
Digital Object Identifier (DOI) 10.1007/s00220-012-1552-6
Commun. Math. Phys. 316, 809–841 (2012) Communications in

Mathematical
Physics

Hastings–Levitov Aggregation in the Small-Particle Limit

James Norris1,�, Amanda Turner2

1 Statistical Laboratory, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK.
E-mail: J.R.Norris@statslab.cam.ac.uk

2 Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, UK

Received: 3 November 2011 / Accepted: 10 February 2012
Published online: 30 September 2012 – © Springer-Verlag 2012

Abstract: We establish some scaling limits for a model of planar aggregation. The
model is described by the composition of a sequence of independent and identically
distributed random conformal maps, each corresponding to the addition of one particle.
We study the limit of small particle size and rapid aggregation. The process of growing
clusters converges, in the sense of Carathéodory, to an inflating disc. A more refined
analysis reveals, within the cluster, a tree structure of branching fingers, whose radial
component increases deterministically with time. The arguments of any finite sample of
fingers, tracked inwards, perform coalescing Brownian motions. The arguments of any
finite sample of gaps between the fingers, tracked outwards, also perform coalescing
Brownian motions. These properties are closely related to the evolution of harmonic
measure on the boundary of the cluster, which is shown to converge to the Brownian
web.

1. Introduction

Consider an increasing sequence (Kn : n � 0) of compact subsets of the complex
plane, starting from the closed unit disc K0 centred at 0. Set Dn = (C ∪ {∞})\Kn and
assume that Dn is simply connected. Write Kn as a disjoint union K0 ∪ P1 ∪ · · · ∪ Pn .
Think of Kn as a cluster formed by attaching a sequence of particles P1, . . . , Pn to
K0. By the Riemann mapping theorem, there is a unique normalized conformal map
�n : D0 → Dn . Here, by normalized we mean that �n(z) = ecn z + O(1) as |z| → ∞
for some cn ∈ R. By a conformal map D0 → Dn we always mean a conformal isomor-
phism, in particular a bijection. The constant cn is the logarithmic capacity cap(Kn) and
the sequence (cn : n � 0) is increasing. We can write �n = F1 ◦ · · · ◦ Fn , where each
Fn is a normalized conformal map from D0 to a neighbourhood of ∞ in D0. Moreover,
any sequence (Fn : n ∈ N) of such conformal maps is associated to such a sequence of
sets (Kn : n � 0) in this way.
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Hasting and Levitov [9] introduced a family of models for random planar growth,
indexed by a parameter α ∈ [0, 2]. We shall study a version of the case α = 0, which
may be described as follows. Let P be a non-empty and connected subset of D0, hav-
ing 1 as a limit point. Set K = K0 ∪ P and D = (C ∪ {∞})\ K . Assume that K is
compact and that D is simply connected. We think of P as a particle attached to K0 at
1. For example, P could be a disc of diameter δ tangent to K0 at 1, or a line segment
(1, 1+δ]. We sometimes allow the case where P has other limit points in K0, for example
P = {z ∈ D0 : |z − 1| � δ}, but always give 1 the preferred status of attachment point.
Write F for the unique normalized conformal map D0 → D and set c = cap(K ). We
assume throughout that F extends continuously to the closure D̄0. This is known to hold
if and only if K is locally connected. Let (�n : n ∈ N) be a sequence of independent
random variables, each uniformly distributed on [0, 2π). Define for n � 1,

Fn(z) = ei�n F(e−i�n z), �n = F1 ◦ · · · ◦ Fn . (1)

Write (Kn : n ∈ N) and (Pn : n ∈ N) for the associated sequences of random clusters
and particles.

Note that cap(Kn) = cn. Note also that Pn+1 = �n(ei�n+1 P). Since harmonic mea-
sure is conformally invariant, conditional on Kn , the random point�n(ei�n+1) at which
Pn+1 is attached to Kn is distributed on the boundary of Kn according to the normalized
harmonic measure from infinity. However Pn+1 is not a simple copy of P , as would be
natural in a model of diffusion limited aggregation, but is distorted1 by the map �n .

We obtain results which describe the limiting behaviour of the growing cluster when
the basic particle P has small diameter δ, identifying both its overall shape and the dis-
tribution of random structures of ‘fingers’ and ‘gaps’. Some of these results are stated in
Sect. 3. The results are accompanied by illustrations of typical clusters for certain cases
of the model. We need some basic estimates for conformal maps, which are derived in
Sect. 4. A simplifying feature of the case α = 0 is the fact that, for �n = �−1

n , the
process (�n(z) : n � 0) is Markov, for all z ∈ D0. This enables us to do a fluid limit
analysis in Sect. 5 for the random flows �n as the particles become small, showing that
after adding n particles, the cluster fills out a disc of radius ecn , with only small holes. In
Sect. 6, we obtain some further estimates which show that the harmonic measure from
infinity on the boundary of the cluster is concentrated near the circle of radius ecn and
spread out evenly around the circle. We also bound the distortion of individual particles.
Section 7 reviews some weak approximation theorems for the coalescing Brownian flow
from [16]. These are then applied to the flow of harmonic measure on the cluster bound-
ary in Sect. 8. In conjunction with the results of Sect. 6, this finally allows us to identify
the weak limit of the fingers and gaps.

2. Review of Related Work

There has been strong interest in models for the random growth of clusters over the
last 50 years. Early models were often set up on a lattice, such as the Eden model [6],
Witten and Sander’s diffusion limited aggregation (DLA) [18], and the family of dielec-
tric breakdown models of Niemeyer et al. [14]. The primary interest in these and other
related processes has been in the asymptotic behaviour of large clusters.

1 If we suppose (unrealistically) that �′
n is nearly constant on the scale of P , then a rough compen-

sation for the distortion would be achieved by replacing P in the definition of Pn+1 by a scaled copy of
diameter δn+1 = |�′

n(e
i�n+1 )|−1δ. More generally, we could interpolate between these models by taking

δn+1 = |�′
n(e

i�n+1 )|−α/2δ for some fixed α ∈ [0, 2]. This is the family proposed by Hastings and Levitov.
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Computational investigations of these lattice based models have revealed structures,
of fractal type, which in some cases resemble natural phenomena. However, such inves-
tigations have also shown sensitivity to details of implementation, in particular to the
geometry of the underlying lattice. For example, in [1] and [13] different fractal dimen-
sions are obtained for DLA constructed with different lattice dependencies. This suggests
that lattice-based models may not be the most effective way to describe these physical
structures. In addition, lattice based models have proved difficult to analyse. There
are few notable mathematical results, with the exception of Kesten’s growth estimate
for DLA [12], and there is much that remains to be understood about the large-scale
behaviour of these models and in particular about the structure of fingers which is char-
acteristically observed.

Hastings and Levitov [9] formulated a family of continuum growth models in terms
of sequences of iterated conformal maps, indexed by a parameter α ∈ [0, 2]. They argue,
by comparing local growth rates, that their models share features with lattice dielectric
breakdown in the range α ∈ [1, 2], so that α = 1 corresponds to the Eden model, and
α = 2 to DLA. This relation is further explored in the survey paper by Bazant and
Crowdy [2].

The Hastings–Levitov family of models has been discussed extensively in the physics
literature from a numerical point of view. In their original paper, Hastings and Levitov
found experimental evidence of a phase transition at α = 1, and further studies can
be seen in, for example, [5] where estimates for the fractal dimensions of clusters are
obtained, [10] where the multifractal properties of harmonic measure on the cluster are
explored, and [8] where the dependence of the fractal dimension on α is investigated.

Although this conformal mapping approach to planar random growth processes has
proved more tractable than the lattice approach, there have been few rigorous mathemat-
ical results, particularly in the case α > 0. Carleson and Makarov [3,4] obtained growth
estimates for some deterministic analogues of the DLA model. Rohde and Zinsmeister
[17] considered the case α = 0 in the Hastings–Levitov family. They established a long-
time scaling limit, for fixed particle size and showed that the limit law was supported on
clusters of dimension 1. They also gave estimates for the dimension of the limit sets in
the case of general α, and discussed limits of deterministic variants. Recently, Johansson
Viklund, Sola and Turner [11] studied an anisotropic version of the Hastings–Levitov
model in the α = 0 case, and established deterministic scaling limits for the macroscopic
shape and evolution of harmonic measure on the cluster boundary.

In this paper, we also consider the case α = 0 but in the limiting regime where the
particle diameter δ becomes small and where the size of the cluster is of order 1 or larger.
We obtain a precise description of the macroscopic shape and growth dynamics of these
clusters, as well as a fine scale description of the underlying branching structure. In
the process of obtaining these results, we show that the evolution of harmonic measure
on the cluster boundary converges to the coalescing Brownian flow, also known as the
Brownian web [7]. An early version of some parts of the present paper, along with its
companion paper [16], appeared in [15].

3. Statement of Results

We state here our main results on the shape and structure of the Hastings–Levitov clus-
ter. Our main result on the harmonic measure flow, which cannot be stated so directly,
is Theorem 8.1. For simplicity, we assume in this section that the basic particle P is
either a slit (1, 1 + δ] or a disc {|z − 1 − δ/2| � δ/2}, and that δ ∈ (0, 1/3]. We shall
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prove our results under some general conditions (2), (10), (12) on the basic particle P ,
which can be readiliy checked for the slit and disc models. We shall see that under one
of these conditions (2) the logarithmic capacity c = cap(K ) = log F ′(∞) of K satisfies
δ2/6 � c � 3δ2/4. Our first result expresses that the cluster Kn is contained in a disc
of approximate radius ecn and fills out that disc with only small holes. Moreover, there
is a rough correspondence between the time at which a particle arrives and its distance
from the origin.

Theorem 3.1. Consider for ε ∈ (0, 1] and m ∈ N the event 
[m, ε] specified by the
following conditions: for all n � m and all n′ � m + 1,

|z − ecn+i�n | � εecn for all z ∈ Pn

and

dist(w, Kn) � εecn whenever |w| � ecn

and

|z| � (1 − ε)ecm for all z ∈ Pn′ .

Assume that ε = δ2/3(log(1/δ))8 and m = �δ−6	. Then P(
[m, ε]) → 1 as δ → 0.

This result is a special case of Theorem 6.5 below. Note that 
[m, ε] is decreasing
in m and increasing in ε. We have made some effort to maximise the power 2/3 in this
statement. It will be crucial later that 2/3 > 1/2. We shall take particular interest in
the case where m is of order δ−2 and in the case where m is of order δ−3, when the
logarithm of the diameter of the cluster Km is of order 1 and δ−1 respectively. We have
not attempted to optimise the power 8 in the logarithm.

In Fig. 1, we present some realizations of the cluster when P is a slit2 (1, 1 + δ],
for various values of δ. We observe in Fig. 1(b), when δ = 1, that incoming particles
are markedly distorted and that particles arriving later tend to be larger. This effect is
diminished when we examine smaller values of δ. In Fig. 1(e), the cluster is a rough disc,
as predicted by Theorem 3.1 but with some sort of internal structure. The colours label
arrivals in different epochs, showing that there is a close relationship between the time
of arrival and the distance from the origin at which a particle sticks, as in Theorem 3.1.
Figure 1(f) focuses on the motion of points on the boundary of the unit circle, under the
inverse map �n = �−1

n and over a longer timescale than for the other simulations. This
motion suggests the behaviour of coalescing Brownian motions, which is confirmed in
Theorem 8.1 below.

