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Abstract: In our recent paper “The variational Poisson cohomology” (2011) we com-
puted the dimension of the variational Poisson cohomology H•

K (V) for any quasiconstant
coefficient �×� matrix differential operator K of order N with invertible leading coeffi-
cient, provided that V is a normal algebra of differential functions over a linearly closed
differential field. In the present paper we show that, for K skewadjoint, the Z-graded Lie
superalgebra H•

K (V) is isomorphic to the finite dimensional Lie superalgebra ˜H(N�, S).
We also prove that the subalgebra of “essential” variational Poisson cohomology, con-
sisting of classes vanishing on the Casimirs of K , is zero. This vanishing result has
applications to the theory of bi-Hamiltonian structures and their deformations. At the
end of the paper we consider also the translation invariant case.

1. Introduction

The Z-graded Lie superalgebra W var(�V) = ⊕∞
k=−1 W var

k of variational polyvector
fields is a very convenient framework for the theory of integrable Hamiltonian PDE’s.
This Lie superalgebra is associated to an algebra of differential functions V , which is
an extension of the algebra of differential polynomials R� = F[u(n)

i | i = 1, . . . , �; n ∈
Z+] over a differential field F with the derivation ∂ extended to R� by ∂u(n)

i = u(n+1)
i .

Everywhere in the paper Z+ stands for the set of non-negative integers.
The first three pieces, W var

k for k = −1, 0, 1, are identified with the most important
objects in the theory of integrable systems: First, W var−1 = �(V/∂V), where V/∂V is the
space of Hamiltonian (or local) functionals, and where � denotes the parity reversal,
therefore �(V/∂V) is an odd subspace of W var(�V). Second, W var

0 is the Lie algebra

� Supported by a PRIN grant and Fondi Ateneo, from the University of Rome.
�� Supported in part by an NSF grant.
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of evolutionary vector fields

X P =
�

∑

i=1

∞
∑

n=0

(∂n Pi )
∂

∂u(n)
i

, P ∈ V�,

which we identify with V�. Third, W var
1 is identified with the space of skewadjoint �× �

matrix differential operators over V endowed with odd parity.
For

∫

f,
∫

g ∈ W var−1 , X, Y ∈ W var
0 , and H = H(∂) ∈ W var

1 , the commutators are
defined as follows (as usual,

∫

denotes the canonical map V → V/∂V):

[∫ f,
∫

g] = 0, (1.1)

[X,
∫

f ] = ∫

X ( f ), (1.2)

[X, Y ] = XY − Y X, (1.3)

[H,
∫

f ] = H(∂)
δ f

δu
, (1.4)

[X P , H ] = X P (H(∂)) − DP (∂) ◦ H(∂) − H(∂) ◦ D∗
P (∂). (1.5)

Here δ
δu is the variational derivative (see (3.4)), DP is the Frechet derivative (see (3.7)),

and D∗(∂) denotes the matrix differential operator adjoint to D(∂).
The formula for the commutator of two elements K , H of W var

1 (the so called Scho-
uten bracket) is more complicated (see (3.17), but one needs only to know that conditions
[K , K ] = 0, [H, H ] = 0 mean that these matrix differential operators are Hamiltonian,
and the condition [K , H ] = 0 means that they are compatible.

There have been various versions of the notion of variational polyvector fields, but
[Kup80] is probably the earliest reference.

The basic notions of the theory of integrable Hamiltonian equations can be easily
described in terms of the Lie superalgebra W var(�V). Given a Hamiltonian operator H
and a Hamiltonian functional

∫

h ∈ V/∂V , the corresponding Hamiltonian equation is

du

dt
= [H,

∫

h], u = (u1, . . . , u�). (1.6)

One says that two Hamiltonian functionals
∫

h1 and
∫

h2 are in involution if

[[H,
∫

h1],
∫

h2] = 0. (1.7)

(Note that the LHS of (1.7) is skewsymmetric in
∫

h1 and
∫

h2, since both are odd ele-
ments of the Lie superalgebra W var(�V)). Any

∫

h1 which is in involution with
∫

h
is called an integral of motion of the Hamiltonian equation (1.6), and this equation is
called integrable if there exists an infinite dimensional subspace � of V/∂V containing
∫

h such that all elements of � are in involution. In this case we obtain a hierarchy of
compatible integrable Hamiltonian equations, labeled by elements ω ∈ �:

du

dtω
= [H, ω].

The basic device for proving integrability of a Hamiltonian equation is the so-called
Lenard-Magri scheme, proposed by Lenard in the early 1970’s (unpublished), with an
important input by Magri [Mag78]. A survey of related results up to the early 1990’s
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can be found in [Dor93], and a discussion in terms of Poisson vertex algebras can be
found in [BDSK09].

The Lenard-Magri scheme requires two compatible Hamiltonian operators H and K
and a sequence of Hamiltonian functions

∫

hn, n ∈ Z+, such that

[H,
∫

hn] = [K ,
∫

hn+1], n ∈ Z+. (1.8)

Then it is a trivial exercise in Lie superalgebra to show that all Hamiltonian functionals
∫

hn are in involution (hint: use the parenthetical remark after (1.7)). Note that to solve
this exercise one only uses the fact that K , H lie in W var

1 , but in order to construct
the sequence

∫

hn, n ∈ Z+, one needs the Hamiltonian property of H and K and their
compatibility.

The appropriate language here is the cohomological one. Since [K , K ] = 0 and K
is an (odd) element of W var

1 , it follows that we have a cohomology complex
(

W var(�V) =
⊕

k≥−1

W var
k , ad K

)

,

called the variational Poisson cohomology complex. As usual, let Z•
K (V) = ⊕

k≥−1 Zk
K

be the subalgebra of closed elements (= Ker(ad K )), and let B•
K (V) = ⊕

k≥−1 Bk
K be

its ideal of exact elements (= Im(ad K )). Then the variational Poisson cohomology

H•
K (V) = Z•

K (V)
/B•

K (V) =
⊕

k≥−1

Hk
K ,

is a Z-graded Lie superalgebra. (For usual polyvector fields the corresponding Poisson
cohomology was introduced in [Lic77]; cf. [DSK11]).

Now we can try to find a solution to (1.8) by induction on n as follows (see [Kra88]
and [Olv87]). Since [K , H ] = 0, we have, by the Jacobi identity:

[K , [H,
∫

hn]] = −[H, [K ,
∫

hn]], (1.9)

hence, by the inductive assumption, the RHS of (1.9) is −[H, [H,
∫

hn−1]], which is
zero since [H, H ] = 0 and H is odd. Thus, [H,

∫

hn] ∈ Z0
K . To complete the nth step of

induction we need that this element is exact, i.e. it equals [H,
∫

hn+1] for some
∫

hn+1.
But in general we have

[H,
∫

hn] = [K ,
∫

hn+1] + zn+1, (1.10)

where zn+1 ∈ Z0
K only depends on the cohomology class in H0

K .
The best place to start the Lenard-Magri scheme is to take

∫

h0 = C0 ∈ Z−1
K , a cen-

tral element for K . Then the first step of the Lenard-Magri scheme requires the existence
of

∫

h1 such that

[H, C0] = [K ,
∫

h1]. (1.11)

Taking a bracket of both sides of (1.11) with arbitrary C1 ∈ Z−1
K , we obtain

[[H, C0], C1] = 0. (1.12)

Thus, if we wish the Lenard-Magri scheme to work starting with an arbitrary central
element C0 for K , the Hamiltonian operator H (which lies in Z1

K ), must satisfy (1.12)
for any C0, C1 ∈ Z−1

K . In other words, H must be “essentially closed”.
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It was remarked in [DMS05] that condition (1.12) is an obstruction to triviality of
deformations of the Hamiltonian operator K , which is, of course, another important
reason to be interested in “essential” variational Poisson cohomology.

We define the subalgebra EZ•
K (V) = ⊕

k≥−1 EZk
K ⊂ Z•

K (V) of essentially closed
elements, by induction on k ≥ −1, as follows:

EZ−1
K = 0, EZk

K = {

z ∈ Zk
K

∣

∣ [z,Z−1
K ] ⊂ EZk−1

K

}

, k ∈ Z+.

It is immediate to see that exact elements are essentially closed, and we define the
essential variational Poisson cohomology as

EH•
K (V) = EZ•

K (V)
/B•

K (V).

The first main result of the present paper is Theorem 4.3, which asserts that
EH•

K (V) = 0, provided that K is an � × � matrix differential operator of order N
with coefficients in Mat�×�(F) and invertible leading coefficient, that the differential
field F is linearly closed, and that the algebra of differential functions V is normal.
Recall that a differential field F is called linearly closed [DSK11] if any linear homo-
geneous differential equation of order greater than or equal to 1 with coefficients in F
has a nonzero solution in F .

The proof of Theorem 4.3 relies on our previous paper [DSK11], where, under the
same assumptions on K , F and V , we prove that dimC(Hk

K ) = ( N�
k+2

)

, where C ⊂ F
is the subfield of constants, and we constructed explicit representatives of cohomology
classes. We assume everywhere that C has characteristic 0.

In turn, Theorem 4.3 allows us to compute the Lie superalgebra structure of H•
K (V),

which is our second main result. Namely, Theorem 3.6 asserts that the Z-graded Lie
superalgebra H•

K (V) is isomorphic to the finite dimensional Z-graded Lie superalgebra
˜H(N�, S), of Hamiltonian vector fields over the Grassmann superalgebra in N� inde-
terminates {ξi }N�

i=1, with Poisson bracket {ξi , ξ j } = si j , divided by the central ideal C1,
where S = (si j ) is a nondegenerate symmetric N� × N� matrix over C.

We hope that Theorem 4.3 will allow further progress in the study of the Lenard-
Magri scheme (work in progress). First, it leads to classification of Hamiltonian opera-
tors H compatible to K , using techniques and results from [DSKW10]. Second, it shows
that if the elements zn+1 in (1.10) are essentially closed, then they can be removed.

Also, of course, Theorem 4.3 shows that, if (1.12) holds for a Hamiltonian operator
obtained by a formal deformation of K , then this formal deformation is trivial.

In the conclusion of the paper we discuss the other “extreme” – the translation invari-
ant case – when F = C. In this case, we give an upper bound for the dimension of Hk

K ,
for an arbitrary Hamiltonian operator K with coefficients in Mat�×�(C) and invertible
leading coefficient, and we show that this bound is sharp if and only if K = K1∂ , where
K1 is a symmetric nondegenerate matrix over C. Since any Hamiltonian operator of
hydrodymanic type can be brought, by a change of variables, to this form, our result
generalizes the results of [LZ11,LZ11pr] on K of hydrodynamic type. Furthermore, for
such operators K we also prove that the essential variational Poisson cohomology is
trivial, and we find a nice description of the Z-graded Lie superalgebra H•

K .

