gauged it away”. L. Sadun, motivated by
Zwanziger’s work, used this technique in proving existence of solutions to (1.3) over R

3

in his Ph. D. thesis, [46], as a step in carrying out stochastic quantization for Yang-Mills
fields. Donaldson’s work, which is carried out in the C∞ category, is also summarized
in the book [11, Sect. 6.3]. When the initial data is only in W1(M), as in our case, there
is, unfortunately, a singularity in the time dependent gauge transformation at time zero.
Our gauge invariant apriori estimates will play a key role in addressing this problem.

To distinguish the desired solution A(·) of the Yang-Mills heat equation, from the
solution to the modified equation let us denote the latter by C(t). The equation and
boundary conditions for A then translate into the following initial value problem for
C(·):

(∂/∂t)C = −(d∗
C BC + dC d∗C), t > 0, C(0) = A0, (2.14)

along with one of the following two kinds of boundary conditions: (N) or (D).

(N ) C(t)norm = 0 for t ≥ 0, (BC(t))norm = 0 for t > 0, (2.15)

(D) C(t)tan = 0 for t ≥ 0, (d∗C(t))|∂M = 0 for t > 0, (2.16)

where BC denotes the curvature of a connection form C .
Equation (2.14) is a strictly parabolic differential equation, unlike (2.6). The bound-

ary conditions (D) are relative boundary conditions in the sense of Ray and Singer, [45],
while, in view of Remark 2.11, the boundary conditions (N) are equivalent to absolute
boundary conditions. For recent systematic discussions of absolute and relative bound-
ary conditions for real valued forms see for example the book [57, Chap. 5, Sect. 9] and
[38], especially Chap. 5.

Concerning the parabolic system (2.14)–(2.16) we will prove the following short
time existence and uniqueness theorem.
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Theorem 2.13. Let A0 ∈ W1. Assume that (A0)norm = 0, respectively (A0)tan = 0.
Then there exists T > 0 and a continuous function C : [0, T ) → W1 such that C(0) =
A0 and

a) BC(t) ∈ W1 and d∗C(t) ∈ W1 for each t ∈ (0, T ),
b) the strong L2(M) derivative (d/dt)C(t) exists for each t > 0,
c) Eq. (2.14) holds for each t > 0 along with the boundary conditions (2.15), respec-

tively (2.16),
f) t3/4‖BC(t)‖∞ is bounded on (0, T ).

The solution is unique under the preceding conditions. Moreover, C(·) lies in
C∞((0, T )× M;Λ1 ⊗ k).

This will be proved in Sect. 7.1. The proof proceeds by a fairly standard reduction to
an integral equation and a contraction mapping argument, followed then by a regularity
theorem. However our form of the contraction argument will allow us to deduce some
important regularity for these non-real valued functions that seems unavailable by more
standard means. We will use a quadratic form version of the boundary conditions (2.15)
and (2.16).

Here is an informal description of the gauging procedure which transforms a solution
of the parabolic equation (2.14) to a solution of the Yang-Mills heat equation. A precise
version will be given in Theorem 8.2.

Lemma 2.14 (Heuristic). Let C(t) be a solution to (2.14) with boundary condi-
tions (2.15), respectively (2.16). Define a function g : [0, T ) → C∞(M; K ) ⊂
C∞(M; End V ) as the solution to the initial value problem

g′(t, x)g(t, x)−1 = d∗C(t, x), g(0, x) = IV (2.17)

for each x ∈ M. Let A = Cg. That is, A(t, x) = g(t, x)−1C(t, x)g(t, x) +
g(t, x)−1dg(t, x). Then A solves (2.6) with the Neumann type boundary conditions
(2.9), (2.10), respectively the Dirichlet type boundary conditions (2.11), (2.12).

It is interesting that, for the solution A = Cg produced in this way, the relative and
absolute boundary conditions imposed on C(·) partly disappear, while for Marini bound-
ary conditions, imposed on A, the relative and absolute boundary conditions disappear
completely.

Because of the singular behavior of d∗C(t, x) as t ↓ 0, it is difficult to establish the
regularity of g(t, x) needed to ensure that A(t) ∈ W1(M) for t ≥ 0. We will instead
define gε(t) for t ≥ ε using the same differential equation (2.17), but with initial con-
dition gε(ε) = IV . Defining Aε(t) = C(t)gε (t) for t ≥ ε, we will then show that the
connection forms Aε(·) define smooth solutions which converge in a strong sense to the
desired solution to (2.6) as ε ↓ 0. To carry out this transition from the parabolic equation
to the weakly parabolic Yang-Mills heat equation we will need to use the gauge invariant
Gaffney-Friedrichs inequality described below, along with the gauge invariant apriori
estimates that follow from it. See Sect. 8 for precise statements and proof.

Remark 2.15 (Uniqueness and reverse gauge transformation). If one should wish to prove
uniqueness for the weakly parabolic equation (2.6) by referring back to the strictly par-
abolic equation (2.14), for which uniqueness is well known, one must reverse the gauge
transformation procedure described in Lemma 2.14. To this end, one must express the
gauge function g(t, x) in terms of A(·) rather than in terms of C(·). But, whereas the
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function g(t, x) can be recovered from C(·) via the simple ordinary differential equa-
tion (2.17), its recovery from A(·) requires solving a nonlinear partial differential equa-
tion similar to the harmonic map equation. In our Sobolev class 1 category this is itself
a difficult problem. Instead we are going to give a direct proof of uniqueness for (2.6)
without passing back to (2.14).

2.3. Gauge invariant Gaffney-Friedrichs inequalities. Most of the estimates in this
paper will depend on the use of Sobolev inequalities in which the energy form
‖∇ Aω‖2

L2(M)
+ ‖ω‖2

2 is replaced by the Hodge version, ‖dAω‖2
2 + ‖d∗

Aω‖2
2 + λ‖ω‖2

2.

Here we have written (∇ A) jω = ∇ jω + [A j , ω] for the gauge covariant gradient of a k
valued form ω. It will be necessary to establish equivalences between these two energy
forms because it is the former that controls L p norms via Sobolev inequalities while it is
the latter that relates well to the Yang-Mills heat equation. The constant λ depends on the
curvature of the connection form A. The nature of this dependence is crucial for dealing
with singular initial data. The equivalence of these two energy forms is dependent on
the gauge-invariant Gaffney-Friedrichs inequality,

‖∇ Aω‖2
L2(M) + ‖ω‖2

2 ≤ const.(‖dAω‖2
2 + ‖d∗

Aω‖2
2 + λ‖ω‖2

2). (2.18)

This will be the key input to most of our results, including gauge invariant apriori esti-
mates and regularity of solutions in the gauge covariant derivative sense. See Remark 2.9.

In the classical case, i.e., real valued forms, such equivalences go back to Gaffney,
[13], and Friedrichs, [12]. See also Eells and Morrey, [41], for a very early work in
this direction. The constants in these classical inequalities depend on the Riemannian
curvature of M and the curvature of its boundary. M. Mitrea, [39], has shown that such
inequalities can be established with no dependence on the Riemannian curvature of M
and only mild dependence (convexity) on the curvature of the boundary in these classical
cases. The benefit of using a convex domain for real valued forms was observed early
on by Saranen, [47], for a convex domain in R

3. A reader may consult the book by
Taylor, [57, pp. 361–364] for a recent derivation of the Gaffney-Friedrichs inequality
in the classical case and [38] for extensions to nonsmooth Riemannian manifolds in the
classical case.

Our concern here is primarily with the dependence of the constant λ on the curvature
of the connection form A.

Notation 2.16. Define the gauge invariant version of (2.1) by

‖ω‖2
W A

1 (M)
= ‖∇ Aω‖2

L2(M) + ‖ω‖2
L2(M) (2.19)

for any k valued r-form ω on M . By Sobolev’s inequality, there exists a constant κ ,
depending on the geometry of M but not on A, such that ‖ω‖2

6 ≤ (κ2/2)(
∫

M |grad|ω| |2+
‖ω‖2

2) for all ω ∈ W1(M). (See e.g., [15, Thm. 7.26].) In view of Kato’s inequality,∫
M |grad|ω| |2 ≤ ‖∇ Aω‖2

2, it follows that

‖ω‖2
6 ≤ (κ2/2)‖ω‖2

W A
1 (M)

for ω and A ∈ W1(M). (2.20)

Theorem 2.17 (Gauge invariant Gaffney-Friedrichs inequality). Suppose that M is a
compact Riemannian 3-manifold with smooth boundary and that A is a k valued 1-form
in W1(M) with curvature B. Let p ∈ [2,∞] and assume that ‖B‖L p(M) < ∞. There
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are constants λM and γp, depending only on the geometry of M and not on A, such that,
with

λp(B) := λM + γp‖B‖2p/(2p−3)
p , (2.21)

there holds

(1/2)‖ω‖2
W A

1 (M)
≤ ‖dAω‖2

L2(M) + ‖d∗
Aω‖2

L2(M) + λp(B)‖ω‖2
2 (2.22)

for any k valued r-form ω in W1(M) satisfying either

ωtan = 0 or ωnorm = 0. (2.23)

Here dA is the covariant exterior derivative with domain matching the boundary condi-
tion on ω and d∗

A is its adjoint. If M is a convex subset of R
3 one can take λM = 1.

Theorem 2.17 will be proven in Sect. 4. We want to emphasize that in this theorem,
as well as all of its consequences, we aim to establish estimates that do not depend
significantly on the size of the manifold M , because in our intended application we will
allow M ⊂ R

3 to expand to all of R
3.

Remark 2.18 (Case p = 2). If p = 2 then (2.21) reduces to

λ2(B) = λM + γ2‖B‖4
2, (2.24)

with γ2 = (1/4)(3κ2)3c4. This is the case that will be needed in this paper. The constant
c ≡ sup{‖ad x‖k→k : |x |k ≤ 1} measures the non-commutativity of K and is zero if K
is commutative.

Remark 2.19 (Continuous dependence on initial data). The solution to (2.14) described
in Theorem 2.13 is easily shown to depend continuously on the initial data A0 in W1
norm. So do the solutions in Theorems 2.5, 2.7 and 2.12. But the proofs for these three
cases will be postponed to a later work in which the initial data space will be enlarged
to include H1/2 data.

3. Dirichlet and Neumann Boundary Conditions

In this section we will extend some of the machinery developed by Conner, [7], for
real valued differential forms to forms in a product bundle over M with a connection.
See [57, Chap. 5, Sect. 9] for a recent exposition of the real valued case. Our objec-
tive is to develop the mechanisms needed to make effective use of the gauge invariant
Gaffney-Friedrichs inequality of Sect. 4.

3.1. The minimal and maximal exterior derivatives.

Notation 3.1. Mint will denote the interior of the compact Riemannian 3-manifold M .
Denote by δ the coderivative on C∞(M;Λp+1 ⊗ k). Thus if φ is a k valued p - form in
C∞

c (M
int ) and ω ∈ C∞(M;Λp+1 ⊗ k) then

(φ, δω)L2(M;Λp⊗k) = (dφ,ω)L2(M;Λp+1⊗k). (3.1)
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If u = ∑
|I |=r u I dx I and v = ∑

|J |=p vJ dx J are End V valued forms then their wedge

product, u ∧ v = ∑
I,J u I vJ dx I ∧ dx J , is another End V valued form. But when the

appropriate action of u on v is via ad u then we will write [u ∧v] = ∑
I,J [uI , vJ ]dx I ∧

dx J . This will be the case when u is an End V valued connection form or its time
derivative. If u and v take their values in k then so does [u ∧ v].

The interior product, [u�v], of an element u ∈ Λp ⊗ k with an element v ∈ Λp+r ⊗ k
is defined, for r ≥ 0, by

〈w, [u�v]〉Λr ⊗k = 〈[u ∧ w], v〉Λp+r ⊗k for all w ∈ Λr ⊗ k. (3.2)

If u or v or both are real valued then we will write simply u�v since the commutator
bracket should be omitted. If u and v are both in Λ1 ⊗ k then (3.2) gives k � [u�v] =
−[u · v] = −∑

j [u j , v j ] in an orthonormal frame for Λ1. And if w ∈ Λ2 ⊗ k then
[w�w] = 0.

We wish to consider a connection on the product bundle M ⊗V → M . We may and
will identify the connection with a k valued 1-form A on M . The corresponding gauge
covariant exterior derivative is then given by dAω = dω + [A ∧ ω] on smooth k valued
forms. However we are going to use the symbols d and dA for the closed versions of
these differential operators as follows.

Notation 3.2. Denote by D the closure of the exterior derivative operator defined initially
on k valued p-forms in C∞(M). Denote by d the closure of D|C∞

c (M
int ). Then d ⊂ D.

D and d are the maximal and minimal exterior derivative operators respectively.
For A ∈ L∞(M;Λ1 ⊗ k) define

DAω = Dω + [A ∧ ω] for ω ∈ D(D), (3.3)

dAω = dω + [A ∧ ω] for ω ∈ D(d). (3.4)

The Hodge star operator ∗ on forms defines a unitary map from L2 forms to itself
with the following properties:

D∗
A = ∗−1(dA)∗, (3.5)

d∗
A = ∗−1(DA)∗, (3.6)

W1 ⊂ D(DA) ∩ D(d∗
A), (3.7)

dA = (δA)
∗, (3.8)

DA = (δA|C∞
c (M

int ))∗, (3.9)

where

δAω = δω + [A�ω] for ω ∈ C∞(M;Λp ⊗ k), p ≥ 1. (3.10)

Remark 3.3. DA and d∗
A are maximal operators in the sense that their domains are

restricted only by size and regularity and not by boundary conditions. However the
domains of their adjoints, D∗

A and dA are restricted also by boundary conditions as
follows.

The symbol (D) in front of an equation will signify that the equation is relevant
for Dirichlet boundary conditions. An (N ) signifies that the equation is relevant for
Neumann boundary conditions.
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Lemma 3.4. Suppose that ω ∈ W1(M;Λp ⊗ k) and A ∈ L∞(M). Then

(D) ω ∈ D(dA) if and only if ωtan = 0, (3.11)

(N ) ω ∈ D(D∗
A) if and only if ωnorm = 0. (3.12)

Proof. These boundary conditions are already known for the minimal and maximal
operators when A = 0. See [7]. Since A is bounded the domains are the same as for
A = 0. ��
Proposition 3.5. Assume that ω is a k valued form and that A ∈ W1 ∩ L∞. Denote the
curvature of A by B, as in (2.2). If [B ∧ ω] ∈ L2 then

(N ) ω ∈ D(DA) impliesω ∈ D((DA)
2) and D2

Aω = [B ∧ ω], (3.13)

and (D) ω ∈ D(dA) impliesω ∈ D((dA)
2) and d2

Aω = [B ∧ ω]. (3.14)

If [B�ω] ∈ L2 then

(D) ω ∈ D(d∗
A) impliesω ∈ D((d∗

A)
2) and (d∗

A)
2ω = [B�ω], (3.15)

and (N ) ω ∈ D(D∗
A) impliesω ∈ D((D∗

A)
2) and (D∗

A)
2ω = [B�ω]. (3.16)

Proof. It will be clarifying to distinguish the closed operators dA and DA from the
pointwise defined differential operator {dA} acting on smooth forms, and which ignores
boundary conditions. If A and ω are in C∞(M), then the Bianchi identity {dA}2ω =
[B ∧ ω] holds and we need only address domain issues in the four assertions of the
proposition. To this end observe that if ω and u are both in C∞(M) and one has compact
support in Mint then we may integrate by parts to find

({dA}ω, {δA}u) = ({dA}2ω, u) = ([B ∧ ω], u) = (ω, [B�u]). (3.17)

Since the first, third and fourth terms are continuous in A in the W1 norm the equality
of these terms persists for A ∈ W1.

Now since C∞(M) is a core for DA and the far right side is continuous in ω in the
L2 norm, it follows that

(DAω, {δA}u) = (ω, [B�u]) = ([B ∧ ω], u) (3.18)

for all ω ∈ D(DA) and u ∈ C∞
c (M

int ). Since [B ∧ω] ∈ L2 the right side is continuous
in u in the L2 norm and therefore so is (DAω, {δA}u). Hence DAω ∈ D(DA), by (3.9)
and (D2

Aω, u) = ([B ∧ ω], u). This proves (3.13).
To prove (3.14) takeω ∈ C∞

c (M
int ) and u ∈ C∞(M) in (3.17). Thenω ∈ D(dA) and,

since C∞
c (M

int ) is a core for dA and [B�u] ∈ L2, equality of the first and fourth terms
in (3.17) implies that (dAω, {δA}u) = (ω, [B�u]) = ([B ∧ ω], u) for all ω ∈ D(dA)

and u ∈ C∞(M). Since [B ∧ ω] ∈ L2(M) the equality of the first and third terms now
shows that (dAω, {δA}u) is continuous in u in L2 norm and therefore dAω ∈ D(dA).
Thus ((dA)

2ω, u) = ([B ∧ ω], u) for all u ∈ C∞(M). This proves (3.14).
The assertions (3.15) and (3.16) could be derived in the same way as (3.13) and (3.14).

But they also follow directly from these by use of (3.5) and (3.6). Thus if ω ∈ D(d∗
A),

then (3.6) shows that ∗ω ∈ D(DA). By (3.13) ∗ω is therefore in D(D2
A). It now follows

from (3.6) again that ω ∈ D((d∗
A)

2). Of course (d∗
A)

2ω = [B�ω] since the adjoint of
[B ∧ ·] is [B�·] by (3.2). The proof of (3.15) is similar. ��
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Corollary 3.6. Suppose that ω is a k valued p-form in W1, that A ∈ W1 ∩ L∞ and that
the function x �→ |B(x)||ω(x)| is in L2(M).