We now fix N ∈ N and state two results describing the internal geometry of the clus-
ter KN in terms of coalescing Brownian motions, which will follow from Theorems 3.1
and 8.1. Define

K̃n = {z ∈ C : ez ∈ Kn}, D̃n = {z ∈ C : ez ∈ Dn}
and determine ρ = ρ(P) ∈ (0,∞) by

ρ

2π

∫ 2π

0
(g(θ)− θ)2dθ = 1,

2 The normalized conformal map G = F−1 : D → D0 can be obtained in this case as φ−1 ◦ g1 ◦ φ,
where φ takes D0 to the upper half plane H0 by φ(z) = i(z − 1)/(z + 1) and g1(z) =

√
(z2 + t)/(1 − t)

takes H = H0 \ (0, i
√

t] to H0, where t = δ2/(2 + δ)2. A straightforward calculation gives c = c(δ) =
− log G′(∞) = − log(1 − t) � δ2/4.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. The slit case of HL(0)
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where g is the unique continuous map (0, 2π) → (0, 2π) such that g(π) = π and
G(eiθ ) = eig(θ) for all θ . We shall show in Proposition 4.3 that δ−3/C � ρ � Cδ−3

for an absolute constant C < ∞. Note that KN has a natural notion of ancestry for its
constituent particles: we say that Pk is the parent of Pn+1 if�n(ei�n+1) ∈ Pk . This notion
is inherited by the covering cluster K̃N and will allow us to identify path-like structures
within the cluster. For Re(z) � 0, denote by P̃0(z) the closest particle to z in K̃N , and
recursively denote by P̃m(z) the parent of P̃m−1(z) until m = m(z) when P̃m(z)(z) is
attached to the imaginary axis, at a(z) say. Consider the compact set

finger(z) = {a(z)} ∪
m(z)⋃
m=0

P̃m(z).

We shall describe also the structure of the complementary set D̃N , using a choice of
paths in this set. The notion of ancestry is not available, so we look instead for paths
in the gaps which lead mainly outwards, that is to the right in the logarithmic picture.
In order to enforce this outwards property, we impose a condition of minimal length,
which requires a suitable completion of the set of paths. By a gap path we mean a
rectifiable path (pτ )τ�0 in C, parametrized by arc length, such that Re(pτ ) → ∞ as
τ → ∞ and such that, for some continuous map h : [0,∞) × [0, 1] → C and for all
τ � 0, we have pτ = h(τ, 1) and h(τ, t) ∈ D̃N for all t ∈ [0, 1). For R > 0, define
L R(p) = inf{τ � 0 : Re(pτ ) = R}. Write p0(z) for the closest point to z which is not
in the interior of K̃N . Since D̃N is simply connected and KN is compact, there exists
a unique gap path p(z) starting from p0(z) and minimizing L R(p) over all gap paths
starting from p0(z), for all sufficiently large R. The path p(z) may be thought of as a
long piece of thread outside the cluster, with one end attached to p0(z) and drawn tight
by pulling from the right. Set

gap(z) = {pτ (z) : τ � 0}.
Note that, by minimality, for all τ1, τ2 � 0 with τ1 < τ2 and such that the open line
segment I = (pτ1(z), pτ2(z)) is contained in D̃N , we have pτ (z) ∈ I for all τ ∈ (τ1, τ2).
These definitions are illustrated in Fig. 2. Both fingers and gaps depend implicitly on
N , although we have suppressed this in the notation.

In order to capture the limiting fluctuations of the fingers and gaps we have to rescale.
We do this in two ways, defining horizontal and vertical scaling operators σ and σ̄ by

σ(r + iθ) = (δ∗r, θ), σ̄ (r + iθ) = (r, θ/
√
δ∗), r � 0, θ ∈ R,

where δ∗ = (ρc)−1. Note that δ/C � δ∗ � Cδ for an absolute constant C < ∞. Also
σ̄ = σδ∗ ◦ σ , where σδ∗ is the diffusive scaling

σδ∗(s, x) = (s/δ∗, x/
√
δ∗), s � 0, x ∈ R.

The horizontal scaling identifies global random behaviour in the fingers and gaps over
very long time scales, whereas the vertical scaling identifies local fluctuations in the
fingers and gaps while the size of the cluster is of order 1.

Denote by S the space of closed subsets of [0,∞)× R, equipped with a local Haus-
dorff metric. Define F,G : [0,∞)× R → S and F̄, Ḡ : [0,∞)× R → S by

F = σ ◦ finger ◦ σ−1, G = σ ◦ gap ◦ σ−1,

F̄ = σ̄ ◦ finger ◦ σ̄−1, Ḡ = σ̄ ◦ gap ◦ σ̄−1.
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Fig. 2. Diagram illustrating fingers and gaps in K̃N (repeating periodically). This is only a representation and
in general the particles will be distorted both by the conformal mapping and by the logarithmic transformation

Thus, for e = (s(e), x(e)),

F(e) = {σ(w) : w ∈ finger(s(e)/δ∗ + i x(e))}, G(e) = {σ(w) : w ∈ gap(s(e)/δ∗ + i x(e))},
F̄(e) = {σ̄ (w) : w ∈ finger(s(e) + i x(e)

√
δ∗)}, Ḡ(e) = {σ̄ (w) : w ∈ gap(s(e) + i x(e)

√
δ∗)}.

We consider F(e), F̄(e),G(e), Ḡ(e) as random variables in S.
We state first the long time result. Fix T > 0 and let E be a finite subset of [0, T ]×R.

Take N = �ρT 	 so that KN is approximately a disc of radius eT/δ∗ . Denote by νP
E and

ηP
E the respective laws of (F(e) : e ∈ E) and (G(e) : e ∈ E) on SE . Let (Be : e ∈ E)

be a family of 2π -coalescing Brownian motions, Be running backwards in time from
x(e) at time s(e). Thus Be = (Be

t : 0 � t � s(e)) and for all e, e′ ∈ E , Be and Be′

are independent until (time running backwards) their difference is an integer multiple of
2π , at which point it freezes. Let (W e : e ∈ E) be a family of 2π -coalescing Brownian
motions, with W e running forwards in time from x(e) at time s(e). Denote by νE and
ηE the laws on SE of the families of random sets ({(t, Be

t ) : 0 � t � s(e)} : e ∈ E)
and ({(t,W e

t∧T ) : t � s(e)} : e ∈ E).

Theorem 3.2. We have νP
E → νE and ηP

E → ηE weakly on SE as δ → 0.

Thus, for small δ, we can construct on a common probability space, the cluster KN
and backwards and forwards 2π -coalescing Brownian motions, such that the union of
fingers in K̃N starting from points s(e)/δ∗ + i x(e), e ∈ E is, with probability close to
1, close in Hausdorff metric to the set

⋃
e∈E {t/δ∗ + i Be

t : 0 � t � s(e)}, and hence the
union of fingers in KN , starting from points exp(s(e)/δ∗ + i x(e)), e ∈ E looks approxi-
mately like the set

⋃
e∈E {exp(t/δ∗ + i Be

t ) : 0 � t � s(e)}. Similarly, the union of gaps
in KN , starting from points exp(s(e)/δ∗ + i x(e)), e ∈ E looks approximately like the
set

⋃
e∈E {exp(t/δ∗ + iW e

t∧T ) : t ≥ s(e)}. A simulation of
⋃

e∈E {exp(t/δ∗ + i Be
t ) : 0 �

t � s(e)} and
⋃

e∈E {exp(t/δ∗ + iW e
t ) : s(e) � t � T } is shown in Fig. 3(a).

For the local result we take now N = �c−1T 	 so that KN is approximately a disc
of radius eT . Denote by ν̄P

E and η̄P
E the laws of (F̄(e) : e ∈ E) and (Ḡ(e) : e ∈ E)

on SE . Let (B̄e : e ∈ E) be a family of coalescing Brownian motions, B̄e running
backwards in time from x(e) at time s(e). Thus B̄e = (B̄e

t : 0 � t � s(e)) and for
all e, e′ ∈ E , B̄e and B̄e′

are independent until (time running backwards) they collide,
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(a) (b)

Fig. 3. Geometric illustration of Theorems 3.2 and 3.3, where fingers are denoted in dark blue, and gaps in
light blue (colour figure online)

at which time they coalesce. Let (W̄ e : e ∈ E) be a family of coalescing Brownian
motions, with W̄ e running forwards in time from x(e) at time s(e). Denote by ν̄E and
η̄E the laws on SE of the families of random sets ({(t, B̄e

t ) : 0 � t � s(e)} : e ∈ E)
and ({(t, W̄ e

t∧T ) : t � s(e)} : e ∈ E).

Theorem 3.3. We have ν̄P
E → ν̄E and η̄P

E → η̄E weakly on SE as δ → 0.

Thus, for small δ, we can construct on a common probability space, the cluster KN
and backwards and forwards coalescing Brownian motions, such that the union of fin-
gers in K̃N starting from points s(e) + i x(e)

√
δ∗, e ∈ E is, with probability close

to 1, close in Hausdorff metric to the set
⋃

e∈E {t + i B̄e
t

√
δ∗ : 0 � t � s(e)}, and

hence the union of fingers in KN , starting from points exp(s(e) + i x(e)
√
δ∗), e ∈ E

looks approximately like the set
⋃

e∈E {exp(t + i B̄e
t

√
δ∗) : 0 � t � s(e)}. Similarly,

the union of gaps in KN , starting from points exp(s(e) + i x(e)
√
δ∗), e ∈ E looks

approximately like the set
⋃

e∈E {exp(t + i W̄ e
t∧T

√
δ∗) : t ≥ s(e)}. A simulation of⋃

e∈E {exp(t + i B̄e
t

√
δ∗) : 0 � t � s(e)} and

⋃
e∈E {exp(t + i W̄ e

t

√
δ∗) : s(e) � t � T }

is shown in Fig. 3(b).
Theorems 3.2 and 3.3 are obvious corollaries of Theorem 8.2, which identifies also

the limiting joint law of fingers and gaps.

4. Some Basic Estimates

We derive in this section some estimates for quantities associated to the basic particle
P . In some special cases one could use instead an explicit calculation. By proving gen-
eral estimates we are able to demonstrate some universality for the small-particle limit.
Recall that K = K0 ∪ P and D = (C∪{∞})\K , with K compact and locally connected
and D simply connected in C∪{∞}. The following assumptions are in force throughout
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this section:

δ∈(0, 1/3] and P ⊆{z ∈C : |z−1|�δ} and 1+δ∈ P and P ={z̄ : z ∈ P}.
(2)

Consider the map ψ(z) = z̄−1 on C ∪ {∞} by reflection in the unit circle S. Set
P̂ = ψ(P) and D̂ = ψ(D), D̂0 = ψ(D0). Define also P∗ = P ∪ I ∪ P̂ , where I
is the set of limit points of P in S, and set D∗ = (C ∪ {∞})\ P∗. By the Riemann
mapping theorem, there is a conformal map Ĝ : D̂ → D̂0 and a constant c ∈ R such
that Ĝ(z) = ecz + O(|z|2) as |z| → 0, and Ĝ and c are unique. Moreover Ĝ extends to a
conformal map G∗ : D∗ → (C∪{∞})\J for some interval J ⊆ S, with G∗◦ψ = ψ◦G∗
on D∗. Write G for the restriction of G∗ to D. Then G is a conformal map D → D0
and G(z) = e−cz + O(1) as |z| → ∞, The constant c is the logarithmic capacity
cap(K ). The well known fact that c is positive will emerge in the course of the proof of
Proposition 4.1.

Note that D∗ is simply connected and G∗(z)/z �= 0 for all z ∈ D∗. So we may
choose a branch of the logarithm so that log(G∗(z)/z) is continuous on D∗ with limit c
at 0 and then, for some constant C(K ) < ∞, we have∣∣∣∣∣log

(
Ĝ(z)

z

)
− c

∣∣∣∣∣ � C(K )|z|, z ∈ D̂

and so ∣∣∣∣log

(
G(z)

z

)
+ c

∣∣∣∣ � C(K )

|z| , z ∈ D.

In fact the following stronger estimate holds.

Proposition 4.1. There is an absolute constant C < ∞ such that∣∣∣∣log

(
G(z)

z

)
+ cap(K )

∣∣∣∣ � C cap(K )

|z − 1| , |z − 1| > 2δ, z ∈ D.

Proof. Set H(z) = u(z) + iv(z) = log(G∗(z)/z). Then H is bounded and holomorphic
on D∗ and H(z) → −c as |z| → ∞. Fix z ∈ C and let B be a complex Brownian
motion starting from z. Suppose that z ∈ D and consider the stopping time

T = inf{t � 0 : Bt �∈ D}.
Then T < ∞ and |BT | � 1 almost surely, and |BT | > 1 with positive probability. Also
u(Bt ) → − log |BT | as t ↑ T almost surely. Hence, by optional stopping,

u(z) = −E(log |BT |) < 0.

