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Abstract: The formation and propagation of singularities for the Boltzmann equation
in bounded domains has been an important question in numerical studies as well as in
theoretical studies. In this paper, we consider the nonlinear Boltzmann solution near
Maxwellians under in-flow, diffuse, or bounce-back boundary conditions. We demon-
strate that discontinuity is created at the non-convex part of the grazing boundary, and
then it propagates only along the forward characteristics inside the domain before it hits
on the boundary again.

1. Introduction

A density of a dilute gas is governed by the Boltzmann equation

∂t F + v · ∇x F = Q(F, F) , F |t=0 = F0, (1)

where F(t, x, v) is a distribution function for the gas particles at a time t ≥ 0, a position
x ∈ � ⊂ R

3 and a velocity v ∈ R
3. Throughout this paper, the collision operator takes

the form

Q(F1, F2) =
∫

R3

∫
S2

B(v − u, ω)F1(u
′)F2(v

′)dωdu

−
∫

R3

∫
S2

B(v − u, ω)F1(u)F2(v)dωdu

≡ Q+(F1, F2)− Q−(F1, F2), (2)

where u′ = u + [(v − u) · ω]ω, v′ = v − [(v − u) · ω]ω and B(v − u, ω) = |v − u|γ
q0(

v−u
|v−u| · ω), with 0 < γ ≤ 1 (hard potential) and

∫
S2 q0(û · ω)dω < +∞, (angular

cutoff) for all û ∈ S
2.
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In terms of the standard perturbation f such that F = μ +
√
μ f, the Boltzmann

equation can be rewritten as

∂t f + v · ∇x f + L f = �( f, f ) , f |t=0 = f0, (3)

where the standard linear Boltzmann operator([15,20]) is given by

L f ≡ ν f − K f,

with the collision frequency ν(v) ≡ ∫ |v−u|γ μ(u)q0(
v−u
|v−u| ·ω)dωdu and 1

Cν
(1+|v|)γ ≤

ν(v) ≤ Cν(1 + |v|)γ ,

K f ≡
∫

R3
k(v, v′) f (v′)dv′ ≡ 1√

μ
Q+(μ,

√
μ f )+

1√
μ

Q+(
√
μ f, μ)− 1√

μ
Q−(

√
μ f, μ),

�( f, f ) ≡ 1√
μ

Q+(
√
μ f,

√
μ f )− 1√

μ
Q−(

√
μ f,

√
μ f ) ≡ �+( f, f )− �−( f, f ).

If the gas is contained in bounded regions or flows past solid bodies, the Boltzmann
equation must be accompanied by boundary conditions describing the interactions of
the gas molecules with the solid walls. Let the domain� be a smooth bounded domain.
We consider three basic types of boundary conditions ([11,12,21,30,39]) for f (t, x, v)
at (x, v) ∈ ∂�× R

3 with v · n(x) < 0, where n(x) is an outward unit normal vector at
x ∈ ∂�:

1. In-flow injection boundary condition. Incoming particles are prescribed:

f (t, x, v) = g(t, x, v). (4)

2. Diffuse reflection boundary condition. Incoming particles are the probability average
of the outgoing particles;

f (t, x, v) = cμ
√
μ(v)

∫
v′·n(x)>0

f (t, x, v′)
√
μ(v){n(x) · v′}dv′, (5)

with a normalized Maxwellian μ = e− |v|2
2 , a normalized constant cμ > 0 such that

cμ

∫
v′·n(x)>0

μ(v′)|n(x) · v′|dv′ = 1, (6)

which implies that mass is conserved at the boundary and the temperature of the
wall to be constant and equals 1.

3. Bounce-back reflection boundary condition. Incoming particles bounce back at the
reverse of the velocity:

f (t, x, v) = f (t, x,−v). (7)

The purpose of this paper is to investigate a possible formation and propagation of
discontinuity for the nonlinear Boltzmann equation under these boundary conditions. In
order to state our results, we need the following definitions.
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Fig. 1. Grazing Boundary γ0

1.1. Domain. Throughout this paper, we assume the domain � ⊂ R
3 is open and

bounded and connected. For simplicity, we assume that the boundary ∂� is smooth, i.e.
for each point x0 ∈ ∂�, there exists r > 0 and a smooth function �x0 : R

2 → R such
that - upon relabeling and reorienting the coordinates axes if necessary - we have

� ∩ B(x0, r) = {x ∈ B(x0, r) : x3 > �x0(x1, x2)}. (8)

The outward normal vector at ∂� is given by

n(x1, x2) = 1√
1 + |∇x�(x1, x2)|2

( ∂x1�x0(x1, x2), ∂x2�x0(x1, x2), −1 ).

Given (t, x, v), let [X (s), V (s)] = [X (s; t, x, v), V (s; t, x, v)] = [x − (t − s)v, v] be
a trajectory (or a characteristics) for the Boltzmann equation (1):

d X (s)

ds
= V (s),

dV (s)

ds
= 0,

with the initial condition: [X (t; t, x, v), V (t; t, x, v)] = [x, v].
Definition 1 ([21]). For (x, v) ∈ �̄×R

3, we define the backward exit time, tb(x, v) ≥ 0
to be the last moment at which the back-time straight line [X (s; 0, x, v), V (s; 0, x, v)]
remains in the interior of �:

tb(x, v) = sup({0} ∪ {τ > 0 : x − sv ∈ � for all 0 < s < τ }).
We also define the backward exit position in ∂�,

xb(x, v) = x − tb(x, v)v ∈ ∂�,
and we always have v · n(xb(x, v)) ≤ 0 (Fig. 1).

1.2. Discontinuity set and discontinuity jump. We denote the phase boundary in the
phase space � × R

3 as γ = ∂� × R
3, and split it into outgoing boundary γ+, the

incoming boundary γ−, and the grazing boundary γ0 ([21]):

γ+ = {(x, v) ∈ ∂�× R
3 : n(x) · v > 0},

γ− = {(x, v) ∈ ∂�× R
3 : n(x) · v < 0},

γ0 = {(x, v) ∈ ∂�× R
3 : n(x) · v = 0}.

We need to study the grazing boundary γ0 more carefully.
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Definition 2. We define the concave(singular) grazing boundary in the grazing bound-
ary γ0 as

γ S
0 = {(x, v) ∈ γ0 : tb(x, v) �= 0 and tb(x,−v) �= 0},

and the outward inflection grazing boundary in the grazing boundary γ0 as

γ I +
0 = {(x, v) ∈ γ0 : tb(x, v) �= 0 and tb(x,−v) = 0 and there is δ > 0 such that

x + τv ∈ �̄c for τ ∈ (0, δ)} ,
and the inward inflection grazing boundary in the grazing boundary γ0 as

γ I−
0 = {(x, v) ∈ γ0 : tb(x, v) = 0 and tb(x,−v) �= 0 and there is δ > 0 such that

x − τv ∈ �̄c for τ ∈ (0, δ)} ,
and the convex grazing boundary in the grazing boundary γ0 as

γ V
0 = {(x, v) ∈ γ0 : tb(x, v) = 0 and tb(x,−v) = 0}.

We say an open subset � of R
3 is non-convex if and only if γ S

0 �= ∅. It turns out that
the concave (singular) grazing boundary γ S

0 is the only part at which discontinuity can
be created and propagates into the interior of the phase space �× R

3.

Definition 3. Define the discontinuity set in [0,∞)× �̄× R
3 as

D =
{
(0,∞)× [ γ S

0 ∪ γ V
0 ∪ γ I +

0 ]
}

∪
{
(t, x, v) ∈ (0,∞)× {�× R

3 ∪ γ+} : t ≥ tb(x, v) and (xb(x, v), v) ∈ γ S
0

}
,

(9)

and the continuity set in [0,∞)× �̄× R
3 as

C =
{
{0} × �̄× R

3
}

∪
{
(0,∞)× [ γ− ∪ γ I−

0 ]
}

∪
{
(t, x, v) ∈ (0,∞)× {�× R

3 ∪ γ+} : t < tb(x, v) or

(xb(x, v), v) ∈ γ− ∪ γ I−
0

}
. (10)

For the bounce-back reflection boundary condition case (7), we need slightly different
definitions: the bounce-back discontinuity set and the bounce-back continuity set are

Dbb = D ∪
{
(t, x, v) ∈ (0,∞)×�× R

3 : t ≥ 2tb(x, v) + tb(x,−v)
and (xb(x,−v),−v) ∈ γ S

0

}
,

Cbb =
{
{0} × �̄× R

3
}

∪
{
(0,∞)× [ γ− ∪ γ I−

0 ]
}

∪
{
(t, x, v) ∈ [0,∞)× {�× R

3 ∪ γ+} : t < tb(x, v)

or
[
(xb(x, v), v) ∈ γ− ∪ γ I−

0 and t < 2tb(x, v) + tb(x,−v)
]

or
[
(xb(x,−v),−v) ∈ γ− ∪ γ I−

0 and (xb(x, v), v) ∈ γ− ∪ γ I−
0

] }
,

respectively.
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The discontinuity set D consists of two parts: The first set of (9) is the grazing bound-
ary part γ0 of D. This set mainly consists of the phase boundary where the backward
exit time tb(x, v) is not continuous (Lemma 2). The second set of (9) is mainly the
interior phase space part of D, i.e. D ∩ {[0,∞)×�× R

3}, which is a subset of a union
of all forward trajectories in the phase space emanating from γ S

0 . Notice that D does
not include the forward trajectories emanating from γ V

0 ∪ γ I +
0 because those forward

trajectories are not in the interior phase space [0,∞) × � × R
3. We also exclude the

case t < tb(x, v) from D. In fact, considering the pure transport equation, t < tb(x, v)
implies the transport solution at (t, x, v) equals the initial data at (x − tv, v) and if the
initial data is continuous, we expect the transport solution is continuous around (t, x, v).
Notice that we exclude the initial plane {0} × �̄× R

3 from D because we assume that
the Boltzmann solution is continuous at t = 0. The continuity set C consists of points
either emanating from the initial plane or from γ− ∪ γ I−

0 , but not from γ S
0 .

Furthermore we define a set including the grazing boundary γ0 and all forward tra-
jectories emanating from the whole grazing boundary γ0.

Definition 4. The grazing set is defined as

G = {(x, v) ∈ �̄× R
3 : n(xb(x, v)) · v = n(x − tb(x, v)v) · v = 0}, (11)

and the grazing section is defined as

Gx = {v ∈ R
3 : (x, v) ∈ G} = {v ∈ R

3 : n(xb(x, v)) · v = 0}.

