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Abstract: Aiming at a complete classification of unitary N = 2 minimal models (where
the assumption of space-time supersymmetry has been dropped), it is shown that each
modular invariant candidate partition function of such a theory is indeed the partition
function of a fully-fledged unitary N = 2 minimal model, subject to the assump-
tions that orbifolding is a ‘physical’ process and that the space-time supersymmetric
A-D-E models are physical. A family of models constructed via orbifoldings of either
the diagonal model or of the space-time supersymmetric exceptional models then dem-
onstrates that there exists a unitary N = 2 minimal model for every one of the allowed
partition functions in the list obtained from Gannon’s work (Gannon in Nucl Phys B
491:659–688, 1997).

Kreuzer and Schellekens’ conjecture (Nucl Phys B 411:97–121, 1994) that all simple
current invariants can be obtained as orbifolds of the diagonal model, even when the
extra assumption of higher-genus modular invariance is dropped, is confirmed in the
case of the unitary N = 2 minimal models by simple counting arguments.

1. Introduction

Conformal field theories (CFTs) [4,11,24,25,36] have been a well-studied area of
research since they first became a hot topic following the publication of the seminal
paper of Belavin, Polyakov and Zamolodchikov in 1984 [4]. In their paper, the authors
laid down the formalism of conformal field theories by combining the representation
theory of the Virasoro algebra with the concept of local operators, and discovered the
minimal models. The term minimal indicates that the Hilbert space of the CFT decom-
poses into only finitely many irreducible representations of (two commuting copies of)
the Virasoro algebra. The existence of null-vectors in the Hilbert spaces of minimal
models permit ODEs for the correlation functions to be derived, which in turn allow the
minimal models to be completely solved. Miraculously, the minimal models turned out
to describe phenomena in statistical mechanics [8]; most notable is their description of
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2nd or higher order phase transitions, e.g. the Ising model [4,55] and the tri-critical Ising
model [21].

Once the inequivalent irreducible unitary representations of the Virasoro algebra with
central charge 0 ≤ c̄ < 1 were known, the next problem was to piece them together
in a modular invariant way (see Sect. 2.2). All modular invariant combinations were
found [7] to fall into the well-known A-D-E meta pattern (see e.g. [75]).

The classification of other classes of conformal field theories has been the aim of
much work, and is an ongoing project. Most promising is the study of rational theo-
ries, whose Hilbert spaces may contain infinitely many irreducible representations of
the Virasoro algebras, but which can be organised into a finite sum of representations
of some larger so-called W -algebra. An important source of rational theories are the
WZW models [70,71]: families of theories, which can be constructed for any semi-sim-
ple finite-dimensional Lie algebra g. Many of the families of WZW models have been
at least partially classified [27,28], the most famous being the complete classification of
the g = su(2) case [7], which again correspond to the A-D-E series.

Another source of rational CFT is inspired by string theory [3,39,40,56], the most
promising candidate for a description of the fundamental forces of the universe. String
theorists have developed the notion of supersymmetry, the idea that there is a symme-
try between bosonic and fermionic matter in our universe. In mathematical terms, the
Virasoro algebra is enlarged by adding N supersymmetry operators (and their super
partners). One can then consider superconformal field theories (SCFTs), theories that
fall into representations of this enlarged algebra. The minimal unitary N = 2 supercon-
formal field theories [5,12,13,44,50,57–59,72] (or unitary N = 2 minimal models), for
example, provide building blocks for Gepner models (see e.g. [41]).

Contrary to popular belief, to date the unitary N = 2 minimal models have not been
completely classified. It is commonly stated that they also fall into the A-D-E meta-
pattern, due to the work of [9,49,66], in which those unitary N = 2 minimal models that
enjoy space-time supersymmetry are demonstrated to be in one-to-one correspondence
with the A-D-E simple singularities. But when one quite reasonably drops the condition
of space-time supersymmetry, one finds a much larger possible set of solutions.

The condition of space-time supersymmetry means that there should be a funda-
mental symmetry between space-time bosons and fermions; in a SCFT, the symmetry
implies that all information about the space-time anti-periodic fields (the R sector) is
encoded by the space-time periodic fields (the NS sector) and vice-versa. This relation
is encoded by the spectral flow (see e.g. [41] and Sect. 3.1), which provides an explicit
map from one sector to the other in supersymmetric theories.

Gannon [29] classified the possible partition functions of the unitary N = 2 minimal
models, showing that in fact there is a much larger playground than previously suspected:
there are finitely many partition functions at each level k, but the number is unbounded
as k increases, in contrast with the N = 0 case. There are also many more “exceptional”
cases: 10, 18 and 8 corresponding to what are somewhat misleadingly termed the E6, E7
and E8 models, respectively.

Two natural questions then arise: do all of these partition functions belong to genuine
SCFTs, or are some just mathematical curiosities? And could there be more than one
minimal model associated to each partition function? In this paper we attempt to answer
the first of these questions. Perhaps surprisingly, it can be resolved using only orbi-
fold-related arguments, in the following way: orbifoldings [14,15] from every possible
partition function to the partition function of one of a small list of well-known and fully
understood models are explicitly calculated. Coupled with the widely-held beliefs that
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(i) the space-time supersymmetric A,D and E models are fully-fledged, physical SCFTs
and (ii) orbifolds of a physical theory are again physical, this demonstrates that each
partition function is indeed that of a physical SCFT. This is an important step towards
the full classification of the unitary N = 2 minimal models.

We note that Kreuzer and Schellekens [47] have proven a related result. They con-
struct simple current modular invariant partition functions via orbifoldings of the diag-
onal model and use the further assumption of higher-genus modular invariance to show
that all simple current modular invariant partition functions can be obtained this way.
They hypothesise that this extra assumption is unnecessary, which we are able to confirm
for the case of unitary N = 2 minimal models by simple counting arguments.

Section 2 is a review of Gannon’s program of classifying the possible partition func-
tions of the N = 2 unitary minimal SCFTs, and the statement of his result (which did
not appear explicitly in [29]), with a few minor errors corrected. We give two examples
to illustrate the simplest cases in the classification.

In Sect. 3 we show that the A-D-E classification of Cecotti and Vafa [9] is visible,
even at the level of partition functions. We give a conjecture for the fusion rules of the
N = 2 minimal models and give a much simpler proof than the one found in [68] that
they follow from Verlinde’s formula. Then we prove results showing that Gannon’s par-
tition functions are compatible with the conjectured fusion rules and with the locality of
the associated theories.

Section 4 contains a brief review of orbifold techniques, and the statement and proof
of the main theorem: every possible partition function in Sect. 2.4 belongs to a fully-
fledged SCFT (subject to the assumptions (i) and (ii) above). The proof is an explicit
construction of orbifoldings from any given partition function to one of a handful of
fixed theories that are believed to be fully-fledged SCFTs.

Section 5 investigates the simple-current modular invariants and confirms a hypoth-
esis of Kreuzer and Schellekens for the special case of the unitary N = 2 minimal
models; namely, that every simple current invariant should be obtainable via an orbifold
of the diagonal model.

Section 6 contains conclusions and further directions to be investigated.

2. Gannon’s Classification of Partition Functions

2.1. Preliminaries. We will denote by H the underlying pre-Hilbert space of an N = 2
SCFT C. H is a representation of two commuting copies of the N = 2 super Virasoro
algebra (SVA) [2], whose ‘modes’ are 1, Ln, Jn, G±

r with n ∈ Z and r ∈ Z + 1
2 in the

Neveu-Schwarz (NS) sector and r ∈ Z in the Ramond (R) sector. The Ln modes along
with the central element 1 form a Virasoro algebra with central charge c̄ ∈ C, the Jn are
the modes of a U (1) current,1 and the G±

r are modes of two fermionic super-partners.
Together these elements span the left-hand copy of the SVA. The right-hand copy of the
SVA is spanned by the elements {1, Ln, J n, G

±
r } with the same commutator relations.

Unitary irreducible inequivalent representations of the SVA can be realised as lowest
weight representations (LWRs),2 which are characterised by a lowest weight vector v

1 Our normalisation of the U (1) current agrees with that of e.g. [57]. As a consequence, [J0, G±
r ] = ± 1

2 G±
r ,

and so the supersymmetry modes G±
r carry half integer charge.

2 Lowest weight representations are frequently referred to as highest weight representations, a slightly
perverse accident of history given that the ‘highest weight vector’ actually has the lowest weight of all states
in the representation.
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with lowest weight h and charge Q:

L0v = hv, J0v = Qv,

Lnv = Jnv = G±
r v = 0 ∀n > 0, r > 0.

Through calculation of the vanishing curves of the Kac determinant, Boucher, Friedan
and Kent [5] classified these irreducible unitary representations. They exist only when

c̄ = 3k

k
, k ∈ N0 = {0, 1, 2, . . .}, (1)

where throughout the paper we will write

k = k + 2. (2)

Furthermore, at a given level k ∈ N0, irreducible unitary lowest weight representations
only exist for a finite collection of possible lowest weights h and charges Q. They are
given by3

hac = a(a + 2) − c2

4k
+

[a + c]2

8
,

Qac = c

2k
− [a + c]

4
,

where
a = 0, . . . , k,

|c − [a + c]| ≤ a,
(3)

where we define [x] to be 0 if x is even and 1 if x is odd4. Here a + c even corresponds to
LWRs of the NS sector and a +c odd to LWRs of the R sector. We will label the indexing
set of those (a, c) satisfying a = 0, . . . , k and |c − [a + c]| ≤ a at level k by Pk .

Di Vecchia et al. [13] constructed explicit free fermion representations of each of
the possible LWRs via the coset construction of Goddard, Kent and Olive [37], while
an alternative explicit construction using parafermions [73] was found around the same
time by Qiu [58]. The conjectured characters of these representations5

ch(τ, z) = Tr
(

q L0− c̄
24 y Jo

)

were calculated shortly afterwards [16,17,45,50].6 The trace is taken over the states of
an irreducible representation of one copy of the SVA, and we use the standard convention
that q = e2π iτ , y = e2π i z for complex parameters τ and z, where τ is restricted to the
upper half complex plane, H.

3 The index c should not be confused with the central charge c̄. Also, for clarity of notation, we will drop
the comma in the label (a, c) whenever it is safe to do so.

4 We have actually made a choice here – choosing [x] = −1 for odd x would give an equivalent realisation
of the R sector.

5 I am grateful to an anonymous referee for pointing out that the mathematical proof of the correctness
of the characters may be incomplete. As Eholzer and Gaberdiel [19] point out, the coset construction of Di
Vecchia et al [13] shows that the N = 2 SVA at c < 3 is a subalgebra of the corresponding coset algebra.
The identification of these algebras is equivalent to the identification of the corresponding characters, and
in turn follows from the conjectured embedding diagrams. On the other hand, Dörrzapf’s proof [18] of the
correctness of the embedding diagrams relies on the coset identification! We do not know of any result in the
literature that resolves this circular dependency.

6 Embedding diagrams and character formulae were first conjectured in references [16,45,50].
Dörrzapf [18] later produced more refined embedding diagrams that record the existence of linearly inde-
pendent uncharged singular vectors at the same level. See Dörrzapf [18] and Dobrev [17] for a discussion.
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2.2. Modular invariance. In an SCFT we demand that the bosonic part of the partition
function be modular invariant. Consequently, the objects of interest to us are not the
full characters alluded to above, but rather the projections to the bosonic and fermionic
states in each irreducible LWR [34]:

χac(τ, z) = TrHac

(
1

2

(
1 + (−1)2(J0−Qac)

)
q L0− c̄

24 y J0

)
, (a, c) ∈ Pk,

is the trace over the representation Hac of the left-hand copy of the SVA and
(−1)2(J0−Qac) is the chiral world-sheet fermion operator. It is well-defined since, by
definition, J0 has charge Qac on the lowest weight state |ac〉 of Hac, and since the
charge of a descendant state differs from Qac by a half-integer or an integer. The chiral
world-sheet fermion operator commutes with the modes Ln, Jn and anti-commutes with
the modes G±

r , so 1
2 (1 + (−1)2(J0−Qac)) projects to those states created from the lowest

weight state |hac, Qac〉 by the application of an even number of fermionic modes G±
r ,

i.e. states of the form

L−n1 . . . L−nα J−m1 . . . J−mβ G+−l1 . . . G+−lγ G−
−k1

. . . G−
kδ

|h, Q〉
for which γ + δ is even. Similarly we define

χk−a,c+k(τ, z) = TrHac

(
1

2

(
1 − (−1)2(J0−Qac)

)
q L0− c̄

24 y J0

)
, (a, c) ∈ Pk,

the character which counts only those states with γ + δ odd. The notation χk−a,c+k is
chosen so that the state(s) with the lowest weight that survive the projection have weight
hk−a,c+k mod 1 and charge Qk−a,c+k mod 1, where we have extended the definition
of h and Q in Eq. (3) to the indexing set Qk = Pk ∪ (j · Pk) = {0, . . . , k} × Z2k , where
j is the simple current j · (a, c) = (k − a, c + k) (see Sect. 3.2).

These characters are the building blocks from which we can construct modular invari-
ant partition functions of the minimal models:

Z(τ, z) =
∑

(ac)∈Qk
(a′c′)∈Qk

Mac; a′c′χac(τ, z)χa′c′(τ, z)∗, (4)

where M is an non-negative integer matrix of multiplicities, and we insist that the vacuum
is unique: M00; 00 = 1.

The modular group SL(2, Z) acts naturally on H × C (where H is the upper half
complex plane) via S : (τ, z) 	→ (− 1

τ
, z

τ
) and T : (τ, z) 	→ (τ + 1, z). This in turn gives

a natural (right) action of SL(2, Z) on the characters χac:

S · χac(τ, z) =
(

0 −1
1 0

)
· χac(τ, z) = χac

(
− 1

τ
,

z

τ

)
,

T · χac(τ, z) =
(

1 1
0 1

)
· χac(τ, z) = χac(τ + 1, z).

The characters {χac | (a, c) ∈ Qk} transform linearly among themselves under this
action and hence span a representation of SL(2, Z). The S- and T -matrices are given by

Sac; a′c′ = 2S(k)a;a′ S′(2)[a+c];[a′+c′]S′(k)∗c;c′, (5)

Tac; a′c′ = T (k)a;a′ T ′(2)[a+c];[a′+c′]T ′(k)∗c;c′

= e2π i(hac− c̄
24 )δaa′δcc′, (6)
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where S(k) is the S-matrix of the su(2) WZW model [46] at level k and S′(l) is the
S-matrix of the u(1) WZW model at level l, with similar notation for the T -matrices
(see e.g. [29] for explicit formulae). The conformal weight hac is given in Eq. (3) and
δxx ′ is the Kronecker delta.