Set r = δ/(2 − δ) and define P∗
1 = {z ∈ C : |z − 1| � r |z + 1|}. Then set

D∗
1 = (C ∪ {∞})\P∗

1 , P1 = P∗
1 ∩ D0, D1 = D∗

1 ∩ D0, K1 = K0 ∪ P1.

Then P∗ ⊆ P∗
1 ⊆ {z ∈ C : |z − 1| � δ/(1 − δ)}. The boundary of D1 consists of

two circular arcs, one contained in S, where u = 0, the other contained in P1, which
we denote by A. The normalized conformal map G1 : D1 → D0 can be obtained as
φ−1 ◦ g1 ◦ φ, where φ takes D0 to the upper half-plane by φ(z) = i(z − 1)/(z + 1) and
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g1(z) = (z + r2/z)/(1 − r2). Hence we obtain G∗
1(z) = z(γ z − 1)/(z − γ ) for z ∈ D∗

1 ,
where γ = (1 − r2)/(1 + r2), and G1(A) = {eiθ : |θ | < θ0}, where θ0 = cos−1 γ . Set
F1 = G−1

1 . Then u ◦ F1 is bounded and harmonic on D0. Suppose now that z ∈ D0 and
consider the stopping time

T0 = inf{t � 0 : Bt �∈ D0}.
Then T0 < ∞ almost surely and, by optional stopping,

u(F1(z)) = E(u(F1(BT0))) = 1

2π

∫
|θ |�θ0

u(F1(e
iθ ))Re

(
z + eiθ

z − eiθ

)
dθ.

On letting |z| → ∞ we obtain

c = − 1

2π

∫
|θ |�θ0

u(F1(e
iθ ))dθ > 0,

so

u(F1(z)) + c = 1

2π

∫
|θ |�θ0

u(F1(e
iθ ))Re

(
2eiθ

z − eiθ

)
dθ.

Hence, for z ∈ D1,

|u(z) + c| � 2c

dist(G1(z),G1(A))
.

By an elementary calculation, we have |(G∗
1)

′(z)−γ | � 6γ /7 whenever |z −1| � 7δ/4
and δ ∈ (0, 1/3]. Set A′ = {z ∈ C : |z − 1| = 7δ/4}. Then dist(G1(z),G1(A)) �
dist(G1(z),G1(A′)) whenever |z − 1| � 7δ/4. By the mean value theorem, there is an
absolute constant C1 < ∞ such that

dist(G1(z),G1(A
′)) � |z − 1|/C1, |z − 1| � 2δ.

Hence

|u(z) + c| � 2C1c/|z − 1|, |z − 1| � 2δ, z ∈ D,

and the same estimate extends to D∗ by reflection.
Then, by a standard estimate for harmonic functions (differentiate the Poisson kernel),

|∇v(z)| = |∇u(z)| � 8C1c/|z − 1|2, |z − 1| � 2δ, z ∈ D, (3)

and so

|v(z)| �
∫ ∞

0
|∇v(z + s(z − 1)||z − 1|ds � 8C1c/|z − 1|, |z − 1| � 2δ, z ∈ D,

giving the required bound. ��
Corollary 4.2. We have δ2/6 � cap(K ) � 3δ2/4.
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Proof. We use notation from the preceding proof. By uniqueness, we have G1 = G†◦G,
where G† is the normalized conformal map G(D1) → D0. Hence

cap(K ) � cap(K ) + cap(G(K1\K )) = cap(K1) = log

(
1 + r2

1 − r2

)
� 3δ2

4
.

Also, since 1 + δ ∈ P , G = G‡ ◦ G2, where G2 is the normalized slit map D2 =
D0 \(1, 1 + δ] → D0 referred to in Sect. 3 and G‡ is the normalized conformal map
G2(D) → D0. Let K2 = K0 ∪ (1, 1 + δ]. Then

cap(K ) = cap(K2) + cap(G2(K \K2)) ≥ − log

(
1 − δ2

(2 + δ)2

)
≥ δ2

6
.

��
We shall do most of the analysis in logarithmic coordinates. Set D̃ = {z ∈ C : ez ∈

D} and D̃0 = {z ∈ C : Re(z) > 0}. There are unique conformal maps G̃ : D̃ → D̃0 and
F̃ : D̃0 → D̃ such that G̃(z)− z +c → 0 and F̃(z)− z −c → 0 as Re(z) → ∞. Then F̃
and G̃ are 2π i-periodic and F̃ = G̃−1. Also G ◦ exp = exp ◦ G̃ and F ◦ exp = exp ◦F̃ .
Proposition 4.1 and (3) provide the following estimates for G̃(z)

|G̃(z)− z + c| � Cc

|ez − 1| , |G̃ ′(z)− 1| � Cc|ez |
|ez − 1|2 , |ez − 1| � 2δ, z ∈ D̃.

(4)

We introduce some further functions associated to G̃ and F̃ . Recall the definitions
of I and J from the start of this section. Since P is symmetric, we can write I = {eiθ :
|θ | � p} and J = {eiθ : |θ | � q} for some p ∈ [0, π) and q ∈ (0, π). Then there
exist unique non-decreasing right-continuous functions g+ and f + on R such that the
functions θ �→ g+(θ)− θ and θ �→ f +(θ)− θ are 2π -periodic and such that

g+(θ) =
{±q, ±θ ∈ (0, p]

Im(G̃(iθ)), |θ | ∈ (p, π ] , f +(θ) =
{

0, |θ | ∈ [0, q)
Im(F̃(iθ)), |θ | ∈ (q, π ] . (5)

Here we have used the continuous extensions of G̃ and F̃ to certain intervals of the
imaginary axis. Define, for θ ∈ R,

g0(θ) = g+(θ)− θ

and, for x ∈ (0, 1] such that x + iθ ∈ D̃, define

gx (θ) = Im(G̃(x + iθ))− θ.

Proposition 4.3. There is an absolute constant C < ∞ such that, for α = Cδ and
|θ | � π ,

|g0(θ)| � α2

|θ | ∨ α ,

and the same estimate holds for |gx (θ)| when x ∈ (0, 1] and x + iθ ∈ D̃. Moreover C
may be chosen so that

δ3/C � 1

2π

∫ 2π

0
g0(θ)

2dθ � Cδ3,
1

2π

∫ 2π

0
|g0(θ)g0(θ + a)|dθ � Cδ4

a
log

(
1

δ

)

whenever a ∈ [δ, π ].
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Proof. The first estimate follows from the first estimate in (4), using the non-decreasing
property of g+ and the maximum principle to deal with the case where |ex+iθ − 1| < 2δ,
and using cap(K ) � 3δ2/4. This leads directly to the upper bound in the second estimate
and the third estimate.

For the lower bound, note that

1

2π

∫ 2π

0
g0(θ)

2dθ � 1

π

∫ q

0
(q − θ)2dθ = q3

3π

and q = πP∞(BT ∈ P). We give an argument which uses neither the symmetry
assumption P = {z̄ : z ∈ P} nor the assumption 1 + δ ∈ P and instead assumes only
that |z − 1| = δ for some z ∈ P . This will be useful in Lemma 6.1. Denote by P(2) the
union of P with its reflection in the line � joining z and 0. Denote by w the image of 1
under this reflection and by A the shorter arc in the unit circle joining w and 1. Then,
since P is connected, we have

2P∞(BT ∈ P) � P∞(B hits P(2) before K0)

� P∞(B hits K0 in A) ∨ P∞(B hits � before K0)

� (|w − 1| ∨ (|z| − 1))/(2π) � δ/(4π), (6)

which gives the claimed lower bound. ��

5. Fluid Limit Analysis for Random Conformal Maps

Define conformal maps F̃n and �̃n on D̃0 by

F̃n(z) = F̃(z − i�n) + i�n, �̃n = F̃1 ◦ · · · ◦ F̃n,

where (�n : n ∈ N) is the sequence of independent uniformly distributed random vari-
ables specified in the Introduction. Write �̃n for the inverse map �̃−1

n : D̃n → D̃0. It
will be convenient to use the filtration (Fn : n � 0) given by Fn = σ(�1, . . . , �n).
Recall that we write c for the logarithmic capacity cap(K ). Assumption (2) remains in
force in this section.

For ε ∈ [2δ, 1] and m ∈ N, denote by 
(m, ε) the event defined by the following
conditions: for all z ∈ D̃0 and all n � m, we have

|�̃n(z)− z − cn| < ε whenever Re(z) � 5ε

and

z ∈ D̃n and |�̃n(z)− z + cn| < ε whenever Re(z) � cn + 4ε.

Note the round brackets – this is not the same event as
[m, ε], defined above. We shall
use the following estimate in the case where m = �δ−6	 and ε = δ2/3 log(1/δ) when,
using the bound c � 3δ2/4 from Corollary 4.2, it implies that
(m, ε) has high probabil-
ity as δ → 0. The proof is based on a fluid limit approximation for each Markov process
(�̃n(z) : n � 0), optimized using explicit martingale estimates. Local uniformity in z is
achieved by combining the estimates for individual starting points with an application
of Kolmogorov’s Hölder criterion.
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Proposition 5.1. There is an absolute constant C < ∞ such that, for all ε ∈ [2δ, 1] and
all m ∈ N,

P(
\
(m, ε)) � C(m + ε−2)e−ε3/(Cc).

Proof. It will suffice to consider the case where ε3 � c. Set M = �cm/(2ε)�. Fix k ∈
{1, . . . ,M} and set R = 2(k +1)ε. Consider the vertical line �R = {z ∈ C : Re(z) = R}.
Write N for the largest integer such that cN � R − 2ε. Consider the stopping time

T = TR = inf{n � 0 : z �∈ D̃n or Re(�̃n(z)) � R − cn − ε for some z ∈ �R} ∧ N .

Note that

Re(�̃T −1(z)) > ε > δ > log(1 + δ)

so z ∈ D̃TR for all z ∈ �R . Consider the events


R =
{

sup
n�TR , z∈�R

|�̃n(z)− z + cn| < ε

}
, 
0(m, ε) =

M⋂
k=1


2(k+1)ε.

We shall show that there is an absolute constant C < ∞ such that

P(
\
R) � Cε−6/5e−ε3/(Cc), (7)

from which it follows that

P(
\
0(m, ε)) � C(cm/ε + 1)ε−6/5e−ε3/(Cc) � C(m + ε−2)e−ε3/(Cc).

Note that, on
R , we have |�̃TR (z)−z+cTR | < ε for all z ∈ �R , which forces TR = N
and so z ∈ D̃n whenever Re(z) � R and cn � R − 2ε. Then, since �̃n(z)− z + cn is a
bounded holomorphic function on D̃n , we have on 
R ,

sup
cn�R−2ε,Re(z)�R

|�̃n(z)− z + cn| = sup
cn�R−2ε, z∈�R

|�̃n(z)− z + cn| < ε.

For n � m, we can choose k so that R − 4ε � cn � R − 2ε. Then, if Re(z) � cn + 4ε,
then Re(z) � R, so on 
0(m, ε) we have z ∈ D̃n and |�̃n(z)− z + cn| < ε. Moreover,
on
0(m, ε), the image �̃n(�R) lies to the left of �5ε, and hence, if Re(w) � 5ε, we have
w = �̃n(z) for some Re(z) � R so that

|�̃n(w)− w − cn| = |z − �̃n(z)− cn| < ε.

We have shown that 
0(m, ε) ⊆ 
(m, ε), which implies the claimed estimate.
It remains to prove (7). The function G̃0(z) = G̃(z) − z is holomorphic, bounded

and 2π i-periodic on D̃ with G̃0(z) → −c as Re(z) → ∞. Hence

1

2π

∫ 2π

0
G̃0(z − iθ)dθ = −c, Re(z) > δ.

Let q(r) = r ∧ r2. Then

|G̃0(z) + c| � C1c

Re(z)− δ
, |G̃ ′

0(z)| � 2C1c

q(Re(z)− δ)
, Re(z) � 2δ,
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where C1 is the absolute constant in (4). Set

Mn(z) = �̃n(z)− z + cn, z ∈ D̃n .

