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Abstract: Studying two-dimensional field theories in the presence of defect lines natu-
rally gives rise to monoidal categories: their objects are the different (topological) defect
conditions, their morphisms are junction fields, and their tensor product describes the
fusion of defects. These categories should be equipped with a duality operation corre-
sponding to reversing the orientation of the defect line, providing a rigid and pivotal
structure. We make this structure explicit in topological Landau-Ginzburg models with
potential xd , where defects are described by matrix factorisations of xd − yd . The dual-
ity allows to compute an action of defects on bulk fields, which we compare to the
corresponding N = 2 conformal field theories. We find that the two actions differ by
phases.
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1. Introduction and Summary

Defect lines are one-dimensional interfaces that separate different regions on the world-
sheet in two-dimensional field theory. As such they, together with the fields that may
be inserted at their junctions, are entities of the theory in their own right, and hence a
complete study of field theories must also feature defects. Furthermore, defects may be
used as a valuable tool to understand relations between possibly distinct theories. Both
the “internal” and “external” view on defects can lead to new insights.

In topologically B-twisted Landau-Ginzburg models with potential W , defects are
described by matrix factorisations of W ⊗C 1 − 1 ⊗C W [BR]. This may be understood
via the folding trick [WA] and the fact [Kt,KL1,BHLS,La] that boundary conditions
in such theories are modelled by matrix factorisations of the potential. Just as in any
other topological field theory it is natural to consider the category, denoted MF(W ) in
the present case, of boundary conditions, whose morphisms describe boundary condi-
tion changing operators (with associative operator product expansion). Similarly, defects
in topological Landau-Ginzburg models are the objects of a category MFbi(W ) whose
morphisms are topological junction fields in between possibly different defect lines.
Besides being of interest on their own, defects in Landau-Ginzburg models also occur
in the description of boundary conditions in the three-dimensional Rozansky-Witten
model [KRS].

While sharing similar properties in many regards, topological boundary conditions
and defects also differ in fundamental ways. One important aspect is that there is a nat-
ural “multiplication operation” for topological defects, but not for boundary conditions.
Indeed, by definition (see e. g. [RS, Sect. 3]) the location of a topological defect on a
two-dimensional worldsheet can be varied without affecting the value of the correlator
assigned by the field theory to the worldsheet, as long as the defect line is not moved
across field insertions or other defect lines. Hence one may consider the well-defined
limit of moving two topological defects X and Y arbitrarily close to each other. This
is the fused defect, denoted by X ⊗ Y . If there are topological junction fields on the
defects before fusion, then via this process they translate into one single field between
the fused defects. Thus fusion is defined on the category of topological defects, and one
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may expect that it gives rise to a monoidal structure. That this is indeed the case for topo-
logical Landau-Ginzburg models was shown in [CR] (building on [Yo,ADD,KhR,BR]).

Landau-Ginzburg models with N = 2 supersymmetry are closely related to super-
conformal field theories: physically one expects that the latter are infrared fixed points
under renormalisation group flow of the former [KMS,Mr,VW,HWe]. The correspon-
dence is much clearer if one restricts to the topologically twisted sector on both sides.
In this case it has been successfully tested for numerous models by matching various
substructures in the bulk, boundary, and defect sectors, see e. g. [ADD,Ho,BG,ERR,
BR,CR].

If a two-dimensional conformal field theory is rational (by which we mean that the
underlying vertex operator algebra satisfies the finiteness conditions of [Hu]), one has a
concrete description of all topological defect lines which are compatible with the rational
symmetry. Namely, they correspond to bimodules over a certain algebra in the category
of representations of the associated vertex operator algebra. The fusion of defect lines
is just given by the tensor product of these bimodules [FRS1,Fr3].

In the present paper we shall study another property which one expects to find in the
monoidal category describing defect lines, namely that of rigidity and that of a pivotal
structure. Roughly, a rigid monoidal category is one with a good notion of dual objects,
and a pivotal structure provides an isomorphism between an object and its double-dual
which is compatible with tensor products. The basic example of a category that has these
properties is that of finite-dimensional vector spaces.

Both structures are present in the afore-mentioned defect category of rational confor-
mal field theory [Fr3]. Hence one may think that the CFT/LG correspondence suggests
an equivalence of such categories; however, we will find that the pivotal structure on
MFbi(W ) agrees with the one of the conformal field theory side only up to phases.

Before we motivate in more detail why one should expect a rigid and pivotal structure
from the physical picture, we briefly state the mathematical results proved in this paper.

• The category MFbi(W ) of finite-rank matrix bi-factorisations in one variable is a
pivotal rigid monoidal category (Theorems 2.5 and 2.13), and we work out this
structure in explicit detail.

• The duality operation provides an involutive ring anti-homomorphism C on the
Grothendieck ring K0(MFbi(W )), as well as a surjective algebra homomorphism
Dr : K0(MFbi(W ))⊗Z C → End0(EndMFbi(W )(I )) to the grade preserving linear
maps on the endomorphisms of the tensor unit (Lemma 3.3 and Propositions 3.5
and 3.8).

Furthermore, we comment on how one might establish rigidity in the many-variable case
(Remark 2.8).

Let us now expand on the physical motivation. We only consider two-dimensional
field theories defined on oriented surfaces, whose defect lines also carry an orientation.
Reversing the defect orientation while retaining all other independent properties thus
produces another defect X∨, which we refer to as the dual of X . A slightly different way
to think about this is that one may consider “bending” a topological defect, e. g. like this:

(1.1)

To make a connection to what we can treat algebraically, let us reinterpret this picture
as describing a particular field inserted at the junction of the fusion of X with its dual
and the invisible defect:
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(1.2)

The invisible defect I by definition acts as the identity under fusion, i. e. there are iso-
morphisms λY : I ⊗ Y → Y and ρY : Y ⊗ I → Y for all defects Y . Thus its presence
can never change the value of correlators, and because of the triviality of the invisible
defect it also must be dual to itself,

I ∨ ∼= I, (1.3)

since an orientation that cannot be seen is irrelevant.
Always reading diagrams from bottom to top, we may now identify (1.1) and its

180◦-rotated version with junction fields and therefore morphisms in the defect cate-
gory:

(1.4)

These are the evaluation and coevaluation maps which are at the heart of the general
duality structure of Definition 2.2, and whose concrete realisation in Landau-Ginzburg
models with only one chiral superfield will be given in (2.24) and (2.29) below.

Another intuitively natural property of topological defects is that one should be able
to “straighten them out” as their precise location does not matter. By this we mean that
locally on a worldsheet we should have the identities

(1.5)

where we have chosen not to display the invisible defect. The existence of morphisms (1.4)
subject to the above relations is precisely what it means for the defect category to be
rigid. This is the subject of Theorem 2.5 and Remark 2.8 for the case of MFbi(W ).

Since we think about passing to the dual defect as orientation reversal, one should
expect that the map ( · )∨∨ which sends a defect X to its double dual X∨∨ is the identity.
The more precise statement, which we prove as Theorem 2.13, is that there is a natu-
ral isomorphism between the identity functor and ( · )∨∨ which is compatible with the
monoidal structure. This result will be crucial for applications to concrete models.

Once the duality structures described so far are established, they can be used to study
more concrete situations, for instance the action of defects on bulk fields. For this, con-
sider an insertion of a bulk field ϕ somewhere on the worldsheet. Then one may ask the
question of what happens to this field if one wraps a topological defect X around it and
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subsequently collapses X to coincide with the insertion point of ϕ. This process should
map ϕ to a new bulk field ϕX inserted at the same point:

(1.6)

To formulate this in the language of rigid monoidal categories, all we have to do is to
reinterpret the above picture in terms of the defect (junction) fields that we have already
introduced. As a first step, we note that any bulk field may also be viewed as a defect
field living on the defect I (which is invisible, after all):

(1.7)

Consequently we may interpret the action (1.6) on bulk fields as a linear map Dr (X) on
the endomorphisms of I :

(1.8)

The right-hand side is now solely expressed in terms of the known morphismsϕ, ρX , ρ
−1
X

and (1.4) in the defect category, and hence one can explicitly compute this map on bulk
fields using the rigid monoidal structure. A special case is the action of X on the identity
field, which is called the (right) quantum dimension

(1.9)

For the opposite defect orientation one obtains the (possibly different) map Dl and the
left quantum dimension diml(X).

In Sect. 3 we will perform this analysis of defect actions on bulk fields for a certain
class of Landau-Ginzburg models and compare the result to the analogous computation
in the corresponding conformal field theories. These turn out not to agree, but they differ
only by phases, and moreover these phases cancel in compositions Dl(X) ◦ Dr (X) for
elementary defects X (where by elementary we mean that all weight zero fields on the
defect are multiples of the identity field).
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In any rational conformal field theory the defect maps Dr induce bijective ring homo-
morphisms from the Grothendieck ring of topological defects preserving the rational
symmetry to endomorphisms of the space of bulk fields that intertwine the action of the
rational symmetry [FRS3].

On the other hand, there also exists the notion of the Grothendieck group
K0(MFbi(W )) for topological defects in Landau-Ginzburg models, and we will see that
it again has a ring structure via the tensor product. But since here the defect category
is only triangulated and not abelian (in the non-semisimple case), the elements of the
Grothendieck ring are only defined “up to defect condensation”, see Subsect. 3.2 for the
precise definition. Nevertheless, despite this difference we will show in Proposition 3.8
that when restricted to all known defects in the models that we consider, the map

K0(MFbi(W ))⊗Z C −→ End0(EndMFbi(W )(I )) (1.10)

induced by Dr is an algebra isomorphism (we recall that the endomorphisms of the
invisible defect I are precisely the bulk fields).

In fact, the observation that the assignment of defect operators to defect conditions
factors through the Grothendieck rings necessitates that the defect operators differ on
the Landau-Ginzburg and conformal field theory side. As an example, a non-zero object
in MFbi(W ) can be zero in K0(MFbi(W )), while the analogous statement is never true
on the rational conformal field theory side.

The present paper is organised as follows. In Sect. 2 we review the definition of
rigid monoidal categories and pivotal structures, and show in explicit detail that matrix
bi-factorisations in one variable have such structures. In Sect. 3 these results are applied
to the study of defect operators, and we compare the action of defects in topological
Landau-Ginzburg models with potential W (x) = xd and A-series N = 2 minimal con-
formal field theories. Section 4 contains a brief discussion into the direction of duality
on a higher categorial level, and some technical details are relegated to an appendix.

2. Right and Left Duals for Matrix Bi-factorisations

In this section we study the category of matrix bi-factorisations of one-variable potentials
in detail. We explicitly show that this category is endowed with left and right dualities,
and that in addition it is pivotal. The results of this section will be used in the next section
where we will analyse the action of defects on bulk fields in Landau-Ginzburg models
and establish that the dualities are compatible with the triangulated structure of matrix
bi-factorisations.

2.1. Preliminaries. We will now recall the basic definition of matrix bi-factorisations
and their monoidal structure. More details can be found in [CR]. Let R = C[x1, . . . , xN ]
and W ∈ R be a potential with an isolated singularity at the origin, i. e. dimC(R/(∂1W,
. . . , ∂N W )) < ∞. We call an R-bimodule free if the corresponding left (R ⊗C R)-mod-
ule is free.

A matrix bi-factorisation (of possibly infinite rank) of W is a tuple

(X0, X1, d X
0 , d X

1 ), (2.1)

where Xi are free R-bimodules (of possibly infinite rank), and d X
0 : X0 → X1, d X

1 :
X1 → X0 are bimodule maps such that

(d X
1 ◦ d X

0 )(m0) = W.m0 − m0.W, (d X
0 ◦ d X

1 )(m1) = W.m1 − m1.W (2.2)



Rigidity and Defect Actions in Landau-Ginzburg Models 141

for all mi ∈ Xi . We often represent X by a matrix which we denote by the same symbol,

X ≡
(

0 d X
1

d X
0 0

)
.

Matrix bi-factorisations of W form the objects of a differential Z2-graded category
DG∞

bi (W ); its even morphisms φ ≡ (
φ0 0
0 φ1

)
from X to Y are pairs of bimodule maps φ0 :

X0 → Y0, φ1 : X1 → Y1, and odd morphisms ψ ≡ (
0 ψ1
ψ0 0

)
are pairs of bimodule maps

ψ0 : X0 → Y1, ψ1 : X1 → Y0. The composition in DG∞
bi (W ) is given by matrix multi-

plication, and its differential d sends a homogeneous element ϕ ∈ HomDG∞
bi (W )(X,Y )

to d(ϕ) = Yϕ − (−1)|ϕ|ϕX .

Remark 2.1. If ϕ,ψ : X → Y are d-closed even morphisms in DG∞
bi (W ), to establish

ϕ = ψ it is enough to show either ϕ0 = ψ0 or ϕ1 = ψ1. The other equality then follows
because the maps d X

i , dY
i are injective.

The category of matrix bi-factorisations (of possibly infinite rank) of W is defined to
be the homotopy category

MF∞
bi (W ) = H0

d (DG∞
bi (W )), (2.3)

i. e. MF∞
bi (W ) also has matrix bi-factorisations as objects, and its morphism spaces are

given by the zeroth d-cohomology of the morphism spaces of DG∞
bi (W ).

Mostly we will be dealing with the full subcategory MFbi(W ) of MF∞
bi (W ) whose

objects are isomorphic to matrix bi-factorisations X of finite rank. We note that instead
of defining MFbi(W ) as above one can of course also work exclusively with left modules
and equivalently define a category MF(W ⊗C 1−1⊗C W ). However, since our motiva-
tion is to describe topological defects, on both sides of which Landau-Ginzburg models
are defined, we prefer the bimodule language of MFbi(W ) to the “folded” boundary
conditions of MF(W ⊗C 1 − 1 ⊗C W ).