2. Transitive Z-Graded Lie Superalgebras and Prolongations

Recall [GS64,Kac77] that a Z-graded Lie superalgebra g = ⊕

k≥−1 gk is called transi-
tive if any a ∈ gk, k ≥ 0, such that [a, g−1] = 0, is zero. Two equivalent definitions are
as follows:
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(i) There are no nonzero ideals of g contained in
⊕

k≥0 gk .
(ii) If a ∈ gk is such that [. . . [[a, C0], C1], . . . , Ck] = 0 for all C0, . . . , Ck ∈ g−1,

then a = 0.

If a Z-graded Lie superalgebra g = ⊕

k≥−1 gk is transitive, the Lie subalgebra g0 acts
faithfully on g−1, hence we have an embedding g0 → gl(g−1).

Given a Lie algebra g acting faithfully on a purely odd vector superspace U , one calls
a prolongation of the pair (U, g) any transitive Z-graded Lie superalgebra

⊕

k≥−1 gk
such that g−1 = U , g0 = g, and the Lie bracket between g0 and g−1 is given by the
action of g on U . The full prolongation of the pair (U, g) is a prolongation containing
any other prolongation of (U, g). It always exists and is unique.

2.1. The Z-graded Lie superalgebra W (n). Let 
(n) be the Grassmann superalgebra
over the field C on odd generators ξ1, . . . , ξn . Let W (n) be the Lie superalgebra of all
derivations of the superalgebra 
(n), with the following Z-grading: for k ≥ −1, Wk(n)

is spanned by derivations of the form ξi1 . . . ξik+1
∂

∂ξ j
. In particular, W−1(n) = 〈 ∂

∂ξi
〉n
i=1 =

�Cn , and W0(n) = 〈ξi
∂

∂ξ j
〉n
i, j=1 � gl(n). It is easy to see that W (n) is the full prolonga-

tion of (�Cn, gl(n)) [Kac77]. Consequently, any transitive Z-graded Lie superalgebra
g = ⊕

k≥−1 gk , with dimC g−1 = n, embeds in W (n).

2.2. The Z-graded Lie superalgebra ˜H(n, S). Let S = (si j )
n
i, j=1 be a symmetric n × n

matrix over C. Consider the following subalgebra of the Lie algebra gl(n):

so(n, S) = {

A ∈ Mat n×n(C)
∣

∣ AT S + S A = 0, Tr(A) = 0
}

. (2.1)

We endow the Grassmann superalgebra 
(n) with a structure of a Poisson super-
algebra by letting {ξi , ξ j }S = si j . A closed formula for the Poisson bracket on 
(n)

is

{ f, g}S = (−1)p( f )+1
n

∑

i, j=1

si j
∂ f

∂ξi

∂g

∂ξ j
.

We introduce a Z-grading of the superspace 
(n) by letting deg(ξi1 . . . ξis ) = s − 2.
Note that this is a Lie superalgebra Z-grading 
(n) = ⊕n−2

k=−2 
k(n) (but it is not an
associative superalgebra grading). Note also that 
−2(n) = C1 ⊂ 
(n) is a central
ideal of this Lie superalgebra. Hence 
(n)/C1 inherits the structure of a Z-graded Lie
superalgebra of dimension 2n − 1, which we denote by ˜H(n, S) = ⊕n−2

k=−1
˜Hk(n, S).

The −1st degree subspace is ˜H−1(n, S) = 〈ξi 〉n
i=1 � �Cn , and the 0th degree sub-

space ˜H0(n, S) = 〈ξiξ j 〉n
i, j=1 is a Lie subalgebra of dimension

(n
2

)

.

Identifying ˜H−1(n, S) with �Cn (using the basis ξi , i = 1, . . . , n) and ˜H0(n, S) with
the space of skewsymmetric n×n matrices over C (via ξiξ j �→ (Ei j −E ji )/2), the action
of ˜H0(n, S) on ˜H−1(n, S) becomes: {A, v}S = ASv. Note that, if A is skewsymmetric,
then AS lies in so(n, S). Hence, we have a homomorphism of Lie superalgebras:

˜H−1(n, S) ⊕ ˜H0(n, S) → �Cn ⊕ so(n, S), (v, A) �→ (v, AS). (2.2)

Lemma 2.1. The map (2.2) is bijective if and only if S has rank n or n − 1.
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Proof. Clearly, if S is nondegenerate, the map (2.2) is bijective. Moreover, if S has rank
less than n − 1, the map (2.2) is clearly not injective. In the remaining case, when S has
rank n − 1, we can assume it has the form

S =
(

0 0
0 T

)

, (2.3)

where T is a nondegenerate symmetric (n − 1) × (n − 1) matrix. In this case, one
immediately checks that the map (2.2) is injective. Moreover,

so(n, S) =
{

(

0 BT

0 A

)

∣

∣

∣ B ∈ C�, A ∈ so(n − 1, T )
}

.

Hence, dimC so(n, S) = n − 1 +
(n−1

2

) = (n
2

) = dimC ˜H0(n, S). ��

Proposition 2.2. If S has rank n or n − 1, then ˜H(n, S) is the full prolongation of the
pair (Cn, so(n, S)).

Proof. For S nondegenerate, the proof is can be found in [Kac77]. We reduce below
the case rk(S) = n − 1 to the case of nondegenerate S. If rk(S) = � = n − 1, we can
choose a basis 〈η, ξ1, . . . , ξ�〉, such that the matrix S is of the form (2.3). Define the map
ϕS : ˜H(n, S) → W (n), given by

ϕS( f (ξ1, . . . , ξ�)) = { f, ·}S = (−1)p( f )+1
�

∑

i, j=1

ti j
∂ f

∂ξi

∂

∂ξ j
,

ϕS( f (ξ1, . . . , ξ�)η) = f (ξ1, . . . , ξ�)
∂

∂η
.

(2.4)

It is easy to check that ϕS is an injective homomorphism of Z-graded Lie superalgebras.
Hence, we can identify ˜H(n, S) with its image in W (n).

Since ϕS( ˜H−1(n, S))= �Cn = W−1(n), the Z-graded Lie superalgebra ϕS( ˜H(n, S))

(hence ˜H(n, S)) is transitive. It remains to prove that it is the full prolongation of the
pair ( ˜H−1(n, S), ˜H0(n, S)). For this, we will prove that, if

X = f0
∂

∂η
+

�
∑

i=1

fi
∂

∂ξi
∈ Wk(n),

with fi ∈ 
(n), homogenous polynomials of degree k + 1 ≥ 2, is such that

[ ∂

∂η
, X

]

,
[ ∂

∂ξi
, X

] ∈ ϕS( ˜Hk−1(n, S)) ∀i = 1, . . . �, (2.5)

then X ∈ ϕS( ˜Hk(n, S)). Conditions (2.5) imply that all f0, . . . , f� are polynomials in
ξ1, . . . , ξ� only, and there exist g1, . . . , g�, polynomials in ξ1, . . . , ξ�, such that

∂ f j

∂ξi
= (−1)p(gi )+1

�
∑

k=1

t jk
∂gi

∂ξk
, (2.6)
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for every i, j ∈ {1, . . . �}. On the other hand, the condition that X ∈ ϕS( ˜Hk(n, S)) means
that there exists h, a polynomial in ξ1, . . . , ξ�, such that

fi = (−1)p(h)+1
�

∑

k=1

tik
∂h

∂ξk
. (2.7)

To conclude, we observe that conditions (2.6) imply the existence of h solving Eq. (2.7),
since ˜H(�, T ) is a full prolongation. ��
Remark 2.3. The notation ˜H(n, S) comes from the fact that, if S is nondegenerate, then
the derived Lie superalgebra H(n, S) = { ˜H(n, S), ˜H(n, S)} = ⊕n−3

k=−1
˜Hk(n, S) has

codimension 1 in ˜H(n, S), and it is simple for n ≥ 4.

3. Variational Poisson Cohomology

In this section we recall our results from [DSK11] on the variational Poisson cohomol-
ogy, in the notation of the present paper.

3.1. Algebras of differential functions. An algebra of differential functions V in one
independent variable x and � dependent variables ui , indexed by the set I = {1, . . . , �},
is, by definition, a differential algebra (i.e. a unital commutative associative algebra with
a derivation ∂), endowed with commuting derivations ∂

∂u(n)
i

: V → V , for all i ∈ I and

n ∈ Z+, such that, given f ∈ V , ∂

∂u(n)
i

f = 0 for all but finitely many i ∈ I and n ∈ Z+,

and the following commutation rules with ∂ hold:

[ ∂

∂u(n)
i

, ∂
]

= ∂

∂u(n−1)
i

, (3.1)

where the RHS is considered to be zero if n = 0. An equivalent way to write the identities
(3.1) is in terms of generating series:

∑

n∈Z+

zn ∂

∂u(n)
i

◦ ∂ = (z + ∂) ◦
∑

n∈Z+

zn ∂

∂u(n)
i

. (3.2)

As usual we shall denote by f �→ ∫

f the canonical quotient map V → V/∂V .
We call C = Ker(∂) ⊂ V the subalgebra of constant functions, and we denote by

F ⊂ V the subalgebra of quasiconstant functions, defined by

F = {

f ∈ V ∣

∣

∂ f

∂u(n)
i

= 0 ∀i ∈ I, n ∈ Z+
}

. (3.3)

It is not hard to show [DSK11] that C ⊂ F , ∂F ⊂ F , and F ∩ ∂V = ∂F . Throughout
the paper we will assume that F is a field of characteristic zero, hence so is C ⊂ F .
Unless otherwise specified, all vector spaces, as well as tensor products, direct sums,
and Hom’s, will be considered over the field C.
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One says that f ∈ V has differential order n in the variable ui if ∂ f

∂u(n)
i

�= 0 and

∂ f

∂u(m)
i

= 0 for all m > n.

The main example of an algebra of differential functions is the ring of differen-
tial polynomials over a differential field F , R� = F[u(n)

i | i ∈ I, n ∈ Z+], where

∂(u(n)
i ) = u(n+1)

i . Other examples can be constructed starting from R� by taking a local-
ization by some multiplicative subset S, or an algebraic extension obtained by adding
solutions of some polynomial equations, or a differential extension obtained by adding
solutions of some differential equations.

The variational derivative δ
δu : V → V� is defined by

δ f

δui
:=

∑

n∈Z+

(−∂)n ∂ f

∂u(n)
i

. (3.4)

It follows immediately from (3.2) that ∂V ⊂ Ker δ
δu .