(D) If ωtan = 0 and dAω ∈ W1 then (dAω)tan = 0. (3.19)

(N ) If ωnorm = 0 and D∗
Aω ∈ W1 then (D∗

Aω)norm = 0. (3.20)

Proof. If ω ∈ W1 and ωtan = 0 then ω ∈ D(dA) by (3.11). From (3.14) we see that
dAω ∈ D(dA). Therefore if dAω ∈ W1 then (dAω)tan = 0 by (3.11). This proves (3.19).
The proof of (3.20) follows from (3.12) and (3.16) similarly. ��
Corollary 3.7 (Functional Bianchi identity). Assume that A ∈ W1 ∩ L∞. Then

B ∈ D(DA) and DA B = 0. (3.21)

If, moreover, Atan = 0 and B ∈ W1, then

(D) Btan = 0, B ∈ D(dA) and dA B = 0. (3.22)

Proof. For A ∈ C∞(M) and u ∈ C∞
c (M

int ) an integration by parts and Bianchi’s
identity gives (B, δAu) = ({dA}B, u) = 0. The left side of this identity is continuous in
A ∈ W1 and therefore

(B, δAu) = 0 (3.23)

for all A ∈ W1 and all u ∈ C∞
c (M

int ). Since the right side of this identity, being zero,
is continuous in u in the L2 norm, it follows that B ∈ D((δA|C∞

c (M
int ))∗) = D(DA)

and that DA B = 0, proving (3.21).
Now suppose that Atan = 0 and that B ∈ W1. Takeω = A in (3.11) and take the form

A of that lemma to be our present A/2. It follows that A ∈ D(dA/2). But dA/2 A = B.
Further, we see that [B ∧ ω] = [B ∧ A] ∈ L2 because B ∈ L2 and A ∈ L∞. Hence
B ∈ D(dA/2) by (3.14). Reapplying (3.11) again we find that Btan = 0. Equation (3.11)
now shows that B ∈ D(dA). But dA B = DA B = 0, by (3.21). ��
Corollary 3.8. Assume that A ∈ W1 ∩ L∞ and B ∈ W1. Then B ∈ D((d∗

A)
2) and

(d∗
A)

2 B = 0. (3.24)

If, in addition, Bnorm = 0 then B ∈ D((D∗
A)

2) and

(D∗
A)

2 B = 0. (3.25)

Proof. We see that B ∈ W1 ⊂ D(d∗
A), by (3.7), and, since [B�B] = 0, we may choose

ω = B in (3.15), from which it follows that B ∈ D((d∗
A)

2) and that (3.24) holds. Sup-
pose, further, that Bnorm = 0. Then (3.12) implies that B ∈ D(D∗

A). Therefore (3.16)
now shows that D∗

A B ∈ D(D∗
A) and (D∗

A)
2 B = [B�B] = 0, which proves (3.25). ��

Remark 3.9. For real valued forms the use of the maximal and minimal operators D and
d goes back to Conner, [7]. In particular, Proposition 3.5 in the real valued case, which
simply reads d2 = 0, D2 = 0, (d∗)2 = 0 and (D∗)2 = 0, along with proper statements
about the domains, was proved by Conner [7, page 9].
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Remark 3.10. A 1-form ω need not be even weakly differentiable in order to be in
the domain of the minimal operators d or dA. For example if M ⊂ R

3 and f is a
k valued smooth function with compact support in Mint of the form f (x1, x2, x3) =
h(x1)g(x2, x3) then, defining ω = f dx1, one has dω = h(x1){(∂2g)dx2 ∧ dx1 +
(∂3g)dx3 ∧ dx1} so that h is not differentiated. Thus if we now allow h ∈ L2(R1; k)
and g ∈ C∞

c (R
2), still insisting that support f ⊂ Mint , then the resulting form ω

can easily be approximated in the graph norm of d by functions in C∞
c (M

int ) of the
same form. So ω ∈ D(d). This example also shows that if A is unbounded then d
and dA will not have the same domain. One need only take A = A2(x1)dx2. Then
dAω − dω = [A2(x1), h(x1)]g(x2, x3)dx2 ∧ dx1, which need not be in L2(M) if A is
unbounded and h ∈ L2(R; k). We conjecture, however that all results in this section will
remain valid if the condition A ∈ L∞ is replaced by A ∈ L3.

4. Gauge Invariant Gaffney-Friedrichs-Sobolev Inequalities

In this section we will prove Theorem 2.17 and derive from it Sobolev inequalities in a
form that will be needed for establishing gauge invariant apriori estimates. The exterior
derivative operators d and dA and their adjoints are to be interpreted in this section
as acting on smooth forms or on W1 forms, as indicated, without boundary conditions
built in.

4.1. A gauge invariant Gaffney identity.

Theorem 4.1 (A gauge invariant Gaffney identity). Let M be a compact Riemannian
n-manifold with smooth boundary. Suppose that A ∈ C∞(M;Λ1 ⊗ k). Let α and β be
smooth k valued p-forms on M with either

αtan = βtan = 0 on ∂M or αnorm = βnorm = 0 on ∂M. (4.1)

Then

(dAα, dAβ) + (d∗
Aα, d∗

Aβ)− (∇ Aα,∇ Aβ)− ((W + B) ◦ α, β)
=

∫
∂M

〈K (x)α(x), β(x)〉, (4.2)

where W denotes the Riemannian Bochner-Weitzenboch operator, B is the curvature of
A, ◦ denotes a pointwise product operation,

(∇ Aα,∇ Aβ) =
n∑

i=1

(∇ A
ei
α,∇ A

ei
β)

locally, for any orthonormal frame field e1, . . . , en of T (M) and

K (x) : Λp(Tx (∂M)) → Λp(Tx (∂M))

is a symmetric operator, bounded uniformly in x, and dependent only on the second
fundamental form of ∂M, on the value of p and on the choice of boundary condition in
(4.1). Moreover, K (x) ≥ 0 for all x ∈ ∂M if M is convex in the sense that the second
fundamental form is non-negative on ∂M.
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In particular, if ω is a smooth k valued p-form on M satisfying either

ωtan = 0 or ωnorm = 0 (4.3)

then

‖∇ Aω‖2
2 = ‖dAω‖2

2 + ‖d∗
Aω‖2

2 − (B ◦ ω,ω)− (W ◦ ω,ω)−
∫
∂M

〈K (x)ω(x), ω(x)〉.
(4.4)

The proof depends on the following lemmas. It is important for our applications that
the boundary terms in (4.2) above do not depend on the gauge connection form. For
this reason we are going to carry out explicitly what is otherwise a standard kind of
integration by parts computation.

Notation 4.2 (Adapted coordinates). We will make use in this section of an adapted
coordinate system for a neighborhood U containing a part of the boundary of M . This is
a coordinate system x = (x1, . . . , xn) in U such that a) |x j | < 1 for j = 1, . . . , n − 1
and −1 < xn ≤ 0, while U ∩ ∂M = {x : xn = 0}. (x1, . . . , xn−1) form coordinates on
U ∩ ∂M . b) The curve (−1, 0] � t �→ x(t) = (a1, . . . , an−1, t) is a geodesic normal to
∂M at t = 0, and 〈∂/∂xn, ∂/∂x j 〉 = 0 on U for j = 1, . . . , n − 1. See for example [45,
page 167] for the existence of such a coordinate chart.

Lemma 4.3. Assume that A ∈ C∞(M;Λ1 ⊗ k) and that α and β are smooth k valued
p-forms on M. Then

(dAα, dAβ) + (d∗
Aα, d∗

Aβ)− (∇ Aα,∇ Aβ)− ((W + B) ◦ α, β)
= L A(α, β), (4.5)

where

L A(α, β) =
∫
∂M

{〈ν ∧ β, dAα〉 − 〈β, ν ∧ d∗
Aα〉 − 〈β,∇ A

ν α〉}. (4.6)

Here ν is the outward drawn unit co-normal and ∇ A
ν is the covariant gradient in the

normal direction.

Proof. The Bochner-Weitzenboch formula for a k valued p-form on M is

{d∗
AdA + dAd∗

A}α − (W + B) ◦ α = (∇ A)∗∇ Aα, (4.7)

which may be found in [4]. We need only take the inner product of (4.7) with β and do
three integrations by parts to deduce (4.5). Two of the integrations by parts will follow
from Stokes’ theorem,

(dAω, u)− (ω, δAu) = (ν ∧ ω, u)∂M , ω ∈ C∞(M), u ∈ C∞(M), (4.8)

which itself can be derived from the standard Stokes theorem by observing first that the
terms involving the connection form A cancel on the left, in view of (3.1), (3.2), (3.3)
and (3.10), and second, that the resulting identity holds for forms ω ∈ C∞(M) and
u ∈ C∞(M) because it holds for the real valued components of these forms with respect
to an orthonormal basis of k.
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Now inserting first ω = β, u = dAα into (4.8) and then inserting ω = d∗
Aα, u = β

into (4.8) we find, respectively,

〈dAβ, dA, α) = (β, d∗
AdAα) +

∫
∂M

〈ν ∧ β, dAα〉,

〈d∗
Aα, d∗

Aβ〉 = (β, dAd∗
Aα)−

∫
∂M

〈ν ∧ d∗
Aα, β〉.

Combining these with (4.7) we find that the left side of (4.5) is equal to ((∇A)∗(∇A)α, β)−
((∇ A)α, (∇ A)β) + (ν ∧ β, dAα)∂M − (ν ∧ d∗

Aα, β)∂M .
To complete the proof of (4.5) it suffices to show that

((∇ A)∗(∇ A)α, β)− ((∇ A)α, (∇ A)β) = −
∫
∂M

〈∇ A
ν α, β〉. (4.9)

For the needed integration by parts we may write, with the help of a partition of unity,
α = α0 +

∑r
j=1 α j , where α0 is supported in Mint and each α j is supported in an adapted

coordinate patch U j . For an arbitrary k valued p-form β in C∞(M) the identity (4.9)
holds for α0 and β by an integration by parts because there are no boundary terms. It
suffices therefore to prove (4.9) for each α j . To this end we will prove (4.9) in case
β ∈ C∞(M) while α is supported in an adapted coordinate patch U ⊂ M .

For any smooth vector field X on U and real valued function f ∈ C∞
c (U ) we may

apply the identity
∫

U X f +
∫

U f (div X) = ∫
∂U f (ν · X), to the real valued function

f (x) = 〈ω(x), β(x)〉Λp⊗k to find∫
U
(div X)〈ω, β〉 + (∇ A

Xω, β) + (ω,∇ A
Xβ) =

∫
∂M

〈ω, β〉(ν · X)

for any p-form ω ∈ C∞
c (U ). We read off from this that the formal adjoint of ∇ A

X is given
by (∇ A

X )
∗ω = −∇ A

Xω − (div X)ω and that

((∇ A
X )

∗ω, β) = (ω,∇ A
Xβ)−

∫
∂M

〈ω, β〉(ν · X). (4.10)

Choose an orthonormal frame field e1, . . . , en in the coordinate patch U and apply (4.10)
with X = e j and ω = ∇ A

e j
α to find

((∇ A
e j
)∗∇ A

e j
α, β) = (∇ A

e j
α,∇ A

e j
β)−

∫
∂M

〈∇ A
e j
α, β〉ν · e j . (4.11)

Summing over j gives (4.9). ��
Unlike Stokes’ theorem, (4.8), the connection form A shows up in the boundary term

L A(α, β) of (4.6). We may disentangle the A dependence in L A(α, β). We find

L A(α, β) =
∫
∂M

{〈ν ∧ β, dα〉 − 〈β, ν ∧ d∗α〉 − 〈β,∇να〉} (4.12)

+
∫
∂M

{〈ν ∧ β, [A ∧ α]〉 − 〈β, ν ∧ [A�α]〉 − 〈β, [Aν, α]〉}, (4.13)

where Aν(x)ν = Anorm(x) is the normal component of A at x . It will be important
for us that the boundary term be independent of A when the p-forms α and β satisfy
appropriate boundary conditions.
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Lemma 4.4. The integrand in line (4.13) is zero at a point x ∈ ∂M if either

αtan = βtan = 0 at x (4.14)

or

αnorm = βnorm = 0 at x . (4.15)

A(x) need not satisfy any boundary condition in either case.

Proof. Fix x ∈ ∂M . Assume first that αtan = βtan = 0 at x . Then ν ∧ β = 0. So the
first term in (4.13) is zero at x . We assert that the remaining two terms cancel. Indeed,
since βtan = 0 we may write β = ν ∧ φ at x with φnorm = 0. Then 〈β, ν ∧ [A�α]〉 =
〈ν∧φ, ν∧[A�α]〉 = 〈φ, [A�α]〉 = 〈[A∧φ], α〉 = 〈[Aν, ν∧φ]+a tangential term, α〉 =
−〈ν ∧ φ, [Aν, α]〉 = −〈β, [Aν, α]〉. Thus the second and third terms in (4.13) cancel.

Assume next that αnorm = βnorm = 0 at x . The middle term is zero because βnorm =
0. We assert that the first and third terms cancel. Indeed 〈ν∧β, [A∧α]〉 = 〈ν∧β, [Aν, ν∧
α]+ a tangential term〉 = 〈ν∧β, ν∧[Aν, α]〉 = 〈β, [Aν, α]〉, which shows that the first
and third terms in (4.13) cancel. ��
Remark 4.5. It is illuminating to understand when the integrand in (4.13) is identically
zero, independently of boundary conditions on α and β. It can be shown that

a) the integrand is zero at a point x ∈ ∂M for all α and β if Atan(x) = 0.
b) If k is semisimple and αtan(x) = 0 then there exist A and β such that the integrand

is not zero at x .

We omit the proofs.

Notation 4.6 (Extended shape operator). An adapted coordinate system (see Nota-
tion 4.2) will be useful for describing the shape operator and its extension to the exterior
algebra. Writing ∂ j = ∂/∂x j , the outward drawn unit normal and co-normal are given by
∂n and ν = dxn , respectively, on U ∩ ∂M . The shape operator at a point P ∈ U ∩ ∂M is
given by S(X) = ∇X∂n for X ∈ TP (∂M), [14, page 217], where ∇X is the Riemannian
covariant derivative. The adjoint S∗ ∈ End(T ∗

P (∂M)) extends uniquely to a derivation
Q of the exterior algebra Λ(T ∗

P (∂M)). We may identify Λ(T ∗
P (∂M)) with the algebra

of exterior polynomials in the 1-forms dx1, . . . , dxn−1 with constant coefficients. The
action of Q on such an exterior polynomial ω is given by

− (∇nω)|∂M = Q(ω|∂M ), (4.16)

as one sees by observing first, that ∇n∂n = 0 because t �→ (a1, . . . , an−1, t) is a geo-
desic, second, that ∇n therefore leaves invariant the span of dx1, . . . , dxn−1, third, that
S∗ = ∇∗

n = −∇n on this span, and finally, that Q and −∇n are derivations of this
algebra.

Proof of Theorem 4.1. In view of (4.5) and Lemma 4.4 we can ignore the connecton
form A and just show that the integrand in (4.12) has the form assserted in (4.2). Explic-
itly, we will show that

〈K (x)α(x), β(x)〉 =
{

〈{Ik ⊗ Q(x)}α(x), β(x)〉 ifαnorm = βnorm = 0
〈{Ik ⊗ (∗−1 Q(x)∗)}α(x), β(x)〉 ifαtan = βtan = 0.

(4.17)
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Assume first that αnorm = βnorm = 0. Choose an orthonormal basis e1, . . . , ed of k

and write α = ∑d
i=1 eiα

i and β = ∑d
i=1 eiβ

i , where αi and β i are real valued p-forms.
Then the integrand in (4.12) is

d∑
i=1

{〈ν ∧ β i , dαi 〉Λp+1 − 〈β i , ν ∧ d∗αi 〉Λp − 〈β i ,∇ναi 〉}

at a point P ∈ ∂M . It suffices to show that this has the form
∑d

i=1〈Q(x)αi , β i 〉, for
then one can take K (x) = Ik ⊗ Q(x) in (4.2).

Now α(x)norm = 0 if and only if αi (x)norm = 0 for each i . Thus it suffices to prove
that the integrand in (4.12) is equal to 〈Q(x)α(x), β(x)〉 when α and β are real valued
p-forms such that αnorm = βnorm on U ∩ ∂M . In this case the middle term in (4.12),
〈β, ν ∧ d∗α〉 = 0 and we are left with 〈β, ν�dα − ∇να〉.

We will compute this in an adapted coordinate system. We may write

α(x) =
∑
J<n

aJ (x)dx J +
∑
I<n

bI (x)dx I ∧ dxn . (4.18)

Here and below J = ( j1, . . . jp) with j1 < · · · < jp < n and I = (i1, . . . , i p−1) with
i1 < · · · < i p−1 < n. Moreover bI (x) = 0 if x ∈ U ∩ ∂M . Then

ν�(dα(x)) =
∑
J<n

{ν�
n−1∑
k=1

∂kaJ (x)dxk ∧ dx J + ν�(∂naJ (x))dxn ∧ dx J }

+
∑
I<n

{ν�
n−1∑
k=1

∂kbI (x)dxk ∧ dx I ∧ dxn}

=
∑
J<n

∂naJ (x)dx J

because ν�(dxk ∧ dx J ) = 0 and ∂kbI (x) = 0 on U ∩ ∂M for k = 1, · · · , n − 1.
On the other hand, on ∂M ,

∇να = ∇nα =
∑
J<n

{(∂naJ )dx J + aJ ∇n(dx J )}

+
∑
I<n

{(∂nbI )dx I ∧ dxn + bI ∇n(dx I ∧ dxn)}.

On ∂M , therefore, we find some cancellation in the following difference and, since
bI = 0 on ∂M , we arrive at

ν�(dα(x))− ∇να(x) = −
∑
J<n

aJ (x)∇n(dx J )−
∑
I<n

(∂nbI (x))dx I ∧ dxn .

Finally, since βnorm = 0 we find, at x ∈ ∂M , in view of (4.16),

〈β, ν�dα − ∇να〉 = −
∑
J<n

〈β, aJ ∇n(dx J )〉

=
∑
J<n

〈β, aJ Qdx J 〉

= 〈β, Q(x)α〉. (4.19)

This proves (4.17) and (4.2) if αnorm = βnorm = 0.
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In the case αtan = βtan = 0 we may reduce to real valued forms in the same way as
above. Denoting the Hodge star operator on Λ(T ∗(M)) by ∗ we can reduce this case to
the preceding by applying the preceding case to the n − p forms ∗α and ∗β, which, as
is well known, satisfy now (∗α)norm = (∗β)norm = 0. Applying the identity (4.19) to
these two forms we find

〈∗β, ν�d ∗ α − ∇ν ∗ α〉Λn−p = 〈∗β, Q(x) ∗ α〉Λn−p ,

and therefore

〈β, ∗−1(ν�(d ∗ α))− ∗−1∇ν ∗ α〉Λp = 〈β, ∗−1 Q(x) ∗ α〉L p .

But ∗−1∇ν∗ = ∇ν , while

∗−1(ν�(d ∗ α)) = −ν ∧ d∗α

by [38, Lemma 4.1, items (1), (6) and (10)]. Hence

− 〈β, ν ∧ d∗α + ∇να〉 = 〈β, ∗−1 Q(x) ∗ α〉. (4.20)

Now the first term in the integrand in (4.12) is zero because ν ∧ β = 0. Thus (4.20)
shows that the integrand in (4.12) is 〈β(x), ∗−1 Q(x)∗α(x)〉. Hence we may take K (x) =
Ik ⊗ (∗−1 Q(x)∗) in this case. This completes the proof of (4.17) and (4.2).

Finally, observe that if the second fundamental form is greater than or equal to zero,
i.e. S(x) ≥ 0 on ∂M , then S∗ ≥ 0 also, as is also Q(x) and the unitary transform
∗−1 Q(x)∗. The identity (4.17) therefore shows that K (x) ≥ 0 in both cases. ��
Example 4.7. If M is a closed ball of radius R in R

3, then W = 0 and the principal
curvatures of its boundary are both 1/R. Hence

K (x) =
{

1/R if p = 1
2/R if p = 2

in the case αnorm = βnorm = 0. In the case αtan = βtan = 0 the two lines should be
interchanged.