Invariance of the partition function Z(τ, z) in (4) under the action of SL(2, Z) is
equivalent to

M = SM S†,

M = T MT †; (7)

or, since S and T are unitary, equivalent to asking that M commutes with both S and T .7

We note here one immediate consequence of modular invariance: using Eq. (6), we
deduce that T -invariance is equivalent to

Mac; a′c′ �= 0 ⇒ hac − ha′c′ ∈ Z. (8)

2.3. Gannon’s classification. Gannon’s result [29] was to classify all the modular parti-
tion functions Z of the form (4) with unique vacuum. We will refer to the (non-negative
integer) matrix of multiplicities M of such a partition function simply as a modular
invariant8. We briefly describe how this classification was achieved.

There are two key steps. The first is to observe that there is a connection between
the WZW model g ⊕ h with g = ŝu(2)k ⊕ û(1)2 and h = û(1)k , and the minimal
models, which can be constructed via the coset representation g/h. Gannon had already
shown [31] that the modular invariants of g/h could be obtained from the modular invari-
ants of g⊕h for various diagonal embeddings of h ⊂ g at particular levels. This phenom-
enon occurs because of the similarity of the S-matrices of the two theories. In the case of
the N = 2 unitary minimal models we have seen that the S-matrix is given by Eq. (5). The
characters extend naturally to the indexing set (a, b, c) ∈ {0, . . . , k} × Z4 × Z2k =: P ′

k
if we set

χ(b)
ac := χac when b = [a + c] ∈ {0, 1},

χ
(b+2)

k−a,c+k
≡ χ(b)

ac ∀(a, b, c) ∈ P ′
k, (9)

χ(b)
ac = 0 when a + b + c �≡ 0 mod 2.

With these definitions we find that the characters χ
(b)
ac transform under S with S-matrix

S(k) ⊗ S′(2) ⊗ S′(k)∗. Meanwhile the WZW model ŝu(2)k ⊕ û(1)2 ⊕ û(1)k has char-
acters χaχbχc with (a, b, c) ∈ P ′

k , which transform under the action of S with S-matrix
S(k) ⊗ S′(2) ⊗ S′(k). The crucial observation is that χaχbχ

∗
c transforms under S in

exactly the same way as χ
(b)
ac . Thus if
∑

Mabc; a′b′c′ χ(b)
ac χ

(b′)∗
a′c′

7 We note that this argument relies on the presumed linear independence of the characters χac , a fact we
have not proven.

8 The terminology physical invariant is sometimes employed. The epithet ‘physical invariant’ is an unfor-
tunate one, particularly as the point of this paper is to determine which of Gannon’s modular invariants really
are ‘physical’, in the sense of being realised by some full N = 2 SCFT. Indeed Gannon [30] has provided
examples of possibly ‘sick’ modular invariants for other CFT data that do not correspond to any NIM-rep.
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is a modular invariant of the coset g/h, then
∑

Mabc′; a′b′c χaχbχcχ
∗
a′χ∗

b′χ∗
c′

is a modular invariant of the WZW model g ⊕ h (note the interchange of c and c′).
This correspondence is injective and thus every g/h modular invariant is obtained from
a g ⊕ h modular invariant, and the subset of g ⊕ h modular invariants corresponding to
g/h modular invariants are precisely those which respect the symmetry in (9), i.e. for all
(a, b, c), (a′, b′, c′) ∈ P ′

k ,

Mk−a,b+2,c; a′,b′,c′+k = Ma,b,c+k; k−a′,b′+2,c′ = Mabc; a′b′c′,

Mabc;a′b′c′ �= 0 �⇒ a + b + c′ ≡ a′ + b′ + c ≡ 0 mod 2.

Gannon showed in Lemma 3.1 of [26] that to check these conditions it is enough to show
that the first condition holds on the left- and right-hand vacua:

Mk20; 00k = M00k; k20 = 1. (10)

Thus the modular invariant partition functions of the minimal models at level k

Z(τ, z) =
∑

(ac)∈Qk
(a′c′)∈Qk

M̃ac; a′c′χac(τ, z)χa′c′(τ, z)∗

are obtained by

M̃ac; a′c′ = Ma[a+c]c′; a′[a′+c′]c,

where M is a modular invariant of ŝu(2)k ⊕ û(1)2 ⊕ û(1)k satisfying Eq. (10), and where,
as before, [x] is 0 or 1 depending on whether x is even or odd, respectively.

The second step is to classify the modular invariants of ŝu(2)k ⊕û(1)2⊕û(1)k subject
to Eq. (10). The crucial step is to note that the Verlinde formula [67] implies that there
is a Galois action on the S-matrix [10]:

σ · Sabc; a′b′c′ = εσ (a, b, c)S(abc)σ ; a′b′c′ ∀(a, b, c), (a′, b′, c′) ∈ P ′
k,

where σ ∈ Gal(K/Q) for some cyclotomic extension K of Q, for some ε : P ′
k → {±1}

and a permutation λ 	→ λσ of P ′
k . From this we obtain a selection rule for the modular

invariant M :

Mabc; a′b′c′ �= 0 ⇒ εσ (a, b, c) = εσ (a′, b′, c′).

This can be solved exactly: we find that either k ∈ {4, 8, 10, 28} or that whenever
M000; a′b′c′ �= 0 we have a′ ∈ {0, k}. The former case can be solved by brute force. The
latter solutions comprise the so-called A-D-E7-invariants9 [26]. The A-D-E7-invariants
are defined by the condition

Mabc; 000 �= 0 ⇒ (a, b, c) ∈ J (0, 0, 0),

M000; a′b′c′ �= 0 ⇒ (a′, b′, c′) ∈ J (0, 0, 0),

9 So-called because in the classification of the ŝu(2)k WZW models [7], these are precisely the models
A,D and E7.
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where J is the set of simple currents of the modular invariant M [42,62] (see also
Sect. 3.2). This is a generalisation of the notion of simple current invariant[32], a mod-
ular invariant M satisfying

Mabc; a′b′c′ �= 0 ⇒ (a′, b′, c′) ∈ J (a, b, c).

The classification of the modular invariants of ŝu(2)k ⊕ û(1)2 ⊕ û(1)k thus reduces to

the classification of the A-D-E7-invariants of ŝu(2)k ⊕ û(1)2 ⊕ û(1)k , which are found
using the general method of [26].

2.4. Explicit classification of minimal partition functions. We state the list of partition
functions of the minimal models here for two reasons: firstly, it did not appear explicitly
in Gannon’s paper, and deserves to be accessible in the literature; and secondly because
there were a few minor errors in the application of the main theorem of that paper to the
case of ŝu(2)k ⊕ û(1)2 ⊕ û(1)k . The corrections are highlighted in footnotes.

Throughout this section and the rest of the paper J will denote the ŝu(2)k simple
current J : a 	→ k − a. The notation k was defined in Eq. (2).

k odd.

– We have a modular invariant M̃0 for each triple of integers (v, z, n) with v|k, k|v2

and k(4z2 −1)/v2 ∈ Z, where z ∈ {1, . . . , v2/k} and n ∈ {0, 1}. Its non-zero entries
are

M̃0
a,ck/v; a′,c′k/v

= 1 ⇐⇒
⎧⎨
⎩

a′ = J (a+c)na
c′ ≡ c + (a + c)n (mod 2)

c′ ≡ 2cz (mod v2/k)

⎫⎬
⎭ . (11)

4 divides k.

– We have a modular invariant M̃2,0 for each triple of integers (v, z, n) with 2v|k, k|v2

and y := k(z2 − 1)/2v2 ∈ Z, where z ∈ {1, . . . , 2v2/k} and n ∈ {0, 1}. Its non-zero
entries are

M̃2,0
a,ck/v; a′,c′k/v

= 1 ⇐⇒
{

a′ = J an+cya
c′ ≡ cz + ayv2/k (mod 2v2/k)

}
. (12)

– We have a modular invariant M̃2,1 for each triple of integers (v, z, n) with 2v|k, 2v2

k
∈

2Z+1 and k(z2 −1)/2v2 ∈ Z, where z ∈ {1, . . . , 2v2/k} and n ∈ {0, 1}. Its non-zero
entries are

M̃2,1
a,ck/2v; a′,c′k/2v

= 1 ⇐⇒
⎧
⎨
⎩

a ≡ a′ ≡ c ≡ c′ (mod 2)

a′ = J an+(c+c′)/2a
c′ ≡ cz (mod 2v2/k)

⎫
⎬
⎭ . (13)

– We have a modular invariant M̃2,2 for each quadruple of integers (v, z, n, m) with k/v

odd, v2/k ∈ Z and k(z2 − 1)/4v2 ∈ Z, where z ∈ {1, . . . , 2v2/k} and n, m ∈ {0, 1}.
Its non-zero entries are

M̃2,2
a,ck/v; a′,c′k/v

= 1 ⇐⇒
{

a′ = J an+cma
c′ ≡ cz + (a + c)mv2/k (mod 2v2/k)

}
. (14)
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4 divides k.

– If 8|k + 4 then we have a modular invariant M̃4,0 for each quadruple of integers
(v, z, n, m) with k/2v ∈ Z, x := (1/4 + v2/2k) ∈ Z and k(z2 − 1)/2v2 ∈ Z, where
z ∈ {1, . . . , 2v2/k} and m, n ∈ {0, 1}. Its non-zero entries are

M̃4,0
a,ck/2v; a′,c′k/2v

= 1 ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

c + c′ ≡ a ≡ a′ (mod 2)

a′ = J ax+cn+c(1−c)/2a
c′ ≡ cz (mod 2v2/k)

2c′m + c′(1 − c′) ≡ 2cn + c(1 − c) (mod 4)

⎫⎪⎪⎬
⎪⎪⎭

. (15)

Note that M̃4,0 is only symmetric when m = n. In fact (M̃(v, z, n, m))T =
M̃(v, z, m, n). Note also that the condition that x be an integer follows directly
from the conditions that 8|k + 4 and k|2v2.

– If 8|k then we have a modular invariant10 M̃4,1 for each quadruple of integers
(v, z, x, y) with v|k, k|v2, 2k(4z2 − 1)/v2 ≡ 7 (mod 8), where z ∈ {1, . . . , v2/k}
and x, y ∈ {1, 3}. Its non-zero entries are

M̃4,1
a,ck/v; a′,c′k/v

= 1 + δa,k/2 ⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a ≡ a′ ≡ 0 (mod 2)

a′ = J la for some l ∈ Z

c′ ≡ 2cz (mod v2/2k)

c(c − x) ≡ 2c′z (mod 4)

c′(c′ − y) ≡ 2cz (mod 4)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (16)

Note that M̃4,1 is only symmetric when x = y. In fact (M(v, z, x, y))T =
M(v, z, y, x). Note also that the condition 2k(4z2 −1)/v2 ≡ 7 (mod 8) is equivalent
to 2k(4z2 − 1)/v2 ∈ Z and k/8 ≡ z (mod 2).

– We have a modular invariant M̃4,2 for each triple of integers (v, z, x) with 2v|k, k|2v2

and k(z2−1)/2v2 ∈ Z, where z ∈ {1, . . . , 2v2/k} and x ∈ {1, 3}. Its non-zero entries
are

M̃4,2
a,ck/2v; a′,c′k/2v

= 1 + δa,k/2 ⇐⇒

⎧
⎪⎪⎨
⎪⎪⎩

a ≡ a′ ≡ 0 (mod 2)

a′ = J la for some l ∈ Z

c′ ≡ cz (mod 2v2/k)

c′ ≡ cx (mod 4)

⎫
⎪⎪⎬
⎪⎪⎭

. (17)

– We have a modular invariant11 M̃4,3 for each triple (v, z, n) with 2v|k, k|2v2 and
k(z2 − 1)/4v2 ∈ Z, where z ∈ {1, . . . , 8v2/k} and n ∈ {0, 1}. Its non-zero entries
are

M̃4,3
a,ck/2v; a′,c′k/2v

= 1 ⇐⇒
⎧⎨
⎩

a′ = J (a+c)na
c′ ≡ cz (mod 2v2/k)

c′ ≡ cz + 2(a + c)n (mod 4)

⎫⎬
⎭ . (18)

Exceptional Invariants. Throughout this section we will write Ak, Dk and Ek for the
ŝu(2)k modular invariants at k = 10, 16 and 28.

10 In the original classification the modulo 8 condition was only given modulo 1.
11 In the original classification of the ŝu(2)k ⊕ û(1)2 ⊕ û(1)k invariants, the non-zero entries of M4,3 should

have read Mabc; Jl a,bx+2l,cv+2lv = 1 with (c + bv − av)v/k ∈ Z and l ∈ Z, and z should be allowed to run

from 1 to 8v2/k rather than only up to 4v2/k.
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– When k = 10 we have a modular invariant Ẽ10
1 for the 2 pairs of integers (v, z) with

v = 6 and z ∈ {1, 5}. Note that for these values of k, v and z the modular invariant
M̃2,0 factors into N ⊗ M , since the parameter y turns out to be even, where N equals
either A10 or D10 and M is the û(1) part. Then Ẽ10

1 = E10 ⊗ M . The non-zero entries
of M are

M2c; 2c′ = 1 ⇐⇒ {
c′ ≡ cz (mod 6)

}
. (19)

– When k = 10 we have a modular invariant Ẽ10
2 for the 8 quadruples (v = 12, z, n =

0, m) with z ∈ {1, 7, 17, 23} and m ∈ {0, 1}. Then Ẽ10
2 is given by

(Ẽ10
2 )ac; a′c′ = 1 ⇐⇒

{
E10

J cma;a′ = 1
c′ ≡ cz + 12(a + c)m (mod 24)

}
. (20)

– When k = 16 we have a modular invariant Ẽ16
1 for the 12 quadruples of integers

(v, z, x, y) with either v = 6, z = 2 or v = 18, z ∈ {4, 5}, and x, y ∈ {1, 3}. Note
that the modular invariant M̃4,1 factors into D16 ⊗ M , where M is the û(1) part.
Then Ẽ16

1 = E16 ⊗ M . The non-zero entries of M are

M18c/v; 18c′/v = 1 ⇐⇒
⎧⎨
⎩

c′ ≡ 2cz (mod v2/36)

c(c − x) ≡ 0 (mod 4)

c′(c′ − y) ≡ 0 (mod 4)

⎫⎬
⎭ . (21)

– When k = 16 we have a modular invariant Ẽ16
2 for the 6 triples (v, z, x) with either

v = 3, z = 1 or v = 9, z ∈ {1, 8}, and x ∈ {1, 3}. Note that M̃4,2 factors into
D16 ⊗ M , where M is the û(1) part. Then Ẽ16

2 = E16 ⊗ M . The non-zero entries of
M are:

M9c/v; 9c′/v = 1 ⇐⇒
{

c′ ≡ cz (mod v2/9)

c′ ≡ cx (mod 4)

}
. (22)

– When k = 28 we have a modular invariant12 Ẽ28 for the 8 triples (v = 15, z, x) with
z ∈ {1, 4, 11, 14} and x ∈ {1, 3}. Note that M̃4,2 factors into D28 ⊗ M , where M is
the û(1) part. Then Ẽ28 = E28 ⊗ M . The non-zero entries of M are

Mc; c′ = 1 ⇐⇒
{

c′ ≡ cz (mod 15)

c′ ≡ cx (mod 4)

}
. (23)

Those modular invariants corresponding to the space-time supersymmetric theories
of Cecotti and Vafa will be identified in Sect. 3.1.