A vector field is, by definition, a derivation of V of the form

X =
∑

i∈I,n∈Z+

Pi,n
∂

∂u(n)
i

, Pi,n ∈ V. (3.5)

We denote by Vect(V) the Lie algebra of all vector fields. A vector field X is called
evolutionary if [∂, X ] = 0, and we denote by Vect∂ (V) ⊂ Vect(V) the Lie subalgebra
of all evolutionary vector fields. By (3.1), a vector field X is evolutionary if and only if
it has the form

X P =
∑

i∈I,n∈Z+

(∂n Pi )
∂

∂u(n)
i

, (3.6)

where P = (Pi )i∈I ∈ V�, is called the characteristic of X P .
Given P ∈ V�, we denote by DP = (

(DP )i j (∂)
)

i, j∈I its Frechet derivative, given
by

(DP )i j (∂) =
∑

n∈Z+

∂ Pi

∂u(n)
j

∂n . (3.7)

Recall from [BDSK09] that an algebra of differential functions V is called normal if
we have ∂

∂u(m)
i

(Vm,i
) = Vm,i for all i ∈ I, m ∈ Z+, where we let

Vm,i :=
{

f ∈ V
∣

∣

∣

∂ f

∂u(n)
j

= 0 if (n, j) > (m, i) in lexicographic order
}

. (3.8)

We also denote Vm,0 = Vm−1,�, and V0,0 = F .
The algebra R� is obviously normal. Moreover, any extension V can be further ex-

tended to a normal algebra. Conversely, it is proved in [DSK09] that any normal alge-
bra of differential functions V is automatically a differential algebra extension of R�.
Throughout the paper we shall assume that V is an extension of R�.

Recall also from [DSK11] that a differential field F is called linearly closed if any
linear differential equation,

anu(n) + · · · + a1u′ + a0u = 0,

with n ≥ 1, a0, . . . , an ∈ F , an �= 0, has a nonzero solution in F .
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3.2. The universal Lie superalgebra W var(�V) of variational polyvector fields.
Recall the definition of the universal Lie superalgebra of variational polyvector fields
W var(�V), associated to the algebra of differential funtions V [DSK11]. We let

W var(�V) =
∞

⊕

k=−1

W var
k ,

where W var
k is the superspace of parity k mod 2 consisting of all skewsymmetric arrays,

i.e. arrays of polynomials

P = (

Pi0,...,ik (λ0, . . . , λk)
)

i1,...,ik∈I , (3.9)

where Pi0,...,ik (λ0, . . . , λk) ∈ V[λ0, . . . , λk]/(∂ + λ0 + · · · + λk) are skewsymmetric
with respect to simultaneous permutations of the variables λ0, . . . , λk and the indices
i0, . . . , ik . By V[λ0, . . . , λk]/(∂ + λ0 + · · · + λk) we mean the quotient of the space
V[λ0, . . . , λk] by the image of the operator ∂ + λ0 + · · · + λk . Clearly, for k = −1
this space is V/∂V and, for k ≥ 0, we can identify it with the algebra of polynomials
V[λ0, . . . , λk−1] by letting

λk = −λ0 − · · · − λk−1 − ∂,

with ∂ acting from the left. We then define the following Z-graded Lie superalgebra
bracket on W var(�V). For P ∈ W var

h and Q ∈ W var
k−h , with −1 ≤ h ≤ k + 1, we let

[P, Q] := P�Q − (−1)h(k−h)Q�P , where P�Q ∈ W var
k is zero if h = k − h = −1,

and otherwise it is given by

(

P�Q
)

i0,...,ik
(λ0, . . . , λk) =

∑

σ∈Sh,k

sign(σ )
∑

j∈I,n∈Z+

Pj,iσ(k−h+1),...,iσ(k)
(λσ(0) + · · · + λσ(k−h) + ∂, λσ(k−h+1), . . . , λσ(k))→

(−λσ(0) − · · · − λσ(k−h) − ∂)n ∂

∂u(n)
j

Qiσ(0),...,iσ(k−h)
(λσ(0), . . . , λσ(k−h)), (3.10)

where Sh,k denotes the set of h-shuffles in the group Sk+1 = Perm{0, . . . , k}, i.e. the
permutations σ satisfying

σ(0) < · · · < σ(k − h), σ (k − h + 1) < · · · < σ(k).

The arrow in (3.10) means that ∂ should be moved to the right. Note that, by the skew-
symmetry conditions on P and Q, we can replace the sum over shuffles by the sum over
the whole permutation group Sk+1, provided that we divide by h!(k − h + 1)!. It follows
from Proposition 9.1 and the identification (9.22) in [DSK11], that the box product (3.10)
is well defined and the corresponding commutator makes W var(�V) into a Z-graded
Lie superalgebra.

Remark 3.1. In [DSK11] we identified W var (�V) with the quotient space �•(V) =
˜�•(V)/∂˜�•(V), where ˜�•(V) is the commutative associative unital superalgebra freely
generated over V by odd generators θ

(m)
i = δu(m)

i , i ∈ I, m ∈ Z+, and where ∂ :
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˜�•(V) → ˜�•(V) extends ∂ : V → V to an even derivation such that ∂θ
(m)
i = θ

(m+1)
i .

This identification is given by mapping the array

P =
(

∑

m0,...,mk∈Z+

f m0,...,mk
i0,...,ik

λ
m0
0 . . . λ

mk
k

)

i0,...,ik∈I
∈ W var

k

to the element
∫

∑

i0,...,ik∈I

∑

m0,...,mk∈Z+

f m0,...,mk
i0,...,ik

θ
(m0)
i0

. . . θ
(mk )
ik

∈ �k+1(V).

(It is easy to see that this map is well defined and bijective.) Here
∫

denotes, as usual, the
quotient map ˜�•(V) → ˜�•(V)/∂˜�•(V) = �•(V). We extend the variational derivative
to a map

δ

δui
=

∑

n∈Z+

(−∂)n ◦ ∂

∂u(n)
i

: �k+1(V) → �k+1(V),

by letting ∂

∂u(n)
i

act on coefficients (∈ V). Furthermore, we introduce the odd variational

derivatives

δ

δθi
=

∑

n∈Z+

(−∂)n ◦ ∂

∂θ
(n)
i

: �k+1(V) → �k(V).

Then the box product (3.10) takes, under the identification W var (�V) � �•(V), the
following simple form [Get02]:

P�Q =
∑

i∈I

δP

δθi

δQ

δui
.

We describe explicitly the spaces W var
k for k = −1, 0, 1. Clearly, W var−1 = V/∂V .

Also W var
0 = V� thanks to the obvious identification of V[λ]/(∂ + λ) with V . Finally,

the space V[λ,μ]/(∂ + λ + μ) is identified with V[λ] � V[∂], by letting μ = −∂ acting
on the left and λ = ∂ acting on the right. Hence elements in W var

1 correspond to � × �

matrix differential operators over V , and the skewsymmetry condition for an element of
W var

1 translates into the skewadjointness of the corresponding matrix differential opera-
tor (i.e. to the condition H∗

j i (∂) = −Hi j (∂), where, as usual, for a differential operator
L(∂) = ∑

n ln∂n , its adjoint is L∗(∂) = ∑

n(−∂)n ◦ ln). In order to keep the same
identification as in [DSK11], we associate to the array P = (

Pi j (λ, μ)
)

i, j∈I ∈ W var
1 ,

the following skewadjoint � × � matrix differential operator H = (

Hi j (∂)
)

i, j∈I , where

Hi j (λ) = Pji (λ,−λ − ∂), (3.11)

and ∂ acts from the left.
Next, we write some more explicit formulas for the Lie brackets in W var(�V). Since

S−1,k = ∅ and Sk+1,k = {1}, we have, for
∫

h ∈ V/∂V = W var−1 and Q ∈ W var
k+1:

[∫ h, Q]i0,...,ik (λ0, . . . , λk) = (−1)k[Q,
∫

h]i0,...,ik (λ0, . . . , λk)

= (−1)k
∑

j∈I

Q j,i0,...,ik (∂, λ0, . . . , λk)→
δh

δu j
.

(3.12)
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In particular, [∫ h,
∫

f ] = 0 for
∫

f ∈ V/∂V . For Q ∈ V� = W var
0 we have

[Q,
∫

h] = −[∫ h, Q] =
∑

j∈I

∫

Q j
δh

δu j
= ∫

X Q(h), (3.13)

where X Q is the evolutionary vector field with characteristics Q, defined in (3.6). Fur-
thermore, for H = (

Hi j (∂)
)

i, j∈I ∈ W var
1 (via the identification (3.11)), we have

[H,
∫

h] = H(∂)
δh

δu
∈ V�. (3.14)

Since S0,k = {1} and Sk,k = {(α, 0,
α

ˇ. . ., k)}k
α=0, we have, for P ∈ V� = W var

0 and
Q ∈ W var

k ,

[P, Q]i0,...,ik (λ0, . . . , λk) = X P
(

Qi0,...,ik (λ0, . . . , λk)
)

−
k

∑

α=0

∑

j∈I,n∈Z+

Q
i0,...,

α

ǰ,...,ik

(λ0, . . . , λα + ∂, . . . , λk)→(−λα − ∂)n ∂ Piα

∂u(n)
j

.

In particular, for Q ∈ V� = W var
0 , we get the usual commutator of evolutionary vector

fields:

[P, Q]i = X P (Qi ) − X Q(Pi ),

while, for a skewadjoint � × � matrix differential operator H(∂) ∈ W var
1 , we get

[P, H ](∂) = X P
(

H(∂)
) − DP(∂) ◦ H(∂) − H(∂) ◦ D∗

P (∂), (3.15)

where, in the first term of the RHS, X P (H(∂)) denotes the �×� matrix differential oper-
ator whose (i, j) entry is obtained by applying X P to the coefficients of the differential
operator Hi j (∂). In the last two terms of the RHS of (3.15), DP denotes the Frechet
derivative of P , defined in (3.7), and D∗

P is its adjoint matrix differential operator.

Finally, we write Eq. (3.10) in the case when h = 1. Since S1,k = {(0,
α

ˇ. . ., k, α)}k
α=0

and Sk−1,k = {(α, β, 0,
α

ˇ. . .
β

ˇ. . ., k)}k
0≤α<β≤k , we have, for a skewadjoint matrix differen-

tial operator H = (

Hi j (∂)
)

i, j∈I ∈ W var
1 (via the identification (3.11)) and for P ∈ W var

k−1:

[H, P]i0,...,ik (λ0, . . . , λk) = (−1)k+1
∑

j∈I,n∈Z+

k
∑

α=0

(−1)α

×
(∂ P

i0,
α

ˇ...,ik

(λ0,
α

ˇ. . ., λk)

∂u(n)
j

(λα + ∂)n Hj,iα (λα) +
k

∑

β=α+1

(−1)β

×P
j,i0,

α

ˇ...
β

ˇ...,ik

(λα + λβ + ∂, λ0,
α

ˇ. . .
β

ˇ. . ., λk)→(−λα − λβ − ∂)n ∂ Hiβ ,iα (λα)

∂u(n)
j

)

. (3.16)
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In particular, if K = (

Ki j (∂)
)

i, j∈I ∈ W var
1 , we have [K , H ] = [H, K ] = K�H +

H�K , where

(K�H)i0,i1,i2(λ0, λ1, λ2) =
∑

j∈I,n∈Z+

(∂ Hi0,i1(λ1)

∂u(n)
j

(λ2 + ∂)n K j,i2(λ2)

+
∂ Hi1,i2(λ2)

∂u(n)
j

(λ0 + ∂)n K j,i0(λ0) +
∂ Hi2,i0(λ0)

∂u(n)
j

(λ1 + ∂)n K j,i1(λ1)
)

. (3.17)

Remark 3.2. Given a skewadjoint matrix differential operator H = (

Hi j (∂)
)

, we can
define the corresponding “variational” λ-brackets {· λ ·}H : V × V → V[λ], given by
the following formula (cf. [DSK06]):

{ fλg} =
∑

i, j∈I,m,n∈Z+

∂g

∂u(n)
j

(λ + ∂)n Hji (λ + ∂)(−λ − ∂)m ∂ f

∂u(m)
i

. (3.18)

One can write the above formulas in this language (cf. [DSK11]).