Then

Mn+1(z)− Mn(z) = G̃0(�̃n(z)− i�n+1) + c.

So (Mn(z))n�T is a martingale for all z ∈ �R . For z ∈ �R and n � T − 1,

|Mn+1(z)− Mn(z)| � C1c

(Re(�̃n(z))− δ)
� C1c

(R − cn − ε − δ)

and

N−1∑
n=0

C2
1 c2

(R − cn − ε − δ)2
�

∫ R−2ε

0

C2
1 cds

(R − s − ε − δ)2
= C2

1 c

ε − δ
� 2C2

1 c

ε
.

So, by the Azuma-Hoeffding inequality, for all z ∈ �R ,

P

(
sup
n�T

|Mn(z)| � ε/2

)
� 2e−ε3/(16C2

1 c). (8)

Fix z, z′ ∈ �R , define M̃n = Mn(z)− Mn(z′) and set

f (n) = E

(
sup

k�T ∧n
|M̃k |2

)
.

Note that |�̃n(z)− �̃n(z′)| � |z − z′| + |M̃n| so, for n � T − 1,

|M̃n+1 − M̃n|=|G̃0(�̃n(z)− i�n+1)− G̃0(�̃n(z
′)− i�n+1)|� 2C1c(|z − z′| + |M̃n|)

q(R − cn − ε − δ)
.

Then, by Doob’s L2-inequality,

f (n)�4E

(
|M̃T ∧n|2

)
�4

n−1∑
k=0

E(|M̃k+1−M̃k |21{k�T })�32C2
1 c2

n−1∑
k=0

|z−z′|2+ f (k)

q(R−ck−ε−δ)2

so, by a Gronwall-type argument,

E

(
sup
n�T

|M̃n|2
)

= f (N ) � |z − z′|2
(

exp
∫ ∞

ε−δ
32C2

1 cds

q(s)2
− 1

)
.

Now, for r ∈ (0, 1],
∫ ∞

r

ds

q(s)2
= 1

3

(
2 +

1

r3

)

and ε/2 � ε − δ � 1 and ε3 � c. So we deduce the existence of an absolute constant
16C2

1 < C2 < ∞ such that f (N ) � C2c|z − z′|2/ε3. Hence by Kolmogorov’s lemma,
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C2 may be chosen so that, for some random variable M , with E(M2) � C2c/ε3, we
have

sup
k�T

|Mk(z)− Mk(z
′)| � M |z − z′|1/3

for all z, z′ ∈ �R . So, by Chebyshev’s inequality, for any L ∈ N,

P

(
sup
k�T

|Mk(z)− Mk(z
′)| � ε/2 for somez, z′ ∈ �R with |z − z′| � π/L

)

� (π/L)2/34C2c/ε5.

On combining this with (8), we obtain

P(
\
R) � Le−ε3/(C2c) + (π/L)2/34C2c/ε5,

from which (7) follows on optimizing over L . ��
We note two consequences of the event
(m, ε). First we deduce an estimate for the

normalized conformal maps �n . On 
(m, ε), for n � m and |z| = e5ε, we have

| log(e−cn�n(z))− log z| < ε

and so

|e−cn�n(z)− z| < εe6ε.

The last estimate then holds whenever |z| � e5ε by the maximum principle.
Second, we show that on the event 
(m, ε), for n � m and R � cn, there is no disc

of radius 56ε with centre on the line �R = {z ∈ C : Re(z) = R} which is disjoint from
K̃n . Since the sets K̃n are increasing in n, we may assume that R > c(n − 1). Fix y ∈ R

and set w = 6ε + iy. Note that |�̃n(w)− (R + iy)| < ε + |6ε + cn − R| < 7ε + c < 8ε.
Here we have used c � 3δ2/4 � δ/4 < ε. By Cauchy’s integral formula

�̃′
n(w) = 1 +

1

2π i

∫
|z−w|=ε

�̃n(z)− z − cn

(z − w)2
dz

so |�̃′
n(w)| � 2. Then, by Koebe’s 1/4 theorem,

d(�̃n(w), ∂ D̃n) � 4|�̃′
n(w)|d(w, ∂ D̃0) � 48ε,

and so

d(R + iy, ∂ D̃n) � 56ε. (9)
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6. Harmonic Measure and the Location of Particles

In this section we obtain an estimate on the location of the particles Pn+1 = �n(ei�n+1 P)
in the plane. From the preceding section, we know that �n((1 + ε)eiθ ) is close to (1 +
ε)ecn+iθ with high probability, when ε is suitably large in relation to the particle radius
δ. This must break down as ε → 0, at least when particles are attached at a single point,
since the map θ �→ �n(eiθ ) parametrizes the whole cluster boundary by harmonic mea-
sure. Nevertheless, we shall show that the approximation breaks down only on a set
of very small harmonic measure, and in fact the whole of each particle Pn+1 is close
to ecn+i�n+1 , in a sense made precise below. Throughout this section, we assume that
condition (2) holds and we make also the following non-degenerate contact condition

P ⊆ {z ∈ C : Re(z) > 1}. (10)

Lemma 6.1. There is an absolute constant C < ∞ with the following properties. Let
D∗ be any simply connected neighbourhood of ∞ in D0 and set K ∗ = C\D∗. Denote
by μ the harmonic measure from ∞ in D∗ of K ∗\K0 and by N the number of connected
components of K ∗\K0. Then

P(K ∗ ∩ K1 �= K0) � C N
√
μ. (11)

Assume further that 16πμ � δ. Then

P(K ∗ ∩ K∞ �= K0) � C N
√
μ/δ.

Proof. By the estimate (6), each of the N connected components of K ∗ \ K0 is con-
tained in a disc of radius 8πμwith centre on the unit circle. The non-degenerate contact
assumption then allows us to choose C1 < ∞ such that P1 intersects that component
only if ei�1 lies in a concentric disc of radius C1

√
μ. The estimate (11) follows.

Consider a complex Brownian motion B with B0 uniformly distributed on the circle
of radius 2 centred at 0, and independent of�1. Set r = 1+δ/2 and note that K ∗ ⊆ r K0.
Set

T (K ) = inf{t � 0 : Bt ∈ K }.
Note that, since �1 is uniformly distributed on [0, 2π), the events {T (r K0) � T (K1)}
and {T (K ∗) < T (K0)} are independent. We use the estimate (6) and our assumption
that 1 + δ ∈ P to obtain

P(T (r K0) � T (K1)) � 1 − δ/C1.

Note that, since T (r K0) � T (K ∗), we have

{T (K ∗) < T (K1)} ⊆ {T (r K0) � T (K1)} ∩ {T (K ∗) < T (K0)}.
Hence

P(T (K ∗) < T (K1)) � (1 − δ/C)P(T (K ∗) < T (K0)) = (1 − δ/C1)μ.

Set

Hn = P(T (K ∗) < T (Kn)|Fn)
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and note that H0 = μ. By conformal invariance of Brownian motion, we have

Hn = P(T (K ∗
n ) < T (K0)|Fn),

where K ∗
n = �n(K ∗\Kn) ∪ K0, and moreover

E(Hn+1|Fn) = P(T (K ∗
n ) < T (K ′

1)|Fn),

where K ′
1 is an independent copy of K1. Since K ∗

n ⊆ r K0, the argument of the pre-
ceding paragraph applies to show that E(Hn+1|Fn) � (1 − δ/C1)Hn . Hence E(Hn) �
(1 − δ/C1)

nμ for all n.
On the event {K ∗ ∩ Kn = K0}, the set K ∗

n \K0 has N connected components, and
its harmonic measure from ∞ in C\ K ∗

n is Hn . Define P ′
1 = �n(Pn+1). Then P ′

1 has
the same distribution as P1 and is independent of Fn . So the argument leading to (11)
applies to give

P(K ∗ ∩ Pn+1 �= ∅|Fn) = P(K ∗
n ∩ P ′

1 �= ∅|Fn) � C1 N
√

Hn .

Hence

P(K ∗ ∩ K∞ �= K0) �
∞∑

n=0

P({K ∗ ∩ Kn = K0} ∩ {K ∗ ∩ Pn+1 �= ∅})

�
∞∑

n=0

C1 NE(
√

Hn) � C2
1 N

√
μ/δ.

��
Write P̃ for the connected component of K̃ \ K̃0 near 0. Set

P̃n = �̃n−1(P̃ + i�n), Ãn = �̃n−1(i�n).

Then P̃n is a component of the 2π i-periodic set K̃n\ K̃n−1 and it is attached to K̃n−1 at
Ãn . For the next result, we shall use a further assumption on the particle P which allows
us to prove that none of the sets P̃n contain a certain size of fjord, even though they
have been distorted by the maps �̃n−1. The useful form of this assumption is expressed
in terms of harmonic measure. After stating this, we will give a geometrically more
obvious sufficient condition. We assume the following harmonic measure condition.

For all sequences (z1, w1, z2, w2) of points in ∂P, listed anticlockwise, and for any

interval I of ∂D0, if for i = 1 and i = 2 at least the 3/4 of the harmonic measure

on ∂D0 from wi is carried on I, then for either i = 1 or i = 2 at least 1/4 of the

harmonic measure on ∂D0 from zi is carried on I. (12)

This condition is implied by the following property of the image φ(P), where φ is
the conformal map from D0 to the upper half-plane H0, as in footnote 1. For z = x + iy
and z′ = x ′ + iy′ in H0, write S(z, z′) for the smallest closed square in H0 containing all
the points x − y, x + y, x ′ − y′, x ′ + y′. Then the preceding harmonic measure condition
is implied by the following square condition. For all z, z′ ∈ ∂(φ(P)), at least one of
the boundary arcs of ∂(φ(P)) from z to z′ is contained in S(z, z′). To see this, suppose
I ⊆ R is an interval which carries at least 3/4 of the harmonic measure on R starting
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from z, then (x − y, x + y) ⊆ I . Hence, if the same is true for z′, then S(z, z′)∩ R ⊆ I .
Then, for any point w ∈ S(z, z′), I carries at least 1/4 of the harmonic measure on R

starting from w. We have used here the fact that the harmonic measure on R starting
from i places equal mass on the intervals (−∞,−1), (−1, 0), (0, 1), (1,∞). It is easy
to check the square condition for P = (1, 1 + δ] and P = {|z − 1 + δ/2| = δ/2}, when
φ(P) is also a slit or a disc.

Consider for ν ∈ [0,∞) the event


(m, ε, ν) = {Re(z) > c(n ∧ m)− εν for all z ∈ P̃n+1 and all n � 0} ∩
(m, ε).
In conjunction with Proposition 5.1, the following estimate implies that, when m =
�δ−6	 and ε = δ2/3 log(1/δ) and ν = (log(1/δ))2, the event 
(m, ε, ν) has high prob-
ability as δ → 0.

Proposition 6.2. There exists an absolute constant C < ∞ such that, for all ε ∈ [2δ, 1]
and ν ∈ [0,∞),

P(
(m, ε)\
(m, ε, ν)) � Cm(m + δ−1)e−ν/C .

Proof. We use the following Beurling estimate. There is an absolute constant A ∈ [1,∞)

with the following property. For any η ∈ (0, 1] and any connected set K in C joining
the circles of radius η and 1 about 0, the probability that a complex Brownian motion,
starting from 0, leaves the unit disc without hitting K is no greater than A

√
η.

Fix n � m with εν � cn. Condition on Fn and on 
(n, ε). For all z ∈ C with
0 � Re(z) � cn, there exists w ∈ K̃n such that |z − w| � 56ε. Set β = 56A2e2 and
ν0 = �ν/(2β)	. We assume without loss that ν0 � 6. Define R(k) = cn − βεk and
note that R(2ν0) � 0. Fix k ∈ {0, 1, . . . , ν0 − 1} and z ∈ �R(k) and consider a complex
Brownian motion B starting from z. By the Beurling estimate, B hits �R(k+1) without
hitting K̃n with probability no greater than A

√
56/β = e−1. Then, by the strong Markov

property, for all z ∈ �R(0), almost surely on 
(n, ε),

Pz(B hits �R(ν0) before K̃n|Fn) � e−ν0 � e−ν/(2β)+1. (13)

There exists a family of disjoint open intervals ((θ j , θ
′
j ) : j = 1, . . . , Nn) in R/(2πZ)

such that, for w j = �̃n(iθ j ) and w′
j = �̃n(iθ ′

j ), we have Re(w j ) = Re(w′
j ) = R(ν0)

and
⋃

j (w j , w
′
j )+ 2π iZ disconnects D̃n ∩�R(2ν0) from ∞ in D̃n . We choose the unique

such family minimizing
∑

j |w j − w′
j |. Then w j ∈ P̃k( j) for some k( j) � n for all j .