In order to keep the following exposition of the monoidal structure of MFbi(W )

simple, let us from now on assume that R = C[x]. For the general case we refer
to [CR]. To explicitly describe the monoidal structure we first have to introduce some
notation to calculate with free bimodules. Every free R-bimodule M is isomorphic to
R ⊗C M̌ ⊗C R for some complex vector space M̌ . For two vector spaces M̌, Ň we
consider linear maps φ = ∑

m,n φmnambn ∈ HomC(M̌, Ň [a, b]), where a and b are

formal variables. From φ we obtain an R-bimodule map φ̂ from M to N by setting
φ̂(r ⊗C v ⊗C r ′) = ∑

m,n r xm ⊗C φmn(v) ⊗C xnr ′. This gives us an isomorphism

HomC(M̌, Ň [a, b]) ∼= HomR-mod-R(M, N ). Its inverse will be denoted by (ˇ), i. e. for a
bimodule map ψ : M → N we have ψ = [ψ̌(a, b)] .̂

We can now recall the monoidal structure of MFbi(W ) from [CR] (see also [Yo,ADD,
KaR,BR]) where the general definition may be found as well. The tensor product on
objects is given by

X ⊗ Y =
(

X0 ⊗R Y0 ⊕ X1 ⊗R Y1, X1 ⊗R Y0 ⊕ X0 ⊗R Y1,

(
d X

0 ⊗R idY0 −idX1 ⊗R dY
1

idX0 ⊗R dY
0 d X

1 ⊗R idY1

)
,

(
d X

1 ⊗R idY0 idX0 ⊗R dY
1

idX1 ⊗R dY
0 d X

0 ⊗R idY1

))
, (2.4)

and its action on morphisms is spelled out in Appendix A.1, where we also write down
the explicit associator isomorphism αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z). The unit
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object I = (R ⊗C R, R ⊗C R, d I
0 , d I

1 ) is given by

I =
(

0 [a − b]ˆ[W (a)−W (b)
a−b

]ˆ 0

)
(2.5)

and its left and right unit isomorphisms are

λX =
(
μ⊗R idX0 0 0 0

0 0 0 μ⊗R idX1

)
: I ⊗ X −→ X, (2.6a)

ρX =
(

idX0 ⊗R μ 0 0 0
0 0 idX1 ⊗R μ 0

)
: X ⊗ I −→ X, (2.6b)

where μ : R ⊗C R → R is the multiplication map, μ(r ⊗C r ′) = rr ′; their inverses in
MFbi(W ) are given in Appendix A.1.

Finally, we note that one easily computes EndMFbi(W )(I ) ∼= R/(∂W ), which corre-
sponds to the fact that defect fields living on the invisible defect are precisely bulk fields.
Their identification with endomorphisms of the unit object I will be relevant when we
discuss the action of defects on bulk fields in Sect. 3.

2.2. Right duals in MFbi(W ). We now begin the study of duals in MFbi(W ). However,
before we can identify the relevant structure, it is necessary to present some elementary
constructions on the level of ordinary bimodules.

2.2.1. Duals of free bimodules. Let R and S be commutativeC-algebras with augmenta-
tion maps εR : R → C and εS : S → C. In our application we will have R = S = C[x]
and εR(xk) = δk,0, but for the moment we keep our discussion more general to keep
track of the left and right actions more easily.

The dual of a free R-S-bimodule M is the S-R-bimodule M∨ defined as HomR-mod-S
(M, R ⊗C S) with bimodule action (s.ϕ.r)(m) = ϕ(r.m.s) for r ∈ R, s ∈ S,m ∈
M, ϕ ∈ M∨. If M is not free, M∨ may well be empty, e. g. for R = C[x] as an R-bi-
module over itself one has HomR-mod-R(R, R ⊗C R) = 0.

Furthermore, for a map f : M → N of bimodules, we have the dual map

f ∨ : N∨ −→ M∨, ψ �−→ ψ ◦ f. (2.7)

In the case R = S = C[x] we can write f = [ f̌ (a, b)]ˆ using the notation introduced
in Subsect. 2.1; for f̌ (a, b) = ∑

m,n fmnambn , this gives

f ∨ =
[∑

m,n

f ∗
mnbman

]∧ =: [ f̌ ∗(b, a)]ˆ. (2.8)

The bimodule M comes together with the natural morphism

δM : M −→ M∨∨, (δM (m))(ϕ) = σR,S(ϕ(m)), (2.9)

where σR,S : R ⊗C S → S ⊗C R is the linear map exchanging tensor factors; this
is needed because elements of M∨∨ are S-R-bimodule maps M∨ → S ⊗C R, while
ϕ(m) ∈ R ⊗C S. Setting m̃ = δM∨(ϕ) ∈ M∨∨∨, we can compute

(δ∨M (m̃))(m) = m̃(δM (m)) = (δM∨(ϕ))(δM (m)) = σS,R((δM (m))(ϕ))

= σS,R(σR,S(ϕ(m))) = ϕ(m) ; (2.10)
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in other words, δ∨M ◦δM∨ = idM∨ . If M is finitely generated, this implies that the map δM
enjoys the property

δ∨M = δ−1
M∨ : M∨∨∨ −→ M∨. (2.11)

Any free R-S-bimodule is isomorphic to one of the form M = R⊗C M̌⊗CS where M̌
is a complex vector space, and we have a natural isomorphism M∨ ∼= S ⊗C M̌∗ ⊗C R,
see Appendix A.4.2; in the following we will not write out this isomorphism and identify
M∨ ≡ S ⊗C M̌∗ ⊗C R. Then we have the bimodule map

eM : M∨ ⊗R M −→ S ⊗C S (2.12)

defined via

(s ⊗C ψ ⊗C r)⊗R (r
′ ⊗C m ⊗C s′) �−→ ψ(m) εR(rr ′) s ⊗C s′. (2.13)

If M is finitely generated, i. e. if M̌ is finite-dimensional, then we also have the bimodule
map

cM : R ⊗C R −→ M ⊗S M∨, r ⊗C r ′ �−→
∑

i

r.ei ⊗C 1 ⊗S 1 ⊗C e∗
i .r

′, (2.14)

where {ei } is a basis of M̌ and {e∗
i } is the dual basis of M̌∗. The maps eM and cM will

be used in the construction of the duality morphisms for MFbi(W ) below.

2.2.2. Right duals in monoidal categories. Before we turn to duals in MFbi(W ), we
shall recall the notion of duality in a general monoidal category.

Definition 2.2. A monoidal category (M,⊗, I, α, λ, ρ) is equipped with right duality
(or is right rigid) if an object A∨ is assigned to each object A ∈ M together with
morphisms evA : A∨ ⊗ A → I and coevA : I → A ⊗ A∨ such that

ρA ◦ (idA ⊗ evA) ◦ αA,A∨,A ◦ (coevA ⊗idA) ◦ λ−1
A = idA , (2.15a)

λA∨ ◦ (evA ⊗idA∨) ◦ α−1
A∨,A,A∨ ◦ (idA∨ ⊗ coevA) ◦ ρ−1

A∨ = idA∨ . (2.15b)

Let us introduce a convenient and standard graphical notation to express identities like
the one above. Reading every diagram from bottom to top, we can picture the evaluation
and coevaluation maps as follows:

(2.16)
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In this language, the conditions (2.15) can be rephrased as the statement that the “Zorro
moves”

(2.17)

hold true. We note that here and below we do not explicitly depict the isomorphisms
α, λ, ρ and their inverses in such diagrams. Thus identities like the ones above may be
thought of as true after passing to a strict model of the monoidal category [MaL], or one
mentally adds the missing parts, e. g.

(2.18)

As an example of a right duality one may think of the category of finite-dimensional
complex vector spaces V together with the standard evaluation and coevaluation maps:

evV : e∗
i ⊗C e j �−→ δi, j , coevV : 1 �−→

∑
i

ei ⊗C e∗
i , (2.19)

where {ei } is an arbitrary basis of V . In this case one easily verifies that the Zorro
moves (2.17) hold, which in general abstract the existence of a perfect pairing between V
and V ∗ in the case of vector spaces.

Remark 2.3. Let M be a right rigid monoidal category with duality given by (X∨, evX ,

coevX ) for each X ∈ M. Suppose that (X ′, ev′
X , coev′

X ) is another right rigid structure
on M. If we replace coev by coev′ in (2.15b), then

φX = λX∨ ◦ (evX ⊗idX ′) ◦ α−1
X∨,X,X ′ ◦ (idX∨ ⊗ coev′

X ) ◦ ρ−1
X∨ : X∨ −→ X ′

(2.20)

gives a family of isomorphisms, natural in X . It follows from the Zorro moves that

evX = ev′
X ◦(φX ⊗ idX ), coevX = (idX ⊗ φ−1

X ) ◦ coev′
X . (2.21)

In this sense, all right rigid structures on M are equivalent.
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2.2.3. Right duals of matrix bi-factorisations. We shall now explicitly identify a right
duality structure in the category of matrix bi-factorisations for the one-variable case by
giving a contravariant functor ( · )∨ : MFbi(W ) → MFbi(W ) and appropriate evaluation
and coevaluation maps. The multi-variable case will be discussed in Remark 2.8.

On objects the functor ( · )∨ acts as

X = (X0, X1, d X
0 , d X

1 ) �−→ X∨ = (X∨
1 , X∨

0 , (d
X
0 )

∨,−(d X
1 )

∨), (2.22)

(see (2.45) and (2.46) for the many-variable case) and it sends a morphism ϕ ≡ (
ϕ0 0
0 ϕ1

) :
X → Y to

ϕ∨ ≡
(
ϕ∨

1 0
0 ϕ∨

0

)
: Y ∨ → X∨. (2.23)

We note that with this definition one has I ∨ = I , cf. the discussion of Sect. 1.
We will explicitly give the evaluation map evX : X∨⊗ X → I only for objects X that

have twisted differentials ď X
i (a, b) with entries of polynomial degree less than deg(W ).

This is sufficient, since any matrix bi-factorisation is isomorphic to such an object (which
in turn follows as MFbi(W ) has a split-generator with this property [Dy] and because
of [KST, Lem. 2.4]), and the evaluation map can be transported using this isomorphism
(see the proof of Lemma 2.4 below for a similar argument in the case of the coevaluation).

For X as above the evaluation map is given by

evX =
(

AX 0 0 0
0 0 BX CX

)
, (2.24)

where we define

AX = −
[
evX̌1

◦(idX̌∗
1
⊗C F ⊗C idX̌1

) ◦ (idX̌∗
1
⊗C idR ⊗C ď X

0 (x, b))
]∧
, (2.25)

BX =
[

evX̌0
◦ (idX̌∗

1
⊗CF⊗CidX̌1

)◦{idX̌∗
1
⊗CidR⊗C(ď X

1 (x,a)ď
X
0 (x,b))}

a−b

]∧
, (2.26)

CX = −eX1 , (2.27)

F = 1

2π i

∮
(a − b − x) dx

x(W (x)− W (b))
. (2.28)

The formal variable x in (2.25) and (2.27) acts by multiplication with x on the middle
factor in X̌∗

1 ⊗C R ⊗C X̌i . The integration contour in F is oriented counter-clockwise
and taken to encircle all poles. In other words, F(xk) computes the coefficient of x−1 in
the expansion of the formal sum (a − b − x)x−1+k ∑∞

n=0 W (b)n/W (x)n+1, and hence
F gives a map C[a, x, b] → C[a, b]. One may verify by direct computation (as we do
in Appendix A.2) that evX is well-defined and indeed a morphism in MFbi(W ).

To present the coevaluation map coevX : I → X ⊗ X∨ for X ∈ MFbi(W ), let
ϑ : X → Z be an isomorphism to a finitely generated object Z . Then we define
coevX = (ϑ−1 ⊗ ϑ∨) ◦ coevZ with
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coevZ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
ď Z

1 (a,x)⊗CidR⊗CidŽ∗
1
−ď Z

1 (b,x)⊗CidR⊗CidŽ∗
1

a−b

]∧
◦ cZ1 0

[
ď Z

0 (a,x)⊗CidR⊗CidŽ∗
0
−ď Z

0 (b,x)⊗CidR⊗CidŽ∗
0

a−b

]∧
◦ cZ0 0

0 cZ1

0 cZ0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.29)

Again, one verifies by direct computation that this is a morphism in MFbi(W ).

Lemma 2.4. coevX is independent of the choice of isomorphism ϑ . Furthermore, for
any morphism ϕ : X → Y one has

(ϕ ⊗ idX∨) ◦ coevX = (idY ⊗ ϕ∨) ◦ coevY . (2.30)

Proof. We first show that (2.30) holds for a finitely generated X . Indeed, one readily
verifies that

(ϕ ⊗ idX∨) ◦ coevX −(idY ⊗ ϕ∨) ◦ coevY = ψ ◦ I + (Y ⊗ X∨) ◦ ψ (2.31)

for

ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

[
ϕ̌1(a,x)⊗R idX∨

1
−ϕ̌1(b,x)⊗R idX∨

1
a−b

]∧
◦ cX1

0

[
ϕ̌0(a,x)⊗R idX∨

0
−ϕ̌0(b,x)⊗R idX∨

0
a−b

]∧
◦ cX0

0 0

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

: I −→ Y ⊗ X∨, (2.32)

and hence (2.30) is true in MFbi(W ).
Now let X ∈ MFbi(W ), and letϑ : X → X f andϑ ′ : X → X ′

f be two isomorphisms
to finitely generated matrix bi-factorisations. Then

coevX = (ϑ−1 ⊗ ϑ∨) ◦ coevX f = (ϑ−1 ⊗ (ϑ ′∨ ◦ (ϑ ′−1)∨ ◦ ϑ∨)) ◦ coevX f

= ((ϑ−1 ◦ ϑ ◦ ϑ ′−1)⊗ ϑ ′∨) ◦ coevX ′
f

= (ϑ ′−1 ⊗ ϑ ′∨) ◦ coevX ′
f
, (2.33)

where we used (2.30) for X f and X ′
f . Thus coevX is independent of the choice of

isomorphism.
Finally, we prove that (2.30) holds for arbitrary X,Y ∈ MFbi(W ). Let ϑ : X →

X f , η : Y → Y f be isomorphisms to finitely generated matrix bi-factorisations and
define � = η ◦ ϕ ◦ ϑ−1 : X f → Y f . From this it follows that η−1 ◦� = ϕ ◦ ϑ−1 and
ϑ∨ ◦�∨ = ϕ∨ ◦ η∨, so we find

(ϕ ⊗ idX∨) ◦ coevX = ((ϕ ◦ ϑ−1)⊗ ϑ∨) ◦ coevX f = ((η−1 ◦�)⊗ ϑ∨) ◦ coevX f

= (η−1 ⊗ (ϑ∨ ◦�∨)) ◦ coevY f = (η−1 ⊗ (ϕ∨ ◦ η∨)) ◦ coevY f

= (idY ⊗ ϕ∨) ◦ coevY , (2.34)

which concludes the proof.
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Now that we have introduced all the ingredients, we can show that the functor ( · )∨
and the morphisms evX , coevX endow MFbi(W ) with a right duality. The following
result is proved in Appendix A.3.