Proposition 3.3. Assuming that F �= C, the Z-graded Lie superalgebra W var(�V) is
transitive, hence it is a prolongation of the pair (�V/∂V, Vect∂ (V)).

Proof. First, we show that W var
0 acts faithfully on W var−1 = V/∂V , via Eq. (3.13). Namely,

we have to show that if

∑

j∈I

∫

Q j
δh

δu j
= 0, (3.19)

for every
∫

h ∈ V/∂V , then Q = 0. For that it suffices to take h = un+1
i

n+1 ϕ, where n ≥ 0
and ϕ ∈ F . In this case, Eq. (3.19) reads

∫

Qi un
i ϕ = 0 for all i ∈ I, n ≥ 0, ϕ ∈ F . If

ϕ′ �= 0 for some ϕ ∈ F , then ϕ is transcendental over C, hence F is infinite dimensional
over C. Taking n = 0 it is easy to deduce that Qi ∈ F . But then, taking n = 1 it follows
that Qi = 0 for all i ∈ I , as we wanted. (Note that, when F = C, this claim is false, as
the example Q = (

u(1)
i

)

i∈I shows. We thank the referee for pointing this out.)

Next, we note that, if H(∂) is an �×� matrix differential operator such that H(∂)
δ f
δu =

0 for every f ∈ V , then H(∂) = 0 (cf. [BDSK09]). Indeed, if H(∂) has order N and

Hi j (∂) = ∑N
n=0 hi j;n∂n with some hi j;N �= 0, then letting f = (−1)M

2 (u(M)
j )2, we have

δ f
δuk

= δk, j u
(2M)
j and, for M sufficiently large, ∂

∂u(2M+N )
j

(

H(∂)
δ f
δu

)

i = hi j;N �= 0 (here

we are using the assumption that V contains R�). The claim follows immediately by this
observation and Eq. (3.12). ��

3.3. The cohomology complex (W var(�V), δK ). Let K = (

Ki j (∂)
)

i, j∈I ∈ W var
1 be

a Hamiltonian operator, i.e. K is skewadjoint and [K , K ] = 0. Then (ad K )2 =
0, and we can consider the associated variational Poisson cohomology complex
(W var(�V), ad K ). Let Z•

K (V) = ⊕∞
k=−1 Zk

K , where Zk
K = Ker

(

ad K
∣

∣

W var
k

)

, and
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B•
K (V) = ⊕∞

k=−1 Bk
K , where Bk

K = (ad K )
(

W var
k−1

)

. Then Z•
K (V) is a Z-graded sub-

algebra of the Lie superalgebra W var(�V), and B•
K (V) is a Z-graded ideal of Z•

K (V).
Hence, the corresponding variational Poisson cohomology

H•
K (V) =

∞
⊕

k=−1

Hk
K , Hk

K = Zk
K

/Bk
K ,

is a Z-graded Lie superalgebra.
In the special case when K = (

Ki j (∂)
)

i, j∈I has coefficients in F , which, as in
[DSK11], we shall call a quasiconstant �×� matrix differential operator, formula (3.16)
for the differential δK = ad K becomes for P ∈ W var

k−1, k ≥ 0,

(δK P)i0,...,ik (λ0, . . . , λk)

= (−1)k+1
∑

j∈I,n∈Z+

k
∑

α=0

(−1)α
∂ P

i0,
α

ˇ...,ik

(λ0,
α

ˇ. . ., λk)

∂u(n)
j

(λα + ∂)n K j,iα (λα). (3.20)

In fact, as shown in [DSK11, Prop.9.9], if K = (

Ki j (∂)
)

i, j∈I is an arbitrary quasi-
constant � × � matrix differential operator (not necessarily skewadjoint), then the same
formula (3.20) still gives a well defined linear map δK : W var

k−1 → W var
k , k ≥ 0, such

that δ2
K = 0. Hence, we get a cohomology complex (W var(�V), δK ). As before, we

denote Zk
K = Ker

(

δK
∣

∣

W var
k

)

,Bk
K = δK

(

W var
k−1

)

and Hk
K = Zk

K

/Bk
K .

For example, H−1
K = Z−1

K = {∫

f ∈ V/∂V
∣

∣

∣ K ∗(∂)
δ f
δu = 0

}

, which is called

the set of central elements (or Casimir elements) of K ∗. Next, we have (see [DSK11,
Sect. 11.3]):

B0
K =

{

K ∗(∂)
δ f

δu

}

f ∈V , Z0
K =

{

P ∈ V�
∣

∣

∣ DP (∂) ◦ K (∂) = K ∗(∂) ◦ D∗
P(∂)

}

.

Furthermore, given P ∈ V� = W var
0 , the element δK P ∈ W var

1 , under the identifica-
tion (3.11) of W var

1 with the space of � × � skewadjoint matrix differential operators,
coincides with

δK P = DP (∂) ◦ K (∂) − K ∗(∂) ◦ D∗
P (∂). (3.21)

Hence, B1
K = {

DP (∂) ◦ K (∂) − K ∗(∂) ◦ D∗
P (∂)

}

P∈V� . Finally, Z1
K consists, under

the same identification, of the � × � skewadjoint matrix differential operators H(∂) for
which the RHS of (3.17) is zero.

Remark 3.4. If
∫

f,
∫

g ∈ V/∂V , we have [∫ f,
∫

g] = 0 and

[δK
∫

f,
∫

g] − [∫ f, δK
∫

g] = ∫

(

− δg

δu
K ∗(∂)

δ f

δu
− δ f

δu
K ∗(∂)

δg

δu

)

.

Hence, the differential δK in (3.20) is not an odd derivation unless K (∂) is skewadjoint.
In particular, the corresponding cohomology H•

K (V) does not have a natural structure
of a Lie superalgebra unless K (∂) is a skewadjoint operator.
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3.4. The variational Poisson cohomology H(W var(�V), δK ) for a quasiconstant matrix
differential operator K (∂). Let V be an algebra of differential functions extension of
R�, the algebra of differential polynomials in the differential variables u1, . . . , u� over
a differential field F . Let K = (

Ki j (∂)
)

i, j∈I be a quasiconstant � × � matrix differ-
ential operator of order N (not necessarily skewadjoint). For k ≥ −1, we denote by
Ak

K ⊂ W var
k the subset consisting of arrays of the form

(
∑

j∈I

[

Pj,i0,...,ik (λ0, . . . , λk)u j
]

)

i0,...,ik∈I
, (3.22)

where [x] denotes the coset of x ∈ V[λ0, . . . , λk] modulo (λ0+· · ·+λk +∂)V[λ0, . . . , λk],
satisfying the following properties. For j, i0, . . . , ik ∈ I , Pj,i0,...,ik (λ0, . . . , λk) are poly-
nomials in λ0, . . . , λk with coefficients in F of degree at most N − 1 in each variable
λi , skewsymmetric with respect to simultaneous permutations of the indices i0, . . . , ik ,
and the variables λ0, . . . , λk , and satisfying the following condition:

k+1
∑

α=0

(−1)α
∑

j∈I

P
j,i0,

α

ˇ...,ik+1
(λ0,

α

ˇ. . ., λk+1)K jiα (λα) ≡ 0

mod (λ0 + · · · + λk+1 + ∂)F[λ0, . . . , λk+1].
(3.23)

For example, A−1
K consists of elements of the form

∑

j∈I

∫

Pj u j ∈ V/∂V , where

P ∈ F� solves the equation

K ∗(∂)P = 0.

In fact it is not hard to show that A−1
K coincides with the set Z−1

K of central elements of
K ∗ (see Lemma 4.4 below).

Next, A0
K consists of elements of the form

( ∑

j∈I P∗
i j (∂)u j

)

i∈I ∈ V� = W var
0 , where

P = (

Pi j (∂)
)

i, j∈I is a quasiconstant � × � matrix differential operator of order at most
N − 1, solving the following equation:

K ∗(∂) ◦ P(∂) = P∗(∂) ◦ K (∂). (3.24)

The description of the set A1
K is more complicated. Given a polynomial in two

variables P(λ, μ) = ∑N
m,n=0 cmnλmμn ∈ F[λ,μ], let P∗1(λ, μ) = ∑N

m,n=0(−λ −
∂)mcmnμn , and P∗2(λ, μ) = ∑N

m,n=0(−μ − ∂)ncmnλm . Then, under the identification
of W var

1 with the space of skewadjoint �×� matrix differential operators given by (3.11),
A1

K consists of operators H = (

Hi j (∂)
)

i, j∈I of the form

Hi j (λ) = −
∑

k∈I

P∗
ki j (λ + ∂, λ)uk,

where, for i, j, k ∈ I , Pki j (λ, μ) ∈ F[λ,μ] are polynomials of degree at most N − 1
in each variable, such that Pki j (λ, μ) = −Pkji (μ, λ), and such that

∑

h∈I

(

K ∗
ih(λ + μ + ∂)Phjk(λ, μ) + P∗2

hki (μ, λ + μ + ∂)Khj (λ)

+P∗1
hi j (λ + μ + ∂, λ)Khk(μ)

)

= 0.

Theorem 11.9 from [DSK11] can be stated as follows:
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Theorem 3.5. Let V be a normal algebra of differential functions in � differential vari-
ables over a linearly closed differential field F , and let C ⊂ F be the subfield of
constants. Let K (∂) be a quasiconstant � × � matrix differential operator of order
N with invertible leading coefficient KN ∈ Mat�×�(F). Then we have the following
decomposition of Zk

K in a direct sum of vector spaces over C:

Zk
K = Ak

K ⊕ Bk
K .

Hence, we have a canonical isomorphism Hk
K � Ak

K . Moreover, Ak
K (hence Hk

K ) is a

vector space over C of dimension
( N�

k+2

)

.

