
Digital Object Identifier (DOI) 10.1007/s00220-012-1490-3
Commun. Math. Phys. 312, 655–694 (2012) Communications in

Mathematical
Physics

A New Light on Nets of C*-Algebras
and Their Representations

Giuseppe Ruzzi1, Ezio Vasselli2,�

1 Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica,
00133 Roma, Italy. E-mail: ruzzi@mat.uniroma2.it

2 Dipartimento di Matematica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5,
00185 Roma, Italy. E-mail: ezio.vasselli@gmail.com

Received: 1 February 2011 / Accepted: 25 January 2012
Published online: 13 May 2012 – © Springer-Verlag 2012

Dedicated to John E. Roberts on the occasion of his seventieth birthday

Abstract: The present paper deals with the question of representability of nets of
C∗-algebras whose underlying poset, indexing the net, is not upward directed. A partic-
ular class of nets, called C∗-net bundles, is classified in terms of C∗-dynamical systems
having as group the fundamental group of the poset. Any net of C∗-algebras has a canon-
ical morphism into a C∗-net bundle, the enveloping net bundle, which generalizes the
notion of universal C∗-algebra given by Fredenhagen to nonsimply connected posets.
This allows a classification of nets; in particular, we call injective those nets such that
the canonical morphism is faithful. Injectivity turns out to be equivalent to the existence
of faithful representations. We further relate injectivity to a generalized Čech cocycle of
the net, and this allows us to give examples of nets exhausting the above classification.

Using these results we have shown, in another paper, that any conformal net over S1

is injective.
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1. Introduction

A net of C∗-algebras is a covariant functor from a poset, considered as a category, to
the category of unital C∗-algebras having faithful ∗-morphisms as arrows. Actually, this
structure is not a net unless the poset is upward directed; it is, rather, a precosheaf of
C∗-algebras, however we prefer to maintain the term net throughout this paper, according
to the convention used in algebraic quantum field theory. The present paper addresses the
analysis of nets over posets that are not upward directed and, in particular, the question
of their representability on Hilbert spaces.

The basic idea of the algebraic approach to quantum fields over a spacetime is that the
physical content of the theory is completely encoded in the relation linking observables
measurable within a suitable region of the spacetime to that region ( [1,4,8,30,32,38]).
Mathematically this is expressed by a net of C∗-algebras defined over a poset given as a
suitable set of regions of the spacetime ordered under inclusion. Two physical inputs are
imposed on this net: causality and covariance under spacetime symmetries, if there are
any. This is what is called the observable net. Quantum systems, like for instance quan-
tum fields with particle spectra, are described by certain representations of the observable
net on a Hilbert space. Some remarkable results in this direction are [5,20,21].

The set of regions indexing the observable net must be chosen to best fit the topolog-
ical and the causal properties of the spacetime and the global symmetries. In Minkowski
space this is the set of double cones, which turns out to be upward directed under inclu-
sion; so the net embeds in the inductive limit C∗-algebra (the colimit). Symmetries on the
net lift to the inductive limit, and (covariant) representations of the inductive limit yield
(covariant) representations of the observable net. However, when one deals with theo-
ries over curved spacetimes, where nontrivial topologies are allowed, or over the circle
S1, the appropriate set of regions is not upward directed any more,1 see [13,29,42]. So
the question of the existence of representations arises.

A similar problem arises in geometric group theory ([9,27]). Any simple complex of
groups is a net of groups over its set of simplices ordered under opposite inclusion, and
the realizability of the complex, namely the existence of an embedding into the colimit,
is equivalent to the existence of a faithful representation of the net (the analogue of a
Hilbert space representation, see below). Neverthless the powerful results obtained in
this context seem to be very far from applicable to the nets arising in quantum field the-
ory, mainly because the posets involved are finite and, in many applications, the groups
are finitely generated.

1 An upward directed poset is simply connected; the first homotopy group of the spacetime is isomorphic
to that of the poset indexing the net, see [42]. About the definitions of homotopy and cohomology (homology)
of a poset, see the above-cited reference and [39,40].
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The question of representability, initially approached by Blackadar in terms of gen-
erators and relations ([11,12]), has been considered in the context of quantum field
theory by Fredenhagen, who generalized the inductive limit C∗-algebra to posets that
are not upward directed introducing the universal C∗-algebra of a net, characterized by
the property that representations of the net (those that we call, in the present paper,
Hilbert space representations) lift to representations of the universal C∗-algebra ([25,
28]). Symmetries of the net lift to the universal C∗-algebra, which reduces to the induc-
tive limit when the poset is upward directed. The advantage, apart from that of dealing
with a single algebra rather than a net, is that some of the symmetries and representa-
tions of the observable net may be realized in the universal C∗-algebra, see for instance
[19,26,33].

Nevertheless we consider this approach unsatisfactory, for two main reasons. The
first one is that the universal C∗-algebra may be trivial, but there is no result connecting
the nontriviality of the universal C∗-algebra to intrinsic properties of the net itself. The
second one is that the universal C∗-algebra is too restrictive, since it does not take the
fundamental group of the poset into account.2 Two recent papers, [17] and [14] (see also
[6]) illustrate the problems that arise. In particular, in [14] quantum effects due to the
topology of the spacetime have been studied. Guided by Roberts’ cohomology [37,38],
the authors introduced a different notion of representation for a net of C∗-algebras, that
we use here and call representation in the sequel. These induce a representation of the
fundamental group of the poset; generalize the above notion of Hilbert space represen-
tation in the sense that the two notions coincide when the poset is simply connected;
describe, as representations of the observable net over a spacetime, charges affected by
the topology of the spacetime. Nevertheless, these representations do not, in general,
admit any extension to the universal C∗-algebra.

The present paper answers the above two questions and is organized as follows. We
begin by giving a combinatorial construction of nets of C∗-algebras over arbitrary posets
(§3.2). Afterwards we focus on a particular class of nets, the C∗-net bundles, giving a
classification in terms of C∗-dynamical systems carrying an action of the fundamental
group of the poset (§3.3). The importance of net bundles is that any net defines a C∗-net
bundle called the enveloping net bundle, which is the codomain of a canonical morphism
from the given net. This gives a first answer to the above questions, since the enveloping
net bundle takes into account the topology of the poset and reduces to the universal
C∗-algebra when the poset is simply connected. We distinguish nets between nondegen-
erate, whenever the enveloping net bundle is nonvanishing, and injective, whenever the
canonical morphism is faithful (§3.4). Injectivity turns out to be equivalent to the exis-
tence of faithful representations (§4). We give an intrinsic description of injective nets
in terms of a generalized Čech cocycle. This allows us to find examples of nets exhaust-
ing the above classification: degenerate nets, nondegenerate but noninjective nets and
injective nets having no Hilbert space representations (so, the universal C∗-algebra is
trivial but we have an embedding into the enveloping net bundle, §5).

Finally, we stress that this paper is followed by a second one ([44]), in which the
ideas of the present work are used to prove that any (covariant) net over the standard,
nondirected base of S1 has faithful (covariant) representations, a scenario of interest in
conformal field theory.

2 A geometric invariant appearing in the context of Yang-Mills theory is the 2-homology of the spacetime,
see [3]. In the language of algebraic quantum field theory, we have 2-cycles yielding central elements of
the universal *-algebra of the net of perturbative quantum fields (see [33, App. A]). We also mention the
2-cohomology defined by the electromagnetic field over the Minkowski spacetime ([34, §4]), which, in spite
of simply-connectedness, is nontrivial since has coefficients in a net.
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2. Preliminaries

We introduce basic notions of posets, some motivated by algebraic quantum field theory,
and some related algebraic structures. In particular we discuss the fundamental group
of a poset in terms of a related simplicial set.

2.1. Posets. A poset is a nonempty set K with an order relation ≤, that is, ≤ is a binary
relation which is reflexive, antisymmetric and transitive. We shall denote the elements
of K by Latin letters o, a. We shall write a < o to indicate that a ≤ o and a �= o. A
poset K is said to be upward directed if for any pair o1, o2 ∈ K there is o ∈ K with
o1, o2 ≤ o. The dual poset of K is the set K ◦ having the same elements as K and order
relation ≤◦ defined by a ≤◦ o if, and only if, o ≤ a. We say that K is downward directed
if K ◦ is upward directed. A subset C ⊆ K is said to be contained in a ∈ K whenever
o ≤ a for all o ∈ C and in this case we write C ⊆ a.

A morphism from K to a poset P is an order preserving map f : K → P: f(o) ≤ f(a)
whenever o ≤ a, and we say that it is an isomorphism if it is injective and surjective. We
shall denote the set of automorphisms of a poset K by Aut(K ). A group G is a symmetry
group for K if there is an order preserving left action G × K 	 (g, o) → go ∈ K , that
is, if there is an injective group morphism from G to Aut(K ).

The next definition is a key notion for posets used in algebraic quantum field theory.
A causal disjointness relation for a poset K is a symmetric binary relation ⊥ such that

a ⊥ o and õ ≤ o ⇒ a ⊥ õ.

If K is endowed with a causal disjointness relation ⊥ and G is a symmetry group for K ,
we always assume that G preserves ⊥; this amounts to saying that

a ⊥ o ⇐⇒ ga ⊥ go,

for any g ∈ G.
In algebraic quantum field theory, the main object of study is the observable net: an

inclusion-preserving mapping from a set of regions K of a given spacetime manifold to
the class of C∗-algebras [30]. So the poset structure of the set K , ordered under inclu-
sion, enters the theory. In general this set of regions K is a base for the topology of the
spacetime manifold, consisting of open, connected and simply connected subsets of the
spacetime. If the spacetime has a global symmetry group, then one considers only bases
stable under its action.

In Minkowski space M
4, K is the set of double cones, the symmetry group is

the Poincaré group, and the causal disjointness relation is spacelike separation. This
poset is upward directed under inclusion. For arbitrary 4-dimensional globally hyper-
bolic spacetimes M, K is the set of diamonds [14,42], which is stable under isometries,
and the causal disjointness relation is induced by the causal structure of the spacetime.
This poset is not upward directed when M is not simply connected or when M has
compact Cauchy surfaces. For theories on the circle S1, K is the set of connected open
intervals of S1 having a proper closure; the symmetry group is Diff(S1) or the Möbius
subgroup; the usual notion of disjointness between sets is the causal disjointness relation.
This poset is not upward directed either.
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2.2. A simplicial set for posets. We introduce a simplicial set associated with a poset
and, in particular, discuss the notion of the fundamental group of a poset in terms of this
simplicial set. The standard symbols ∂i and σi are used to denote the face and degener-
acy maps. The symbols ∂i j and σi j denote, respectively, the compositions ∂i∂ j and σiσ j .
References for this section are [38,40].

We consider the simplicial set �∗(K ) of singular simplices associated with a poset
K , introduced by Roberts in [38]. A brief description of the set �n(K ) of n-simpli-
ces is the following. A 0-simplex is just an element of K . Inductively, for n ≥ 1, and
n-simplex x is formed by n + 1, (n − 1)-simplices ∂0x, . . . , ∂n x and by an element of
the poset |x |, called the support of x , such that |∂i x | ≤ |x | for i = 0, . . . , n. We shall
denote 0-simplices either by a or by o, 1-simplices by b, and 2-simplices by c. Given a
1-simplex b the opposite b is the 1-simplex having the same support as b and such that
∂0b = ∂1b, ∂1b = ∂0b.

Composing 1-simplices one gets paths. A path p is an expression of the form
bn ∗ · · · ∗ b1, where bi are 1-simplices satisfying the relations ∂0bi−1 = ∂1bi for
i = 2, . . . , n. We define the 0-simplices ∂1 p := ∂1b1 and ∂0 p := ∂0bn and call them,
respectively, the starting and the ending point of p. The support of a path p is the subset
|p| of K whose elements are the supports of the 1-simplices which compose the path. By
p : a → ã we mean a path starting from a and ending at ã. A path p : o → o is called a
loop over o. The opposite of p is the path p : ã → a defined by p := b1 ∗· · ·∗bn . If q is
a path from ã to â, then we can define, in an obvious way, the composition q ∗ p : a → â.

Any poset morphism f : K → P induces a morphism between the corresponding
simplicial sets. Given o ∈ �0(K ), we let f(o) ∈ �0(P) be the image of o by f. Induc-
tively, for n ≥ 1, given an n-simplex x of K we define f(x) as the n-simplex of P with
faces ∂i f(x) := f(∂i x) for i = 0, 1, . . . n, and support |f(x)| := f(|x |). This, clearly,
induces a mapping between the corresponding set of paths: f(p) := f(bn)∗ · · · ∗ f(b2)∗
f(b1) is a path of P for any path p of K of the form p = bn ∗ · · · ∗ b2 ∗ b1.

A poset K is said to be connected whenever for any pair o, a of 0-simplices there is
a path p : o → a. In the present paper we shall always consider pathwise connected
posets. In a pathwise connected poset we can define path frames: fix a 0-simplex o,
the pole, a path frame Po, with respect to o, is a choice for any 0-simplex a of a path
p(a,o) : o → a such that p(o,o) is homotopic (see below) to ιo the trivial loop over o
which i.e. the degenerate 1-simplex σ0o. We shall always denote the opposite p(a,o) of
the path p(a,o) in Po by p(o,a).

A deformation of a path p is a path obtained either by replacing two subsequent
1-simplices ∂0c ∗ ∂2c of p by ∂1c, or by replacing a 1-simplex ∂1c of p by ∂0c ∗ ∂2c,
where c ∈ �2(K ). Two paths p and q are homotopy equivalent, written ∼, if one can
be obtained from the other by a finite sequence of deformations. We shall denote the
homotopy class of a path p by [p]. We then define the first homotopy group of K , with
base point o ∈ �0(K ), as

πo
1 (K ) := {p : o → o}/ ∼, [p] · [q] := [p ∗ q].

Note that, if f : K → P is a poset morphism, then the induced mappings between
the set of paths (see above) preserves homotopy equivalence. So, by setting

f∗([p]) := [f(p)] , [p] ∈ πo
1 (K ) ,

one has that f∗ : πo
1 (K ) → π

f(o)
1 (P) is a group morphism. Now, since we consider only

pathwise connected posets, the first homotopy group does not depend, up to isomor-
phism, on the choice of the base point; this isomorphism class, written π1(K ), is the
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fundamental group of K . We shall say that K is simply connected whenever π1(K ) is
trivial.

It turns out that a poset K is simply connected if it is upward directed, because there is
a contracting homotopy [38], but also if it is downward directed because the fundamental
group of a poset and that of its dual are equivalent [40]. A useful result is the following
(see [42]): when K is a base of neighbourhoods of a space X consisting of arcwise and
simply connected subsets, π1(K ) is isomorphic to the homotopy group π1(X). This has
important consequences for the present paper.