Theorem 2.5. For all X ∈ MFbi(W ) we have

ρX ◦ (idX ⊗ evX ) ◦ αX,X∨,X ◦ (coevX ⊗idX ) ◦ λ−1
X = idX , (2.35)

λX∨ ◦ (evX ⊗idX∨) ◦ α−1
X∨,X,X∨ ◦ (idX∨ ⊗ coevX ) ◦ ρ−1

X∨ = idX∨ , (2.36)

i. e. the Zorro moves hold true, and MFbi(W ) is right rigid.

In fact, the proof shows that the Zorro moves even hold in DGbi(W ).
In pictorial language, the identity (ϕ ⊗ idX∨) ◦ coevX = (idY ⊗ ϕ∨) ◦ coevY of

Lemma 2.4 reads

(2.37)

Using both Zorro moves we can readily derive the analogous expression for the eval-
uation map: by appending curved lines to the right and left of Eq. (2.37) it follows
that

(2.38)

Thus we have found:

Lemma 2.6. For any morphism ϕ : X → Y in MFbi(W ) one has

evY ◦(idY ∨ ⊗ ϕ) = evX ◦(ϕ∨ ⊗ idX ). (2.39)

Another simple application of (2.17) and the above lemma is to show that our defi-
nition of ϕ∨ in (2.23) agrees with the canonical definition of a dual morphism in a rigid
category,

(2.40)

In diagram-free language, this reads

ϕ∨ =λX∨ ◦ (evY ⊗idX∨) ◦ α−1
Y ∨,X,X∨ ◦ (idY ∨ ⊗ (ϕ ⊗ idX∨)) ◦ (idY ∨ ⊗ coevX ) ◦ ρ−1

Y ∨ .

(2.41)

We note that if the dual of a morphism is defined as above, then the identities (2.37)
and (2.38) immediately follow by applying Zorro moves.
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Lemma 2.7. We have evI = λI = ρI and coevI = λ−1
I = ρ−1

I in MFbi(W ).

Proof. By direct computation one finds λI ◦ coevI = idI in DGbi(W ), and therefore
coevI = λ−1

I = ρ−1
I in MFbi(W ).

The (1, 1)-entry of the (2 × 2)-matrix evI ◦λ−1
I is given by AI ◦ [1 ⊗C id Ǐ0

]ˆ which
is equal to

−
[

1

2π i

∮
(a − b − x)ď I

0 (x, b)dx

x(W (x)− W (b))

]∧
= −

[
1

2π i

∮
(a − b − x)dx

x(x − b)

]∧
= idI0 .

(2.42)

By Remark 2.1, this determines the (2, 2)-entry to be idI1 , and we have evI ◦λ−1
I = idI

in DGbi(W ) and thus evI = λI = ρI in MFbi(W ).

Remark 2.8. Let us explain the relation between the duality structure discussed here and
the one relevant for the category MF(W ) of matrix factorisations (describing boundary
conditions, not defects). This will allow us to argue that MFbi(W ) is expected to be right
rigid also in the multi-variable case.

(i) For an object Q = (
0 q1

q0 0

) ∈ MF(W ), its dual is given by Q∗ = ( 0 −q∗
0

q∗
1 0

) ∈
MF(−W ). This is the natural choice in the sense that we have isomorphisms of
complexes

HomDG(W )(Q, P) ∼= (P0 ⊕ P1)⊗R (Q
∗
0 ⊕ Q∗

1), (2.43)

where the differential on the right-hand side is the matrix factorisation P ⊗R Q∗
of zero [KaR]. Furthermore, there are isomorphisms

HomMFbi(W )(P
∗ ⊗C Q, I ) ∼= HomMF(W )(Q, P),

HomMFbi(W )(I, Q ⊗C P∗) ∼= HomMF(W )(P, Q),
(2.44)

see e. g. [BRR,DM]. However, for a potential W in N variables we define duals
as follows in MFbi(W ): we set

X�=
(

0 −[(ď X
0 )

∗(b1, . . . , bN , a1, . . . , aN )]ˆ
[(ď X

1 )
∗(b1, . . . , bN , a1, . . . , aN )]ˆ 0

)

(2.45)

and

X∨ = T N X�,

(
ϕ0 0

0 ϕ1

)∨
= T N

(
ϕ∨

0 0
0 ϕ∨

1

)
(2.46)

for objects X and morphisms ϕ in MFbi(W ), where T is the shift functor
(cf. Sect. 3.2). We note that the definition of X∨ coincides with (2.22) in the one-
variable case. The crucial fact, proved e. g. by generalising the method of [ERR]
or the homological perturbation lemma analysis of [DM],1 is that only with this
definition do we have the natural (in X and Y ) isomorphisms

HomMFbi(W )(Y
∨ ⊗ X, I ) ∼= HomMFbi(W )(X,Y ), (2.47a)

HomMFbi(W )(I, X ⊗ Y ∨) ∼= HomMFbi(W )(Y, X) (2.47b)

1 We thank Daniel Murfet for a helpful discussion on this point.
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in MFbi(W ). Using X� instead of X∨ gives rise to quasi-isomorphisms of non-
zero degree in DGbi(W ) if N is odd, which hence do not induce isomorphisms in
MFbi(W ), and the physical condition I ∨ ∼= I is only satisfied for the correct dual
( · )∨.

(ii) It is expected that one can use the isomorphisms (2.47) to prove that MFbi(W )

is right rigid also in the general multi-variable case. Indeed, natural candidates
for the evaluation and coevaluation maps can be constructed as the preimages of
the identity (for X = Y ) under the isomorphisms (2.47). Naturality in X and Y
of the maps (2.47) then implies that for any morphism ϕ : X → Y we have
evY ◦(idY ∨ ⊗ ϕ) = evX ◦(ϕ∨ ⊗ idX ), i. e. the statement of Lemma 2.6 holds.
Nonetheless, it would have to be checked separately if the Zorro moves are satis-
fied, and to do this explicitly is (in principle straightforward yet) rather involved
for general W . In this paper we are concerned with the one-variable case and we
leave the multi-variable expressions for the evaluation and coevaluation maps to
future work.

(iii) In the one-variable case we saw that the unit object is equal to its dual. In the
many-variable case this is no longer true for our choice (2.46) of duals. However,
it is straightforward to construct an isomorphism γ : I ∨ → I ; one finds that γ is
given by a symmetric permutation matrix (with some negative entries).
From part (ii) above we expect that there exists a right rigid structure (X∨, evX ,

coevX ) on MFbi(W ); let us assume that this is the case. By Remark 2.3 all such
structures are equivalent, and hence one could choose another right rigid structure
on MFbi(W )which coincides with (X∨, evX , coevX ) for all X �= I , but for which
the duality maps of I are defined by

evI = λI ◦ (γ ⊗ idI ), coevI = (idI ⊗ γ−1) ◦ λ−1
I . (2.48)

One easily verfies that evI and coevI as above satisfy the Zorro moves. We note
that the statement of Lemma 2.7 can be rephrased as saying that with evX and
coevX as given in (2.24) and (2.29), Eq. (2.48) holds with γ = idI .

2.2.4. R-charge. Instead of MFbi(W ) one may also consider the category of graded
matrix bi-factorisations MFR

bi(W ), see e. g. [HWa] and Appendix A.4. Its objects are
matrix bi-factorisations X together with invertible even bimodule maps U X (α) : X0 ⊕
X1 → X0 ⊕ X1 for all α ∈ C subject to a group law (see Appendix A.4) and such that

U X (α) ◦ [X̌(eiqxαa, eiqxαb)]ˆ ◦ U X (α)−1 = eiαX (2.49)

for all α ∈ C. Here we take W to be homogeneous of polynomial degree d and qx = 2/d
is the charge assigned to x in R. A morphism ϕ ∈ HomMFR

bi(W )(X,Y ) is the same as a
morphism in MFbi(W ); it has R-charge p if

U Y (α) ◦ [ϕ(eiqxαa, eiqxαb)]ˆ ◦ U X (α)−1 = eipαϕ. (2.50)

It is shown in [CR, Sect. 2.3] that withU I (α) = ( 1 0
0 eiα(qx −1) ), the isomorphismsαX , λX , ρX

and their inverses have R-charge zero.
The dual of a graded matrix bi-factorisation (X,U X (α)) is

(X∨, eiα(qx −1)(U X (α)−1)∨). (2.51)

With this definition we have I = I ∨ also as graded matrix bi-factorisation, and one
can check that both evX and coevX have R-charge zero. More details can be found in
Appendix A.4.



150 N. Carqueville, I. Runkel

2.3. Pivotal structure. The notion of a pivotal structure2 will be needed when we derive
the properties of defect operators in the next section. We will first state the general
definition and then show that MFbi(W ) has a natural pivotal structure (and also left
duals).

2.3.1. Definition and properties of pivotal structures. Let M be a right rigid monoidal
category as in Definition 2.2. We obtain a contravariant functor ( · )∨ : M → M which
acts as X �→ X∨ on objects and as (2.41) on morphisms. This functor can be equipped
with a natural monoidal structure

(
( · )∨, ν2, ν0

)
, where ν0 : I → I ∨ is an isomorphism

and ν2 is a natural family of isomorphisms

ν2
X,Y : X∨ ⊗ Y ∨ −→ (Y ⊗ X)∨. (2.52)

Both ν0 and ν2 are given in terms of the right rigid structure, namely, ν0 = λI ∨ ◦ coevI
and

= λ(Y⊗X)∨ ◦ (evX ⊗id(Y⊗X)∨) ◦ α−1
X∨,X,(Y⊗X)∨ ◦ (idX∨ ⊗ (λX ⊗ id(Y⊗X)∨))

◦(idX∨ ⊗ ((evY ⊗idX )⊗ id(Y⊗X)∨))

◦(idX∨ ⊗ ((α−1
Y ∨,Y,X ⊗ id(Y⊗X)∨) ◦ α−1

Y ∨,Y⊗X,(Y⊗X)∨))

◦(idX∨ ⊗ (idY ∨ ⊗ coevY⊗X )) ◦ (idX∨ ⊗ ρ−1
Y ∨ ) . (2.53)

The isomorphisms ν2
X,Y and ν0 have to satisfy the coherence conditions of a monoidal

functor: using repeated Zorro moves and (2.40) one verifies that the three diagrams

(X∨ ⊗ Y ∨)⊗ Z∨

αX∨,Y∨,Z∨
��

ν2
X,Y ⊗idZ∨

�� (Y ⊗ X)∨ ⊗ Z∨ ν2
Y⊗X,Y

�� (Z ⊗ (Y ⊗ X))∨

(α−1
Z ,Y,X )

∨
��

X∨ ⊗ (Y ∨ ⊗ Z∨)
idX∨⊗ν2

Y,Z
�� X∨ ⊗ (Z ⊗ Y )∨

ν2
X,Z⊗Y

�� ((Z ⊗ Y )⊗ X)∨

(2.54)

and

I ⊗ X∨ λX∨
��

ν0⊗idX∨
��

X∨

(ρX )
∨

��

I ∨ ⊗ X∨ ν2
I,X

�� (X ⊗ I )∨

,

X∨ ⊗ I
ρX∨

��

idX∨⊗ν0

��

X∨

(λX )
∨

��

X∨ ⊗ I ∨ ν2
X,I

�� (I ⊗ X)∨

(2.55)

commute.

2 For a more detailed discussion of pivotal structures one may e. g. refer to [FY] (in the strict case), [Ml,
Sect. 3.1] (where the name “sovereign” is used), or [Mg].
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We will need the covariant monoidal functor
(
( · )∨∨, ω2, ω0

)
whose isomorphism

data are given by

ω0 = (
(ν0)−1)∨ ◦ ν0 : I −→ I ∨∨,

ω2
X,Y = (

(ν2
Y,X )

−1)∨ ◦ ν2
X∨,Y ∨ : X∨∨ ⊗ Y ∨∨ −→ (X ⊗ Y )∨∨.

(2.56)

It follows from a straightforward calculation using the Zorro moves and from definition
(2.41) of the action of ( · )∨ on morphisms that these morphisms satisfy the following
equalities:

ω2
I,Y = (λ−1

Y )∨∨ ◦ λY ∨∨ ◦ ((ω0)−1 ⊗ idY ∨∨
)
,

ω2
X,I = (ρ−1

X )∨∨ ◦ ρX∨∨ ◦ (idX∨∨ ⊗ (ω0)−1). (2.57)

Let M and M′ be monoidal categories, and let F ≡(F, F2, F0) and G ≡(G,G2,G0)

be covariant monoidal functors M → M′. We recall that a monoidal natural transfor-
mation is a natural transformation η : F ⇒ G such that

F(X)⊗′ F(Y )
F2

X,Y
��

ηX ⊗′ηY

��

F(X ⊗ Y )

ηX⊗Y

��

G(X)⊗′ G(Y )
G2

X,Y
�� G(X ⊗ Y )

and

I

F0

��

G0

�����������

F(I )
ηI �� G(I )

(2.58)

commute.

Definition 2.9. A pivotal structure on a right rigid monoidal category is a monoidal
natural isomorphism Id ⇒ ( · )∨∨. We will call a right rigid monoidal category with
pivotal structure a pivotal category.

Let tX : X → X∨∨ be such a pivotal structure. It is proved e. g. in [Sch, Prop. A.1
(journal version)] that tX automatically satisfies the identity

t−1
X∨ = (tX )

∨ : X∨∨∨ −→ X∨. (2.59)

Also note that any two pivotal structures tX and sX on a given right rigid monoidal
category M differ by a monoidal natural isomorphism of the identity functor, namely
s−1

X ◦tX . In other words, if M allows for a pivotal structure, the set of all pivotal structures
on M forms a torsor over the group of monoidal natural isomorphisms of the identity
functor.

We will later need to compare different pivotal categories. To prepare the definition,
suppose we are given two right rigid monoidal categories C and D, and a monoidal
functor (F, F2, F0) : C → D. By Remark 2.3, we can construct a natural isomorphism
ψ : F ◦ ( · )∨ ⇒ ( · )∨ ◦ F . Namely,

ψX = λF(X∨) ◦ (evF
X ⊗idF(X)∨) ◦ α−1

F(X∨),F(X),F(X)∨

◦(idF(X)∨ ⊗ coevD
F(X)) ◦ ρ−1

F(X∨), (2.60)

where evF
X is given by

evF
X =

(
F(X∨)⊗ F(X)

F2
X∨,X

�� F(X∨ ⊗ X)
F(evC

X ) �� F(I )
(F0)−1

�� I
)
.