Recall that, if K is a skewadjoint operator, then H•
K (V) = ⊕

k≥−1 Hk
K is a Lie

superalgebra with consistent Z-grading. In Sect. 5 we will prove the following

Theorem 3.6. Let V be a normal algebra of differential functions, over a linearly closed
differential field F . Let K (∂) be a quasiconstant skewadjoint � × � matrix differential
operator of order N with invertible leading coefficient KN ∈ Mat�×�(F). Then the
Z-graded Lie superalgebra H•

K (V) is isomorphic to the Z-graded Lie superalgebra
˜H(N�, S) constructed in Sect. 2.2, where S is the matrix, in some basis, of the nonde-
generate symmetric bilinear form 〈 ·|· 〉0

K constructed in Sect. 5.1.

Remark 3.7. The subspace A•
K (V) = ⊕∞

k=−1 Ak
K is NOT, in general, a subalgebra of the

Lie superalgebra Z•
K (V). We can enlarge it to be a subalgebra by letting ˜Ak

K ⊂ Zk
K be the

subset consisting of arrays of the form (3.22), where Pj,i0,...,ik (λ0, . . . , λk) are polynomi-
als in λ0, . . . , λk with coefficients in F of arbitrary degree, skewsymmetric with respect
to simultaneous permutations of the indices i0, . . . , ik , and the variables λ0, . . . , λk , and
satisfying condition (3.23). Then, clearly, A•

K (V) � ˜A•
K (V)

/(

˜A•
K (V) ∩ B•

K (V)
)

. For
example, it is not hard to show that

˜A0
K ∩ B0

K = {

S(∂)K (∂)
∣

∣S∗(∂) = S(∂)
}

,

so that, A0
K is a Lie algebra,

{

S(∂)K (∂)
∣

∣S∗(∂) = S(∂)
}

is its ideal, and, by Theorem
3.6, the quotient is isomorphic to the Lie algebra so(N�).

Remark 3.8. If N ≤ 1, then A•
K (V) is a subalgebra of the Lie superalgebra Z•

K (V), i.e.
in this case the complex (W var (�V), ad K ) is formal (cf. [Get02]). However, this is not
the case for N > 1.

4. Essential Variational Poisson Cohomology

In this section we introduce the subalgebra of essential variational Poisson cohomology
and we prove a vanishing theorem for this cohomology.

4.1. The Casimir subalgebra Z−1
K ⊂ V/∂V and the essential subcomplex EW var(�V).

Throughout this section we let V be an algebra of differential functions in the variables
ui , i ∈ I , and we denote, as usual, by F the subalgebra of quasiconstants, and by C ⊂ F
the subalgebra of constants. Let K = (

Ki j (∂)
)

i, j∈I be a Hamiltonian � × � matrix dif-
ferential operator with coefficients in V . In other words, we can view K as an element
of W var

1 such that [K , K ] = 0, hence, we can consider the corresponding cohomology
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complex (W var(�V) = ⊕

k≥−1 W var
k , ad K ). Recall from Sect. 3.3 that we have the

Z-graded subalgebra Z•
K (V) = ⊕

k≥−1 Zk
K of closed elements in W var(�V), and,

inside it, the ideal of exact elements B•
K (V) = ⊕

k≥−1 Bk
K . The space Z−1

K of central
elements is, in this case,

Z−1
K =

{

C ∈ V/∂V
∣

∣

∣ [K , C]
(

= K (∂)
δC

δu

)

= 0
}

. (4.1)

We call an element P ∈ W var
k essential if the following condition holds:

[

. . .
[[P, C0], C1

]

, . . . , Ck
] = 0, ∀C0, . . . , Ck ∈ Z−1

K . (4.2)

We denote by EW var
k ⊂ W var

k the subspace of essential elements. For example, EW var−1 =
0 and EW var

0 consists of elements P ∈ V� such that
∫

P δC
δu = 0 for all central elements

C ∈ Z−1
K . Furthermore, EW var

1 consists, under the identification (3.11), of skewadjoint
� × � matrix differential operators H(∂), such that

∫

δC1

δu
H(∂)

δC2

δu
= 0, ∀C1, C2 ∈ Z−1

K .

Let EW var = ⊕

k≥−1 EW var
k . This is a Z-graded subspace of W var(�V), depending on

the operator K (∂). Finally, denote by EZ•
K (V) = ⊕

k≥−1 EZk
K the Z-graded subspace

of essentially closed elements, i.e. EZk
K = Zk

K ∩ EW var
k .

Proposition 4.1. (a) EW var is a Z-graded subalgebra of the Lie superalgebra
W var(�V). Consequently EZ•

K (V) is a Z-graded subalgebra of EW var.
(b) Exact elements are essentially closed, i.e. B•

K (V) ⊂ EZ•
K (V), hence they form a

Z-graded ideal of the Lie superalgebra EZ•
K (V).

Proof. Let P ∈ EW var
h and Q ∈ EW var

k−h , with 0 ≤ h ≤ k, and let C0, . . . , Ck ∈ Z−1
K .

Using iteratively the Jacobi identity, we can express

[. . . [[[P, Q], C0], C1], . . . , Ck]
as a linear combination of the commutators of the pairs of elements of the form

[. . . [[P, Ci0 ], Ci1 ], . . . , Cis−1 ] and [. . . [[Q, Cis ], Cis+1 ], . . . , Cik ],
where s is either h or h + 1. In the latter case the first element is zero since P is essential,
while in the former case the second element is zero since Q is essential. Hence, [P, Q]
is essential. The second claim of part (a) follows since EZ•

K (V) is the intersection of
EW var and Z•

K (V), which are both Z-graded subalgebra of W var(�V).
For part (b), given the exact element [K , P], where P ∈ EW var

k−1, and given

C0, · · · , Ck ∈ Z−1
K , we have, using again the Jacobi identity,

[. . . [[[K , P], C0], C1], . . . , Ck] = [K , [. . . [[P, C0], C1], . . . , Ck]] = 0.

��
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So, we define the essential variational Poisson cohomology as

EH•
K (V) =

⊕

k≥−1

EHk
K , where EHk

K = EZk
K /Bk

K .

Clearly, this is a Z-graded subalgebra of the Lie superalgebra H•
K (V) = H(W var

(�V), ad K ).

Remark 4.2. Let H(∂)be a Hamiltonian operator compatible with K (∂), i.e. [K , H ] = 0.
Suppose that the first step of the Lenard-Magri scheme always works, namely for every
central element C ∈ Z−1

K there exists
∫

h ∈ V/∂V such that [H, C] = [K ,
∫

h]. Then
H is essentially closed. Indeed, [[H, C], C1] = [[K ,

∫

h], C1] = [∫ h, [K , C1]] = 0
for every C, C1 ∈ Z−1

K . This is one of the reasons for the name ”essential”, since only
for the essentially closed operators H the Lenard-Magri scheme may work. Conversely,
suppose H(∂) is an essentially closed Hamiltonian operator, i.e. H(∂) ∈ EZ1

K . Then,
for every central element C ∈ Z−1

K , it is immediate to see that there exists
∫

h ∈ V/∂V
and A ∈ EZ0

K such that [H, C] = [K ,
∫

h] + A. If the first essential variational Poisson
cohomology is zero, we can choose A to be zero, which means that the first step in the
Lenard-Magri scheme works.

4.2. Vanishing of the essential variational Poisson cohomology. In this section we prove
the following

Theorem 4.3. If V is a normal algebra of differential functions in � differential variables
over a linearly closed differential field F , and if K (∂) is a quasiconstant � × � matrix
differential operator of order N with invertible leading coefficient K N ∈ Mat�×�(F),
then EH•

K (V) = 0.

In order to prove Theorem 4.3 we will need some preliminary lemmas.

Lemma 4.4. Let V be an arbitrary algebra of differential functions. Let K (∂) : V� →
V� be a quasiconstant �×� matrix differential operator with invertible leading coefficient
KN ∈ Mat�×�(F) Then:

(a) Ker(K (∂)) = Ker
(

K (∂)
∣

∣F�

)

.

(b) The map δ
δu : V/∂V → V� restricts to a surjective map δ

δu : Z−1
K →

Ker
(

K (∂)
∣

∣F�

)

.
(c) If, moreover, V is a normal algebra of differential functions and ∂ : F → F is

surjective, then we have a bijection δ
δu : Z−1

K
∼−→ Ker

(

K (∂)
∣

∣F�

)

.

Proof. For part (a), we need to show that, if F ∈ V� solves K (∂)F = 0, then F ∈ F�.
Suppose, by contradiction, that F /∈ F�. We may assume, without loss of generality, that
KN = I, and that the first coordinate F1 has maximal differential order, i.e. F1, . . . , F� ∈
Vn,i and F1 /∈ Vn,i−1, for some i ∈ I, n ∈ Z+. Then ∂

∂u(n+N )
i

(

K (∂)F
)

1 = ∂ F1

∂u(n)
i

�= 0,

a contradiction. Next, we prove part (b). The inclusion δ
δu (Z−1

K ) ⊂ Ker
(

K (∂)
∣

∣F�

)

immediately follows from part (a). Furthermore, if P ∈ Ker
(

K (∂)
∣

∣F�

)

, then C =
∫ ∑

i Pi ui ∈ Z−1
K is such that δC

δu = P . Hence, δ
δu

(Z−1
K

) = Ker
(

K (∂)
∣

∣F�

)

, as desired.
Finally, for part (c), if V is normal, we have by [BDSK09, Prop.1.5] that Ker

(

δ
δu :

V/∂V → V�) = F/∂F , hence, if ∂F = F , we conclude that δ
δu : V/∂V → V� is

injective. ��
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To simplify notation, let Z := Ker
(

K (∂)
)

. Under the assumptions of Theorem 4.3,
by part (a) in Lemma 4.4, we have Z ⊂ F�, and by part (c) we have a bijection

δ

δu
: Z−1

K
∼−→ Z, (4.3)

the inverse map being

Z � F =
⎛

⎜

⎝

f1
...

f�

⎞

⎟

⎠
�→

∑

i

∫

fi ui ∈ Z−1
K .

Lemma 4.5. If F1, . . . , FN� are elements of F�, linearly independent over C, and sat-
isfying a differential equation

F (N ) = A0 F + A1 F ′ + · · · + AN−1 F (N−1), (4.4)

for some A0, . . . , AN−1 ∈ Mat�×�(F), then the vectors

G1 :=

⎛

⎜

⎜

⎜

⎝

F1
F ′

1
...

F (N−1)
1

⎞

⎟

⎟

⎟

⎠

, . . . , G N� :=

⎛

⎜

⎜

⎜

⎝

FN�

F ′
N�

...

F (N−1)
N�

⎞

⎟

⎟

⎟

⎠

∈ F N� (4.5)

are linearly independent over F .

Proof. Suppose by contradiction that

a1G1 + a2G2 + · · · + aN�G N� = 0, (4.6)

is a nontrivial relation of linear dependence over F . We can assume, without loss of gen-
erality, that such relation has minimal number of nonzero coefficients a1, . . . , aN� ∈ F ,
and that a1 = 1. Note that Eq. (4.6) can be equivalently rewritten as the following system
of equations in F�:

a1 F1 + a2 F2 + · · · + aN�FN� = 0,

a1 F ′
1 + a2 F ′

2 + · · · + aN�F ′
N� = 0,

. . .

a1 F (N−1)
1 + a2 F (N−1)

2 + · · · + aN�F (N−1)
N� = 0.