In the following we shall also use the nerve N∗(K ) of K . Considering the poset
K as a category (taking the elements of K as objects and the inclusions as arrows), a
0-simplex of the nerve is an object of this category; a 1-simplex is an arrow; an n-sim-
plex is a composition of n arrows. The nerve can be realized as a subsimplicial set of
�∗(K ). Clearly 0-simplices of the nerve are nothing but that 0-simplices of �0(K ).
For n ≥ 1, the elements of Nn(K ) are those elements x of �n(K ) whose vertices
xi := ∂012···(i−1)(i+1)···(n−1)n x , for i = 0, 1, . . . , n, satisfy the relation

x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn = |x |.
In the following, by (ao) ∈ N1(K ) we shall mean the 1-simplex of the nerve with
∂1(ao) = o and ∂0(ao) = a; clearly a ≥ o and |(ao)| = a.

Finally, we introduce a notion of continuity for symmetries of a poset, which is mainly
used for posets arising as a base for the topology of a space as those introduced in §2.1.
Some preliminary observations are in order. Let G be a symmetry group of the poset
K . Extend the action of the group from the poset K to the simplicial set �∗(K ) and
hence to paths, as done above for morphisms of posets. It is clear, from the definition of
symmetry of a poset, that p ∼ q if, and only if, gp ∼ gq. So g∗ : πo

1 (K ) → π
go
1 (K )

is a group isomorphism. Now, a continuous symmetry group is a topological symmetry
group G of K such that, for any path p and a0, a1 ∈ K with ∂0 p < a0, ∂1 p < a1, there
is a neighbourhood Ue of the identity e ∈ G such that g∂0 p ≤ a0, g∂1 p ≤ a1, and

(a, g∂0 p) ∗ gp ∗ (o, g∂1 p) ∼ (a, ∂0 p) ∗ p ∗ (o, ∂1 p) (2.1)

for any g ∈ Ue. In this equation (o, g∂1 p) denotes the 1-simplex of the nerve having
g∂1 p as 1-face and o as 0-face, that is, ∂1(o, g∂1 p) = g∂1 p and ∂0(o, g∂1 p) = o, and
(o, g∂1 p) denotes the opposite of the 1-simplex (o, g∂1 p).

The meaning of (2.1) is that, in the limit g → e, the path gp becomes homotopic to
p, up to rescaling the starting and the ending points. Examples of posets having a con-
tinuous symmetry group are those described in §2.1, arising as a base for the topology
of a G-space.

3. Abstract Nets of C∗-Algebras

We develop the abstract theory of nets of C∗-algebras over posets, focusing on those
aspects of the theory involving the question of representability of nets. We define some
basic notions concerning nets of C∗-algebras and give several examples motivating these
definitions. Apart from the examples coming from the algebraic quantum field theory,
we give new examples of nets of C∗-algebras over any poset.

The first important result concerns a particular class of nets, those that we call C∗-net
bundles, which are classified in terms of C∗-dynamical systems having as group the first
homotopy group of the poset. The importance of this result relies on two related facts.



New Light on Nets of C*-Algebras and Their Representations 661

The first one is that, as we shall see in §4, this result implies that any C∗-net bundle can
be faithfully represented. The second one is that any net of C∗-algebras has a canonical
morphism into a C∗-net bundle, the enveloping net bundle. So the existence of faithful
representations turns out to be equivalent to the faithfulness of the canonical morphism.
Nets satisfying the latter property are called injective.

3.1. Basic definitions. A net of C∗-algebras (A, j)K is defined by a poset K , a corre-
spondence A : o → Ao associating a unital C∗-algebra Ao to any o ∈ K , the fibre
over o, and a family joa : Aa → Ao, with a ≤ o, of unital faithful ∗-morphisms, the
inclusion maps, satisfying the net relations

joa ◦ jae = joe, e ≤ a ≤ o.

Whenever the inclusion maps are all ∗-isomorphisms we say that (A, j)K is a C∗-net
bundle. If P ⊂ K , then restricting A and j to elements of P yields a net called the
restriction of (A, j)K to P , that we denote by (A, j)P .

Remark 3.1. Some observations are in order.

1. According to the above definition, a net of C∗-algebras is a pre-cosheaf of C∗-alge-
bras. We are adopting the practice in algebraic quantum field theory of calling these
objects nets of C∗-algebras even if it properly only applies when the poset is upward
directed.

2. The term net bundle derives from the fact that, as indicated in [40], these objects
are fibre bundles over posets where geometrical concepts like connections and their
curvatures can be introduced and analyzed. Moreover, when K is a good base for
the topology of a space X , the category of net bundles is, in essence, a (non-full)
subcategory of the category of bundles on X in the usual sense [40].

3. Note that, when we have a C∗-net bundle (A, j)K , each joa , a ≤ o, is invertible, and it
makes sense to consider the inverses joa

−1. To be concise we will write jao := joa
−1.

A morphism (φ, f) : (A, j)K → (B, ı)P of nets of C∗-algebras is a pair (φ, f),
where f : K → P is a morphism of posets and φ is a family φo : Ao → Bf(o), o ∈ K ,
of ∗-morphisms fulfilling the relation

φo ◦ joa = ıf(o)f(a) ◦ φa, a ≤ o.

We say that (φ, f) is a unital morphism whenever all φo are unital, and faithful on the
fibres whenever φo is faithful for any o. Moreover, we say that (φ, f) is a monomorphism
if f is injective and φo is faithful for any o; it is an isomorphism if f and φo, for any
o, are isomorphisms. There is an obvious composition rule between morphisms: given
(ψ, h) : (B, ı)P → (C, y)S we define

(ψ, h) ◦ (φ, f) := (ψ ◦ φ, h ◦ f) : (A, j)K → (C, y)S,

leading, in an obvious way, to the category of nets of C∗-algebras. We shall mainly deal
with nets over a fixed poset K where we shall denote morphisms of the form (φ, idK )

by φ (idK is the identity morphism of K ).
The constant net bundle with fibre the C∗-algebra A is defined as the constant assign-

ment At
o := A, o ∈ K , with inclusion maps j t

õo := idA for all o ≤ õ; we say that
the net is trivial if it is isomorphic to a constant net bundle. Applying the reasoning of
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[39,40] it can be proved that when K is simply connected every C∗-net bundle (A, j)K
is trivial; in §3.3 we shall give a proof using dynamical systems. Finally, we say that a
net vanishes if it is isomorphic to the null net bundle, that is, the C∗-net bundle having
fibre {0}.

Remark 3.2. It is easily seen from the above definitions that a net is a functor from a
poset, considered as a category, to the category of unital C∗-algebras having unital faith-
ful ∗-morphisms as arrows. Other types of nets can be obtained by changing the target
category, as follows.

A net of Hilbert spaces (H,U )K is given by the correspondence assigning Hilbert
spaces Ho, o ∈ K , and a family of isometries Uao : Ho → Ha , o ≤ a, fulfilling
Ueo = Uea Uao, o ≤ a ≤ e. When each Uao is unitary we say that (H,U )K is a Hilbert
net bundle.

A net of locally compact groups (G, j)K is defined assigning locally compact groups
Go, o ∈ K , and continuous group monomorphisms jao : Go → Ga , o ≤ a, fulfilling
jeo = jea ◦ jao, o ≤ a ≤ e. We say that (G, j)K is a group net bundle whenever each
jao is an isomorphism.

Let G be symmetry group of K in the sense of §2.1. A net of C∗-algebras (A, j)K
is G-covariant if for any g ∈ G there is a family αg

o : Ao → Ago, o ∈ K , of ∗-isomor-
phisms such that

αh
go ◦ αg

o = α
hg
o , g, h ∈ G, (3.1)

and

α
g
o ◦ joa = jgo ga ◦ αg

a , a ≤ o. (3.2)

Let (B, ı, β) be a G-covariant net. A morphism φ : (A, j)K → (B, ı)K is said to be
G-covariant whenever βg

o ◦ φo = φgo ◦ αg
o , ∀o ∈ K , g ∈ G. When G is a continu-

ous symmetry group of K (see (2.1)) we assume that the action α on a covariant net
(A, j, α)K is continuous. This amounts to saying that if {gλ}� is a net in G converging
to the identity of the group, then for any o ∈ K , and for any a ∈ K with a > o, there
exists λa ∈ � such that gλo ≤ a for any λ ∈ � with λ ≥ λa and

‖ja gλo ◦ αgλ
o (A)− jao(A)‖ → 0, ∀A ∈ Ao. (3.3)

We stress that this notion of continuity is intended for posets arising as the base for the
topology of a topological space acted upon, continuously, by a group (see §2.1). In these
cases, one can easily see that when the poset is upward directed this notion of continuity
reduces to the usual notion in algebraic quantum field theory (see [30]).

Finally, when K is endowed with a causal disjointness relation ⊥, we say that a net
of C∗-algebras (A, j)K is causal if, for any o1, o2 ≤ o with o1 ⊥ o2,

[joo1(A1), joo2(A2)] = 0 holds (3.4)

for any A1 ∈ Ao1 and A2 ∈ Ao2 , where [·, ·] denotes the commutator.
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3.2. Examples. Many of the examples of nets of C∗-algebras arise as models of quan-
tum fields over a spacetime, mainly via the Weyl quantization of the phase space of a
classical field. For any spacetime mentioned in §2.1 (the Minkowski space, the circle
S1, or an arbitrary globally hyperbolic spacetime) there are causal nets, over a suited
poset (see §2.1), which are covariant with respect to the symmetries of the spacetime.
For these examples we refer the reader to [1,7,13,15,22,26,30,46]. We also quote [16]
for generally locally covariant nets over globally hyperbolic spacetimes, and [2,15] for
examples of nets over the lattice Z

n .
In all the mentioned examples the representability problem does not arise: the nets

are represented on the physical Hilbert space of the model.3 However, in order to study
model independent aspects of a theory one is led to consider abstract nets of C∗-alge-
bras. Apart from the cases, like the Minkowski space, where the poset indexing the net
is upward directed (see §2.1), there is no result about the existence of representations
for these nets; in these cases the existence of a representation is a working assumption.
This motivates our investigation.

Important examples of nets outside the context of quantum field theory come from
geometric group theory: as stated in the Introduction, any simple complex of groups is
a net of groups ([9,27,31,45]). Examples are also the systems of C∗-algebras and the
systems of groups underlying the notions of the (generalized) amalgamated free product
[10,11,35,36].

In the next subsections we provide new examples of nets. In particular, we give a
combinatorial construction of nets of C∗-algebras over arbitrary posets. These nets turn
out to be covariant when the posets have a symmetry group. Aspects related to the causal
structure will be discussed in a future work [18].

3.2.1. Nets of groups of loops. We introduce a way of deforming a path of a poset which
turns out to be weaker than that underlying the homotopy equivalence relation. This new
deformation allows us to construct examples of nets of discrete groups (in the present
section) and of C∗-algebras (later) over any poset.

Let p, q be two paths with the same endpoints. We say that q is a w-deformation of
p if

(1) either q is obtained by inserting into p a degenerate 1-simplex;
(2) or by replacing two consecutive 1-simplices ∂0c ∗ ∂2c of the path p by ∂1c, where

c ∈ N2(K ) (a 2-simplex of the nerve);
(3) or q can be obtained by replacing two consecutive 1-simplices b ∗ b of the path p

by σ0∂1b.

Two paths with the same endpoints are w-equivalent if one can be obtained from the
other by a finite sequence of w-deformations.

This is an equivalence relation weaker than homotopy since any pair of w-equivalent
paths are also homotopy equivalent. The following example points out the difference
between these two relations. Consider a 1-simplex b ∈ �1(K ), and the associated path

pb := (|b|∂0b) ∗ (|b|∂1b),

where (|b|∂1b) is the 1-simplex of the nerve of K (see §2.2) having 1-face ∂1b and 0-face
|b|; while (|b|∂0b) is the opposite in�1(K ) of the 1-simplex of the nerve (|b|∂0b). Then

3 For instance, models obtained by Weyl quantization are, in general, represented on a Fock space. More
in general, in these models the net embeds into the C∗-algebra associated with whole phase space. Faithful
representations of this algebra induce faithful representations of the net.
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b is homotopic to pb: the relations

∂0cb := (|b|∂0b), ∂2cb := (|b|∂1b), ∂1cb := b, |cb| := |b|,
define a 2-simplex cb of �2(K ). However

b ∼w pb ⇐⇒ b ∈ N1(K ).

In fact if b does not belong to the nerve of K , then cb does not belong to the nerve of
K , and this implies that b �∼w pb. Conversely if b belongs to the nerve, then ∂0b = |b|.
So (|b|∂0b) = σ0∂0b (the degenerate 1-simplex associated with the 0-face of b) and
b = (|b|∂1b). Therefore cb ∈ N2(K ) and b ∼w p by property (2) of the above defini-
tion.

Now it is easily seen thatw-equivalence is compatible with the composition of paths
and with the operation of taking the opposite of a path. This allows us to associate two
groups with any o of K . The first group is defined as the quotient set of the set of loops
over o with respect to the w-equivalence:

�o := {p : o → o }/ ∼w . (3.5)

The product is defined as [p]w · [q]w := [p ∗ q]w. We call this group the w-group of
loops over o. The second group is the subset of �o defined by

�l
o := {[p]w ∈ �1(o) | ∃q ∈ [p]w such that |q| ⊆ o}, (3.6)

with the same product as�o. In words�l
o is the subset of those elements [p]w of�o for

which there is at least one path in the equivalence class of [p]w whose support is con-
tained in o. This is a subgroup because composition of paths whose support is contained
in o leads to a path supported in o. We call �l

o the w-group of loops supported in o.
The next step is to prove that these groups form nets of discrete groups. Given an

inclusion o ≤ a, define

λao([p]w) := [(ao) ∗ p ∗ (ao)]w, [p]w ∈ �1(o). (3.7)

Here (ao), as above, is the 1-simplex of the nerve associated with the inclusion o ≤ a;
instead (ao) is the opposite, in �1(K ), of (ao) (see the preliminaries).

It is clear that λao : �o → �a . Moreover, it is easily seen from the definition that
λao : �l

o → �l
a . Now, for any [q]w, [p]w ∈ �o we have

λao([p]w) λao([q]w) = [(ao) ∗ p ∗ (ao)]w · [(ao) ∗ q ∗ (ao)]w
= [(ao) ∗ p ∗ (ao) ∗ (ao) ∗ q ∗ (ao)]w
= [(ao) ∗ p ∗ q ∗ (ao)]w = λao([p ∗ q]w),

because of property (3) of the definition of w-deformation. Moreover for any inclusion
e ≤ o ≤ a,

λao(λoe([p]w)) = [(ao) ∗ (oe) ∗ p ∗ (oe) ∗ (ao)]w = [(ae) ∗ p ∗ (ae)]w = λae([p]w),
for any [p]w ∈ �e, because of property (2) of the definition ofw-deformation. Finally if
[p]w ∈ �a , then [(ao)∗ p∗(ao)]w ∈ �o for o ≤ a, and λao([(ao)∗ p∗(ao)]w) = [p]w.
This proves that λao : �o → �a is a group isomorphism making (�, λ)K a net bundle
of discrete groups and (�l , λ)K a net of discrete groups.
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Remark 3.3. In general the triple (�l , λ)K is is not a net bundle. For, it is enough to
consider inclusions o, õ < a such that o and õ are not related. In this case one can easily
construct elements of �l

a not belonging to the image of �l
o by λao.