(2.61)
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Definition 2.10. Let C and D be pivotal categories with pivotal structures tC and tD. A
monoidal functor (F, F2, F0) : C → D is called pivotal if

tDF(X) = (ψ−1
X )∨ ◦ ψX∨ ◦ F(tCX ) : F(X) −→ F(X)∨∨ (2.62)

for all X ∈ C. Two pivotal categories are pivotally equivalent if there are pivotal mo-
noidal functors F : C → D and G : D → C, such that F ◦ G and G ◦ F are naturally
isomorphic to the identity functor.

Remark 2.11. (i) Let F : C → D be a pivotal monoidal functor between two pivotal
categories which is essentially surjective. This implies that F is an equivalence of
monoidal categories. However, it does not imply that C and D are pivotally equiv-
alent, because there may not exist an inverse functor G : D → C which is also
pivotal.

(ii) We say a pivotal category is strictly pivotal if ( · )∨∨ = Id and tX = idX for all X .
Given a pivotal category C, in [JS] a strictly pivotal category Cstr is constructed such
that there is a pivotal functor F : C → Cstr, which is essentially surjective. However,
C is in general not pivotally equivalent to Cstr.

2.3.2. Left duals. Let M be a right rigid monoidal category and for X ∈ M let tX :
X → X∨∨ be a collection of isomorphisms (which need not be natural). Using the maps
tX we can define left duals, i. e. “tilded” evaluation and coevaluation maps:

ẽvX = evX∨ ◦(tX ⊗ idX∨) : X ⊗ X∨ −→ I,

c̃oevX = (idX∨ ⊗ t−1
X ) ◦ coevX∨ : I −→ X∨ ⊗ X.

(2.63)

Pictorially we present these as

(2.64)

and by construction ẽvX , c̃oevX satisfy the Zorro moves

(2.65)

since evX , coevX satisfy (2.17).
Left and right dualities defined as above satisfy the following standard identities

which we will need in the next section; for the convenience of the reader, we have
included a proof in Appendix A.5.

Lemma 2.12. Let M and tX be as above.
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(i) t is a natural isomorphism Id ⇒ ( · )∨∨ iff for all X,Y ∈ M and all ϕ : X → Y
we have

(2.66)

(ii) If t is a natural isomorphism, then t is monoidal iff for all X,Y ∈ M one has

(2.67)

2.3.3. Pivotal structure for matrix factorisations. After the general discussion, we now
turn to MFbi(W ). For any X ∈ MFbi(W ), we can use bimodule maps δXi from (2.9) to
obtain the following isomorphisms in MFbi(W ), which we also denote by δ,

δX =
(
δX0 0
0 δX1

)
: X −→ X∨∨. (2.68)

Theorem 2.13. δ : Id ⇒ ( · )∨∨ endows MFbi(W ) with a pivotal structure.

Proof. We first show that δ really is a natural transformation. This means that for any
ϕ ∈ HomMFbi(W )(X,Y ) we must have ϕ∨∨ ◦ δX = δY ◦ ϕ. Writing out this condition as
a matrix equation, it immediately follows from the corresponding identity on the level
of bimodule maps. Indeed, for m ∈ Xi and w ∈ Y ∨

i we have

((ϕ∨∨
i ◦ δXi )(m))(w) = (δXi (m))(ϕ

∨
i (w)) = σR,R((ϕ

∨
i (w))(m))

= σR,R(w(ϕi (m))) = (δYi (ϕi (m)))(w)

= ((δYi ◦ ϕ)(m))(w). (2.69)

Now we shall prove that δ is also monoidal. By Lemma 2.12(ii), doing so is equivalent
to establishing that

(2.70)

for all X,Y ∈ MFbi(W ). Note that L = ν2
X,Y as in (2.53).
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Written in terms of their matrix representatives, L and R are of the form

⎛
⎜⎝

(X∨)0 ⊗ (Y ∨)0 (X∨)1 ⊗ (Y ∨)1 (X∨)1 ⊗ (Y ∨)0 (X∨)0 ⊗ (Y ∨)1
(Y1 ⊗ X0)

∨ ∗ ∗ 0 0
(Y0 ⊗ X1)

∨ ∗ ∗ 0 0
(Y0 ⊗ X0)

∨ 0 0 ∗ ∗
(Y1 ⊗ X1)

∨ 0 0 ∗ ∗

⎞
⎟⎠, (2.71)

where the column and row labels indicate the entries’ source and target, respectively, as
dictated by our convention (2.4) for tensor products (here and below, “⊗”, when applied
to R-bimodules, stands for “⊗R”). Recall also from (2.22) that (X∨)0 = X∨

1 , etc. A
straightforward but tedious calculation (aided by the fact that certain entries of λ, ρ and
ev, ẽv are zero) shows that both L and R have only one non-vanishing entry in each
Z2-degree, e. g. L0 = ( l11 0

0 0 ) with

l11 =
({
μ ◦ AX ◦

(
idX∨

1
⊗ (μ ◦ AY )⊗ idX0

)}
⊗ id(Y1⊗X0)∨

)

◦
(

idX∨
1

⊗ idY ∨
1

⊗
{[

ďY⊗X
1 (a,x)−ďY⊗X

1 (b,x)
a−b ⊗C idR ⊗C id

(Y̌1⊗R⊗X̌0)∗

]∧}

◦π1010 ◦ cY⊗X

)
◦
(

idX∨
1

⊗ [idY̌ ∗
1

⊗C 1]ˆ
)
, (2.72)

where π1010 projects to Y1 ⊗ X0 ⊗ (Y1 ⊗ X0)
∨, and similarly for R0 = ( 0 0

r21 0 ). These
expressions can be simplified (in a way very similar to (A.15)) and one finds

l11 = f ◦
(

d X∨
0 ⊗ idY ∨

1

)
, r21 = g ◦

(
idX∨

1
⊗ dY ∨

0

)
(2.73)

with maps

f : X∨
0 ⊗ Y ∨

1 −→ R ⊗ X̌∗
0 ⊗ R∗ ⊗ Y̌ ∗

1 ⊗ R ⊂ (
(Y ⊗ X)∨

)
0 , (2.74)

g : X∨
1 ⊗ Y ∨

0 −→ R ⊗ X̌∗
1 ⊗ R∗ ⊗ Y̌ ∗

0 ⊗ R ⊂ (
(Y ⊗ X)∨

)
0 (2.75)

given by

(2.76)

where F : C[x] → C[y], xk �→ 1
2π i

∮ xk dx
W (x)−W (y) for appropriate variables x and y, and

we implicitly insert the multiplication μ where the dotted R-lines meet. (The map F
arises from F in (2.28) after composing with μ in (2.78), which cancels the a − b part.)
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We now claim that L − R is null-homotopic, so that L = R in MFbi(W ). To show this
we will use the fact that two morphisms φ,ψ : Z → Z ′ in MFbi(W ) are the same if (but
not only if) φ0 and ψ0 induce the same maps coker(d Z

1 ) → coker(d Z ′
1 ), see e. g. [Ei].

As a first step we note that

(2.77)

induces the same map on cokernels as R0. This follows from the identity π ◦ f = π ◦ g,
where π denotes the projection to the cokernel. This last identity, in turn, follows since
F(xk) = c0 ·1 + c1 · W (y)+ c2 · W (y)2 + . . . for some k-dependent numbers ci ∈ C, and
after composing with π the left action of W on a bimodule equals the right action of W .
As a result there is a morphism R′ with R = R′ in MFbi(W )whose even component is R′

0.
Secondly, consider the odd map

h =
⎛
⎜⎝

(X∨)0 ⊗ (Y ∨)0 (X∨)1 ⊗ (Y ∨)1 (X∨)1 ⊗ (Y ∨)0 (X∨)0 ⊗ (Y ∨)1
(Y1 ⊗ X0)

∨ 0 0 f 0
(Y0 ⊗ X1)

∨ 0 0 0 −g′
(Y0 ⊗ X0)

∨ 0 e 0 0
(Y1 ⊗ X1)

∨ 0 0 0 0

⎞
⎟⎠ (2.78)

with

(2.79)

This provides a homotopy between L and R′. Indeed, one can directly verify that L − R′
and d(Y⊗X)∨ ◦h +h◦d X∨⊗Y ∨

induce the same map coker(d X∨⊗Y ∨
) → coker(d(Y⊗X)∨).

Setting t = δ in Subsect. 2.3.2, it follows that matrix bi-factorisations also have
left duals. There is an analogous result to lemma 2.7 (and also a result analogous to
Remark 2.8(iii)):

Lemma 2.14. We have ẽvI = λI = ρI and c̃oevI = λ−1
I = ρ−1

I in MFbi(W ).
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3. Defect Action on Bulk Fields

As described in the Introduction we can use the duality structure of MFbi(W ) to study
the action of defects on bulk fields. To do so, we first study the general situation of a
pivotal monoidal category and then specialise to MFbi(W ). We also compare the results
obtained this way to the description in terms of the associated rational conformal field
theory.

3.1. Action on End(I ) for pivotal categories. Let M be a right rigid monoidal category
with pivotal structure δ. Then we also have left duals on M as in Subsect. 2.3.2. Given
an object X ∈ M, one can define the maps

Dl(X) , Dr (X) : End(I ) −→ End(I ) (3.1)

as follows. For ϕ : I → I we set

Dl(X)(ϕ) = evX ◦(idX∨ ⊗ (λX ◦ (ϕ ⊗ idX ) ◦ λ−1
X ))) ◦ c̃oevX , (3.2a)

Dr (X)(ϕ) = ẽvX ◦ (((ρX ◦ (idX ⊗ ϕ) ◦ ρ−1
X )⊗ idX∨) ◦ coevX . (3.2b)

In pictorial notation, this amounts to

(3.3)

as in (1.8).

Lemma 3.1. For all X,Y ∈ M we have:

(i) Dl(I ) = id = Dr (I ),
(ii) if X ∼= Y then Dl(X) = Dl(Y ) and Dl(X) = Dl(Y ),

(iii) Dl(X ⊗ Y ) = Dl(Y ) ◦ Dl(X),
(iv) Dr (X ⊗ Y ) = Dr (X) ◦ Dr (Y ),
(v) Dl(X∨) = Dr (X).

Proof. For part (i) we note that since δ is pivotal, δI = ω0 as given in Subsect. 2.3.
Substituting the definition (2.63) of ẽvX and c̃oevX (with tX = δX ), after a short calcu-
lation one arrives at the assertion.

Part (ii) is a consequence of (2.37) and (2.38) as well as the naturality of λ, ρ and δ.
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(iii) & (iv): It follows from (2.67) that

(3.4)

where we used two Zorro moves in the second step. With this we can compute

(3.5)

which is equal to (Dl(Y ) ◦ Dl(X))(ϕ). Dr (X ⊗ Y ) = Dr (X) ◦ Dr (Y ) is proven in a
similar way.

(v): We have

Dl(X
∨)(ϕ) = evX∨ ◦

(
idX∨∨ ⊗

[
λX∨ ◦ (ϕ ⊗ idX∨) ◦ λ−1

X∨
])

◦(idX∨∨ ⊗ δ−1
X∨) ◦ coevX∨∨

(1)= evX∨ ◦
(

idX∨∨ ⊗
[
λX∨ ◦ (ϕ ⊗ idX∨) ◦ λ−1

X∨
])

◦ (δX ⊗ idX∨) ◦ coevX

(2)= evX∨ ◦(δX ⊗ idX∨) ◦
([
ρX ◦ (idX ⊗ ϕ) ◦ ρ−1

X

]
⊗ idX∨

)
◦ coevX

= Dr (X)(ϕ), (3.6)

where step (1) amounts to (2.59), that is (δX∨)−1 = δ∨X , as well as (2.30), and in step
(2) the identities (idX ⊗ λY ) ◦ αX,I,Y = ρX ⊗ idY : (X ⊗ I )⊗ Y → X ⊗ Y and their
inverses are used. ��

In the defect picture, the above identities have immediate physical interpretations.
For example, (i) simply expresses the fact that the action of the invisible defect leaves
bulk fields invariant, independent of the orientation of the invisible defect. Similarly, (v)
must be true since wrapping a defect X counterclockwise around a field is the same as
wrapping the orientation reversed defect X∨ clockwise. Properties (iii) and (iv) imply in
particular that quantum dimensions behave multiplicatively under fusion, and one can
use these properties to put constraints on the fusion decomposition.
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3.2. Action on End(I ) for MFbi(W ). Let us now consider the category MFbi(W ). In the
case of one variable, we can use the explicit expressions for evX , coevX , λ

±1
X , ρ±1

X from
the previous section to make the defect action (3.2) on bulk fields ϕ ∈ EndMFbi(W )(I )
concrete:

Dl(X)(ϕ) =
⎡
⎣ 1

2π i

∮ tr
(

ď X
0 (x, b)ď X

1 (x, a)ϕ̌0(x)
)

dx

(W (x)− W (b))(b − a)

⎤
⎦

∧

· id, (3.7a)

Dr (X)(ϕ) =
⎡
⎣ 1

2π i

∮ tr
(

ď X
0 (a, x)ď X

1 (b, x)ϕ̌0(x)
)

dx

(W (x)− W (a))(b − a)

⎤
⎦

∧

· id. (3.7b)

The details of this calculation can be found in Appendix A.6.
As we will recall momentarily, matrix (bi-)factorisations form a triangulated cat-

egory [Ne], and the goal of this subsection is mainly to study the compatibility of
the rigidity of MFbi(W ) with its triangulated structure. The distinguished triangles of
MFbi(W ) are isomorphic to sequences of the form

X
ϕ

�� Y
ζϕ

�� C(ϕ)
ξϕ

�� T X , (3.8)

see e. g. [Or]. Here the cone C(ϕ) of a morphism ϕ ∈ HomMFbi(W )(X,Y ) is given by

C(ϕ) =

⎛
⎜⎜⎝

0 0 −d X
0 0

0 0 ϕ0 dY
1−d X

1 0 0 0
ϕ1 dY

0 0 0

⎞
⎟⎟⎠ , (3.9)

where the matrix gives a bimodule endomorphism of X1 ⊕ Y0 ⊕ X0 ⊕ Y1. The shift
functor T acts as

(
0 d X

1
d X

0 0

)
�−→

(
0 −d X

0
d X

1 0

)
,

(
ϕ0 0
0 ϕ1

)
�−→

(
ϕ1 0
0 ϕ0

)
(3.10)

on objects and morphisms, respectively, and the two universal morphisms in (3.8) are

ζϕ =

⎛
⎜⎜⎜⎝

0 0

id 0

0 0

0 id

⎞
⎟⎟⎟⎠ , ξϕ =

(
id 0 0 0

0 0 id 0

)
. (3.11)

The Grothendieck group K0(MFbi(W )) is the free abelian group of isomorphism classes
of objects in MFbi(W ) modulo the relations [X ] − [Y ] + [Z ] = 0 for all distinguished
triangles X → Y → Z → T X .