We shall show that the integers k(1), . . . , k(Nn) must all be distinct, so Nn � n.
Suppose k( j) = k( j ′) = k0 + 1 for some distinct j and j ′. Then there exist α <

β < α′ < β ′ < α + 2π such that, for z = �̃k0+1(iα), z′ = �̃k0+1(iα′), w = �̃k0+1(iβ)
and w′ = �̃k0+1(iβ ′), we have z, z′, w,w′ ∈ ∂ P̃k0+1 and Re(z) = Re(z′) = R(2ν0) and
Re(w) = Re(w′) = R(ν0). Then, since we are on
(m, ε), we must have c(k0+1)+4ε �
R(ν0), so ck0 � R(ν0)− 4ε − c � R(ν0 + 1). Hence there exists an interval I of ∂ D̃k0

with endpoints p, p′ in �R(3ν0/2) such that z, z′ are separated from ∂ D̃k0\I by I ∪[p, p′].
By a variation of the Beurling and strong Markov argument above, all but e−ν0/2 of the
harmonic measure on ∂ D̃k0 starting from z is carried on I , and the same is true for z′.
Then, by conformal invariance of harmonic measure, all but e−ν0/2+1 < 1/4 of the har-
monic measure on iR starting from F̃k0+1(iα) is carried on �̃k0(I ), and the same is true
for α′. So, by our harmonic measure condition, either more than 1/4 of the harmonic
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measure on iR starting from F̃k0+1(iβ) is carried on �̃k0(I ), or the analogous statement
holds for β ′. But, by the Beurling and strong Markov argument again, no more than
e−ν0/2+1 < 1/4 of the harmonic measure on ∂ D̃k0 starting from w is carried on I , and
the same is true for w′. So, by conformal invariance, no more than 1/4 of the harmonic
measure on iR starting from F̃k0+1(iβ) is carried on �̃k0(I ), and the same is true for β ′,
a contradiction.

Each path (�̃n(iθ) : θ ∈ (θ j , θ
′
j )), together with the line segment [w j , w

′
j ], forms the

boundary of a connected subset of D̃n . Denote by Sn the union of these subsets. Define
K ∗

n = {e�̃n(z) : z ∈ Sn} ∪ K0 and D∗
n = (C ∪ {∞})\K ∗

n . Then D∗
n is a simply connected

neighbourhood of ∞ in D0, the set K ∗
n \K0 has Nn connected components and, by (13),

the harmonic measure from ∞ of K ∗
n \ K0 in D∗

n is no greater than e−ν/(2β)+1. So, on

(n, ε),

P((ei�n+1 P) ∩ K ∗
n �= ∅|Fn) � C1 Nne−ν/(4β)+1/2,

where C1 is the absolute constant from Lemma 6.1. But, if ei�n+1 P does not meet K ∗
n ,

then Re(z) > cn − νε for all z ∈ P̃n+1. Of course this inequality holds also in the case
where cn < νε.

It remains to deal with the case where n � m + 1. We may assume that ν �
2β log(16πe/δ) or the estimate is trivial. Then, for μ = e−ν/(2β)+1, we have 16πμ � δ.
So we can apply Lemma 6.1 with K ∗ = K ∗

m to obtain, on 
(m, ε),

P(Re(z) � cm − εν for some z ∈ P̃n+1 and some n � m|Fm) � C1 Nme−ν/(4β)+1/2/δ.

The estimates we have obtained combine to prove the proposition. ��
Remark 6.3. An analogous result to Proposition 6.2 can be obtained by bounding the
contribution to the length of the cluster boundary made by each particle. This extends
the class of allowable basic particles beyond that specified by (12), but at the expense
of a weaker bound on the probability.

Suppose that (2) and (10) hold and that, in addition, ∂P is rectifiable, with length L ,
and is given by β : [0, L] → ∂P , where the parametrization is by arc length. We assume
further that β is piecewise differentiable in such a way that there exist C(δ) ∈ (0,∞),
k(δ) ∈ N and 0 = a0 < a1 < · · · < ak(δ) = L such that ri : (ai , ai+1) → (1, 1 + δ)
given by ri (t) = |β(t)| is differentiable with |r ′

i (t)| > C(δ) on (ai , ai+1) for all i =
0, . . . , k(δ)− 1. Set r(δ) = k(δ)/C(δ). Let �̃n+1 be the contribution to the length of the
boundary of ∂ K̃n+1 that comes from particle P̃n+1. Then

�̃n+1 =
∫ L

0

|�′
n(β(t)e

i�n+1)|
|�n(β(t)ei�n+1)|dt.

So, by a similar argument to that in the proof of Theorem 4 of [17],

E(�̃n+1|Kn) =
k(δ)−1∑

i=0

∫ 2π

0

∫ ai+1

ai

|�′
n(ri (t)eiθ )|

|�n(ri (t)eiθ )|dtdθ

� r(δ)
∫ 2π

0

∫ 1+δ

1

|�′
n(reiθ )|

|�n(reiθ )|drdθ

� C1r(δ)(cnδ)1/2,
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for some absolute constant C1 < ∞. Therefore, if Nn is defined as in the proof of Proposi-
tion 6.2, for all ζ > 0, P(Nn > ζ) �

∑n
j=1 P(�̃ j > ζνεn−1) � C1r(δ)δ3/2n5/2/(ζνε).

Hence, there exists some absolute constant C < ∞ such that

P(
(m, ε)\
(m, ε, ν)) � Cζ(m + δ−1)e−ν/C + Cr(δ)δ3/2m7/2/(ζνε).

On optimizing over ζ , it can be shown that there exists another absolute constant C < ∞
such that

P(
(m, ε)\
(m, ε, ν)) � Cr(δ)1/2m7/4δ3/4ν−1/2ε−1/2(m + δ−1)1/2e−ν/C .

Define for z ∈ D̃0

N (z) = inf{n � 0 : z �∈ D̃n}.
Denote by 
(m, ε, ν, η) the subset of 
(m, ε, ν) defined by the following condition:
for all z ∈ D̃0 ∩ K̃∞ with N (z) � m and all n � N (z)− 1, we have

| Im(�̃n(z)− z)| < ε + 2η.

In conjunction with Propositions 5.1 and 6.2, the following estimate implies that,
when m = �δ−6	 and ε = δ2/3 log(1/δ) and ν = (log(1/δ))2 and η = δ2/3(log(1/δ))6,
the event 
(m, ε, ν, η) has high probability as δ → 0.

Proposition 6.4. There is an absolute constant C < ∞ such that, for all ε ∈ [2δ, 1/6],
ν ∈ [0,∞) and η ∈ (0,∞),

P (
(m, ε, ν)\
(m, ε, ν, η)) � Cm

η
exp

{
− η

Cδ
+

Cνεδ

c
(1 + log (1/δ))

}
.

Proof. Fix z ∈ D̃0 ∩ K̃∞ with N (z) � m. Write N0(z) for the maximum of 0 and the
largest integer such that cN0(z) � Re(z) − 4ε. Write N1 for the smallest integer such
that cN1 � (ν + 4)ε. Then, on 
(m, ε, ν), we have N (z)− 1 � N0(z) + N1 and, since

(m, ε, ν) ⊆ 
(m, ε), we have also | Im(�̃k(z)− z)| < ε for all k � N0(z).

We showed in Proposition 4.3 that, for some absolute constant C1 < ∞, for α = C1δ

and for all z ∈ D̃0 with Re(z) � 1,

Im(G̃(z)) � g∗(Im(z)),

where g∗(θ) = θ + g∗
0(θ) and g∗

0 is the 2π -periodic function given by

g∗
0(θ) = α2

|θ | ∨ α , θ ∈ (−π, π ].

Then, for N0(z) � n � N (z)− 1,

Im(�̃n(z)) � Y (n0,y0)
n ,

where n0 = N0(z), y0 = Im(�̃n0(z)) and where, recursively for n � n0, Yn = Y (n0,y0)
n

is defined by

Yn0 = y0, Yn+1 = g∗(Yn −�n+1) +�n+1 = g∗
0(Yn −�n+1) + Yn .
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Note that Re(�n(z)) � Re(�n0(z)) � | Re(�n0)−Re(z)+cn0|+Re(z)−cn0 < 5ε+c <

1. Hence, g∗
0 is non-negative and g∗ is non-decreasing, so Y (n0,y0)

n is non-decreasing in
n and y0.

Set M = �2π/η� and h = 2π/M so that h � η. Consider the set of time-space
starting points

E = {(n0, jh) : n0 ∈ {0, 1, . . . ,m}, j ∈ {0, 1, . . . ,M − 1}},
and the event


0 = {Y (n0, jh)
n0+N1

� jh + η for all (n0, jh) ∈ E}.
Note that |E | � Cm/η, so

P(
\
0) � CmP(YN1 > η)/η,

where Y = Y (0,0). Now

E(eY1/α) = 1

2π

∫ π

−π
eg∗

0 (θ)/αdθ = 1 +
α(e − 1)

π
+

1

π

∫ π

α

(eα/θ − 1)dθ

� exp{(αe/π)(1 + log(π/α))},
so

P(YN1 > η) � exp{−η/α + (N1αe/π)(1 + log(π/α))}.
Choose j ∈ {1, . . . ,M} so that ( j − 1)h � y0 � jh. Then, for n � N (z) − 1, on


0,

Im(�̃n(z)) � Y (n0, jh)
n � jh + η � Im(�̃n0(z)) + 2η � Im(z) + ε + 2η.

A similar argument allows us to bound the downward variation of Im(�̃n(z)) up to
N (z) − 1. Hence P(
(m, ε, ν)\
(m, ε, ν, η) � 2P(
\
0) which gives the claimed
estimate. ��
Theorem 6.5. Assume that the basic particle P satisfies conditions (2),(10) and (12).
Consider for ε0 ∈ (0, 1] and m ∈ N the event 
[m, ε0] specified by the following
conditions: for all n � m and all n′ � m + 1,

|z − ecn+i�n | � ε0ecn for all z ∈ Pn

and

dist(w, Kn) � ε0ecn whenever |w| � ecn

and

|z| � (1 − ε0)e
cm for all z ∈ Pn′ .

Assume that ε0 = δ2/3(log(1/δ))8 and m = �δ−6	. Then P(
[m, ε0]) → 1 uniformly
in P as δ → 0.
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Proof. Set ε = δ2/3 log(1/δ) and ν = (log(1/δ))2 and η = δ2/3(log(1/δ))6. We have
shown that the event 
(m, ε, ν, η) has high probability as δ → 0. We complete the
proof by showing that, for δ sufficiently small, the defining conditions for 
[m, ε0] are
all satisfied on 
(m, ε, ν, η).

Fix n � m and z ∈ P̃n . On 
(m, ε) we have Re(z) < cn + 4ε and, restricting to

(m, ε, ν), we have also Re(z) > c(n−1)−νε. Restricting further to
(m, ε, ν, η), we
have | Im(�̃n−1(z)−z)| < ε+2η. But �̃n−1(z) ∈ P̃ +2π i�n , so |�̃n−1(z)−2π i�n| � δ.
Hence, on 
(m, ε, ν, η), we have (since ν � 4)

|ez − ecn+2π i�n | � ecn(eνε+c − 1) + ecn+νε+c(ε + 2η + δ).

We can choose δ sufficiently small that

(eνε+c − 1) + eνε+c(ε + 2η + δ) � ε0.

Then on 
(m, ε, ν, η) we have, for all z ∈ Pn ,

|z − ecn+2π i�n | � ε0ecn .