Obviously the grazing set G includes the discontinuity set D. In order to study the
continuity property of the Boltzmann solution, we define:

Definition 5. For a function φ(t, x, v) defined on [0,∞)× {�̄× R
3\G}, we define the

discontinuity jump in space and velocity

[φ(t)]x,v = lim
δ↓0

sup
(x ′,v′),(x ′′,v′′)∈{�̄×R3\G}∩{B((x,v);δ)\(x,v)}

|φ(t, x ′, v′)− φ(t, x ′′, v′′)|,

and the discontinuity jump in time and space and velocity

[φ]t,x,v = lim
δ↓0

sup
t ′, t ′′ ∈ B(t; δ)

(x ′, v′), (x ′′, v′′) ∈ {�̄× R
3\G} ∩ {B((x, v); δ)\(x, v)}

|φ(t ′, x ′, v′)− φ(t ′′, x ′′, v′′)|,

where G is defined in Definition 4. We say a function φ is discontinuous in space
and velocity (in time and space and velocity) at (t, x, v) if and only if [φ(t)]x,v �=
0 ([φ]t,x,v �= 0) and continuous in space and velocity (in time and space and velocity)
at (t, x, v) if and only if [φ(t)]x,v = 0 ([φ]t,x,v = 0).

Notice that the function φ is only defined away from the grazing set G. If the dis-
continuity jump of a given function φ is zero at (t, x, v) then the function φ can be
extended to [0,∞) × �̄ × R

3 near (t, x, v). Because of these definitions we can con-
sider a function which has a removable discontinuity as a continuous function. And a
non-zero discontinuity jump [φ]t,x,v �= 0 means φ has a ‘real’ discontinuity which is
not removable.
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1.3. Main result. The main result consists of two parts:

• continuity and discontinuity of the Boltzmann solution (Theorem 1, 2, 3),
• continuity of the gain term Q+ (Theorem 4).

In the first part, we study such qualitative properties of the Boltzmann solution which has
been established near Maxwellian regime in [21]. Recall the theorem of [21]. In order
to state the theorem in a unified way for several boundary conditions, we introduce the
weight function

w(v) = {1 + ρ2|v|2}β. (12)

Theorem of [21]. Assume w−2{1 + |v|}3 ∈ L1. Let � be an open subset of R
3 with a

smooth boundary ∂�. There exists δ > 0 such that if F0 = μ +
√
μ f0 ≥ 0 and

||w f0||L∞(�̄×R3) + sup
t∈[0,∞)

eλ0t ||wg(t)||L∞(γ−) < δ, (13)

for the in-flow injection boundary condition (4) and

||w f0||L∞(�̄×R3) < δ, (14)

for the diffuse reflection (5), bounce-back reflection (7) boundary conditions with λ0 >

0, then there exists a unique Boltzmann solution F(t, x, v) = μ +
√
μ f ≥ 0 to the

in-flow injection (4), the diffuse reflection (5), the bounce-back reflection (7) boundary
conditions respectively. Moreover, there exists λ ∈ (0, λ0) such that

sup
t∈[0,∞)

eλt ||w f (t)||L∞(�̄×R3) ≤ C

{
||w f0||L∞(�̄×R3)+ sup

t∈[0,∞)

eλ0t ||wg(t)||L∞(γ−)

}
,

(15)

for the in-flow injection boundary condition (4) and

sup
t∈[0,∞)

eλt ||w f (t)||L∞(�̄×R3) ≤ C ||w f0||L∞(�̄×R3), (16)

for the diffuse reflection (5), bounce-back reflection (7) boundary conditions.
Now we are ready to state the main theorems of this paper.

Theorem 1 (Formation of Discontinuity). Let� be an open subset of R
3 with a smooth

boundary ∂�. Assume � is non-convex, i.e. γ S
0 �= ∅. Choose any non-convex point

(x0, v0) ∈ γ S
0 with v0 �= 0.

1. For in-flow boundary condition(4), there exist an initial datum F0 = μ +
√
μ f0 ∈

C0(�×R
3∪{γ−∪γ S

0 })and an in-flow boundary datum G = μ+
√
μg ∈ C0([0,∞)×

{γ− ∪ γ S
0 }) satisfying (13) and

f0(x, v) = g(0, x, v) for (x, v) ∈ γ− ∪ γ S
0 , (17)

such that the Boltzmann solution F = μ +
√
μ f of (1) with the in-flow boundary

condition (4) is discontinuous in space and velocity at (t0, x0, v0), i.e. [F(t0)]x0,v0 �=
0 for some t0 ∈ (0, tb(x0,−v0)).



Discontinuity for Boltzmann Equation in Non-Convex Domains 647

2. For diffuse boundary condition(5), there exists an initial datum F0 = μ +
√
μ f0 ∈

C0(�× R
3 ∪ {γ− ∪ γ S

0 }) satisfying (14) and

f0(x, v)=cμ
√
μ(v)

∫
v′·n(x)>0

f0(x, v
′)
√
μ(v′){n(x) · v′}dv′ for (x, v)∈γ− ∪ γ S

0 ,

(18)

such that the Boltzmann solution F = μ +
√
μ f of (1) with the diffuse boundary

condition (5) is discontinuous in space and velocity at (t0, x0, v0), i.e. [F(t0)]x0,v0 �=
0 for some t0 ∈ (0, tb(x0,−v0)).

3. For bounce-back boundary condition(7), there exists an initial datum F0 = μ +√
μ f0 ∈ C0(�× R

3 ∪ {γ− ∪ γ S
0 }) satisfying (14) and

f0(x, v) = f0(x,−v) for (x, v) ∈ γ− ∪ γ S
0 , (19)

such that the Boltzmann solution F = μ +
√
μ f of (1) with the bounce-back

boundary condition(7) is discontinuous in space and velocity at (t0, x0, v0), i.e.
[F(t0)]x0,v0 �= 0 for some t0 ∈ (0,min{tb(x0,−v0), tb(x0, v0)}).
Notice that in Theorem 1 we construct an initial datum F0 = μ +

√
μ f0 ( and an

in-flow boundary datum G = μ +
√
μg for the in-flow boundary condition case) satis-

fying the smallness condition for f0 and g (13) or (14). Due to Theorem of [21], this
condition (13) or (14) ensures that the Boltzmann solution F = μ+

√
μ f in Theorem 1

exists globally in time. Moreover, since the initial datum F0 (and G for the in-flow bound-
ary condition case ) is continuous and satisfies the compatibility conditions (17), (18) and
(19), the Boltzmann solution is initially continuous. However the continuity breaks down
after a time t0 > 0 at the chosen point (x0, v0) of the concave (singular) grazing boundary
γ S

0 . Therefore, for any generic non-convex domain�, we are able to observe the forma-
tion of discontinuity. In particular if t0 < tb(x0,−v0)(t0 < min{tb(x0,−v0), tb(x0, v0)}
for the bounce-back boundary condition case) we said the Boltzmann solution F has a
local-in-time formation of discontinuity at (t0, x0, v0).

Once we have the formation of discontinuity at (t0, x0, v0) ∈ γ S
0 , we further establish

that the discontinuity propagates along the forward characteristics.

Theorem 2 (Propagation of Discontinuity). Let � be an open bounded subset of R
3

with a smooth boundary ∂�. Let F = μ +
√
μ f be the Boltzmann solution to the initial

datum F0 = μ +
√
μ f0 which is continuous on � × R

3 ∪ {γ− ∪ γ S
0 }, and with one of

the following boundary conditions:

1. For in-flow boundary condition (4), let (17) and (13) be valid and G(t, x, v) =
μ +

√
μg be continuous on [0,∞)× {γ− ∪ γ S

0 }.
2. For diffuse boundary condition (5), assume (14) and (18).
3. For bounce-back boundary condition (7), assume (14) and (19).

Then for all t ∈ [t0, t0 + tb(x0,−v0)) we have

[F]t,x0+(t−t0)v0,v0 ≤ e−C1(1+|v0|)γ (t−t0)[F(t0)]x0,v0 , (20)

where C1 > 0 only depends on ||w f ||L∞([0,∞)×�̄×R3).
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On the other hand, assume [F(t0)]x0,v0 �= 0, and t0 ∈ (0, tb(x0,−v0)) for in-flow and
diffuse boundary conditions and t0 ∈ (0,min{tb(x0,−v0), tb(x0, v0)}) for bounce-back
boundary condition, and a strict concavity of ∂� at x0 along v0, i.e.

∑
i, j

(v0)i∂xi ∂x j�(x0)(v0) j < −Cx0,v0 . (21)

Then for all t ∈ [t0, t0 + tb(x0,−v0)), the Boltzmann solution F is discontinuous in time
and space and velocity at (t, x0 + (t − t0)v0, v0), i.e. [F]t,x0+(t−t0)v0,v0 �= 0 and

Ce−C2(1+|v0|)γ (t−t0)[F(t0)]x0,v0 ≤ [F]t,x0+(t−t0)v0,v0 , (22)

where 0 < C < 1, and C2 = C2(
∣∣∣∣w F−μ√

μ

∣∣∣∣
L∞) ∈ R which is positive for sufficiently

small
∣∣∣∣w F−μ√

μ

∣∣∣∣
L∞([0,∞)×�̄×R3)

.

The strict concavity condition (21) rules out some technical issue of the backward
exit time tb. Our theorem characterize the propagation of discontinuity before the for-
ward trajectory reaches the boundary. In the case that the forward trajectory reaches the
boundary, i.e. t ≥ t0 + tb(x0,−v0), the situation is much more complicated. Denote
x1 = x0 + tb(x0,−v0)v0, t1 = t0 + tb(x0,−v0). If the trajectory hits on the boundary
non-tangentially, i.e. (x1, v0) ∈ γ+, for in-flow and diffuse boundary cases, the disconti-
nuity disappears because of the continuity of the in-flow datum and the average property
of diffuse boundary operator. For bounce-back case the discontinuity is reflected and
continues to propagate along the trajectory. If the trajectory hits on the boundary tan-
gentially, i.e. (x1, v0) ∈ γ0, there are three possibilities. First, if (x1, v0) ∈ γ I +

0 , then
the situation is the same as the case (x1, v0) ∈ γ+ above. Second, if the trajectory is
contained in the boundary for awhile, i.e. there exists δ > 0 so that x1 + sv0 ∈ ∂�

for s ∈ (0, δ) then it is difficult to predict the propagation of discontinuity in general.
Assuming a certain condition on �, Definition 6 for example, we can rule out such an
unlikely case.

The last case is that (x1, v0) ∈ γ S
0 . Assume we have a sequence of {tn = tn−1 +

tb(xn−1,−v0)} and {xn = xn−1 + tb(xn−1,−v0)v0} ∈ ∂� so that (xn, v0) ∈ γ S
0 ,

and a directional strict concavity (21) is valid for each (xn, v0). We can show the
propagation of discontinuity also between the first and the second intersections, i.e.
[F]t,x0(t−t0)v0,v0 �= 0 for t ∈ [t1, t2) in general. For t ≥ t2, if we have a very simple
geometry, for example the first picture of Fig. 2, we can show the propagation of dis-
continuity, i.e. [F]t,x0(t−t0)v0,v0 �= 0 for t ∈ [tn, tn+1) even if n = 2, 3. But in general,

Fig. 2. Grazing Again
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for example the second picture of Fig. 2, we cannot show [F]t,x0(t−t0)v0,v0 �= 0 for
t ∈ [tn, tn+1) for n ≥ 2.