2.5. Simple examples. To illustrate the foregoing classification, and to demonstrate that,
at least for the lowest levels, the partition functions turn out to be given in terms of famil-
iar functions, we will calculate the partition functions explicitly for levels k = 1 and
k = 2.

12 There are 16 modular invariants described as coming from M4,0 in the original classification, but no such
invariants in fact exist.
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2.5.1. k = 1. Level k = 1 yields N = 2 superconformal unitary minimal models with
central charge c̄ = 1. We can express the characters in terms of familiar functions:

χac(τ, z) = K (6)
2c−3[a+c](τ, z),

where K (6)
x are the û(1)6 characters13 defined by

K (l)
x (τ, z) = 1

η(τ)

∑

Q∈
(l)
x

ql Q2
yQ, x ∈ Z2l , (24)

the shifted lattice Γ
(l)
x is given by Γ

(l)
x = {(

n + x
2l

)∣∣ n ∈ Z
}

and η is the Dedekind
η-function. We can then read off from Sect. 2.4 the partition functions of the 4 minimal
models with c = 1. We label the four partition functions by the parameters (v, z, n) (see
Eq. (11) for notation):

Z(3, 2, 0)(τ, z) = Z R=√
6(τ, z);

Z(3, 1, 1)(τ, z) = Z R= 1√
6
(τ, z),

Z(3, 2, 1)(τ, z) = Z
R=
√

3
2

(τ, z);
Z(3, 1, 0)(τ, z) = Z

R=
√

2
3

(τ, z);

where Z R is the partition function of the boson on the circle at radius R (see e.g [36]):14

Z R(τ, z) = 1

|η(τ)|2
∑

(Q,Q)∈R

ql Q2
yQql Q

2

yQ,

R =
{

1

2
√

l

( n

R
+ m R,

n

R
− m R

)∣∣∣ n, m ∈ Z

}
,

(25)

where here l = 6. The pair (Q, Q) ∈ R labels a conformal primary state with U (1)

charges (Q, Q) and conformal weights (h, h) = (6Q2, 6Q
2
).15

The partition function with (z, v, n) = (3, 2, 0) is that of the diagonal model. The
first and second partition functions, and the third and fourth partition functions belong
to mirror symmetry pairs. Mirror symmetry is realised by acting by the charge conjuga-
tion matrix C = S2 on one of the chiral sectors. At the level of primary states, mirror
symmetry acting on the left-hand representations maps states with U (1) charges (Q, Q)

to states with charges (−Q, Q). This implies that one model can be obtained from the
other by relabelling the generators of the left U (1) current:

{Ln, Jn, G±
r , Ln, J n, G

±
r } → {Ln,−Jn, G∓

r , Ln, J n, G
±
r }.

13 The Kac-Moody algebra û(1) does not have levels as such, since the generators can always be rescaled.
We borrowed the notation û(1)l from [11].

14 In our normalisation the self-dual radius is R = 1. Some authors use R = √
2.

15 It is perhaps more usual to re-scale the U (1) current for the boson on the circle by
√

12 to obtain h = Q2

2 .
The price, of course, is that the N = 2 algebra, which is a symmetry of these c = 1 theories at the special

radii R, R−1 ∈ {√6,

√
3
2 }, will then differ from its usual form: e.g. we would find [J0, G±

r ] = ±√
3G±

r . See
Waterson [69] for an explicit construction of the irreducible representations of the unitary N = 2 minimal
models at c = 1.
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Thus the two mirror symmetric models describe identical physics, and we would nor-
mally consider them to be equivalent theories. However, since they give rise to different
partition functions, it will be convenient to treat them as belonging to separate theories.
The analogue is true for mirror symmetry acting on the right-hand states.

We note that combining both left- and right- mirror symmetry transformations yields
the charge conjugation transformation,16 which acts on charges of states via (Q, Q) →
(−Q,−Q). Since the charge conjugation matrix C satisfies C2 = S4 = Id, we see that
this leaves the partition functions invariant. We will therefore consider charge conjugate
theories to be identical.

In the current case, we see that mirror symmetry coincides with the T -duality [6,60]
transformation, which interchanges Z R and Z 1

R
.

2.5.2. k = 2. The level k = 2 models correspond to the N = 2 superconformal unitary
minimal models with central charge c̄ = 3

2 . Again, we can express the characters in
terms of familiar functions:

χac(τ, z) = η(τ) c(2)
a,c−[a+c](τ ) K (4)

c−2[a+c](τ, z),

where K (4)
x , x ∈ Z8 are the û(1)l characters given in Eq. (24) for l = 4 and c(2)

a,c are the
level 2 su(2) string functions (see e.g. [43]). The string functions can be written in terms
of the Jacobi theta functions and the Dedekind eta function as follows:

η(τ)c(2)
a,c(τ ) =

⎧
⎪⎨
⎪⎩

√
θ2(τ,0)
2η(τ)

if a = 1

1
2

(√
θ3(τ,0)
η(τ )

+ (−1)
a+c

2

√
θ4(τ,0)
η(τ )

)
if a is even.

We can now evaluate the five modular invariant partition functions17 using the labels
(0; v, z) for the unique M̃2,0 invariant (see Eq. (12) – we have dropped the label n since
n = 0 or 1 give the same partition function for k = 2) and labels (2; v, z, m) for the four
partition functions in the family M̃2,2 (see Eq. (14)–again we have dropped the n label).

Z(0; 2, 1)(τ, z) = ZIsing(τ )Z R=1(τ, z);
Z(2; 4, 1, 0)(τ, z) = ZIsing(τ )Z R=2(τ, z);
Z(2; 4, 7, 1)(τ, z) = ZIsing(τ )Z R= 1

2
(τ, z);

Z(2; 4, 7, 0)(τ, z) = 1

2

∑
c∈Z8

(∣∣∣∣
θ3(τ, 0)

η(τ )

∣∣∣∣ + (−1)c
∣∣∣∣
θ4(τ, 0)

η(τ )

∣∣∣∣
)

K (4)
c (τ, z)K (4)

3c (τ, z)∗

+
1

2

∣∣∣∣
θ2(τ, 0)

η(τ )

∣∣∣∣
∑
c∈Z8

K (4)
c (τ, z)K (4)

3c+4(τ, z)∗;

16 We emphasise that acting with the charge conjugation matrix C on one chiral halve yields the mirror
symmetry transformation; acting on both halves simultaneously yields the charge conjugation transformation.

17 When we count the number of simple current invariants in Theorem 5, we will see that our formula
predicts ten partition functions at level 2. This discrepancy arises from the identity A2 = D2, which does not
generalise to other levels k. Thus we only expect to find five theories at level k = 2.
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Z(2; 4, 1, 1)(τ, z) = 1

2

∑
c∈Z8

(∣∣∣∣
θ3(τ, 0)

η(τ )

∣∣∣∣ + (−1)c
∣∣∣∣
θ4(τ, 0)

η(τ )

∣∣∣∣
)

K (4)
c (τ, z)K (4)

5c (τ, z)∗

+
1

2

∣∣∣∣
θ2(τ, 0)

η(τ )

∣∣∣∣
∑
c∈Z8

K (4)
c (τ, z)K (4)

5c+4(τ, z)∗,

where here

ZIsing = 1

2

(∣∣∣∣
θ2(τ, 0)

η(τ )

∣∣∣∣ +

∣∣∣∣
θ3(τ, 0)

η(τ )

∣∣∣∣ +

∣∣∣∣
θ4(τ, 0)

η(τ )

∣∣∣∣
)

is the partition function of the Ising model (see e.g. [36]), and Z R is the partition function
of the boson on the circle given in Eq. (25) with l = 4.

We note that the second partition function is that of the diagonal model. The first
partition function belongs to a self-mirror-symmetric model, and the second and third,
and the fourth and fifth partition functions belong to mirror symmetry pairs. On the level
of primary states mirror symmetry acts on the left-hand representations by mapping the
primary state |Ising〉 ⊗ |Q, Q〉 to |Ising〉 ⊗ | − Q, Q〉, and similarly on the right-hand
representations. This induces the transformation Kc 	→ K−c on the U (1) characters. On
the self-mirror-symmetric model and the first mirror symmetry pair, mirror symmetry
is realised via T -duality, by interchanging Z R and Z 1

R
.

3. Consequences of Gannon’s Classification

3.1. Classification of theories with space-time supersymmetry. In this section we show
that those partition functions belonging to space-time supersymmetric models fall into
the well-known A-D-E pattern in accordance with [9]. Specifically we will find those
partition functions that satisfy the following condition: the R⊗R sector of the theory is
obtained from the NS⊗NS sector under simultaneous spectral flow by half a unit on both
chiral halves of the theory, and the NS⊗R and R⊗NS sectors are similarly interchanged.
The spectral flow is rather easy to describe in our notation: it simply maps between the
NS sector and the R sector via (a, c) ↔ (a, c + 1), where a + c is even. One can check
using Eqs. (1) and (3) that for a + c even we have

hac → ha,c+1 = hac − Qac +
c̄

24
,

as expected from e.g. [41]. The constraint that a theory should be invariant under the
interchange of NS⊗NS↔R⊗R and NS⊗R↔R⊗NS is a very strong one. In particu-
lar, since the vacuum representation must be present in any theory, the representation
obtained from the vacuum by spectral flow should be present in the R⊗R sector; i.e.
M01; 01 �= 0. One can read off from the explicit list in Sect. 2.4 that the only space-time
supersymmetric theories have the following partition functions:

M̃0(v = k, 2z = 1, n = 0) = Ak ⊗ I2k, k odd,

M̃2,2(v = k, z = 1, n = 0, m = 0) = Ak ⊗ I2k, 4 divides k,

M̃2,2(v = k, z = 1, n = 1, m = 0) = Dk ⊗ I2k, 4 divides k,

M̃4,3(v = k

2
, z = 1, n = 0) = Ak ⊗ I2k, 4 divides k,
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M̃4,2(v = k

2
, z = 1, x = 1) = Dk ⊗ I2k, 4 divides k,

Ẽ10
2 (v = 12, z = 1, n = 0, m = 0) = E10 ⊗ I2k, k = 10,

Ẽ16
2 (v = 9, z = 1, x = 1) = E16 ⊗ I2k, k = 16,

Ẽ28(v = 15, z = 1, x = 1) = E28 ⊗ I2k, k = 28.

Here the Ak ,Dk ,Ek are the ŝu(2)k modular invariants of [7] and the I2k are û(1)k diagonal
invariants.18 These theories have no NS⊗R or R⊗NS sectors, and the NS⊗NS sector
can be recovered from the R⊗R sector via spectral flow by half a unit in the opposite
direction.

The familiar A-D-E pattern has emerged. It is quite remarkable that the A-D-E
classification arises already at the level of partition functions.

We note here that there is (at least) one space-time supersymmetric minimal model in
each “orbifold class” of the unitary N = 2 minimal models; that is, every partition func-
tion in Gannon’s list can be mapped to one of the space-time supersymmetric partition
functions by an orbifolding constructed in Sect. 4.

3.2. Simple currents and fusion rules. In the study of conformal field theories, a rich
symmetry structure arises out of the so-called simple currents [42,62,61]. A simple
current is a primary field which upon fusion with any other field yields precisely one
primary field (plus its descendants). The simple currents can therefore be found from
the fusion coefficients N a′′

aa′ defined by

[φa] × [φa′ ] =
∑

a′′∈P

N a′′
aa′ [φa′′ ],

where φa are primary fields labelled by some indexing set P . [φa] represents a sum over
the primary field φa and its descendants. N a′′

aa′ counts the multiplicity of the field φa′′
appearing in the OPE of φa and φa′ .

3.2.1. The Verlinde formula and fusion rules. The Verlinde formula [67] gives a sur-
prising and elegant expression for fusion rules in terms of the S-matrix for (bosonic)
rational CFTs [51]. Inspired by this we define (for the S-matrix of the unitary N = 2
minimal models given in Eq. (5))

N a′′c′′
ac; a′c′ :=

∑
(d, f )∈Qk

Sac;d f Sa′c′;d f S∗
a′′c′′;d f

S00;d f
. (26)

We want to interpret N a′′c′′
ac,a′c′ as the fusion coefficients for the N = 2 minimal models.

We will return to make a case for this claim after the next lemma, in which we show
that the numbers N a′′c′′

ac,a′c′ are integers, and are in fact related to the fusion coefficients of
familiar bosonic CFTs.

18 We use the notation I2k since they are 2k × 2k matrices. Some authors use Ik .
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Lemma 1. Fix (ac), (a′c′), (a′′, c′′) ∈ Qk. We have

N a′′c′′
ac; a′c′ =

⎧⎪⎨
⎪⎩

(
N ŝu(2)k

)a′′

aa′

(
N û(1)k

)c′′

cc′ , if [a + c][a′ + c′] = 0
(

N ŝu(2)k

)k−a′′

aa′

(
N û(1)k

)c′′+k

cc′ , if [a + c][a′ + c′] = 1

⎫⎪⎬
⎪⎭

. (27)

Here N ŝu(2)k and N û(1)k are the fusion coefficients for the WZW models [70,71] obtained
from su(2) at level k [35] and û(1) at level k respectively. In general, they read

(
N ŝu(2)k

)a′′

aa′ = δ(|a − a′| ≤ a′′≤ min(a + a′, 2k − a − a′)) δ(a + a′ ≡ a′′ mod 2)

(
N û(1)l

)c′′

cc′ = δ(c + c′ ≡ c′′ mod 2l),

where δ(condition) = 1 if ‘condition’ is satisfied, and 0 otherwise. In particular, we
see that N a′′c′′

ac; a′c′ is only non-zero if a + c + a′ + c′ + a′′ + c′′ ≡ 0 mod 2. So if we can
interpret the N as fusion coefficients of the minimal models then we obtain the following
selection rules for the NS ([a + c] = 0) and R ([a + c] = 1) sectors:

N S × N S ∼ N S, N S × R ∼ R,

R × N S ∼ R, R × R ∼ N S.

Proof. It is possible to expand the expression (26) into a sum of products of sines and
exponentials which can be simplified at great tedium. We present here a very simple
proof using simple currents of the S-matrices of the WZW models obtained from su(2)

and u(1). Simple currents are explained in detail in the following section, but for now
we will just use the fact that

Sk−a;a′ = (−1)a′
Sa;a′ , a, a′ ∈ {0, . . . , k},

S′
b+2;b′ = (−1)b′

Sb;b′ , b, b′ ∈ Z4,

S′′
c+k;c′ = (−1)c′

S′
c;c′, c, c′ ∈ Z2k,

(28)

where for brevity we have written S for the su(2)S-matrix at level k, and S′ and S′′ for
the u(1)S-matrix at levels 2 and 2k respectively.