The following lemma says that the tensor product of MFbi(W ) induces a well-defined
product on K0(MFbi(W )), thus endowing it with a ring structure, and that the functor
( · )∨ induces a well-defined map on K0(MFbi(W )).
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Lemma 3.2. Let X
ϕ→ Y → C(ϕ) → T X be a distinguished triangle in MFbi(W ).

Then

[X∨] − [Y ∨] + [C(ϕ)∨] = 0 (3.12)

in K0(MFbi(W )), and

Z ⊗ X
id⊗ϕ

�� Z ⊗ Y
id⊗ζϕ

�� Z ⊗ C(ϕ)
id⊗ξϕ

�� Z ⊗ T X , (3.13)

X ⊗ Z
ϕ⊗id

�� Y ⊗ Z
ζϕ⊗id

�� C(ϕ)⊗ Z
ξϕ⊗id

�� T X ⊗ Z (3.14)

are also distinguished triangles for all Z ∈ MFbi(W ).

Proof. Y ∨ ϕ∨
→ X∨ → C(ϕ∨) → T Y ∨ is a distinguished triangle, so we have the relation

[Y ∨]− [X∨]+ [C(ϕ∨)] = 0. But since
(
( 0 −id

id 0 ), ( 0 id
id 0 )

)
is an isomorphism from C(ϕ∨)

to T (C(ϕ)∨), the identity (3.12) follows.
To show that (3.13) is a distinguished triangle we observe that there is an isomorphism

of triangles

Z ⊗ X

id
��

id⊗ϕ
�� Z ⊗ Y

id
��

ζid⊗ϕ
�� C(id ⊗ ϕ)

�

��

ξid⊗ϕ
�� T (Z ⊗ X)

�

��

Z ⊗ X
id⊗ϕ

�� Z ⊗ Y
id⊗ζϕ

�� Z ⊗ C(ϕ)
id⊗ξϕ

�� Z ⊗ T X

, (3.15)

where the maps � and � are given by

� =
⎛
⎜⎝

⎛
⎜⎝

0 id 0 0
0 0 id 0

−id 0 0 0
0 0 0 id

⎞
⎟⎠ ,

⎛
⎜⎝

0 −id 0 0
0 0 id 0
id 0 0 0
0 0 0 id

⎞
⎟⎠

⎞
⎟⎠ ,

� =
⎛
⎜⎝

0 −id 0 0
id 0 0 0
0 0 0 id
0 0 −id 0

⎞
⎟⎠ . (3.16)

That the squares in (3.15) commute easily follows from matrix multiplication. Checking
that (3.14) is also a distinguished triangle works analogously. ��
Lemma 3.3. The map C : [X ] �→ [X∨] defines an involutive ring anti-homomorphism
on K0(MFbi(W )).

Proof. By Lemma 3.2, K0(MFbi(W )) is a ring and C is a well-defined map. The isomor-
phism (2.52) shows that C([X ]) · C([Y ]) = [X∨ ⊗ Y ∨] = [(Y ⊗ X)∨] = C([Y ] · [X ]).

��
Lemma 3.4. (i) If X → Y → Z → T X is a distinguished triangle in MFbi(W ),

then Dl(X)− Dl(Y ) + Dl(Z) = 0 = Dr (X)− Dr (Y ) + Dr (Z).
(ii) Dl(X) = −Dl(T X), Dr (X) = −Dr (T X).
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Proof. (i): This follows immediately from the explicit expressions (3.7) and (3.9) as
the (off-diagonal) morphism dependent part of the cone cannot contribute to the
trace in (3.7).

(ii): By the axioms of triangulated categories, X → Y → C(ϕ) → T X is a distin-
guished triangle iff Y → C(ϕ) → T X → T Y is distinguished, and one easily
checks that C(ϕ) ∼= 0 for an isomorphism ϕ. Hence if we set X = Y and ϕ = idX ,
then it follows from part (i) that Dl/r (X) = −Dl/r (T X). ��

The above lemma shows that the maps Dl/r descend to K0(MFbi(W )). From their
explicit form one also sees that the operators Dl/r are degree preserving. In other words:

Proposition 3.5. In the one-variable case the maps Dl/r induce ring (anti-) homomor-
phisms

K0(MFbi(W )) −→ End0(EndMFbi(W )(I )). (3.17)

We expect this to remain true in the case of many variables.

Remark 3.6. There are alternative methods to compute the action of defects on bulk
fields. Instead of using rigidity as in (3.3) one may also employ the folding trick. Indeed,
it suggests that an action DX of a defect X on a bulk field ϕ is obtained as the one-point-
correlator of ϕ, viewed as a field in the folded theory, in the presence of the boundary
condition BX corresponding to X . More precisely, one expects

(3.18)

to hold for all bulk fields ϕ,ψ , where the left-hand side is a bulk correlator, and the
right-hand side is a one-point-correlator of a bulk field in the presence of a boundary
condition.

In the case of topologically B-twisted Landau-Ginzburg models, such correlators can
be computed with the residue formulas of [Va] and [KL2,HL] (see also [Se,Mf,DM]):
The two-point-correlator in the bulk is given by

〈ϕ ψ〉 = 1

(2π i)N

∮

{|∂i W |=1}
ϕψ dx1 ∧ . . . ∧ dxN

∂1W . . . ∂N W
, (3.19)

and the one-point-correlator of a bulk field ϕ in the presence of a boundary condition
described by a matrix factorisation Q is

〈ϕ〉Q = 1

(2π i)N

∮

{|∂i W |=1}
ϕ str (∂1 Q . . . ∂N Q) dx1 ∧ . . . ∧ dxN

∂1W . . . ∂N W
. (3.20)

Thus we can read off from (3.18) that the defect action DX is given by

ϕ �−→ 1

(2π i)N

∮

{|∂xi W |=1}
ϕ str

(
∂x1 X∂y1 X . . . ∂yN X

)
dx1 ∧ . . . ∧ dxN

∂x1 W . . . ∂xN W
, (3.21)
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where the right-hand side is an element of the Jacobi ring of W in the y-variables. In the
one-variable case one can check that the above DX precisely coincides with our defect
operator Dl(X) in (3.7a) for all the classes of examples that we will discuss below.

Another way to arrive at (3.21) is to use the theory of differential graded catego-
ries as follows. The space of bulk fields is isomorphic to the Hochschild homology
H H•(DG(W )) [Dy, Thm. 5.7], on which the action of X ∈ MFbi(W ) induces a map
[Sh, Thm. 3.4] in terms of the canonical pairing on H H•(DG(W )) and the Chern char-
acter of X . Using [PV, Cor. 4.1.3] to make this explicit for Landau-Ginzburg models,
one recovers (3.21).

3.3. Examples. All explicitly known matrix bi-factorisations of W = xd are isomorphic
to direct sums of two distinct families of objects in MFbi(xd) [Or,ADD]. One of these
is formed by the factorised matrix bi-factorisations

Fi, j =
(

0 âi

âd−i 0

)
⊗C

(
0 b̂ j

b̂d− j 0

)
, i, j ∈ {1, . . . , d − 1}. (3.22)

The other family is made up of elements labelled by all subsets S ⊂ {0, . . . , d − 1} and
given by

PS =
(

0 p̂S
p̂{0,...,d−1}\S 0

)
, (3.23)

where pS(a, b) = ∏
i∈S(a − ηi b) and η = e2π i/d . In this subsection we study the

action of such defects on bulk fields. We shall find agreement (up to phases) with results
obtained by a dual description in terms of rational conformal field theory, and that the
maps (3.17) are bijective when restricted to the subring of K0(MFbi(xd)) generated by
the isomorphism classes of (3.22) and (3.23).

It was shown in [BG, Sect. 3.3.2] that [Fi, j ] = 0 in K0(MFbi(xd)), and a direct
computation using the explicit expressions (3.7) shows that also

Dl/r (Fi, j ) = 0, (3.24)

as has to be the case by Lemma 3.4.
Turning to the rank-one matrix bi-factorisations PS , we will now compute Dl(PS). Let

us identify xi with ( âi 0
0 âi ) ∈ EndMFbi(W )(I ) ∼= R/(∂W ). Substituting (3.23) into (3.7a)

we find

Dl(PS)(x
i ) =

[
1

2π i

∮
xi ∏

l /∈S(x − ηlb)
∏

l∈S(x − ηla)dx

(xd − bd)(b − a)

]∧

=
d−1∑
k=0

[
(ηkb)i

∏
l /∈S(η

kb − ηlb)
∏

l∈S(η
kb − ηla)∏

m �=k(η
kb − ηmb)(b − a)

]∧

=
∑
k∈S

[
ηki bi

∏
l /∈S(η

kb − ηlb)
∏

l∈S,l �=k(η
kb − ηla)ηk(b − a)∏

m �=k(η
kb − ηmb)(b − a)

]∧

=
∑
k∈S

η(i+1)k xi , (3.25)
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where we used that â = b̂ on EndMFbi(W )(I ) in the last step. Similarly one obtains

Dr (PS)(x
i ) =

∑
k∈S

η−(i+1)k xi . (3.26)

In the one-variable case with potential W (x) = xd the bulk two-point-correlator (3.19)
simplifies to 〈xi x j 〉 = δi+ j,d−2. Hence it follows from (3.25) and (3.26) that Dl and Dr
are adjoint in the following sense.

Proposition 3.7. Let X ∈ MFbi(xd) be isomorphic to a direct sum of objects of the
form (3.22) and (3.23). Then

〈Dl(X)(ϕ)ψ〉 = 〈ϕDr (X)(ψ)〉. (3.27)

This result has a physical interpretation. Let us consider a worldsheet that is the Rie-
mann sphere and that has two field insertions around one of which a topological defect is
wrapped counterclockwise. As the defect is topological, the associated correlator has the
same value if the defect is moved around the sphere to wrap the second field insertion:

(3.28)

Such a relation is expected to hold in any category of matrix bi-factorisations. Indeed,
if we replace Dl(X) by DX as in (3.21) and Dr (X) by DX∨ , then one easily checks that
Eq. (3.27) holds in general.

We close this subsection by proving that the maps (3.17) are bijective on all explicitly
known matrix bi-factorisations of xd .

Proposition 3.8. The linear maps

Dl/r : K0(MFbi(x
d))⊗Z C −→ End0(EndMFbi(xd )(I )) (3.29)

are surjective algebra (anti-)homomorphisms. Furthermore, when restricted to the sub-
algebra generated by elements of type (3.22) and (3.23) they are isomorphisms.

Proof. To see that Dl is surjective (the case of Dr works analogously) we will show that
{Dl(P{k})}with k ∈ {0, . . . , d−2} is a basis for End0(EndMFbi(xd )(I )). As EndMFbi(xd )(I )∼= R/(∂xd) is (d − 1)-dimensional, an arbitrary element of End0(EndMFbi(xd )(I )) is of

the form diag(α0, . . . , αd−2) with αl in C. Let us write such an element as
∑d−2

k=0 αlχ
l .

Then by (3.25), Dl(P{k}) is identified with
∑d−2

l=0 η
k(l+1)χ l .

If we define numbers βk = 1
d

∑d−1
i=0 αiη

−k(i+1), then any
∑d−2

k=0 αlχ
l is given by∑d−1

k=0 βkDl(P{k}) = ∑d−1
k=0 βk

∑d−2
l=0 η

k(l+1)χ l = ∑d−2
k=0 αlχ

l , where we set αd−1 = 0.
Thus Dl and Dr are surjective.
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As a first step to prove the second part of the proposition, we observe that it follows
immediately from (3.25) and (3.26) that

Dl/r (PS) + Dl/r (PS′) = Dl/r (PS∪S′) + Dl/r (PS∩S′) (3.30)

for all S, S′ ⊂ {0, . . . , d −1}. Let us denote by P ⊂ K0(MFbi(xd))⊗ZC the subalgebra
generated by all [PS]. Then for Dl/r |P to be injective, we also must have [PS] + [PS′ ] =
[PS∪S′ ] + [PS∩S′ ] in P for compatibility with (3.30). This is indeed true, as we have
distinguished triangles

PS
� �� PS∪S′ �� C(�) �� T PS , (3.31)

where

� =
⎛
⎜⎝

p̂S′\(S∩S′) 0
1 0
0 1
0 p̂S\(S∩S′)

⎞
⎟⎠ , (3.32)

and by row and column manipulations one can show that C(�) ∼= PS′ .
We now conclude the argument that Dl/r |P is bijective by simple linear algebra. Let

us introduce a vector space V whose basis is labelled by all non-empty subsets S of
{0, . . . , d − 1}, V = C{eS}, and a linear map f : V → End0(EndMFbi(xd )(I )) with
f (eS) = Dl/r (PS). Since f is surjective, Ker( f ) is of codimension d −1. A convenient
basis of Ker( f ) is

{e{0,...,d−1}} ∪ {eS −∑
i∈S e{i}| |S| > 2}, (3.33)

which is missing e{i} with i = 0, . . . , d−2 to be a basis of V (the element e{0}+· · ·+e{d−1}
is contained in the span of the above vectors) and so has the correct dimension. Define
the linear map g : V → K0(MFbi(xd)) ⊗Z C via g(eS) = [PS]. Since P{0,...,d−1} ∼=
0 in MFbi(W ) we have g(e{0,...,d−1}) = 0, and from the triangle (3.31) we see that
g(eS + eS′ − eS∪S′ − eS∩S′) = 0. One checks that every vector in the above basis of
Ker( f ) can be written as a linear combination of vectors on which g vanishes. Thus g
factors through V/Ker( f ), and we have the commuting diagram

V/(Ker( f )) � �

�� ����������������������������

�� ��
��

��
��

��
��

��
��

��
�

V

�������������� f
�� ��

g

����

End0(EndMFbi(xd )(I ))

P
Dl/r |P

�� �����������������������

(3.34)

which implies that Dl/r |P is bijective. ��

3.4. Comparison with conformal field theory results. We will now review the description
of topological defects in rational conformal field theories associated to Landau-Ginzburg
models with potential xd ; then we shall compare defect actions and pivotal structures in
both theories.
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3.4.1. Topological defects in N = 2 minimal models. The vertex operator algebras
sVird for the N = 2 minimal models form a discrete series labelled by an integer
d ∈ Z≥3 and have central charge c = 3 − 6/d. The bosonic part (sVird)bos of sVird can
be obtained via the coset construction from

(
ŝu(2)d−2 ⊕ û(1)4

)
/̂u(1)2d . Accordingly,

the isomorphism classes of irreducible representations of (sVird)bos are labelled by the
set

I = {
(l,m, s) | l ∈ {0, 1, . . . , d − 2},m ∈ {0, 1, . . . , 2d − 1},

s ∈ {0, 1, 2, 3}, l + m + s even
}
/ ∼, (3.35)

where the equivalence relation ∼ identifies (l,m, s) with (d − 2 − l,m + d, s + 2) for
all (l,m, s) ∈ I. We denote elements of I by [l,m, s], and hence we have [l,m, s] =
[d − 2 − l,m + d, s + 2]. For each isomorphism class of irreducible representations
one may choose a representative R[l,m,s]. We denote the category of representations of
(sVird)bos by CN=2

d (it is a C-linear semisimple abelian braided monoidal category,
which is in addition ribbon and modular).