(4.7)

Applying ∂ to both sides of Eq. (4.6), we get

a1G ′
1 + a2G ′

2 + · · · + aN�G ′
N� + a′

1G1 + a′
2G2 + · · · + a′

N�G N� = 0. (4.8)

The vector a1G ′
1 + a2G ′

2 + · · · + aN�G ′
N� is an element of F N� whose first � coordinates

are a1 F ′
1 + a2 F ′

2 + · · · + aN�F ′
N�, which are zero by the second equation in (4.7), the

second � coordinates are a1 F (2)
1 + a2 F (2)

2 + · · · + aN�F (2)
N� , which are zero by the third

equation in (4.7), and so on, up to the last set of � coordinates, which are, by Eq. (4.4),

a1 F (N )
1 + a2 F (N )

2 + · · · + aN�F (N )
N�= A0

(

a1 F1 + a2 F2 + · · · + aN�FN�

)

+ A1
(

a1 F ′
1 + a2 F ′

2 + · · · + aN�F ′
N�

)

+ · · · + AN−1
(

a1 F (N−1)
1 + a2 F (N−1)

2 + · · · + aN�F (N−1)
N�

)

,
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which is zero again by Eqs. (4.7). Hence, Eq. (4.8) reduces to

a′
1G1 + a′

2G2 + · · · + a′
N�G N� = 0,

which, by the assumption that a1 = 1 and the minimality assumption on the coefficients
of linear dependence (4.6), implies that all coefficients a1, . . . , aN� are constant. This,
by the first equation in (4.7), contradicts the assumption that F1, . . . , FN� are linearly
independent over C. ��
Lemma 4.6. If P(∂) is a quasiconstant m × � (m ≥ 1) matrix differential operator
of order at most N − 1 such that P(∂)F = 0 for every F ∈ Z = Ker

(

K (∂)
)

, then
P(∂) = 0.

Proof. Recall from [DSK11, Cor.A.3.7] that, if K (∂) = K0 + K1∂ + · · · + KN ∂ N , with
Ki ∈ Mat�×�(F), i = 0, . . . , N and KN invertible, then the set of solutions in F� of
the homogeneous system K (∂)F = 0 is a vector space over C of dimension N�. Let
F1, . . . , FN� ∈ F� be a basis of this space. Note that the equation K (∂)F = 0 has
the form (4.4) with Ai = −K −1

N Ki , i = 0, . . . , N − 1. Hence, by Lemma 4.5, all the
vectors G1, . . . , G N� in (4.5) are linearly independent over F , i.e. the Wronskian matrix

W =

⎛

⎜

⎜

⎝

F1 F2 . . . FN�

F ′
1 F ′

2 . . . F ′
N�

. . .

F (N−1)
1 F (N−1)

2 . . . F (N−1)
N�

⎞

⎟

⎟

⎠

is nondegenerate. By assumption P(∂)F1 = · · · = P(∂)FN� = 0. Hence, letting
P(∂) = P0 + P1∂ + · · · + PN−1∂

N−1, where Pi ∈ Matm×�(F), we get
(

P0, P1, . . . , PN−1

)

W = 0,

which, by the nondegeneracy of W , implies that P0 =, · · · = PN−1 = 0. ��
Proof of Theorem 4.3. Let Q ∈ Ak

K . Recalling Theorem 3.5 and Proposition 4.1(b), it
suffices to show that, if Q is essential, then it is zero. By the definition of Ak

K , we have,
in particular, that Q is an array with entries

Qi0,...,ik (λ0, . . . , λk) =
∑

j∈I

Pj,i0,...,ik (λ0, . . . , λk)u j

∈ V[λ0, . . . , λk]/(∂ + λ0 + · · · + λk)V[λ0, . . . , λk],
for some polynomials Pj,i0,...,ik (λ0, . . . , λk) ∈ F[λ0, . . . , λk] of degree at most N −1 in
each variable λi . Recalling formula (3.12), we have, for arbitrary C0, . . . , Ck ∈ V/∂V ,

[. . . [[Q, C0], C1], . . . , Ck] =
∑

j,i0,...,ik∈I

∫

u j Pj,i0,...,ik (∂0, . . . , ∂k)
δC0

δui0

. . .
δCk

δuik

,

(4.9)

where ∂s means ∂ acting on δCs
δuis

. Hence, if Q is essential, (4.9) is zero for all C0, . . . , Ck ∈
Z−1

K . By Lemma 4.4, we thus have

∑

j,i0,...,ik∈I

∫

u j Pj,i0,...,ik (∂0, . . . , ∂k)(F0)i0 . . . (Fk)ik = 0,
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for all F0, . . . , Fk ∈ Ker
(

K (∂)
∣

∣F�

)

. Since all coefficients of the Pj,i0,...,ik ’s and all
entries of the Fi ’s are quasiconstant, the above equation is equivalent to

∑

i0,...,ik∈I

Pj,i0,...,ik (∂0, . . . , ∂k)(F0)i0 . . . (Fk)ik = 0, ∀ j ∈ I.

Applying Lemma 4.6 iteratively to each factor, we conclude that the polynomials
Pj,i0,...,ik (λ0, . . . , λk) are zero. ��
Remark 4.7. By Remark 4.2, from the point of view of applicability of the Lenard-Magri
scheme for a bi-Hamiltonian pair (H, K ), we should consider only essentially closed
Hamiltonian operators H(∂). Moreover, by Theorem 4.3, if K (∂) is a quasiconstant
matrix differential operator with invertible leading coefficient, an essentially closed
H(∂) must be exact, namely, recalling Eq. (3.21), it must have the form

H(∂) = DP (∂) ◦ K (∂) + K (∂) ◦ D∗
P (∂),

for some P ∈ V�, and two such P’s differ by an element of the form K (∂)
δ f
δu for some

∫

f ∈ V/∂V .

Corollary 4.8. Under the assumptions of Theorem 4.3, the Z-graded Lie superalgebra
H•

K (V) is transitive.

Proof. By Theorem 4.3, if P ∈ Hk
K is such that [. . . [[P, C0], C1], . . . , Ck] = 0 for

every C0, . . . , Ck ∈ Z−1
K = H−1

K , then P = 0. This, by definition, means that H•
K (V)

is transitive. ��

5. Isomorphism of Z-Graded Lie Superalgebras H•
K (V) � ˜H(N�, S)

In this section we introduce an inner product 〈 ·|· 〉K : F� × F� → F associated to an
�×� matrix differential operator K = (

Ki j (∂)
)

i, j∈I , which is used to prove Theorem 3.6.

5.1. The inner product associated to K . Let F be a differential algebra with derivation
∂ , and denote by C the subalgebra of constants. As usual, we denote by · the standard
inner product on F�, i.e. F · G = ∑

i∈I Fi Gi ∈ V for F, G ∈ V�, where, as before,
I = {1, . . . , �}.

Consider the algebra of polynomials in two variables F[λ,μ]. Clearly, the map λ+μ+
∂ : F[λ,μ] → F[λ,μ] is injective. Hence, given P(λ, μ) ∈ (λ + μ + ∂)F[λ,μ], there
is a unique preimage of this map in F[λ,μ], that we denote by (λ + μ + ∂)−1 P(λ, μ) ∈
F[λ,μ].

Let now K (∂) = (

Ki j (∂)
)

i, j∈I be an arbitrary �×� matrix differential operator over
F . We expand its matrix entries as

Ki j (λ) =
N

∑

n=0

Ki j;nλn, Ki j;n ∈ F . (5.1)

The adjoint operator is K ∗(∂), with entries

K ∗
i j (λ) = K ji (−λ − ∂) =

N
∑

n=0

(−λ − ∂)n K ji;n . (5.2)
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It follows from the expansions (5.1) and (5.2) that, for every i, j ∈ I , the polynomial
Ki j (μ) − K ∗

j i (λ) lies in the image of λ + μ + ∂ , so that we can consider the polynomial

(λ + μ + ∂)−1(Ki j (μ) − K ∗
j i (λ)

) ∈ F[λ,μ]. (5.3)

Next, for a polynomial P(λ, μ) = ∑N
m,n=0 pmnλ

mμn ∈ F[λ,μ], we use the follow-
ing notation:

P(λ, μ)
(|λ=∂ f

)(|μ=∂ g
) :=

N
∑

m,n=0

pmn(∂
m f )(∂ng). (5.4)

Based on the observation (5.3), and using the notation in (5.4), we define the fol-
lowing inner product 〈 ·|· 〉K : F� × F� → F , associated to K = (

Ki j (∂)
)

i, j∈I ∈
Mat�×�(F[∂]):

〈F |G〉K =
∑

i, j∈I

(λ + μ + ∂)−1(Ki j (μ) − K ∗
j i (λ)

)(|λ=∂ Fi
)(|μ=∂ G j

)

. (5.5)

It is not hard to write an explicit formula for 〈F |G〉K , using the expansion (5.1) for
Ki j (λ):

〈F |G〉K =
∑

i, j∈I

N
∑

n=0

n−1
∑

m=0

(

n

m

)

(−∂)n−1−m(Fi Ki j;n∂m G j ). (5.6)

Lemma 5.1. For every F, G ∈ V�, we have

∂〈F |G〉K = F · K (∂)G − G · K ∗(∂)F.

Proof. It immediately follows from the definition (5.5) of 〈F |G〉K . ��
Lemma 5.2. For every K (∂) ∈ Mat�×�(F[∂]) and F, G ∈ F�, we have

〈G|F〉K ∗ = −〈F |G〉K .

In particular, the inner product 〈 ·|· 〉K is symmetric (respectively skewsymmetric) if K
is skewadjoint (resp. selfadjoint).

Proof. By Eq. (5.5) we have

〈G|F〉K ∗ =
∑

i, j∈I

(λ + μ + ∂)−1(K ∗
i j (μ) − K ji (λ)

)(|λ=∂ Gi
)(|μ=∂ Fj

)

= −
∑

i, j∈I

(λ + μ + ∂)−1(Ki j (μ) − K ∗
j i (λ)

)(|λ=∂ Fi
)(|μ=∂ G j

) = −〈F |G〉K .

��
Following the notation of the previous sections, we let Z = Ker

(

K (∂)
) ⊂ F�.

Clearly, Z is a submodule of the C-module F�.

Lemma 5.3. If K (∂) ∈ Mat�×�(F[∂]) is skewadjoint, then 〈F |G〉K ∈ C for every
F, G ∈ Z
Proof. It is an immediate consequence of Lemma 5.1. ��
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According to Lemmas 5.2 and 5.3, if K (∂) ∈ Mat�×�(F[∂]) is skewadjoint, the
restriction of 〈 ·|· 〉K to Z ⊂ F� defines a symmetric bilinear form on Z with values in
C, which we denote by

〈 ·|· 〉0
K := 〈 ·|· 〉K

∣

∣Z : Z × Z → C.