The next result states that Theorem 1 and Theorem 2 capture all the possible singu-
larities (discontinuities) for the generic non-convex domain (Definition 6), despite the
nonlinearity in the Boltzmann equation. In other words, the singularity of the Boltzmann
solution is propagating as the linear Boltzmann equation and no new singularities created
from the nonlinearity of the Boltzmann equation.

Definition 6. Assume � ∈ R
3 is open and the boundary ∂� is smooth. We say the

boundary ∂� does not include a line segment if and only if for each x0 ∈ ∂� and for
all (u1, u2) ∈ S

1 there is no δ > 0 such that

�x0(τu1, τu2)

is a linear function for τ ∈ (−δ, δ) where �x0 from (8).

Theorem 3 (Continuity away from D). Let � be an open bounded subset of R
3 with

a smooth boundary ∂�. Let F(t, x, v) be a Boltzmann solution of (1) with the initial
datum F0 which is continuous on �× R

3 ∪ {γ− ∪ γ+ ∪ γ I−
0 } and with one of

1. In-flow boundary condition (4). Assume (13) is valid and the compatibility condition

F0(x, v) = G(0, x, v) for (x, v) ∈ γ− ∪ γ I−
0 , (23)

and G(t, x, v) is continuous on [0,∞)× {γ− ∪ γ I−
0 }.

2. Diffuse boundary condition (5). Assume (14) is valid and the compatibility condition

F0(x, v) = cμμ(v)
∫
v′·n(x)>0

F0(x, v
′){n(x) · v′}dv′ for (x, v) ∈ γ− ∪ γ I−

0 .

(24)

3. Bounce-back boundary condition (7). Assume (14) is valid and the compatibility
condition

F0(x, v) = F0(x,−v) for (x, v) ∈ γ− ∪ γ I−
0 . (25)

Then F(t, x, v) is a continuous function on C for 1,2 and a continuous function on
Cbb for 3. If the domain � does not include a line segment (Definition 6) then the
continuity set C and Cbb are the complementary of D and Dbb respectively. Therefore
F(t, x, v) is continuous on (D)c for 1,2 and continuous on (Dbb)

c for 3.

The last theorem is a qualitative property of the gain term in (2). This theorem is
crucial to prove Theorem 2 and Theorem 3.

Theorem 4 (Continuity of Q+). Assume that F(t, x, v) is a function defined on
(t, x, v) ∈ [0, T ] × �̄× R

3 and is continuous away from the grazing set in (4), i.e.

F ∈ C0([0, T ] × (�× R
3)\G),

and

||w̄−1 F ||L∞([0,T ]×�̄×R3) < +∞,

where w̄ = e− |v|2
4

(1+ρ2|v|2)β with ρ ∈ R and β > 0.
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Then the gain term Q+(F, F)(t, x, v) is continuous, i.e.

Q+(F, F) ∈ C0([0, T ] ×�× R
3),

and

sup
[0,T ]×�̄×R3

|ν−1w̄−1 Q+(F, F)(t, x, v)| < ∞. (26)

Notice that the function F in Theorem 4 need not be a solution of the Boltzmann
equation.

1.4. Previous works and significance of this work. There are many references for the
mathematical study of different aspects of the boundary value problem of the Boltzmann
equation such as [2,10,18,21,23,32] and the references therein. In [21], an unified
L2 − L∞ theory in the near Maxwellian regime is developed to establish the exis-
tence, uniqueness and exponential decay toward a Maxwellian, for all four basic types
of the boundary conditions and rather general domains.

The qualitative study of the particle-boundary interaction in a bounded domain and
its effects on the global dynamics is a fundamental problem in the Boltzmann the-
ory. One of the challenging questions is the regularity theory of kinetic equations in a
bounded domain. This problem is particularly difficult because even for the simplest
kinetic equations with the differential operator v · ∇x , the phase boundary ∂� × R

3 is
always characteristic but not uniformly characteristic at the grazing set γ0 = {(x, v) :
x ∈ ∂�, and v · n(x) = 0}. In a convex domain a continuity of the Boltzmann solution
away from γ0 is established in [21] for all four basic boundary conditions. In a convex
domain, backward trajectories starting from the interior points of the phase space cannot
reach points of the grazing boundary γ0, due to the Velocity Lemma ([19,25]), where
possible singularities may exist.

On the other hand, in a non-convex domain, generally the backward trajectories start-
ing at the interior points of the phase space can reach the grazing boundary. Therefore,
we expect singularities will be created at some part of grazing boundary γ0 and propagate
in the inside of the phase space. In general, the formation and propagation of singularity
has been an important issue for the various partial differential equations ([24,31,37]).
For the Boltzmann equation, this question has been attracting much attention since the
early ’90s (the references in pp. 91–92 in Sone’s book [34]). For the Boltzmann equation,
most of the works are numerical studies [34–36] and few mathematical studies.

There are several works about the propagation of ‘given’ singularities. For exam-
ple, an initial datum or a boundary datum already has some singularities (mathematical
works [4,7–9,14] as well as numerical works [5,34]). In [4], for the linear BGK model,
a propagation of discontinuity, which exists already in the boundary data, is studied
mathematically and also numerically. In [7], for the full Boltzmann equation in the near
vacuum regime, a propagation of the Sobolev H1/25 singularity, which exists already
in the initial data, is studied and the same effect has been recently shown in the near
Maxwellian regime ([8,14]).

In Vlasov theory, we refer to [3,16,40] for the boundary value problem. Singular solu-
tions were studied in [19] extensively. In [19], the non-convexity condition of boundary
is replaced by the inward electric field which has a similar effect with non-convexity of
the boundary. In convex domains, Hölder estimates of the Vlasov solution with specular
reflection boundary is solved recently ([25,26]), but the Sovolev-type estimate is still
widely open.
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Our results give a rather complete characterization of formation and propagation of
singularity for the nonlinear Boltzmann equation near Maxwellian in general domain
under in-flow, diffuse, bounce-back boundary conditions. There is no restriction of the
time interval. More precisely we show that for any non-convex point x of the boundary
and velocity tangent to ∂� at x , there exists an initial datum (and in-flow datum, for the
in-flow boundary condition case) such that the Boltzmann solution has a jump disconti-
nuity at (x, v) (Theorem 1: Formation of Discontinuity). Once the discontinuity occurs
at the grazing boundary, this discontinuity propagates inside along the forward trajectory
until it hits the boundary again (Theorem 2: Propagation of Discontinuity). And except
for those points we can show that the Boltzmann solution is continuous (Theorem 3:
Continuity away from D).

1.5. Main ingredients of the proofs.

1. The equality induced by non-convex domain. We consider the near Maxwellian
regime and the linearized Boltzmann equation (3). The formation of discontinuity
is a consequence of the following estimate. Assume (x, v) ∈ γ S

0 as below, pic-
tured so that for sufficiently small t > 0 the backward trajectory x − tv is in an
interior of the phase space. For simplicity we impose the trivial in-flow boundary
condition G(t, x, v) ≡ μ(v) which corresponds to g(t, x, v) ≡ 0 (93). Consider
points (x ′

n, v
′
n) in γ− and (x ′′

n , v
′′
n )missing the non-convex part near (x, v) and both

sequences converge (x, v) as n → ∞.
Now suppose the solution f of the linearized Boltzmann equation is continuous

around (x, v). Then the Boltzmann solution f at (x ′
n, v

′
n)

f (t, x ′
n, v

′
n) = g(t, x ′

n, v
′
n) = 0,

and at (x ′′
n , v

′′
n ),

f (t, x ′′
n , v

′′
n ) = e−ν(v′′

n )t f0(x
′′
n − tv′′

n , v
′′
n )

+
∫ t

0
e−ν(v′′

n )(t−s){K f + �( f, f )}(s, x ′′
n − (t − s)v′′

n , v
′′
n )ds

converges with each other as n → ∞. Then we have the following equality (Fig. 3):

f0(x − tv, v) = −
∫ t

0
eν(v)s{K f + �( f, f )}(s, x − (t − s)v, v)ds. (27)

Thanks to [21], the pointwise estimate of f , with some standard estimates of K , �,
the right-hand side of the above equality has magnitude O(t)|| f0||∞(1 + || f0||∞). If
you choose f0(x − tv, v) = || f0||∞, then the above equality (27) cannot be true for
sufficiently small t unless the trivial case f0 ≡ 0(F ≡ μ). Therefore the Boltzmann
solution f cannot be continuous at (x, v). For diffuse (5), bounce-back (7) boundary
conditions we also obtain the equality induced by the non-convex domain similar
to (27). This argument is based on the idea that the free transport effect is dominant
to the collision effect if time t > 0 and the perturbation f = F−μ√

μ
is small.

2. New proof of continuity of Boltzmann solution with diffuse boundary condition. We
consider the near Maxwellian regime and the linearized Boltzmann equation (4).
In Sect. 5.2 we prove a continuity away from D of the Boltzmann solution with
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Fig. 3. Non-Convex Domain

diffuse boundary condition using a simple iteration scheme (102) with iteration dif-
fuse boundary condition (131). This iteration scheme has several advantages. First
it preserves a continuity away from D as m increasing, that is, if hm is continuous
away from D then hm+1 is also continuous away from D. Second, the sequence {hm}
has uniform L∞ bound and moreover it is Cauchy in L∞ for the in-flow boundary
condition hm |γ− = wg. Therefore h = lim hm , a solution of the linear Boltzmann
equation is continuous local in time. Combining with uniform-in-time boundedness
of the Boltzmann solution ([21]), we achieve the continuity for all time. In order to
apply this idea to diffuse boundary condition, we use Guo’s idea [21]: A norm of the
diffuse boundary operator is less than 1 effectively, if we trace back several bounces.
This approach gives a simpler proof for the continuity of the Boltzmann equation
with diffuse boundary condition with convex domain (see Lemma 23–25 of [21]).

3. Continuity of the gain term Q+. In contrast to the previous two ingredients, in this
part we consider the non-perturbation setting and the gain term Q+ of the Boltzmann
equation (1). The smoothing effect of the gain term Q+ is one of the fundamental
features of the Boltzmann theory. There are lots of results about the smoothing effect
in Sobolev regularity, for example

||Q+(φ,ψ)||
H

N−1
2

≤ C ||φ||L1 ||ψ ||L2 ,

with some assumption on various collision kernels [28,41,42]. To study the propa-
gation of singularity and regularity, in the case of the angular cutoff kernel (1), it is
standard to use Duhamel formulas and combine the Velocity Average Lemma and
the regularity of Q+ [7]. For details see [28,33] and the Villani review [39] especially
pp. 77–79.