4.2. A Gaffney-Friedrichs inequality in 3 dimensions.

Proof of Theorem 2.17. Any number q in (1, 3) is a convex sum, q = α · 1 + β · 3
with α + β = 1. Then 2α = 3 − q and 2β = q − 1. For non-negative functions
f, g on a measure space, Hölder’s inequality, with conjugate exponents α−1, β−1, gives∫

gq = ∫
gα(g3)β ≤ (

∫
g)α(

∫
g3)β , which is valid for q ∈ {1, 3} also. In case g = f 2

this asserts that ‖ f 2‖q
q ≤ ‖ f ‖2α

2 ‖ f ‖6β
6 . Into this standard convexity inequality insert

q := p′, the conjugate exponent to the exponent p of the theorem. Then 2α/q =
(3/q)− 1 = 2 − (3/p) and 6β/q = 3(q − 1)/q = 3/p. Hence

‖ f 2‖p′ ≤ ‖ f ‖2−(3/p)
2 ‖ f ‖3/p

6 , 3/2 ≤ p ≤ ∞. (4.21)

For any k valued r-form ω over M it follows from (4.21) and from the inequality |(B ◦
ω,ω)| ≤ c

∫
M |B(x)||ω(x)|2dx that

|(B ◦ ω,ω)| ≤ c‖B‖p‖ω‖2−(3/p)
2 ‖ω‖3/p

6 , 3/2 ≤ p ≤ ∞. (4.22)
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Let γ > 0 and define u = γ c‖B‖p‖ω‖2−(3/p)
2 and v = γ−1‖ω‖3/p

6 . The convexity

inequality uv ≤ rur−1
+ svs−1

, r + s = 1, which follows from the convexity of the
exponential function, and with the choice r = 1 − (3/2p), s = 3/2p, yields

|(B ◦ ω,ω)| ≤ r{γ c‖B‖p‖ω‖2−(3/p)
2 }r−1

+ s{γ−1‖ω‖3/p
6 }s−1

= [1 − (3/2p)]{γ c‖B‖p}2p/(2p−3) ‖ω‖2
2 + (3/2p){γ−1}(2p/3) ‖ω‖2

6. (4.23)

Use (2.20) to bound the last term of (4.23) and at the same time choose γ so that
(3/2p)γ−2p/3(κ2/2) = 1/(4p). That is, γ = (3κ2)3/2p. We find then

|(B ◦ ω,ω)| ≤ [1 − (3/2p)](3κ2)3/(2p−3)(c‖B‖p)
2p/(2p−3)‖ω‖2

2

+
1

4p
‖ω‖2

W A
1 (M)

. (4.24)

Adding ‖ω‖2
2 to both sides of the Gaffney identity (4.4), it then follows that

‖ω‖2
W A

1 (M)
≤ ‖dAω‖2

2 + ‖d∗
Aω‖2

2 + λp‖ω‖2
2 +

1

4p
‖ω‖2

W A
1 (M)

−(W ◦ ω,ω)−
∫
∂M

〈K (x)ω(x), ω(x)〉, (4.25)

where

λp = 1 + γp‖B‖2p/(2p−3)
p and γp = [1 − (3/2p)](3κ6c2p)1/(2p−3). (4.26)

If M is a convex open subset of R
3 then W = 0 and the last term in (4.25) is negative.

Since 1/(4p) ≤ 1/4 for all p > 3/2 the inequality (4.25) implies

(3/4)‖ω‖2
W A

1 (M)
≤ ‖dAω‖2

2 + ‖d∗
Aω‖2

2 + λp‖ω‖2
2 (4.27)

for all p > 3/2. This proves (2.22) with λM = 1. If M is convex, but W �= 0 then
the last term in (4.25) is negative and we can estimate the next to last term in (4.25) by
|(Wω,ω)| ≤ ‖W‖∞‖ω‖2

2, which then gives

(3/4)‖ω‖2
W A

1 (M)
≤ ‖dAω‖2

2 + ‖d∗
Aω‖2

2 + (‖W‖∞ + λp)‖ω‖2
2. (4.28)

This proves (2.22) with λM = 1 + ‖W‖∞. Finally, for the general case we need only
estimate the boundary term in (4.25). We will show that there is a constant τ1, depending
only on the geometry of M , such that

−
∫
∂M

〈K (x)ω(x), w(x)〉 ≤ τ1‖ω‖2
2 + (1/4)‖ω‖2

W A
1 (M)

. (4.29)

The insertion of this estimate into (4.25) then yields

(1/2)‖ω‖2
W A

1 (M)
≤ ‖dAω‖2

2 + ‖d∗
Aω‖2

2 + (‖W‖∞ + τ1 + λp)‖ω‖2
2, (4.30)

which is (2.22) with λM = 1+‖W‖∞+τ1. This will conclude the proof of Theorem 2.17.
Denoting by Δ the self-adjoint Neumann Laplacian on real valued functions on M ,

the fractional Sobolev norms are defined by ‖ f ‖Ha(M) = ‖(1 − Δ)a/2 f ‖L2(M) for
0 < a ≤ 1. The function x �→ K (x) ∈ End Λr (Tx (∂M)) is continuous and therefore
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bounded below. Let τ0 ≥ be such that −K (x) ≤ τ0 IΛr (Tx (∂M)) for all x ∈ ∂M . If
1/2 < a ≤ 1 then, by a trace inequality, (see e.g. [57, Chap. 4, Prop. 4.5]), there is a
constant τa such that ‖ f |∂M‖L2(∂M)) ≤ ‖ f |∂M‖Ha−(1/2)(∂M) ≤ τa‖ f ‖Ha(M). Choose
a = 3/4 and write τ = τ3/4. Then, by the spectral theorem for 1 − Δ and Hölder’s
inequality, one has

τ 2‖ f ‖2
H3/4(M) ≤ τ 2‖ f ‖1/2

L2(M)
‖ f ‖3/2

H1(M)

≤ (1/4)(
τ 2

ε
)4‖ f ||2L2(M) + (3/4)ε4/3‖ f ‖2

H1(M),

wherein we may choose ε so that τ0(3/4)ε4/3 = 1/4. Then we find τ0‖ f |∂M‖2
L2(∂M)

≤
τ1‖ f ‖2

L2(M)
+(1/4)‖ f ‖2

H1(M)
with τ1 = (27/4)(τ 2τ0)

4. Insert f = |ω| into this inequal-
ity and keep in mind Kato’s Inequality, as in Notation 2.16, to arrive at

−
∫
∂M

〈K (x)ω(x), ω(x)〉 ≤ τ0

∫
∂M

|ω(x)|2

≤ τ1‖ω‖2
L2(M) + (1/4)‖ω‖2

W A
1 (M)

,

which is (4.29). ��
Corollary 4.8 (Gaffney-Friedrichs-Sobolev inequality). Under the hypothesis of Theo-
rem 2.17 there holds

‖ω‖2
L6(M) ≤ κ2(‖dAω‖2

2 + ‖d∗
Aω‖2

L2(M) + λp(B)‖ω‖2
L2(M)). (4.31)

Proof. Equation (4.31) follows from (2.22) and the Sobolev inequality (2.20). ��
Example 4.9. If one takes M to be a cube in R

3 then, although M does not have a smooth
boundary, the identity (4.2) is easily verified directly and, since K (x) = 0 on the flat
sides of ∂M , one finds no boundary terms. The inequality (2.22) holds, therefore, in this
case also, and, indeed, with λM = 1.

In the following remark we resume the notation for minimal and maximal operators
from Sect. 3.

Remark 4.10. For a k valued r-form ω on M with r=1 or 2 define

QN (ω) = ‖Dω‖2
2 + ‖D∗ω‖2

2 + ‖ω‖2
2, ω ∈ D(D) ∩ D(D∗), (4.32)

Q D(ω) = ‖dω‖2
2 + ‖d∗ω‖2

2 + ‖ω‖2
2, ω ∈ D(d) ∩ D(d∗). (4.33)

Both of these quadratic forms are coercive in the sense that their domains are contained
in W1 and each controls the W1 norm. This follows from (2.22) if one chooses A = 0,
because then B = 0 and λp(B) = λM for any p ≥ 2. This coercivity is the content of
[40, Lem. 4.5]. See also [39]. The Laplacians associated to these closed quadratic forms
will be used in Sect. 7.
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5. Sobolev Inequalities for Solutions

Throughout this section we will assume that A ∈ C∞((0, T ) × M : Λ1 ⊗ k), with
T ≤ ∞, and satisfies

A′(s) = −δA(s)B(s) on (0, T ), (5.1)

where δA, defined in (3.1) and (3.10), is to be interpreted as a differential operator without
boundary conditions. We will also assume that either

(D) A(s)tan = 0 for 0 < s < T, (5.2)

or (M) B(s)norm = 0 for 0 < s < T . (5.3)

We are going to establish apriori estimates for solutions to the Yang-Mills heat equa-
tion (5.1) over (0, T ). It will be necessary to integrate by parts in Lemma 5.2 and the use
of the maximal or minimal operators DA or dA and their Hilbert space adjoints will be a
very useful bookkeeping tool for this. The gauge invariant Sobolev inequalities in Hodge
format, established in Sect. 4, simplify when applied to a form ω which is annihilated
by any one of these four operators. In particular, when A(·) is a solution to (5.1), all
Sobolev estimates can be conveniently expressed in terms of the time derivatives A(n)

or B(n).

5.1. Pointwise and integral identities.

Lemma 5.1 (Pointwise Identities). Suppose that A(·) is a smooth solution to the dif-
ferential equation (5.1) and satisfies either (5.2) or (5.3). Then the following identities
hold, wherein the symbol dA is the minimal operator in case the Dirichlet boundary
condition (5.2) is assumed, or represents the maximal operator DA in case the Marini
boundary condition (5.3) is assumed.

B ′ = dA A′, (5.4)

A′′ + d∗
A B ′ = −[A′�B], (5.5)

d∗
A A′ = d∗

A A′′ = 0. (5.6)

Proof. Let us first compute the derivatives in all cases, ignoring boundary conditions,
but recalling that δA = d∗

A in all cases, aside from boundary conditions. Equation (5.4)
follows from the definition of B. Differentiate (5.1) with respect to s to derive (5.5).
By (5.1) we have d∗

A A′ = −(d∗
A)

2 B = −[B�B] = 0, which is half of (5.6). Differ-
entiate this identity with respect to s to find 0 = (∂/∂s)(d∗

A A′) = d∗
A A′′ + [A′�A′] =

d∗
A A′′ − [A′ · A′] = d∗

A A′′, since [A′ · A′] = 0. This proves (5.6).
Concerning the boundary conditions, consider first the Dirichlet case, (5.2). Since

A(s)tan = 0 for all s ∈ (0, T ) we may differentiate this equation with respect to s at
a point on ∂M and find A′(s)tan = 0. Thus the application of the minimal operator dA
in (5.4) is justified. Since d∗

A is a maximal operator there is no boundary issue in (5.5)
or (5.6).

In the Marini case dA is now the maximal operator DA. So there is no domain issue
in (5.4). We may differentiate Eq. (5.3) with respect to time to find B ′(s)norm = 0. By
(3.12) B(s) and B ′(s) are therefore both in the domain of the minimal operator D∗

A.
Thus all the terms in (5.5) are well defined. Moreover (3.16) shows that D∗

A B is again
in the domain of the minimal operator D∗

A. From this and (5.1) it follows that A′ is in
the domain of D∗

A and from (3.12) it now follows that A′(s)norm = 0. Of course then
A′′(s)norm = 0 also and so A′′(s) ∈ D(D∗

A). This justifies the identities in (5.6). ��
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Lemma 5.2 (Integral Identities). Suppose that A(·) is a smooth solution to the differen-
tial equation (5.1) and satisfies either (5.2) or (5.3). Then

(d/ds)‖B(s)‖2
2 = −2‖A′(s)‖2

2, (5.7)

(d/ds)‖A′(s)‖2
2 = −2‖B ′(s)‖2

2 − 2([A′(s) ∧ A′(s)], B(s)). (5.8)

Proof. It was emphasized in Lemma 5.1 that, whether one assumes Dirichlet or Marini
boundary conditions, B and its time derivatives as well as A′ and its time derivatives
all lie in the domain of the corresponding minimal operators dA or D∗

A, respectively,
and of course in the domain of the corresponding maximal operators d∗

A or DA. All
of the integrations by parts implicit in the following computations are thereby justified
under either boundary condition (5.2) or (5.3). We will write the proof for the Dirichlet
boundary condition. This uses the minimal operator dA. But the proof is identical for
the Marini boundary condition (5.3). One need only replace dA by the maximal operator
DA:

(1/2)(d/ds)‖B(s)‖2
L2 = (B ′, B)

= (dA A′, B)

= (A′, d∗
A B)

= −‖A′(s)‖2
L2 .

This proves (5.7). In view of (5.5) and (5.4) we have

(1/2)(d/ds)‖A′(s)‖2 = (A′′(s), A′(s))
= (−d∗

A B ′ − [A′�B], A′)
= −(B ′, dA A′)− ([A′�B], A′),

which proves (5.8). ��

5.2. Sobolev inequalities for smooth solutions. The derivation of the Sobolev inequal-
ities (5.9) and (5.10) relies on use of more differentiability than is available from the
definition of strong solution. We will assume therefore that A(·) is a smooth solution.
But it will be shown in Corollary 9.2, by an approximation procedure for strong solu-
tions, that (5.9) holds for all strong solutions. It can also be shown that (5.10) holds for
strong solutions. But the proof relies on higher order apriori estimates which will not be
needed in this paper.

Lemma 5.3 (Sobolev inequalities for smooth solutions). Suppose that A(·) is a smooth
solution to (5.1) and satisfies either (5.2) or (5.3). Let p ∈ [2,∞]. Then, suppressing s,

‖B‖2
6 ≤ κ2(‖A′‖2

2 + λ‖B‖2
2), (5.9)

‖A′‖2
6 ≤ κ2(‖B ′‖2

2 + λ‖A′‖2
2), (5.10)

where κ is the Sobolev constant defined in (2.20) and λ = λp(B(s)), defined in (2.21).
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Proof. All of these inequalities follow from the inequality, (4.31),

‖ω‖2
6 ≤ κ2(‖dAω‖2

2 + ‖d∗
Aω‖2

2 + λ‖ω‖2
2) (5.11)

in the presence of an identity that simplifies one of the terms. Choose A = A(s) in (5.11),
λ = λp(B(s)) and ω = B(s). Observe that dAω = dA(s)B(s) = 0 by Bianchi’s identity
(3.22) (for the Dirichlet case) or (3.21) (for the Marini case), while d∗

Aω = d∗
A(s)B(s) =

−A′(s). Thus (5.11) reduces to (5.9) with these choices.
Similarly, to derive (5.10) from (5.11), choose ω = A′(s) in (5.11) and observe that

d∗
Aω = d∗

A(s)A
′(s) = 0 by (5.6), while dAω = dA(s)A′(s) = B ′(s). Thus (5.11) reduces

to (5.10) with these choices.
As in the preceding subsection, the symbol dA represents the minimal operator in the

case of Dirichlet boundary conditions, (5.2), or the maximal operator DA in the case of
Marini boundary conditions, (5.3). ��

6. Apriori Estimates

We want to understand the nature of the singularities of the various gauge covariant
spatial derivatives of B(t) as t ↓ 0, under the sole assumption of finite initial energy.
The word “order”, below, refers to the number of spatial derivatives of A involved in the
inequalities. For example B involves one spatial derivative of A while A′ involves two
spatial derivatives by virtue of the equation A′ = −d∗

A B.
The key ingredients for our gauge invariant estimates are the gauge invariant Sobolev

inequalities (5.9) and (5.10), which were derived from the Gaffney-Friedrichs inequality
of Theorem 2.17. These will be the basis for the gauge invariant estimates of Sect. 6.1.
In Sect. 6.2 we will need to make estimates of ‖A(t)‖W 1(M). These cannot be gauge
invariant.

6.1. Gauge invariant apriori estimates.

Notation 6.1. Recall that λ2(B) = λM + γ2‖B‖4
2, as defined in (2.24). Define

ψ(t) = 2
∫ t

0
λ2(B(σ ))dσ, and ψ t

s = 2
∫ t

s
λ2(B(σ ))dσ. (6.1)

Define also

λ0 = λ2(B0) = λM + γ2‖B0‖4
2. (6.2)

Since ‖B(s)‖2 is a non-increasing function of s, it follows that λ2(B(s)) ≤ λ0 for all
s, and consequently ψ(t) ≤ 2tλ0. We are going to use the bound λ2(B(s)) ≤ λ0 in
the proofs of (6.6) and (6.8) because it simplifies these proofs considerably. But we
will avoid using it in the proof of Lemma 6.5 because if the initial data A0 should be in
Sobolev class 1/2, which will be of later interest to us, then it can happen that ‖B0‖2 = ∞.
In fact B0 need not be a function. Yet even in this case the integral definingψ(t) is finite.
The techniques in this section will be applied in a later work to this larger class of initial
data.
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In the remainder of this paper we will use the Sobolev inequalities (5.9) and (5.10)
with the choice λ = λ2(B(s)). The bound λ2(B(s)) ≤ λ0 then yields

‖B(s)‖2
6 ≤ κ2(‖A′(s)‖2

2 + λ0‖B0‖2
2), (6.3)

‖A′(s)‖2
6 ≤ κ2(‖B ′(s)‖2

2 + λ0‖A′(s)‖2
2) (6.4)

for any smooth solution over (0, T ).

Theorem 6.2. Let 0 < T ≤ ∞. Suppose that A(·) is a smooth solution to (5.1) and
satisfies either (5.2) or (5.3). Assume further that ‖B0‖2 < ∞. Then ‖B(t)‖2 is non-
increasing and there exist continuous non-decreasing functions C j : [0,∞)2 → [0,∞),
for j = 1, 2, 3, such that

‖B(t)‖2
2 + 2

∫ t

0
‖A′(s)‖2

2ds = ‖B0‖2
2, Order 1, (6.5)

∫ t

0
‖B(s)‖2

6ds ≤ C2(t, ‖B0‖2), Order 1, (6.6)

and

t‖A′(t)‖2
2 +

∫ t

0
eψ

t
s s‖B ′(s)‖2

2ds ≤ C1(t, ‖B0‖2), Order 2, (6.7)

t‖B(t)‖2
6 +

∫ t

0
eψ

t
s s‖A′(s)‖2

6ds ≤ C3(t, ‖B0‖2), Order 2, (6.8)

where ψ t
s is defined in (6.1).

Corollary 6.3. Let τ > 0. Then

2τ‖A′(t)‖2
2 ≤ e2τλ0

(
‖B(t − τ)‖2

2 − ‖B(t)‖2
2

)
for t ≥ τ. (6.9)

In particular, if T = ∞ then ‖A′(t)‖2 → 0 as t → ∞. Moreover

sup
t≥1

‖∇ A(t)B(t)‖2 < ∞. (6.10)

Corollary 6.4. For each p ∈ [2, 6), there is a continuous, non-decreasing function
C4 : [0,∞)2 → [0,∞) such that

∫ t

0
‖A′(s)‖pds ≤ C4(t, ‖B0‖2), Order 2. (6.11)

Proof of Order 1 inequalities.

Proof of (6.5) and (6.6). Integrate the identity (5.7) over (0, t) to find
∫ t

0 ‖A′(s)‖2
2ds =

(1/2)(‖B0‖2
2 − ‖B(t)‖2

2), which is (6.5). Taking the integral of the inequality (6.3) over
(0, t) and using (6.5) we find

∫ t

0
‖B(s)‖2

6ds ≤ κ2‖B0‖2
2{1/2 + tλ0}, (6.12)

which proves (6.6). ��
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Proof of Order 2 inequalities.

Lemma 6.5. Let 0 < T ≤ ∞. Suppose that A(·) is a smooth solution to (5.1) and
satisfies either (5.2) or (5.3). Then

(d/ds)
(

e−ψ(s)‖A′(s)‖2
2

)
≤ −e−ψ(s)‖B ′(s)‖2

2. (6.13)

Proof. Hölder’s inequality and (5.10) with p = 2 give, for any number γ > 0,

2|([A′(s) ∧ A′(s)], B(s))| ≤ 2c‖B(s)‖2‖A′(s)‖2
4

≤ 2c‖B(s)‖2‖A′(s)‖1/2
2 ‖A′(s)‖3/2

6

≤ (1/4)
(
γ 2c‖B(s)‖2‖A′(s)‖1/2

2

)4
+ (3/4)

(
γ−1‖A′(s)‖3/2

6

)4/3

≤ (1/4)
(
γ 2c‖B(s)‖2

)4‖A′(s)‖2
2 + (3/4)γ−4/3‖A′(s)‖2

6

≤ (1/4)
(
γ 2c‖B(s)‖2

)4‖A′(s)‖2
2

+ (3/4)γ−4/3κ2
(
‖B ′(s)‖2

2 + λ2(B(s))‖A′(s)‖2
2

)
.