Lemma 5.4. Assuming that K (∂) ∈ Mat�×�(F[∂]) is a skewadjoint operator and
P(∂) ∈ Mat�×�(F[∂]) is such that K (∂)P(∂) + P∗(∂)K (∂) = 0, we have

〈P(∂)F |G〉K + 〈F |P(∂)G〉K = 0

for every F, G ∈ Z .

Proof. By Eq. (5.5), we have

〈P(∂)F |G〉K

=
∑

i, j,k∈I

(λ + μ + ∂)−1(Kkj (μ) + K jk(λ)
)(|λ=∂ Pki (∂)Fi

)(|μ=∂ G j
)

=
∑

i, j,k∈I

(λ + μ + ∂)−1(Kkj (μ) + K jk(λ + ∂)
)

Pki (λ)
(|λ=∂ Fi

)(|μ=∂ G j
)

=
∑

i, j,k∈I

(λ + μ + ∂)−1(Pki (λ)Kkj (μ)−P∗
jk(λ + μ)Kki (λ)

)(|λ=∂ Fi
)(|μ=∂ G j

)

.

In the last identity we used the assumption that K (∂)P(∂) = −P∗(∂)K (∂). Similarly,

〈F |P(∂)G〉K =
∑

i, j,k∈I

(λ + μ + ∂)−1

×( − P∗
ik(μ + ∂)Kkj (μ) + Pkj (μ)Kki (λ)

)(|λ=∂ Fi
)(|μ=∂ G j

)

.

Combining these two equations, we get

〈P(∂)F |G〉K + 〈F |P(∂)G〉K

=
∑

i, j,k∈I

(λ + μ + ∂)−1
(

(

Pki (λ) − P∗
ik(μ + ∂)

)

Kkj (μ)

+
(

Pkj (μ) − P∗
jk(λ + μ)

)

Kki (λ)
)

(|λ=∂ Fi
)(|μ=∂ G j

)

. (5.7)

We next observe that the differential operator Pki (λ) − P∗
ik(μ + ∂) lies in (λ + μ + ∂) ◦

(F[λ,μ])[∂], i.e. it is of the form

Pki (λ) − P∗
ik(μ + ∂) = (λ + μ + ∂) ◦ Qki (λ, μ + ∂),

for some polynomial Qki . Hence,

(λ + μ + ∂)−1(Pki (λ) − P∗
ik(μ + ∂)

)

Kkj (μ)
(|μ=∂ G j

) = Qik(λ, ∂)Kkj (∂)G j ,

which, after summing with respect to j ∈ I , becomes zero since, by assumption,
G ∈ Ker(K (∂)). Similarly,

(λ + μ + ∂)−1(Pkj (μ) − P∗
jk(λ + μ)

)

Kki (λ)
(|λ=∂ Fi

) = Qkj (μ, ∂)Kki (∂)Fi ,

which is zero after summing with respect to i ∈ I , since F ∈ Ker(K (∂)). Therefore the
RHS of (5.7) is zero, proving the claim. ��
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Proposition 5.5. Assuming that F is a linearly closed differential field, and that K (∂) ∈
Mat�×�(F[∂]) is a skewadjoint �×� matrix differential operator with invertible leading
coefficient, the C-bilinear form 〈 ·|· 〉0

K : Z × Z → C is nondegenerate.

Proof. Given F ∈ F�, consider the map PF : F� → F given by G �→ PF (G) =
〈F |G〉0

K . Equation (5.6) can be rewritten by saying that PF is a 1 × � matrix differential
operator, of order less than or equal to N − 1, with entries

(PF ) j (∂) =
∑

i∈I

N
∑

n=0

n−1
∑

m=0

(

n

m

)

(−∂)n−1−m ◦ Fi Ki j;n∂m .

Suppose now that PF (G) = 〈P|G〉0
K = 0 for all G ∈ Z ⊂ F�. By Lemma 4.6 we get

that PF (∂) = 0. On the other hand, the (left) coefficient of ∂ N−1 in (PF ) j (∂) is

0 =
∑

i∈I

N−1
∑

m=0

(

N

m

)

(−1)N−1−m Fi (KN )i j =
∑

i∈I

Fi (KN )i j .

Since, by assumption, KN ∈ Mat�×�(F) is invertible, we conclude that F = 0. ��

5.2. Proof of Theorem 3.6. Recall from Lemma 4.4 that H−1
K = Z−1

K is isomorphic, as
a C-vector space, to Z = Ker

(

K (∂)
)

, and, from Theorem 3.5, that dimC Z = N�. By
Corollary 4.3, the Z-graded Lie superalgebra H•

K (V) is transitive, i.e. if P ∈ Hk
K , k ≥ 0,

is such that [P,H−1
K ] = 0, then P = 0. Hence, due to transitivity, the representa-

tion of H0 on H−1
K = Z−1

K is faithful. Identifying Z−1
K � Z , we can therefore view

H0
K as a subalgebra of the Lie algebra gl(Z) = glN�. Recall, from Theorem 3.5 that

H0
K � A0

K consists of elements of the form Q = (∑

j P∗
i j (∂)u j

)

i∈I ∈ V�, where

P(∂) = (

Pi j (∂)
)

i∈I is an � × � matrix differential operator of order at most N − 1
solving Eq. (3.24). Moreover, by (3.13), the bracket of an element Q ∈ H0

K as above
and an element C ∈ Z−1

K = H−1
K ⊂ V/∂V , is given by

[Q, C] =
∑

i, j∈I

∫

(

P∗
i j (∂)u j

) δC

δui
=

∑

i, j∈I

∫

ui Pi j (∂)
δC

δu j
.

Hence, by the identification (4.3), the corresponding action of Q ∈ H0
K on Z ⊂ F� is

simply given by the standard action of the � × � matrix differential operator P(∂) on
F�. By Lemmas 5.2 and 5.3 and by Proposition 5.5, 〈 ·|· 〉0

K is a nondegenerate sym-
metric bilinear form on Z , and by Lemma 5.4 it is invariant with respect to this action
of Q ∈ H0

K on Z . Hence, the image of H0
K via the above embedding H0

K → gl(Z),
is a subalgebra of so(Z, 〈 ·|· 〉0

K ). Due to transitivity of the Z-graded Lie superalgebra
H•

K (V), it embeds in the full prolongation of the pair
(Z, so(Z, 〈 ·|· 〉0

K )
)

, which, by
Proposition 2.2, is isomorphic to ˜H(N�, S), where S is the N� × N� matrix of the
bilinear form 〈 ·|· 〉0

K , in some basis. By Theorem 3.5, dimC Hk
K = ( N�

k+2

)

, which is equal
to dimC ˜Hk(N�, S). We thus conclude that the Z-graded Lie superalgebras H•

K (V) and
˜H(N�, S) are isomorphic.
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Remark 5.6. The same arguments as above show that, without any assumption on the
algebra of differential functions V and on the differential field F (with subfield of con-
stants C), and for every Hamiltonian operator K (not necessarily quasiconstant nor with
invertible leading coefficient), we have an injective homomorphism of Z-graded Lie
superalgebras H•

K (V)/EH•
K (V) → W (n), where n = dimC(H−1

K ).

6. Translation Invariant Variational Poisson Cohomology

In the previous sections we studied the variational Poisson cohomology ˜H•
K (V) in the

simplest case when the differential field of quasiconstants F ⊂ V is linearly closed. In
this section we consider the other extreme case, often studied in literature – the translation
invariant case, i.e. when F = C.

6.1. Upper bound of the dimension of the translation invariant variational Poisson coho-
mology. Let V be a normal algebra of differential functions, and assume that it is trans-
lation invariant, i.e. the differential field F of quasiconstants coincides with the field C of
constants. Let K (∂) be an �×� matrix differential operator of order N , with coefficients
in Mat�×�(C), and with invertible leading coefficient KN .

For k ≥ −1, denote by ˜Hk the space of arrays
(

Pi0,...,ik (λ0, . . . , λk)
)

i0,...,ik∈I with
entries Pi0,...,ik (λ0, . . . , λk) ∈ C[λ0, . . . , λk], of degree at most N − 1 in each variable,
which are skewsymmetric with respect to simultaneous permutations of the indices
i0, . . . , ik and the variables λ0, . . . , λk (in the notation of [DSK11], ˜Hk = ˜�k−1

0,0 ). In

particular, ˜H−1 = C. Note that, for k ≥ −1, we have

dimC ˜Hk =
(

N�

k + 1

)

. (6.1)

The long exact sequence [DSK11, Eq. (11.4)] becomes (in the notation of the present
paper):

0 → C β−1−→ H−1
K

γ−1−→ ˜H0 α0−→ ˜H0 β0−→ . . .

· · · γk−1−→ ˜Hk αk−→ ˜Hk βk−→ Hk
K

γk−→ ˜Hk+1 αk+1−→ ˜Hk+1 βk+1−→ . . . . (6.2)

For every k ≥ −1, we have dimC(Hk
K ) = dimC(Ker γk) + dimC(Im γk). By

exactness of the sequence (6.2), we have that dimC(Im γk) = dimC(Ker αk+1), and
dimC(Ker γk) = dimC(Im βk). Moreover, dimC(Im β−1) = 1 and, for k ≥ 0, we
have, again by exactness of (6.2), that dimC(Im βk) = dimC ˜Hk − dimC(Ker βk) =
dimC ˜Hk − dimC(Im αk) = dimC(Ker αk). Hence, using (6.1) we conclude that

dimC(H−1
K ) = 1 + dimC(Ker α0) ≤ N� + 1, (6.3)

and, for k ≥ 0 (by the Tartaglia-Pascal triangle),

dimC(Hk
K ) = dimC(Ker αk) + dimC(Ker αk+1) ≤

(

N� + 1

k + 2

)

. (6.4)

Recalling Eq. (4.1), we have H−1
K = Z−1

K = {∫

f ∈ V/∂V ∣

∣ K (∂)
δ f
δu = 0

}

. By

Lemma 4.4(b) we have a surjective map δ
δu : H−1

K → Ker
(

K (∂)
∣

∣C�

)

. Recall that, if V
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is a normal algebra of differential functions, we have Ker
(

δ
δu : V → V�

) = C + ∂V
[BDSK09]. It follows that Ker

(

δ
δu

∣

∣H−1
K

) = Ker
(

δ
δu

∣

∣V/∂V
) � C. Therefore,

H−1
K = ∫ C ⊕ {∫

u A
∣

∣ A ∈ Ker(K0) ⊂ C�
}

,

where, u = (u1, . . . , u�), and K0 = K (0) is the constant coefficient of the differential
operator K (∂). Hence,

dimC(H−1
K ) = 1 + dimC(Ker K0) = 1 + � − rk(K0). (6.5)

In conclusion, the inequality in (6.3) is a strict inequality unless K (∂) has order 1 with
K0 = 0, i.e. K (∂) = S∂ , where S ∈ Mat�×�(C) is a nondegenerate matrix.