Next, using (9), for 0 � Re(w) � cn, on
(m, ε), there exists z ∈ K̃n with |z −w| �
56ε. Then ez ∈ Kn and

|ez − ew| � 56εecn+4ε.

We can choose δ sufficiently small that

56εe4ε � ε0.

Then dist(w, Kn) � ε0ecn whenever |w| � ecn and n � m.
Finally, for n � m + 1 and z ∈ P̃n , on
(m, ε, ν), we have Re(z) > cm − νε. Hence

|w| > ecm−νε � (1 − ε0)ecm for all w ∈ Pn . ��

7. Weak Convergence of the Localized Disturbance Flow to the Coalescing
Brownian Flow

We review in this section the main results of [16]. Denote by D̄ the set of all pairs
f = { f −, f +}, where f + is a right-continuous, non-decreasing function on R and
where f − is the left-continuous modification of f +. Denote by D the subset of those
f ∈ D̄ such that x �→ f +(x) − x is periodic of period 2π . Write id for the identity
function id(x) = x and, for f ∈ D̄, write f ±

0 for the periodic functions f ± − id. Denote
by D∗ the subset of D where f0 is not identically zero but has zero mean

1

2π

∫ 2π

0
f0(x)dx = 0.

Here and below, we drop the ± where the quantity computed takes the same value for
both versions. Fix f ∈ D∗ and define ρ = ρ( f ) ∈ (0,∞) by

ρ

2π

∫ 2π

0
f0(x)

2dx = 1.
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Let (�n : n ∈ Z) be a sequence of independent random variables, all uniformly distrib-
uted on [0, 2π). Define for each non-empty bounded interval I ⊆ R a pair of random
functions �I = {�−

I ,�
+
I } by

�±
I = f ±

�n
◦ · · · ◦ f ±

�m
,

where f ±
θ (x) = f ±(x − θ) + θ , and where m and n are, respectively, the smallest

and largest integers in the rescaled interval ρ I . If ρ I ∩ Z = ∅ then �I = id. Write
I = I1 ⊕ I2 if I1, I2 are disjoint intervals with sup I1 = inf I2 and I = I1 ∪ I2. Note
that the family � = (�I : I ⊆ R) has the following flow property:

�±
I2

◦�±
I1

= �±
I , whenever I = I1 ⊕ I2. (14)

Moreover (see [16]), almost surely, for all I , �−
I is the left-continuous modification of

�+
I , so �I = {�−

I ,�
+
I } ∈ D. We call � the disturbance flow with disturbance f . For

ε ∈ (0, 1], we make the diffusive rescaling

�
ε,±
I (x) = ε−1�±

ε2 I
(εx), x ∈ R

and call (�εI : I ⊆ R) the ε-scale disturbance flow with disturbance f .
In order to formulate a weak convergence result about these disturbance flows, we

introduce metrics on D and D̄ and then we define certain metric spaces which will serve
as state-spaces for � and �ε. First, define for f, g ∈ D,

dD( f, g) = inf{ε � 0 : f +(x) � g+(x + ε) + ε and g+(x)

� f +(x + ε) + ε for all x ∈ R}.
For f, g ∈ D̄, define

dD̄( f, g) =
∞∑

n=1

2−n(dn( f, g) ∧ 1),

where

dn( f, g) = inf{ε � 0 : f +(x) � g+(x + ε) + ε and g+(x)

� f +(x + ε) + ε for all x ∈ [−n, n − ε]}.
Then dD is a metric on D and the metric space (D, dD) is complete. In fact (D, dD)
is isometric to the set of periodic contractions on R with period 2π , with supremum
metric, by drawing new axes for the graph of f ∈ D at a rotation of π/4. Also, dD̄ is a
metric on D̄ and the metric space (D̄, dD̄) is complete. See [16].

Consider now a family φ = (φI : I ⊆ R), where φI ∈ D and I ranges over all
non-empty bounded intervals. Say that φ is a weak flow if,

φ−
I2

◦ φ−
I1

� φ−
I � φ+

I � φ+
I2

◦ φ+
I1
, whenever I = I1 ⊕ I2. (15)

Say that φ is cadlag if, for all t ∈ R,

dD(φ(s,t), id) → 0 as s ↑ t and dD(φ(t,u), id) → 0 as u ↓ t.

We write D◦(R,D) for the set of all cadlag weak flows. For the disturbance flow �,
almost surely, for all t ∈ R, for all sufficiently small ε > 0, we have �(t−ε,t) =
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�(t,t+ε) = id. So � takes values in D◦(R,D). Define similarly D◦(R, D̄) and note that
�ε takes values in D◦(R, D̄).

Fix φ ∈ D◦(R,D) and suppose that φ{t} = id for all t ∈ R. Then φ(s,t) = φ(s,t] =
φ[s,t) = φ[s,t] for all s, t ∈ R with s < t . Denote all these functions by φts and set
φt t = id for all t ∈ R. The map

(s, t) �→ φts : {(s, t) ∈ R
2 : s � t} → D

is then continuous. We write C◦(R,D) for the set of such continuous weak flows φ and
we write C◦(R, D̄) for the analogous subset in D◦(R, D̄).

We can and do make D◦(R,D) and D◦(R, D̄) into complete separable metric spaces
by the choice of Skorokhod-type metrics, both denoted dD . The metrics dD have the
following two further properties. The associated Borel σ -algebras coincide with those
generated by the evaluation maps φ �→ φ+

I (x) as x ranges over R and I ranges over
bounded intervals in R. Moreover, for any sequence (φn : n ∈ N) in D◦(R,D) and
any φ ∈ C◦(R,D), we have dD(φ

n, φ) → 0 if and only if dD(φn
I , φI ) → 0 uniformly

over subintervals I of compact sets in R. In particular, C◦(R,D) is closed in D◦(R,D).
Analogous statements hold in the non-periodic case. However, the flow property (14) is
not preserved under limits in dD . We refer to [16] for the specification of dD .

The disturbance flow � with disturbance f is then a D◦(R,D)-valued random var-
iable, and the law of � is a Borel probability measure on D◦(R,D), which we denote
by μ f

A. The ε-scale disturbance flow �ε is a D◦(R, D̄)-valued random variable, so the

law of �ε is a Borel probability measure on D◦(R, D̄), which we denote by μ f,ε
A .

For e = (s, x) ∈ R
2 and φ ∈ D◦(R,D), the maps

t �→ φ−
(s,t](x) : [s,∞) → R, t �→ φ+

(s,t](x) : [s,∞) → R

are cadlag. Hence we obtain measurable maps Ze = Ze,+ and Ze,− on D◦(R,D) with
values in De = Dx ([s,∞),R) by setting

Ze,±(φ) = (φ±
(s,t](x) : t � s).

The restrictions of Ze,± to C◦(R,D) then take values in Ce = Cx ([s,∞),R). We define
a filtration (Ft )t�0 on D◦(R,D) by

Ft = σ(Ze
r : e = (s, x) ∈ R

2, r ∈ (−∞, t] ∩ [s,∞))

and, for e = (s, x), e′ = (s′, x ′) ∈ R
2, we write T ee′

for the collision time

T ee′ = inf{t � s ∨ s′ : Ze
t − Ze′

t ∈ 2πZ}.
We make the same definitions for φ ∈ D◦(R, D̄), except to define as collision time

T̄ ee′ = inf{t � s ∨ s′ : Ze
t = Ze′

t }.
The space C◦(R,D) is a convenient state-space for the coalescing Brownian flow on

the circle where it has the following characterization (see [16, Thm. 6.1]). There exists
a unique Borel probability measure μA on C◦(R,D) such that, for all e = (s, x), e′ =
(s′, x ′) ∈ R

2, the processes (Ze
t )t�s and (Ze

t Ze′
t − (t − T ee′

)+)t�s∨s′ are continuous
local martingales in the filtration (Ft )t∈R. Moreover, for all e ∈ R

2, we have,μA-almost
surely, Ze,+ = Ze,−.
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Similarly, the space C◦(R, D̄) is a state-space for the coalescing Brownian flow (on
the line). There exists a unique Borel probability measure μ̄A on C◦(R, D̄) such that, for
all e = (s, x), e′ = (s′, x ′) ∈ R

2, the processes (Ze
t )t�s and (Ze

t Ze′
t −(t − T̄ ee′

)+)t�s∨s′
are continuous local martingales in the filtration (Ft )t∈R. Moreover, for all e ∈ R

2, we
have, μ̄A-almost surely, Ze,+ = Ze,−.

We consider a limit where f becomes an increasingly well-localized perturbation
of the identity map. We quantify this localization in terms of the smallest constant
λ = λ( f, ε) ∈ (0, 1] such that

ρ

2π

∫ 2π

0
| f0(x + a) f0(x)|dx � λ, a ∈ [ελ, 2π − ελ].

We can now state Theorem 6.1 from [16]. We have

μ
f
A → μA weakly on D◦(R,D) uniformly in f ∈ D∗ as ρ( f ) → ∞

and λ( f, 1) → 0

(16)

and

μ
f,ε
A → μ̄A weakly on D◦(R, D̄) uniformly in f ∈ D∗ as ε → 0

with ε3ρ( f ) → ∞ and λ( f, ε) → 0.
(17)

8. The Harmonic Measure Flow

We return to the aggregation model. We assume throughout this section that condition (2)
holds. The boundary ∂Kn of the cluster Kn has a canonical parametrization by [0, 2π)
given by θ �→ �n(eiθ ). For θ1 < θ2, the normalized harmonic measure (from ∞) of the
positively oriented boundary segment from�n(eiθ1) to�n(eiθ2) is then (θ2 − θ1)/(2π).
We consider the related parametrization θ �→ �̃n(iθ) : R → ∂ K̃n . For m � n, each
point z ∈ ∂ K̃n has a unique ancestor point Amn(z) ∈ ∂ K̃m , which is either z itself or
the point of ∂ K̃m to which the particle containing z is attached, possibly through several
generations. On the other hand, each point in z ∈ ∂ K̃m , except those points where parti-
cles are attached, has a unique escape point Emn(z) ∈ ∂ K̃n , which is either z itself or is
connected to z by a minimal path in K̃n , subject to not crossing any particles nor passing
through any attachment points. If P is attached at a single point, then Emn(z) = z for
all z ∈ ∂ K̃m . These definitions are illustrated in Fig. 4.

We define the forwards and backwards harmonic measure flows on R, respectively,
for 0 � m < n by

�P
nm(x) = −i �̃n ◦ Enm ◦ �̃m(i x), �P

mn(x) = −i �̃m ◦ Amn ◦ �̃n(i x). (18)

We shall show that, when embedded suitably in continuous-time, these flows converge
weakly to the coalescing Brownian flow, as the diameter δ of the basic particle P tends
to 0. Then, in the same limiting regime, we shall deduce the behaviour of fingers and
gaps in the aggregation model.

First we give an alternative presentation of the flows. Recall the functions g+ and
f + defined at (5) and write g− and f − for their left-continuous versions. Then g =
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Fig. 4. Diagram illustrating ancestor points Amn(z) ∈ ∂ K̃m for z ∈ ∂ K̃n and escape points Emn(z) ∈ ∂ K̃n
for z ∈ ∂ K̃m , where K̃m is shown in red, K̃n \ K̃m is shown in white, and attachment points are shown in
blue (colour figure online)

{g−, g+} ∈ D and f = { f −, f +} = g−1. Since P is non-empty and is invariant under
conjugation, g is not the identity function but is an odd function. Hence g ∈ D∗. Recall
that the sequence of clusters (Kn : n � 0) is constructed from a sequence of independent
random variables (�n : n ∈ N), uniformly distributed on [0, 2π). Define fθ , gθ ∈ D
for θ ∈ [0, 2π) as in Sect. 7. Then define for 0 � m < n,

�P,±
nm = g±

�n
◦ · · · ◦ g±

�m+1
, �P,±

mn = f ±
�m+1

◦ · · · ◦ f ±
�n
.

We can check (just as for the disturbance flow) that, almost surely, �P
nm =

{�P,−
nm ,�

P,+
nm } ∈ D and �P

mn = {�P,−
mn ,�

P,+
mn } ∈ D, with (�P

mn)
−1 = �P

nm . Moreover,
a straightforward induction shows that this definition agrees with the more geometric
formulation in (18).