Choose γ such that (3/4)γ−4/3κ2 = 1. So γ = (3κ2/4)3/4 and (2γ )4 = (1/4)(3κ2)3.
Then we arrive at

2|([A′(s) ∧ A′(s)], B(s))|
≤

{
(1/4)2(3κ2)3(c‖B(s)‖2)

4 + λ2(B(s))
}
‖A′(s)‖2

2 + ‖B ′(s)‖2
2

≤ 2λ2(B(s))‖A′(s)‖2
2 + ‖B ′(s)‖2

2

= ψ ′(s)‖A′(s)‖2
2 + ‖B ′(s)‖2

2.

From (5.8) we now find (d/ds)‖A′(s)‖2
2 ≤ −‖B ′(s)‖2

2 +ψ ′(s)‖A′(s)‖2
2, which implies

(6.13). ��
Proof of (6.7). Integrate (6.13) over (σ, t) and multiply by eψ(t) to find

‖A′(t)‖2
2 +

∫ t

σ

eψ
t
s ‖B ′(s)‖2

2ds ≤ eψ
t
σ ‖A′(σ )‖2

2 ≤ eψ(t)‖A′(σ )‖2
2. (6.14)

Integrate this inequality with respect to σ over (0, t), reverse the order of integration in
the double integral and then use (6.5) to arrive at

t‖A′(t)‖2
2 +

∫ t

0
eψ

t
s s‖B ′(s)‖2

2ds ≤ eψ(t)
(
‖B0‖2

2 − ‖B(t)‖2
2

)
/2

≤ e2tλ0‖B0‖2
2/2, (6.15)

which gives (6.7). ��
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Proof of (6.8). Add λ0‖B0‖2
2 +

∫ t
σ

eψ
t
sλ0‖A′(s)‖2

2ds to both sides of (6.14) and use (6.3)
and (6.4) to find

κ−2
{
‖B(t)‖2

6 +
∫ t

σ

eψ
t
s ‖A′(s)‖2

6ds
}

≤ eψ(t)‖A′(σ )‖2
2 + λ0‖B0‖2

2 +
∫ t

σ

eψ
t
sλ0‖A′(s)‖2

2ds

≤ eψ(t)‖A′(σ )‖2
2 + λ0‖B0‖2

2 + eψ(t)λ0‖B0‖2
2/2, (6.16)

wherein we have used eψ
t
s ≤ eψ(t) and (6.5) for the last term. Integrate with respect to

σ over (0, t), reverse the σ and s integrals on the left and apply (6.5) to the first term on
the right, to arrive at

t‖B(t)‖2
6 +

∫ t

0
eψ

t
s s‖A′(s)‖2

6ds

≤ κ2
{

eψ(t)‖B0‖2
2/2 + λ0t‖B0‖2

2 + eψ(t)λ0(t/2)‖B0‖2
2

}
,

which proves (6.8). ��
Proof of Corollary 6.3. Let 0 ≤ σ < t and apply (6.15) over the interval [σ, t] to find

2(t − σ)‖A′(t)‖2
2 + 2

∫ t

σ

eψ
t
s (s − σ)‖B ′(s)‖2

2ds ≤ eψ
t
σ

(
‖B(σ )‖2

2 − ‖B(t)‖2
2

)
.

(6.17)

If t ≥ τ then we can put σ = t − τ in this inequality and observe that eψ
t
σ ≤

e2(t−σ)λ2(B(σ )) ≤ e2τλ0 to deduce (6.9), after dropping the positive integral on the
left of (6.17). If T = ∞ and τ > 0 then (6.5) shows that

∫ ∞
0 ‖A′(s)‖2

2ds < ∞ and
therefore, that

∫ t
t−τ ‖A′(s)‖2

2ds → 0 as t → ∞. Hence limt→∞ ‖A′(t)‖2
2 = 0. Since

dA(t)B(t) = 0, the Gaffney-Friedrichs inequality (2.22) gives

(1/2)
(
‖∇ A(t)B(t)‖2

2 + ‖B(t)‖2
2

)
≤ ‖d∗

A(t)B(t)‖2
2 + λ2(B(t))‖B(t)‖2

2

≤ ‖A′(t)‖2
2 + λ2(B(1))‖B(1)‖2

2,

which is bounded on [1,∞) because limt→∞ ‖A′(t)‖2
2 = 0. ��

The proof of Corollary 6.4 depends on the following interpolation lemma.

Lemma 6.6 (Interpolation). Let 0 ≤ a < b < ∞ and let 2 ≤ p < 6. Suppose that
f : (a, b) → L2(M) ∩ L6(M) is continuous. Then

∫ b

a
‖ f (s)‖pds ≤

( ∫ b

a
s

3
p − 3

2 ds
)1/2( ∫ b

a
‖ f (s)‖2

2ds
)α/p( ∫ b

a
s‖ f (s)‖2

6

)3β/p
,

(6.18)

where p = 2α + 6β, α + β = 1 and 0 ≤ β < 1.
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Proof. By interpolation ‖ f (s)‖p ≤ ‖ f (s)‖2α/p
2 ‖ f (s)‖6β/p

6 . Hence
∫ b

a
‖ f (s)‖pds ≤

∫ b

a
{s−3β/p}{‖ f (s)‖2α/p

2 }{(s1/2‖ f (s)‖6)
6β/p}ds.

Apply Hölder’s inequality to the product of the three functions in braces to find∫ b

a
‖ f (s)‖pds

≤
( ∫ b

a
{s−3β/p}qds

)1/q( ∫ b

a
‖ f (s)‖2αr/p

2 ds
)1/r( ∫ b

a
{s1/2‖ f (s)‖6}6βm/pds

)1/m
,

provided q, r,m are nonnegative and q−1 + r−1 + m−1 = 1. Choose q = 2, r = p/α
and m = p/(3β) and observe that 6β/p = (3/2)− (3/p) to arrive at (6.18). ��
Proof of Corollary 6.4. Choose (a, b) = (0, t) and f (s, x) = |A′(s, x)|Λ1⊗k in
Lemma 6.6. Since p < 6 the exponent in the first factor is (3/p) − (3/2) > −1.
Therefore the first factor on the right in (6.18) is finite. The second and third factors on
the right are also finite, by (6.5) and (6.8) respectively. ��

6.2. Growth of ‖A(t)‖W1(M). In the previous sections all apriori estimates were gauge
invariant. However for our proof of long time existence of solutions we will need esti-
mates that depend on A0 itself, not just on its gauge equivalence class. Correspondingly,
we will have to replace Marini boundary conditions by the stronger Neumann boundary
conditions in order to get estimates on A(t) itself, not just on certain of its derivatives.

The smoothness hypothesis in the following theorem, that A(·) ∈ C∞((0, T )× M),
will be removed in Sect. 9, Cor. 9.3.

Theorem 6.7. There is a continuous increasing function C5 : [0,∞)2 → [0,∞),
depending only on the geometry of M, such that, for any strong solution to the Yang-
Mills heat equation satisfying Neumann, (2.9), (2.10), or Dirichlet, (2.11), boundary
conditions on an interval [0, T ), with 0 < T ≤ ∞,

‖A(t)‖W1(M) ≤ C5(t, ‖A0‖W1(M)), 0 ≤ t < T holds, (6.19)

under the additional hypothesis that A(·) ∈ C∞((0, T )× M).

The proof depends on the following estimates, which will be derived for smooth
A(·). But the smoothness requirement will be removed in Corollary 9.2, thereby proving
the following four inequalities for any strong solution satisfying Neumann or Dirichlet
boundary conditions.

Lemma 6.8. Suppose that A(·) is a strong solution to the Yang-Mills heat equation sat-
isfying Neumann, (2.9), (2.10), or Dirichlet, (2.11), boundary conditions on an interval
[0, T ), with 0 < T ≤ ∞. Assume also that A ∈ C∞((0, T )). Then

‖A(t)‖2 ≤ ‖A0‖2 + t1/2‖B0‖2, (6.20)

‖A(s)‖4 ≤ ‖A0‖4 + C4(t, ‖B0‖2), 0 < s ≤ t, (6.21)

‖d A(t)‖2 ≤ ‖B0‖2 + (c/2)
(
‖A0‖4 + C4(t, ‖B0‖2)

)2
, (6.22)

and ‖d∗ A(t)‖2 ≤ ‖d∗ A0‖2 + c
(
‖A0‖4 + C4(t, ‖B0‖2)

)
C4(t, ‖B0‖2), (6.23)

where C4(·, ·) is defined by (6.11) for p = 4.
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Proof. The identity

A(s) = A0 +
∫ s

0
A′(σ )dσ, (6.24)

is valid for any strong solution, even if not smooth on (0, T ). We may take the L2

norm in (6.24) (with s = t) to find ‖A(t)‖2 ≤ ‖A0‖2 +
∫ t

0 ‖A′(σ )‖2dσ ≤ ‖A0‖2 +
t1/2(

∫ t
0 ‖A′(σ )‖2

2)
1/2. Equation (6.20) now follows from (6.5).

The rest of the proof hinges on the estimate (6.11) for p = 4, which asserts

∫ t

0
‖A′(σ )‖4dσ ≤ C4(t, ‖B0‖2) (6.25)

for some non-decreasing continuous function C4 : [0,∞)2 → [0,∞). Now (6.24)
implies that ‖A(s)‖4 ≤ ‖A0‖4 +

∫ s
0 ‖A′(σ )‖4dσ , which proves (6.21) in view of (6.25).

Observe next the identities

d A(t) = B(t)− (1/2)[A(t) ∧ A(t)], (6.26)

d∗ A′(s) = [A(s) · A′(s)]. (6.27)

The first just rewrites the definition of curvature (2.2), while the second just rewrites the
first identity in (5.6). It follows that

‖d A(t)‖2 ≤ ‖B(t)‖2 + (c/2)‖A(t)‖2
4, (6.28)

which yields (6.22) upon insertion of (6.21), given that ‖B(t)‖2 is non-increasing.
Finally, the identity (6.27) gives

d∗ A(t) = d∗ A0 +
∫ t

0
[A(s) · A′(s)]ds, (6.29)

and therefore

‖d∗ A(t)‖2 ≤ ‖d∗ A0‖2 + c
∫ t

0
‖A(s)‖4‖A′(s)‖4ds

≤ ‖d∗ A0‖2 + c sup
0<s≤t

‖A(s)‖4

∫ t

0
‖A′(s)‖4ds. (6.30)

Equation (6.23) now follows from (6.21) and (6.25). Notice that ‖d∗ A0‖2 < ∞ because,
by assumption, A(·) maps [0, T ) into W1. ��
Note. The proof of (6.25) relies on use of third spatial derivatives of A in the identity
(5.8), and therefore is not immediately applicable to a strong solution. Moreover the
identity (6.27) and its consequences, (6.29) and (6.30), also uses the third spatial deriv-
atives of A. However we will construct in Sect. 9 an approximation method that allows
us to prove (6.11), and in particular (6.25), as well as (6.30), for all strong solutions and
indeed with the same function C4(·, ·). This entire proof will then apply to all strong
solutions without the additional hypothesis that A(·) ∈ C∞((0, T ))× M).



758 N. Charalambous, L. Gross

Proof of Theorem 6.7. We are going to make use of the Gaffney-Friedrichs inequality
(2.22) with A = 0 in that inequality and ω chosen to be the form A(t) of the present
theorem, with t > 0. In this case (2.22) asserts that

(1/2)‖A(t)‖2
W1

≤ ‖d A(t)‖2
2 + ‖d∗ A(t)‖2

2 + λM‖A(t)‖2
2. (6.31)

This is applicable because A(t) ∈ W1(M) and either A(t)norm = 0 or A(t)tan = 0. The
three terms on the right may be estimated by (6.22), (6.23) and (6.20) respectively. The
theorem now follows if one takes into account that ‖A0‖2, ‖A0‖4, ‖B0‖2 and ‖d∗ A0‖2
are all dominated by a linear or quadratic polynomial in ‖A0‖W1 , given the definition
(2.1) of the W1 norm. ��

7. Short Time Existence and Uniqueness for the Parabolic Equation

In this section we will prove Theorem 2.13 for both sets of boundary conditions (2.15)
and (2.16) simultaneously by encoding the boundary conditions into appropriate Sobolev
spaces and then using a common approach.The Sobolev spaces will be the quadratic form
domains of the absolute and relative Laplacians, [7,45], as described in Remark 4.10.

Notation 7.1. Define

(N ) ΔN = −(D∗ D + DD∗), (7.1)

or (D) ΔD = −(d∗d + dd∗). (7.2)

Here D and d are the maximal and minimal exterior derivative operators, respectively,
discussed in Sect. 3. They act on p-forms.

For both kinds of boundary conditions we are going to write simply H1(M) (or
H1(M;Λ1 ⊗ k) when clarity demands) for the form domain of ΔN or ΔD , namely
the domains, respectively, of the quadratic forms QN or Q D in (4.32) and (4.33). This
defines two distinct notions of H1. Thus, writing Δ for either the absolute or relative
Laplacian ΔN or ΔD , Remark 4.10 allows us to write the Sobolev norm as

‖ω‖H1 = ‖(1 −Δ)1/2ω‖L2(M) (7.3)

in both cases. We remind the reader that Remark 4.10 shows that a form ω ∈ W1(M)
is in the Neumann version of H1(M) if and only if ωnorm = 0 and is in the Dirichlet
version of H1(M) if and only if ωtan = 0.

Throughout this section we will write d for the exterior derivative with the under-
standing that this represents the maximal or minimal version, in agreement with the
boundary conditions.

Recall that we are dealing with a product bundle and may therefore apply this defi-
nition to A itself.

In the next section we will separate out the nonlinear terms in the parabolic equa-
tion (2.14) and reformulate it as an integral equation in a more or less standard way. A
natural abstract setting for producing solutions to the integral equation may be found,
for example, in [58, Chap. 15]. But we are going to use the following modified path
space within which to seek solutions in order to get some precise regularity at the same
time.
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Notation 7.2 (Path space). Let 0 < T < ∞. Denote by PT the set of continuous
functions

C : [0, T ] → H1(M)

such that ‖C(t)‖∞, ‖dC(t)‖∞ and ‖d∗C(t)‖∞ are finite for each t > 0 and

∞ > ‖C‖PT ≡ sup
0<t≤T

{
‖C(t)‖H1(M) + t1/4‖C(t)‖L∞(M)

+ t3/4
(
‖dC(t)‖∞ + ‖d∗C(t)‖∞

)}
. (7.4)

Notice that the last two terms are well defined because the boundary conditions on
C(t) agree with the choice of d as a minimal or maximal operator.

Theorem 7.3. Let A0 ∈ H1(M) and suppose that β ≥ ‖A0‖H1(M). Then there exists
T > 0 depending only on β such that the integral equation (7.9) has a solution in PT .
The solution is unique in PT . Moreover the solution is strongly differentiable for t > 0
as a function into L2(M). For t > 0, C(t) is in D(Δ) and (2.14) holds. Further, the
solution lies in C∞((0, T )× M;Λ1 ⊗ k).

7.1. The integral equation and locally bounded strong solutions. We will prove Theo-
rems 7.3 and 2.13 in this section.

We are going to operate mostly with the integral form of Eq. (2.14) as follows. Writing
B ≡ BC = dC + (1/2)[C ∧ C], we can compute that

d∗
C B + dC d∗C = (d∗d + dd∗)C − X (C), (7.5)

where X is the first order nonlinear differential operator on k valued 1-forms defined by

− X (C) = −[C�B] + (1/2)d∗[C ∧ C] + [C, d∗C], C : M → Λ1 ⊗ k. (7.6)

The term dC d∗C in (7.5) contributes the term dd∗ to the second order operator on the
right, thereby making the operator on the right elliptic. Without this term the equa-
tion (2.14) would be only weakly parabolic.

The terms in X (C) which are cubic in C involve no derivatives of C while the terms
which are quadratic all involve a factor of one spatial derivative of C . We may write this
symbolically as

X (C) = C3 + C · ∂C. (7.7)

X (C) contains all the nonlinear terms in Eq. (2.14), which can now be rewritten as

C ′(t) = ΔC(t) + X (C(t)), C(0) = A0, (7.8)

wherein Δ is given by (7.1) or (7.2).
Informally, Eq. (7.8) is equivalent to the integral equation

C(t) = etΔA0 +
∫ t

0
e(t−σ)ΔX (C(σ ))dσ. (7.9)

The regularity lemma, Lemma 7.9, will show that (7.9) implies (7.8).
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Lemma 7.4. Let C(·) ∈ PT . Define

F(σ ) = C(σ )3 + C(σ ) · ∂C(σ ), (7.10)

and define Fj (σ ) similarly for paths C j , j = 1, 2. Let 2 ≤ q ≤ ∞. Suppose that
‖C‖PT ≤ R and ‖C j‖PT ≤ R. Then there are constants a1, . . . , a4 independent of
C(·), q, R and T such that, for 0 < σ < T ,

‖F(σ )‖q ≤ σ
−(3/2)( 1

2 − 1
q ){(R3a1) + σ−1/4(R2a2)}, (7.11)

‖F1(σ )− F2(σ )‖q ≤ σ
−(3/2)( 1

2 − 1
q )‖C1 − C2‖PT {(R2a3) + σ−1/4(Ra4)}. (7.12)

Proof. In the interpolation inequality ‖ f ‖b ≤ ‖ f ‖a/b
a ‖ f ‖1−(a/b)∞ for 1 ≤ a ≤ b choose

a = 2, b = q to find ‖ f ‖q ≤ ‖ f ‖2/q
2 ‖ f ‖1−(2/q)∞ . Take f = |∂C(σ )| to deduce

‖∂C(σ )‖q ≤ ‖∂C(σ )‖(2/q)2 ‖∂C(σ )‖1−(2/q)∞

≤ ‖C(σ )‖(2/q)H1

(
σ−3/4‖C‖PT

)1−(2/q)

≤ σ−(3/4)(1−(2/q))‖C‖PT ,

from which follows

‖C(σ ) · ∂C(σ )‖q ≤ c‖C(σ )‖∞‖∂C(σ )‖q ≤ σ−1/4σ−(3/4)(1−(2/q))c‖C‖2
PT
.

Thus the term C(σ ) · ∂C(σ ) in F(σ ) is correctly estimated by the second term on the
right of (7.11). Now choose a = 6, b = 3q to find ‖ f ‖3q ≤ ‖ f ‖2/q

6 ‖ f ‖1−(2/q)∞ and take
f = |C(σ )| to deduce

‖C(σ )3‖q ≤ c2{‖C(σ )‖3q}3

≤ c2{‖C(σ )‖(2/q)6 ‖C(σ )‖1−(2/q)∞ }3

≤ c2{(κ‖C(σ )‖H1)
(2/q)(σ−1/4‖C‖PT )

1−(2/q)}3

= c2{κ(2/q)σ−(1/4)(1−(2/q))‖C‖PT }3,

which completes the verification of (7.11) with a1 = c2 max(κ3, 1). The proof of (7.12)
proceeds the same way but for differences in this cubic polynomial. ��
Remark 7.5. We will need to use some heat kernel estimates for the absolute and relative
Laplacians on a compact n-dimensional Riemannian manifold with smooth boundary.
IfΔ denotes either of these Laplacians then etΔ is given by an integral kernel Kt (x, y),
and tn/2|Kt (x, y)|+ t (n+1)/2|gradx Kt (x, y)| is bounded on any finite interval 0 < t ≤ T .
See [45, Prop. 5.3] for a proof.