Assume that K has a symmetry group G. Extend the action of the symmetry group
from the poset K to the simplicial set �∗(K ), and hence to paths, as done in §2.1 for
morphisms of posets. Note that p ∼w q if, and only if, gp ∼w gq for any g ∈ G. This
is quite obvious from how g is defined on paths. Therefore,

g∗([p]w) := [gp]w, [p]w ∈ �o, (3.8)

is well defined, and g∗ : �o → �go and g∗ : �l
o → �l

go are group isomorphisms.
Moreover, given o ≤ a we have

g∗(λao([p]w)) = g∗([(ao) ∗ p ∗ (ao)]w)=[g(ao) ∗ gp ∗ g(oa)]w = λg(ao)(g∗([p]w)),
for any [p]w ∈ �o. Summing up, we have the following result.

Proposition 3.4. Let K be a poset.

(i) Then (�, λ)K and (�l , λ)K are, respectively, a net bundle and a net of discrete
groups with a monomorphism i : (�l , λ)K → (�, λ)K defined by the inclusions
io : �l

o → �o.
(ii) If K has a symmetry group G, then i : (�l , λ)K → (�, λ)K is a monomorphism

of G-covariant nets.

Proof. It is clear that the mapping i : �l
o → �o defined by io([p]w) = [p]w, with

[p]w ∈ �l
o, is a monomorphism. Moreover g∗ ◦ io([p]w) = [gp]w = igo([gp]w) =

igo ◦ g∗([p]w) for any [p]w ∈ �l
o. This completes the proof. ��

3.2.2. Nets of C∗-algebras from nets of discrete groups. In the present section we make
use of the functor assigning the group C∗-algebra to construct nets of C∗-algebras starting
from nets of discrete groups.

Let G be a discrete group and C∗(G) denote the (full) group C∗-algebra; this is a un-
ital C∗-algebra defined as the enveloping C∗-algebra of the convolution algebra �1(G).
The unital ∗-algebra C(G) of those functions f : G → C which are a finite linear
combination f = ∑

g f (g) δg of Kronecker delta functions is a dense subset of �1(G).
In particular δg ∗ δh = δgh .

Given a group morphism σ : G → H , for any f ∈ C(G) let

σ̃ ( f ) :=
∑

f (g)δρ(g).

This defines a morphism σ̃ : C(G) → C(H) in the �1-norm. Moreover it is an isometry
(isomorphism) when σ is injective (is an isomorphism). Therefore σ̃ lifts to a continu-
ous morphism from �1(G) into �1(H). By the universality property of the enveloping
C∗-algebra there exists a unique morphism C∗(σ ) : C∗(G) → C∗(H) such that

C∗(σ ) ◦ ιG = ιH ◦ σ̃ ,
where ι denotes the embedding of the �1 algebra into the enveloping C∗-algebra. There-
fore, the mapping

C∗ : G �→ C∗(G), σ �→ C∗(σ )
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is a functor. When σ is a group isomorphism C∗(σ ) is, clearly, a ∗-isomorphism, nev-
ertheless we are interested in the case where σ is simply a monomorphism, and for a
locally compact group C∗(σ ) is not injective in general. On the other hand, assuming
that G, H are discrete we find that for every unitary representation π of G there is an
isometry V ∈ (π, ind(π) ◦ σ), where ind(π) is the representation of H induced by π 4

(see for instance [24]). By the definition of the enveloping C∗-algebra, and the rela-
tion between the unitary representations of a locally compact group and non-degenerate
representations of the �1 algebra, C∗(σ ) is a faithful ∗-morphism.

The functor C∗ allows one to construct in the obvious way a net of C∗-algebras
(C∗(G),C∗(j))K , C∗(G)o := C∗(Go), C∗(j)o′o := C∗(jo′o), o ≤ o′ ∈ K , starting
from the net of discrete groups (G, j)K . Clearly, (C∗(G),C∗(j))K is a net bundle when
(G, j)K is a net bundle, and this yields the following result.

Proposition 3.5. Given a poset K , let (�l , λ)K and (�, λ)K be the net of discrete groups
defined in §3.2.1. Then (C∗(�l),C∗(λ))K and (C∗(�),C∗(λ))K are respectively a net
of C∗-algebras and a C∗-net bundle, and

C∗(i) : (C∗(�l),C∗(λ))K → (C∗(�),C∗(λ))K

is a unital monomorphism. If K has a symmetry group G, then all the above nets and
morphisms are G-covariant.

Proof. The first assertion follows as C∗ is a functor. In a similar fashion, to prove covari-
ance we note that by Prop.3.4 the two nets of groups are G-covariant, and, given g ∈ G,
define

cg := C∗(g∗) : C∗(�)o → C∗(�)go,

where g∗ : �o → �go is defined in (3.8). It is easily verified that this makes our nets
G-covariant, as desired. ��
Remark 3.6. With the applications to algebraic quantum field theory in mind, this is
a promising result: it allows us to construct nontrivial examples of covariant nets of
C∗-algebras over any spacetime, taking as poset a suitable base of neighbourhoods for
the topology of the spacetime encoding the causal structure and the global symmetry
of the spacetime, as indicated in the preliminaries. However, this result, as it stands, is
not complete. In fact, the above nets are not causal. Furthermore, if G is a continuous
symmetry for the poset (2.1), then the action of G on the net of C∗-algebras defined in
Prop.3.5 is not continuous according to the definition given in §3.1. This is so because
w-equivalence, used to define the groups of loops, is weaker than homotopy equivalence.
These gaps are filled in [18].

3.3. The holonomy dynamical system. We now focus on net bundles. We shall see that
the fibres of a net bundle are acted upon by the homotopy group of the poset. This in
turn will lead to an equivalence between the category of net bundles over a poset and
that of πo

1 (K )-dynamical systems for any o ∈ K . We shall work using morphisms over
different posets, a scenario that will appear in the forthcoming paper [44] and is useful
in generally locally covariant field theory ([16]).

4 We are grateful to A. Valette for drawing our attention to this fact, and to a counterexample when the
groups involved are not discrete.
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We start by making some preliminary definitions. Let (A,G, α) and (B, H, β) be
C∗-dynamical systems; a morphism from (A,G, α) to (B, H, β) is a pair (η, p) where
η : A → B is a ∗-morphism and p : G → H is a group morphism satisfying the relation

η ◦ αg = βp(g) ◦ φ , g ∈ G. (3.9)

We say that (η, f) is an isomorphism when η is a ∗-isomorphism and f is a group iso-
morphism. When G = H we shall denote morphisms of the form (η, idG) by η.

Now, consider a net bundle (A, j)K and define

jb := j∂0b|b| ◦ j|b|∂1b, b ∈ �1(K ), (3.10)

where j∂0b|b| := j−1
|b|∂0b. Since the inclusion maps are isomorphisms, we have a field

�1(K ) 	 b → jb ∈ Iso(A∂1b,A∂0b),

satisfying the 1-cocycle equation

j∂0c ◦ j∂2c = j∂1c, c ∈ �2(K ), (3.11)

where Iso(A∂1b,A∂0b) is the set of ∗-isomorphisms from A∂1b to A∂0b. Extend this
1-cocycle from 1-simplices to paths by setting jp := jbn ◦ · · · ◦ jb2 ◦ jb1 for any path
p := bn ∗· · ·∗b2 ∗b1. Then the 1-cocycle equation implies homotopy invariance, that is,
jp = jq whenever p ∼ q (see [42]). In this way, fixing an element o of K and defining
A∗ := Ao yields the action

j∗ : πo
1 (K ) → AutA∗, j∗,[p] := jp, [p] ∈ πo

1 (K ). (3.12)

We call (A∗, πo
1 (K ), j∗) the holonomy dynamical system associated with the net bundle

(A, j)K . A different choice of the base element o leads to an isomorphic dynamical
system. If (φ, f) : (A, j)K → (B, ı)S is a morphism, there is an induced morphism
f∗ : πo

1 (K ) → π
f(o)
1 (S), and defining

(φ∗, f∗) : (A∗, πo
1 (K ), j∗) → (B∗, π f(o)

1 (S), ı∗), φ∗ := φo,

yields a morphism of dynamical systems, in fact

φ∗ ◦ j∗,[p] = φo ◦ jp = ıf∗(p) ◦ φo = ı∗,f∗[p] ◦ φ∗.

Remark 3.7. Just a comment on the terminology: as said before, a net bundle can be seen
as a fibre bundle over the underlying poset; the fibre over o is nothing but the algebra
Ao, and the inclusion maps j define a connection of the fibre bundle. So, for any loop p
over o, the automorphism jp is the parallel transport along p for the connection j , i.e.,
the holonomy.

Now, we want to prove that the mapping

(A, j)K �→ (A∗, πo
1 (K ), j∗) (3.13)

is bijective up to isomorphism. Thus we have to find an inverse (up to isomorphism). To
this end, we fix a path frame Po := {p(a,o), a ∈ K } over o ∈ K (see §2.2) and, given
the dynamical system (A, πo

1 (K ), α), define

α∗,ãa := α[p(o,ã)∗(aã)∗p(a,o)] ∈ AutA , a ≤ ã , (3.14)
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where, by convention, p(o,ã) denotes the opposite p(ã,o) of p(ã,o). Observe that

α∗,ãa ◦ α∗,ae = α[p(o,ã)∗(ãa)∗p(a,o)] ◦ α[p(o,a)∗(ae)∗p(e,o)]
= α[p(o,ã)∗(ãa)∗p(a,o)∗p(o,a)∗(ae)∗p(e,o)]
= α[p(o,ã)∗(ãa)∗(ae)∗p(e,o)] = α[p(o,ã)∗(ãe)∗p(e,o)]
= α∗,ãe,

where we have used the homotopy equivalence of the paths involved. So (A∗, α∗)K ,
where A∗ is the constant assignment A∗,a := A for any a ∈ K , is a C∗-net bundle. We
call (A∗, α∗)K the net bundle associated with the dynamical system (A, πo

1 (K ), α). It
is easily seen that a different choice of path frame leads to isomorphic net bundles.

Passing to the level of morphisms requires more attention. Consider a poset mor-
phism f : K → S. Take a path frame Po in K , and choose, in S a path frame P ′

f(o) :=
{q(a′,f(o)), a′ ∈ S} whose elements satisfy the condition

q(f(a),f(o)) = f(p(a,o)) , a ∈ K .

So, this path frame is an extension of the image f(Po) of Po to S. Such an extension
exists since no other restriction is imposed on a path frame but that q(f(o),f(o)) be homo-
topic to the degenerate 1-simplex σ0f(o). Since q(f(o),f(o)) = f(p(o,o)), this condition is
automatically fulfilled because poset morphisms preserve homotopy equivalence (see
§2.2).

Given a morphism (η, f∗) : (A, πo
1 (K ), α) → (B, π f(o)

1 (S), β) of dynamical sys-
tems, we construct the net bundle (B∗, β∗)S using P ′

f(o) as above.5 Define η∗,a := η,
∀a ∈ K , giving

η∗,ã ◦ α∗,ãa = η ◦ α[p(o,ã)∗(ãa)∗p(a,o)] = βf∗[p(o,ã)∗(ãa)∗p(a,o)] ◦ η = β∗,f(ã)f(a) ◦ η∗,a .
Thus η∗ is a morphism of net bundles. We are ready to prove that the mapping

(A, πo
1 (K ), α) �→ (A∗, α∗)K (3.15)

is, up to isomorphism, the inverse of (3.13). This amounts to showing that the dynamical
system (A, πo

1 (K ), α) and the net bundle (A, j)K are, respectively, isomorphic to the
dynamical system (A∗∗, πo

1 (K ), α∗∗) and to the net bundle (A∗∗, j∗∗)K defined with
respect to a fixed pole o and to a fixed path frame Po of K . In the first case, by construc-
tion we have A∗∗ = A∗,a ≡ A for all a ∈ K , and, for any loop q over o of the form
q = bn ∗ · · · ∗ b1,

α∗∗,[q] = α∗,q = α[p(o,∂0bn )∗bn∗p(∂1bn ,o)∗···∗p(o,∂0b1)∗b1∗p(∂1b1,o)] = α[p(o,o)∗q∗p(o,o)] = α[q],

thus (A∗∗, πo
1 (K ), α∗∗) = (A, πo

1 (K ), α). In the second case, we define the family of
∗-isomorphisms

τa := jp(o,a) : Aa → Ao, a ∈ K ; (3.16)

to prove that τ defines an isomorphism τ : (A, j)K → (A∗∗, j∗∗)K , we compute

τa ◦ jae = jp(o,a)∗(ae) = jp(o,a)∗(ae)∗p(e,o) ◦ jp(o,e)

= j∗,[p(o,a)∗(ae)∗p(e,o)] ◦ jp(o,e) = j∗∗,ae ◦ τe,

and this shows that τ preserves the net structures, as desired. Thus we have proved:

5 We consider only morphisms of the form (η, f∗)where f∗ is the extension of a poset morphism f : K → S
to the corresponding homotopy groups. This suffices for our purpose.
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Proposition 3.8. There exists a correspondence, bijective up to isomorphism, between
net bundles over a poset and dynamical systems having as group the first homotopy
group of the poset. In particular, the category of net bundles over K with morphisms
(φ, idK ) is equivalent to the category of C∗-dynamical systems with group πo

1 (K ), for
some o ∈ K , with morphisms (η, idπo

1 (K )
).

Proof. The first part of the statement has already been proved. The second part, the
categorical equivalence, follows directly from the above calculations. ��

The preceding analysis has a wider scope than that indicated in Prop. 3.8. In algebraic
quantum field theory one deals with nets of C∗-algebras over a poset associated with a
fixed spacetime. Thus considering morphisms of nets between different posets means
dealing with nets defined over different spacetimes. This is part of the more general
framework of the generally locally covariant quantum field theories [16]. However, this
topic would lead us too far from the mainline of the paper.

Corollary 3.9. If K is simply connected then any net bundle (A, j)K is trivial.

Proof. If K is simply connected then πo
1 (K ) is trivial and hence only trivial πo

1 (K )-
actions occur. On the other hand, by construction, the net bundle associated with a
dynamical system with trivial action is clearly trivial. ��

The above result applies analogously to other categories than that of C∗-algebras, for
example, the category of Hilbert spaces or topological groups.

Example 3.10. Let f : πo
1 (K ) → G be a continuous group morphism (here πo

1 (K ) has
the discrete topology). If (A,G, α) is a dynamical system, then there is an induced net
bundle (A∗, (α ◦ f)∗)K . In particular:

(i) The unitary group U(d), d ∈ N, acts on the Cuntz algebra Od , thus every unitary
representation of πo

1 (K ) induces a net bundle with fibre Od .
(ii) Let (V, ω) be a symplectic space and f : πo

1 (K ) → Aut(V, ω) a group morphism.
Since the symplectic group Aut(V, ω) acts by automorphisms on the Weyl algebra
W(V,ω), we conclude that f defines a net bundle with fibre W(V,ω).