In formulating a limit statement, it is convenient to embed the harmonic measure
flow in continuous time. We do this in two ways. For a bounded interval I ⊆ [0,∞), set
�P

I = �P
nm , where m + 1 and n are respectively the smallest and largest integers in ρ I .

We set �P
I = id if there are no such integers. Then (�P

I : I ⊆ [0,∞)) takes values in
D◦([0,∞),D). Set δ∗ = (ρc)−1 and define �̄P

I (x) = (δ∗)−1/2�P
n̄m̄((δ

∗)1/2x), where
m̄ + 1 and n̄ are the smallest and largest integers in c−1 I . Then (�̄P

I : I ⊆ [0,∞)) takes
values in D◦([0,∞), D̄).
Theorem 8.1. Assume that the basic particle P satisfies condition (2). Then the har-
monic measure flow (�P

I : I ⊆ [0,∞)) converges weakly in D◦([0,∞),D) to the coa-
lescing Brownian flow on the circle, uniformly in P as δ → 0. Moreover, the rescaled
harmonic measure flow (�̄P

I : I ⊆ [0,∞)) converges weakly in D◦([0,∞), D̄) to the
coalescing Brownian flow on the line.

Proof. The flow (�P
I : I ⊆ [0,∞)) is a disturbance flow with disturbance g and

(�̄P
I : I ⊆ [0,∞)) is an ε-scale disturbance flow with disturbance g, where ε = √

δ∗.
From Corollary 4.2 we know that δ2/6 � c � 3δ2/4 and from Proposition 4.3, we have
δ−3/C � ρ � Cδ−3. Hence δ∗ = (ρc)−1 satisfies δ/C � δ∗ � Cδ for an absolute
constant C < ∞. In particular ρ → ∞ and ε → 0 and ε3ρ � δ−3/2/C → ∞ as
δ → 0. Also, from Proposition 4.3, for a ∈ [δ, π ], we have
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ρ

2π

∫ 2π

0
|g0(θ)g0(θ + a)|dθ � Cδ

a
log

(
1

δ

)
,

so λ(g, 1) � λ(g, ε) → 0 as δ → 0. The result thus follows from (16) and (17). ��
We can now deduce the limiting joint distribution of fingers and gaps. Recall that

S denotes the space of locally compact subsets of [0,∞) × R, equipped with a local
Hausdorff metric. We have fixed T > 0 and a finite subset E of [0, T ] × R. Recall that
we study the cluster KN and have introduced in Sect. 3 associated path-like random sets
finger(z) and gap(z), along with rescaled sets F(e), F̄(e),G(e) and Ḡ(e). Write μP

E for
the law of (F(e),G(e) : e ∈ E) when N = �ρT 	, considered as a random variable in
(SE )2. Similarly, write μ̄P

E for the law of (F̄(e), Ḡ(e) : e ∈ E) when N = �c−1T 	.
Write μE for the law on (SE )2 of the family of random sets

({(t,�ts(e)(x(e))) : t ∈ [0, s(e)]}, {(t,�t∧T,s(e)(x(e))) : t � s(e)} : e ∈ E),

where � is a coalescing Brownian flow on the circle and where we set �st = �−1
ts for

s � t . Write also μ̄E for the corresponding law when we replace � by a coalescing
Brownian flow �̄ on the line.

Theorem 8.2. Assume that the basic particle P satisfies conditions (2), (10) and (12).
Then μP

E → μE and μ̄P
E → μ̄E weakly on (SE )2, uniformly in P as δ → 0.

Proof. We consider first the long time case. Given ε0 > 0, there exist ε > 0 and
ε′ ∈ (0, ε/3] such that, for any coalescing Brownian flow � = (�ts : 0 � s � t � T )
on the circle, with probability exceeding 1 − ε0/3, for all e ∈ E and all t ∈ [0, T ], we
have

�ts(e)(x(e))−ε0 ��ts(e)(x(e)−5ε)−5ε, �ts(e)(x(e)+5ε) + 5ε��ts(e)(x(e)) + ε0

and, for all s, s′, t, t ′ ∈ [0, T ] with |s − s′|, |t − t ′| � 3ε′ and all x ∈ R,

�ts(x) � �t ′s′(x + ε) + ε.

Note that these conditions imply 5ε � ε0. Here we have used some standard estimates
for Brownian motion and the fact that the map (s, t) �→ �ts : [0, T ]2 → D is uniformly
continuous, almost surely. Here and below such inequalities are each to be understood as
a pair of inequalities, one for left-continuous versions and the other for right-continuous
versions.

Then, by Theorem 8.1, and using a standard result on weak convergence, there exists a
δ0 > 0 such that, for all δ ∈ (0, δ0] and all basic particles P satisfying (2), for N = �ρT 	,
we can construct, on some probability space, an H L(0) process �P = (�P

n : n � N )
with basic particle P and a coalescing Brownian flow � = (�ts : 0 � s � t � T )
on the circle with the following property. With probability exceeding 1 − ε0/3, for all
0 � m < n � N , for t = m/ρ and s = n/ρ, and for all x ∈ R, we have

�ts(x − ε)− ε � �P
mn(x) � �ts(x + ε) + ε.

Here (�P
mn : 0 � m < n � N ) is the backwards harmonic measure flow of �P (which

determines (�n : 1 � n � N ) and hence �P uniquely).
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Moreover, by Theorem 6.5, we may choose δ0 so that, with probability exceeding
1 − ε0/3, for all e ∈ E , writing z(e) = σ−1(e) = s(e)/δ∗ + i x(e) and σ(p0(z(e))) =
(s0, x0), we have

|s0 − s(e)| � ε′/3, |x0 − x(e)| � ε

and, for all (s, x) ∈ [0, T ] × R, there exists w ∈ K̃N such that σ(w) = (t, y) satisfies

|s − t | � ε′/3, |x − y| � ε

and, for all n � N − 1 and all z ∈ P̃n+1, σ(z) = (s, x) satisfies

|s − n/ρ| � ε′/3, |x −�n+1| � ε.

From this point on, we condition on the good event 
0 of probability exceeding
1 − ε0 where all of the properties discussed above hold. Suppose that we fix j, k ∈ Z

and m, n � N − 1 and w ∈ P̃m+1 + 2π i j and z ∈ P̃n+1 + 2π ik, with P̃m+1 + 2π i j an
ancestor particle of P̃n+1 + 2π ik. Write σ(w) = (t, y) and σ(z) = (s, x). Then we must
have m = ρt ′ � n = ρs′, with |s − s′|, |t − t ′| � ε′/3 and |y − (�m+1 + 2π j)|, |x −
(�n+1 + 2πk)| � ε. Now �P

mn is continuous and

�m+1 + 2π j = �P
mn(�n+1 + 2πk),

so

y � �m+1 + 2π j + ε = �P
mn(�n+1 + 2πk) + ε

� �t ′s′(�n+1+2πk+ε)+2ε��t ′s′(x +2ε)+2ε��ts(x +3ε)+3ε,

and by a similar argument also y � �ts(x − 3ε) − 3ε. Here we have extended � by
setting �ts = �t∧T,s∧T .

Fix e ∈ E and (t, y) ∈ F(e). Write (t, y) = σ(w) and P̃0(z(e)) = P̃n+1 + 2π ik. We
can choose z ∈ P̃0(z(e)) with σ(z) = (s, x) and |s − s(e)| � ε′/3 and |x − x(e)| � ε.
Set u = t ∧ s(e). Then w and z are related as in the preceding paragraph and

t � t ′ + ε′/3 � s′ + ε′/3 � s + 2ε′/3 � s(e) + ε′ � s(e) + ε0

so |t − u| � ε′. Hence

y ��ts(x + 3ε) + 3ε��us(e)(x + 4ε) + 4ε��us(e)(x(e) + 5ε) + 5ε��us(e)(x(e)) + ε0,

and similarly

y � �us(e)(x(e))− ε0.

Since (t, y) was arbitrary, we have shown that

F(e) ⊆ {(t, y) : t ∈ [0, s(e)] and |y −�ts(e)(x(e))| � ε0}
∪{(t, y) : t ∈ [s(e), s(e) + ε0] and |y − x(e)| � ε0}

and, since F(e) is a connected set joining (s, x) to the imaginary axis, this implies for
the Hausdorff metric dH that

dH (F(e), {(t,�ts(e)(x(e))) : 0 � t � s(e)}) � 2ε0.
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We complete the proof by obtaining an analogous estimate for G(e). Recall that
G(e) = {σ(pτ ) : τ � 0}, where p = p(z(e)) is the minimal length gap path start-
ing from p0(z(e)), the closest point to z(e) which is not in the interior of K̃N . Write
σ(p0(z(e))) = (s0, x0).

First we show that minimal gap paths cannot backtrack too much. Suppose that
t < s(e) − ε′ and p makes an excursion left of the line {t/δ∗ + iy : y ∈ R}, with
endpoints w−, w+, say. Then the open line segment (w−, w+) must contain a point of
K̃N , say w ∈ P̃m+1 + 2π i j . Set σ(w) = (t, y). Then, since p cannot cross K̃N , there
must exist z ∈ P̃n+1 + 2π ik, an ancestor particle of P̃m+1 + 2π i j , with σ(z) = (s, x),
say, and s � s0. But then

s(e) � s0 + ε′/3 � s + ε′/3 � n/ρ + 2ε′/3 � m/ρ + 2ε′/3 � t + ε′ < s(e)

which is impossible. Hence there is no such excursion and so

G(e) ⊆ {(s, x) : s � s(e)− ε′, x ∈ R}.
Consider (t, y) = σ(w)withw ∈ P̃m+1 +2π i j and m � N −1 and t � s(e)−3ε′ and

y � �vs(e)(x(e))+ε0, where v = s(e)∨ t ∧ T . Note that t � T +ε′/3 and |v− t | � 3ε′.
Suppose (s, x) = σ(z)with z ∈ P̃n+1 +2π ik and |s −s(e)| � ε′, and where P̃n+1 +2π ik
is an ancestor particle of P̃m+1 + 2π i j . Then

x � �st (y − 3ε)− 3ε � �s(e)v(y − 4ε)− 4ε � x(e) + ε.

Hence F(t, y) does not meet the vertical half-line {(s0, x) : x � x0}.
Define

�(e) = {(t,�t∧T,s(e)(x(e))) : t � s(e)}
and set I = [s(e)− 2ε′, T ]. There exists a continuous function (y(t) : t ∈ I ) such that,
for all t ∈ I , setting v = s(e) ∨ t ∧ T , we have

y(t) > �vs(e)(x(e)), d((t, y(t)),�(e)) = ε0 + ε + 5ε′.

Define recursively a sequence τ0, . . . , τM by setting τ0 = s(e) − 2ε′ and then taking
τn+1 as the supremum of the set

{τ ∈ [τn, T ] : |(τ, y(τ ))− (τn, y(τn))| = ε′}
until n = M − 1 when this set is empty and we set τM = T . For n = 0, 1, . . . ,M ,
choose wn ∈ K̃N with σ(wn) = (tn, yn) and |tn − τn| � ε′ and |yn − y(τn)| � ε. Note
that t0 � s(e)− ε′ and tM � T − ε′ and tn ∈ [s(e)− 3ε′, T + ε′] for all n. Set

B0 =
M−1⋃
n=0

[wn, wn+1), B1 = {t/δ∗ + iyM : t � tM }, B = B0 ∪ B1.

Then, for any w ∈ B0, for (t, y) = σ(w), we have |(t, y) − (τn, y(τn))| � ε + 2ε′ for
some n, so ε0 + 3ε′ � d((t, y),�(e)) � ε0 + 2ε + 7ε′ and so y � �vs(e)(x(e)) + ε0,
where v = s(e) ∨ t ∧ T . The final inequality obviously extends to B.