For the rest of the proof, let us slightly abuse notation by denoting by J the permu-
tations a 	→ k − a, b 	→ b + 2 and c 	→ c + k, as well as the permutation of P ′

k given by
J (a, b, c) = (Ja, Jb, Jc) (cf. Eq. (9)).

The author is grateful to an anonymous referee for pointing out that the right-hand
side of the N = 2 fusion rules (27) can be neatly expressed as

RHS =
1∑

j=0

(
N WZW

)J j (a′′b′′c′′)

abc;a′b′c′ ,

where N WZW = N ŝu(2)k ⊗ N û(1)2 ⊗ N û(1)k are the fusion coefficients of the WZW
model ŝu(2)k ⊕ û(1)2 ⊕ û(1)k , and we have written b = [a + c], b′ = [a′ + c′] and
b′′ = [a′′ + c′′]. This observation allows for a more elegant proof, which also shows how
Lemma 1 would generalise for certain other cosets.
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We start by expanding the fusion rules using the Verlinde formula for the WZW model
ŝu(2)k ⊕ û(1)2 ⊕ û(1)k in terms of the S-matrix of the WZW theory S̃ = S ⊗ S′ ⊗ S′′:

1∑
j=0

(
N WZW

)J j (a′′b′′c′′)

abc;a′b′c′ =
1∑

j=0

∑

(de f )∈P ′
k

S̃abc;de f S̃a′b′c′;de f S̃∗
J j (a′′b′′c′′);de f

S̃000;de f

= 2
∑

(de f )∈P ′
k

d+e+ f even

S̃abc;de f S̃a′b′c′;de f S̃∗
a′′b′′c′′;de f

S̃000;de f
,

where we used Eq. (28) in the last line. Writing P ′′
k for those (de f ) ∈ P ′

k with e = [d + f ]
we have

= 2
1∑

j=0

∑

(de f )∈P ′′
k

S̃abc;J j (de f ) S̃a′b′c′;J j (de f ) S̃∗
a′′b′′c′′;J j (de f )

S̃000;J j (de f )

= 4
∑

(de f )∈P ′′
k

S̃abc;de f S̃a′b′c′;de f S̃∗
a′′b′′c′′;de f

S̃000;de f

= 4
∑

(de f )∈P ′′
k

S̃abc;d,e,− f S̃a′b′c′;d,e,− f S̃∗
a′′b′′c′′;d,e,− f

S̃000;d,e,− f
,

where in the second line we used Eqs. (28) again along with the fact that b = [a+c], b′ =
[a′ + c′] and b′′ = [a′′ + c′′]; and in the last line we used (d, e, f ) ∈ P ′′

k ⇐⇒
(d, e,− f ) ∈ P ′′

k . Finally, we note that f 	→ − f implements charge conjugation in the
u(1) WZW model: S′′

c;− f = S′′∗
c; f . Thus we can relate the WZW S-matrix to the coset

S-matrix by Eq. (5):

2S̃abc;d,e,− f = 2Sad S′
be S′′∗

c, f = Sac;d f ,

and we arrive at

1∑
j=0

(
NWZW

)J j (a′′b′′c′′)

abc;a′b′c′ =
∑

(d f )∈Qk

Sac;d f Sa′c′;d f S∗
a′′c′′;d f

S00;d f

= N a′′c′′
ac;a′c′

as required. ��
Recall that the fusion in a (bosonic) CFT describes how the different conformal fami-
lies combine under the operator product expansion (OPE). Let φa(z), φb(w) be primary
fields (where we consider only the holomorphic part dependent on z, w). Then the fusion
of φa(z) with φb(w) is given by

φa(z)φb(w) =
∑
c∈P

Cc
ab(z − w)hc−ha−hb

[
φc(w) +

∑
n>0

(z − w)nφ(n)
c (w)

]
, (29)
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where Cc
ab ∈ C (which when multiplied by their anti-holomorphic counterpart Cc̄

āb̄
yield

the OPE coefficients), hx ∈ C is the conformal weight of the primary field φx and P
labels the set of primary fields. φ(n)

c (w) are descendant fields of φc(w) of weight hc + n,
i.e. those built from linear combinations of fields of the form (L−k1 . . . L−kn φ)(w) for
positive ki with

∑
i ki = n.

The space of all descendant fields of a primary field φc(w) is the conformal family
[φc] of φc(w). Under the state-field correspondence, the fields in a conformal family
correspond precisely to vectors in the irreducible LWR built on the lowest weight vector
|φc〉. In Eq. (29) it should be understood that more than one copy of each conformal
family can appear in the sum on the right-hand side.

We record which conformal families appear in the fusion of φa(z) and φb(w) using
the notation

[φa] × [φb] ∼
∑
c∈P

N c
ab [φc],

where N c
ab ∈ Z counts the multiplicity of the family [φc] appearing on the right hand

side. The non-negative integers N c
ab are called the fusion rules of the theory.

In the N = 2 case, the fusion between the super primary fields is a priori again

φa(z)φb(w) =
∑
c∈P

Cc
ab(z − w)hc−ha−hb

[
φc(w) +

∑
n>0

(z − w)nφ(n)
c (w)

]
, (30)

where the φc(w) are N = 2 descendant states (so, in particular, in the NS sector the sum
over n runs over positive half integers). The fusion rules a priori are

[φa] × [φb] ∼
∑
c∈P

N c
ab [φc].

We can view the OPE as a short-range expansion for fields inside a compatible system
of n-point functions. Then J0 invariance of the n-point functions constrains the form of
the OPE in Eq. (30). It implies that the U (1) charges of all the fields φ

(n)
c (w) must be

equal. This allows us to refine the fusion rules. Descendants of φc(w) are of the form

(L−n1 . . . L−nα J−m1 . . . J−mβ G+−l1 . . . G+−lγ G−
−k1

. . . G−
kδ

φc)(w),

which has U (1) charge Qc + 1
2 (γ − δ), where Qc is the U (1) charge of φc(w). We split

the superconformal family [φc] into two subfamilies: [c, +] containing those descendants
with γ − δ even and [c,−] containing those descendants with γ − δ odd. We can then
capture the interactions of the different even and odd superconformal ‘half-families’ in
the super fusion rules

[a, εa] × [b, εb] ∼
∑

(c,εc)∈P×{±}
N (c,εc)

(a,εa)(b,εb)[c, εc].

We now specialise to the case of the N = 2 minimal models. Recall that the super-
primary fields of the N = 2 minimal models are labelled by those (a, c) ∈ Qk =
{0, . . . , k} × Z2k that satisfy |c − [a + c]| ≤ a. According to the discussion in Sect. 2.2,
fields in [(a, c), +] with |c−[a +c]| ≤ a correspond under the state-field correspondence
precisely to states counted by the character χac, and fields in [(a, c),−] to states counted
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by χk−a,c+k . We will henceforth use the notation [(a, c)] with (a, c) ∈ Qk to label the
even and odd superconformal families for the N = 2 minimal models.

The integers N a′′c′′
ac;a′c′ calculated in Lemma 1 are the natural candidates for the super

fusion rules. This result is confirmed by [53,54] in the NS×NS and R×R sectors, both
through the Coulomb gas formalism and through the explicit construction of the unitary
N = 2 minimal models via the parafermion-boson construction [58]. Furthermore, in
Sect. 3.3.1, we perform a non-trivial consistency check that all the possible modular
invariants in Gannon’s list are consistent with these fusion rules.

We can also read off the usual fusion between N = 2 primary fields by simply for-
getting the distinction between [ac] and [k − a, c + k]. Then the fusion rules for the
primary fields read

N̂αγ

ac;a′c′ = Nαγ

ac;a′c′ + N k−α,γ +k
ac;a′c′

=
(

N ŝu(2)k

)α

aa′

(
N û(1)k

)γ

cc′ +
(

N ŝu(2)k

)k−α

aa′

(
N û(1)k

)γ +k

cc′ .

It is precisely this quantity that Wakimoto calculates (using a Verlinde formula) in [68],
and this agrees with the result of Adamovic [1], who derives the fusion rules in the
NS×NS sector from the vertex operator point of view. The author is not aware of cor-
responding vertex algebra results for the NS×R, R×NS and R×R sectors.

In summary, the evidence presented in this section supports the following conjecture:

Conjecture 1. The fusion rules for the N = 2 minimal models are given by

Nαγ

ac; a′c′ =
∑

(d f )∈Qk

Sac;d f Sa′c′;d f S∗
αγ ;d f

S00;d f

=

⎧⎪⎨
⎪⎩

(
N ŝu(2)k

)α

aa′

(
N û(1)k

)γ

cc′ , if [a + c][a′ + c′] = 0
(

N ŝu(2)k

)k−α

aa′

(
N û(1)k

)γ +k

cc′ , if [a + c][a′ + c′] = 1

⎫⎪⎬
⎪⎭

for (ac), (a′c′), (αγ ) ∈ Qk,

where we label fields in the superconformal family of the super-primary φac(z) with
the same U (1) charge as φac(z) by [ac], and fields whose U (1) charge differs by a half
integer by [k − a, c + k] for |c − [a + c]| ≤ a.

If we simply wish to label fields in the same superconformal family as φac(z) by [ac]
then the fusion rules are

N̂αγ

ac;a′c′ = Nαγ

ac;a′c′ + N k−α,γ +k
ac;a′c′

=
(

N ŝu(2)k

)α

aa′

(
N û(1)k

)γ

cc′ +
(

N ŝu(2)k

)k−α

aa′

(
N û(1)k

)γ +k

cc′

for (ac), (a′c′), (αγ ) ∈ {(ln) ∈ Qk | |n − [l + n]| ≤ l}.

3.2.2. Simple currents of the minimal models. From the explicit formula for the fusion
rules above one can read off that the simple currents of the minimal models at level k
are J = {0, k} × Z2k . Each current acts naturally on the set of labels Qk of the N = 2
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minimal models: j maps (a, c) to the label of the field which appears in the OPE of φj

and φac. Thus, writing J for the ŝu(2)k current J : a 	→ k − a, we have, for integer l,

(J l0, d) · (a, c) = (J l+(lk+d)(a+c)a, c + d + (lk + d)(a + c)k).

The action of the currents on Qk defines an associative, commutative binary operation
× on the set of currents by

(J l1 0, d1) × (J l2 0, d2) = (J l1+l2+(l1k+d1)(l2k+d2)0,

d1 + d2 + (l1k + d1)(l2k + d2)k). (31)

It is easy to check that (0, 0) is an identity element and that

(J l0, d)−1 = (J l+lk+d0,−d + (lk + d)k).

So the set of simple currents at level k form a commutative group isomorphic to

J ∼=
{

Z4k if k is odd
Z2 × Z2k if k is even.

The simple currents are of great use because the S-matrix behaves well under the action
of the currents on the weights. In fact

Sj·(ac); a′c′ = exp(2π i Qj(a′, c′))Sac; a′c′, (32)

where Q(J l 0,d)(a
′, c′) = a′l

2 + c′d
2k

− [kl+d][a′+c′]
4 , and we have written [b] ∈ {0, 1} for

the value of b modulo 2, as before. Qj is called the monodromy charge of the field φac
with respect to the current j. The monodromy charges satisfy

Qj(a, c) ≡ hj + hac − hj·(ac) mod Z,

so Qj(a, c) is also the monodromy of φac with φj, as expected [62].
Note that in particular, (32) applied to the simple current (J0, k) gives

SJa,c+k; a′c′ = (−1)a′+c′
Sac; a′c′ . (33)

3.2.3. Simple current invariants. It was observed in [47] that in all then-known cases,
almost all the rational CFTs that can be constructed are the so-called simple current
invariants [32], leaving at worst a handful of “exceptional” models not of simple cur-
rent type. By simple current invariant we mean a CFT with partition function Z =∑

l,l ′ Ml;l ′χlχ
∗
l ′ , where χl are the characters of the representations of the W-algebra

such that

Ml;l ′ �= 0 ⇒ l ′ = j · l for some j ∈ J , (34)

where J is the set of simple currents of the CFT. This is a strong assumption indeed -
see Sect. 3 of [26] for a number of immediate consequences.

If we are interested in simple current invariants, then we are only concerned with
those simple currents that can be featured in Eq. (34) for some modular invariant par-
tition function. T -invariance implies that we only need retain those currents whose
conformal weight multiplied by their order is an integer. To see this, let j be a current
of order n and suppose there exists an l such that Ml; j·l �= 0. Then by T -invariance
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hl ≡ hjl mod 1, so nhj ≡ nQj(l) = Qjn (l) = Qid(l) = 0 mod 1. Such currents
form the effective centre, C [47]. In the case of the N = 2 minimal models:

Ck =

⎧
⎪⎪⎨
⎪⎪⎩

{(J l0, d) | l + d ≡ 0 mod 2} ∼= Z2k if k is odd,

{0, k} × {2d | d ∈ Z} ∼= Z2 × Zk if 4|k,

{0, k} × Z2k
∼= Z2 × Z2k if 4|k,

which are groups under the group law inherited from (31).

3.3. Some necessary conditions. At this point, we will prove two consistency checks
of the minimal models, one pertaining to the fusion rules and one to the locality of the
theory.

3.3.1. Fusion rules. In Sect. 3.2.1 we derived the chiral fusion rules of the minimal
models. The fusion rules enforce harsh restrictions on the OPE of a SCFT, so if a modu-
lar invariant M really corresponds to the partition function of a minimal model, it must
pass a consistency test imposed by the fusion rules. This consistency test was performed
in the case of N = 0 minimal models by Gepner [33].

Consider a possible theory with partition function corresponding to some modular
invariant M . If fields φac;a′c′ ∈ [ac] ⊗ [a′c′] and φd f ;d ′ f ′ ∈ [d f ] ⊗ [d ′ f ′] are present
then the fusion rules restrict the fusion between φac;a′c′ and φd f ;d ′ f ′ to lie in

∑
(αγ )∈Qk
(α′γ ′)∈Qk

Nαγ

ac;d f Nα′γ ′
a′c′;d ′ f ′ [αγ ] ⊗ [α′γ ′].

This expression is further constrained since only fields that show up in the partition
function can be present.19 If our theory is to be consistent, then we require that the
fusion between any two fields is non-zero. We confirm that the N = 2 minimal models
conform to this requirement in the following theorem:

Theorem 1. For any modular invariant M in the list of Gannon (see Sect. 2.4) we have

Mac;a′c′ �= 0, Md f ;d ′ f ′ �= 0 �⇒ Nαγ

ac;d f Mαγ ;α′γ ′ Nα′γ ′
a′c′;d ′ f ′ �= 0

for some (αγ ), (α′γ ′) ∈ Qk .

This proves that the fusion rules do not preclude the existence of the N = 2 minimal
models.