The modular S-matrix for the characters of R[l,m,s] can also be found from the coset
construction, and in the present case it is a simple product of the individual S-matrices,
up to an overall factor:

S[l,m,s],[x,y,z] = 2Sŝu(2)d−2
l,x (Sû(1)d

m,y )∗Sû(1)2
s,z , (3.36)

where

Sŝu(2)d−2
a,b =

√
2

d
sin
(π

d
(a + 1)(b + 1)

)
, Sû(1)N

a,b =
√

1

2N
e−π iab/N . (3.37)

We consider the A-type N = 2 minimal models. The bosonic part of their space of
states is given by

Hbos =
⊕

[l,m,s]∈I
R[l,m,s] ⊗ R̄[l,m,−s]. (3.38)

The chiral primaries are the highest weight states φl,l,0 in the direct summands R[l,l,0] ⊗
R̄[l,l,0] for l ∈ {0, 1, . . . , d − 2}. The fields φl,l,0 have left/right conformal weight given
by h = h̄ = l/(2d), which for chiral primaries is also equal to half the U (1)-charge.

The two-point-correlator of two fields ψ,ψ ′ ∈ Hbos on the Riemann sphere P1 is
given by

〈ψ(z)ψ ′(w)〉 = κψψ ′ (z − w)
−hψ−hψ ′ (z∗ − w∗)−h̄ψ−h̄ψ ′ . (3.39)

If ψ and ψ ′ are quasi-primary, the constant κψψ ′ can be non-zero only if hψ = hψ ′

and h̄ψ = h̄ψ ′ . Let φ̃d−2,d+2,0 be a ground state in R[d−2,d+2,0] ⊗ R̄[d−2,d+2,0] such that
〈φ̃d−2,d+2,0(z)φd−2,d−2,0(w)〉 �= 0. Note that in order to have a non-zero two-point-
correlator, by U (1)-charge conservation, φ̃d−2,d+2,0 needs to have minus the charge of
φd−2,d−2,0.

Consider the three-point-correlator with φ̃d−2,d+2,0 placed at infinity (with standard
local coordinates around infinity on P1), and insertions of φr,r,0 and φs,s,0 at z and w.
For an appropriate normalisation of the fields we have

〈φ̃d−2,d+2,0(∞)φr,r,0(z)φs,s,0(w)〉 = δr+s,d−2. (3.40)
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There is no position dependence because by U (1)-charge conservation, the correlator
can be non-zero only for r + s = d −2, and in this case h[d−2,d+2,0] −h[r,r,0] −h[s,s,0] =
0. The above three-point-correlator will correspond to the two-point-correlator (3.19)
in the topological Landau-Ginzburg model, which in the one-variable case just reads
〈xr xs〉 = δr+s,d−2.

The possible defects (preserving the holomorphic and anti-holomorphic copy of
(sVird)bos) can be computed using the methods of [PZ] (as done in [BR]) or those
of [Fr3] (as done in [CR]). One finds that the elementary defects are also labelled by the
set I; we denote them as

X[l,m,s], [l,m, s] ∈ I. (3.41)

From [FRS1,Fr3] we know that the topological defects X[l,m,s] are simple objects in a
monoidal category DN=2

d (see [CR, Sect. 3.1 & App. A.2] for more details in the case
at hand). The tensor product corresponds to fusion of defects and the morphism spaces
HomDN=2

d
(X1 ⊗ . . . ⊗ Xm,Y1 ⊗ . . . ⊗ Yn) are the spaces of defect junction fields of

left/right conformal weight (0, 0) that are inserted at a junction point with m incoming
defect lines labelled X1, . . . , Xm and n outgoing defect lines labelled Y1, . . . ,Yn . As is
the case for any rational conformal field theory, the category DN=2

d is (left and right)
rigid and has a pivotal structure [Fr3].

Let us denote the defect operators (acting on bulk fields) of a defect X by DCFT
l/r (X).

According to [CR, App. A.2], braided induction provides a monoidal equivalence CN=2
d∼= DN=2

d . The description of CFT correlators via three-dimensional topological field
theory (3dTFT) [FRS1,Fr3] shows that in this case the defect operators are simply given
by ratios of S-matrix elements. For a field ψ in R[l,m,s] ⊗ R̄[l,m,−s] one finds (see also
[BR])

DCFT
l (X[x,y,z])(ψ) = S[l,m,s],[x,−y,−z]

S[l,m,s],[0,0,0]
ψ, DCFT

r (X[x,y,z])(ψ) = S[l,m,s],[x,y,z]
S[l,m,s],[0,0,0]

ψ.

(3.42)

We will be particularly interested in the action of defects Xx,y,0 on the chiral primaries
φl,l,0, for which we get explicitly

DCFT
l (X[x,y,0])(φl,l,0) = sin(π(x + 1)(l + 1)/d)

sin(π(l + 1)/d)
e+π iyl/dφl,l,0,

DCFT
r (X[x,y,0])(φl,l,0) = sin(π(x + 1)(l + 1)/d)

sin(π(l + 1)/d)
e−π iyl/dφl,l,0.

(3.43)

One can prove in the 3dTFT approach [Fr3] that for all bulk fields ψ,ψ ′ ∈ Hbos and
for all defects X one has

〈
DCFT

l (X)
(
ψ(z)

)
ψ ′(w)

〉
=
〈
ψ(z)DCFT

r (X)
(
ψ ′(w)

)〉
, (3.44)

see the illustration (3.28). If ψ and ψ ′ are the identity field 1, this implies that

DCFT
l (X)(1) = DCFT

r (X)(1), (3.45)

a result which holds for all rational conformal field theories whose left and right chi-
ral symmetries coincide, so that they admit a description via the 3dTFT approach. The
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equality (3.45) can also be read off from (3.43) upon setting l = 0 as the multiplicative
constant is then the quantum dimension of the representation R[x,y,0].

Again with the help of the 3dTFT approach one verifies that for all fields ψ ,

DCFT
r (X[x,y,z])

(
φ̃d−2,d+2,0(w1)ψ(w2)

)

= S[d−2,d+2,0],[x,y,z]
S[0,0,0],[x,y,z]

φ̃d−2,d+2,0(w1)DCFT
r (X[x,y,z])

(
ψ(w2)

)

= (−1)x+ye−2π iy/d φ̃d−2,d+2,0(w1)DCFT
r (X[x,y,z])

(
ψ(w2)

)
. (3.46)

Inserting this into (3.40) results in

〈
φ̃d−2,d+2,0(∞)DCFT

l (X[x,y,z])
(
φr,r,0(w1)

)
φs,s,0(w2)

〉

= (−1)ze−2π iy/d
〈
φ̃d−2,d+2,0(∞)φr,r,0(w1)DCFT

r (X[x,y,z])
(
φs,s,0(w2)

)〉
. (3.47)

3.4.2. Comparison of defect operators. In [BR], X[b,a+2b,0] is identified as the con-
formal field theory equivalent of the Landau-Ginzburg defect described by the matrix
factorisation P{a,...,a+b} of (3.23). We write this as

F(X[b,2a+b,0]) = P{a,...,a+b} (3.48)

which will later provide the action of a functor F on objects. The actions (3.25) and
(3.26) of P{a,...,a+b} on xl can be rewritten as

DMF
l (P{a,...,a+b})(xl) = sin(π(b + 1)(l + 1)/d)

sin(π(l + 1)/d)
e+π i(l+1)(2a+b)/d xl ,

DMF
r (P{a,...,a+b})(xl) = sin(π(b + 1)(l + 1)/d)

sin(π(l + 1)/d)
e−π i(l+1)(2a+b)/d xl .

(3.49)

The two actions (3.43) and (3.49) do not quite agree, for example

DMF
l (P{a,...,a+b})(1) = e2π i(2a+b)/d DMF

r (P{a,...,a+b})(1), (3.50)

so that (3.45) does not hold for DMF
l/r (X). In general, if we define a linear map f from

the space of chiral primaries to EndMFbi(xd )(I ) by setting f (φl,l,0) = xl , then

DMF
l (F(X[x,y,0]))( f (φl,l,0)) = e+π iy/d f (DCFT

l (X[x,y,0])(φl,l,0)),

DMF
r (F(X[x,y,0]))( f (φl,l,0)) = e−π iy/d f (DCFT

r (X[x,y,0])(φl,l,0)).
(3.51)

In fact, these prefactors are precisely what is needed in order to make (3.27) and (3.47)
fit to the observation that the pairing (3.19) is given by the three-point-correlator (3.40).
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3.4.3. Comparison of pivotal structures. Denote by DN=2
d,s=0 the full subcategory of

DN=2
d consisting of objects isomorphic to direct sums of objects of the form X[l,m,0];

this is a monoidal subcategory (and hence also rigid and pivotal). Similarly, let (Pd)0 be
the (non-full) subcategory of MFbi(xd) whose objects are isomorphic to direct sums of
objects of the form P{a,...,a+b} and whose morphisms are morphisms of R-charge zero
in MFbi(xd); this is again a monoidal (and rigid and pivotal) subcategory.

The assignment (3.48) extends to an equivalence F : DN=2
d,s=0 → (Pd)0 of C-linear

semisimple categories (because it is bijective on representatives of the isomorphism clas-
ses of simple objects). It was conjectured in [CR] (and already established on the level
of objects in [BR]) that F can be extended to an equivalence (F, F2, F0) of monoidal
categories. From Remark 2.3 we see that (F, F2, F0) together with the right dualities
of the source and target categories gives natural isomorphisms φX : F(X∨) → F(X)∨.

We now want to see if F is in addition pivotal in the sense of Definition 2.10. This
will turn out to be not the case, and to illustrate this we consider all pivotal structures
on DN=2

d,s=0 simultaneously by defining

δ̃CFT
X = ηX ◦ δCFT

X , (3.52)

where η is a natural monoidal transformation of the identity functor on DN=2
d,s=0. The func-

tor F will be pivotal for a unique choice of η. If this η is different from the identity, DN=2
d,s=0

and (Pd)0 are not pivotally equivalent with their standard pivotal structures. We can fix
ηX on simple objects by noting that the requirement δMF

F(X) = (ψ−1
X )∨ ◦ψX∨ ◦ F(δ̃CFT

X )

from Definition 2.10 implies

(F0)−1 ◦ F(ẽvX ◦ (ηX ⊗ idX∨) ◦ coevX ) ◦ F0 = ẽvF(X) ◦ coevF(X) . (3.53)

Namely, if we write ηX[x,y,0] = ηx,y idX[x,y,0] , then ηx,y F(DCFT
r (X[x,y,0])(1)) =

DMF
r (F(X[x,y,0]))(id), and comparison with (3.51) shows that ηx,y = e−π iy/d . Note

that this is compatible with the fusion rules as is required for a natural monoidal trans-
formation. Also, since ηx,y is different from the identity,

DN=2
d,s=0 and (Pd)0 are not pivotally equivalent.

Remark 3.9. This result raises the question if the difference of pivotal structures just
observed can be avoided by redefining the pivotal structure on MFbi(xd) in (2.68). In
answer to this, we first note that it is of course possible to use the equivalence F to trans-
port the pivotal structure from DN=2

d,s=0 to (Pd)0, but it is not obvious that this pivotal

structure then extends to all of MFbi(xd). But rather than pursuing this point, we would
like to offer an alternative perspective which we believe to be the correct interpretation
of the above discrepancy.

Our starting assumption is that a fundamental property of the notion of a “defect oper-
ator” should be that it factors through the relevant Grothendieck group of the category
of defect conditions. This is satisfied on the CFT side (since DN=2

d,s=0 is semi-simple, and

so K0(DN=2
d,s=0) coincides with the free abelian group of isomorphism classes modulo the

direct sum relation), and by Proposition 3.5 it is also satisfied on the Landau-Ginzburg
side with the pivotal structure (2.68).

The property to factor through the Grothendieck group is tied to the pivotal structure
and will in general fail if the pivotal structure is modified. In our example, this can be seen
explicitly as follows. Let us consider the defect operator Dl , the analysis for Dr gives
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the same result. Consider the identity defect I and its image T I under the shift func-
tor. The triangulated structure on MFbi(xd) demands [T I ] = −[I ] in K0(MFbi(xd)).
From the definition of the shift functor and the form of PS in (3.23) we conclude that
T I = T P{0} ∼= P{1,...,d−1}. Formula (3.49) now reproduces the answer we already knew
from Lemma 3.1(i) and Proposition 3.5: Dl(I )(x0) = x0 and Dl(T I )(x0) = −x0. On
the other hand, it is equally easy to verify that the pivotal structure on (Pd)0 obtained by
transporting that of DN=2

d,s=0 does not factor through K0(MFbi(xd)). Namely, by (3.48)

we have T I ∼= F(X[d−2,d,0]) and from (3.43) we see DCFT
l (X[0,0,0])(1) = 1 and

DCFT
l (X[d−2,d,0])(1) = 1.