Remark 6.1. The map αk : ˜Hk → ˜Hk can be constructed as follows [DSK11]. Let P =
(

Pi0,...,ik (λ0, . . . , λk)
)

i0,...,ik∈I be in ˜Hk , i.e. Pi0,...,ik (λ0, . . . , λk) are polynomials of de-
gree at most N −1 in each variable λi with coefficients in C, skewsymmetric with respect
to simultaneous permutations in the indices i0, . . . , ik and the variables λ0, . . . , λk . Then,
there exist a unique element αk(P) := R = (

Ri0,...,ik (λ0, . . . , λk)
)

i0,...,ik∈I ∈ ˜Hk and

a (unique) array Q = (

Q j,i1,...,ik (λ1, . . . , λk)
)

j,i1,...,ik∈I , where Q j,i1,...,ik (λ1, . . . , λk)

are polynomials of degree at most N − 1 in each variable, with coefficients in C, skew-
symmetric with respect of simultaneous permutations of the indices i1, . . . , ik and the
variables λ1, . . . , λk , such that the following identity holds in C[λ0, . . . , λk]:

(λ0 + · · · + λk)Pi0,...,ik (λ0, . . . , λk) = Ri0,...,ik (λ0, . . . , λk)

+
k

∑

α=0

(−1)α
∑

j∈I

Q
j,i0,

α

ˇ...,ik

(λ0,
α

ˇ. . ., λk)K jiα (λα). (6.6)

Hence, Ker(αk) is in bijection with the space �k of arrays Q as above, satisfying the
condition:

k
∑

α=0

(−1)α
∑

j∈I

Q
j,i0,

α

ˇ...,ik

(λ0,
α

ˇ. . ., λk)K jiα (λα) ∈ (λ0 + · · · + λk)C[λ0, . . . , λk].

For example, �0 = {

Q ∈ C�
∣

∣ K T
0 Q = 0

}

, hence its dimension equals dimC(Ker α0) =
dim(Ker K0) = � − rk(K0) (in accordance with (6.5)). Furthermore, �1 consists of
polynomials Q(λ) with coefficients in Mat�×�(C), of degree at most N − 1, such that

K T (−λ)Q(λ) = QT (−λ)K (λ).

Remark 6.2. It is clear from Remark 6.1 that, while in the linearly closed case, the Lie
superalgebra H•

K (V) depends only on � and the order N of K (∂), in the translation
invariant case F = C the dimension of H•

K (V) depends essentially on the operator
K (∂). Hence, in this sense, the choice of an algebra V over a linearly closed differential
field F seems to be a more natural one. This is the key message of the paper.

In the next section we study in more detail the variational Poisson
cohomology Hk

K , and its Z-graded Lie superalgebra structure, for a “hydrdynamic type”
Hamiltonian operator, i.e. for K (∂) = S∂ , where S ∈ Mat�×�(C) is nondegenerate and
symmetric.
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6.2. Translation invariant variational Poisson cohomology for K = S∂ . As in the previ-
ous section, let V be a translation invariant normal algebra of differential functions, with
field of constants C (which coincides with the field of quasiconstants). Let S ∈ Mat�×�(C)

be nondegenerate and symmetric, and consider the Hamiltonian operator K (∂) = S∂ .
For k ≥ −1, we denote by 
k+1 the space of skewsymmetric (k + 1)-linear forms on

C�, i.e. the space of arrays B = (

bi0,...,ik

)

i0,...,ik∈I , totally skewsymmetric with respect

to permutations of the indices i0, . . . , ik . For k ≥ 0, we also denote by 
k+1
S the space

of arrays of the form A = (

a j,i1,...,ik

)

j,i1,...,ik∈I , which are skewsymmetric with respect
to permutations of the indices i1, . . . , ik , and which satisfy the equation

∑

j∈I

si0, j a j,i1,i2...,ik = −
∑

j∈I

a j,i0,i2,...,ik s j,i1 .

Clearly, dimC(
k+1
S ) = dimC(
k+1) = (

�
k+1

)

for every k ≥ −1. For example, 
0 = C,

1

S = 
1 = C�, 
2 is the space of skewsymmetric � × � matrices over C, and


2
S = {

A ∈ Mat �×�(C)
∣

∣ AT S + S A = 0
} = so(�, S).

Given A = (

a j,i0,...,ik

)

j,i0,...,ik∈I ∈ 
k+2
S , we denote

u A = (
∑

j∈I

u j a j,i0,...,ik

)

i0,...,ik∈I ∈ W var
k .

Let A• = ⊕∞
k=−1 Ak , where

Ak = 
k+1 ⊕ {

u A
∣

∣ A ∈ 
k+2
S

} ⊂ W var
k , k ≥ −1.

Theorem 6.3. Let V be translation invariant normal algebra of differential functions,
and let K (∂) = S∂ , where S is a symmetric nondegenerate � × � matrix over C. Then:

(a) A• is a subalgebra of the Z-graded Lie superalgebra Z•
K (V), complementary to

the ideal B•
K (V). In particular, we have the following decomposition of Zk

K in a
direct sum of vector spaces over C:

Zk
K = Ak ⊕ Bk

K .

(b) We have an isomorphism of Z-graded Lie superalgebras (cf. Sect. 2.2):

H•
K (V) = A• � ˜H(� + 1,˜S),

where ˜S is the (� + 1) × (� + 1) matrix obtained from S by adding a zero row and
column. In particular, dimC(Hk

K ) = (l+1
k+2

)

.

Proof. For B ∈ 
k+1, we obviously have δK B = 0. Moreover, it is immediate to check,
using formula (3.20) for δK , that, if A ∈ 
k+2

S , then δK (u A) = 0. Hence, Ak ⊂ Zk
K for

every k ≥ −1. Next, we compute the box product (3.10) between two elements of A•. Let
B ⊕ u A ∈ 
h+1 ⊕ u
h+2

S = Ah , and D ⊕ uC ∈ 
k−h+1 ⊕ u
k−h+2
S = Ak−h . We have



Essential Variational Poisson Cohomology 863

B�D = 0, u A�D = 0, moreover, B�uC ∈ 
k+1 ⊂ Ak and u A�uC ∈ u
k+2
S ⊂ A

are given by

(B�uC)i0,...,ik
=

∑

σ∈Sh,k

sign(σ )
∑

j∈I

b j,iσ(k−h+1),...,iσ(k)
c j,iσ(0),...,iσ(k−h)

,

(u A�uC)i0,...,ik
=

∑

σ∈Sh,k

sign(σ )
∑

i, j∈I

ui ai, j,iσ(k−h+1),...,iσ(k)
c j,iσ(0),...,iσ(k−h)

.
(6.7)

We thus conclude that A• = ⊕

k≥−1 Ak is a subalgebra of the Z-graded Lie superalgebra
Z•(V) ⊂ W var(�V).

Since S−1,k+1 = ∅, we have that A−1�A• = 0. Moreover, S−1,k+1 = {1}. Hence,
for d ⊕ uC ∈ C ⊕ uC� = A−1 and B ⊕ u A ∈ 
k+1 ⊕ u
k+2

S = Ak , we have

[B ⊕ u A, d ⊕ uC] = B�(uC) ⊕ (u A�uC) ∈ 
k ⊕ u
k+1
S = Ak−1,

with entries

[B, uC]i1,...,ik = (B�uC)i1,...,ik =
∑

j∈I

b j,i1,...,ik c j ,

[u A, uC]i1,...,ik = (u A�uC)i1,...,ik =
∑

i, j∈I

ui ai, j,i1,...,ik c j .
(6.8)

It is clear, from formula (6.8), that [B ⊕ u A, uC] = 0 for every C ∈ C� if and only
if A = 0 and B = 0. Hence A• is a transitive Z-graded Lie superalgebra.

Since [Bk
K ,Z−1

K ] = 0, it follows, in particular, that Ak ∩ Bk
K = 0 for every k ≥ −1.

Hence Ak coincides with its image in Hk
K (V), and A• can be viewed as a subalgebra

of the Z-graded Lie superalgebra H•
K (V). Therefore (by the Tartaglia-Pascal triangle)

dimC Hk
K ≥ dimC Ak = (

�+1
k+2

)

. Since, by (6.4), dimC Hk
K ≤ (

�+1
k+2

)

, we conclude that
all these inequalities are equalities, and that H•(V) � A• are isomorphic Z-graded Lie
superalgebras.

To conclude, in view of Proposition 2.2, we need to prove that A• is the full prolon-
gation of the pair (C�+1, so(� + 1,˜S), where ˜S is the (� + 1) × (� + 1) matrix obtained
adding a zero row and column to S. We have C�+1 = C ⊕ C�, and

so(� + 1,˜S) =
{

(

0 BT

0 A

)

∣

∣

∣ B ∈ C�, A ∈ so(�, S)
}

� C� ⊕ so(�, S),

with the Lie bracket of B ⊕ A ∈ C� ⊕ so(�, S) and d ⊕ C ∈ C ⊕ C� given by

[B + A, d + C] = B · C ⊕ AC ∈ C ⊕ C�. (6.9)

By definition, we have A0 = 
1 ⊕ u
2
S = C� ⊕ u · so(�, S), and the action of

B ⊕ u A ∈ C� ⊕ u · so(�, S) on d ⊕ uC ∈ C ⊕ uC� = A−1, given by (6.8), is [B ⊕
u A, d⊕uC]i = B ·C ⊕u AC . Namely, in view of (6.9), it is induced by the natural action
of so(�+1,˜S) � C�⊕so(�, S) on C⊕C�. Hence, A−1⊕A0 � (C⊕C�)⊕(C�⊕so(n, S)).
Since A• is a transitive Z-graded Lie superalgebra, it is a subalgebra of the full prolon-
gation of (C�+1, so(� + 1,˜S)).

On the other hand, by Proposition 2.2 the full prolongation of (C�+1, so(� + 1,˜S))

is isomorphic to ˜H(� + 1,˜S), and dimC ˜H(� + 1,˜S) = 2�+1 − 1 = ∑

k≥−1 dimC Ak .
Hence, A• must be isomorphic to ˜H(� + 1,˜S), as we wanted. ��
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Corollary 6.4. Under the assumptions of Theorem 6.3, the essential variational coho-
mology EH•

K (V) is zero.

Proof. It immediately follows from the transitivity of the Z-graded Lie superalgebra
H•

K (V). ��
Remark 6.5. If S is a nondegenerate, but not necessarily symmetric, � × � matrix, we
still have an isomorphism of vector spaces Hk

K � Ak , but H•
K (V) is not, in general, a

Lie superalgebra.

Remark 6.6. The description of H•
K (V), as a vector space, for K = S∂ with S sym-

metric nondegenerate matrix over C, agrees with the results of S.-Q. Liu and Y. Zhang
[LZ11,LZ11pr].
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