3.4. The enveloping net bundle and injectivity. As we saw in the previous section net
bundles can be efficiently classified in terms of dynamical systems and contain interest-
ing geometric information, thus it is of interest to characterize those nets of C∗-algebras
admitting an embedding into a C∗-net bundle. In a certain sense, this is a slight gen-
eralization of the problem of characterizing those nets admitting an embedding into a
single C∗-algebra, as for example the Fredenhagen universal algebra [25]. In the present
section we shall show that any net of C∗-algebras defines a C∗-net bundle, the enveloping
net bundle, carrying a canonical morphism lifting any representation of the initial net.
We then define to be injective those nets whose canonical morphism is faithful.

Let (A, j)K denote a net of C∗-algebras. Given o ∈ K , we let Ao be the free unital
algebra generated by the set of symbols

{ (p, A) | ∂0 p = o , A ∈ A∂1 p }. (3.17)

This is indeed a ∗-algebra: the adjoint is defined on generators by

(p, A)∗ := (p, A∗), (3.18)

and extended by anti-multiplicativity and anti-linearity to all of Ao.
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We now add some additional relations. The first set of relations are of algebraic
nature:

(p, A) · (p, B) = (p, AB), (3.19)

(p, α A + β B) = α (p, A) + β (p, B), (3.20)

(p,1) = 1, (3.21)

which hold for any path p, for any A, B ∈ A∂1 p and for any α, β ∈ C. The next two
relations encode the net structure and the topology of the poset. The first one is isotony:
given ã ≥ a,

(p, jãa(A)) = (p ∗ (ãa), A), (3.22)

for any path p : ã → o and A ∈ Aa . The second is homotopy invariance: if p ∼ q then

(p, A) = (q, A). (3.23)

With an abuse of notation, we again denote the ∗-algebra obtained by imposing these
additional relations by Ao.6

Now, we want to make the family {Ao} into a net. To this end, given o ≤ õ, we define

j õo(p, A) := ((õo) ∗ p, A) , (p, A) ∈ Ao, (3.24)

and extend it by multiplicativity and linearity to all of Ao. It is easily seen that j õo :
Ao → Aõ is a well defined ∗-morphism, which, by homotopy invariance, is invertible.
Moreover, given o ≤ õ ≤ e and (p, A) ∈ Ao, by homotopy invariance we have

j eõ ◦ j õo(p, A)=j eõ((õo) ∗ p, A)=((eõ) ∗ (õo) ∗ p, A)=((eo) ∗ p, A)=j eo(p, A).

This proves that (A, j)K is a net bundle of ∗-algebras.
We now introduce a norm making (A, j)K a C∗-net bundle. Given o ∈ K , for any

W ∈ Ao, we define

‖W‖ := sup
π

‖πo(W )‖ , (3.25)

where the sup is taken over the set of morphisms π : (A, j)K → (B, ı)K taking val-
ues in C∗-net bundles. If ‖W‖ = 0 then for every π and õ ≥ o we have ‖πo(W )‖ =
‖ıõo ◦ πo(W )‖ = ‖πõ ◦ j õo(W )‖; thus ‖j õo(W )‖ = 0 and ‖·‖ is well-defined with
respect to the inclusion maps j õo. Clearly ‖ · ‖ is a seminorm for Ao. The completion of
the quotient of Ao by the ideal of null elements, is a C∗-algebra that, with an abuse of
notation, we again denote by Ao. This yields a C∗-net bundle (A, j)K that we call the
enveloping net bundle of (A, j)K .

Proposition 3.11. Given a net (A, j)K of C∗-algebras there is a unital morphism

ε : (A, j)K → (A, j)K ,

satisfying the following properties:

6 We note the close relation between the algebra Ao and the fundamental group of a complex of groups
(cfr. [31])
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(i) let (ϕ, h), (θ, h) be a pair of morphisms from the enveloping net bundle to a C∗-net
bundle, if (ϕ, h) ◦ ε = (θ, h) ◦ ε, then ϕ = θ ;

(ii) for any morphism (ψ, f) from (A, j)K into a C∗-net bundle (B, ı)S there is a
unique morphism (ψ↑, f) : (A, j)K → (B, ı)S such that (ψ, f) = (ψ↑, f) ◦ ε.

Proof. Given o ∈ K , let

εo(A) := (ιo, A), A ∈ Ao, (3.26)

where ιo is the trivial loop over o. Properties (3.19, 3.20, 3.21) imply that εo : Ao → Ao
is a unital ∗-morphism. Moreover, for õ ≤ o and A ∈ Aõ we have

εo ◦ joõ(A) = (ιo, joõ(A)) = (ιo ∗ (oõ), A)

= ((oõ), A) = joõ(ιõ, A) = joõ ◦ εõ(A),

where isotony and homotopy invariance have been used. Thus the collection ε :=
{εo, o ∈ K } is a unital morphism from (A, j)K into (A, j)K . Since, for any mor-
phism π from (A, j)K into a C∗-net bundle, the composition π ◦ ε is a morphism from
(A, j)K into a C∗-net bundle, ‖εo(A)‖ = supπ ‖πo ◦ εo(A)‖ ≤ supπ ‖πo(A)‖ = ‖A‖,
so εo extends by continuity to all of Ao proving the first part of the statement.
(i)Let (ϕ, h), (θ, h) : (A, j)K → (C, y)P be a pair of morphisms as in the statement,

where (C, y)P is a C∗-net bundle. Given o ∈ K , let p : a → o and A ∈ Aa . Using the
definition of ε, and of the inclusion maps (3.24),

ϕo(p, A) = (ϕo ◦ j p)(ιa, A) = (yh(p) ◦ ϕa)(ιa, A)

= (yh(p) ◦ ϕa ◦ εa)(A) = (yh(p) ◦ θa ◦ εa)(A) = θo(p, A).

So ϕo = θo because they coincide on the generators of Ao.
(i i)Given a morphism (ψ, f) : (A, j)K → (B, ı)S , where (B, ı)S is a C∗-net bundle,

define (ψ↑, f) on the generators of Ao as follows,

ψ↑
o (p, A) := ıf(p) ◦ ψa(A) , A ∈ Aa . (3.27)

It easily follows from this definition thatψ↑
o preserves isotony and homotopy invariance,

and that ψ↑
o (p, A) ∈ Bf(o), since ψa : Aa → Bf(a). Extend ψ↑

o by multiplicativity and
linearity to all of Ao. Note that

ψ↑
o ◦ joõ(q, A) = ψ↑

o ((oõ) ∗ q, A) = ıf((oõ)∗q) ◦ ψa(A)

= ıf(o)f(õ) ◦ ıf(q) ◦ ψa(A) = ıf(o)f(õ) ◦ ψ↑
õ (q, A);

moreover,ψ↑
o ◦ εo(A) = ψ

↑
o (ιo, A) = ψo(A). Uniqueness follows from (i), completing

the proof. ��
In the following we shall refer to the morphism ε : (A, j)K → (A, j)K defined by

Eq. (3.16) as the canonical morphism of the net into its enveloping net bundle, and to
Prop. 3.11 as the universal property of the enveloping net bundle. This property char-
acterizes the enveloping net bundle up to isomorphism. In particular, it implies that any
C∗-net bundle is isomorphic to its enveloping net bundle.

It is clear from the definition that the enveloping net bundle of a net may vanish,
i.e., the seminorm (3.25) may be zero for every W . On these grounds we introduce the
following terminology.
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Definition 3.12. We say that a net of C∗-algebras is degenerate if its enveloping net
bundle vanishes, and is nondegenerate otherwise. A nondegenerate net of C∗-algebras
is injective if the canonical morphism is a monomorphism.

Injectivity is the central notion of the present paper. As we shall see in §4.2, injectivity
for a net of C∗-algebras turns out to be equivalent to the existence of faithful represen-
tations. So from now on our main task shall be to understand what conditions on a net
are necessary or sufficient for injectivity.

The next result shows that the enveloping net bundle is the object that we were look-
ing for: an object uniquely associated with a net of C∗-algebras which takes into account
the topology of the poset and reduces, in the simply connected case, to the universal
algebra defined by Fredenhagen.

Lemma 3.13. Given a net (A, j)K , if K is simply connected, then there is a canonical
isomorphism

ρ : (A, j)K → (At , j t )K ,

where (At , j t )K is the trivial net with fibre Fredenhagen’s universal C∗-algebra Au. In
particular, if K is upward directed Au is isomorphic to the C∗-inductive limit of (A, j)K .

Proof. K being simply connected, ρ is defined at the ∗-algebraic level observing that:
(1) the generators of Ao are the same as the generators of Au, since (p, A) = (q, A)
for any pair of paths p, q : a → o; (2) the relations (3.19)–(3.22) are the same as those
defining Au (see [25]). ��
Remark 3.14. Let G be a symmetry group for K and (A, j)K a G-covariant net (see
§3.1). Define, for any p : a → o and A ∈ Aa ,

α
g
o(p, A) := (gp, αg

a (A)), g ∈ G. (3.28)

Then it is easily seen that α yields an action on (A, j)K , making it G-covariant, and that
ε is a G-covariant morphism. Furthermore, assume that G is a continuous symmetry
group of K (in the sense of (2.1)), and that the action α of G on (A, j)K is continuous
(see §3.1). The action α of G on the enveloping net bundle is continuous too. It is enough
to prove this on the generators of the fibres of the enveloping net bundle. Consider a net
{gλ} converging to the identity of the group G. Given o, let õ > o. For any p : a → o
and A ∈ Aa we have, using (p, A) = j p ◦ εa(A) and (3.28),

‖j ô gλo ◦ αgλ
o (p, A)− j ô o ◦ (p, A)‖

= ‖j ô gλo ◦ αgλ
o ◦ j p ◦ εa(A)− j ô o ◦ j p ◦ εa(A)‖

= ‖j ô gλo ◦ j gp ◦ αgλ
a ◦ εa(A)− j ô o ◦ j p ◦ εa(A)‖

= ‖j ô gλo ◦ j gp ◦ εgλa ◦ αgλ
a (A)− j ô o ◦ j p ◦ εa(A)‖.

Now, take â > a. Since gλa are eventually smaller than â, using the above relation we
have

‖j ô gλo ◦ αgλ
o (p, A)− j ô o ◦ (p, A)‖

= ‖j ô gλo ◦ j gp ◦ εgλa ◦ αgλ
a (A)− j ô o ◦ j p ◦ εa(A)‖

= ‖j
(ô,gλo)∗gp∗(â,gλa) ◦ j â gλa ◦ εgλa ◦ αgλ

a (A)− j
(ô,o)∗p∗(â,a) ◦ j â a ◦ εa(A)‖

= ‖j
(ô,gλo)∗gp∗(â,gλa) ◦ εâ ◦ jâ gλa ◦ αgλ

a (A)− j
(ô,o)∗p∗(â,a) ◦ εâ ◦ jâ a(A)‖.
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By continuity of the G-action on K (see (2.1)), the paths (ô, gλo) ∗ gp ∗ (â, gλa) and
(ô, o) ∗ p ∗ (â, a) are homotopic. So that

‖j ô gλo ◦ αgλ
o (p, A)− j ô o ◦ (p, A)‖

= ‖j
(ô,o)∗p∗(â,a) ◦ εâ ◦ jâ gλa ◦ αgλ

a (A)− j
(ô,o)∗p∗(â,a) ◦ εâ ◦ jâ a(A)‖

≤ ‖jâ gλa ◦ αgλ
a (A)− jâ a(A)‖ ,

which goes to zero as gλ → e because of the continuity of α. This proves that α is
continuous.

We have just seen that if a net is covariant then the enveloping net bundle is covariant too.
A property of a net not in general inherited by the enveloping net bundle is causality.
This is clear from the definition, since all fibres of the net are involved in defining a
single fibre of the enveloping net bundle.

We conclude by showing the stability of injectivity under morphisms faithful on the
fibres (see §3.1), and the functoriality of the enveloping net bundle.

Proposition 3.15. The following assertions hold:

(i) To any morphism (π, f) : (A, j)K → (B, ı)P there corresponds a morphism (π, f) :
(A, j)K → (B, ı)P satisfying

(π, f) ◦ ε = ε̃ ◦ (π, f), (3.29)

where ε and ε̃ are, respectively, the canonical morphisms of the nets (A, j)K and
(B, ı)P into the corresponding enveloping net bundles. If (π, f) is faithful on the
fibres and (B, ı)P is injective, then (A, j)K is injective too.

(ii) Assigning the enveloping net bundle yields a functor from the category of net of
C∗-algebras to the category of C∗-net bundles.

Proof. (i) Given o ∈ K , define

(π, f)o(p, A) := (f(p), πa(A)) , (p, A) ∈ Ao. (3.30)

Clearly (π, f)o(p, A) ∈ Bf(o). To prove that (3.30) is well defined, we consider a ≤ ã
and compute

(π, f)o(p ∗ (ãa), A) = (f(p ∗ (ãa)), πa(A)) = (f(p) ∗ f(ãa), πa(A))

= (f(p), ıf(ã)f(a) ◦ πa(A)) = (f(p), πã ◦ jãa(A))

= (π, f)o(p, jãa(A)) ;
thus (3.30) is well-defined at the level of isotony. Passing to homotopy invariance, we
note that if p, q : a → o are homotopic then f(p) is homotopic to f(q), and we have
(f(p), πa(A)) = (f(q), πa(A)). This proves that (3.30) is well posed. If o ≤ õ, then by
homotopy invariance

ı f(õ)f(o) ◦ (π, f)o(p, A) = ((f(õ)f(o)) ∗ f(p), πa(A)) = (f∗(õo) ∗ p, πa(A))

= (π, f)õ((õo) ∗ p, A) = (π, f)õ ◦ j õo(p, A).

Observing that

(π, f)o ◦ εo(A) = (π, f)o(ιo, A) = (ιf(o), πo(A)) = ε̃f(o)(πo(A)) = ε̃f(o) ◦ (π, f)o(A),
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for any o and A ∈ Ao, Eq. (3.29) follows. Finally, if (π, f) is faithful on the fibres and
(B, ı)P is injective, the r.h.s. of the above equation is the composition of faithful mor-
phisms for any o; so, ε is a monomorphism. (i i)Clearly (π ′ ◦ π, f ′◦f) = (π ′, f ′)◦(π, f),
and this concludes the proof. ��

This proposition and Prop. 3.5 imply that the net (C∗(�l),C∗(λ))K , given in §3.2.2,
is injective.

4. States and Representations

We study states and representations of nets of C∗-algebras providing sufficient conditions
for the existence of states (representations), and of invariant states (covariant representa-
tions) when the poset is endowed with a symmetry group. Furthermore, we show that for
a net of C∗-algebras, injectivity is equivalent to the existence of faithful representations.
Aspects of the decomposition of representations are studied in Appendix A.

4.1. States. We relate states of a C∗-net bundle to those of the corresponding holono-
my dynamical system. This will allow us to prove that, when the homotopy group of
the underlying poset is amenable, any nondegenerate net has states, which are invariant
whenever the net is covariant under an amenable symmetry group.