This calculation illustrates that the pivotal structure we chose in (2.68) is adapted
to the triangulated structure on MFbi(xd) (in the sense that the defect operator factors
through K0(MFbi(xd))), while the pivotal structure obtained on (Pd)0 by transporting
the one from DN=2

d,s=0 (independent of whether it extends to all of MFbi(xd) or not) is not.

The above observation shows that if we want to use the rigid structure to aid the com-
parison between matrix factorisation and conformal field theory data, we should look
for quantities independent of the pivotal structure. One such quantity is the following.
Let M be a C-linear rigid monoidal category, and let δ and δ′ = δ ◦ η be two pivotal
structures on M, with η a monoidal isomorphism of the identity functor on M. For all
X ∈ M we have

evX ◦(ηX∨ ⊗ ηX ) = evX ◦ηX∨⊗X = ηI ◦ evX = evX . (3.54)

Suppose now that X is absolutely simple, i. e. End(X) = CidX . Then there are constants
ξ and ξ̃ such that ηX = ξ idX and ηX∨ = ξ̃ idX∨ , and the above equation implies ξ ξ̃ = 1.
Then, denoting the linear maps (3.2) for δ and δ′ by Dl/r (X) and D′

l/r (X), respectively,

(D′
l(X) ◦ D′

r (X))(id) = D′
r (X

∨ ⊗ X)(id) = ξ ξ̃Dr (X
∨ ⊗ X)(id)

= (Dl(X) ◦ Dr (X))(id). (3.55)

Thus, for absolutely simple X , (Dl(X) ◦Dr (X))(id) is independent of the pivotal struc-
ture.

In the case of matrix factorisations, the relevant condition is that the space of degree
preserving endomorphisms of X is CidX . In the example treated above, the PS have
this property, and indeed from (3.43) and (3.49) one checks that (DMF

l (F(X[x,y,0])) ◦
DMF

r (F(X[x,y,0])))(id)gives the same multiple of id as (DCFT
l (X[x,y,0])◦DCFT

r (X[x,y,0]))
(1) gives of 1.

4. Discussion

In this paper we have studied dualities in the topological defect category MFbi(W ) of
Landau-Ginzburg models. More precisely, we have explicitly constructed the rigid and
pivotal structure of MFbi(W ) in the one-variable case, and then used it to compute the
defect action on bulk fields. We also analysed the relation between the Grothendieck
ring K0(MFbi(W )) and R-charge preserving operators on the bulk algebra. For the case
of many variables, we have suggested how to establish rigidity and constructed a pivotal
structure in general under the assumption of rigidity. Our results show that the CFT/LG
correspondence cannot straightforwardly be extended to the level of rigid and pivotal
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monoidal categories, yet still the comparison of quantities independent of the pivotal
structures yields agreement for the action of defects on bulk fields.

Another way to think of dualities for defects between two Landau-Ginzburg models
with the same potential is to embed them into a larger structure. Indeed, it is natural to
organise all topological defects between all Landau-Ginzburg models into a bicategory
LG: its objects are “theories”, i. e. pairs (R,W ) of polynomial rings R and potentials
W ∈ R with an isolated singularity at the origin, 1-morphisms between (R,W ) and
(R′,W ′) are matrix factorisations X of W ⊗C 1+1⊗C W ′, and 2-morphisms between X
and Y are elements of HomMF(W⊗C1−1⊗CW ′)(X,Y ). (Equivalently, one may also use the
categories MFbi(W,W ′) of [CR] for 1- and 2-morphisms.) It has been established [LMZ]
that this bicategory can be naturally endowed with the structure of a monoidal framed
bicategory.

Using the results of [Dy], one can view LG as a subbicategory of the homotopy cat-
egory of the bicategory LGDG that has differential graded categories DG(W ) as objects
and the 1- and 2-morphisms are provided by the derived category of differential graded
modules over DG(W ) ⊗ DG(−W ′), see e. g. [Ke] for the terminology. Then one may
expect that LG is also a symmetric monoidal (∞, 2)-category. If this is the case, one
can [DM, Sect. 5] use the results of [Dy] to find that as an object in LGDG, the category
DG(W ) is fully dualisable in the sense of [Lu2, Def. 2.3.21], and we expect LG = LGfd

(see [Lu2, Sect. 2.3] for the notation). This would in particular imply that every defect X
between Landau-Ginzburg models with potential W has itself a dual (called an adjoint
in [Lu2]), and that defect fields evX and coevX that satisfy the Zorro moves exist.

Let us expand on some of the structure of the bicategory LG. While it remains to be
rigorously answered whether it is a symmetric monoidal (∞, 2)-category, it is monoi-
dal as a weak double category [LMZ]. The unit object is simply (C, 0), and the tensor
product on objects is given by (R,W )⊗ (R′,W ′) = (R ⊗C R′,W ⊗C 1 + 1⊗C W ′). On
the level of 1- and 2-morphisms, the tensor product is the external one (i. e. as in (2.4)
and (A.1) but with “⊗R” replaced by “⊗C”) while the composition of 1-morphisms is
given by fusion.

The dual of an object (R,W ) in LG is given by (R,−W ), and one may now ask for
evaluation and coevaluation maps on this higher categorial level. By definition, these
are 1-morphisms

ev(R,W ) : (R,−W )⊗ (R,W ) −→ (C, 0),

coev(R,W ) : (C, 0) −→ (R,W )⊗ (R,−W ),
(4.1)

which are objects in the (1-)categories

MF((−W ⊗C 1 + 1 ⊗C W )− 1 ⊗C 0) ≡ MF(0 ⊗C 1 − (W ⊗C 1 − 1 ⊗C W ))

≡ MF(−W ⊗C 1 + 1 ⊗C W ). (4.2)

If we denote by IW the unit object in MFbi(W ) ≡ MF(W ⊗C 1 − 1 ⊗C W ) and
define ev(R,W ) = coev(R,W ) = I−W , then one may verify that the Zorro moves for
ev(R,W ), coev(R,W ) hold up to 2-isomorphism. Furthermore, we can define another dual-
ity structure by ẽv(R,W ) = c̃oev(R,W ) = T IW . With this one may consider the quantum
dimension of a Landau-Ginzburg model: in analogy to the 1-categorial case we set

dim
(
(R,W )

) = ẽv(R,W ) ◦ coev(R,W ) . (4.3)

Then we use the relation (2.43) to find that dim((R,W )) is given by the bulk algebra,

dim
(
(R,W )

) ∼= R/(∂W ), (4.4)



170 N. Carqueville, I. Runkel

which is isomorphic to the Hochschild cohomology of DG(W ) [Dy]. An analogous
result is also true for general B-twisted sigma models [Lu1].
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A. Appendix

A.1. Explicit morphisms of the monoidal structure. The tensor product of two mor-
phisms ϕ, ϕ′ in MFbi(W ) is given by

ϕ ⊗ ϕ′ =
⎛
⎜⎝
ϕ0 ⊗R ϕ

′
0 0 0 0

0 ϕ1 ⊗R ϕ
′
1 0 0

0 0 ϕ1 ⊗R ϕ
′
0 0

0 0 0 ϕ0 ⊗R ϕ
′
1

⎞
⎟⎠ , (A.1)

and the explicit associator isomorphism αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z) reads

(αX,Y,Z )0 =
⎛
⎜⎝

idX0⊗RY0⊗R Z0 0 0 0
0 0 0 idX0⊗RY1⊗R Z1

0 idX1⊗RY1⊗R Z0 0 0
0 0 idX1⊗RY0⊗R Z1 0

⎞
⎟⎠ ,

(A.2)

(αX,Y,Z )1 =
⎛
⎜⎝

idX1⊗RY0⊗R Z0 0 0 0
0 0 0 idX1⊗RY1⊗R Z1

0 idX0⊗RY1⊗R Z0 0 0
0 0 idX0⊗RY0⊗R Z1 0

⎞
⎟⎠ .

(A.3)

In the case of a potential W in only one variable, the homotopy inverses of λX , ρX
in (2.6) are given by

λ−1
X =

⎛
⎜⎜⎜⎜⎝

[1 ⊗C idX̌0
]ˆ 0

[ 1⊗Cď X
0 (a,b)−1⊗Cď X

0 (x,b)
a−x ]ˆ 0

0 [ 1⊗Cď X
1 (a,b)−1⊗Cď X

1 (x,b)
a−x ]ˆ

0 [1 ⊗C idX̌1
]ˆ

⎞
⎟⎟⎟⎟⎠

: X −→ I ⊗ X,

(A.4)

ρ−1
X =

⎛
⎜⎜⎜⎜⎝

[idX̌0
⊗C 1]ˆ 0

[ ď X
0 (a,x)⊗C1−ď X

0 (a,b)⊗C1
x−b ]ˆ 0

0 [idX̌1
⊗C 1]ˆ

0 [ ď X
1 (a,b)⊗C1−ď X

1 (a,x)⊗C1
x−b ]ˆ

⎞
⎟⎟⎟⎟⎠

: X −→ X ⊗ I,

(A.5)

where we employ a natural generalisation of the hat-notation introduced in Sect. 2.1,
see [CR, App A.1] for details.
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A.2. The evaluation map is a morphism. To show that evX : X∨ ⊗ X → I is well-
defined in MFbi(W ) we have to check that I ◦ evX = evX ◦(X∨ ⊗ X). Writing this out
in components, the condition becomes

ι0 ◦ AX = BX ◦ ((d X
0 )

∨ ⊗R idX0) + CX ◦ (idX∨
0

⊗R d X
0 ), (A.6)

0 = BX ◦ (idX∨
1

⊗R d X
1 ) + CX ◦ (d∨

1 ⊗R idX1), (A.7)

ι1 ◦ BX = −AX ◦ ((d X
1 )

∨ ⊗R idX1), ι1 ◦ CX = AX ◦ (idX∨
1

⊗R d X
1 ). (A.8)

We first show that (A.6) and (A.7) are satisfied if (A.8) holds. Since ι1 = [a − b]ˆ is
injective, (A.6) is true if ι1 ◦ ι0 ◦ AX = ι1 ◦ BX ◦ ((d X

0 )
∨ ⊗R idX0)+ ι1 ◦CX (idX∨

0
⊗R d X

0 )

which is equivalent to

[W (a)− W (b)]ˆ ◦ AX = (−AX ◦ ((d X
1 )

∨ ⊗R idX1)) ◦ ((d X
0 )

∨ ⊗R idX0)

+(AX ◦ (idX∨
1

⊗R d X
1 )) ◦ (idX∨

0
⊗R d X

0 )

= −AX ◦ [W (x)− W (a)]ˆ + AX ◦ [W (x)− W (b)]ˆ
= [W (a)− W (b)]ˆ ◦ AX . (A.9)

The identity (A.7) is checked similarly. Thus it remains to show that (A.8) holds for
AX , BX ,CX given by (2.25)–(2.27). Let us write X1 = R ⊗C X̌1 ⊗C R, where X̌1
is a vector space with basis {ei }. To see that the second equation in (A.8) is true it is
sufficient to prove that this is so when both sides are applied to elements of the form
1 ⊗C e∗

i ⊗C xk ⊗C e j ⊗C 1. But we have

(ι1 ◦ CX )(1 ⊗C e∗
i ⊗C xk ⊗C e j ⊗C 1) = −δi, jδk,0[a − b]ˆ(1 ⊗C 1 ⊗C 1) (A.10)

and

(AX ◦ (idX∨
1

⊗R d X
1 ))(1 ⊗C e∗

i ⊗C xk ⊗C e j ⊗C 1)

= −
[

evX̌1

(
e∗

i ⊗C

∮
(a − b − x)xkdx

x(W (x)− W (b))
ď X

0 (x, b)ď X
1 (x, b)(e j )

)]∧

= −
[

evX̌1

(∮
(a − b − x)xk−1dx e∗

i ⊗C e j

)]∧

= −δi, jδk,0[a − b]ˆ(1 ⊗C 1 ⊗C 1), (A.11)

and the first equation in (A.8) follows analogously.

A.3. Zorro moves. We want to show that the Zorro move

ρX ◦ (idX ⊗ evX ) ◦ αX,X∨,X ◦ (coevX ⊗idX ) ◦ λ−1
X = idX (A.12)

holds true for all X ∈ MFbi(W ) whose entries have polynomial degrees lower than
deg(W ). By straightforward matrix multiplication we find that the left-hand side is a
(2 × 2)-matrix whose (1, 1)-entry is given by

F = (idX0 ⊗R μ) ◦ (idX0 ⊗R AX )

◦
{([

(ď X
f )1(a,x)⊗CidR⊗CidX̌∗

1
−(ď X

f )1(b,x)⊗CidR⊗CidX̌∗
1

a−b

]∧
◦ cX1

)
⊗R idX0

}

◦[1 ⊗C idX̌0
] .̂ (A.13)
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Since the left-hand side of (A.12) is a morphism in MFbi(W ) it suffices to prove that

(idR ⊗C (e
0
r )

∗ ⊗C idR)(F(1 ⊗C e0
s ⊗C 1)) = δr,s 1 ⊗C 1 (A.14)

in order to check that (A.12) is true. Here and below we denote by {ei
r } a basis of the

vector space X̌i .
Substituting the expression (2.25) into (A.13) we find that

(idR ⊗C (e
0
r )

∗ ⊗C idR)(T (1 ⊗C e0
s ⊗C 1))

=
dim X̌0∑

l=1

[∮
(2π i)−1dx

W (x)− W (b)

(e0
r )

∗((ď X
1 (a, b)−ď X

1 (x, b))(e1
l ))

a − x
(e1

l )
∗(ď X

0 (x, b)(e0
s ))

]∧

=
[∮

(2π i)−1dx

W (x)− W (b)

(e0
r )

∗(ď X
1 (a, b)ď X

0 (x, b)(e0
s ))

a − x

]∧
−
[∮

dx

2π i

δr,s

a − x

]∧
, (A.15)

where we used the matrix bi-factorisation condition ď X
1 (x, b)ď X

0 (x, b) = (W (x) −
W (b))idX̌0

. This is indeed equal to δr,s 1 ⊗C 1 as there are no entries of degree deg(W )

or higher in ď X
0 .

The other Zorro move (2.36) is proved analogously.

A.4. R-charge and duals. In this appendix we formulate duals for graded matrix bi-fac-
torisations and show that evX and coevX have R-charge zero.