It follows by interpolation that, in three dimensions, given T0 ∈ (0,∞), there is a
constant c1 depending only on T0 such that, for 1 ≤ q ≤ p ≤ ∞ and 0 < t ≤ T0,

‖etΔ‖q→p ≤ c1t−(3/2)((1/q)−(1/p)), (7.13)

‖∂etΔ‖q→p ≤ c1t−1/2t−(3/2)((1/q)−(1/p)), with ∂ = d or ∂ = d∗, (7.14)

‖etΔ‖L2→H1
≤ c1t−1/2. (7.15)

Equation ((7.15) actually follows directly from the spectral theorem.) In particular, each
of the following are bounded by c1 = c1(T0) for 0 < t ≤ T0.

t3/4‖etΔ‖2→∞, t1/4‖etΔ‖6→∞, t1/4‖etΔ‖3/2→2. (7.16)
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Lemma 7.6. Let 0 < T0 < ∞. There is a constant c0 depending on T0 such that, for
any T ∈ (0, T0] and any connection form A0 ∈ H1(M), the path [0, T ] � t �→ C0(t) ≡
etΔA0 lies in PT and

‖C0(·)‖PT ≤ c0‖A0‖H1 . (7.17)

Proof. Since etΔ is a contraction in the H1 norm (7.3), we have ‖C0(t)‖H1 ≤ ‖A0‖H1 .
Furthermore, by (7.16),

t1/4‖C0(t)‖∞ = t1/4‖etΔA0‖∞ ≤ t1/4‖etΔ‖6→∞‖A0‖6 ≤ c1κ‖A0‖H1 .

Writing ∂ = d or d∗, the last two terms in (7.4) are dominated for the path C0(·) in
accordance with the inequalities

‖∂C0(t)‖∞ = ‖∂etΔA0‖∞ ≤ ‖etΔ‖2→∞‖A0‖H1 ≤ c1t−3/4‖A0‖H1 .

Multiply by t3/4 and add to the previous two inequalities to arrive at (7.17). ��
Lemma 7.7. Let 0 < T < ∞ and 0 < α < 1. There is a constant cT,α such that, for all
ε > 0,

‖(eεΔ − 1)esΔ‖L2→H1
≤ εαs− 1

2 −αcT,α for 0 < s ≤ T, (7.18)

‖(eεΔ − 1)esΔ‖L2→L∞ ≤ εαs− 3
4 −αcT,α for 0 < s ≤ T . (7.19)

Proof. Let E = (1 −Δ)1/2 and let b > 0. We assert that there are constants cα and ĉb,T
such that

‖E−2α(1 − eεΔ)‖2→2 ≤ εαcα and ‖E2besΔ‖2→2 ≤ s−bĉb,T (7.20)

for all ε > 0 and the specified ranges of α and s. The first follows from the spectral theo-
rem for −Δ and the inequalities (1 + x)−α(1− e−εx ) = (1 + ε−1 y)−α(1− e−y) ≤ εαcα ,
which hold for all x > 0, wherein we have put y = εx . The second follows similarly
from the inequalities (1 + x)be−sx = (1 + s−1 y)be−y ≤ s−bĉb,T , wherein we have put
y = sx .

Defining 2b = 1 + 2α in the second line below, we see that

‖(eεΔ − 1)esΔ‖L2→H1
= ‖E(eεΔ − 1)esΔ‖L2→L2

≤ ‖E−2α(eεΔ − 1)‖2→2‖E1+2αesΔ‖2→2

≤ {εαcα}{s− 1
2 −α ĉb,T },

which proves (7.18). Choosing next b = α, we see that

‖(eεΔ − 1)esΔ‖L2→L∞ ≤ ‖e(s/2)Δ‖2→∞‖E−2α(eεΔ − 1)‖2→2‖E2αe(s/2)Δ‖2→2

≤ {cT s−3/4}{εαcα}{(s/2)−α ĉα,T },

where cT = sup0<s≤T s3/4‖e(s/2)Δ‖2→∞ < ∞ in three dimensions by (7.16). ��
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Lemma 7.8 (Hölder continuity). Suppose that C(·) ∈ PT and ‖C‖PT ≤ R. Let 0 <
α < 1/4 and let 0 < a < T . Define

ρ(t) =
∫ t

0
e(t−σ)ΔF(σ )dσ. (7.21)

Then there is a constant c2 depending only on a and α and on R and T such that

‖ρ(t)− ρ(r)‖∞ + ‖ρ(t)− ρ(r)‖H1 ≤ c2(t − r)α for a ≤ r < t < T . (7.22)

If, moreover, C(·) is a solution to the integral equation (7.9), then [a, T ) � σ �→ F(σ ) ∈
L2(M) is Hölder continuous of order α.

Proof. Taking 0 < a ≤ r < t < T , we may write

ρ(t)− ρ(r) =
∫ r

0

(
e(t−r)Δ − 1

)
e(r−σ)ΔF(σ )dσ +

∫ t

r
e(t−σ)ΔF(σ )dσ. (7.23)

We need to estimate the H1 norm and L∞ norm of each of these two integrals. In all
four integrals we will use (7.11) with q = 2, namely

‖F(σ )‖2 ≤ (R3a1) + σ−1/4(R2a2), 0 < σ < T, (7.24)

from which follows, ca,T ≡ supa≤σ<T ‖F(σ )‖2 < ∞. Using (7.18) and (7.19) with
ε = t − r and s = r − σ , as well as (7.15), we find

‖ρ(t)− ρ(r)‖H1

≤
∫ r

0
‖(e(t−r)Δ − 1)e(r−σ)Δ‖L2→H1

‖F(σ )‖2dσ

+
∫ t

r
‖e(t−σ)Δ‖L2→H1

dσ sup
a≤σ<T

‖F(σ )‖2

≤ (t − r)αcT,α

∫ r

0
(r − σ)−

1
2 −α‖F(σ )‖2dσ +

∫ t

r
(t − σ)−1/2dσ ca,T

≤ (t − r)αc3 + (t − r)1/2c4.

Equation (7.24) shows that c3 < ∞ if α < 1/2. Similarly, by (7.19) and (7.16),

‖ρ(t)− ρ(r)‖∞

≤
∫ r

0
‖(e(t−r)Δ − 1)e(r−σ)Δ‖2→∞‖F(σ )‖2dσ

+
∫ t

r
‖e(t−σ)Δ‖2→∞ sup

a≤σ<T
‖F(σ )‖2

≤ (t − r)αcT,α

∫ r

0
(r − σ)−

3
4 −α‖F(σ )‖2dσ +

∫ t

r
(t − σ)−3/4cdσ ca,T

≤ (t − r)αc5 + (t − r)1/4c6.

In view of (7.24), the constant c5 < ∞ if α < 1/4. This proves (7.22).
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Now (7.22) shows that the integral term in (7.9) is Hölder continuous on [a, T )
into L∞ ∩ H1 in the sum norm. So is the term etΔA0, as one sees from the inequal-

ities ‖(etΔ − erΔ)A0‖H1 ≤ (t − r)αr− 1
2 −αCT,α‖A0‖2 and ‖(etΔ − erΔ)A0‖∞ ≤

(t − r)αr− 3
4 −αCT,α ‖A0‖2, which follow from (7.18) and (7.19), respectively. Hence

[a, T ) � σ �→ C(σ ) ∈ L∞ ∩ H1(M) is bounded and Hölder continuous of order α.
Therefore the term C(σ ) · ∂C(σ ) in F(σ ) is Hölder continuous into L2(M) while the
term C(σ )3 is Holder continuous into L∞(M) and therefore into L2(M). ��
Lemma 7.9 (Strong solution). Suppose that C(·) is a solution to the integral equa-
tion (7.9) lying in PT . Define ρ(t) by (7.21). Then, for t > 0, ρ(t) ∈ D(Δ) and is
strongly differentiable as a function into L2(M). Moreover

ρ′(t) = Δρ(t) + F(t). (7.25)

In particular C(t) ∈ D(Δ) for t > 0. C(·) is strongly differentiable on (0, T ) into
L2(M), and the differential equations (7.8) and (2.14) both hold.

Proof. For a ≤ s < t define

ρs(t) =
∫ s

0
e(t−σ)ΔF(σ )dσ.

Since t − σ ≥ t − s > 0 for all σ in the integrand, ρ(t) is in D(Δ) and

Δρs(t) =
∫ s

0
Δe(t−σ)ΔF(σ )dσ for a ≤ s < t.

We are going to show that Δρs(t) converges in L2(M) as ε ≡ t − s ↓ 0 and in fact
uniformly for t ∈ [a, b] ⊂ (0, T ). Observe first that if a ≤ s1 < s2 < t then, for
0 < α < 1/4, and with c7 denoting the Hölder constant for F(σ ) on [a, T ) into L2(M),

‖Δ
∫ s2

s1

e(t−σ)Δ(F(σ )− F(t))dσ‖2 ≤
∫ s2

s1

‖(t − σ)Δe(t−σ)Δ F(σ )−F(t)

t−σ ‖dσ

≤
∫ s2

s1

‖(t−σ)Δe(t−σ)Δ‖2→2
‖F(σ )−F(t)‖2

t−σ dσ

≤
∫ s2

s1

c7(t − σ)α−1dσ → 0

as s1 < s2 both increase to t , and uniformly for t ∈ [a, b] ⊂ (0, T ). Therefore,

‖Δ(ρs2(t)− ρs1(t))‖2

= ‖
∫ s2

s1

Δe(t−σ)ΔF(t)dσ +
∫ s2

s1

Δe(t−σ)Δ(F(σ )− F(t))dσ‖2

≤ ‖e(t−σ)Δ|s2
s1

F(t)‖2 + o(1) → 0

as s1 < s2 ↑ t . Moreover, since F(t) is continuous on [a, T ) into L2(M), we may
conclude that eεΔF(t) − F(t) → 0 uniformly for t ∈ [a, b]. Clearly ρs(t) → ρ(t) in
L2(M) as s ↑ t and uniformly for t ∈ [a, b]. SinceΔ is a closed operator it now follows
that ρ(t) ∈ D(Δ) and t �→ Δρ(t) is continuous into L2.
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To prove (7.25) observe that for 0 < r ≤ t0 ≤ t we have

ρ(t)− ρ(r) =
∫ t

r
e(t−σ)ΔF(σ )dσ +

∫ r

0
(e(t−σ)Δ − e(r−σ)Δ)F(σ )dσ

=
∫ t

r
e(t−σ)ΔF(t0)dσ +

∫ t

r
e(t−σ)Δ(F(σ )− F(t0))dσ + (e(t−r)Δ − 1)ρ(r)

= Δ−1(e(t−r)Δ − 1)F(t0) +
∫ t

r
e(t−σ)Δ(F(σ )− F(t0))dσ + (e(t−r)Δ − 1)ρ(r).

Divide by t − r and note that as t − r ↓ 0 one has

(t − r)−1Δ−1(e(t−r)Δ − 1)F(t0) → F(t0),

while

(t−r)−1‖
∫ t

r
e(t−σ)Δ(F(σ )−F(t0))dσ‖2 ≤ (t − r)−1

∫ t

r
‖F(σ )−F(t0)‖2dσ → 0.

Moreover

(t − r)−1(e(t−r)Δ − 1)ρ(r) = (t − r)−1Δ−1(e(t−r)Δ − 1)Δρ(r) → Δρ(t0)

because r �→ Δρ(r) is continuous into L2. This proves (7.25).
Now C(t) = etΔA0 + ρ(t) by (7.9) and (7.21). Both terms are in the domain of

Δ for t > 0 and both are differentiable on (0, T ) into L2(M). The equation C ′(t) =
ΔC(t) + F(t) now follows from (7.25). We may rearrange the terms in (7.8) to deduce
that the differential equation (2.14) holds. We will show explicitly in the next corollary
that BC(t) ∈ W1(M), which is implicit in (2.14), the rearranged version of (7.8). ��
Corollary 7.10 (Boundary conditions). Under the hypotheses of Lemma 7.9, DC(t) and
D∗C(t), resp. dC(t) and d∗C(t), are in W1(M) for t > 0 in the Neumann, resp. Di-
richlet cases, as is also BC(t). Moreover, C satisfies the following respective boundary
conditions for t > 0,

(N )C(t)norm = 0, (DC(t))norm = 0, (BC(t))norm = 0, (7.26)

(D)C(t)tan = 0, (dC(t))tan = 0, (BC(t))tan = 0, (d∗C(t))tan = 0. (7.27)

Proof. Writing d for both the minimal and maximal operators, we see that in both cases
C(t) ∈ D(d∗d)∩D(dd∗) for t > 0 by Lemma 7.9. We may apply Proposition 3.5 with
A = 0 and therefore B = 0. Take ω = C(t) in that proposition. Since C(t) ∈ D(d∗d)
we have C(t) ∈ D(d) while dC(t) ∈ D(d∗). But also dC(t) ∈ D(d) by (3.13) in case
(N) or by (3.14) in case (D). Therefore dC(t) ∈ D(d∗) ∩ D(d). By the Gaffney-Fried-
richs inequality (2.22) it now follows that dC(t) ∈ W1(M). The same argument applies
to d∗C(t), upon use of (3.15) and (3.16) since C(t) ∈ D(dd∗). Thus d∗C(t) ∈ W1 also.
Further, since C(t) is bounded for each t > 0 and in W1, it follows that [C(t) ∧ C(t)]
is in W1 and so, therefore, is BC(t). This proves the first assertion of the corollary.

Concerning the boundary conditions (7.26) and (7.27), there is a slight difference
in the two cases and we will therefore distinguish between the minimal and maximal
operators d and D in a repeated application of Lemma 3.4.

In case (N), since C(t) ∈ D(D∗) ∩ W1, (3.12) shows that C(t)norm = 0. Since also
DC(t) ∈ D(D∗) ∩ W1, (3.12) also shows that (DC(t))norm = 0. But (BC(t))norm =
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(DC(t))norm + (1/2)[C(t) ∧ C(t)]norm = 0 + [C(t)norm ∧ C(t)] = 0. This establishes
(7.26).

In case (D), since C(t) ∈ D(d) ∩ W1, (3.11) shows that C(t)tan = 0. And, since
d∗C(t) ∈ D(d) ∩ W1, (3.11) also shows that (d∗C(t))tan = 0. This proves two of the
equalities in (7.27). Taking now ω = C(t) in Proposition 3.5 we see that (3.14) implies
dC(t) ∈ D(d) and, since dC(t) ∈ W1, (3.11) shows that (dC(t))tan = 0. Finally,
(BC(t))tan = (dC(t))tan + (1/2)[C(t)tan ∧ C(t)tan] = 0. ��
Proof of Theorem 7.3. Let A0 ∈ H1(M), choose T0 = 1 in Lemma 7.6, and let c0 be as
described in that lemma. Choose R > 2c0‖A0‖H1 . For C(·) ∈ PT define

W (C)(t) = etΔA0 +
∫ t

0
e(t−σ)ΔF(σ )dσ, 0 ≤ t ≤ T . (7.28)

We will show that for T sufficiently small, W takes

PT,R ≡ {C ∈ PT : ‖C‖PT ≤ R} (7.29)

into itself and is a strict contraction on this set. PT,R is non-empty by Lemma 7.6 for
any T ≤ 1. Observe first that, by (7.11) with q = 2, we have, for 0 ≤ t ≤ T ≤ 1,

∫ t

0
‖e(t−σ)ΔF(σ )‖H1dσ ≤

∫ t

0
‖e(t−σ)Δ‖L2→H1

‖F(σ )‖2dσ

≤
∫ t

0
(t − σ)−1/2c1{(R3a1) + σ−1/4(R2a2)}dσ, (7.30)

while, for any q ∈ [2,∞],
∫ t

0
‖e(t−σ)ΔF(σ )‖∞dσ ≤

∫ t

0
‖e(t−σ)Δ‖q→∞‖F(σ )‖qdσ

≤
∫ t

0
(t − σ)−(3/2q)c1σ

−(3/2)( 1
2 − 1

q ){(R3a1) + σ−1/4(R2a2)}dσ (7.31)

by (7.13) and
∫ t

0
‖∂e(t−σ)ΔF(σ )‖∞dσ ≤

∫ t

0
‖∂e(t−σ)Δ‖q→∞‖F(σ )‖qdσ

≤ cq,∞
∫ t

0
(t − σ)−(3/2q)−(1/2)σ−(3/2)( 1

2 − 1
q ){(R3a1) + σ−1/4(R2a2)} (7.32)

by (7.14). Although these inequalities are valid for any q ∈ [2,∞], nevertheless, for
q = 3, the last integrand has a non-integrable singularity, (t − σ)−1, and for q ≤ 3
it is even worse. Moreover for q = ∞ two of the four integrands in (7.31) and (7.32)
contain the non-integrable singularity σ−1. But use of any q ∈ (3,∞) will yield usable
estimates and in fact will yield the same t dependence of the integrals. For simplicity
we will use q = 6 in these estimates.

The six explicit σ integrals in (7.30)–(7.32) may all be done by substituting σ = tr .

Choosing q = 6 in (7.31) and (7.32), so that σ−(3/2)( 1
2 − 1

q ) = σ−1/2, and keeping in
mind the three different powers of t dictated by the definition (7.4), one arrives at six
integrals tδ

∫ t
0 (t − σ)−βσ−γ dσ = cδ,β,γ t1+δ−β−γ which are all finite with the choice
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q = 6. Choosing δ = 0 for (7.30), δ = 1/4 for (7.31) and δ = 3/4 for (7.32) and
adding, we find

∫ t

0
‖e(t−σ)ΔF(σ )‖H1dσ + t1/4

∫ t

0
‖e(t−σ)ΔF(σ )‖∞dσ

+ t3/4
∫ t

0
‖∂e(t−σ)ΔF(σ )‖∞dσ ≤ t1/2{c8a1 R3} + t1/4{c9a2 R2}.

Hence, in view of (7.17), and taking the supremum over t ∈ [0, T ], we find

‖W (C)‖PT ≤ c0‖A0‖H1 + T 1/2(c10 R3) + T 1/4(c11 R2). (7.33)

Thus for T sufficiently small, depending on R, the second and third terms on the right
add to at most R − c0‖A0‖H1 . Therefore W takes PT,R into itself.

For two elements C1 and C2 in PT,R the estimate (7.12) yields, just as in the pre-
ceding estimates,

‖W (C1)− W (C2)‖PT ≤ ‖C1 − C2‖PT {T 1/2(c16 R2) + T 1/4(c17 R)}, (7.34)

since the term etΔA0 cancels in the difference. The coefficient of ‖C1 − C2‖Pt may be
made less than 1/2 by choosing T sufficiently small, depending on R. The map W has
therefore a unique fixed point in PT,R .

Suppose now that Ĉ is another solution to (7.9) in PT . Let R1 = ‖Ĉ‖PT . Then
R1 > R. Choose T1 ≤ T corresponding to R1 as in the argument following (7.34) with
R replaced by R1. By what has just been proven we have uniqueness of solutions to (7.9)
in PT1,R1 . Since C , restricted to [0, T1], is in PT1,R1 it follows that Ĉ and C coincide
on [0, T1]. We may now apply the same argument on the interval [T1, 2T1] (using the
same R1) to conclude that Ĉ coincides with C on the entire interval [0, 2T1]. And so on.
This proves uniqueness of solutions to (7.9) in PT .