A state of a net of C∗-algebras (A, j)K is a family ω := {ωo , o ∈ K }, where ωo is
a state of the C∗-algebra Ao, fulfilling the relation

ωo = ωa ◦ jao, o ≤ a. (4.1)

We shall denote the set of states of (A, j)K by S(A, j)K .
It is easily seen that if (φ, f) : (B, ı)P → (A, j)K is a unital morphism and ω is a

state of (A, j)K , then the composition ω ◦ φ defined by

(ω ◦ φ)o = ωf(o) ◦ φo , o ∈ P, (4.2)

yields a state of the net (B, ı)P . Another property easy to verify is the following. When
(A, j)K is a C∗-net bundle then, by (4.1)

ωa = ωo ◦ jp, p : a → o. (4.3)

Our first result relates states of a C∗-net bundle to invariant states of the corresponding
holonomy dynamical system.

Lemma 4.1. The set of states of a C∗-net bundle is in one-to-one correspondence with
the set of invariant states of the associated holonomy dynamical system.

Proof. Consider the holonomy dynamical system (A∗, πo
1 (K ), j∗) defined with respect

to o ∈ K (3.12). Let ω be a state of a C∗-net bundle (A, j)K . Then ω∗ := ωo is an
invariant state of (A∗, πo

1 (K ), j∗). In fact by (4.3) we have that

ω∗ ◦ j∗,[p] = ωo ◦ j∗,[p] = ωo ◦ jp = ωo = ω∗,

for any [p] ∈ πo
1 (K ). Conversely, let ϕ be an invariant state of (A∗, πo

1 (K ), j∗). Take
a path frame Po := {p(a,o), a ∈ K } and define a state on the associated net bundle
(A∗∗, j∗∗)K (see §3.3) by

ϕ∗,a := ϕ ◦ j∗∗,p (3.14)= ϕ ◦ j∗,[p(o,o)∗p∗p(a,o)] = ϕ ◦ j∗,[p∗p(a,o)], a ∈ K ,
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for some path p : a → o, where the fact that p(o,o) is homotopic to the trivial loop over
o has been used. Since ϕ is j∗-invariant for every q : a → o we have ϕ∗,a = ϕ ◦ j∗∗,p =
ϕ ◦ j∗∗,p∗q ◦ j∗∗,q = ϕ ◦ j∗∗,q , so that the family ϕ∗ := {ϕ∗,a} is well-defined (note in
particular that ϕ∗,o = ϕ). For the same reason we have

ϕ∗,a ◦ j∗∗,aã = ϕ ◦ j∗∗,p ◦ j∗∗,aã = ϕ ◦ j∗∗,p∗(a,ã) = ϕ∗,ã
for any ã ≤ a, thus ϕ∗ ∈ S(A∗∗, j∗∗)K . Composing ϕ∗ with the isomorphism τ :
(A, j)K → (A∗∗, j∗∗)K defined by Eq. (3.16) yields a state of (A, j)K .

Finally, we prove that these mappings are the inverse of one another. Given a state ω
of (A, j)K , we have

(ω∗∗ ◦ τ)a = ω∗∗,a ◦ τa = ω∗ ◦ j∗∗,p ◦ τa = ω∗ ◦ τo ◦ jp = ωo ◦ jp = ωa ,

for some path p : a → o, where we have used the fact that τo = ido (see Definition
3.16) and Eq. (4.3). Conversely, if ϕ is a state of the holonomy dynamical system, then
(ϕ∗ ◦ τ)∗ = (ϕ∗ ◦ τ)o = ϕ∗,o ◦ τo = ϕ∗,o, because, as observed above, ϕ∗,o = ϕ

completing the proof. ��
We now are ready to give the main result on the existence of states for nets of C∗-

algebras.

Proposition 4.2. Let K be a poset with amenable homotopy group. Then any nondegen-
erate net of C∗-algebras over K has states.

Proof. Since a nondegenerate net has a nonvanishing enveloping net bundle it is enough,
by (4.2), to prove the statement when (A, j)K is a C∗-net bundle. This follows by the
previous lemma, since any C∗-dynamical system with an amenable group has invariant
states. ��

Let now (A, j, α)K be a G-covariant net. A state ϕ ∈ S(A, j)K is said to be
G-invariant whenever

ϕgo ◦ αg
o := ϕo, ∀o ∈ K , g ∈ G.

The next result gives conditions for the existence of G-invariant states.

Proposition 4.3. Let G be an amenable group. Then the following assertions hold:

(i) Any G-covariant C∗-net bundle having states has G-invariant states.
(ii) If the fundamental group of K is amenable, then any nondegenerate G-covariant

net over K has G-invariant states.

Proof. (i) Let (A, j, α)K be a G-covariant C∗-net bundle and ω ∈ S(A, j)K . For any
o ∈ K and A ∈ Ao, define

f A
o (g) := ωgo ◦ αg

o (A), g ∈ G.

It is clear that f A
o ∈ L∞(G) for any o ∈ K and A ∈ Ao. Moreover the mapping

Ao 	 A → f A
o ∈ L∞(G) is linear and positive. We also note that the following two

relations hold:

f jao(A)
a = f A

o , o ≤ a, (∗)
f
αh

o (A)
ho = ( f A

o )h, h ∈ G, (∗∗)
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where ( f A
o )h means the right translation of f A

o by h. In fact, for any A ∈ Ao and g ∈ G
we have

f jao(A)
a (g) = ωga(α

g
a (jao(A)) = ωga(jga go(α

g
o (A)) = ωgo(α

g
o (A)) = f A

o (g),

proving (∗). Moreover, for any A ∈ Ao and g, h ∈ G we have

f
αh

o (A)
ho (g) = ωgho(α

g
ho(α

h
o (A)) = ωgho(α

gh
o (A)) = f A

o (gh) = ( f A
o )h(g),

proving (∗∗). Now, let μ be a right invariant mean over L∞(G). Define

ϕo(A) := μ( f A
o ), A ∈ Ao;

this is a state over Ao. Moreover, the collection ϕ := {ϕo , o ∈ K } is a G-invariant state
of (A, j)K , in fact by the relation (∗) ϕo ◦ joa(A) = μ( f joa(A)

o ) = μ( f A
o ) = ϕo(A). On

the other hand, by the relation (∗∗) it follows that

ϕho ◦ αh
o (A) = μ( f

αh
o (A)

ho ) = μ(( f A
o )h) = μ( f A

o ) = ϕo(A),

where the invariance of μ has been used.
(i i) Since πo

1 (K ) is amenable, by Proposition 4.2 the enveloping net bundle (A, j)K

has states. Applying Rem.3.14 we conclude that (A, j)K is G-covariant with an action
α satisfying

α
g
o ◦ εo = εgo ◦ αg

o , ∀o ∈ K , g ∈ G.

Applying (i), we conclude that (A, j , α)K has an invariant state ϕ, thus defining ϕo :=
ϕo ◦ εo, for any o ∈ K , yields an invariant state of (A, j)K .

4.2. Representations. We now study representations of nets of C∗-algebras. We relate
representations of a C∗-net bundle to those of the corresponding holonomy dynamical
system, and representations of a net to those of the enveloping net bundle. This leads to
the equivalence between injectivity and existence of faithful representations. Injective
nets defined over a poset with amenable fundamental group, and an amenable symmetry
group, have covariant representations. We also characterize those nets having Hilbert
space representations and those nets having a trivial enveloping net bundle.

Let (A, j)K be a net of C∗-algebras. A representation of (A, j)K is a pair (π,U ),
where π is a family of Hilbert space representations πo : Ao → B(Ho), o ∈ K and U
is a family of unitaries Uao : B(Ho) → B(Ha), o ≤ a, called inclusion operators, such
that

Uao ∈ (πo, πa ◦ jao), o ≤ a, (4.4)

and

Uea Uao = Ueo, o ≤ a ≤ o. (4.5)

The representation (π,U ) is said to be faithful if πo is a faithful representation of Ao
for any o ∈ K . A Hilbert space representation of (A, j)K is a representation of the
form (π, 1) (here we assume that every Hilbert space Ho, o ∈ K , coincides with a fixed
Hilbert space H whose identity is denoted by 1).
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Remark 4.4. In the context of the algebraic quantum field theory a representation of a
net of C∗-algebras usually means what we call a Hilbert space representation. The first
time a representation, in the sense of the present paper, appeared was in [23]; the recon-
struction of a state of an algebra associated to a region of a spacetime from a family
of states of its subregions yielded a collection of representations and unitary operators
satisfying the above relations. This structure has been promoted to the rôle of a repre-
sentation of a net of C∗-algebras in [14] (and called a unitary net representation) where
its topological content was analyzed and where, in particular, its rôle in the description
of charges induced by the topology of a spacetime was pointed out.

With the above notation, it is easily seen that Uoo = 1o for any o ∈ K . Since unitar-
ies U are invertible, we define Uoa := U∗

ao for any o ≤ a. Note that the pair (H,U )K ,
H := {Ho}, defines a Hilbert net bundle, and (4.4), (4.5) imply that (π,U ) yields a
morphism

π : (A, j)K → (BH, adU )K , (4.6)

where (BH, adU )K is the net bundle with fibres B(Ho), o ∈ K , with inclusion maps
adUao, o ≤ a, defined by the adjoint action. So a representation can be seen as a mor-
phism from the given net to the C∗-net bundle defined by a Hilbert net bundle. Both the
concrete C∗-net bundle and the Hilbert net bundle are trivial in the case of Hilbert space
representations.

An intertwiner between two representations (π,U ) and (π ′,U ′) of (A, j)K is a fam-
ily of bounded linear operators T := {To : Ho → H′

o , o ∈ K } such that To ∈ (πo, π
′
o),

and

To Uoa = U ′
oa Ta , a ≤ o. (4.7)

When all To are unitaries we shall say that T is a unitary intertwiner. Two representations
(π,U ) and (π ′,U ′) are equivalent if they have a unitary intertwiner. A representation is
said to be topologically trivial whenever it is equivalent to a Hilbert space representation
(the motivation of this terminology will soon be clear). Finally, a representation (π,U )
is said to vanish whenever πa(A) = 0 for any a ∈ K and A ∈ Aa .

We can always assume that a representation (π,U ) is defined on a fixed Hilbert space
(see [14] for details). For any 1-simplex b define Ub := U∂0b|b| U|b|∂1b, so we have a
unitary Ub : H∂1b → H∂0b. Extend U from 1-simplices to paths in the usual way,

Up := Ubn · · · Ub2 Ub1, p = bn ∗ · · · b2 ∗ b1. (4.8)

Afterwards, fix a path frame Po and defineπ ′
a(·) := Up(o,a) πa(·)Up(a,o) with a ∈ K (note

that π ′
o = πo) and U ′

ae := Up(o,a) Uae Up(e,o) with a ≤ e. Then the pair (π ′,U ′) defines
a representation of the net (A, j) into a fixed Hilbert space; the family Ta := Up(o,a) ,
with a ∈ K , is a unitary intertwiner from (π,U ) to (π ′,U ′). On these grounds, unless
otherwise stated, we assume from now on that all representations are defined on a fixed
Hilbert space.

The topological content of a representation (π,U ) can be easily seen by consider-
ing the associated Hilbert net bundle (H,U ). The same reasoning used in defining the
holonomy dynamical system (§3.3), yields a group morphism

U∗ : πo
1 (K ) → U(H), (4.9)
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where U(H) is the group of unitary operators of the Hilbert space H. Explicitly, one
extends U to simplices as above and observes that the mapping U : �1(K ) → Ub ∈
B(H) satisfies the 1-cocycle relation U∂0c U∂2c = U∂1c for any 2-simplex c. So U , in
turn, defines a representation U∗ of the fundamental group of K . We shall call U∗ the
holonomy representation associated with (π,U ).

We list the following results from [14], which can be proved as in §3.3:

(i) If two representations are equivalent then the corresponding representations of
π1(K ) are equivalent.

(ii) If K is simply connected then any representation is equivalent to a Hilbert space
representation.

These two points explain the term ’topologically trivial representation’.
The first task is to relate representations of a net to those of the enveloping net bundle.

Lemma 4.5. Any representation of the net (A, j)K extends uniquely to a representa-
tion of (A, j)K , and this yields a bijective correspondence between representations of
(A, j)K and representations of (A, j)K .

Proof. Let ε : (A, j)K → (A, j)K be the canonical morphism. For any represen-
tation (σ, V ) of the enveloping net bundle, the pair (σ ◦ ε, V ) defines a representa-
tion of the net. Conversely, by (4.6), any representation (π,U ) of (A, j)K defines a
morphism π : (A, j)K → (BH, adU ). By Prop. 3.11 there is a unique morphism
π↑ : (A, j)K → (BH, adU ), defined by Eq. (3.27), such that π↑ ◦ ε = π . This
completes the proof. ��

We note that the extension of a faithful representation of a net to the enveloping net
bundle need not be faithful.

The next result relates representations of C∗-net bundles to covariant representations
of the associated dynamical system.

Lemma 4.6. Representations of a C∗-net bundle are, up to equivalence, in bijective cor-
respondence with covariant representations of the corresponding holonomy dynamical
system.

Proof. We give a sketch of the proof since the reasoning is similar to that of the proof
of Lemma 4.1. By (4.6), we have that every representation (π,U ) of (A, j)K defines
a morphism π : (A, j)K → (BH, adU ). Thus, by Prop.3.8, we have the morphism of
dynamical systems

π∗ : A∗ → B(H), π∗ ◦ j∗,[p] = adU∗,[p] ◦ π∗, ∀[p] ∈ πo
1 (K ), (4.10)

i.e., π∗ is a covariant representation of (A∗, πo
1 (K ), j∗). Conversely, given a covariant

representation (η, V ) of (A∗, πo
1 (K ), j∗) on the Hilbert space H then, again by Prop.3.8,

we can define the net bundle (B(H)∗, adV∗)K and the morphism

η∗ : (A∗∗, j∗∗)K → (B(H)∗, adV∗)K .

Since (A∗∗, j∗∗)K is isomorphic to (A, j)K , composing with η∗ gives the desired rep-
resentation. ��

After this the relation between injectivity and the existence of faithful representations
follows easily.
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Theorem 4.7. The following assertions hold.

(i) A net of C∗-algebras is injective if, and only if, it has faithful representations.
(ii) A net of C∗-algebras is nondegenerate if, and only if, it has nonvanishing repre-

sentations.

Proof. (i) (⇐) follows by Prop.3.15.i . (⇒) By the previous lemma it suffices to show
the existence of faithful covariant representations for the dynamical system associated
with the enveloping net bundle. But this is true for any dynamical system, completing
the proof of (i). A similar reasoning leads to the proof of (i i). ��

We discuss the existence of Hilbert space representations. Let (A,G, α) be a C∗-
dynamical system. A G-invariant representation is a representation π of A such that
π ◦ αg = π for any g ∈ G. Let J G

A be the G-invariant ideal of A generated by the
elements A − αg(A) for A ∈ A and g ∈ G; then we have the following result:

Lemma 4.8. A C∗-dynamical system (A,G, α) has nontrivial G-invariant representa-
tions if, and only if, the ideal J G

A is proper.