In order to study the propagation of discontinuity and continuity we need a totally
different smooth effect of Q+. For the discontinuity induced by the non-convex domain,
we need the following: Recall the grazing set G in Definition 4. A test function φ(t, x, v)
is continuous on [0, T ] × (�× R

3)\G and bounded on [0, T ] ×�× R
3. Then

Q+(φ, φ)(t, x, v) ∈ C0([0, T ] ×�× R
3). (28)

Recall that the grazing set G = {(x, v) ∈ �̄ × R : v ∈ Gx }. The grazing section
Gx = {τu ∈ R

3 : t ≥ 0, u ∈ Gx ∩ S
2} is a union of straight lines in velocity space R

3

and two dimensional Lebesgue measure of Gx ∩ S
2 is zero (Hongjie Dong’s Lemma,

Lemma 17 of [21]). Moreover, using continuous behavior of Gx in x , one can invent a
very effective covering of Gx (Guo’s covering, Lemma 18 of [21]). Recall that the gain
term Q+ (2) is an integration operator in v alone and a local operator in x . Therefore, in
order to show the continuity of Q+(φ, φ) for t, x, v(especially for x) we need to utilize
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both the geometric property and the smallness of G. Notice that the smoothing effect
on C0

t,x,v has been believed to be true for long time without a mathematical proof in
numerical communities [1], p1587 of [4], p502 of [35].

The main idea to prove the smoothing effect in C0
t,x,v is to use Carleman’s represen-

tation for Q+(φ, φ)(t, x, v) which has been a very effective tool [20,41,42],

∫
R3
φ(t, x, v′) 1

|v − v′|2
∫

Evv′
φ(t, x, v′

1)B(2v − v′ − v′
1,
v′ − v′

1

|v′ − v′
1|
)dv′

1dv′, (29)

with the hyperplane Evv′ = {v′
1 ∈ R

3 : (v′
1 − v) · (v′ − v) = 0}. We will show the

smallness of

|Q+(φ, φ)(t̄, x̄, v̄)− Q+(φ, φ)(t, x, v)|,

for |(t, x, v)− (t̄, x̄, v̄)| < δ. Assume we have sufficient decay of φ for large v. Replace
the integrable kernel 1

|v−v′|2 by a smooth compactly supported function and cut off the

singular part of B(2v − v′ − v′
1,

v′−v′
1

|v′−v′
1| ) to control the above difference as

O(δ)||φ||2∞ + C
∫

|v′|<N
|φ(t, x, v′)− φ(t̄, x̄, v′′)|

∫
Ev̄v′′∩{|v′′

1 |<N }
|φ(t̄, x̄, v′′

1 )|dv′′
1 dv′

+ C
∫

|v′|<N
|φ(t, x, v′)|

{∫
Evv′∩{|v′

1|<N }
φ(t, x, v′

1)dv
′
1

−
∫

Ev̄v′′ ∩{|v′′
1 |<N }

φ(t̄, x̄, v′′
1 )dv

′′
1

}
dv′,

where v′′(v′) is chosen to be v′ − (v − v̄) for convenience.
One can easily control the integration at the first line. Because for the first term,

integrating over v′, we can cut off a small neighborhood of Gx from |v′| < N . Away
from that neighborhood, using the continuity of φ away from Gx we can control the
integrand pointwisely.

In order to control the second line integration we have to control the difference in
big braces. To do that we choose a special change of variables for v′′

1 ,(41). Under this
change of variables the second line is bounded by

C
∫

|v′|<N
|φ(t, x, v′)|

∫
Evv′∩{|v′

1|<N }
| φ(t, x, v′

1)− φ(t̄, x̄, v′′
1 )| dv′

1

︸ ︷︷ ︸
dv′.

The underbraced integration above is a function of t, x, t̄, x̄, v and v′. Unfortunately, for
fixed t, x, t̄, v one cannot expect a smallness of the underbraced integration for all v′.
(Since φ might be discontinuous at Gx , the difference | φ(t, x, v′

1)− φ(t̄, x̄, v′′
1 )| could

be large for (t, x, v′
1) ∈ Gx . Moreover the 2-dimensional Lebesgue measure of the inter-

section of Gx and the plane Evv′ could be large or even infinite.) However, in Sect. 3.3,
we can show that that bad situation happens for very rare v′ in {v′ ∈ R

3 : |v′| < N } and
use the integration over v′ to control the above integration.
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1.6. Structure of paper. In Sect. 2, we state some preliminary facts which are useful
tools for this paper. In Sect. 3, we state and prove the continuity of Q+ (Theorem 4). In
Sects. 4–6, we deal with in-flow boundary, diffuse boundary and bounce-back boundary,
respectively. For each section, first we prove the formation of discontinuity (Theorem 1).
Then we show the continuity away from D (Theorem 3). Using this continuity, combin-
ing with continuity of Q+, we show the propagation of discontinuity (Theorem 2).

2. Preliminary

In this section we study continuity properties of the backward exit time tb(x, v) and, a
measure theoretic property and geometric covering of the grazing set G, and estimates
of Boltzmann operators and Carleman’s representation.

We use Lemma 1 of [21], basic properties of the backward exist time tb(x, v):

Lemma 1 [21]. Let � be an open bounded subset of R
3 with a smooth boundary ∂�.

Let (t, x, v) be connected with (t − tb(x, v), xb(x, v), v) backward in time through a
trajectory of (1.1).

1. The backward exit time tb(x, v) is lower semicontinuous.
2. If

v · n(xb(x, v)) < 0, (30)

then (tb(x, v), xb(x, v)) are smooth functions of (x, v) so that

∇x tb = n(xb)

v · n(xb)
, ∇vtb = tbn(xb)

v · n(xb)
,

∇x xb = I + ∇x tb ⊗ v, ∇vxb = tb I + ∇vtb ⊗ v.

For a convex domain, if a point (x, v) is in the interior of the phase space, i.e.
(x, v) ∈ �×R

3, then the condition (30) is always satisfied and hence tb(x, v) is smooth
due to the second statement of Lemma 1. However for a non-convex domain, there is a
point (x, v) in �× R

3 but (xb(x, v, ), v) ∈ γ0, i.e. v · n(xb(x, v)) = 0. Hence tb(x, v)
is not smooth at that point (x, v). We further investigate a continuity property of tb for
that case. Indeed, the discontinuity behavior of tb(x, v) for (xb(x, v), v) ∈ γ S

0 is a main
ingredient of the formation of discontinuity.

Lemma 2. Let � ∈ R
3 be an open set with a smooth boundary ∂�. Assume (x0, v0) ∈

�×R
3 with v0 �= 0 and tb(x0, v0)<∞. Consider (x0, v0) ∈ G, i.e. (xb(x0, v0), v0)∈γ0,

If (xb(x0, v0), v0) ∈ γ I−
0 then tb(x, v) is continuous around (x0, v0),

If (xb(x0, v0), v0) ∈ γ S
0 then tb(x, v) is not continuous around (x0, v0).

Recall γ I−
0 and γ S

0 in Definition 2.

Proof. Throughout this proof, without loss of generality we assume that ∂� is a graph
of � locally and �(0, 0) = 0 and (∂x1�, ∂x2�)(0, 0) = (0, 0). Moreover assume
x0 = (|x0|, 0, 0), v0 = (|v0|, 0, 0) and tb(x0, v0) = |x0||v0| so that xb(x0, v0) = (0, 0, 0) =
(0, 0,�(0, 0)).

First, let (xb(x0, v0), v0) ∈ γ I−
0 . By the definition of γ I−

0 , we have �(−τ, 0) > 0
and �(τ, 0) < 0 for 0 < τ << 1. Using the continuity of �, choose sufficiently small
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ε > 0, δ > 0 such that �(−δ, y) > ε
2 and �(δ, y) < − ε

2 for 0 < |y| < δ. Fix
x = (x1, x2, x3) ∼ x0 and v = (v1, v2, v3) ∼ v0. We define

�(x, v, t) = x3 − tv3 −�(x1 − tv1, x2 − tv2).

For t ′ ≡ x1−δ
v1
, �(x, v, t ′0) = −�(δ, x2 − x1−δ

v1
v2)+ x3 − x1−δ

v1
v3 >

ε
4 for (x1, x2, x3) ∼

(|x0|, 0, 0), (v1, v2, v3) ∼ (|v0|, 0, 0). For t ′′ = x1+δ
v1
, �(x, v, t ′′) = −�(−δ, x2 −

x1+δ
v1
v2) + x3 − x1+δ

v1
v3 < − ε

4 for (x1, x2, x3) ∼ (|x0|, 0, 0), (v1, v2, v3) ∼ (|v0|, 0, 0).

Using the continuity of� and�, there exists t∗ ∈ ( x1
v1

− δ
v1
, x1
v1

+ δ
v1
) so that�(x, v, t∗) =

0, i.e. tb(x, v) = t∗. If x ∼ x0 and v ∼ v0, then x1
v1

− δ
v1

∼ |x0||v0| − δ
|v0| = tb(x0, v0)− δ

|v0|
and x1

v1
+ δ
v1

∼ |x0||v0| + δ
|v0| ∼ tb(x0, v0)+ δ

|v0| so that t∗ ∈ (tb(x0, v0)− δ
|v0| , tb(x0, v0)+ δ

|v0| ).
Next, let (xb(x, v), v) ∈ γ S

0 . By the definition of the concave grazing boundary
γ S

0 , we have �(−τ, 0) > 0 and �(τ, 0) < 0 for 0 < τ << 1. Choose a sequence
xn = (|x0|, 0, 1

n ). There exists ε > 0 such that tb(xn, v0) > tb(x0, v0) + ε for suffi-
ciently large n. This implies that (xn, v0) → (x0, v0) but tb(xn, v0) � tb(x0, v0) as
n → ∞. ��

In the next two lemmas, we consider the grazing set G (Definition 4) including the
discontinuity set D. Lemma 3, Lemma 17 of [21] due to Hongjie Dong, is important
to control a size of G. We denote m2 as a standard 2-dimensional Lebesgue measure
and m3 as a standard 3-dimensional Lebesgue measure. Recall the grazing section Gx
in Definition 4.

Lemma 3 [21]. If ∂� is C1 then the grazing section Gx restricted to S
2 has zero 2-

dimensional Lebesgue measure for all x ∈ �̄ ,i.e.

m2(Gx ∩ S
2) = 0,

for all x ∈ �̄.

With condition m2(Gx ∩ S
2) = 0, we can construct Guo’s covering which is little

bit stronger than the original one in Lemma 18 in [21].

Lemma 4 (Guo’s covering) [21]. Assume m2(Gx ∩ S
2) = 0 is valid for all x ∈ �̄.

Let BN = {v ∈ R
3 : |v| ≤ N }. Then for any ε > 0 and N∗ > 0 there exist

δε,N ,N∗ > 0, and lε,N ,N∗,� balls B(x1; r1), B(x2; r2). . ., B(xl; rl) ⊂ �̄, as well as
open sets Ox1, Ox2,. . .Oxl of BN which are radial symmetric, i.e.

Oxi = {t v̂ ∈ R
3 : t ≥ 0, v̂ ∈ Oxi ∩ S

2},
with m3(Oxi ) <

ε
N∗ and m2(Oxi ∩ S

2) ≤ ε
N 2 N∗ for all 1 ≤ i ≤ lε,N ,N∗,�, such that for

any x ∈ �̄, there exists xi so that x ∈ B(xi ; ri ) and for v /∈ Oxi ,

|v · n(xb(x, v))| > δε,N ,N∗ > 0,

or equivalently

Oxi ⊃
⋃

x∈B(xi ;ri )

{v ∈ BN : |v · n(xb(x, v))| ≤ δε,N ,N∗} ⊃
⋃

x∈B(xi ;ri )

Gx ∩ BN .
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Combining Lemma 3 and Lemma 4, we have the following lemma. Later we will use
this lemma to prove Theorem 4. Namely, a function which is continuous away from the
grazing setG is uniformly continuous except for an arbitrary small open set containingG.