Now Lemma 7.9 shows that the solution C(t) to the integral equation (7.9) is actually
a solution to the differential equation (7.8). We may therefore apply [58, Prop. 3.2, page
289] to conclude that the solution C(·) is in C∞((0, T )× M;Λ1 ⊗ k). Rearranging the
terms gives (2.14). ��
Proof of Theorem 2.13. Choose T ∈ (0,∞) as in Theorem 7.3 and denote by C(·) the
solution to the integral equation (7.9). Then C(·) lies in PT and is therefore a continu-
ous function from [0, T ) into W1. Equation (7.9) shows that C(0) = A0. Corollary 7.10
proves that BC(t) and d∗C(t) are in W1 for t > 0, which is the claim a) in Theorem 2.13,
and proves as well that C(·) satisfies all the required boundary conditions, (2.15), resp.
(2.16). For t ∈ (0, T ) Lemma 7.9 shows that C(t) is strongly differentiable into L2(M)
and that the differential equation (2.14) holds. The smoothness of C(·) is proved in The-
orem 7.3. The boundedness of t3/4‖BC(t)‖∞, required in condition f) of Theorem 2.13,
follows from the fact that C(·) lies in PT . Indeed, the norm definition (7.4) shows that,
for t ∈ (0, T ),

t3/4‖BC(t)‖∞ ≤ t3/4{‖dC(t)‖∞ + (c/2)‖C(t)‖2∞}
= t3/4‖dC(t)‖∞ + t1/4(c/2)(t1/4‖C(t)‖∞)2

≤ ‖C‖PT + t1/4(c/2)‖C‖2
PT
. (7.35)
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Concerning uniqueness of solutions for the parabolic equation (2.14), a stan-
dard proof of existence and uniqueness for a semilinear parabolic equation may
be found in [58, Chap. 15, Sect. 1]. It is based on a simpler path space than the
space PT , defined in (7.4), that we have been using and relies on simpler esti-
mates: Let P̂T = {C(·) ∈ C([0, T ); H1(M)) : sup0≤t<T ‖C(t)‖H1(M) < ∞}. If

C(·) ∈ P̂T then F(σ ) (see (7.10)) is a continuous function into L3/2(M) because
C(σ )3 ∈ L6 · L6 · L6 ⊂ L2(M) while C(σ ) · ∂C(σ ) ∈ L6 · L2 ⊂ L3/2(M). Moreover
‖etΔ‖L3/2→H1

≤ ‖e(t/2)Δ‖L2→H1
× ‖e(t/2)Δ‖L3/2→L2 = O(t−1/2t−1/4) by (7.15) and

(7.16). Since 3/4 < 1 the integral equation (7.9) has a unique solution in P̂T for a given
A0 ∈ H1 and small enough T .

Thus if C(·) ∈ P̂T and is in addition strongly differentiable into L2(M) and satisfies
(7.8) then the identity

C(t)− etΔC(0) =
∫ t

0
(d/dσ)

(
e(t−σ)ΔC(σ )

)
dσ =

∫ t

0
e(t−σ)ΔF(σ )dσ

shows that C(·) satisfies the integral equation (7.9) and uniqueness then follows. The last
integrand is an integrable function into H1 because F : [0, t] → L3/2(M) is continuous,
as we have seen above. The solution to (7.8) is unique, therefore, under the hypothesis
that it is continuous and bounded on [0, T ) into H1 and strongly differentiable on (0, T )
into L2. ��
Remark 7.11. At the price of a more complicated proof we have used the smaller space
PT in our existence proof instead of the simpler space P̂T . In order to derive the local
boundedness condition (2.8), our use of the smaller space PT seems unavoidable. The
local boundedness will be an essential ingredient in our uniqueness proof for the weakly
parabolic Yang-Mills heat equation.

7.2. An apriori estimate for the parabolic equation. The apriori estimates in Sect. 6
have parallels for the parabolic equation. But they get rapidly more complicated for the
parabolic equation as the order of the inequality increases. We will need the following
lowest order estimate. It will not artificially decompose the nonlinear terms in (2.14), as
does the method of the previous subsection.

Lemma 7.12. Assume that C(·) satisfies the conclusions of Theorem 7.3. Then ‖BC(t)‖2
is non-increasing on [0, T ) and in fact

‖BC(t)‖2
2 + 2

∫ t

0
‖d∗

C(s)BC(s)‖2
2ds = ‖B0‖2

2. (7.36)

In particular,

‖BC(t)‖2 ≤ ‖B0‖2. (7.37)

Proof. For ease in reading define β(t) = BC(t). For t > 0, β(t) is in the domain of d∗
C(t)

and therefore in the domain of the square of this operator, by (3.15) and (3.16), since
[B�B] = 0. In fact these identities show that (d∗

C(t))
2β(t) = β(t) ·β(t) = 0 for both (N)
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and (D) boundary conditions. Moreover β(·) is smooth on (0, T )× M by Theorem 7.3.
The following computation is therefore justified for t > 0:

(1/2)(d/dt)‖β(t)‖2
2 = (β ′(t), β(t))

= (dC(t)C
′(t), β(t))

= (C ′(t), d∗
C(t)β(t))

= −(d∗
C(t)β(t) + dC(t)d

∗C(t), d∗
C(t)β(t))

= −‖d∗
C(t)β(t)‖2

2 − (d∗C(t), (d∗
C(t))

2β(t))

= −‖d∗
C(t)β(t)‖2

2.

Since C(·) is continuous on [0, T ) into W1 ∩ L4(M), BC(t) is continuous into L2(M)
on [0, T ). We may therefore integrate the last equality over [0, t] to deduce (7.36) and
(7.37). ��

8. Short Time Existence and Uniqueness for the Yang-Mills Heat Equation

In this section we will prove the short time existence portions of Theorems 2.5 and 2.7
along with uniqueness. The space H1 refers to either of the quadratic form domains
defined in Remark 4.10 and used in Sect. 7, with the H1 norm given by (7.3). dA repre-
sents the minimal or maximal operator, in agreement with the boundary conditions.

Theorem 8.1. Let A0 ∈ H1(M) and suppose that β ≥ ‖A0‖H1(M). Then there exists
T > 0, depending only on β, and a continuous function

A(·) : [0, T ) → H1(M) with A(0) = A0 (8.1)

such that

a) B(t) ∈ H1(M) for each t ∈ (0, T ), (8.2)

b) A(t) is a strongly differentiable function into L2(M) on (0, T ), (8.3)

c) A′(t) = −d∗
A(t)B(t), (8.4)

f ) t3/4‖B(t)‖∞ is bounded on (0, T ). (8.5)

The previous theorem will be deduced from the following theorem, which makes
precise the informal procedure described in Lemma 2.14.

Theorem 8.2. Suppose that C(·) is a solution to (2.14) satisfying conditions a), b), c)
and f) of Theorem 2.13 with T < ∞. Let 0 < ε < T and, for each x ∈ M, denote by
gε(t, x) the solution to the ordinary differential equation

(d/dt)gε(t, x) = (d∗C(t, x))gε(t, x), ε ≤ t < T, gε(ε) = IV . (8.6)

Then gε ∈ C∞([ε, T )× M; K ). Define

Aε(t) = C(t)gε(t) = gε(t)
−1C(t)gε(t) + gε(t)

−1dgε(t), ε ≤ t < T . (8.7)

Then Aε ∈ C∞([ε, T )× M;Λ1 ⊗ k) ∩ H1(M). There exists a continuous function

A(·) : [0, T ) → H1(M;Λ1 ⊗ k) (8.8)
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such that the curvature B(t) of A(t) is in H1 for t > 0 and the strong L2 derivative
A′(t) exists for all t > 0. Furthermore

sup
ε≤t<T

‖A(t)− Aε(t)‖H1 → 0 as ε ↓ 0, (8.9)

sup
ε≤t<T

t1/2‖A′(t)− A′
ε(t)‖L2 → 0 as ε ↓ 0, (8.10)

sup
ε≤t<T

t1/2‖B(t)− Bε(t)‖H1 → 0 as ε ↓ 0, (8.11)

and sup
ε≤t<T

t3/4‖B(t)− Bε(t)‖∞ → 0 as ε ↓ 0. (8.12)

Moreover A(·) satisfies all the conditions of Theorem 8.1.

Notation 8.3. If u(x) ∈ End V for each x ∈ M we will write‖u‖∞ = supx∈M ‖u(x)‖op,
where the subscript op denotes the operator norm. In case u is a function into k ⊂ End V
the operator norm and the k norm are equivalent and we will not distinguish between
them. Compare Notation 2.1. Although all products of k valued forms have been, until
now, commutator products, as e.g. in (7.6), we will need to estimate more general oper-
ators on V in the following.

Corollary 8.4. The functions gε converge to a continuous function g : [0, T ) × M →
K ⊂ End V in the sense that

sup
ε≤t<T

‖g(t)− gε(t)‖∞ → 0 as ε ↓ 0, (8.13)

and sup
ε≤t<T

‖h(t)− gε(t)
−1dgε(t)‖W1(M) → 0 as ε ↓ 0, (8.14)

for some continuous function h : [0, T ) → W1(M;Λ1 ⊗ k). Here g(0) = IV and
h(0) = 0. A is given by

A(t) = g(t)−1C(t)g(t) + h(t). (8.15)

The proofs of these two theorems and corollary will be given at the end of this section.

Remark 8.5. Since gε(t) is given fairly explicitly by (8.6) in terms of the solution C(·)
to the parabolic equation (2.14), it would seem natural to prove (8.13) and (8.14) first,
from which (8.9) would follow easily. But we have not been able to find a direct proof of
the estimates on gε(t)−1dgε(t) needed for proving (8.14). Instead we will prove (8.13)
and (8.9) first, using apriori estimates from Sect. 6.

8.1. g estimates. The following computations, observed by Zwanziger, [60], Donaldson
[9] and Sadun [46], underlie the procedure described in Lemma 2.14. Throughout this
subsection d and d∗ act on all smooth forms on M . Boundary conditions on forms will
be described explicitly when appropriate.

Lemma 8.6. Let C ∈ C∞((a, b)×M;Λ1 ⊗k). For each x ∈ M, let g(t, x) be a solution
to the ordinary differential equation

g′(t, x)g(t, x)−1 = d∗C(t, x), t ∈ (a, b). (8.16)
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Define

Cg(t, x) = g(t, x)−1C(t, x)g(t, x) + g(t, x)−1dg(t, x). (8.17)

Then

(g−1dg)′ = g−1(dd∗C)g and (8.18)

(Cg)′ = g−1(C ′ + dC d∗C)g. (8.19)

Let A(t, x) = Cg(t, x) and assume that C satisfies (2.14) over the interval (a, b). Then

A′(t) + d∗
A(t)BA(t) = 0 on (a, b), (8.20)

and further,

A′(t) = −g(t)−1{d∗
C(t)BC(t)}g(t). (8.21)

Proof. The easily verifiable identity (g−1dg)′ = g−1{d(g′g−1)}g proves (8.18), given
(8.16). Writing V = g′g−1 we can compute

(Cg)′ = g−1{C ′ + [C, g′g−1]}g + (g−1dg)′

= g−1{C ′ + [C, V ] + dV }g,
which is (8.19) when (8.16) holds. In particular, if C ′ + dC d∗C = −d∗

C BC over (a, b)
then (8.19) shows that A′ = g−1(−d∗

C BC )g = −d∗
A BA. Here we have used the usual

gauge transformation identities, BA = g−1(BC )g and d∗
A BA = g−1(d∗

C BC )g when
A = Cg . ��
Lemma 8.7 (Boundary conditions for g). Suppose that C(·) ∈ C∞((0, T )) and satisfies
the differential equation (d/dt)C = −(d∗

C BC + dC d∗C) on (0, T ) along with one of the
two boundary conditions (2.15) or (2.16). Define gε by (8.6) and let

hε(t) = gε(t)
−1dgε(t), ε ≤ t < T . (8.22)

If C satisfies the Neumann boundary contition (2.15), then

(N ) hε(t)norm = 0, ε ≤ t < T, (8.23)

and if C satisfies the Dirichlet boundary condition (2.16), then

(D) hε(t)tan = 0, ε ≤ t < T . (8.24)

In particular, hε(t) ∈ H1 in both cases.

Proof. Since gε(ε) = IV it follows that hε(ε) = 0. It suffices, therefore, to show that
the normal, respectively tangential, component of h′

ε(t) is zero on [ε, T ). The identity
(8.18) shows that h′

ε(t) = gε(t)−1{dd∗C(t)}gε(t) and therefore it suffices to show that
the normal, respectively tangential, component of dd∗C(t) is zero for ε ≤ t < T .

In case (N) we have, by (2.15), C(t)norm = 0 and (BC(t))norm = 0. From the
first equality it follows that C ′(t)norm = 0 and from the second equality it fol-
lows, with the help of (3.20), that (d∗

C(t)BC(t))norm = 0. Therefore (2.14) shows
that (dC(t)d∗C(t))norm = 0. Hence (dd∗C(t))norm = −[C(t), d∗C(t)]norm =
−[C(t)norm, d∗C(t)] = 0. This proves case (N).
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In case (D), we have (d∗C(t))tan ≡ (d∗C(t))|∂M = 0 by (2.16). Therefore
(dd∗C(t))tan = 0 by (3.19) (with A = 0). This proves case (D).

Since hε(t) ∈ C∞(M) and satisfies the right boundary conditions it is in H1 in both
cases.

Although this proves the lemma, it may be worth noting that in case (D) the defining
equation (8.6) already shows directly that g′

ε(t)|∂M = 0 because d∗C(t)|∂M = 0. Hence
gε(t) = IV on ∂M and therefore its tangential derivative, hε(t)tan is zero. ��
Corollary 8.8 (Boundary conditions for Aε). Define Aε(t) by (8.7). Then Aε(t) ∈
H1(M) in both Neumann and Dirichlet cases, for ε ≤ t < T .

Proof. Since Aε(t) is in C∞(M) and C(t) satisfies the right boundary conditions, the
definition (8.7) shows that we need only prove that gε(t)−1dgε(t) satisfies the correct
boundary conditions. But this is the assertion of Lemma 8.7. ��
Lemma 8.9. Define gε : [ε, T ) → K as in (8.6). Then

sup
ε≤t<T

‖gδ(t)− gε(t)‖∞ → 0 as 0 < δ < ε ↓ 0. (8.25)

Moreover there is a unique function g ∈ C([0, T ) × M; K ) such that g(0) = IV and
such that, for each a ∈ (0, T ), gε converges to g uniformly on [a, T )× M.

Proof. For ease in reading let V (t, x) = d∗C(t, x). All the estimates that need to be
made are pointwise in x . For each x ∈ M, V (t, x) is a continuous function on (0, T )
into k and

∫ T
0 ‖V (s)‖∞ds < ∞ by (7.4). We will suppress the x dependence in the

following. If 0 < δ < ε then the function [ε, T ) � t �→ gδ(t)gδ(ε)−1 satisfies the initial
value problem (8.6), and consequently,

gδ(t) = gε(t)gδ(ε), ε ≤ t < T . (8.26)

Since gε(t) is unitary it follows that

‖gδ(t)− gε(t)‖op = ‖gδ(ε)− IV ‖op, ε ≤ t < T . (8.27)

But

‖gδ(ε)− IV ‖op = ‖
∫ ε

δ

g′
δ(s)ds‖op ≤

∫ ε

δ

‖V (s)‖∞ds → 0 as ε ↓ 0. (8.28)

This proves (8.25). The existence of a uniform limit g over each set [a, T ) × M now
follows and the limit is clearly independent of a. Moreover letting δ ↓ 0 in (8.28) shows
that ‖g(ε)− IV ‖∞ ≤ ∫ ε

0 ‖V (s)‖∞ds, and therefore g is continuous on all of [0, T )× M
if defined to be IV at t = 0. ��

8.2. A estimates. Our goal in this section is to show that the smooth forms Aε(t) and
Bε(t) converge in strong senses as ε ↓ 0. Since Aε(·) is in C∞((ε, T ))× M), all of the
apriori estimates derived in Sects. 5 and 6 are applicable in this subsection.

With a view toward applying the Gaffney-Friedrichs inequality (2.22) (with A = 0
in that inequality), we are going to make estimates in the next few lemmas of ‖dω‖2
and ‖d∗ω‖2 for several different choices of ω.

All four lemmas in this section depend on the apriori estimates of order two in Sect. 6.
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Lemma 8.10. Define C4(·, ·) as in Corollary 6.4. Then∫ t

ε

‖A′
ε(s)‖4ds ≤ C4(t, ‖B0‖2), ε ≤ t < T, (8.29)

‖Aε(t)‖4 ≤ ‖C(ε)‖4 + C4(t, ‖B0‖2), ε ≤ t < T, (8.30)

and ‖Bε(t)‖2 ≤ ‖B0‖2, ε ≤ t < T . (8.31)

Proof. Since Aε is a solution to (2.6) over the interval (ε, T ), we may apply (6.25) over
the interval [ε, T ) to find

∫ t
ε

‖A′
ε(s)‖4ds ≤ C4(t − ε, ‖BAε(ε)‖2) for ε ≤ t < T . Since

C4 is monotone in both arguments and ‖BAε(ε)‖2 = ‖BC(ε)‖2 ≤ ‖B0‖2, (8.29) follows.
The derivation of (8.30) from (8.29) is similar to the derivation of (6.21), considering
that Aε(ε) = C(ε). Further, ‖Bε(t)‖2 = ‖gε(t)−1 BC(t)gε(t)‖2 = ‖BC(t)‖2 ≤ ‖B0‖2
by (7.37), proving (8.31). ��
Lemma 8.11. As 0 < δ ≤ ε ↓ 0 the following limits hold:

∫ T

ε

‖A′
δ(s)− A′

ε(s)‖4ds → 0, (8.32)

sup
ε≤t<T

‖Aδ(t)− Aε(t)‖4 → 0, (8.33)

sup
ε≤t<T

‖Aδ(t)− Aε(t)‖2 → 0, (8.34)

sup
ε≤t<T

‖Bδ(t)− Bε(t)‖2 → 0. (8.35)

Proof. To prove (8.32) observe that gauge transformations relate well to the forms A′
in that

A′
δ(s) = (Ad gδ(ε)

−1)A′
ε(s), s ≥ ε (8.36)

because −A′
δ(s) = d∗

Aδ(s)
BAδ(s) = (Ad gδ(ε)−1)d∗

Aε(s)
BAε(s). Therefore

∫ t

ε

‖A′
δ(s)− A′

ε(s)‖4ds =
∫ t

ε

‖(Ad gδ(ε)
−1 − Ik)A

′
ε(s)‖4ds

≤ ‖gδ(ε)− IV ‖∞C4(t, ‖B0‖2),

from which (8.32) follows.
To prove (8.33) we may again use the identity Aε(t) = C(ε) +

∫ t
ε

A′
ε(s)ds to find

‖Aδ(t)− Aε(t)‖4 =‖C(δ)− C(ε)+
∫ t

δ

A′
δ(s)ds−

∫ t

ε

A′
ε(s)ds‖4

≤ ‖C(δ)− C(ε)‖4 +
∫ ε

δ

‖A′
δ(s)‖4ds +

∫ t

ε

‖A′
δ(s)− A′

ε(s)‖4ds.