Suppose p crosses B, and does so for the first time at τ(1). Consider first the case
where pτ(1) ∈ [wn, wn+1). Then, sincewn andwn+1 are both connected to the imaginary
axis in K̃N and p cannot cross K̃N , it must eventually hit [wn, wn+1] again after τ(1), at
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time τ(2) say, except possibly if pτ(1) = wn . If the open line segment (pτ(1), pτ(2)) con-
tains a point w ∈ K̃N with σ(w) = (t, y), then for all z ∈ finger(w) with σ(z) = (s, x)
and |s − s(e)| � ε′ we have x � x(e) + ε′. But this is impossible because w is dis-
connected from the imaginary axis by {s0/δ

∗ + i x : x � x0} ∪ {pτ : τ � 0}. Hence
(pτ(1), pτ(2)) ⊆ D̃N , so pτ ∈ [pτ(1), pτ(2)] for all τ ∈ (τ (1), τ (2)), contradicting our
crossing assumption. In the case pτ(1) = wn , if p does not return to [wn, wn+1], then it
must hit [wn−1, wn] instead and this also leads to a contradiction by a similar argument.
The case where pτ(1) ∈ B1 also leads to a contradiction of minimality by a similar
argument. Hence p never crosses B. So, for all (t, y) ∈ G(e) with y � �vs(e)(x(e)),
we have d((t, y),�(e)) � ε0 + 2ε + 7ε′ � 2ε0. A similar argument establishes this
estimate also in the case y � �vs(e)(x(e)). Since G(e) is a connected set joining (s0, x0)

to {T } × R, this implies

dH (G(e),�(e)) � 2ε0.

We turn now to the local fluctuations. The argument is mainly similar. It becomes
crucial that Theorem 6.5 provides approximation on a scale just larger than δ2/3, allow-
ing us to transfer fluctuation results from Theorem 8.1 at scale δ1/2 to the cluster. There
is also some loss of compactness in the local limit which requires attention.

Given 0 < ε0 < 1/3, there exist ε > 0 and R ∈ [1,∞) and ε′ ∈ (0, ε/3] such
that, for any coalescing Brownian flow �̄ = (�̄ts : 0 � s � t � T ) on the line, with
probability exceeding 1 − ε0/3, for all e ∈ E and all t ∈ [0, T ], we have

|�̄ts(e)(x(e))| � R,

and

�̄ts(e)(x(e))−ε0 ��̄ts(e)(x(e)−5ε)−5ε, �̄ts(e)(x(e)+5ε)+5ε��̄ts(e)(x(e))+ε0

and, for all s, s′, t, t ′ ∈ [0, T ] with |s − s′|, |t − t ′| � 3ε′ and all |x | � 2R,

�̄ts(x) � �̄t ′s′(x + ε) + ε.

Uniform continuity of the map (s, t) �→ �̄ts : [0, T ]2 → D̄ now provides only local
estimates in x , hence the need for the cut-off R.

Then, by Theorem 8.1, there exists a δ0 > 0 such that, for all δ ∈ (0, δ0] and all
basic particles P satisfying (2), for N = �c−1T 	, we can construct, on some probability
space, an H L(0) process �P = (�P

n : n � N ) with basic particle P and a coalescing
Brownian flow �̄ = (�̄ts : 0 � s � t � T ) on the line with the following property.
Write (�P

mn : 0 � m < n � N ) for the backwards harmonic measure flow of �P

and set �̄P
mn(x) = (δ∗)−1/2�P

mn((δ
∗)1/2x). With probability exceeding 1 − ε0/3, for all

0 � m < n � N , for t = cm and s = cn, and for all |x | � 2R, we have

�̄ts(x − ε)− ε � �̄P
mn(x) � �̄ts(x + ε) + ε.

Moreover, by Theorem 6.5, we may choose δ0 so that, with probability exceeding
1−ε0/3, for all e ∈ E , writing z(e) = σ̄−1(e) = s(e)+ i(δ∗)1/2x(e) and σ̄ (p0(z(e))) =
(s0, x0), we have

|s0 − s(e)| � ε′/3, |x0 − x(e)| � ε
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and, for all s ∈ [0, T ] and all x ∈ R, there exists w ∈ K̃N such that σ̄ (w) = (t, y)
satisfies

|s − t | � ε′/3, |x − y| � ε,

and, for all n � N − 1 and all z ∈ P̃n+1, σ̄ (z) = (s, x) satisfies

|s − cn| � ε′/3, |x −�n+1/
√
δ∗| � ε.

From this point on, we condition on the good event 
0 of probability exceeding
1 − ε0 where all of the properties discussed above hold. Suppose that we fix j, k ∈ Z

and m, n � N − 1 and w ∈ P̃m+1 + 2π i j and z ∈ P̃n+1 + 2π ik, with P̃m+1 + 2π i j an
ancestor particle of P̃n+1+2π ik. Write σ̄ (w) = (t, y) and σ̄ (z) = (s, x) and suppose that
|x |+2ε � 2R. Then we must have m = c−1t ′ � n = c−1s′, with |s − s′|, |t − t ′| � ε′/3
and |y − (�m+1 + 2π j)/

√
δ∗|, |x − (�n+1 + 2πk)/

√
δ∗| � ε, so

y � (�m+1 + 2π j)/
√
δ∗ + ε = �̄P

mn((�n+1 + 2πk)/
√
δ∗) + ε

� �̄t ′s′((�n+1 + 2πk)/
√
δ∗ + ε) + 2ε � �̄t ′s′(x + 2ε) + 2ε � �̄ts(x + 3ε) + 3ε,

and by a similar argument also y � �̄ts(x − 3ε) − 3ε. Here we have extended �̄ by
setting �̄ts = �̄t∧T,s∧T .

Fix e ∈ E and (t, y) ∈ F̄(e). Write (t, y) = σ̄ (w) and P̃0(z(e)) = P̃n+1 + 2π ik. We
can choose z ∈ P̃0(z(e)) with σ̄ (z) = (s, x) and |s − s(e)| � ε′/3 and |x − x(e)| � ε.
In particular |x | + 2ε � |x(e)| + 3ε � 2R. Set u = t ∧ s(e). Then w and z are related as
in the preceding paragraph and

t � t ′ + ε′/3 � s′ + ε′/3 � s + 2ε′/3 � s(e) + ε′ � s(e) + ε0

so |t − u| � ε′. Hence

y ��̄ts(x + 3ε) + 3ε��̄us(e)(x + 4ε) + 4ε��̄us(e)(x(e) + 5ε) + 5ε��̄us(e)(x(e))+ε0

and similarly

y � �̄us(e)(x(e))− ε0.

Since (t, y) was arbitrary, we have shown that

F̄(e) ⊆ {(t, y) : t ∈ [0, s(e)] and |y − �̄ts(e)(x(e))| � ε0}
∪{(t, y) : t ∈ [s(e), s(e) + ε0] and |y − x(e)| � ε0},

and, since F̄(e) is a connected set joining (s, x) to the imaginary axis, this implies for
the Hausdorff metric dH that

dH (F̄(e), {(t, �̄ts(e)(x(e))) : 0 � t � s(e)}) � 2ε0.

We complete the proof by obtaining an analogous estimate for Ḡ(e). Recall that
Ḡ(e) = {σ̄ (pτ ) : τ � 0}, where p = p(z(e)) is the minimal length gap path start-
ing from p0(z(e)), the closest point to z(e) which is not in the interior of K̃N . Write
σ̄ (p0(z(e))) = (s0, x0).

Suppose that t < s(e)−ε′ and p makes an excursion left of the line {t + i
√
δ∗y : y ∈

R}, with endpoints w−, w+, say. Then the open line segment (w−, w+) must contain a
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point of K̃N , say w ∈ P̃m+1 + 2π i j . Set σ̄ (w) = (t, y). Then, since p cannot cross K̃N ,
there must exist z ∈ P̃n+1 +2π ik, an ancestor particle of P̃m+1 +2π i j , with σ(z) = (s, x),
say, and s � s0. But then

s(e) � s0 + ε′/3 � s + ε′/3 � cn + 2ε′/3 � cm + 2ε′/3 � t + ε′ < s(e)

which is impossible. Hence there is no such excursion and so

Ḡ(e) ⊆ {(s, x) : s � s(e)− ε′, x ∈ R}.
Consider (t, y) = σ̄ (w) with w ∈ P̃m+1 + 2π i j and m � N − 1 and t � s(e)− 3ε′

and |y| + 3ε � 2R and y � �̄vs(e)(x(e)) + ε0, where v = s(e) ∨ t ∧ T . Note that
t � T + ε′/3 and |v − t | � 3ε′. Suppose (s, x) = σ̄ (z) with z ∈ P̃n+1 + 2π ik and
|s − s(e)| � ε′ and where P̃n+1 + 2π ik is an ancestor particle of P̃m+1 + 2π i j . Then

x � �̄st (y − 3ε)− 3ε � �̄s(e)v(y − 4ε)− 4ε � x(e) + ε.

Hence F̄(t, y) does not meet the vertical half-line {(s0, x) : x � x0}.
Define

�̄(e) = {(t, �̄t∧T,s(e)(x(e))) : t � s(e)}
and set I = [s(e)− 2ε′, T ]. There exists a continuous function y(t) : I → R such that,
for all t ∈ I , setting v = s(e) ∨ t ∧ T , we have

y(t) > �̄vs(e)(x(e)), d((t, y(t)), �̄(e)) = ε0 + ε + 5ε′.

Define recursively a sequence τ0, . . . , τM by setting τ0 = s(e) − 2ε′ and then taking
τn+1 as the supremum of the set

{τ ∈ [τn, T ] : |(τ, y(τ ))− (τn, y(τn))| = ε′}
until n = M − 1 when this set is empty and we set τM = T . For n = 0, 1, . . . ,M ,
choose wn ∈ K̃N with σ̄ (wn) = (tn, yn) and |tn − τn| � ε′ and |yn − y(τn)| � ε. Note
that t0 � s(e) − ε′ and tM � T − ε′ and tn ∈ [s(e) − 3ε′, T + ε′] and |yn| + 3ε � 2R
for all n. Set

B0 =
M−1⋃
n=0

[wn, wn+1), B1 = {t + i
√
δ∗yM : t � tM }, B = B0 ∪ B1.

Then, for any w ∈ B0, for (t, y) = σ̄ (w), we have |(t, y) − (τn, y(τn))| � ε + 2ε′ for
some n, so ε0 + 3ε′ � d((t, y), �̄(e)) � ε0 + 2ε + 7ε′ and so y � �̄vs(e)(x(e)) + ε0,
where v = s(e) ∨ t ∧ T . The final inequality obviously extends to B.

Suppose p crosses B, and does so for the first time at τ(1). Consider first the case
where pτ(1) ∈ [wn, wn+1). Then, sincewn andwn+1 are both connected to the imaginary
axis in K̃N and p cannot cross K̃N , it must eventually hit [wn, wn+1] again after τ(1), at
time τ(2) say, except possibly if pτ(1) = wn . If the open line segment (pτ(1), pτ(2)) con-
tains a point w ∈ K̃N with σ̄ (w) = (t, y), then for all z ∈ finger(w) with σ̄ (z) = (s, x)
and |s − s(e)| � ε′ we have x � x(e) + ε′. But this is impossible because w is dis-
connected from the imaginary axis by {s0 + i

√
δ∗x : x � x0} ∪ {pτ : τ � 0}. Hence

(pτ(1), pτ(2)) ⊆ D̃N , so pτ ∈ [pτ(1), pτ(2)] for all τ ∈ (τ (1), τ (2)), contradicting our
crossing assumption. In the case pτ(1) = wn , if p does not return to [wn, wn+1], then it
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must hit [wn−1, wn] instead and this also leads to a contradiction by a similar argument.
The case where pτ(1) ∈ B1 also leads to a contradiction of minimality by a similar
argument. Hence p never crosses B. So, for all (t, y) ∈ Ḡ(e) with y � �̄vs(e)(x(e)),
we have d((t, y), �̄(e)) � ε0 + 2ε + 7ε′ � 2ε0. A similar argument establishes this
estimate also in the case y � �̄vs(e)(x(e)). Since Ḡ(e) is a connected set joining (s0, x0)

to {T } × R, this implies

dH (Ḡ(e), �̄(e)) � 2ε0.

��
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