Proof. The fusion coefficients N were given in Lemma 1. One must work through the
list of modular invariants (11)–(23) checking the condition each time by hand. The
calculations are tedious and unenlightening, so they are not presented here. ��

19 We remind the reader that the fusion rules give only an upper bound to the number fields produced under
fusion of two fields – it can easily happen that fewer fields appear than are allowed by the fusion rules.
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3.3.2. Locality. In this section we will prove that theories corresponding to the mod-
ular invariants in Gannon’s list have the expected locality properties. In fact, locality
follows from T -invariance of the theories, and we present the arguments generally for
any SCFT.20

We saw in Eq. (8) that T -invariance of an SCFT is equivalent to the operator
e2π i(L0−L0) acting trivially on the bosonic part of the state space. Since L0 − L0 gener-
ates rotations we have φ(eiθ z) = eiθ(L0−L0)φ(z)e−iθ(L0−L0), and so all fields counted
by the partition function are single-valued.

Furthermore, writing M for the matrix of mulitplicities of a T -invariant partition
function, we see that whenever Mλ,λ′ , Mμ,μ′ and Mν,ν′ are all non-zero, we have
e2π i((hλ−hλ′ )+(hμ−hμ′ )−(hν−hν′ )) = 1. This proves that if M permits the existence of
a field φλ;λ′ in the sector (λ, λ′), φμ;μ′ in the sector (μ;μ′) and φν;ν; in the sector
(ν; ν′), and if the field φν;ν′ appears in the OPE of φλ;λ′ with φμ;μ′ then the OPE should
be single-valued.

4. Orbifold Construction of the N = 2 Unitary Minimal Models

In this section we establish the main result of this paper: the existence of a unitary
N = 2 minimal model for each possible partition function. The statement of the result is
given formally in Sect. 4.2. The proof rests upon the existence of orbifoldings between
the space-time supersymmetric A-D-E models and the less familiar models given in
Gannon’s list (see Sect. 2.4). The main step of the proof is to prove the following theorem:

Theorem 2.

– Every non-exceptional partition function of a unitary N = 2 minimal model at level
k can be obtained by orbifoldings of the diagonal partition function at level k.

– Every exceptional partition function of a unitary N = 2 minimal model with level
k = 10, 16 or 28 can be obtained by orbifoldings of the E6 ⊗ I24, E7 ⊗ I36 or E8 ⊗ I60

partition functions, respectively, where E6,7,8 are the ŝu(2)k exceptional modular

invariants, and I2k is the û(1)k diagonal invariant.

We will prove this theorem, by explicitly constructing the necessary orbifoldings, in
Sect. 4.3. We must first explain what we mean by orbifolding.

4.1. Orbifolding. We first describe the orbifolding procedure21 in the case of a rational
(bosonic) CFT. Let H be the underlying pre-Hilbert space of a CFT C and let ρ : G →
End(H) be an action of a finite group G on H such that

1. H is simultaneously diagonalisable with respect to L0, L0 and ρ(g) for every g ∈ G,
where L0, L0 are viewed as linear operators on H;

2. ρ(g) commutes with Ln and Ln for every n, where Ln, Ln are viewed as linear
operators on H.

20 I thank an anonymous referee for pointing out that my arguments apply more generally.
21 We note here that some authors (e.g. [22]) use the term ‘orbifolding’ to mean restricting the underlying

vertex operator algebra to the fixed point of a group action to arrive at a new vertex operator algebra. In this
paper, we use the notion of orbifolding found in e.g. [36], and only deal with orbifoldings that do not take us
away from the category of representations of the super Virasoro algebra, as explained below.
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In this paper we will only be interested in the simple case where ρ(g) acts by multipli-
cation by a root of unity on each irreducible representation of the extended symmetry
algebra for all g ∈ G. This will always be the case when for example the lowest weight
space is 1-dimensional. Decompose H =⊕a ∈Pl ,b ∈Pr

Ha ⊗Hb, where Pl , Pr are sets of
labels of (not necessarily distinct) irreducible representations of the symmetry algebra.
ρ(g) then acts by multiplication by the root of unity ξa,b(g) on the irreducible represen-
tation Ha ⊗ Hb. It follows that the action of G on the states of H is entirely described
by its action on the characters ρ(g)(χaχ∗

b ) = ξa,b(g)χaχ∗
b . For notational simplicity we

shall now simply write g in place of ρ(g).
We want to construct a G-invariant CFT from C, the G-orbifold of C, denoted C/G.

We will restrict our attention to an abelian group G for ease of notation, but one can
generalise to non-abelian groups with a little care (see e.g. [36]).

We begin by projecting onto the G-invariant states of C:

H
inv := P · H,

where the projector P is given by 1
|G|
∑

g∈G g·. We use a notational shorthand

g

1

:= TrH(gq L0− c̄
24 q L0− c̄

24 )

for the trace with g inserted, which makes sense because of condition 1 above. This
allows us to write the partition function of the G-invariant sector as

Z inv(τ ) = TrH(Pq L0− c̄
24 q L0− c̄

24 ) = 1

|G|
∑
g∈G

g

1

.

Unless G is trivial, Z inv(τ ) will not be modular invariant. In order to restore modular
invariance we need to add in extra G-invariant states, the so-called twisted states.

The problem of constructing the twisted states is difficult in general, but we will only
be interested in the case of the unitary N = 2 minimal models. In this case we can con-
struct the twisted sector out of known representations, using the following arguments: by
condition 2, the Ln, Ln modes commute with the G-action and so the central charge c̄ is
left invariant, and since the action of SL(2, Z) leaves c̄ invariant the twisted sector should
also be composed of irreducible representations at central charge c̄. But in the situation
of interest to us, the collection of irreducible representations are explicitly known for
fixed c̄. Thus the twisted sector can be constructed from these known representations. It
is therefore sufficient to find the partition function of the twisted sector using standard
tricks below.

We now return to the construction of the partition function of the twisted sector. For
each h ∈ G we denote by Hh the sector of states ‘twisted by h’ in the space direc-
tion; in the language of fields we make a cut from 0 to τ along the world-sheet torus
T = C/(Z ⊕ τZ) and require that a field crossing the cut is acted on by h:

φ(z + 1) = hφ(z).

Since we want to keep only G-invariant states, we project the partition function of Hh
with P:

TrHh (Pq L0− c̄
24 q L0− c̄

24 ) = 1

|G|
∑
g∈G

g

h

,
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where we have introduced the notational shorthand

g

h

:= TrHh (gq L0− c̄
24 q L0− c̄

24 ).

Then the partition function of the orbifold theory is the sum of the contributions from
each of the twisted sectors:

Zorb = 1

|G|
∑

g,h∈G

g

h

. (35)

We interpret the box g

h

as counting states whose fields live on the world-sheet torus

with a cut along each cycle, such that cycling around once in the space-direction yields
a factor of h and cycling around once in the time-direction yields a factor of g:

φ(z + 1) = hφ(z),

φ(z + τ) = gφ(z).

Then we find that the S and T -transformations act to permute the ‘boundary conditions’
in the following way:

S

⎛
⎝g

h

⎞
⎠ = h−1

g

,

T

⎛
⎝g

h

⎞
⎠ = gh

h

,

thus ensuring modular invariance of the orbifold partition function.
Actually, we have slightly greater freedom in piecing together the SL(2, Z) orbits

than we have shown in Eq. (35), since we can introduce phases between the different
orbits and still arrive at something modular invariant. The freedom we have in choosing
these phases is called discrete torsion and is classified by the second group cohomology
H2(G, U (1)) [65].22 In this paper we will need to consider only the cases G = Zk
(for which H2(Zk, U (1)) ∼= Z1 contains only a single class) and G = Z2 × Z2k (with
discrete torsion H(Z2 × Z2k, U (1)) ∼= Z2 consisting of two distinct classes).

This completes the construction for bosonic CFTs. In order to extend the prescription
to the SCFT case, we just replace the space of states H with the bosonic states, and add
the z-dependence (via y J0 ) into the traces in the obvious manner.

We note here that although modular invariance is guaranteed, it may well be that the
resulting partition function is not valid, in the sense that it may not have non-negative
integer coefficients when viewed as a state-counting formal power series in q, q , or in
the sense that it may not correspond to a consistent full CFT. It will be evident that the
orbifolds in this section pass the first of these tests. That they do not fail the second test
is the content of the following assumption:

Assumption 1. Orbifolds of a physical theory are again physical.

22 As Vafa points out in [65], the relative phase between orbits in a 1-loop modular invariant is actually
given by a function ε(g, h) := w(g, h)w(h, g)−1 for cocycles w ∈ H2(G, C

∗).
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By this we mean that an orbifolding of a fully-fledged SCFT that satisfies the two condi-
tions given at the beginning of this section, will give rise to another fully-fledged SCFT.
Up to now, the orbifoldings we have constructed have been given entirely in terms of the
partition function. In order to have a chance of getting an orbifold SCFT we must impose
the level-matching conditions [65,15]; that is, we must check that the spin h − h of the
fields in the orbifold theory remain at worst half-integral and also that we do not destroy
semi-locality of the fields. We will explicitly see in Sect. 4.3 that in all the orbifolds we
consider, we obtain another partition function from Gannon’s list. But we know from
Eq. (8) and Sect. 3.3.2 that all states counted by the partition functions have integral
spin and are mutually local. Since the spins of states in the full Hilbert space differ at
worst by a half-integer from spins of these states, we see that all states have integral or
half-integral spin and are at worst mutually semi-local.

4.2. Existence of the N = 2 minimal models. We require one final assumption before
we can state and prove the existence of the N = 2 minimal models corresponding to
each of Gannon’s partition functions.

Assumption 2. The space-time supersymmetric A,D and E models are fully-fledged,
physical SCFTs.

By this we mean we adopt the (widely believed) assumption that the A,D and E models
are genuine SCFTs that admit a consistent system of n-point correlators on Riemann sur-
faces of all genera. This is at least partially known to be true; for example, the genus zero
OPE coefficients of the A model were calculated in [54] using the relation between the
parafermion fields with those of the su(2) WZW models [74], and the OPE coefficients
of the exceptional models should in principal be calculable using the free field construc-
tion of e.g. [20]. Furthermore, it was shown in [51,52,63] that a (bosonic) rational theory
admits a consistent system of n-point correlators on Riemann surfaces of all genera if it
admits a consistent system of 4-point correlators on the sphere and 1-point correlators
on the torus.

Alternatively, in the framework of topological quantum field theories and modular
tensor categories, it was shown in [23] that in the categories of modules over a vertex
operator algebra, the ‘Cardy case’ is always realised. For the N = 2 minimal models, this
is nothing other than the mirror partner of the A-model, which is physically equivalent
to the A-model itself.

Theorem 3. Given Assumptions 1 and 2, there corresponds to each of the candidate
partition functions given in Gannon’s list (see Sect. 2.4) a fully-fledged superconformal
field theory.

Proof. Theorem 2 shows that every partition function is obtained from one of a hand-
ful of possible partition functions by a chain of orbifoldings by cyclic groups. Since
orbifoldings by solvable groups can be inverted (see e.g. [36]) it follows that we can
obtain by a chain of orbifoldings any given partition function from the A model (if it is
a simple current invariant), or from the E6, E7, E8 model (if it is an exceptional invariant
with k = 10, 16, 28 respectively).

The existence of the N = 2 minimal models then follows immediately from Assump-
tions 1 and 2. ��
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4.3. Proof of Theorem 2. The proof is constructive: given any modular invariant M at
level k in Gannon’s list, we construct a chain of orbifoldings (by cyclic groups) mapping
M to either the A or the E space-time supersymmetric minimal model.

The proof will be broken down into several sections. In Sects. 4.3.1 and 4.3.2 we will
introduce some simple Z2 orbifolds which realise certain global symmetries discussed
briefly in Sect. 4.3.3. In Sect. 4.3.4 we generalise a well-known Z2 orbifold from the
ŝu(2)k models to the minimal models, and observe that we can construct an orbifolding
between the minimal “families” listed in Sect. 2.4.

In Sects. 4.3.5–4.3.7 we state and prove a proposition that every modular invariant
M can be mapped into either M̃0, M̃4,2, M̃2,0, Ẽ10

1 , Ẽ16
2 or Ẽ28 depending on the level

k and whether M is exceptional or not.
We then attempt to control the parameter v – we find an orbifolding to map any given

modular invariant in one of the above families to the modular invariant with the lowest
possible value of v. This is Sects. 4.3.9 to 4.3.12.

Lastly, in Sects. 4.3.13–4.3.17 we try to control the parameter z. We summarise these
results in Sect. 4.3.18, finally completing the proof.

In order to cut out pages of technical proofs, we will in general just write down the
general ‘box’ g

h

for g, h ∈ G for an orbifolding, observe that it gives the expected

result when h = 0, and state the resulting orbifold partition function. The behaviour
under modular transformations will be shown to be correct only for the first simple
examples, since the proof is similar in the other cases. The reader who wants more
detailed proofs should consult [38].