Lemma 5. Assume φ(t, x, v) is continuous on [0, T ] × (� × {v ∈ R
3 : 1

M ≤ |v| ≤
N })\G. For fixed x ∈ � and ε > 0 and N∗ > 0, there exist

δ = δ(φ,�, ε, N∗, x,
1

M
, N ) > 0, (31)

and an open set Ux ⊂ {v ∈ R
3 : 1

M ≤ |v| ≤ N } which is radial symmetric, i.e.
Ux = {t v̂ ∈ R

3 : t ≥ 0 , v̂ ∈ Ux ∩ S
2} with m3(Ux ) <

ε
N∗ and m2(Ux ∩ S

2) < ε
N∗ N 2

such that

|φ(t, x, v)− φ(t̄, x̄, v̄)| < ε

N∗
,

for v ∈ {v ∈ R
3 : 1

M ≤ |v| ≤ N }\Ux and |(t, x, v)− (t̄, x̄, v̄)| < δ.

Proof. Let x ∼ x̄ . Due to Guo’s covering [21], Lemma 4, we can choose B(xi ; ri )

including x and x̄ , as well as Oxi ⊂ R
3 so that

Oxi ⊃
⋃

y∈B(xi ;ri )

Gy ∩ BN ⊃
⋃

y∈B(x;δ)
Gy ∩ BN ,

with m3(Oxi ) <
ε

N∗ . Notice that m3(Ōxi ) = m3(Oxi ). We can choose an open set Uxi

so that m3(Uxi ) ≤ 2m3(Oxi ) and Ōxi ⊂ Uxi . Since both Ōxi and BN \Uxi are compact
subsets of BN , we have a positive distance between two sets, i.e.

0 < d = inf{|ζ − ξ | : ζ ∈ Ōxi and ξ ∈ BN \Uxi }.
Assume δ < d/2. Fix x ∈ �̄ and v ∈ {v ∈ R

3 : 1
M ≤ |v| ≤ N }\Ux . Then

|(x̄, v̄)−(x, v)| < δ implies that v̄ ∈ {v ∈ R
3 : 1

M ≤ |v| ≤ N }\Oxi . For such x, v, x̄ and
v̄, consider the function φ as its restriction on a compact set [0, T ]× B̄(x; δ)× BN \Oxi .
Therefore φ|[0,T ]×B̄(x;δ)×BN \Oxi

is a uniformly continuous function. Hence |φ(t, x, v)−
φ(t̄, x̄, v̄)| can be controlled as small uniformly, if δ > 0 is chosen sufficiently small.

��
We will use Carleman’s representation ([20,41]) in the proof of Theorem 4 cru-

cially. Let Q+(φ,ψ) be defined by (2) and assume Q+(ψ, φ) < ∞ for ψ = ψ(v) and
φ = φ(v). Then Carleman’s representation is

Q+(ψ, φ)(v) = 2
∫

R3
ψ(v′) 1

|v − v′|2
∫

Evv′
φ(v′

1)B(2v − v′ − v′
1,
v′ − v′

1

|v′ − v′
1|
)dv′

1dv′

︸ ︷︷ ︸
,

(32)

where Evv′ is a hyperplane containing v ∈ R
3 and perpendicular to v′−v

|v′−v| ∈ S
2, i.e.

Evv′ = {v′
1 ∈ R

3 : (v′
1 − v) · (v′ − v) = 0}. (33)

In the proof of Theorem 4, we need to control the underbraced integration over Evv′
in (32) frequently:
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Lemma 6. For a rapidly decreasing function φ : R+ → R+, we have

∫
Evv′

φ(|v1
′|)B(2v − v′ − v1

′, v
′ − v1

′

|v′ − v1
′|
)
dv1

′ ≤ Cφ(1 + |v − v′|γ ), (34)

where Cφ only depends on φ.

Proof. For fixed v′ and v, let us denote {ẽ1, ẽ2, ẽ3}, with ẽ3 = v′−v
|v′−v| , and let be the ortho-

normal basis of R
3 such that any v′

1 ∈ Evv′ can be written as v′
1 = v +η1ẽ1 +η2ẽ2. Since

v′ − v ⊥ Evv′ from (33), there is η3 such that v′ − v = η3ẽ3, where |η3| = |v − v′|.
Then we can write 2v − v′ − v′

1 = v − v′ + v − v′
1 = −η1ẽ1 − η2ẽ2 − η3ẽ3 and

|2v − v′ − v′
1|2 = η2

1 + η2
2 + |v′ − v|2. Moreover v′ − v′

1 = −η1ẽ1 − η2ẽ2 + η3ẽ3. We
can write the left hand side of (34) as

∫ ∞

−∞

∫ ∞

−∞
φ(η2

1 + η2
2 +|v|2)

∣∣∣∣
⎛
⎝−η1

−η2
−η3

⎞
⎠
∣∣∣∣
γ 1

η2
1 +η2

2 +|v − v′|2

⎛
⎝−η1

−η2
−η3

⎞
⎠ ·
⎛
⎝−η1

−η2
η3

⎞
⎠ dη1dη2

≤
∫ ∞

−∞

∫ ∞

−∞
φ(η2

1 + η2
2)(η

2
1 + η2

2 + |v′ − v|2) γ2 −1(η2
1 + η2

2 − |v′ − v|2)dη1dη2

≤
∫ ∞

−∞

∫ ∞

−∞
φ(η2

1 + η2
2)
(
η2

1 + η2
2 + |v′ − v|2) γ2 dη1dη2

≤ Cφ(1 + |v′ − v|γ ).
��

We recall two estimates of linearized operators K and � from [21].

Lemma 7 ([21]). The Grad estimate for hard potentials:

|k(v, v′)| ≤ Ck{|v − v′| + |v − v′|−1}e− 1
8 |v−v′|2− 1

8
||v|2−|v′|2 |2

|v−v′|2 .

Recall w in (12). Let 0 ≤ θ < 1
4 . Then there exists 0 ≤ ε(θ) < 1 and Cθ > 0 such that

for 0 ≤ ε < ε(θ),

∫
{|v − v′| + |v − v′|−1}e− 1−ε

8 |v−v′|2− 1−ε
8

||v|2−|v′ |2 |2
|v−v′ |2 w(v)eθ |v|2

w(v′)eθ |v′|2 dv′ ≤ Ck

1 + |v| . (35)

For the nonlinear collision operator,

|w�(g1, g2)(v)| ≤ C�(1 + |v|)γ ||wg1||∞||wg2||∞. (36)

Also we recall a standard estimate
∫

R3
φ(v′)|v − v′|γ dv′ ∼ (1 + |v|)γ , (37)

for φ ∈ L1(R3).
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3. Continuity of the Collision Operators

In this section we mainly prove Theorem 4, a smooth effect of Q+ in C0
t,x,v , Theorem 4 is

the crucial ingredient to prove Theorem 2 and Theorem 3. This smooth effect of the gain
term ensures that there is no singularity created by the nonlinearity of the Boltzmann
equation.

Proof of (26). It is easy to show the boundedness (26) from

ν−1w̄−1 Q+(F, F)(t, x, v)

≤ 1

ν(v)w̄(v)

∫
R3

∫
S2

B(v − u, ω)w̄(u′)w̄(v′)dωdu × ||w̄−1 F ||2∞

≤ ν(v)−1
∫

R3

∫
S2

B(v − u, ω)
e− |u|2

4

(1 + ρ2|u|2)β dωdu × ||w̄−1 F ||2∞
≤ C ν(v)−1ν(v)||w̄−1 F ||2∞ ≤ C ||w̄−1 F ||2

L∞([0,T ]×(�̄×R3))
,

where we used (37) and |u′|2 + |v′|2 = |u|2 + |v|2. ��
Next we will show the continuity part of Theorem 4. The goal of following three

subsections is to show

For fixed ε > 0 and (t, x, v) ∈ [0, T ] ×�× R
3, there is δ > 0 such that

|Q+(w̄h, w̄h)(t̄, x̄, v̄)− Q+(w̄h, w̄h)(t, x, v)| < ε for |(t̄, x̄, v̄)− (t, x, v)| < δ.

(38)

3.1. Decomposition and change of variables. In this section, we use Carleman’s rep-
resentation (32) to split Q+(w̄h, w̄h)(t̄, x̄, v̄) − Q+(w̄h, w̄h)(t, x, v) in a natural way
(39), and introduce two change of variables (40) and (41).

It is convenient to define

h ≡ w̄−1 F,

where ||h||∞ ≡ ||h||L∞([0,T ]×(�̄×R3)) = ||w̄−1 F ||L∞([0,T ]×(�̄×R3)) .Choose (t̄, x̄, v̄) ∼
(t, x, v). Using Carleman’s Representation (32) we have

Q+(w̄h, w̄h)(t̄, x̄, v̄)− Q+(w̄h, w̄h)(t, x, v)

= 2
∫
R3
w̄(v′′)h(t̄, x̄, v′′) 1

|v̄−v′′|2︸ ︷︷ ︸
A

∫
Ev̄v′′

w̄(v′′1 )h(t̄, x̄, v′′1 )B
(
2v̄−v′′−v′′1 ,

v′′−v′′1
|v′′−v′′1 |

)
︸ ︷︷ ︸

B

dv′′1 dv′′

−2
∫
R3
w̄(v′)h(t, x, v′) 1

|v − v′|2︸ ︷︷ ︸
A′

∫
Evv′

w̄(v′1)h(t, x, v′1)B
(
2v − v′ − v′1,

v′ − v′1
|v′ − v′1|

)
︸ ︷︷ ︸

B′

dv′1dv′

= 2
∫
R3

{A−A′}
∫

Ev̄v′′
B dv′′1 dv′′ + 2

∫
R3

A′
∫

Ev̄v′′
{B−B′} dv′′1 dv′. (39)

In order to control the first term of (39), we need to compare the arguments v′′, t̄, x̄, v′
of A and the arguments v′, t, x, v of A′. For that purpose, we introduce the following
change of variables:
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Lemma 8. For fixed v and v̄ in R
3, we define

v′′ ≡ v′′(v′; v, v̄) = v′ − (v − v̄). (40)

Then two planes Ev̄v′′ and Evv′ have the same normal direction. The distance between
to planes is |(v̄ − v) · v′−v

|v′−v| |.