The first term goes to zero as δ < ε ↓ 0 because C(·) is continuous into H1 and therefore
into L4(M). The third term goes to zero uniformly for t ∈ [ε, T ) by (8.32). The middle
term is equal to

∫ ε
δ

‖d∗
C(s)BC(s)‖4ds by (8.21) and goes to zero because the integrand is

integrable over [0, T ) by (8.29). Replace L4 by L2 in this proof to arrive at (8.34).
Now

‖Bδ(t)− Bε(t)‖2 = ‖(Ad gδ(t)
−1 − Adgε(t)

−1)BC(t)‖2 ≤ ‖Ad gδ(ε)− I‖∞‖B0‖2

by (8.27). Thus (8.35) now follows from (8.28). ��



The Yang-Mills Heat Semigroup on Three-Manifolds with Boundary 773

Lemma 8.12. As 0 < δ ≤ ε ↓ 0 the following limits hold.

sup
ε≤t<T

t1/2‖A′
δ(t)− A′

ε(t)‖2 → 0, (8.37)

sup
ε≤t<T

t3/8‖Bδ(t)− Bε(t)‖4 → 0, (8.38)

sup
ε≤t<T

‖d∗(Aδ(t)− Aε(t))‖2 → 0, (8.39)

sup
ε≤t<T

‖d(Aδ(t)− Aε(t))‖2 → 0. (8.40)

Proof. Since Aδ(δ) = C(δ)we may apply the apriori estimate (6.7) to Aδ(t) on the inter-
val [δ, T ) to find (t−δ)‖A′

δ(t)‖2
2 ≤ C1(t−δ, ‖BC(δ)‖2). By (8.36) ‖A′

δ(t)‖2 = ‖A′
ε(t)‖2

for 0 < δ ≤ ε ≤ t while ‖BC(δ)‖2 ≤ ‖B0‖2 by (7.37). Since C1(·, ·) is nondecreasing
in both arguments we find (t − δ)‖A′

ε(t)‖2
2 ≤ C1(t, ‖B0‖2). We may now let δ ↓ 0 to

find

t1/2‖A′
ε(t)‖2 ≤ C1(t, ‖B0‖2)

1/2, ε ≤ t < T . (8.41)

The assertion (8.37) now follows from the inequality t1/2‖A′
δ(t) − A′

ε(t)‖2 ≤
‖Ad gδ(ε)−1 − Ik‖∞t1/2‖A′

ε(t)‖2 ≤ ‖Ad gδ(ε)−1 − Ik‖∞C1(T, ‖B0‖2)
1/2.

To prove (8.38) observe that (t − δ)‖Bδ(t)‖2
6 ≤ C3(t − δ, ‖BC(δ)‖2) ≤ C3(t, ‖B0‖2)

by (6.8) applied over the interval [δ, T ). Since ‖Bδ(t)‖6 = ‖Ad gδ(ε)−1)Bε(t)‖6 =
‖Bε(t)‖6, we can let δ ↓ 0 to find t‖Bε(t)‖2

6 ≤ C3(t, ‖B0‖2). Interpolation between L2

and L4 now gives, in view of (8.31),

t3/8‖Bε(t)‖4 ≤ ‖Bε(t)‖1/4
2 (t3/8)‖Bε(t)‖3/4

6 ≤ ‖B0‖1/4
2 C3(t, ‖B0‖2)

3/8. (8.42)

Hence

t3/8‖Bδ(t)− Bε(t)‖4 ≤ ‖Ad gδ(ε)
−1 − Ik‖∞‖B0‖1/4

2 C3(t, ‖B0‖2)
3/8, (8.43)

which proves (8.38).
To prove (8.39) observe that, since Aε(s) is a C∞ solution to the Yang-Mills heat

equation (5.1), the argument giving the identity (6.29) gives

d∗ Aε(t) = d∗C(ε) +
∫ t

ε

[Aε(s) · A′
ε(s)]ds, (8.44)

because Aε(ε) = C(ε). Using (8.44) for both ε and δ we find

‖d∗{Aδ(t)− Aε(t)}‖2 ≤ ‖d∗{C(δ)− C(ε)}‖2 +
∫ ε

δ

‖[Aδ(s) · A′
δ(s)]‖2

+
∫ t

ε

‖[Aδ(s) · A′
δ(s)] − [Aε(s) · A′

ε(s)]‖2ds.

The first term on the right goes to zero as 0 < δ < ε ↓ 0 because C(·) is continuous
into H1. The second term goes to zero because ‖Aδ(s)‖4 is bounded, by (8.30), while
‖A′

δ(s)‖4 = ‖d∗
C(s)BC(s)‖4, which is integrable over (0, T ) by (8.29). The third term

goes to zero as 0 < δ < ε ↓ 0 in view of (8.30), (8.33), (8.29) and (8.32), which show
that ‖Aδ(s)‖4 is bounded, that ‖Aδ(s)− Aε(s)‖4 goes to zero uniformly in s over [ε, T ),
while ‖A′

ε(s)‖4 is bounded in L1(ε, T ) and ‖A′
δ(s)− A′

ε(s)‖4 goes to zero in L1(ε, T ).
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To prove (8.40) we use again the identity d Aε = Bε − (1/2)[Aε ∧ Aε] to arrive at

‖d{Aδ(t)− Aε(t)}‖2 ≤ ‖Bδ(t)−Bε(t)‖2+(1/2)‖[Aδ(t) ∧ Aδ(t)]−[Aε(t) ∧ Aε(t)]‖2.

The first term on the right goes to zero uniformly for t ∈ [ε, T ] by (8.35) while the
second term goes similarly to zero by virtue of (8.30) and (8.33). ��
Lemma 8.13. There is a non-decreasing continuous function C6 : [0,∞)3 → [0,∞),
depending only on the geometry of M, such that

t1/2(‖d Bε(t)‖2 + ‖d∗ Bε(t)‖2
) ≤ C6(t, ‖B0‖2, ‖C(ε)‖W1) ε ≤ t < T . (8.45)

Moreover, as 0 < δ ≤ ε ↓ 0 the following limits hold:

sup
ε≤t<T

t1/2‖d(Bδ(t)− Bε(t))‖2 → 0, (8.46)

sup
ε≤t<T

t1/2‖d∗(Bδ(t)− Bε(t))‖2 → 0. (8.47)

Proof. The Bianchi identity and (8.20) yield, respectively,

d Bε(t) = −[Aε(t) ∧ Bε(t)], (8.48)

d∗ Bε(t) = −A′
ε(t)− [Aε(t)�Bε(t)]. (8.49)

Therefore,

t1/2{‖d Bε(t)‖2 + ‖d∗ Bε(t)‖2}
≤ t1/2{‖[Aε(t) ∧ Bε(t)]‖2 + ‖A′

ε(t)‖2 + ‖[Aε(t)�Bε(t)]‖2}
≤ t1/2{‖A′

ε(t)‖2 + 2c‖Aε(t)‖4‖Bε(t)‖4}
≤ C1(t, ‖B0‖2)

1/2 + 2c
(‖Aε(t)‖4

)
t1/2‖Bε(t)‖4

≤ C6(t, ‖B0‖2, ‖C(ε)‖H1) (8.50)

for some continuous function C6, by virtue of (8.41), (8.30) and(8.42).
Using the identity (8.49) for ε and δ we may write

t1/2‖d∗(Bδ(t)− Bε(t))‖2

≤ t1/2‖A′
δ(t)− A′

ε(t)‖2 + t1/2‖[Aδ(t)�Bδ(t)] − [Aε(t)�Bε(t)]‖2.

The first term goes to zero uniformly for ε ≤ t < T by (8.37). The second term goes
similarly to zero by combining (8.30), (8.33) with (8.38) and (8.42). A similar argument
applies to t1/2‖d(Bδ(t)− Bε(t))‖2 by using (8.48). ��
Theorem 8.14. There exist non-decreasing continuous functions C7,C8,C9 from
[0,∞)2 → [0,∞) such that

‖Aε(t)‖H1 ≤ C7(t, ‖C(ε)‖H1), ε ≤ t < T, (8.51)

t1/2‖Bε(t)‖H1 ≤ C8(t, ‖C(ε)‖H1), ε ≤ t < T, (8.52)

t3/4‖Bε(t)‖∞ ≤ C9(T, ‖C‖PT ), ε ≤ t < T . (8.53)
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Moreover, as 0 < δ ≤ ε ↓ 0 the following limits hold.

sup
ε≤t<T

‖Aδ(t)− Aε(t)‖H1 → 0, (8.54)

sup
ε≤t<T

t1/2‖Bδ(t)− Bε(t)‖H1 → 0, (8.55)

sup
ε≤t<T

t3/4‖Bδ(t)− Bε(t)‖∞ → 0. (8.56)

Proof. Apply (6.19) to the smooth solution Aε over [ε, T ) and recall that Aε(ε) = C(ε).
We find that ‖Aε(t)‖H1(M) ≤ C5(t − ε, ‖C(ε)‖H1(M)), ε ≤ t < T . The monotonicity
of C5 in its first argument now yields (8.51) with C7 = C5.

To prove (8.54) apply the Gaffney-Friedrichs inequality (2.22) with A = 0 and
ω = Aδ − Aε. The inequality (8.54) then follows from (8.34), (8.39) and (8.40).

The Gaffney-Friedrichs inequality (2.22), with A = 0 and with ω = Bε(t) gives

(1/2)t‖Bε(t)‖2
H1

≤ t‖d Bε(t)‖2
2 + t‖d∗ Bε(t)‖2

2 + λM t‖Bε(t)‖2
2.

This, along with the inequality (8.45) and ‖Bε(t)‖2 ≤ ‖B0‖2, proves (8.52).
Similarly, the Gaffney-Friedrichs inequality (2.22), with A = 0 and with ω =

Bδ − Bε, proves (8.55) in view of (8.46), (8.47) and (8.35).
Since t3/4‖Bε(t)‖∞ = t3/4‖BC(t)‖∞ the inequality (7.35) proves (8.53) with

C9(T, ‖C‖PT ) = ‖C‖PT + T 1/4(c/2)‖C‖2
PT

.

Finally, for ε ≤ t < T , we have t3/4‖Bδ(t) − Bε(t)‖∞ ≤ ‖Ad gδ(ε) − I‖∞ C9
(T, ‖C‖PT ), which goes to zero uniformly for t ∈ [ε, T ) by (8.28). ��

8.3. Proof of Theorems 8.1 and 8.2. If 0 < a < T then (8.54) shows that Aε|[a,T ) is
uniformly Cauchy in H1 norm as ε ↓ 0. The limit is clearly independent of a > 0 and
defines a continuous function A : (0, t) → H1, being a uniform limit of continuous (in
fact C∞) functions on each interval [a, T ). Define A(0) = A0. We need to show that
the so extended function is continuous at t = 0. Since C(·) is continuous on [0, T ) into
H1, given α > 0, there exists γ > 0, such that a) sup0≤t≤γ ‖A0 − C(t)‖H1 < α and, by
(8.54), b) supε≤t<T ‖Aδ(t)− Aε(t)‖H1 < α if 0 < δ ≤ ε ≤ γ . Suppose that 0 < t0 ≤ γ .
Then ‖A0−C(t0)‖H1 < α by a). Letting δ ↓ 0 in b) shows that ‖A(t0)−Aε(t0)‖H1 ≤ α if
ε ≤ t0. Take ε = t0. Then‖A(t0)−A0‖H1 ≤ ‖A(t0)−At0(t0)‖H1 +‖C(t0)−A0‖H1 < 2α.
This proves the existence of a continuous function A : [0, T ) → H1(M) taking the cor-
rect initial value, A0, and defined as the limit, in the sense of (8.9), of the C∞ functions
Aε : [ε, T ) → H1(M). In particular (8.1) holds.

Now (8.37) shows that, for each a > 0, the derivatives A′
ε(t) converge uniformly on

[a, T ), as functions into L2(M). It follows that A(t) is a strongly differentiable function
on (0, T ) into L2(M), as required in (8.3), and that A′(t) = L2 limit of A′

ε(t) for each
t > 0. In fact, letting δ ↓ 0 in (8.37) proves (8.10).

The curvature B(t) of A(t) is well defined because A(t) ∈ H1(M). Since, for each
t > 0, Aε(t) converges to A(t) in H1 by (8.54) it follows that Bε(t) converges in L2

to B(t). But (8.55) shows that, for each t > 0, Bε(t) is Cauchy in H1 norm as ε ↓ 0.
Hence Bε(t) converges in H1 norm to an element in H1, which is also the L2 limit, B(t).
Thus B(t) is in H1 for each t > 0, as required in (8.2), and ‖Bε(t)− B(t)‖H1 → 0 for
each t > 0. Therefore d∗ Bε(t) converges to d∗ B(t) in L2 while also Bε(t) converges
to B(t) in L4. Hence [Aε(t)�Bε(t)] converges to [A(t)�B(t)] in L2 in view of (8.33).
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Therefore d∗
Aε(t)

Bε(t) converges in L2 to d∗
A(t)B(t) for each t > 0. It now follows that

A′(t) = −d∗
A(t)B(t) for 0 < t < T , as required in (8.4). Furthermore, taking the limit

in (8.55) as δ ↓ 0 proves (8.11).
A similar argument, based on (8.56), shows that, for each t > 0, one has ‖Bε(t) −

B(t)‖∞ → 0 as ε ↓ 0. In particular, (8.5) follows from (8.53). Moreover, (8.12) follows
from (8.56) by letting δ ↓ 0. This proves Theorems 8.1 and 8.2. ��

8.4. Proof of Corollary 8.4. For ε ≤ t < T define

hε(t) = gε(t)
−1dgε(t) and Cε(t) = gε(t)

−1C(t)gε(t).

Since

hε(t) = Aε(t)− Cε(t), (8.57)

we have ‖hε(t)‖6 ≤ ‖Aε(t)‖6 + ‖C(t)‖6. Hence

‖hε(t)‖6 ≤ κ(‖Aε(t)‖H1 + ‖C(t)‖H1)

≤ κ{C7(t, ‖C(ε)‖H1) + ‖C‖PT }
by (8.51) and (7.4). Moreover, from (8.54) and (8.25) we find

sup
ε≤t<T

‖hδ(t)− hε(t)‖6 ≤ κ sup
ε≤t<T

‖Aδ(t)− Aε(t)‖H1

+ sup
ε≤t<T

‖Cδ(t)− Cε(t)‖6 → 0, (8.58)

as 0 < δ ≤ ε ↓ 0. We assert that

sup
ε≤t<T

‖Cδ(t)− Cε(t)‖H1 → 0 as 0 < δ ≤ ε ↓ 0. (8.59)

It suffices to compute derivatives for some local orthonormal frame field e1, e2, e3. We
have ∇ j Cδ(t) = (Ad gδ(t)−1)∇ j C(t) + [Cδ(t), 〈hδ(t), e j 〉] and therefore, denoting by
‖ · ‖2 an L2 norm over a coordinate patch, we find

‖∇ j
(
Cδ(t)− Cε(t)

)‖2 ≤ ‖Ad gδ(t)− Ad gε(t)‖∞‖∇ j C(t)‖2

+ ‖[{Cδ(t)− Cε(t)}, hδ(t)〈e j 〉]‖2

+ ‖[Cε(t), {hδ(t)− hε(t)}〈e j 〉]‖2.

As 0 < δ ≤ ε ↓ 0, the first term goes to zero, uniformly for ε ≤ t < T , by (8.25), since
‖∇ j C(t)‖2 ≤ ‖C‖PT . Since ‖hδ(t)〈e j 〉‖6 ≤ ‖hδ(t)‖6 remains bounded as δ ↓ 0 and
uniformly so over t ∈ [ε, T ), while ‖Cδ(t)− Cε(t)‖3 ≤ ‖Ad gδ(ε)− I‖∞‖C(t)‖3 →
0 uniformly over [ε, T ) because ‖C(t)‖3 is dominated by ‖C(t)‖H1 ≤ ‖C‖PT , the
second term also goes to zero uniformly over [ε, T ). The third term is dominated by
‖C(t)‖3‖hδ(t)− hε(t)‖6, which goes to zero uniformly over [ε, T ) by (8.58).

Upon adding the contributions to ‖Cδ(t)− Cε(t)‖2
H1

from finitely many coordinate
patches that cover M the assertion (8.59) follows. From (8.59) and (8.54) we deduce
that

sup
ε≤t<T

‖hδ(t)− hε(t)‖H1 ≤ sup
ε≤t<T

‖Aδ(t)− Aε(t)‖H1 + sup
ε≤t<T

‖Cδ(t)− Cε(t)‖H1

→ 0 as 0 < δ ≤ ε ↓ 0. (8.60)
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Thus, for each a ∈ (0, T ), the hε converge uniformly over [a, T ) in H1 to a function h
which is clearly independent of a and defines a continuous function on (0, T ) into H1.

Now (8.57) shows that, for 0 < δ < ε ≤ t , we have

‖hδ(t)− hε(t)‖H1 ≤ ‖Aδ(t)− Aε(t)‖H1 + ‖Cδ(t)− Cε(t)‖H1 .

We have shown that all three differences converge as δ ↓ 0 and we may conclude that

‖h(t)− hε(t)‖H1 ≤ ‖A(t)− Aε(t)‖H1 + ‖C(t)− Cε(t)‖H1 .

Take t = ε. Since gε(ε) = IV on the fiber V we have hε(ε) = 0 and Cε(ε) = C(ε) and
therefore ‖h(ε)‖H1 ≤ ‖A(ε)−C(ε)‖H1 . But A(ε) and C(ε) both converge to A0 in H1.
Hence ‖h(ε)‖H1 → 0 as ε ↓ 0. Thus h is continuous on [0, T ) into H1 if one defines
h(0) = 0. The identity (8.15) now follows for each t > 0 by taking the L2(M) limit in
(8.7) as ε ↓ 0. At t = 0 Eq. (8.15) just asserts that A0 = A0 because h(0) = 0 and, by
Lemma 8.9, g(0) = IV . This completes the proof of Corollary 8.4.

8.5. Uniqueness of solutions.

Theorem 8.15. Let T ≤ ∞. Let A1(·) and A2(·) be two locally bounded strong solutions
to (2.6) on the interval [0, T ) and having the same initial data in W1(M). Assume that
either

(N ) B j (t)norm = 0 for j = 1, 2 and t > 0 (8.61)

or (D) A j (t)tan = 0 for j = 1, 2 and t > 0. (8.62)

Then A1(t) = A2(t) on [0, T ).

The proof depends on the next lemma.

Lemma 8.16 (An identity). Suppose that A1 and A2 are two strong solutions satisfying
either (8.61) or (8.62). Then, for t > 0,

(d/dt)‖A1(t)− A2(t)‖2
2 = −2‖B1(t)− B2(t)‖2

2

− (B1(t) + B2(t), [(A1(t)− A2(t)) ∧ (A1(t)− A2(t))]). (8.63)

Proof. Consider first the Neumann boundary condition (8.61). In this case the heat equa-
tion is A′(s) = −D∗

A(s)B(s)wherein D denotes the maximal operator defined in Sect. 3

and D∗
A(s)B(s) = D∗B(s) + [A(s)�B(s)], which is in L2(M) because B(s) and A(s)

are both in W1 and B(s)norm = 0. Since D(D) ⊃ W1 we may integrate by parts in the
third line below.