4.3.1. The orbifoldings O1
L ,O1

R. Let Z ≡ Z(τ, z) be a modular invariant from the list
in Sect. 2.4. We write

Z = 1

1

=
∑

(ac)∈Qk
(a′c′)∈Qk

Mac; a′c′χacχ
∗
a′c′,

and let Z2 = 〈g〉 act on the states via

g · χacχ
∗
a′c′ = (−1)a+cχacχ

∗
a′c′ . (36)

Since the parity of a + c determines whether the states counted by χac are in the NS
or R sectors, we see that this action leaves the NS sector invariant. The general box for
m, n ∈ {0, 1} is given by

gm

gn

=
∑

(ac)∈Qk
(a′c′)∈Qk

Mjn(ac); a′c′(−1)(a+c+n)mχacχ
∗
a′c′,

where from now on j(ac) = (k −a, c + k). This is clearly correct when n = 0, and since
there is no discrete torsion, it remains to check that the general box transforms correctly
under the S- and T -transformations.
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For the T -transformation we find

T · gm

gn

=
∑

(ac)∈Qk
(a′c′)∈Qk

Mjn(ac); a′c′(−1)(a+c+n)me2π i(ha,c−ha′,c′ )χacχ
∗
a′c′

=
∑

(ac)∈Qk
(a′c′)∈Qk

Mjn(ac); a′c′(−1)(a+c+n)m

×(−1)(a+c+1)ne2π i(hjn (a,c)−ha′,c′ )χacχ
∗
a′c′

=
∑

(ac)∈Qk
(a′c′)∈Qk

Mjn(ac); a′c′(−1)(a+c+n)(m+n)χacχ
∗
a′c′

= gm+n

gn

,

where we used Eq. (6), then Eq. (3) and then Eq. (8).
For the S-matrix, we can simplify the calculation enormously if we use our knowledge

of its behaviour under the action of simple currents (see Sect. 3.2). We find that

S · gm

gn

=
∑

(ac)∈Qk
(a′c′)∈Qk

∑
(rs)∈Qk
(tu)∈Qk

Srs; ac Mjn(ac); a′c′ S∗
a′c′; tu(−1)(a+c+n)mχrsχ

∗
tu

=
∑

(ac)∈Qk
(a′c′)∈Qk

∑
(rs)∈Qk
(tu)∈Qk

Srs; jn(ac)Mac; a′c′ S∗
a′c′; tu(−1)(a+c+n)mχrsχ

∗
tu

=
∑

(ac)∈Qk
(a′c′)∈Qk

∑
(rs)∈Qk
(tu)∈Qk

Srs; ac Mac; a′c′ S∗
a′c′; tu(−1)(a+c+n)m+(r+s)nχrsχ

∗
tu

=
∑

(ac)∈Qk
(a′c′)∈Qk

∑
(rs)∈Qk
(tu)∈Qk

Sjm (rs); ac Mac; a′c′ S∗
a′c′; tu(−1)(r+s+m)nχrsχ

∗
tu

=
∑

(rs)∈Qk
(tu)∈Qk

Mjm (rs); tu(−1)(r+s+m)nχrsχ
∗
tu

= g−n

gm

,

where in the third and fourth lines we used the nice behaviour of the S-matrix under
the action of simple current j = (J0, k) given in Eq. (33), and in the fifth line we used
Eq. (7). Thus the boxes transform correctly under the action of SL(2, Z). Summing over
all four boxes and multiplying by 1

2 produces

Zorb =
∑

(ac)∈Qk
(a′c′)∈Qk
a+c even

Mac; a′c′χacχ
∗
a′c′ +

∑
(ac)∈Qk
(a′c′)∈Qk
a+c odd

Mj(ac); a′c′χacχ
∗
a′c′ .
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This orbifolding defines an involution on the set of modular invariants. We will refer
to this orbifolding as O1

L (where the L stands for left). Since S and T are symmetric,
it is clear that we could equally well have let Z2 act on the right-hand representations,
g · χacχ

∗
a′c′ = (−1)a′+c′

χacχ
∗
a′c′ . The result would be

Zorb =
∑

(ac)∈Qk
(a′c′)∈Qk
a′+c′even

Mac; a′c′χacχ
∗
a′c′ +

∑
(ac)∈Qk
(a′c′)∈Qk
a′+c′odd

Mac; j(a′c′)χacχ
∗
a′c′ .

We will refer to this orbifolding as O1
R .

The reason we have done this relatively simple example in such great detail is that
the procedure for checking SL(2, Z)-invariance for all other orbifoldings in this paper
is very similar: one directly checks T -invariance with the help of Eq. (8) and then uses
the simple current action on the S-matrix to check S-invariance. For an orbifolding with
a cyclic group G, there is no discrete torsion, so the unique orbifold partition function
is given by 1

|G| multiplied by the sum of the boxes.

4.3.2. The orbifoldings O2
L ,O2

R. Again we start with a minimal model with partition
function

Z = 1

1

=
∑

(ac)∈Qk
(a′c′)∈Qk

Mac; a′c′χacχ
∗
a′c′

and define a group action by g · χacχ
∗
a′c′ = e

2π ic
k χacχ

∗
a′c′ . This defines a Zk -action. We

claim that the general box for m, n ∈ {0, . . . , k − 1} is given by

gm

gn

=
∑

(ac)∈Qk
(a′c′)∈Qk

Mac; a′c′e
2π im(c−n)

k χa,c−2nχ∗
a′c′ .

One easily checks that this is correct when n = 0. One checks that it transforms correctly
under the S and T transformations just as in the previous case:23 for the T transformation,
use Eqs. (6), (3) and then (8) to show that

T · gm

gn

= gm+n

gn

,

and for the S-transformation use Eqs. (32) and (7) to show that

S · gm

gn

= g−n

gm

.

23 The step-by-step calculations for this and some other orbifolds can be found in the author’s thesis [38].
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Thus the boxes span a representation of SL(2, Z). To find the resulting orbifold we
calculate

Zorb = 1

k

∑

n,m=0,...,k−1

gm

gn

=
∑

(ac)∈Qk
(a′c′)∈Qk

Ma,−c; a′c′χacχ
∗
a′c′ .

This orbifolding is well-defined on all minimal modular invariants. We will refer to it by
O2

L . The group Zk could equally as well have acted upon the right-hand representations.
In that case we would obtain

Zorb =
∑

(ac)∈Qk
(a′c′)∈Qk

Mac; a′,−c′χacχ
∗
a′c′ .

We will refer to this orbifolding as O2
R . Clearly these orbifoldings give the same result

if the initial modular invariant is symmetric.

4.3.3. Symmetries generated by O1
L ,R and O2

L ,R. Note that these orbifoldings are self-

inverse, they are mutually commuting, and the effect of concatenating O1
LO2

L or O1
RO2

R
is to perform the mirror symmetry transformation on the left- or right-chiral half of the
theory, respectively:

O1
LO2

L : Mac; a′c′ 	→ Mja+c(a,−c); a′c′,

O1
RO2

R : Mac; a′c′ 	→ Mac; ja′+c′ (a′,−c′),

where left- or right-handed mirror symmetry is defined by performing charge conjuga-
tion on the left- or right-handed representations, respectively. In terms of the partition
functions, it is realised by multiplication of the modular invariant M by the permutation
matrix S2 on the left or right respectively. Using Eq. (3), one checks that making the
transformation (a, c) → ja+c(a,−c) has the effect of sending

(hac, Qac) → (hac,−Qac) mod 1

as expected.
Performing charge conjugation on both sides simultaneously amounts to performing

all 4 orbifoldings O1
LO2

LO1
RO2

R in succession. Since S4 = Id and modular invariants
commute with S, this has no overall effect on the partition function. As discussed in
Sect. 2.5.1, we consider two charge conjugate models (i.e. related by simultaneous
charge conjugation on both chiral halves of the theory) to be equivalent; indeed they
have the same partition function. We will however not consider the mirror symmetry
pairs to be equivalent in this paper, since they generally have distinct partition functions.

The results of applying O1
L ,R and O2

L ,R to the minimal partition functions listed in

Sect. 2.4 are given in Table 1.24

24 The parameter z is defined modulo some number α in each case. −z is to be understood as −z mod α.
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Table 1. Action of O1
L ,R , O2

L ,R on minimal partition functions

Id O1
L O1

R O2
L O2

R

k odd M̃0 (v, z, n) (v, z, n + 1) (v, z, n + 1) (v, −z, n) (v, −z, n)

4 divides k M̃2,0 (v, z, n) (v, z, n + 1) (v, z, n + 1) (v, −z, n) (v, −z, n)

M̃2,1 (v, z, n) (v, z, n + 1) (v, z, n + 1) (v, −z, n + 1) (v, −z, n + 1)

M̃2,2 (v, z, n, m) (v, z, n + 1, m + 1) (v, z, n + 1, m + 1) (v, −z, n, m) (v, −z, n, m)

4 divides k M̃4,0 (v, z, n, m) (v, z, n, m + 1) (v, z, n + 1, m) (v, −z, n + 1, m) (v, −z, n, m + 1)

M̃4,1 (v, z, x, y) (v, z, x + 2, y) (v, z, x, y + 2) (v, −z, x + 2, y) (v, −z, x, y + 2)

M̃4,2 (v, z, x) (v, z, x + 2) (v, z, x + 2) (v, −z, x + 2) (v, −z, x + 2)

M̃4,3 (v, z, n) (v, z, n + 1) (v, z, n + 1) (v, −z, n) (v, −z, n)

k = 10 Ẽ10
1 (6, z) (6, z) (6, z) (6, −z) (6,−z)

Ẽ10
2 (12, z, 0, m) (12, z, 0, m + 1) (12, z, 0, m + 1) (12, −z, 0, m) (12, −z, 0, m)

k = 16 Ẽ16
1 (v, z, x, y) (v, z, x + 2, y) (v, z, x, y + 2) (v, −z, x + 2, y) (v, −z, x, y + 2)

Ẽ16
2 (v, z, x) (v, z, x + 2) (v, z, x + 2) (v, −z, x + 2) (v, −z, x + 2)

k = 28 Ẽ28 (15, z, x) (15, z, x + 2) (15, z, x + 2) (15, −z, x + 2) (15,−z, x + 2)

4.3.4. The generalised Ak ↔ Dk orbifolding. The family M̃2,2 exists for any k with
4|k. Given such a k, we can always choose v = k and z = 1. Then, from Eq. (14), we
obtain a modular invariant M with Mac; a′c′ = δ(a′ = J ana)δ(c′ = c). Thus

M =
{

Ak ⊗ I2k if n = 0
Dk ⊗ I2k if n = 1,

where the A and D are the partition functions of the ŝu(2)k models of the same name
encountered in [7] and I2k is the diagonal û(1)k invariant. Similarly, when 4 divides k,

the modular invariant M̃4,3 with parameters v = k
2 , z = 1 and n = 0 yields Ak ⊗ I2k

and the modular invariant M̃4,2 with v = k
2 , z = 1 and x = 1 yields Dk ⊗ I2k , where

again the A and D are the partition functions of the ŝu(2)k classification. Inspired by
the well-known Z2 orbifolding between the A- and D-models (see e.g. [11]), we define
a Z2 action on the states of an arbitrary modular invariant with even k by

g · χacχ
∗
a′c′ := (−1)aχacχ

∗
a′c′ .

Then we find

gm

gn

=
∑

(ac)∈Qk
(a′c′)∈Qk

Mac′; a′c′(−1)(a+ nk
2 )mχJ na,cχ

∗
a′c′ .

Thus

Z inv =
∑

(ac)∈Qk
a≡0 mod 2

∑
(a′c′)∈Qk

Mac; a′c′χacχ
∗
a′c′,

Z twist =
∑

(ac)∈Qk
a≡ k

2 mod 2

∑
(a′c′)∈Qk

MJa,c; a′c′χacχ
∗
a′c′,
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Table 2. Action of O3 on minimal partition functions with 4|k

M̃2,0 (v, z, n) ↔ (v, z, n + 1)

M̃2,1 (v, z, n) ↔ (v, z, n + 1)

M̃2,2 (v, z, n, m) ↔ (v, z, n + 1, m)

Ẽ10
1 (6, z) ↔ (6, z)

Ẽ10
2 (12, z, 0, m) ↔ (12, z, 0, m)

Table 3. Action of O3 on minimal partition functions with 4|k

M̃4,0(v, z, n, m) → M̃4,2(v, z, 2m + 2n + 1)

M̃4,1(v, z, x, y) → M̃4,1(v, z, x, y)

M̃4,2(v, z, x) → M̃4,2(v, z, x)

M̃4,3(v, z, n) → M̃4,2(v, z, 2n + z)

Ẽ16
1 (v, z, x, y) → Ẽ16

1 (v, z, x, y)

Ẽ16
2 (v, z, x) → Ẽ16

2 (v, z, x)

Ẽ28(15, z, x) → Ẽ28(15, z, x)

Zorb =

⎧
⎪⎨
⎪⎩

∑
(ac)∈Qk
(a′c′)∈Qk

MJ aa,c′; a′c′χacχ
∗
a′c′, if 4|k;

∑
(ac)∈Qk
(a′c′)∈Qk

a even

(Mac; a′c′ + MJa,c; a′c′)χacχ
∗
a′c′ , if 4|k.

The action of this orbifolding, which we denote O3, on the minimal partition functions
with 4|k is given by Table 2. For M̃2,0 and M̃2,1 the action coincides with that of O1

(as we would expect since if M̃ac; a′c′ �= 0, then c is even for these families). For M̃2,2

we have obtained an additional Z2 symmetry, which along with O1 and O2 from the
previous section allows us to construct an orbifolding between any two M̃2,2 modular
invariants with v1 = v2 and z1 = ±z2. As one might expect, for the special case v = k
and z = 1 this orbifolding manifests itself as Ak ⊗ I2k ↔ Dk ⊗ I2k . The exceptional
modular invariants Ẽ10

1 , Ẽ10
2 are left invariant.

The effect of O3 on the minimal models with 4|k is given in Table 3. In particular,

M̃4,3( k
2 , 1, 0) = Ak is mapped to M̃4,2( k

2 , 1, 1) = Dk as we might expect. The modular
invariants in the families M̃4,1 and M̃4,2 and the exceptionals are left invariant.25 We note
that modular invariants in M̃4,0 and M̃4,3 are sent to M̃4,2 under this orbifolding. This
demonstrates that orbifoldings can map between, as well as within, families of minimal
model partition functions. In the next section we will show that in fact all the non-excep-
tional families at a given level k can be mapped into one another via orbifoldings, and
that the same holds true for the exceptional families.

4.3.5. Orbifoldings between minimal families. We prove the following proposition:

Proposition 1. 1. Let 4|k. Then all simple current invariants at level k can be mapped
by an orbifolding to the family M̃4,2.

25 Actually the formula given above for the Z2 orbifolding has to be divided through by 2 in order to get
M̃00; 00 = 1. This factor of 2 appears because Z2 acts trivially on all the states so Z = Z inv = Z twist and so
Zorb = 2Z .
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2. Let 4|k. Then all simple current invariants at level k can be mapped by an orbifolding
to the family M̃2,0.

3. Let k = 10. Then all exceptional invariants at level k can be mapped by an orbifold-
ing to the family Ẽ10

1 .
4. Let k = 16. Then all exceptional invariants at level k can be mapped by an orbifold-

ing to the family Ẽ16
2 .

(When k is odd or k = 28 there is only one family.)

We construct the necessary orbifoldings to prove statements 1-4 in the following two
sections.

4.3.6. Orbifoldings between minimal families: 4|k. In Sect. 4.3.4 we saw that the gen-
eralised A ↔ D orbifolding O3 mapped members of the family M̃4,0 and M̃4,3 into the
family M̃4,2. We will now show that M̃4,2 contains an orbifold of every member of the
family M̃4,1, and that Ẽ16

2 contains an orbifold of every member of Ẽ16
1 . This will prove

parts 1 and 4.
Fix some k ∈ 4Z. We want to construct an orbifolding which in particular sends M̃4,1

to M̃4,2. The latter only has left-right couplings in the NS⊗NS and R⊗R sectors, but
the former has couplings in all 4 possible sectors NS⊗NS, NS⊗R, R⊗NS and R⊗R.
In order to preserve the NS⊗NS and R⊗R sectors and remove the NS⊗R and R⊗NS
sectors we define a Z2 action by g ·χacχ

∗
a′c′ = (−1)a+c+a′+c′

χacχ
∗
a′c′ . For m, n ∈ {0, 1}

we find

gm

gn

=
∑

(ac)∈Qk
(a′c′)∈Qk

(−1)(a+c+a′+c′)m MJ na,c+nk; J na′,c′+nkχacχ
∗
a′c′ .