Proof. (⇒) If π is an invariant representation, then J G
A lays within the K er(π). (⇐) If

J G
A is proper, then the quotient Â := A/J G

A is not trivial, and since J G
A is G-invariant,

the action α lifts to an action α̂ on Â. However this action is trivial according to the
definition of J G

A . So take a faithful representation σ of Â and define π(A) := σ( Â) for

any A ∈ A. Then π ◦ αg(A) = σ(α̂g(A)) = σ( Â) = π(A) for any A ∈ A and g ∈ G,
completing the proof. ��

We are ready to provide a necessary and sufficient condition for the existence of
Hilbert space representations.

Proposition 4.9. An injective net of C∗-algebras (A, j)K has nontrivial Hilbert space

representations if, and only if, the ideal J
πo

1 (K )

A∗
is proper, where A∗ is the holonomy

dynamical system of the enveloping net bundle.

Proof. Follows straighforwardly from the previous lemma and from Lemma 4.6. ��
Examples of injective nets where this ideal fails to be proper will be given in §5.1.
We now want to characterize those nets having a trivial enveloping net bundle. To

this end, let us introduce the following notion. A representation (π,U ) of a net (A, j)K
is said to be quasi (topologically) trivial whenever for any o ∈ K the relation

Up ∈ (πo, πo), p : o → o, (4.11)

holds. This means that the coupling between the analytical and the topological content
of a quasi-trivial representation is ‘artificial’, and can be completely removed from this
representation. More precisely, let (π,U ) be a quasi-trivial representation. Take a path
frame Po = {p(a,o), a ∈ K }, and define

σa := adUp(o,a) ◦ πa, a ∈ K .

Then (σ,1) is a Hilbert space representation of the net. In fact given a ≤ ã, by (4.11)
we have

σã ◦ jãa = adUp(o,ã) ◦ πã ◦ jãa = adUp(o,ã) ◦ adUãa ◦ πa

= adUp(o,ã)∗(ãa) ◦ πa = adUp(o,a) ◦ adUp(a,o)∗p(o,ã)∗(ãa) ◦ πa

= adUp(o,a) ◦ πa = σa .



680 G. Ruzzi, E. Vasselli

So, any quasi-trivial representation defines in a natural way a Hilbert space represen-
tation. However these two representations are not, in general, equivalent. In fact con-
sider the unitary T defined by Ta := Up(a,o) , a ∈ K . Then Ta ∈ (σa, πa) for any
a ∈ K , but T does not intertwine the inclusion operators since Uãa Ta = U(ã,a)∗p(a,o) =
Tã Upo,ã)∗(ã,a)∗p(a,o) , which is different from Ta unless the holonomy representation
defined by U is trivial. It is not surprising that to any Hilbert space representation
(σ,1) of a net one can associate a quasi trivial representation carrying a nontrivial rep-
resentation of the fundamental group. In fact, extend σ to the representation (σ↑,1) of
the enveloping net bundle and consider the covariant representation (σ↑∗ ,1) of the hol-
onomy dynamical system (A∗, πo

1 (K ), j∗). If the homotopy group has representations

V taking values in the commutant (σ↑∗ , σ↑∗ ),7 then the pair (σ↑∗ , V ) is still a covariant
representation of the dynamical system. Turning back to the net, this yields a quasi trivial
representation of the net not equivalent to (σ,1).

We now characterize those nets whose enveloping net bundle is trivial.

Proposition 4.10. The enveloping net bundle of a nondegenerate net is trivial if, and
only if, the net has only quasi trivial representations.

Proof. (⇒) Let (π,U ) be a representation of a net (A, j)K with trivial enveloping net
bundle. Let (π↑,U ) be the extension of this representation to (A, j)K . Because of triv-
iality j p = idAo

for any o ∈ K and for any loop p over o. Therefore adUp ◦ π↑
o =

π
↑
o ◦ j p = π

↑
o . By the definition of π↑, the quasi-triviality of (π,U ) follows.

(⇐) Consider the holonomy dynamical system (A∗, πo
1 (K ), j∗). Let ρ be a faithful

representation of the crossed product A∗ � πo
1 (K ). ρ defines a covariant representation

(ρ,Uρ) of the holonomy dynamical system and this, in turn, defines a representation
of the enveloping net bundle, Lemma 4.6, and so a representation of the net (A, j)K ,
Lemma 4.5. Since only quasi trivial representations of the net are allowed, Uρ

[p] ∈ (ρ, ρ)
for any [p] ∈ πo

1 (K ). So ρ ◦ j∗,[p] = adUρ
[p] ◦ ρ = ρ for any [p] ∈ πo

1 (K ). Since ρ is
faithful j∗,[p] = idA∗ for any [p] ∈ πo

1 (K ), and the proof follows. ��

The next result relates representations and states.

Lemma 4.11. For any C∗-net bundle (A, j)K , the following properties are equivalent:

(i) (A, j)K has states.
(ii) There is a representation (π,U ) of (A, j)K on a Hilbert space H and a family of

nonzero vectors � = {�a ∈ H} such that
Uoa�a = �o for all o ≤ a.

(iii) The holonomy dynamical system (A∗, πo
1 (K ), j∗) admits a covariant representa-

tion with an invariant vector.

Proof. (i) ⇒ (i i) Let ω be a state of (A, j)K . Given o ∈ K , let (πo,Ho,�o) be the
GNS representation associated with the state ωo of the algebra Ao. For any inclusion
o ≤ a define

Uaoπo(A)�o := πa(jao(A))�a, A ∈ Ao.

7 If for instance σ↑∗ is irreducible (see Appendix A), then πo
1 (K )must have 1-dimensional representations.
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A routine calculation shows that the Uao : Ho → Ha are unitary operators with
Uao πo(·) = πa ◦ jao(·)Uao. Moreover

Uea Uaoπo(·)�o = Ueaπa(jao(·))�a = πa(jeajao(·))�e = Ueoπo(·)�o.

Clearly, by definition we have Uao�o = �a . (i i) ⇒ (i i i) Define π∗ : A∗ → B(H) as
in (4.10) and consider �o ∈ H. Then the condition Uao�o = �a , o ≤ a, implies that
Up�o = �o for any loop p over o, where Up is defined in (4.8). (i i i) ⇒ (i) Let (η, V )
be a covariant representation of (A∗, πo

1 (K ), j∗) on the Hilbert space H and ζ ∈ H be a
V -invariant vector. We consider the representation (η∗, V∗) of (A∗∗, j∗∗)K constructed
as in Lemma 4.6 and define ϕa(A) := (ζ, η∗,a(A)ζ ), A ∈ A∗∗,a = Ao, a ∈ K . By
V -invariance of ζ , and covariance of (η∗, V∗), we find

ϕã ◦ j∗∗,ãa(A) = (ζ, (η∗,a ◦ j∗∗,ãa(A))ζ ) = (V∗,ãaζ, η∗,a(A)V∗,ãaζ ) = ϕa(A).

Thus ϕ is a state of (A∗∗, j∗∗)K , and composing with the isomorphism with (A, j)K
yields the desired state. ��

We conclude the section giving an easy consequence of the above results in the setting
of G-actions. Let G be a symmetry group for K and (A, j, α)K a G-covariant net. A
G-covariant representation of (A, j, α)K is a representation (π,U ) of (A, j)K such that
the underlying family of Hilbert spaces H := {Ho} is endowed with unitary operators
�

g
o : Ho → Hgo, g ∈ G, o ∈ K , satisfying the relations

�h
go �

g
o = �

hg
o , g, h ∈ G, o ∈ K ,

ad�g
o ◦ πo = πgo ◦ αg

o , g ∈ G, o ∈ K ,

�
g
õ Uõo = Ug̃o go �

g
o , o ≤ õ, g ∈ G.

(4.12)

Notice that when (π,U ) is topologically trivial,� induces a unitary representation of the
symmetry group, since the inclusion operators Uao are constant. Furthermore, recall that,
when G is a continuous symmetry group of the poset, we assume, by convention, that
the G-action on the net is continuous (see §3.1). Similarly, under these circumstances
we assume that for any G-covariant representation (π,U, �), � is strongly continuous.
This amounts to saying that if {gλ}� is a net in G converging to the identity of the group
then, for any o ∈ K and a ∈ K with a > o, there exists λa ∈ � such that gλo ≤ a for
any λ ∈ � with λ ≥ λa and

‖Ua gλo �
gλ
o �−�‖ → 0, ∀� ∈ Ha . (4.13)

We have the following result.

Proposition 4.12. Let K be a poset with amenable fundamental group and G an amena-
ble symmetry group of K . Then every injective, G-covariant net of C∗-algebras over K
has a G-covariant representation (π,U, �). In particular, if G is a continuous symmetry
group of K , then � is strongly continuous.

Proof. Let (A, j, α)K be injective. Then by Rem. 3.14 it suffices to look for G-covariant
representations of the enveloping net bundle (A, j , α)K . Now, by Prop. 4.3.ii (A, j , α)K
has a G-invariant state ϕ, which, by Lemma 4.11, induces a GNS representation π . Since
ϕ is G-invariant, setting

�
g
o (πo(T )�o) := (πgo ◦ αg

o(T ))�go, T ∈ Ao,
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for o ∈ K and g ∈ G, we easily find that π is G-covariant. Finally note that if G is a
continuous symmetry group of K , then the action α is continuous by assumption (see
§3.1). As observed in Remark 3.14, the action α of G on the enveloping net bundle is
continuous as well. Using this, a routine calculation shows that � is strongly continuous.

5. Injectivity

Injectivity has been related to "outer properties" of the net: the existence of embeddings
into C∗-net bundles or, in particular, the existence of faithful representations. In the
present section we analyze how injectivity relates to ’inner properties’ of the net. More
precisely, our aim is to find conditions on the net itself, which are either necessary or
sufficient for injectivity. We shall discover that injectivity imposes a cohomological con-
dition on the net. This will allow us to provide examples of degenerate nets, noninjective
nets, and of injective nets having no nontrivial Hilbert space representation (for a further
example of this last case see Ex. A.9). A remarkable result is that any C∗-net bundle
over S1 whose Čech cocycle is globally defined is trivial.

Our aim is to introduce a simplicial set which will serve for defining the Čech
cocycle mentioned above. To begin with, let K be a poset, and S, F nonempty subsets
of K . We shall write F ≤ S whenever any element of F is smaller than any elements
of S. We now are ready to define the simplicial set �◦∗(K ): for n ≥ 0, an n-simplex
is a string (F; on+1, on, . . . , o1) where on+1, on, . . . , o1, are elements of K , called the
vertices of the n-simplex, and F is a nonempty subset of K , called the support of the
n-simplex, satisfying the relation F ≤ {on+1, on, . . . , o1}. This simplicial set is sym-
metric since the string whose vertices are a permutation of the vertices of an n-simplex
(F; on+1, on, . . . , o1) and whose support is F is an n-simplex as well. As usual �◦

n(K )
will denote the set of n-simplices.

We denote the set of symmetric subsimplicial sets D∗ of �◦∗(K ), with Di ⊆ �◦
i (K )

for any i , by Sub(�◦∗(K )). Note that Sub(�◦∗(K )) is closed under finite or infinite union,
and finite or infinite intersection, if not empty. Elements of Sub(�◦∗(K )) are, for instance,
�◦∗(S) for any nonempty subset S ⊆ K .

For any 0-simplex (F, o) of D0, we define the C∗-algebra

AF
o := C∗{joa(Aa) | a ∈ F} ⊆ Ao.

Definition 5.1. Let (A, j)K be a net of C∗-algebras and D∗ ∈ Sub(�◦∗(K )). A (gener-
alized) Čech cocycle of (A, j)K defined over D∗ is a family ζ := {ζ F

õo | (F; õ, o) ∈ D1}
of ∗-isomorphisms

ζ F
õo : AF

o → AF
õ , ∀(F; o, õ) ∈ D1,

satisfying, for any 1-simplex (F; õ, o), the relation

ζ F
õo ◦ joa = jõa, ∀a ∈ F. (5.1)

Before showing the relation to injectivity, it is convenient to draw some interesting
consequences of the above definition. First, the defining relation implies that ζ satisfies

ζ F
o3o2

◦ ζ F
o2o1

= ζ F
o3o1

, (F; o1, o2, o3) ∈ D2, (5.2)

and

ζ F
o2o1

= ζ F
o1o2

−1
, (F; o1, o2) ∈ D1. (5.3)
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The first relation, the cocycle equation,8 follows observing that

ζ F
o3o2

◦ ζ F
o2o1

◦ jo1o = ζ F
o3o2

◦ jo2o = jo3o = ζ F
o3o1

◦ jo1o,

for any o ∈ F , where we have applied (5.1). A similar reasoning leads to the sec-
ond relation. Second, the Čech cocycle reduces to the inclusion maps when defined on
1-simplices (F; a, o) such that o ≤ a, that is

ζ F
ao = jao � AF

o ,

as an easy consequence of Eq. (5.1).

Lemma 5.2. Any net (A, j)K has a unique Čech cocycle.

Proof. Existence. Take a pair o1, o2 ∈ K having a common minorant o. Consider
�◦∗({o1, o2, o}). Any 1-simplex of �◦

1({o1, o2, o}) has the form (o; ã, a) with a, ã ∈
{o1, o2}. Then, it is easily seen that the collection ζ := {ζ o

ãa , a, ã ∈ {o1, o2}}, where

ζ o
ãa : jao(Ao) → jão(Ao), ζ o

ãa ◦ jao(A) := jão(A), ∀A ∈ Ao,

is a Čech cocycle defined over �◦∗({o1, o2, o}).
Uniqueness. Let ζ α , α ∈ �, be the collection of all Čech cocycles of the net defined,
respectively, over Dα∗ , α ∈ �. Set

ζ F
õo := ζ

α,F
õo if (F; õ, o) ∈ Dα

1 .

The definition is well posed: if (F; õ, o) ∈ Dα
1 ∩ Dβ

1 for α, β ∈ �, then by (5.1),

ζ
α,F
õo ◦ joa = jõa = ζ

β,F
õo ◦ joa , for any a ∈ F . So ζ α,Fõo = ζ

β,F
õo , because they coin-

cide on the generators of the algebra AF
o . Therefore ζ is a Čech cocycle defined over

∪α∈�Dα∗ . ��
We have established the existence and the uniqueness of the Čech cocycle of a

net. Moreover, it is clear by the above proof that ∪α∈�Dα∗ is the largest element of
Sub(�◦∗(K )) where the Čech cocycle is defined.

Definition 5.3. Let (A, j)K be C∗-net. We shall refer to the largest element of
Sub(�◦∗(K )) where the Čech cocycle of the net is defined as the the domain of the
cocycle; we shall say that the cocycle is globally defined if the domain equals �◦∗(K ).