A.4.1. Group action on bimodules. Let R and S be C-algebras. Given μ ∈ Aut(R) and
ν ∈ Aut(S) we obtain a functor �μ,ν from R-mod-S to itself by twisting the action of R
and S,

(X, ρl , ρr ) �−→ (X, ρl ◦ (μ⊗ idX ), ρ
r ◦ (idX ⊗ ν)), f �−→ f. (A.16)

� defines a strict action of Aut(R)op×Aut(S)op on R-mod-S, i. e.�μ′,ν′ ◦�μ,ν = �μμ′,νν′ .
The group action commutes with taking duals in the sense that there is a natural isomor-
phism

χμ,ν : ( · )∨ ◦ �μ,ν �⇒ �ν,μ ◦ ( · )∨, (A.17)

which takes an elementψ ∈ X∨ = HomR-mod-S(X, R⊗C S) toχμ,νX (ψ) = (μ⊗Cν)◦ψ
(this defines a map χμ,νX : (�μ,ν(X))∨ → �ν,μ(X∨) of S-R-bimodules) and which sat-
isfies

(
(�μμ′,νν′ X)∨

χ
μ′,ν′
�μ,ν X

�� �ν′,μ′((�μ,νX)∨)
�ν′,μ′χμ,νX

�� �νν′,μμ′(X∨)
)

= (
(�μμ′,νν′ X)∨

χ
μμ′,νν′
X �� �νν′,μμ′(X∨)

)
. (A.18)

We now specialise to the case that R = C[x1, . . . , xM ] and S = C[y1, . . . , yN ] and
consider group homomorphisms σR : C → R and σS : C → S given by

σR(α)(xi ) = eiqxαxi , σS(α)(y j ) = eiqyα y j , (A.19)
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where qx , qy ∈ C are constants. Denote by �α the diagonal action α �→ �σR(α),σR(α) of
(C,+) on R-mod-S. We denote the natural isomorphism (A.17) as χα : ( · )∨ ◦ �α ⇒
�α ◦ ( · )∨.

Definition A.1. An R-S-bimodule with u(1)-action is a pair (X, ϕX ) where X is an
R-S-bimodule and ϕX

α : X → �α(X) is a family of isomorphisms such that

(
X

ϕX
α+β

�� �α+βX
) = (

X
ϕX
α �� �αX

�α(ϕ
X
β )

�� �α+βX
)
. (A.20)

In other words, (X, ϕX ) is a C-invariant object in the category with C-action R-mod-
S. We say a bimodule map f : X → Y has R-charge p iff the diagram

�αX
eipα�α( f )

�� �αY

X

ϕX
α

		

f
�� Y

ϕY
α

		
(A.21)

commutes for all α ∈ C. Given a bimodule with u(1)-charge (X, ϕX ), we define its dual
as (X, ϕ)∨ = (X∨, ϕ̃) with

(
X∨ ϕ̃α �� �α(X∨)

) = (
X∨ (ϕ−1

α )∨
�� (�αX)∨

χαX �� �α(X∨)
)
. (A.22)

We need to verify the composition rule (A.20):

�α(ϕ̃β) ◦ ϕ̃α (1)= �α(χ
β
X ) ◦ �α(ϕ−1 ∨

β ) ◦ χαX ◦ ϕ−1 ∨
α

(2)= �α(χ
β
X ) ◦ χα�β X ◦ (�α(ϕ−1

β ))∨ ◦ ϕ−1 ∨
α

(3)= χ
α+β
X ◦ (ϕ−1

α ◦ �α(ϕβ)−1)∨ = ϕ̃α+β, (A.23)

where Step (1) is the definition of ϕ̃, Step (2) is naturality of χα , and Step (3) is (A.18).

A.4.2. u(1)-action and duals for the bimodules R ⊗C W ⊗C S. Given a C-vector space
W , we obtain a free R-S-bimodule R ⊗C W ⊗C S. For such bimodules we can give a
more direct formulation of the u(1)-action and their duals. Define the bimodule map

sW
α : R ⊗C W ⊗C S −→ �α(R ⊗C W ⊗C S) (A.24)

r ⊗C w ⊗C s �−→ σR(α)(r)⊗C w ⊗C σS(α)(s), (A.25)

Let a ≡ (a1, . . . , aM ) and b ≡ (b1, . . . , bN ) be formal variables. For a map f (a, b) :
V → W [a, b] we obtain the commuting diagram

�α(R ⊗C V ⊗C S)
�α( [ f (a,b)]ˆ )

�� �α(R ⊗C W ⊗C S)

R ⊗C V ⊗C S

sV
α

		

[ f (σR(−α)(a),σS(−α)(b)]ˆ �� R ⊗C W ⊗C S.

sW
α

		
(A.26)
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Given a u(1)-action ϕW
α on R ⊗C W ⊗C S, we define the bimodule map

U W (α) = (ϕW−α)−1 ◦ sW−α : R ⊗C W ⊗C S −→ R ⊗C W ⊗C S, (A.27)

i. e. ϕW
α = sW

α ◦ U W (−α)−1. With this choice of signs, comparing (A.21) and (A.26)
shows that [ f (a, b)]ˆ has R-charge p iff

U W (α) ◦ [ f (σR(α)(a), σS(α)(b)]ˆ ◦ U V (α)−1 = eipα [ f (a, b)]ˆ, (A.28)

which is the standard R-charge condition, see e. g. [HWa].
For bimodules of the form R ⊗C W ⊗C S we have a natural contravariant functor

( · )+, given by

(R ⊗C W ⊗C S)+ = S ⊗C W ∗ ⊗C R, ([ f (a, b)]ˆ)+ = [ f ∗(b, a)]ˆ, (A.29)

where for f (a1, . . . , aM , b1, . . . , bN ) = ∑
k1,...,kM ,l1,...,lN

fk1,...,lN ak1
1 · · · akM

M bl1
1 · · · blN

N
we set

f ∗(b, a) =
∑

k1,...,kM ,l1,...,lN

fk1,...,lN bk1
1 · · · bkM

M al1
1 · · · alN

N . (A.30)

Note that f (a, b) : V → W [a1, . . . , aM , b1, . . . , bN ] while f ∗(b, a) : W ∗ → V ∗
[a1, . . . , aN , b1, . . . , bM ], as by convention the ai act on the left algebra, which is R
for R ⊗C W ⊗C S while it is S for S ⊗C W ∗ ⊗C R. The number of formal b-variables
changes for the same reason.

We can define a natural isomorphism κ : ( · )+ ⇒ ( · )∨ via

κW : (R ⊗C W ⊗C S)+ −→ (R ⊗C W ⊗C S)∨, (A.31)

s ⊗C φ ⊗C r �−→ (
e ⊗C w ⊗C f �→ φ(w) · (re)⊗C ( f s)

)
. (A.32)

Indeed one checks that κW provides a natural family of S-R-bimodule isomorphisms.
In addition, it makes the following diagram commute (we omit the ⊗C):

(R W S)∨
((sW

α )
−1)∨

��
(
�α(R W S)

)∨ χαR W S �� �α((R W S)∨)

(R W S)+
sW∗
α ��

κW

		

�α((R W S)+).

�α(κW )

		
(A.33)

In the main text the natural isomorphism κ is used implicitly, but for the purpose of this
appendix we find it clearer to distinguish the two duals.

Given a bimodule R ⊗C W ⊗C S with u(1)-action described by U W (α), we assign
to (R ⊗C W ⊗C S)+ the u(1)-action (U W (α)−1)+. This is the unique choice compatible
with (A.22) in the sense that the diagram

(R W S)∨
ϕ̃R W S
α �� �α((R W S)∨)

(R W S)+
(U W (−α))+

��

κW

		

(R W S)+
sW∗
α �� �α((R W S)+)

�α(κW )

		
(A.34)

commutes (that the map (U W (−α))+ appears instead of (U W (α)−1)+ is due to Def-
inition (A.27)). This follows when inserting Definitions (A.22) and (A.27) and using
commutativity of (A.33).
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A.4.3. Graded matrix bi-factorisations.

Definition A.2. A graded matrix bi-factorisation is a pair (X, ϕX ) where X =
(X0, X1, d X

0 , d X
1 ) is a matrix bi-factorisation and X0 ⊕ X1 is a bimodule with u(1)-

action ϕX (α) = (
ϕX0 (α) 0

0 ϕX1 (α)
) such that d X = (

0 d X
1

d X
0 0

) has R-charge 1.

We now restrict ourselves to the one-variable case R = S = C[x] with potential
W (x) = xd . In this case the constant qx is given by 2/d. If (X, ϕX ) is a graded matrix
bi-factorisation, we define its dual graded matrix bi-factorisation to be (X∨, ϕ(X∨)),
where we take

ϕ(X
∨) = eiα(qx −1)

(
ϕ̃X1(α) 0

0 ϕ̃X0(α)

)
(A.35)

and ϕ̃X was defined in (A.22). The reason to include the phase shift is to ensure that
I ∨ ∼= I via an isomorphism of R-charge zero; we will come to this in a moment. Inde-
pendent of the phase shift one checks that if d X has R-charge 1 with respect to the
u(1)-action ϕX , then d(X

∨) has R-charge 1 with respect to the u(1)-action ϕ(X
∨).

If Xi = R⊗C X̌i ⊗C R and the u(1)-action is described by U Xi (α), then we define the
matrix bi-factorisation X+ = (X+

1 , X+
0 , (d

X
0 )

+,−(d X
1 )

+) with u(1)-action described by

U (X+)(α) = eiα(qx −1)
(
(U X1(α)−1)+ 0

0 (U X0(α)−1)+

)
. (A.36)

This is isomorphic to (X∨, ϕ(X∨)) via the isomorphism κX1⊕X0 , which one can ver-
ify to have R-charge zero. Recall the definition of the graded matrix bi-factorisation I
in Sect. 2.2.4; plugging U I into (A.36) we see that I = I + ∼= I ∨ as graded matrix
bi-factorisations, and the isomorphism is of R-charge zero.

Let X be a matrix bi-factorisation with Xi = R ⊗C X̌i ⊗C R. Note that the maps
evX and coevX given in Sect. 2.2.3 are actually maps X+ ⊗ X → I and I → X ⊗ X+,
respectively. Similarly, the identity verified in Lemma 2.4 is actually that for f : X → Y
we have coevX ◦( f ⊗ idX+) = coevY ◦(idY ⊗ f +). Analogous statements hold for evX .
The map coevX satisfies

I
�α(coevX ) �� �α(X)⊗ �α(X+)

I

sα◦U I (−α)−1

		

eiα(1−qx ) coevX

�� X ⊗ X+.

sW
α ⊗sW∗

α

		
(A.37)

Combining this observation with Definition (A.36) and the fact that the u(1)-action on
X+ is given by the bottom line of (A.34), it is straightforward to check that coevX has R-
charge zero: naturality of κ implies compatibility with the differential and commutativity
of (A.34) gives the R-charge to be zero. The argument for evX is analogous.

A.5. Proof of lemma 2.12. To show part (i) of Lemma 2.12 we use the relation (2.40)
twice to find that the naturality condition ϕ∨∨ ◦ tX = tY ◦ ϕ is equivalent to
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(A.38)

In the second step we have composed both sides with t−1
X “from below” and applied two

Zorro moves. But the last expression in (A.38) is precisely the left-hand side of (2.66)
by definition of c̃oevX and ẽvY .

To prove part (ii) let us write out (2.56) in pictorial language. Using (2.53) and (2.40)
we find

(A.39)

That this is indeed the inverse of (ν2
Y,X )

∨ can be shown by concatenating the above

expression with (ν2
Y,X )

∨ and using repeated Zorro moves to obtain the identity. Thus

t−1
X⊗Y ◦ ((ν2

Y,X )
∨)−1 ◦ ν2

X∨,Y ∨ ◦ (tX ⊗ tY ) = idX⊗Y is equivalent to

(A.40)
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Now we apply one Zorro move to the left-hand side, compose with tX⊗Y “from above”
and with (tX⊗Y )

−1 “from below”, and append curved lines to the left and right to obtain

(A.41)

Composing both sides with

(A.42)

“from below”, applying two more Zorro moves on the left-hand side and using the
definitions of c̃oevX⊗Y , ẽvX , ẽvY , we finally arrive at (2.67).

A.6. Trace formula for defect action. We want to prove the explicit expression (3.7) for
the action of a defect X on a bulk field ϕ. As ϕ ∈ EndMFbi(W )(I ) ∼= R/(∂W ), it suffices
to compute the (1, 1)-entry of the (2 × 2)-matrix

Dl(X)(ϕ) = evX ◦(idX∨ ⊗ (λX ◦ (ϕ ⊗ idX ) ◦ λ−1
X )) ◦ c̃oevX , (A.43)

because the other non-zero entry must be the same. Substituting the explicit expressions
for evX , λX , λ

−1
X , c̃oevX , we find that the (1, 1)-entry of (3.7) is equal to

AX ◦ μ(ϕ0) ◦ (id ⊗ [1 ⊗C id]ˆ) ◦
[

idX̌1
⊗C idR ⊗C

(
ď X

1 (x, a)−ď X
1 (x, b)

)

a − b

]∧
◦ cX1

=
⎡
⎣ 1

2π i

∮
(a − b − x)

x(W (x)− W (b))

tr
(
ϕ̌0(x)ď X

0 (x, b)(ď X
1 (x, a)− ď X

1 (x, b))
)

a − b
dx

⎤
⎦

∧

= −
⎡
⎣ 1

2π i

∮ tr
(
ϕ̌0(x)ď X

0 (x, b)(ď X
1 (x, a)− ď X

1 (x, b))
)

dx

x(W (x)− W (b))

⎤
⎦

∧
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+

⎡
⎣ 1

2π i

∮ tr
(
ϕ̌0(x)ď X

0 (x, b)(ď X
1 (x, a)− ď X

1 (x, b))
)

dx

(W (x)− W (b))(a − b)

⎤
⎦

∧

= −
⎡
⎣ 1

2π i

∮ tr
(

ď X
0 (x, b)ď X

1 (x, a)ϕ̌0(x)
)

dx

(W (x)− W (b))(a − b)

⎤
⎦

∧

. (A.44)

Here it was used that since EndMFbi(W )(I ) ∼= R/(∂W ) we have â = b̂, and the term
ď X

0 (x, b)(ď X
1 (x, a)− ď X

1 (x, b)) in line (A.44) is zero.
The expression for Dr (X)(ϕ) is proved analogously.
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