This transforms correctly under the S- and T -transformations, resulting in an orbifold

Zorb =
∑

a+c+a′+c′≡0 mod 2

(Mac; a′c′ + MJa,c+k; Ja′,c′+k)χacχ
∗
a′c′ .

We call this orbifolding O4.
This orbifolding acts trivially on those modular invariants which only have NS⊗NS

and R⊗R sectors: M̃4,2, M̃4,3, Ẽ16
2 and Ẽ28. The action of O4 on the other modular

invariants that occur when 4|k is given in Table 4.26

4.3.7. Orbifoldings between minimal families: 4|k. In this section we shall show that
all non-exceptional invariants with 4|k can be sent into M̃2,0 by an orbifolding, and
all exceptional invariants with k = 10 can be sent into Ẽ10

1 , proving Parts 2 and 3 of
Proposition 1.

First we shall construct an orbifolding O5 from M̃2,1 to M̃2,0. Fix a k with 4|k and fix

(v, z, n) satisfying k
2v

∈ Z, 2v2

k
∈ 2Z + 1 and k(z2−1)

2v2 ∈ Z, where z ∈ {1, . . . , 2v2

k
} and

n ∈ {0, 1}. Then from Sect. 2.4 there is a minimal partition function M̃2,1(v, z, n). We
need to define a group action on the states of M ≡ M̃2,1(v, z, n). Note that Mad; a′d ′ �=

26 Note that in the RHS of the second and fifth lines the parameter 2z is to be understood modulo v2

2k
. Recall

that the z parameter in each of the minimal partition functions given in Sect. 2.4 is defined modulo some
integer.
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Table 4. Action of O4 on minimal partition functions with 4|k

M̃4,0(v, z, n, m) → M̃4,2(v, z, 2m + 2n + 1)

M̃4,1(v, z, x, y) → M̃4,2( v
2 , 2z, y − x + 1)

M̃4,2(v, z, x) → M̃4,2(v, z, x)

M̃4,3(v, z, n) → M̃4,3(v, z, 2n + z)

Ẽ16
1 (v, z, x, y) → Ẽ16

2 ( v
2 , 2z, y − x + 1)

Ẽ16
2 (v, z, x) → Ẽ16

2 (v, z, x)

Ẽ28(15, z, x) → Ẽ28(15, z, x)

0 ⇒ d = ck
2v

, d ′ = c′k
2v

and c + c′ ≡ 0 mod 2; thus there is a Z2 action on the states

given by g ·χ
a, ck

2v

χ∗
a, c′k

2v

= (−1)
c+c′

2 χ
a, ck

2v

χ∗
a, c′k

2v

and which for n, m ∈ {0, 1} gives rise to

gm

gn

=
∑

(ac)∈Qk
(a′c′)∈Qk

Mac; a′c′ e
2π imv

k

(
c+c′

2

)
χa,c−nvχ

∗
a,c′+nv,

whence we conclude that

Zorb =
∑

(ac)∈Qk
(a′c′)∈Qk

(
Mac; a′c′ + Ma,c+v; a′,c−v

)
δ(c + c′ ≡ 0 mod

2k

v
) χacχ

∗
a′c′ .

Inserting M = M2,1(v, z, n) from Eq. (12) one finds Zorb = M̃2,0(v′, z′, n), where

v′ = 2v, z′ =
(

2v2

k

)2
(3 − z), where we understand z′ to be defined modulo 8v2

k
. We

have therefore demonstrated that every model with partition function in M̃2,1 gives rise
to a Z2 orbifold in M̃2,0.

Constructing an orbifolding O6 from M̃2,2 to M̃2,0 is similar: fixing some k such
that 4|k, we define a Z2 action by g · χacχ

∗
a′c′ = (−1)cχacχ

∗
a′c′ . We claim that for

m, n ∈ {0, 1},
gm

gn

=
∑

(ac)∈Qk
(a′c′)∈Qk

(−1)cm Ma,c+nk; a′c′χacχ
∗
a′c′ .

This is evidently correct when n = 0 and it is not hard to check that it transforms
correctly under the S and T transformations. It yields

Zorb =
∑

(ac)∈Qk
(a′c′)∈Qk

[
Mac; a′c′ + Ma,c+k; a′c′

]
δ(c ≡ 0 mod 2)χacχ

∗
a′c′ . (37)

Choosing some v, z such that k
v

is odd and v2

k
,

k(z2−1)

4v2 ∈ Z, we can apply O6 to the

modular invariant M ≡ M̃2,2(v, z, n, m). Using Eqs. (14) and (12) we find

Zorb = M̃2,0(v′, z, n),

where we have set 2v′ = v and z is now understood to be defined modulo 2v′2
k

.
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It remains to show that the family Ẽ10
2 can be mapped via an orbifolding into the fam-

ily Ẽ10
1 . We simply apply the orbifolding O6 from the previous section to the exceptional

invariant Ẽ10
2 (12, v, 0, m): substituting (20) into (37) we obtain

Zorb = Ẽ10
1 (6, z).

This completes the proof of Proposition 1. ��

4.3.8. Orbifoldings within minimal families – a useful formula. In order to com-
plete the proof of Theorem 2, we must find orbifoldings within the families
M̃0, M̃4,2, M̃2,0, Ẽ10

1 , Ẽ16
2 and Ẽ28 which map all members down to a specific par-

tition function. Since we already have control of the Z2 parameters (labelled by n or x)
via the orbifoldings O1 and O2, in this section we concentrate on trying to control the
parameters v and z.

We begin by considering a general orbifolding by a group Zβ , acting on the u(1)

label c on the left-hand side.27 Fix a modular invariant M in one of the above families
and take the largest integer α such that

Mac; a′c′ �= 0 ⇒ c, c′ ∈ αZ.

For these families, k
α2 ∈ Z. We will define a Zβ -orbifolding O7 for some integer β

satisfying β| k
α2 . Let Zβ = 〈g〉 act on the states of M via

g · χa,αcχ
∗
a′,αc′ = e

2π ic
β χa,αcχ

∗
a′,αc′ .

We claim that the result is

gm

gn

=
∑

a,a′=0,...,k
c,c′∈Z 2k

α

Ma,αc; a′,αc′ e
2π im

β

(
c− nk

α2β

)
χ

a,α
(

c− 2nk
α2β

)χ∗
a′,αc′ .

It is easy to see this is correct when n = 0. One then checks that it behaves correctly
under the action of the S- and T -transformations. The line of attack is the usual one: for
the T -transformation we use the integer-spin condition (Eq. (8)) to remove the otherwise
unwieldy factor of e2π i(hac−ha′c′ ); and for the S-matrix we use the nice behaviour of the
simple current action (Eq. (32)) to juggle unwanted factors on and off the S-matrices
until one has something of the form SM S†, which can be replaced with M , just as we
did in Sect. 4.3.1.28

The partition function of the orbifolding O7 is then given by the sum over the twisted
sectors:

Zorb =
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
s∈Z 2k

αβ

c′∈Z 2k
α

M
a,α
(

sβ+ Nk
α2β

)
; a′,αc′χa,α

(
sβ− Nk

α2β

)χ∗
a′,αc′ . (38)

27 Note that the remaining families are all symmetric, so it doesn’t matter whether we act on the left- or
right-hand sides.

28 Fans of dense technical details will be pleased to learn that all the calculations alluded to in this section
are written out explicitly in [38].
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If it happens that k
α2β2 ∈ Z, then the above simplifies to

Zorb =
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
c∈Z 2k

αβ

c′∈Z 2k
α

M
a,αβ

(
c+ 2Nk

α2β2

)
; a′,αc′χa,αβcχ

∗
a′,αc′ . (39)

4.3.9. Controlling the parameter v. The aim of this section is to find an orbifolding
which sends the parameter v to the smallest possible value it can take:

Proposition 2. Fix k and let M be a level k modular invariant in one of the families
M̃0, M̃4,2, M̃2,0, Ẽ10

1 , Ẽ16
2 or Ẽ28 with parameters (v, z, ∗), where ∗ is either n or x.

Then we can map M via an orbifolding to a minimal partition function in the same
family with parameters (v′, z, ∗), where v′ is the smallest possible value of v allowed.

In the exceptional cases Ẽ10
1 and Ẽ28 there is only one allowed value of v, so the prop-

osition is trivial in these cases; they are included for completeness.
We shall prove the claim using the orbifoldings constructed in Sect. 4.3.8. The idea

is to map by the orbifolding with the largest possible value of β that satisfies k
α2β2 ∈ Z.

Again we recommend the eager to read [38] for the full computations.

4.3.10. k odd. Let k be an odd integer and let M be a modular invariant at level k with
parameters (v, z, n) (see (11)). Write k = ∏l

i=1 p2ai +δi
i , where the pi are distinct odd

primes and δi ∈ {0, 1} for each i = 1, . . . , l. Similarly write v = ∏l
i=1 pbi

i for some

integers bi . The conditions k
v
, v2

k
∈ Z are equivalent to ai + δi ≤ bi ≤ 2ai + δi , so we

can define an integer β =∏l
i=1 pbi −ai −δi

i .
As in the previous section we find the biggest integer α such that Mac; a′c′ �= 0 ⇒

c, c′ ∈ αZ; here, α = k
v

= ∏l
i=1 p2ai −bi +δi

i . With these values we see that k
α2β2 =

∏l
i=1 pδi

i ∈ Z, so we can perform O7, the Zβ orbifolding from the previous section, on
M using the simplified formula in Eq. (39). After a page of computation we arrive at

Zorb = M̃0(v′, z, n),

where we have defined v′ = k
αβ

= ∏l
i=1 pai +δi

i . Note that this is the smallest divisor v′

of k satisfying v′2

k
∈ Z. Thus we have successfully minimised the parameter v.

4.3.11. 4 divides k. The M̃4,2 case is similar. Fix k such that 4|k and choose an M̃4,2

modular invariant with parameters (v, z, x). We write k = 2
∏l

i=1 p2ai +δi
i with pi dis-

tinct odd primes and δi ∈ {0, 1}, and write v = ∏l
i=1 pbi

i for some integers bi . This

time α = k
2v

= ∏l
i=1 p2ai −bi +δi

i , and we set β = ∏l
i=1 pbi −ai −δi

i . Again we find that
k

α2β2 = ∏l
i=1 pδi

i ∈ Z, so we can apply Eq. (39) to the partition function given by
Eqs. (17) in order to calculate the Zβ orbifolding. The result is

Zorb = M̃4,2(v′, z, x),

where we have defined v′ = k
2αβ

= ∏l
i=1 pai +δi

i . This shows that for a fixed k we can

always send v to its smallest possible value in the family M̃4,2.
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4.3.12. 4 divides k. Finally we address the case when k satisfies 4|k. Fix such a k and
a M̃2,0 modular invariant M with parameters (v, z, n) (see Eq. (12)). As before write
k =∏l

i=0 p2ai +δi
i , where p0 = 2 and the pi are distinct odd primes for i ≥ 1, δi ∈ {0, 1}

for each i = 0, . . . , l and a0 ≥ 1. For this partition function α = k
v

= ∏l
i=0 p2ai +δi −bi

i

and we set β =∏l
i=0 pbi −ai −δi

i , which is bound to be an integer by the condition v2

k
∈ Z.

We find once again that k
α2β2 = ∏l

i=0 pδi
i ∈ Z and so we can use the formula (39) to

calculate the Zβ orbifold of M . Substituting in equation (12) we find

Zorb = M̃2,0(v′, z, n)

where we have defined v′ = k
αβ

= ∏l
i=0 pai +δi

i . This completes the proof of proposi-
tion 2 for the simple current invariants.

It remains to check the case Ẽ16
2 . Let M be the modular invariant in Ẽ16

2 with param-

eters (v = 9, z, x). Then α = 1 and we choose β = 3 so that k
α2β2 = 2 ∈ Z. It is then

straight-forward to apply equation (39) to find

Zorb = Ẽ16
2 (3, 1, x).

This completes the proof of Proposition 2. ��

4.3.13. Controlling the parameter z. Now that we can map via orbifoldings any mini-
mal partition function into a particular family with a particular value of v, it remains to
find an orbifolding which lets us control the parameter z. We will prove

Proposition 3. Fix k and let M be a level k modular invariant in one of the families
M̃0, M̃4,2, M̃2,0, Ẽ10

1 , Ẽ16
2 or Ẽ28 with parameters (v, z, ∗), where v is as small as pos-

sible and ∗ is either n or x. Then we can map M via orbifoldings to a minimal partition
function in the same family with parameters (v, z′, ∗), where

2z ≡ 1 mod
v2

k
for odd k,

z ≡ 1 mod
2v2

k
otherwise.

When v is minimised in the family Ẽ16
2 then z is forced to be 1, so the statement is trivial

in this case; it is included in the proposition only for completeness.

4.3.14. k odd. Let k be odd and let M be a level k modular invariant with
parameters (v, z, n), where v is as small as possible (see Eq. (11)). Write k =∏l

i=1 p2ai +1
i

∏m
j=1 q

2b j
j , where the pi and q j are mutually distinct odd primes. Then

we must have v = ∏l
i=1 pai +1

i

∏m
j=1 q

b j
j , since v is the smallest solution to k

v
, v2

k
∈ Z,

and therefore v2

k
=∏l

i=1 pi . Now z is defined to be a solution to 4z2 − 1 ≡ 0 mod v2

k
.

So we have

(2z + 1)(2z − 1) ≡ 0 mod
l∏

i=1

pi .
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But since a given odd prime cannot divide both 2z + 1 and 2z − 1, is it equivalent to say
that there must exist a partition {pi1, . . . , pit } ∪ {p j1, . . . , p ju } of the pi such that

{
2z + 1 ≡ 0 mod

∏t
k=1 pik ,

2z − 1 ≡ 0 mod
∏u

k=1 p jk .

We are trying to map this partition function via an orbifolding to one where z is given
by the choice of partition {} ∪ {p1, . . . , pl}. So we set β =∏t

k=1 pik and try to make a
Zβ orbifold. Recall that the largest integer α satisfying the condition

Mac; a′c′ �= 0 ⇒ c, c′ ∈ αZ

is α = k
v

= ∏l
i=1 pai

i

∏m
j=1 q

b j
j . Thus k

α2β
= ∏u

k=1 p jk ∈ Z and we can apply the

orbifolding in Eq. (38),29

Zorb = M̃0(v, z′, n),

where z′ is the unique solution to 2z ≡ 1 modulo v2

k
as required.

4.3.15. 4 divides k. The proof of Proposition 3 in the case where 4|k proceeds in a
very similar way to the case where k is odd. Fix a modular invariant M ≡ M̃4,2 with

parameters (v, z, x) where v is minimal. Write k = 2
∏l

i=1 p2ai +1
i

∏m
j=1 q

2b j
j with pi , q j

mutually distinct odd primes and note that since v is minimal (see Eq. (17)) we must

have v = ∏l
i=1 pai +1

i

∏m
j=1 q

b j
j and 2v2

k
= ∏l

i=1 pi . The equation for z for M̃4,2 is

z2 − 1 ≡ 0 mod 2v2

k
so we have (z + 1)(z − 1) ≡ 0 mod

∏l
i=1 pi . Equivalently, there

exists a t such that, after relabelling the pi ,

{
z + 1 ≡ 0 mod

∏t
i=1 pi ,

z − 1 ≡ 0 mod
∏l

i=t+1 pi .