Proof. Assume (40). Clearly the Jacobian matrix ∂v′′(v′)
∂v′ = I , where I is 3 × 3 identity

matrix. The normal direction of Ev̄v′′ is v′′−v̄
|v′′−v̄| = v′−v

|v′−v| which is also the normal direction
of Evv′ . To measure a distance between two planes Evv′ and Ev̄v′′ , we consider the line
passing v and directing v′−v

|v′−v| , which is v(s) = v′−v
|v′−v| s +v. The solution of v(s∗) ∈ Ev̄v′′

is a solution of 0 = (v′′−v̄)·(v(s)−v̄) = (v′−v)·(v(s)−v̄) = |v′−v|s+(v′−v)·(v−v̄).
Easily we have the solution s∗ = (v′−v)·(v̄−v)

|v′−v| . Since v(s) is the unit-speed line we know
that |v(s∗)− v(0)| is the distance between Ev̄v′′ and Evv′ . ��

An important property of (40) is that two planes Ev̄v′′ and Evv′ have the same normal
direction. In order to control the second term of (39), we need to compare the argu-
ments v′′

1 , t̄, x̄, v̄, v′′ of B and the argument v′
1, t, x, v, v′ of B′, especially v′

1 ∈ Evv′ and
v′′

1 ∈ Ev̄v′′ . For that purpose, we introduce the following change of variables:

Lemma 9. For fixed v, v′ and v̄ in R
3, we define a unit Jacobian change of variables

v′′
1 ≡ v′′

1 (v
′
1; v, v′, v̄) = v′

1 +
v′ − v

|v′ − v| {(v̄ − v) · v
′ − v

|v′ − v| }. (41)

In this change of variables v′′
1 ∈ Ev̄v′′ if and only if v′

1 ∈ Evv′ .

Proof. Assume (40) and (41). Clearly
∂v′′

1 (v
′
1)

∂v′
1

= I . We can check the following equality:

(v′′
1 − v̄) · (v′′ − v̄) = (v1

′ − v̄ +
v′ − v

|v′ − v| {(v̄ − v) · v
′ − v

|v′ − v| }) · (v′ − v)

= (v1
′ − v̄) · (v′ − v) + |v′ − v|{(v̄ − v) · v

′ − v

|v′ − v| }
= (v′

1 − v) · (v′ − v) + (v − v̄) · (v′ − v) + (v̄ − v) · (v′ − v)

= (v′
1 − v) · (v′ − v).

By definition, v′
1 ∈ Evv′ is equivalent to (v′

1 − v) · v′−v
|v′−v| = 0. From the above equality,

we conclude (v′′
1 − v̄) · v′′−v̄

|v′′−v̄| = 0 which is equivalent to v′′
1 ∈ Ev̄v′′ . ��

Under the first change of variables (40), we can rewrite the first term of (39) as

2
∫

R3

1

|v − v′|2
{
w̄(v′′)h(t̄, x̄, v′′)− w̄(v′)h(t, x, v′)

}
︸ ︷︷ ︸

(C)

×
∫

Ev̄v′′
w̄(v′′

1 )h(t̄, x̄, v′′
1 )B
(
2v̄ − v′′ − v′′

1 ,
v′′ − v′′

1

|v′′ − v′′
1 |
)

︸ ︷︷ ︸
(D)

dv′′
1 dv′. (42)
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Under the second change of variables (41), we can rewrite the second term of (39) as

2
∫

R3
w̄(v′)h(t, x, v′) 1

|v − v′|2︸ ︷︷ ︸
(E)

×
∫

Evv′

{
w̄(v′′1 )h(t̄, x̄, v′′1 )B

(
2v̄−v′′−v′′1 ,

v′′−v′′1
|v′′−v′′1 |

)−w̄(v′1)h(t, x, v′1)B
(
2v−v′−v′1,

v′−v′1
|v′−v′1|

)}
︸ ︷︷ ︸

(F)

dv′1dv′.

(43)

We will estimate (42) and (43) separately in following two sections.

3.2. Estimate of (42). We divide into several cases:

Case 1. |v| ≥ N . From Lemma 6, for N > 0 we can estimate

Q+(w̄h, w̄h)(t, x, v)1|v|>N ≤ C ||h||2∞1|v|>N

∫
R3
w̄(v′)

(
1

|v − v′|2 +
1

|v − v′|2−γ

)
dv′

≤ C ||h||2∞
(

1

(1+|v|)2 +
1

(1+|v|)2−γ

)
1|v|>N ≤ C

N
||h||2∞.

Hence we have

(42)1|v|≥N ≤ C

N
||h||2∞. (44)

Case 2. |v| ≤ N and |v′| ≥ 2N , or |v| ≤ N and |v′| ≤ 1
M . Also assume 0 < δ << 1:

2 × 1|v|≤N

∫
{|v′|≥2N or |v′|≤ 1

M }
(C)
∫

Ev̄v′′
(D) dv′′

1 dv′

≤ C1|v|≤N

∫
|v′|≥2N

{
1

|v − v′|2 +
1

|v − v′|2−γ

}
e− |v′ |2

8 dv′e
δ2
4 ||h||2∞

+ C
∫

|v′|≤ 1
M

{
1

|v′|2 +
1

|v′|2−γ

}
e− |v′ |2

8 dv′

︸ ︷︷ ︸
o( 1

M )

e
δ2
4 ||h||2∞

≤ C

(
1

N 2 +
1

N 2−γ

)
||h||2∞ + o(

1

M
)||h||2∞, (45)

where we have used w̄(v′) ≤ e− |v′ |2
4 and w̄(v′′) ≤ e− |v′ |2

8 e
δ2
4 and Lemma 6.

Case 3. |v| ≤ N and 1
M ≤ |v′| ≤ 2N .

2 × 1|v|≤N

∫
1
M ≤|v′|≤2N

(C)
∫

Ev̄v′′
(D)dv′′

1 dv′

≤ C ||h||∞
∫

1
M ≤|v′|≤2N

1|v|≤N

(
1

|v − v′|2 +
1

|v − v′|2−γ

)
|w̄(v′′)h(t̄, x̄, v′′)

−w̄(v′)h(t, x, v′)|dv′. (46)
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Since
(

1
|v−v′|2 + 1

|v−v′|2−γ
)

is integrable we can choose a smooth function z(v, v′) with

compact support such that

sup
|v|≤N

∫
|v′|≤2N

∣∣∣∣
(

1

|v − v′|2 +
1

|v − v′|2−γ

)
− z(v, v′)

∣∣∣∣ dv′ ≤ 1

N
. (47)

Therefore we can bound (46) by two parts

C ||h||2L∞

∫
|v′|≤2N

1|v|≤N

∣∣∣∣
(

1

|v − v′|2 +
1

|v − v′|2−γ

)
− z(v, v′)

∣∣∣∣ e− |v′ |2
8 e

δ2
4 dv′ (48)

+C sup
|v|≤N ,|v′|≤2N

|z(v, v′)| × ||h||L∞
∫

1
M ≤|v′|≤2N

1|v|≤N |w̄(v′′(v′))h(t̄, x̄, v′′(v′))

−w̄(v′)h(t, x, v′)|dv′. (49)

From (47), it is easy to control the first term

|(48)| ≤ C

N
||h||2∞. (50)

Now we are going to estimate the second term (49). Applying Lemma 5 to
w̄(v′)h(t, x, v′), we can choose δ = δ(w̄h,�, ε, N∗, x, 1

M , 2N ) > 0 and an open set
Ux ⊂ { 1

M ≤ |v| ≤ 2N } with |Ux | < ε
N∗ such that

|w̄(v′′(v′))h(t̄, x̄, v′′(v′))− w̄(v′)h(t, x, v′)| < ε

N∗
,

for v′ ∈ {v ∈ R
3 : 1

M ≤ |v| ≤ N }\Ux and |(t̄, x̄, v̄)− (t, x, v)| < δ. Therefore we can
split the second part (49) as an integration over Ux and U c

x and control it as

C sup
|v|≤N ,|v′|≤2N

|z(v, v′)| × ||h||2∞ × m3(Ux ) + C ||h||∞

×
∫

{ 1
M ≤|v′|≤2N }∩U c

x

|w̄(v′′(v′))h(t̄, x̄, v′′(v′))− w̄(v′)h(t, x, v′)|dv′

≤ C sup
|v|≤N ,|v′|≤2N

|z(v, v′)| × ||h||2∞
ε

N∗
+ C ||h||∞N 3 ε

N∗
. (51)

In summary, combining (44), (45), (50) and (51), we have established

(42) ≤ C ||h||2∞
{

1

N
+ o(

1

M
) + sup

|v|≤N ,|v′|≤2N
|z(v, v′)| ε

N∗

}
+ C ||h||∞N 3 ε

N∗
.

Choosing sufficiently large N ,M > 0 and N∗ > 0, then

(42) ≤ ε

2
. (52)
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3.3. Estimate of (43). The estimate of (43) is much more delicate. The reason is that we
cannot expect

∫
Evv′

(F) dv′
1 in (43) is small for all v′ ∈ R

3. We know that h(t, x, v′
1)

may not be continuous on v′
1 ∈ Gx . Even Gx is radial symmetric and has a small mea-

sure by Lemma 3, a bad situation the intersection of Gx and Evv′ could have large (even
infinite) 2-dimensional Lebesgue measure, can happen. However we can show that such
bad situations only happen for very rare v′’s in R

3. Using the integration over v′ ∈ R
3,

we are able to control (43) small.
Recall (E) and (F) in (43). We divide into several cases:

Case 1. |v| ≥ N . Follow exactly the same proof of Case 1 of the previous subsection,
we conclude

(43)1|v|≥N ≤ C

N
||h||2∞. (53)

Case 2. |v| ≤ N and |v′| ≥ 2N . We go back to the original formula, the second term of
(39), and use Lemma 6 to estimate

2
∫

|v′|≥2N
(E)
∫

Evv′
(F)dv′

1dv′1|v|≤N

≤ 4||h||2∞
∫

|v′|≥2N
w̄(v′) 1

|v − v′|2 (1 + |v − v′|)γ dv′1|v|≤N

≤ 4||h||2∞
(

1

N 2 +
1

N 2−γ

)
. (54)

Case 3. |v| ≤ N , |v′| ≤ 2N , and |v′
1| ≤ 1

N or |v′
1| ≥ N . In the case of |v′

1| ≤ 1
N , we

have

2 × 1|v|≤N

∫
|v′|≥2N

(E)
∫

{|v′
1|≤ 1

N }∩Evv′
(F) dv′

1dv′

≤ 2||h||2∞
∫

R3

w̄(v′)
|v − v′|2 dv′

∫
{|v′

1|≤ 1
N }∩Evv′

×
{

e− |v′1|2
8 e

δ2
4 (4N +

1

N
+ δ)γ + e− |v′1|2

4 (4N +
1

N
)γ
}

dv′
1

≤ C
||h||2∞
N 2−γ . (55)

In the case of |v′
1| ≥ N we have

2 × 1|v|≤N

∫
|v′|≥2N

(E)
∫

{|v′
1|≤ 1

N }∩Evv′
(F) dv′

1dv′

≤ 2||h||2∞
∫

R3

w̄(v′)
|v − v′|2 dv′

∫
{|v′

1|≥N }∩Evv′

×
{

e− |v′1|2
8 e

δ2
4 (4N +

1

N
+ δ)γ + e− |v′1|2

4 (4N +
1

N
)γ
}

dv′
1

≤ C ||h||2∞e− N2
16

∫
R3

e− |v′1|2
16 dv′ × N γ e− N2

16 ≤ C ||h||2∞e− N2
16 . (56)
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Case 4. |v| ≤ N , |v′| ≤ 2N , and 1
N ≤ |v′

1| ≤ N . In order to remove the unboundedness
of 1

|v−v′|2 in (43), we choose a positive smooth function Z(v, v′) with compact support
such that

sup
|v|≤N

∫
|v′|≤2N

∣∣∣∣ 1

|v − v′|2 − Z(v, v′)
∣∣∣∣ dv′ < 1

N 10 . (57)

Splitting 2 × 1|v|≤N
∫
|v′|≤2N (E)

∫
1
N ≤|v′

1|≤N (F) dv′
1dv′ into two parts

2 × 1|v|≤N

∫
|v′|≤2N

w̄(v′)|h(t, x, v′)|
∣∣∣∣ 1

|v − v′|2 − Z(v, v′)
∣∣∣∣

×
∫

Evv′∩{ 1
N ≤|v′

1|≤N }
(F) dv1dv′ ≤ C ||h||2∞

1

N 10 N γ+2, (58)

C
∫

|v′|≤2N
||h||∞ sup

|v|≤N ,|v′|≤2N
|Z(v, v′)|

∫
Evv′∩{ 1

N ≤|v′
1|≤N }

(F) dv′
1dv′, (59)

where we used (57) for the first line. From now we will focus on estimate (59).