(1/2)(d/dt)‖A1(t)− A2(t)‖2
2 = (A′

1 − A′
2, A1 − A2)

= (−D∗
A1

B1 + D∗
A2

B2, A1 − A2)

= −(B1, DA1(A1 − A2)) + (B2, DA2(A1 − A2)).

(8.64)

But

DA1(A1 − A2) = D(A1 − A2) + [A1 ∧ (A1 − A2)]
= B1 − B2 − (1/2)[A1 ∧ A1] + (1/2)[A2 ∧ A2] + [A1 ∧ (A1 − A2)]
= B1 − B2 + (1/2)[(A1 − A2) ∧ (A1 − A2)].
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Defining α = (1/2)[(A1 − A2)∧ (A1 − A2)], we find, similarly, that DA2(A1 − A2) =
B1 − B2 − α. Hence

(1/2)(d/dt)‖A1(t)− A2(t)‖2
2 = −(B1, B1 − B2 + α) + (B2, B1 − B2 − α)

= −‖B1 − B2‖2
2 − (B1 + B2, α),

which is (8.63).
Next, consider the Dirichlet boundary condition (8.62). In this case the heat equation

is A′(s) = −d∗
A(s)B(s), wherein d is the minimal covariant exterior derivative operator.

By (8.62) we have (A1(t) − A2(t))tan = 0. Since A1(t) − A2(t) is also in W1, it is
in the domain of d by (3.11). We may therefore integrate by parts, as in (8.64), to find
(1/2)(d/dt)‖A1(t)− A2(t)‖2

2 = −(B1, dA1(A1 − A2))+ (B2, dA2(A1 − A2)). The rest
of the proof is the same as the Neumann case, with D replaced by d. ��
Proof of Theorem 8.15. By (8.63) we have

(d/dt)‖A1(t)− A2(t)‖2
2 ≤ |(B1 + B2, (A1 − A2) ∧ (A1 − A2))|

≤ (‖B1(t)‖∞ + ‖B2(t)‖∞)c‖A1(t)− A2(t)‖2
2.

Here, for the first time, we need to use the assumption that the two solutions are locally
bounded. By condition e) in Definition 2.2 we have, for some b ∈ (0, T ) and a5 < ∞,

t3/4‖B j (t)‖∞ ≤ a5/2 for 0 < t ≤ b, j = 1, 2.

Hence

(d/dt)‖A1(t)− A2(t)‖2
2 ≤ a5t−3/4‖A1(t)− A2(t)‖2

2. (8.65)

Since
∫ b

0 t−3/4dt < ∞ and ‖A1(0) − A2(0)‖2 = 0, Gronwall’s Lemma now shows
that ‖A1(t) − A2(t)‖2 = 0 for 0 < t ≤ b. (For example (8.65) shows that
(d/dt){e−4a5t1/4 ‖A1(t)− A2(t)‖2

2} ≤ 0.) Now if [0, a] is a maximal interval of equality
and a < T then, taking the origin now at t = a, condition d) in Definition 2.2 shows
that ‖B j (t)‖∞ are both bounded on any finite interval [a, b] ⊂ [a, T ) and therefore
(t − a)3/4‖B j (t)‖∞ is bounded on [a, b]. The preceding step in the proof now shows
that A1 = A2 on [a, b] and therefore a = T . ��
Remark 8.17. Hong and Tian [24] have considered the Cauchy problem for the Yang-
Mills heat equation interacting with a k valued scalar field φ over a complete open
three dimensional manifold. The flow equation is the gradient flow for the functional
‖B‖2

2 + ‖dAφ‖2
2. In the absence of the second term the flow equation reduces to the pure

Yang-Mills equation (2.6). The flow equation for the combined system is weakly para-
bolic, just as in the pure Yang-Mills case. The method we used to prove uniqueness can
be used for this combined system also. The seemingly fortuitous identity (8.63) extends
to a similar identity for the combined system, namely

(d/dt)
(
‖A1(t)− A2(t)‖2

2 + ‖φ1(t)− φ2(t)‖2
2

)

= −2‖B1 − B2‖2
2 − ((B1 + B2), [(A1 − A2) ∧ (A1 − A2)])

− 2‖dA1φ1 − dA2φ2‖2
2 − 2((dA1φ1 + dA2φ2), [A1 − A2, φ1 − φ2]). (8.66)

Since Hong and Tian operate in the C∞ category, their solutions are automatically locally
bounded. The uniqueness proof given above applies, therefore, to their case as well, in
the C∞ category.
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Remark 8.18. The weak parabolicity of the Yang-Mills heat equation is responsible for
uniqueness under imposition of only two boundary conditions on the three component
form A(t), as already noted in Remark 2.10. It is potentially illuminating to see how the
previous proof of uniqueness for the weakly parabolic equation translates to the para-
bolic case and why it should require three boundary conditions on the three component
form C(t). It is indeed possible to carry out the preceding proof for the parabolic case,
although it is a little more complicated. While it sheds some light on the comparison of
uniqueness proofs we will not pursue it further.

9. Long Time Existence

Here we complete the proof of Theorems 2.5, 2.7 and 2.12.
We will need the growth estimate (6.19) for strong solutions. But the proof of (6.19)

given in Sect. 6.2 relies on existence of derivatives, e.g., B ′(t), which have not been
proven to exist for a strong solution. We are therefore going to construct approximations
of a given strong solution by a sequence of smooth solutions, locally in time, using the
parabolic equation (2.14) and its partial gauge transforms Aε, described in Sect. 8.

9.1. Covariant regularization of locally bounded strong solutions.

Lemma 9.1 (Local regularization). Suppose that A is a locally bounded strong solution
over [0, T ) for some T ≤ ∞. Let 0 < t < T and define β = sup0≤s≤t ‖A(s)‖W1 . Then
there exists τ > 0, depending only on β, such that, for any interval [a, b] ⊂ (0, t] of
length b − a < τ , there exists a sequence An of smooth solutions over [a, b] such that

sup
a≤s≤b

{
‖An(s)− A(s)‖W1 + ‖A′

n(s)− A′(s)‖L2

+ ‖Bn(s)− B(s)‖W1 + ‖Bn(s)− B(s)‖∞
}

→ 0 (9.1)

as n → ∞.

Proof. The constant β is finite because A : [0, T ) → W1 is continuous. By Theo-
rem 2.13 there exists τ > 0 such that, for any t0 ∈ [0, T ), a solution C(·) to (2.14)
with initial value A(t0), exists over [t0, t0 + τ). Suppose then that [a, b] ⊂ (0, t] and
that b < a + τ . Choose t0 ∈ (0, a) with b < t0 + τ . Then [a, b] ⊂ (t0, t0 + τ) and the
solution C(·) to (2.14) over [t0, t0 + τ), with C(t0) = A(t0), exists over [t0, b], at least.
Define the usual gauge transforms Aε of C over [t0 + ε, b] as in (8.7). By Theorem 8.2
the smooth solutions Aε converge as ε ↓ 0 to a locally bounded strong solution on [t0, b]
with initial data A(t0). Therefore, by the uniqueness theorem of Sect. 8.5, the solutions
Aε converge to A itself. The sense of convergence is specified in Theorem 8.2 in (8.9),
(8.10), (8.11) and (8.12). In particular, choosing ε = 1/n, it follows from these that
(9.1) holds because a − t0 > 0. ��
Corollary 9.2. For any locally bounded strong solution A(·) on [0, T ),

a) ‖B(·)‖2 is non-increasing on [0, T ).
b) For 0 < s < T the Sobolev inequality (5.9) holds for 2 ≤ p ≤ ∞ and the Sobolev

inequality (6.3) holds.
c) The gauge invariant apriori estimates (6.5), (6.6), (6.8) and (6.11) hold.
d) The apriori estimates (6.20) – (6.23) hold.
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Proof. Assume that A(·) is a locally bounded strong solution on [0, T ).
For the proofs of a) and b), if 0 < s < T pick t ∈ (s, T ) and choose τ > 0 as in

Lemma 9.1. Choose an interval [a, b] ⊂ (0, t] of length b − a < τ with a < s < b, and
choose a sequence An of smooth solutions over [a, b] as in the lemma. By (5.9) there
holds, for the given s,

‖Bn(s)‖2
6 ≤ κ2

(
‖A′

n(s)‖2
2 + λp(Bn(s))‖Bn(s)‖2

2

)
, (9.2)

whereλp(B) is given in (2.21). By Lemma 9.1, A′
n(s) converges to A′(s) in L2(M), while

Bn(s) converges to B(s) in W1(M) and in L∞ and therefore in L p(M) for 2 ≤ p ≤ ∞.
Hence λp(Bn(s)) → λp(B(s)) for all p ≥ 2. Letting n → ∞ in (9.2) proves (5.9) for
strong solutions for 2 ≤ p ≤ ∞. Now ‖Bn(·)‖2 is non-increasing on [a, b] by Theo-
rem 6.2 and therefore ‖B(·)‖2 is non-increasing also on this interval. Thus ‖B(σ )‖2 is
non-increasing on any interval [a, b] ⊂ (0, t] of length less than τ , and, being continuous
at σ = 0, is therefore non-increasing on [0, t] for any t < T . Now (6.3) follows from
(5.9) and the monotonicity of λ2(B(s)) as in the original proof of (6.3). This proves the
assertions of Parts a) and b).

For the proof of c) note first that, unlike the Sobolev inequality just proven for fixed
s, all four of the inequalities in Theorem 6.2 are global, in the sense that they involve
integrals over large intervals. To use Lemma 9.1 it will be necessary to partition the
large intervals into small intervals of length less than τ and establish inequalities in each
interval which can be added up with appropriate cancellation of boundary terms. We will
illustrate the method by deriving the most complicated estimate, (6.8). Given a locally
bounded strong solution A over [0, T ) and, given t ∈ (0, T ), pick τ as in Lemma 9.1.
Suppose that [a, b] ⊂ (0, t] with b − a < τ . Denote by An a sequence of smooth
solutions as prescribed in Lemma 9.1. We may apply the inequality (6.13) to An over
the interval [a, b] by taking the origin to be at a. Integrating (6.13) over [a, b] we find

e−ψn(s)‖A′
n(s)‖2

2|ba +
∫ b

a
e−ψn(s)‖B ′

n(s)‖2
2ds ≤ 0. (9.3)

Here ψn(s) = 2
∫ s

a λ2(Bn(σ ))dσ as in (6.1). Before letting n → ∞ we need to elimi-
nate ‖B ′

n(s)‖2
2, which we have no control over (at the present time.) To this end multiply

(9.3) by κ2 and use (6.4) in the integrand to find

κ2e−ψn(s)‖A′
n(s)‖2

2|ba +
∫ b

a
e−ψn(s)‖A′

n(s)‖2
6ds

≤ κ2
∫ b

a
e−ψn(s)λ2(Bn(a))‖A′

n(s)‖2
2ds. (9.4)

By Lemma 9.1 A′
n(s) → A′(s) in L2(M) uniformly in s over [a, b] and λ2(Bn(s)) →

λ2(B(s)) uniformly also. It now follows from Fatou’s Lemma that ‖A′(s)‖2
6 ≤

lim infn→∞ ‖A′
n(s)‖2

6 and the same argument applies to the entire integral on the left of
(9.4), considering that ψn(s) converges uniformly on [a, b] to ψ s

a := 2
∫ s

a λ2(B(σ ))dσ .
Since, by Part a), λ2(B(a)) ≤ λ0, we arrive at

κ2e−ψs
a ‖A′(s)‖2

2|ba +
∫ b

a
e−ψs

a ‖A′(s)‖2
6ds ≤ κ2λ0

∫ b

a
e−ψs

a ‖A′(s)‖2
2ds.
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Now let 0 < σ < t . If [a, b] ⊂ [σ, t], then, using ψa
σ + ψ s

a = ψ s
σ for a ≤ s, we can

multiply the last inequality by e−ψa
σ to deduce that

κ2e−ψs
σ ‖A′(s)‖2

2|ba +
∫ b

a
e−ψs

σ ‖A′(s)‖2
6ds ≤ κ2λ0

∫ b

a
e−ψs

σ ‖A′(s)‖2
2ds. (9.5)

Since the exponential factors no longer depend on a, (9.5) allows for cancellation of
the boundary terms thus: Partition the interval [σ, t] into small intervals, choosing σ =
a0 < a1 < · · · < an = t with each interval of length less than τ . Taking a = a j−1 and
b = a j in (9.5) and summing from j = 1 to n we get cancellation of differences on the
left and arrive at

κ2
{

e−ψ t
σ ‖A′(t)‖2

2 − ‖A′(σ )‖2
2

}
+

∫ t

σ

e−ψs
σ ‖A′(s)‖2

6ds ≤ κ2λ0

∫ t

σ

e−ψs
σ ‖A′(s)‖2

2ds,

which, upon multiplying by eψ
t
σ , gives

κ2‖A′(t)‖2
2 +

∫ t

σ

eψ
t
s ‖A′(s)‖2

6ds ≤ κ2
{

eψ
t
σ ‖A′(σ )‖2

2 + λ0

∫ t

σ

eψ
t
s ‖A′(s)‖2

2ds
}
.

By (6.3), which we already know holds for strong solutions by Part b) of this corollary,
we have ‖B(t)‖2

6 ≤ κ2‖A′(t)‖2
2+κ2λ0‖B0‖2

2. Adding this to the last displayed inequality
gives exactly (6.16), which, as before, implies (6.8).

For the proof of Part d) observe that, among the inequalities (6.20)–(6.23), the only
one relying on more smoothness than is available from the definition of strong solutions
is (6.23), because of its dependence on (6.27), which contains third spatial derivatives of
A on the left side. But the integrated identity (6.29) is clearly derivable from Lemma 9.1
by adding finitely many identities of the form d∗ A(σ )|ba = ∫ b

a [A(s) · A′(s)]ds to arrive
at d∗ A(t)− d∗ A(r) = ∫ t

r [A(s) · A′(s)]ds, and then letting r ↓ 0. The rest of the proof
is the same as the earlier derivation of (6.23). ��
Corollary 9.3. For any locally bounded strong solution A(·) over an interval [0, T ) the
growth estimate (6.19) holds.

Proof. The proof of the inequality (6.19) depends on the validity of the inequalities
(6.20)–(6.23). These have been proven for locally bounded strong solutions in Corol-
lary 9.2, wherein the restriction that A ∈ C∞((0, T )) was removed. The proof given of
Theorem 6.7 is now applicable to any locally bounded strong solution. ��

9.2. Dirichlet and Neumann boundary conditions.

Proof of Theorems 2.5 and 2.7. Suppose that A(·) is a locally bounded strong solution
to (2.6) over [0, T ) satisfying either Neumann boundary conditions, (2.9) and (2.10) or
Dirichlet boundary conditions, (2.11) and (2.12). If T < ∞ then by Theorem 6.7 there
is a number β < ∞ such that ‖A(t)‖H1(M) ≤ β for 0 ≤ t < T . By Theorem 8.1 there
exists δ > 0 such that short time solutions exist over [0, 2δ) if ‖A0‖H1 ≤ β. Apply this
theorem with A0 = A(T − δ). Then we may conclude that there is a locally bounded
strong solution Â(t) over [T − δ, T + δ) such that Â(T − δ) = A(T − δ). From unique-
ness, Theorem 8.15, we know that Â(t) = A(t) on [T −δ, T ). Hence Â extends A to the
entire interval [0, T + δ). We show now that the extended solution is locally bounded.
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For 0 < a < T , the condition (2.7) shows that ‖BA(t)‖∞ is bounded on [a, T ), and,
since ‖BÂ(T −δ+s)‖∞s3/4 is bounded for 0 < s < 2δ by (8.5), it follows that, for the
extension A(·) to [0, T + δ), one has supa≤t<T +δ ‖BA(t)‖∞ < ∞. Therefore A(·) is a
locally bounded strong solution on [0, T + δ). Hence the maximal interval of existence
of a locally bounded strong solution is [0,∞).

The uniqueness portions of Theorems 2.5 and 2.7 follow from Theorem 8.15. ��

9.3. Marini boundary conditions. The following lemma will be used to deduce Theo-
rem 2.12 from Theorem 2.5.

Lemma 9.4. Suppose that A ∈ C2(M;Λ1 ⊗ k). Then there exists a function g ∈
C2(M; K ) such that

(Ag)norm = 0. (9.6)

Proof. For a point P ∈ ∂M let xP (s), 0 ≤ s < ε be the geodesic in M starting at P
and normal to ∂M at P . Thus x ′

P (0) = −n, where n is the outward drawn unit normal
at P . We may choose ε > 0 so small that the map ∂M × [0, 2ε) � P, s → xP (s)
is a diffeomorphism onto a collar neighborhood U of ∂M in M . Choose a function
h ∈ C∞

c ([0, 2ε)) such that h(s) = s on [0, ε). Define

g(y) =
{

eh(s)〈A,n〉P if y = xP (s) ∈ U
IV if y ∈ M − U.

Then g is C2 in U and, since g(y) = eK ≡ IV in a neighborhood of the inner boundary of
U , it follows that g ∈ C2(M; K ). Moreover dg(xP (s))/ds|s=0 = h′(s)|s=0〈A,n〉P =
〈A,n〉P . Therefore

(Ag)norm(P) = g(P)−1 Anorm g(P) + g(P)−1〈dg(P),n〉
= Anorm(P)− dg(xP (s))/ds|s=0

= 0.

��
Remark 9.5. The preceding lemma has an imprecise analog for Dirichlet boundary con-
ditions. Suppose that A is in C∞(M) and that Btan = 0. Then, given a point P ∈ ∂M ,
there is a smooth function g : M → K such that (Ag)tan = 0 in some neighborhood of
P in ∂M . Indeed, the connection form Atan on ∂M has curvature form Btan , which is
zero. So Atan is locally, on ∂M , a pure gauge. That is, there exists a smooth function φ
on a neighborhood of P ∈ ∂M such that Atan = φ−1dφ on this neighborhood. Extend
φ smoothly to a neighborhood U in M for which P ∈ U ∩ ∂M ⊂ domain φ and define
g = φ−1 there. It is straightforward to verify then that (Ag)tan = 0 on U ∩ ∂M as
asserted. Moreover, choosing φ(P) = eK and U small, one can ensure that φ takes its
values in a contractible neighborhood of eK in K and therefore g can be extended to all
of M .

For a nontrivial bundle over M the boundary conditions Bnorm = 0 and Btan = 0 are
both independent of gauge choices, as opposed to Anorm = 0 and Atan = 0. This has
been observed and used by W. Gryc, [20], in his work extending the no-section theorem
of Narasimhan and Ramadas, [42], to manifolds with boundary.

Proof of Theorem 2.12. Suppose that A0 ∈ C2(M;Λ1 ⊗ k). By Lemma 9.4 there exists
a function g ∈ C2(M; K ) such that Â0 ≡ Ag

0 has normal component zero. Clearly
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Â0 ∈ C1(M) ⊂ W1(M). By Theorem 2.5 there exists a unique locally bounded strong
solution Â(·) to (2.6) on [0,∞) such that Â(s)norm = 0 for s ≥ 0 and B̂(s)norm = 0
for s > 0. Define A(s) = Â(s)g

−1
for s ≥ 0. Since g ∈ C2(M; K ), A(s) is again a

strong solution and B(s)norm = (B̂(s)g
−1
)norm = 0. Of course A(s)norm need not be

zero for s ≥ 0. However, the uniqueness portion of Theorem 2.5 applies, showing that
A(·) is the unique locally bounded strong solution with A(0) = A0 and B(s)norm = 0
for s > 0.

��
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