This time α = k
2v

= ∏l
i=1 pai

i

∏m
j=1 q

b j
j and again we set β = ∏t

i=1 pi . Then we can
perform the Zβ orbifolding given in Eq. (38) on M . This end result is

Zorb = M̃4,2(v, 1, x)

as required.

4.3.16. 4 divides k. The case where 4 divides k is again very similar. Fix a mod-
ular invariant M ≡ M̃2,0(v, z, n) where v is minimal. We write k in the form
k = 22r+ε

∏l
i=1 p2ai +1

i

∏m
j=1 q

2b j
j with pi , q j mutually distinct odd primes, r ≥ 1

and ε ∈ {0, 1}. Note that since v is minimal (see (12)) we must have v =
2r+ε

∏l
i=1 pai +1

i

∏m
j=1 q

b j
j and 2v2

k
= 21+ε

∏l
i=1 pi . Since z satisfies z2 − 1 ≡ 0

29 Again, computations can be found in [38].
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mod 2v2

k
we must have (z + 1)(z − 1)≡0 mod 21+ε

∏l
i=1 pi . Equivalently, there exists

a t such that, after relabelling the pi ,{
z + 1 ≡ 0 mod 2

∏t
i=1 pi ,

z − 1 ≡ 0 mod 2
∏l

i=t+1 pi .

We have α = k
v

= 2r ∏l
i=1 pai

i

∏m
j=1 q

b j
j and we set β = 2xε

∏t
i=1 pi , where x =[ z−1

2

]
. Then k

α2β
= 2ε(1−x)

∏l
i=t+1 pi is an integer, so we may perform the Zβ orbifold-

ing given in Eq. (38) on M :

Zorb = M̃2,0(v, 1, n)

which completes the proof of Proposition 3 for the simple current invariants.

4.3.17. The exceptional cases. When k = 10 we need to show that there is an orbi-
folding connecting the Ẽ10

1 invariants with those with parameters (v = 6, z = 5) and
(v = 6, z = 1). But we have already seen in Table 1 that the orbifolding O2 acts on
Ẽ10

1 (6, z) by z ↔ −z mod 6.
When k = 28 we follow exactly the method we used for the simple current invariants

when 4|k: we have k = 30 = 2 · 3 · 5 and v = 15. The solutions to z2 − 1 ≡ 0 mod 15
are z ∈ {1, 4, 11, 14} (see Eq. (23)), corresponding respectively to the situations

z = 1,

{
z + 1 ≡ 0 mod 1

z − 1 ≡ 0 mod 15

}
, β = 1,

z = 4,

{
z + 1 ≡ 0 mod 5
z − 1 ≡ 0 mod 3

}
, β = 5,

z = 11,

{
z + 1 ≡ 0 mod 3
z − 1 ≡ 0 mod 5

}
, β = 3,

z = 14,

{
z + 1 ≡ 0 mod 15
z − 1 ≡ 0 mod 1

}
, β = 15.

In each case α = 1 and so we apply orbifolding O7 to the invariants M ≡ Ẽ28(15, z, x)

using Eq. (38). The end result is

Zorb = Ẽ28(15, 1, x).

This completes the proof of Proposition 3. ��
4.3.18. Proof of the Theorem. We are now ready to prove Theorem 2. We will restate
the theorem here in a little more detail. For notation, see Sect. 2.4.

Theorem 4 (Reformulation of Theorem 2).

– Let k be odd and let M be a simple current invariant at level k. Then there exists
a chain of orbifoldings mapping M to Ak ⊗ M, where Ak is the diagonal su(2)

invariant at level k and the non-zero values of M are given by

M ck
v

, c′k
v

= 1 ⇐⇒ c′ ≡ c mod
2v2

k
,

where v is the smallest divisor of k satisfying v2

k
∈ Z.
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– Let 4|k and let M be a simple current invariant at level k. Then there exists a chain
of orbifoldings mapping M to Ak ⊗ M, where Ak is the diagonal su(2) invariant at
level k and the non-zero values of M are given by

M ck
v

, c′k
v

= 1 ⇐⇒ c′ ≡ c mod
2v2

k
,

where v is the smallest divisor of k
2 satisfying v2

k
∈ Z.

– Let 4|k and let M be a simple current invariant at level k. Then there exists a chain of
orbifoldings mapping M to Dk ⊗ M, where Dk is the level kD invariant in the su(2)

A-D-E classification, and the non-zero values of M are given by

M ck
2v

, c′k
2v

= 1 ⇐⇒ c′ ≡ c mod
8v2

k
,

where v is the smallest divisor of k
2 satisfying 2v2

k
∈ Z.

– Let M be an exceptional invariant at level k = 10. Then there exists a chain of or-
bifoldings mapping M to E10 ⊗ M, where E10 is the exceptional su(2) invariant at
level 10 and the non-zero values of M are given by

M2c,2c′ = 1 ⇐⇒ c′ ≡ c mod 6.

– Let M be an exceptional invariant at level k = 16. Then there exists a chain of or-
bifoldings mapping M to E16 ⊗ M, where E16 is the exceptional su(2) invariant at
level 16 and the non-zero values of M are given by

M3c,3c′ = 1 ⇐⇒ c′ ≡ c mod 4.

– Let M be an exceptional invariant at level k = 28. Then there exists a chain of or-
bifoldings mapping M to E28 ⊗ M, where E28 is the exceptional su(2) invariant at
level 28 and M is given by

Mc,c′ = 1 ⇐⇒ c′ ≡ c mod 60.

Proof. The requisite orbifoldings were constructed in the preceding sections. Given a
modular invariant M at level k, we use Proposition 1 (if necessary) to map M into one
of the families M̃0, M̃2,0, M̃4,2, Ẽ10

1 , Ẽ16
2 or Ẽ28, uniquely determined by the value of

k and whether M is a simple current invariant or an exceptional invariant. We can then
apply Proposition 2 to map the parameter v to the smallest possible value it can take for
the given k, while leaving the other parameters unchanged. Proposition 3 sends z to 1 if
k is even, and sets 2z ≡ 1 if k is odd. Finally, if necessary, we use the orbifolding O1

of Sect. 4.3.1 to fix n = 0 when k is odd or 4|k; or to fix x = 1 when 4|k. The resulting
partition functions are given explicitly above using Eqs. (11)–(23). ��

5. Analysis of the Simple Current Invariants

5.1. The Kreuzer-Schellekens construction. In [47] it is shown that all simple current
invariants which obey both 1-loop and higher-genus modular invariance can be obtained
as orbifolds of the diagonal modular invariant by a subgroup of the centre. It is conjec-
tured that all simple current modular invariants can be obtained in this way; that is, it is
conjectured that the constraint of higher-genus modular invariance is in fact superfluous.
We will analyse the solutions of Gannon’s classification to show that this is indeed the
case for the unitary N = 2 minimal models.
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5.1.1. k odd. One can easily read off from Gannon’s classification that every modular
invariant with k odd is a simple current invariant. Furthermore, following [47], precisely
one modular invariant can be constructed as an orbifold for each subgroup of the effec-
tive centre C ∼= Z2k (there is no discrete torsion in this case, since subgroups of Z2k are
cyclic).

One can check using induction on the number of prime factors that the number of
subgroups of Zq , equal to the number of divisors of q, is d(q) :=∏l

i=1(1 + ni ), where q
is written q =∏l

i=1 pni
i for distinct primes pi . The following lemma establishes that the

number of modular invariants at each odd level k (see Eq. (11)) is precisely the number
of subgroups of Z2k , showing that the Schellekens-Kreuzer orbifold construction does
indeed give all modular invariants when the level k is odd.

Lemma 2. Let k be odd. Then the number of solutions (v, z, n) ∈ {1, . . . , k} ×
{1, . . . , v2

k
} × {0, 1} to the equations

v2

k
,

k

v
∈ Z, 4z2 ≡ 1 mod

v2

k

is equal to d(2k).

The proof is a simple counting argument. The main step is counting the number of possi-
ble values of z for a given v, and we partially solved this problem already in constructing
the z-controlling orbifoldings of Sect. 4.3.13. For a detailed proof, we refer the reader
to the author’s PhD thesis [38]. ��

5.1.2. 4 divides k. We now turn our attention to the case when 4|k. Again we can imme-
diately read off from Gannon’s classification that M̃4,0, M̃4,1, M̃4,2 and M̃4,3 are all
simple current invariants.

The subgroups of the effective centre Ck ∼= Z2 × Z2k are given by

Z2 × Zl ∼= Z2l , 2l|k,

Z2 × Z2l , l|k,

{0} × Zl ∼= Zl , l|2k,

〈(J, k
l )〉 ∼= Z2l , l|k.

We can define an orbifold for each subgroup of the centre and for each choice of discrete
torsion associated to that subgroup. For a cyclic group Zq there is no choice to make;
for a group Z2 × Z2q there are two degrees of freedom. Writing τ(G) for the number of
degrees of freedom coming from discrete torsion associated to the group G, we find the
number of simple current invariants obtained via an orbifold of the diagonal invariant
when 4|k is

N =
∑

G≤Z2×Z2k

τ(G) = 5d(k),

where d(q), as above, is the number of divisors of q.
The following lemma shows that if 4|k then the number of simple current modular

invariants is equal to N = 5d(k), the number of orbifolds of the diagonal invariant,
so the Schellekens-Kreuzer construction does again find all simple currents invariants
when 4|k.
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Lemma 3. Let 8|k + 4. Then the number of solutions (v, z, n, m) ∈ {1, . . . , k
2 } ×

{1, . . . , 2v2

k
} × {0, 1}2 to the equations

2v2

k
,

k

2v
∈ Z, z2 ≡ 1 mod

2v2

k

is equal to 2d(k).

Let 8|k. Then the number of solutions (v, z, x, y) ∈ {1, . . . , k}×{1, . . . , v2

k
}×{1, 3}2

to the equations

v2

k
,

k

v
∈ Z, z ≡ k

8
mod 2, 4z2 ≡ 1 mod

v2

2k

is equal to 2d(k).

Let 4|k. Then the number of solutions (v, z, x) ∈ {1, . . . , k
2 } × {1, . . . , 2v2

k
} × {1, 3}

to the equations

2v2

k
,

k

2v
∈ Z, z2 ≡ 1 mod

2v2

k

is equal to d(k).

Let 4|k. Then the number of solutions (v, z, n) ∈ {1, . . . , k
2 } × {1, . . . , 8v2

k
} × {0, 1}

to the equations

2v2

k
,

k

2v
∈ Z, z2 ≡ 1 mod

4v2

k

is equal to 2d(k).

Again the details of the proof are to be found in [38]. ��
5.1.3. 4 divides k. As in the previous cases, every modular invariant with 4|k is a simple
current invariant.

Write k = 2m p, where p is odd and m ≥ 2. Then the subgroups of Z2 ×Zk are given
by

Z2 × Zl ∼= Z2l , l|p,

Z2 × Z2l , 2l|k,

{0} × Zl ∼= Zl , l|k,

〈(J, k
2l )〉 ∼= Z2l , 2l|k.

Writing τ(G) for the number of degrees of freedom coming from discrete torsion of a
subgroup G of Z2 × Zk we find that the number of possible orbifolds of the diagonal
partition function is

N =
∑

G≤Z2×Zk

τ(G) = 2

(
d(k) + d

(
k

2

))
.

The following lemma shows that this is precisely the number of simple current invariants
when the level k satisfies 4|k, proving that the Schellekens-Kreuzer orbifolds do indeed
find all the modular invariants at these levels.
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Lemma 4. Let 4|k and write k = 22r+ε p, where ε ∈ {0, 1}, r > 0 and p is odd.

The number of solutions (v, z, n) ∈ {1, . . . , k
2 }×{1, . . . , 2v2

k
}×{0, 1} to the equations

v2

k
,

k

2v
∈ Z, z2 ≡ 1 mod

2v2

k

is equal to 2(4r − 3 + ε)d(p).

The number of solutions (v, z, n) ∈ {1, . . . , k
2 }×{1, . . . , 2v2

k
}×{0, 1} to the equations

2v2

k
∈ 2Z + 1,

k

2v
∈ Z, z2 ≡ 1 mod

2v2

k

is equal to 2εd(p).

The number of solutions (v, z, n, m) ∈ {1, . . . , k} × {1, . . . , 2v2

k
} × {0, 1}2 to the

equations

v2

k
∈ Z,

k

v
∈ 2Z + 1, z2 ≡ 1 mod

4v2

k

is equal to 8d(p). ��

5.1.4. Simple current invariant classification. These counting results coupled with the
explicit orbifolds given by Schellekens and Kreuzer [47] can be summarised in the
following theorem:

Theorem 5. Every simple current N = 2 unitary minimal partition function at level
k is realised via an orbifold (possibly with discrete torsion) of the diagonal partition
function by a subgroup of the effective centre

C ∼=

⎧⎪⎨
⎪⎩

Z2k if k is odd,
Z2 × Z2k if 4 divides k,
Z2 × Zk if 4 divides k.

The number of simple current invariants at each level k �= 2 is given by30

N (k) =

⎧
⎪⎨
⎪⎩

2d(k) if k is odd,
5d(k) if 4 divides k,

2d(k) + 2d
(

k
2

)
if 4 divides k.

(40)

where d(n) is the number of divisors of n. ��
30 As discussed in Sect. 2.5.2, there are only five simple current invariants due to the identification A2 = D2.
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6. Conclusion

We have reviewed Gannon’s classification of the partition functions of the unitary N = 2
minimal models and given the explicit results with a few minor errors corrected. It is
hoped that by making this list explicit, the less studied models therein may receive more
attention.

The main result of this paper was to show that every one of these possible partition
functions really does correspond to a full minimal SCFT, subject to Assumption 1 and
2. This is a large step towards completing the full classification of the unitary N = 2
minimal models.

We also showed that Kreuzer and Schellekens’ result that every simple current invari-
ant is realised via an orbifolding of the diagonal partition function holds without the extra
assumption of higher-genus modular invariant.

This paper brings us tantalisingly close to the complete classification of the unitary
N = 2 minimal models. To complete the classification, it must be shown that there is
just one SCFT belonging to each partition function.

An alternative line of attack might be to approach the classification from the mod-
ular tensor category (see [23,64]) point of view, or via the theory of nets of subfactors
(see [48]).

It would also be satisfying to find some geometric classification of the minimal
models in terms of singularities, analogous to the classification of the space-time super-
symmetric models in terms of simple singularities arising in their Landau-Ginzburg
descriptions [9,49,66].
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