From now on our purpose will be to characterize the domain of the Čech cocycle
of the net and to establish the relation to injectivity. Part of the information about the
domain of the Čech cocycle is transmitted under an embedding. This is the content of
the next lemma.

Lemma 5.4. Let ψ : (A, j)K → (B, ı)K be a monomorphism. Then the domain D∗ of
the Čech cocycle ξ of (B, ı)K is contained in the domain the Čech cocycle of (A, j)K .

8 This cohomology generalizes the Čech cohomology for the dual poset introduced in [40].
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Proof. Given (F; õ, o) ∈ D1 we have

ξ F
õo ◦ ψo ◦ joa = ξ F

õo ◦ ıoa ◦ ψa = ıõa ◦ ψa = ψõ ◦ jõa,

for any a ∈ F , where we have used Eq. (5.1). So (ξ F
õo ◦ ψo)(AF

o ) = ψõ(AF
õ ). This and

the uniqueness of the Čech cocycle, implies that the composition

ψ−1
õ ◦ ξ F

õo ◦ ψo, (F; õ, o) ∈ D1,

is the Čech cocycle of the net (A, j)K , and the proof follows. ��
We now make a first step toward the understanding of the rôle played by the Čech

cocycle in the theory.

Lemma 5.5. Let (A, j)K be a C∗-net bundle and let D∗ be the domain of the Čech
cocycle. Then given (F; õ, o) ∈ D1 we have

ζ F
õo = jõa ◦ jao, ∀a ∈ F, (5.4)

and

ja2o ◦ joa1 = ja2õ ◦ jõa1 , ∀a1, a2 ∈ F. (5.5)

Proof. First of all note that AF
o = Ao, for any F ≤ o, since we are considering a C∗-net

bundle. Then the first relation derives directly from (5.1). Using the first relation we have
jõa1 ◦ ja1o = jõa2 ◦ ja2o, for any a1, a2 ∈ F , and the second relation follows.

The second equation looks like a triviality result for the C∗-net bundle. In particular,
when the Čech cocycle is globally defined, this result asserts that the 1-cocycle defined
by j , giving the action of the homotopy group of the holonomy dynamical system (see
(3.11)), does not depend on the support of the 1-simplex: jb = jb̃ for any pair of 1-sim-
plices such that ∂i b = ∂i b̃ for i = 0, 1. We shall see soon that any C∗-net bundle over
S1 having a globally defined Čech cocycle is indeed trivial.

We now start analyzing the relation between injectivity and the Čech cocycle.

Lemma 5.6. Let (A, j)K be a net of C∗-algebras and P ⊆ K pathwise connected and
such that (A, j)P has a faithful Hilbert space representation. Then �◦∗(P) is contained
in the domain of the Čech cocycle of the net (A, j)K .

Proof. By hypothesis there exists a C∗-algebra A(P) (the universal one) and unital
faithful ∗-morphisms ψo : Ao → A(P), with o ∈ P , such that ψo′ ◦ jo′o = ψo for any
o ≤ o′. Now, given (F; o2, o1) ∈ �◦

1(P), for any a1, . . . , an ∈ F , define

ζ F
o2o1

(
jo1a1(A1) · · · jo1an (An)

) := jo2a1(A1) · · · jo2an (An), (5.6)

where Ai ∈ Aai for i = 1, . . . , n, and extend ζ F
o2o1

by linearity to all the ∗-algebra
generated by jo1a(Aa) as a varies in F . To prove that ζ F

o2o1
is isometric we make use of
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the ψo’s as follows:

‖jo2a1(A1)jo2a2(A2) · · · jo2an (An)‖
= ‖ψo2

(
jo2a1(A1)jo2a2(A2) · · · jo2an (An)

)‖
= ‖(ψo2 ◦ jo2a1)(A1) (ψo2 ◦ jo2a2)(A2) · · · (ψo2 ◦ jo2an )(An)‖
= ‖ψa1(A1)ψa2(A2) · · ·ψan (An)‖
= ‖(ψo1 ◦ jo1a1)(A1) (ψo1 ◦ jo1a2)(A2) · · · (ψo1 ◦ jo1an )(An)‖
= ‖ψo1

(
jo1a1(A1)jo1a2(A2) · · · jo1an (An)

)‖
= ‖jo1a1(A1)jo1a2(A2) · · · jo1an (An)‖.

The same reasoning applies to finite linear combinations, hence ζ F
o2o1

extends by conti-
nuity to a ∗-isomorphism from AF

o1
to AF

o2
that, by definition, fulfills (5.1). ��

The following consequence of Lemma 5.6 will be useful to determine whether a
given net is injective (see Example 5.8).

Corollary 5.7. Let (A, j)K be an injective net. Then �◦∗(P) is contained in the domain
of the Čech cocycle for any connected and simply connected subset P of K .

Two observations are in order. First, the above result applies to C∗-net bundles since
any C∗-net bundle is injective by definition. Second, even if any poset K is covered by
the set of its connected and simply connected subsets, the Čech cocycle of an injective
net may not be globally defined since �◦∗(S)∪�◦∗(P) may be smaller than �◦∗(S ∪ P),
for any pair S, P of nonempty subsets of K . In fact, if there are o ∈ S\ P , a ∈ P \S and a
nonempty subset F of S ∪ P with F ≤ {o, a}, then the 1-simplex (F; a, o) ∈ �◦

1(S ∪ P)
but (F; a, o) �∈ �◦

1(S) ∪�◦
1(P).

5.1. Examples. To illustrate the results of the previous section we give examples of
injective, nondegenerate and degenerate nets. Afterwards we make some conjectures
concerning the domain of the Čech cocycle and injectivity of the nets, and, finally, give
interesting examples of nets coming from complexes of groups.

Example 5.8. We consider the poset B with elements {m, o, a, x, y} and order relation
m ≤ o, a ≤ x, y, so there is a minimum m and two maximal elements x, y. This poset
is simply connected since it is downward directed (see preliminaries), so a net (C, j)B
can only have Hilbert space representations.

A class of nets over B can be defined in the following way. Take a proper inclusion
A ⊂ B of unital C∗-algebras and γ ∈ autB leaving A pointwise fixed; then we have
the net (C, j)B ,

⎧
⎨

⎩

Cm := A, Ca = Co = Cx = Cy = B,
jom = jam = the inclusion,
jyo = γ, jxo = jxa = jya = idB.

(5.7)

Let us consider the 1-simplex (F; x, y), F := {a, o}; then we have B = CF
y = Cy =

Cx = CF
x , and any *-morphism ζ : CF

y → CF
x such that ζ ◦ jyo = jxo, ζ ◦ jya = jxa ,

can be regarded as a *-endomorphism of B fulfilling

ζ ◦ γ = idB, ζ = idB.
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Clearly, the previous equations are coherent if, and only if, γ = idB. In this case
(F; x, y) is in the domain of the Čech cocycle of (C, j)B and we have faithful Hilbert
space representations, which, as can be easily seen, are Hilbert space representations of
the amalgamated free product B ∗A B, that turns out to be the universal C∗-algebra of
the net.

We now assume γ �= idB and consider a Hilbert space representation π : (C, j)B →
B(H), which is necessarily not faithful because the 1-simplex (F; x, y) does not belong
to the domain of the Čech cocycle. Then, requiring coherence with (5.7) is equivalent
to ask that9 there is a representation � : B → B(H) such that � = πa = πx = πy =
πo = πy ◦ jyo = � ◦ γ , i.e. that any element of the type

γ (T )− T, T ∈ B, (5.8)

is in ker�. This characterizes Hilbert space representations of (C, j)B , and in the fol-
lowing lines we discuss two particular cases. (i) Take a unital C∗-algebra M and define

A :=
{(

A 0
0 A

)

, A ∈ M
}

, B := M2(M), γ := adV, V :=
(

0 1
1 0

)

∈ B.

Then we have

γ (E)− E =
(−1 0

0 1

)

, E :=
(

1 0
0 0

)

,

so the identity 1 = (γ (E)− E)2 is in the kernel of any Hilbert space representation of
(C, j)B , which therefore is degenerate. (ii) Take a compact Hausdorff space X , a proper
closed subset W ⊂ X and a C∗-algebra M with unit 1. Define

A := C(X), B := C(X,M), γ := adV,

where V : X → M, V ∈ B, is a continuous map taking values in the unitary group and
such that V (x) = 1 for all x ∈ W and V (x ′) /∈ M ∩ M′ for some x ′ ∈ X − W . We
have

{γ (T )− T }(x) = 0, ∀T ∈ B, x ∈ W,

so (5.8) generates a proper ideal Jγ of B contained in the one of M-valued continu-
ous maps vanishing on W . Thus there are non-trivial Hilbert space representations of
(C, j)B , labeled by representations of B/Jγ . We conclude that (C, j)B is nondegenerate,
but also not injective.

The next is an example of an injective net having no Hilbert space representations
(see Ex. A.9 for a further example in a geometrical context).

Example 5.9. The poset we consider is obtained from the one of the previous exam-
ple by removing the minimum, so it is given by C2 := {a, o, x, y} with order relation
a, o ≤ x, y. We call C2 a 2-cylinder, a terminology that will be clarified in [44]. One can
easily see that this poset is not simply connected and that the homotopy group is Z. We
consider the net (C, j)C2 defined by restricting on C2 the net considered in the case (i)
of Example 5.8. Clearly, (C, j)C2 is a C∗-net bundle (hence it is injective), because there
are no compositions of inclusions in C2 and jxo, jxa , jyo, jya are one-to-one. Never-
theless, for the same reason as in case (i) of Example 5.8, (C, j)C2 has no Hilbert space
representations and this implies that its universal C∗-algebra is trivial, i.e. Cu = {0}.

9 The authors thank an anonymous referee for illustrating the following argument.
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We now analyse the relation between injectivity and the domain of the Čech cocycle
in the opposite sense, and ask whether a net is injective on subsets of the poset associ-
ated with the domain of the Čech cocycle. We have no general result, however it is our
opinion that the following assertions should hold. First, given a nondegenerate net, if
the Čech cocycle is defined on �◦∗(P) for any CONnected and simply connected subset
P of the poset, then the net should be injective. If the Čech cocycle is globally defined,
then the net should have faithful Hilbert space representations. Second, a C∗-net bundle
is trivial if its Čech cocycle is globally defined.

The next is an example supporting the first assertion.

Example 5.10. We consider the 2-cylinder C2 := {o, a, x, y} of the previous example.
Let (A, j)C2 be a net of C∗-algebras. Assume that this net has a globally defined Čech
cocycle. Then in particular we have a ∗-isomorphism ζ

{o,a}
yx : A{o,a}

x → A{o,a}
y such that

ζ {o,a}
yx ◦ jxe = jye, ζ {o,a}

xy ◦ jye = jxe, e = o, a. (5.9)

Denoting a copy of A{o,a}
x by C yields the diagram

Ax Ay

C
ζ
{o,a}
yx

����������
⊆

����������

Ao

jxo

����������
Aa

jxa

����������

By (5.9), the desired Hilbert space representation is obtained as a representation of the
amalgamated free product Ax ∗C Ay .

A proof of the first conjecture seems being far from being reached. The above exam-
ple suggests that it may be related to the “realizability” of the generalized amalgamated
free product of C∗-algebras, [10]. The next result supports the second assertion.

Lemma 5.11. Any C∗-net bundle over S1 having a globally defined Čech cocycle is
trivial.

Proof. Let (A, j)I be a C∗-net bundle over S1 (i.e., I is the set of open connected
intervals of S1 whose closure is properly contained in S1). The homotopy group of I
is the same as that of S1, i.e. Z. We now consider a path in I, defined as follows. Let
x, y ∈ I be such that x ∪ y = S1 and x ∩ y has two connected components a and o
respectively. Clearly a, o ∈ I. Consider the 1-simplices b1 and b2 defined by

|b1| := x, ∂1b1 := a, ∂0b1 := o, |b2| := y, ∂1b2 := o, ∂0b2 := a.

The path b2 ∗ b1 is a loop over a which is not homotopically trivial and whose image
under the isomorphism π1(I) � π1(S1) is the generator of π1(S1). As a consequence,
(A, j)I is trivial if the isomorphism jb2∗b1 generating the holonomy of (A, j)I is the
identity. Now, since the Čech cocycle is globally defined, it is defined, in particular,
on the 1-simplex ({x, y}; a, o). By using Eq. (5.5) (within Lemma 5.5) we have that
jox ◦ jxa = joy ◦ jya , so jb2∗b1 = jay ◦ jyo ◦ jox ◦ jxa = idAa , where the homotopy
equivalence of the paths b2 ∗ b1 and (ya) ∗ (yo) ∗ (xo) ∗ (xa) has been used.
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Note that also when a net has a globally defined Čech cocycle, the Čech cocycle of the
enveloping net bundle may not be globally defined. In fact, in algebraic quantum field
theory there are examples of nets having both faithful Hilbert space representations and
faithful representations carrying a nontrivial representation of the homotopy group of
the poset which are not quasi trivial (see [14,6]). So, by Prop. 4.10, the enveloping net
bundle is not trivial.

In conclusion we present interesting examples of injective and degenerate nets com-
ing from geometric group theory.

Example 5.12. The triangle poset is a set T of seven elements {m, A, B,C, X,Y, Z}
ordered as follows: m ≤ A, B,C and A, B ≤ X , B,C ≤ Y and A,C ≤ Z . T is down-
ward directed, so it is simply connected. Any net of groups (G, y)T over T is a triangle
of groups and, by the functor C∗ (§3.2.2), a net of group C∗-algebras (C∗(G),C∗(y))K is
associated with (G, y)T . By the properties of functor C∗, the net (G, y)T embeds in the
colimit group if, and only if, the net (C∗(G),C∗(y))K embeds in the universal C∗-alge-
bra C∗(G)u. Gersten and Stallings ([45]) gave sufficient conditions for the existence of
this embedding in terms of angles associated to a triangle of groups. However, they also
gave an example of a triangle of groups which does not satisfy these conditions and has
a trivial colimit: take Hm := 1 the trivial group, HA := 〈a〉, HB := 〈b〉 and HC := 〈c〉
the free groups of one generator, HX := 〈

a, b | b2 = aba−1
〉
, HY := 〈

b, c | c2 = bcb−1
〉

and HZ := 〈
a, c | a2 = cac−1

〉
. Taking the inclusion of groups as inclusion maps we get

a net of groups (H, i)K . The colimit of this net is the Mennicke group M(2, 2, 2) =〈
a, b, c | b2 = aba−1 , c2 = bcb−1 , a2 = cac−1

〉
which is known to be trivial. So, the

corresponding net of group C∗-algebras is degenerate.