Case 5. |v| ≤ N , |v′| ≤ 2N , 1
N ≤ |v′

1| ≤ N and |2v − v′ − v′
1| < 1

M or |v′ − v′
1| < 1

M .
This region includes the part where the collision kernel B(·, ·) has a singular behavior.

C
∫

|v′|≤2N
||h||∞ sup

|v|≤N ,|v′|≤2N
|Z(v, v′)|

×
∫

Evv′∩{ 1
N ≤|v′

1|≤N }
(F) 1{|(2v−v′)−v′

1|< 1
M or |v′−v′

1|< 1
M }(v

′, v′
1) dv′

1dv′

≤ C sup
|v|≤N ,|v′|≤2N

|Z(v, v′)| × ||h||2∞

×
∫

|v′|≤2N
dv′e− |v′ |2

4

∫
Evv′

dv′
1

{
1{|(2v−v′)−v′

1|< 1
M }(v

′
1)+1{|v′−v′

1|< 1
M }(v

′
1)
}
×N γ

≤ C sup
|v|≤N ,|v′|≤2N

|Z(v, v′)| × ||h||2∞
N γ

M2 . (60)

Case 6. |v| ≤ N , |v′| ≤ 2N , 1
N ≤ |v′

1| ≤ N and |2v− v′ − v′
1| > 1

M and |v′ − v′
1| > 1

M
and 0 < δ < 1

10M . We estimate

2 × 1|v|≤N

∫
|v′|≤2N

dv′w̄(v′)h(t, x, v′)Z(v, v′)

×
∫

Evv′∩{ 1
N ≤|v′

1|≤N }
{w̄(v′′

1 )h(t̄, x̄, v′′
1 )B(2v̄ − v′′ − v′′

1 ,
v′′ − v′′

1

|v′′ − v′′
1 | )

× − w̄(v′
1)h(t, x, v′

1)B(2v − v′ − v′
1,
v′ − v′

1

|v′ − v′
1|
)}1{|2v−v′−v′

1|> 1
M }1{|v′−v′

1|> 1
M }dv

′
1.

(61)

We need this step because of the singular behavior of

B(u1, u2) = |u1|γ q0(
u1

|u1| · u2

|u2| ) = |u1|γ (q0 ◦ F)(u1, u2),
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where F : R
3 × R

3 → R with F(u1, u2) = u1|u1| · u2|u2| . The function F(u1, u2) is not
continuous at (u1, u2) = (0, 0) and continuous away from (0, 0), i.e. the restriction of
F on a compact set,

FM,N : { 1

2M
≤ |u1| ≤ 6N } × { 1

2M
≤ |u2| ≤ 4N } → R

is uniformly continuous. From |2v − v′ − v′
1| > 1

M and |v − v̄| < δ < 1
10M we have a

lower bound of

|2v̄ − v′′ − v′′
1 | ≥
∣∣∣∣|2v − v′ − v′

1| − |v̄ − v − v′ − v

|v′ − v| {(v̄ − v) · v
′ − v

|v′ − v| }|
∣∣∣∣ ≥ 1

2M
.

Similarly from |v′ − v′
1| > 1

M and |v − v̄| < δ < 1
10M we have a lower bound of

|v′′ − v′′
1 | ≥
∣∣∣∣|v′ − v′

1| − |v̄ − v − v′ − v

|v′ − v| {(v̄ − v) · v
′ − v

|v′ − v| }|
∣∣∣∣ ≥ 1

2M
.

Therefore for any ε > 0, we can choose δ > 0 so that

∣∣∣∣B(2v̄ − v′′ − v′′
1 ,
v′′ − v′′

1

|v′′ − v′′
1 | )− B(2v − v′ − v′

1,
v′ − v′

1

|v′ − v′
1|
)

∣∣∣∣
=
∣∣∣|2v̄ − v′′ − v′′

1 |γ (q0 ◦ F)(2v̄ − v′′ − v′′
1 , v

′′ − v′′
1 )

−|2v − v′ − v′
1|γ (q0 ◦ F)(2v − v′ − v′

1, v
′ − v′

1)

∣∣∣ < ε

N∗
, (62)

for |2v − v′ − v′
1| > 1

M and |v′ − v′
1| > 1

M and 0 < δ < 1
10M .

Now we split (61) into two parts

2 × 1|v|≤N

∫
|v′|≤2N

dv′..
∫

Evv′∩{ 1
N ≤|v′

1|≤N }
w̄(v′′

1 )h(t̄, x̄, v′′
1 )

×
{

B(2v̄ − v′′ − v′′
1 ,
v′′ − v′′

1

|v′′ − v′′
1 | )− B(2v − v′ − v′

1,
v′ − v′

1

|v′ − v′
1|
)

}

× 1{|2v−v′−v′
1|> 1

M }1{|v′−v′
1|> 1

M }dv
′
1

+ 2 × 1|v|≤N

∫
|v′|≤2N

dv′..
∫

Evv′∩{ 1
N ≤|v′

1|≤N }

{
w̄(v′′

1 )h(t̄, x̄, v′′
1 )− w̄(v′

1)h(t, x, v′
1)
}

×B(2v − v′ − v′
1,
v′ − v′

1

|v′ − v′
1|
). (63)

Using (62), the continuity of B(·, ·) away from (0, 0), the first line above is bounded by

C sup
v,v′

|Z(v, v′)| × ||h||2∞
ε

N∗
. (64)
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In the remainder of this section we will focus on (63):

Estimate of (63).

(63) ≤ C N 2||h||∞ sup
v,v′

|Z(v, v′)|
∫

|v′|≤2N
w̄(v′)

×
∫

Evv′∩{ 1
N ≤|v′

1|≤N }
|w̄(v′′

1 )h(t̄, x̄, v′′
1 )− w̄(v′

1)h(t, x, v′
1)|dv′

1

︸ ︷︷ ︸⊙
dv′, (65)

where we used sup|v|≤N ,|v′|≤2N ,|v′
1|≤N B(2v− v′ − v′

1,
v′−v′

1
|v′−v′

1| ) < ∞. Recall our choice

of v′′ and v′′
1 from (40) and (41) to have

|v′′
1 − v′

1| ≤
∣∣∣ v

′ − v

|v′ − v| {(v̄ − v) · v
′ − v

|v′ − v| }
∣∣∣ ≤ |v̄ − v| < δ.

We will use the following strategy: separate
∫

Evv′∩{ 1
N ≤|v′

1|≤N } . . .dv
′
1 into two parts

∫
Ux ∩Evv′∩{ 1

N ≤|v′
1|≤N }

. . .dv′
1 +
∫

U c
x ∩Evv′∩{ 1

N ≤|v′
1|≤N }

. . .dv′
1.

The first part is the integration over Ux , a neighborhood of Gx that contains possible dis-
continuity of h. Moreover we expect the measure of the neighborhood Ux is small so we
can control the first term. For the second term, we will use the continuity of the integrand
w̄h. However if v = 0 then Gx could be a large measure set in Evv′ ∩ { 1

N ≤ |v′
1| ≤ N }.

For example if Gx ∩ S
2 = {u ∈ S

2 : u3 = 0} then Gx is the xy−plane and E0e3 is also
the xy−plane. Therefore we have to divide the two cases v �= 0 and v = 0 and study
them separately.

Case of v �= 0. In the case of v �= 0, assume � < |v|2/2 for sufficiently small � > 0.
We will divide the velocity space R

3 into

B =
{
v′ ∈ R

3 : |v| − �

|v| ≤ v′ · v|v| ≤ |v| +
�

|v|
}

and

Bc =
{
v′ ∈ R

3 :
∣∣∣∣v′ · v|v| − |v|

∣∣∣∣ > �

|v|
}
.

The important property of B is that if v ∈ Bc then Evv′ does not contain zero. We can
split the underbraced integration

⊙
of (65) into

∫
v′∈B2N ∩B

w̄(v′)
∫

Evv′∩{ 1
N ≤|v′

1|≤N }
|w̄(v′′

1 )h(t̄, x̄, v′′
1 )− w̄(v′

1)h(t, x, v′
1)|dv′

1dv′

(66)

+
∫
v′∈B2N \B

w̄(v′)
∫

Evv′∩{ 1
N ≤|v′

1|≤N }
|w̄(v′′

1 )h(t̄, x̄, v′′
1 )− w̄(v′

1)h(t, x, v′
1)|dv′

1dv′.

(67)
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Notice that B ∩ B2N has a small measure:

m3(B ∩ B2N ) ≤ 2π(2N )2 × 2
�

|v| ≤ 2π(2N )2 × 2
�√
2�

≤ 2
√

2π(2N )2
√
�.

Therefore we have

|(66)| ≤ C N 4||h||L∞
√
�. (68)

Now we are going to estimate (67). Here we use a property of Bc: for v′ ∈ Bc we have

dist(0, Evv′) =
∣∣∣∣v · v

′ − v

|v′ − v|
∣∣∣∣ = |v′ · v − |v|2|

|v′ − v| >
�

|v′ − v| >
�

2N + |v| ≥ �

3N
,

where we also have used |v′| ≤ 2N and |v| ≤ N . From Lemma 5 we use Ux , an open
radial symmetric subset of { 1

N ≤ |v′
1| ≤ N } with a small measure and w̄h is uniformly

continuous on U c
x , to split (67) into

∫
v′∈B2N \B

w̄(v′)
∫

Evv′∩{ 1
N ≤|v′

1|≤N }∩Ux

|w̄(v′′
1 )h(t̄, x̄, v′′

1 )− w̄(v′
1)h(t, x, v′

1)|dv′
1dv′

(69)

+
∫
v′∈B2N \B

w̄(v′)
∫

Evv′∩{ 1
N≤|v′

1|≤N }∩U c
x

|w̄(v′′
1 )h(t̄, x̄, v′′

1 )−w̄(v′
1)h(t, x, v′

1)|dv′
1dv′.