Two observations about this example are in order. First, note that (C∗(H),C∗(i))T
is a degenerate net of C∗-algebras having a globally defined Čech cocycle (this can be
easily seen). Second, it is interesting to analyze the rôle of the minimum m. Consider the
poset T \{m} obtained by removing m from T . Any net of C∗-algebras over T \{m} is
injective since any such a net (A, j)T \{m} admits faithful representations. To prove this
we use an idea due to Blackadar ([11]). Let κ be a cardinal greater than the cardinality of
the algebra Aa for any element a of T \{m}. Then we set πa as the tensor product of the
universal representation of Aa times 1κ . The trick of the cardinality implies that πa ◦jao
is unitarily equivalent to πo for any inclusion a ≤ o. So, choose such a unitary operator
Vao for any inclusion o ≤ a. Then, since in T \{m} conpositions of inclusions are not pos-
sible the pair (π, V ) is a faithful representation of (A, j)T \{m}. Applying this result to the
example of Gersten and Stallings, we have that the net (C∗(H),C∗(i))T \{m} is injective
and that the net (H, i)T \{m} has faithful representations. However, (C∗(H),C∗(i))T \{m}
has no Hilbert space representations, because any Hilbert space representation of this
net can be easily extended to a Hilbert space representation of (C∗(H),C∗(y))T and
this, as observed before, is not possible.

6. Comments and Outlook

We list some topics and questions arising from the present paper.

1. The examples of nets of C∗-algebras defined by groups of loops, §3.2, might have
interesting applications in algebraic quantum field theory. They are model indepen-
dent and are constructed using only the principles of the theory. These examples
are incomplete (see Remark 3.6); neverthless, generalizing the ideas of the present
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paper, a model-independent construction of causal and covariant nets of C∗- algebras
over spacetimes is given in [18]. These nets admit, in the cases of Minkowski space-
time and of S1, representations which are continuously covariant with respect to the
symmetry group of the underlying spacetime (the Poincaré group and the conformal
group respectively). It seems that there should not be obstruction to generalize these
results to other spacetimes.

2. The present paper poses some new questions, in particular whether an injective net
with a globally defined Čech cocycle has faithful Hilbert space representations. The
existence of Hilbert space representations is equivalent to proving that a suitable
ideal of the fibre of the enveloping net bundle is proper (Prop. 4.9). So, one should
find a relation between the Čech cocycle of the net to this ideal. Examples where
this ideal is not proper have been given in §5.1.

3. An application of the results of the present work is given in [44], where it is shown
that any nontrivial net over S1, the spacetime of chiral conformal quantum field
theories, is injective.

4. Finally, we stress that nets of C∗-algebras defined over a (base for the topology of
a) space X carry topological information even when they are not net bundles. In
fact, it can be proved that every net is a precosheaf of local sections of a canonical
C∗-bundle (in the topological sense). This result, and its consequences, is the object
of a forthcoming paper ([43]).

Acknowledgements. We gratefully acknowledge the hospitality and support of the Graduate School of Math-
ematical Sciences of the University of Tokyo, where part of this paper has been developed, in particular
Yasuyuki Kawahigashi for his warm hospitality. We also would like to thank all the operator algebra group of
the University of Roma “Tor Vergata”, Sebastiano Carpi and Fabio Ciolli, for the several fruitful discussions
on the topics treated in this paper.

A. Elementary Properties of Representations

In this appendix we give some basic properties of representations of nets of C∗-algebras.
We will give particular emphasis to the fact that these can be conveniently described
in terms of the covariant representations of the dynamical system associated with the
enveloping net bundle of the given net.

More precisely, let (A, j)K be a net of C∗-algebras and (A, j)K denote the enveloping
net bundle (see §3.4); then by Prop. 3.8 we have a dynamical system (A∗, πo

1 (K ), j∗),
where A∗ := Ao for some fixed o ∈ K . A representation (π,U )K of (A, j)K extends,
by Lemma 4.5, to a representation (π↑,U ) of (A, j)K which, in turn, yields the πo

1 (K )-
covariant representation

π
↑∗ : A∗ → B(Ho), U∗ : πo

1 (K ) → U(H) (A.1)

(see Lemma 4.6). We shall keep the above notation throughout the appendix.

A.1. Decomposition of representations. Let (H,U )K denote a Hilbert net bundle. Then
the C∗-net bundle (BH, adU )K is defined, and we say that a family T = {Ta ∈ B(Ha)}
is a section of (BH, adU )K whenever the following relations are fulfilled:

adUãa(Ta) = Tã, ∀a ≤ ã.
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We denote the set of sections of (BH, adU )K by �(BH, adU )K ; this is a unital
C∗-algebra under the natural ∗-algebraic structure

T + T ′ := {Ta + T ′
a}, T ∗ := {T ∗

a }, T T ′ := {TaT ′
a},

and C∗-norm defined by ‖T ‖ := ‖To‖, where o ∈ K is fixed. (Since K is pathwise
connected, for every a ∈ K there is a path p : a → o, so that ‖To‖ = ‖adU∗,[p](Ta)‖ =
‖Ta‖.)

Lemma A.1. �(BH, adU )K is isomorphic to the C∗-algebra of operators in B(Ho)

that are invariant under the holonomy representation

adU∗ : πo
1 (K ) → AutB(Ho). (A.2)

Proof. If T ∈ �(BH, adU )K , then it easily follows from the definition of the holon-
omy representation (4.9) that To is adU∗-invariant. On the converse, fix a path frame
Po = {p(a,o), a ∈ K }. If To ∈ B(Ho) is adU∗-invariant, define

Ta := adUp(a,o) (To), a ∈ K .

For any inclusion a ≤ ã we have that adUãa(Ta) = adUp(ã,o) ◦ad{Up(o,ã) Uão Up(a,o)}(To)

= adUp(ã,o) (To) = Tã , by adU∗-invariance. Thus T is a section and the lemma is
proved. ��

Now, let (π,U ) be a representation of (A, j)K over the family of Hilbert spaces
H := {Ha}, so that (H,U )K is a Hilbert net bundle. We define

�(π,U ) := {T ∈ �(BH, adU )K : Ta ∈ (πa, πa),∀a ∈ K } , (A.3)

this is clearly a C∗-algebra. Given the covariant representation (A.1), we also define the
C∗-algebra

(π
↑∗ , π↑∗ )U := (π

↑∗ , π↑∗ ) ∩ {T ∈ B(Ho) : adU∗,[p](T ) = T , ∀p ∈ πo
1 (K )}.

It is clear that changing o ∈ K we get a C∗-algebra isomorphic to (π↑∗ , π↑∗ )U .

Proposition A.2. Let (A, j)K be a net of C∗-algebras. Then for any representation
(π,U ) of (A, j)K there is an isomorphism (π

↑∗ , π↑∗ )U � �(π,U ).

Proof. We pick a path frame Po = {p(a,o), a ∈ K } and define a map

β : (π↑∗ , π↑∗ )U → �(π,U ), β(w)a := adUp(a,o) (w), a ∈ K .

The above map has image in �(π,U ) since, for all a ≤ ã,

β(w)ã Uãa = Up(ã,o) wUp(o,ã) Uãa = Uãa adU
(ãa)∗p(ã,o)

(w)

= Uãa

{
adUp(ã,o) ◦ adU∗,[p(o,a)∗(ãa)∗p(ã,o)]

}
(w) = Uãa adUp(ã,o) (w)

= Uãaβ(w)a,

and, for all T ∈ Aa , a ∈ K ,

β(w)a πa(T ) = adUp(a,o) (w) πa(T ) = adUp(a,o) (w) π
↑
a (ιa, T )

= adUp(a,o) (w π
↑
a (p(o,a), T )) = adUp(a,o) (π

↑
a (p(o,a), T ) w)

= π↑
a (ιa, T ) adUp(a,o) (w) = πa(T ) β(w)a .

Finally, β is obviously an isometric ∗-morphism, and defining β ′(T ) := To, T ∈
�(π,U ), yields an inverse of β.
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Definition A.3. A subrepresentation of (π,U ) is given by a family H′ := {H′
a ⊆ Ha}a

of πa-stable Hilbert subspaces such that UãaH′
a = H′

ã , ∀a ≤ ã.

Corollary A.4. Subrepresentations of (π,U ) are in one-to-one correspondence with
projections of (π↑∗ , π↑∗ )U .

Proof. By the previous proposition it suffices to check projections of �(π,U ). If H′
is a subrepresentation of (π,U ) then for each a ∈ K we define Ea ∈ B(Ha) to be the
projection of Ha on H′

a . Clearly Ea ∈ (πa, πa), and since Uãa Eav = Uãav = Eã Uãav

for all v ∈ H′
a , we conclude that adUãa Ea = Eã , a ≤ ã. Conversely, if E = E2 = E∗ ∈

�(π,U ) then we define H′
a := EaHa , a ∈ K , and check that H′ is a subrepresentation

of (π,U ). ��
Let 1o ∈ A∗ denote the identity; clearly 1o is invariant under the πo

1 (K )-action, thus,

by covariance, π↑∗ (1o) ∈ (π↑∗ , π↑∗ )U . This yields a subrepresentation of (π,U ) which,
by construction, is unital and whose complement is a null representation. We say that
(π,U ) is non-degenerate whenever π↑∗ (1o) is the identity of B(Ho); note that in this
case each πo, o ∈ K , is a non-degenerate Hilbert space representation.

We say that (π,U ) is irreducible whenever it does not admit non-vanishing subrep-
resentations. By the previous corollary, the irreducibility of (π,U ) is equivalent to the
condition

(π
↑∗ , π↑∗ )U � C.

Note that irreducibility of (π,U ) does not necessarily imply irreducibility of the repre-
sentations πa , a ∈ K .

Cyclic vectors. Let us consider, for each a ∈ K , the concrete C∗-algebra generated by

{adUp ◦ πã(Aã), p : ã → a} ⊆ B(Ha)

coinciding, by Lemmas 4.5 and 4.6, with π↑
a (Aa). We fix o ∈ K as usual, consider

v ∈ Ho and, given the path frame Po := {p(a,o) , a ∈ K }, define the closed vector
spaces

U av := closed span{UpUp(a,o)v, p : a → a}, a ∈ K .

The space U av is independent of the choice of path frame, since a different path frame
P̃o = { p̃(a,o) , a ∈ K } yields UpUp̃(a,o)v = Up∗ p̃(a,o)∗p(a,o) Up(a,o)v. We then define the
family Hv of Hilbert subspaces

Hv,a := π↑
a (Aa)U

av, a ∈ K .

Elementary computations show that

πa(Aa)Hv,a ⊆ Hv,a, UãaHv,a = Hv,ã, ∀a ≤ ã,

proving the following result:

Lemma A.5. Let (π,U ) be a representation of (A, j)K . Given o ∈ K and v ∈ Ho, the
pair (π |Hv

,U |Hv
) yields a subrepresentation of (π,U ).

Definition A.6. Let (π,U ) be a representation over the family of Hilbert spaces H and
o ∈ K . Then v ∈ Ho is said to be cyclic for (π,U )whenever Hv,a = Ha for any a ∈ K .
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Proposition A.7. Let (π,U ) be a representation of the net (A, j)K . Then cyclic vectors
for (π,U ) are in one-to-one correspondence with cyclic vectors for the induced crossed
product representation π↑∗ � U∗ : A∗ � πo

1 (K ) → B(Ho).

Proof. Let v ∈ Ho be cyclic for (π,U ). Since poo is homotopic to the trivial loop we
conclude that U ov = {Upv, p : o → o}, thus Hv,o = {π↑

o (Ao)Up v , p : o → o},
and the condition Hv,o = Ho is clearly equivalent to the desired cyclicity condition
for π↑∗ � U∗. Conversely, assume that v ∈ Ho is cyclic for π↑∗ � U∗. Then the above
argument implies that Ho = Hv,o, and since each Up : Hv,o → Ha , p : o → a, is
unitary, we conclude that Hv,o = Hv,a for any a ∈ K , as desired. ��
Corollary A.8. Any non-degenerate representation (π,U ) is a direct sum of cyclic rep-
resentations.

Proof. It suffices to perform the direct sum decomposition of π↑∗ � U∗. ��

A.2. Vector states. We start with a preliminary remark on representations. Let (A, j)K
be a net of C∗-algebras and π := {πa : Aa → B(Ha)} a family of unital representations
on the family of Hilbert spaces H = {Ha}. We say that (π,U ) is a quasi-representation
whenever U is a family of isometries fulfilling

Uoa ∈ (πa, πo ◦ joa), Ueo = Uea ◦ Uao, ∀a ≤ o ≤ e.

It is easily verified that the pair (H,U )K defines a net of Hilbert spaces.
The GNS construction. Letω be a state of the net of C∗-algebras (A, j)K . Then the GNS
construction yields a family H := {Ha} of Hilbert spaces with maps va : Aa → Ha ,
a ∈ K , and a family of representations

πa : Aa → B(Ha), {πa(T )}{va(T
′)} := va(T T ′), ∀T, T ′ ∈ Aa,

having cyclic vectors va := v(1a) ∈ Ha . Each jãa defines the isometry

Uãa : Ha → Hã, Uãava(T ) := vã(jãaT ), T ∈ Ao, a ≤ ã,

and hence a quasi-representation (π,U ) of (A, j)K . Note that v := {va} is a section of
(H,U )K , i.e. Uãava = vã for all a ≤ ã.

Vector states. Let (A, j)K be a net of C∗-algebras and (π,U ) a representation. A vector
state is given by a family v := {va ∈ H, ‖v‖ = 1} such that vã = Uãava , a ≤ ã. This
induces the state ωa(·) := (va, ·va), a ∈ K .

A representation does not necessarily yield vector states, indeed this happens if and
only if the underlying Hilbert net bundle H has sections. In the following we give an
example of net of C∗-algebras having representations but no (vector) states.

Example A.9. Let �n denote the free group with n generators and A∗ := Cb(�n) the
C∗-algebra of bounded continuous functions w.r.t. the Haar measure. We denote the left
translation by

λ : �n × A∗ → A∗, g, A �→ λg A =: Ag. (A.4)

Since �n is not amenable, there are no �n-invariants states of A∗. Now let M be a space
with π1(M) = �n (for example, the n-bouquet) and K a good base for the topology
of M . Fix o ∈ K , so that πo

1 (K ) � �n , and define (A∗∗, λ∗)K as the C∗-net bundle
associated to the dynamical system (A∗, πo

1 (K ), λ) (3.15). By Lemma 4.1 we conclude
that (A∗∗, λ∗)K does not have states.
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Projective states. Let (A, j)K be a net of C∗-algebras and (π,U ) a representation over
the Hilbert net bundle (H,U )K . Assume that there is a subnet of Hilbert spaces (L, λ) of
(H,U )K with rank 1. This means that there is a family v = {va ∈ Ha} of normalized vec-
tors generating the subspaces La ⊆ Ha , a ∈ K , such that, with λ = {λãa ∈ T, a ≤ ã},
we have

Uãava = λãavã, a ≤ ã.

In this scenario, the state ω ∈ S(A, j)K , ωa := (va, ·va), a ∈ K , is well defined, and
we say ω is a projective state of (A, j)K defined in (H,U )K . The following result is an
immediate consequence of the remarks at the beginning of this appendix.

Proposition A.10. Let (A, j)K be a net of C∗-algebras and (π,U ) a representation
over the family of Hilbert spaces H. Then projective states defined in (H,U )K are in
one-to-one correspondence with rank one projections of (U∗,U∗) ⊆ B(Ho).
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