(70)

For the last line, we use Lemma 5 to know estimate |w̄(v′′
1 )h(t̄, x̄, v′′

1 )−w̄(v′
1)h(t, x, v′

1)|
< ε

N∗ , for v′
1 ∈ Evv′ ∩ { 1

N ≤ |v′
1| ≤ N }\Ux and |v′′

1 − v′
1| ≤ |v − v̄| < δ. Therefore

|(70)| ≤ C N 2 ε

N∗
||h||∞. (71)

In order to show that (69) is small, we introduce following projection:

Lemma 10. Assume 0 < � <
|v|2

2 . Let Evv′ = {v′
1 ∈ R

3 : (v1 − v) · (v′ − v) = 0}. We
define a projection

P S
2 → Evv′,

u ∈ S
2 �→
{
v · (v′ − v)

u · (v′ − v)

}
u ∈ Evv′ .

For v′ ∈ {v′ ∈ R
3 : |v′| ≤ 2N }\B, define the restricted projection

P
′ ≡ P|P−1(Evv′∩{1/N≤|v′

1|≤N }) P
−1(Evv′ ∩ {1/N ≤ |v′

1| ≤ N })
→ Evv′ ∩ {1/N ≤ |v′

1| ≤ N }.
Then for v′ ∈ B2N \B the Jacobian of P

′ is bounded:

Jac(P′) =
∣∣∣∣∂P

′

∂u

∣∣∣∣ =
(
v · v

′ − v

|v′ − v|
)2

| sec2 θ tan θ | ≤ 3N 4

�
,

where θ is defined by cos θ = u · v′−v
|v′−v| (Fig. 4).
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Fig. 4. Projection Map

Proof. Without loss of generality, we may assume v′−v
|v′−v| = (0, 0, 1)T . Using the spher-

ical coordinate,

P
′(u) = v · (v′ − v)

u · (v′ − v)
u = v · v′−v

|v′−v|
u · v′−v

|v′−v|
u = v · v′−v

|v′−v|
cos θ

⎛
⎝ sin θ cosφ

sin θ sin φ
cos θ

⎞
⎠

= v · v
′ − v

|v′ − v|

⎛
⎝ tan θ cosφ

tan θ sin φ
1

⎞
⎠ ,

and a Jacobian matrix of P
′,

∂P′

∂(θ, φ)
= v · v

′ − v

|v′ − v|
(

sec2 θ cosφ − tan θ sin φ
sec2 θ sin φ tan θ cosφ

)
.

Therefore a Jacobian of P
′ is

Jac(P′) =
∣∣∣∣ ∂P′

∂(θ, φ)

∣∣∣∣ =
(
v · v

′ − v

|v′ − v|
)2

sec2 θ | tan θ | ≤ dist(0, Evv′)2| sec θ |3.
Notice that

| sec θ | = 1

| cos θ | = 1∣∣∣u · v′−v
|v′−v|
∣∣∣

=
∣∣∣∣
{
v · (v′ − v)

u · (v′ − v)

}
u

∣∣∣∣ 1∣∣∣v · v′−v
|v′−v|
∣∣∣

= |P′(u)|
dist(0, Evv′)

.

Because P
′(u) ∈ { 1

N ≤ |v′
1| ≤ N } and dist(0, Evv′) ≥ �

3N we have

Jac(P′) ≤ |P′(u)|3
|dist(0, Evv′)| ≤ 3N 4

�
.

��
Assume we choose m2(Ux ∩S

2) ≤ �ε

N∗ N 2 . By definition we know that P
′(Ux ∩S

2) =
Evv′ ∩ { 1

N ≤ |v′
1| ≤ N } ∩ Ux and the 2-dimension Lebesgue measure of Evv′ ∩ { 1

N ≤
|v′

1| ≤ N } ∩ Ux is bounded by

m2(Evv′ ∩ { 1

N
≤ |v′

1| ≤ N } ∩ Ux ) = m2(P
′(Ux ∩ S

2)) ≤ Jac(P′)× |Ux ∩ S
2|

≤ 3N 4

�
× ε

N∗N 2 = 3N 2

�N∗
ε.
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Therefore we have an upper bound of (69):

|(69)| ≤ C N 2ε||h||∞, (72)

where C = ∫
R3 w̄(v

′)dv′. In case of v �= 0, from (68), (71) and (72), we have

(63) ≤ C N 2||h||∞ sup
v,v′

|Z(v, v′)| ×
⊙

≤ C N 4||h||2∞ sup
|v|≤N ,|v′|≤2N

|Z(v, v′)|{N 2√� + (1 +
3N 2

�
)
ε

N∗
}, (73)

where
⊙

is the underlined integration in (65).

Case of v = 0. In this case, we do not have a upper bound of the Jacobian of P
′. Instead

we will use the structure of Gx of Lemma 4 crucially. In the case of v = 0, we split (65)∫
|v′|≤2N

w̄(v′)
∫

E0v′∩{ 1
N ≤|v′

1|≤N }
|w̄(v′′1 )h(t̄, x̄, v′1)− w̄(v′1)h(t, x, v′1)|dv′1dv′

=
∫
|v′|≤2N

w̄(v′)
∫

E0v′∩{ 1
N ≤|v′

1|≤N }
|w̄(v′′1 )h(t̄, x̄, v′1)− w̄(v′1)h(t, x, v′1)| × 1Ux (v

′
1)dv

′
1dv′

(74)

+
∫
|v′|≤2N

w̄(v′)
∫

E0v′∩{ 1
N ≤|v′

1|≤N }
|w̄(v′′1 )h(t̄, x̄, v′1)− w̄(v′1)h(t, x, v′1)|

×1E0v′∩{ 1
N ≤|v′

1|≤N }\Ux
(v′1)dv′1dv′. (75)

For v′, we use spherical polar coordinates (r ′, θ ′, φ′) so that

v′ = (r ′ sin θ ′ cosφ′, r ′ sin θ ′ sin φ′, r ′ cos θ ′). (76)

By definition, E0v′ is a plane containing the origin and normal to v′. We know that E0v′
is generated by two unit vectors

E0v′ =
〈⎛
⎝ cos θ ′ cosφ′

cos θ ′ sin φ′
− sin θ ′

⎞
⎠ ,
⎛
⎝− sin φ′

cosφ′
0

⎞
⎠
〉
.

We will use a polar coordinate (r ′
1, θ

′
1) for v′

1 ∈ E0v′ , i.e.

v′
1 =
⎛
⎜⎝
(v′

1)1

(v′
1)2

(v′
1)3

⎞
⎟⎠ (r ′

1, θ
′
1; θ ′, φ′)≡r ′

1

⎛
⎝ cos θ ′ cosφ′ − sin φ′ sin θ ′ cosφ′

cos θ ′ sin φ′ cosφ′ sin θ ′ sin φ′
− sin θ ′ 0 cos θ ′

⎞
⎠
⎛
⎝

cos θ ′
1

sin θ ′
1

0

⎞
⎠ .

(77)

Direct computation gives det
(

∂(v′
1)

∂(r ′
1,θ

′
1,θ

′)

)
=

(r ′
1)

2 cos θ ′
1

× det

⎛
⎜⎝

cos θ ′ cosφ′ cos θ ′
1 − sin φ′ sin θθ ′

1 − cos θ ′ cosφ′ sin θ ′
1 − sin φ′ cos θ ′

1 sin θ ′ cosφ′

cos θ ′ sin φ′ cos θ ′
1 + cosφ′ sin θ ′

1 − cos θ ′ sin φ′ sin θ ′
1 + cosφ′ cos θ ′

1 sin θ ′ sin φ′

sin θ ′ cos θ ′
1 sin θ ′ sin θ ′

1 cos θ ′

⎞
⎟⎠

= (r ′
1)

2 cos θ ′
1.
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Therefore we have following identity:

∫
R3

· · · dv′
1 =
∫ ∞

0

∫ 2π

0

∫ π

0
· · · (r ′

1)
2 cos θ ′

1dθ ′dθ ′
1dr ′

1. (78)

Recall the standard 3-dimensional polar coordinates and 2-dimensional polar coordi-
nates:

∫
|v′|≤2N

· · · dv′ =
∫ 2N

0

∫ 2π

0

∫ π

0
· · · (r ′)2 sin θ ′dθ ′dφ′dr ′,

∫
E0v′∩{ 1

N ≤|v′
1|≤N }

· · · dv′
1 =
∫ N

1
N

∫ 2π

0
· · · r ′

1dθ ′
1dr ′

1,

and use the above identities to control (74) by

∫ 2N

0
dr ′(r ′)2w̄(r ′)

∫ 2π

0
dφ′

×
∫ π

0
dθ ′ sin θ ′

∫ N

1
N

dr ′
1r ′

1e− (r ′
1)

2

8

∫ 2π

0
dθ ′

11Ux (v
′
1(r

′
1, θ

′
1; θ ′, φ′))

︸ ︷︷ ︸
||h||∞. (79)

We focus on the underbraced integration in (79) and divide it into

∫ π

0
dθ ′ sin θ ′

∫ N

1
N

dr ′
1r ′

1e− (r ′
1)

2

8

∫ 2π

0
dθ ′

11Ux (v
′
1)1θ ′

1∈( π2 −�, π2 +ρ)∪( 3π
2 −�, 3π

2 +�) (80)

+
∫ π

0
dθ ′ sin θ ′

∫ N

1
N

dr ′
1r ′

1e− (r ′
1)

2

8

∫ 2π

0
dθ ′

11Ux (v
′
1)1θ ′

1∈[0, π2−�]∪[ π2+�, 3π
2 −�]∪[ 3π

2 +�,2π ].

(81)

Easily (80) ≤ 2�(e− 1
8N2 − e− N2

8 ) ≤ 4�. For (81), we use 1 ≤ cos θ ′
1

�
and 1 ≤ Nr ′

1 on

θ ′
1 ∈ [0, π2 − �] ∪ [π2 + �, 3π

2 − �] ∪ [ 3π
2 + �, 2π ] and r ′

1 ∈ [ 1
N , N ] to have

(81) ≤ �−1 N
∫ π

0
dθ ′
∫ N

1
N

dr ′
1(r

′
1)

2
∫ 2π

0
dθ ′

1 cos θ ′
11Ux (v

′
1(r

′
1, θ

′
1; θ ′, φ′))

= �−1 N × m3(Ux ∩ { 1

N
≤ |v′

1| ≤ N }), (82)

where we used (78). To sum we have

(74) ≤ (79) ≤ C ||h||∞
{

4� + �−1 N × ε

N∗

}
. (83)

On the other hand for (75) we can use Lemma 5 to have

(75) ≤ C
ε

N∗
. (84)
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From (83) and (84) we have

(63) ≤ C N 2||h||∞ sup
v,v′

|Z(v, v′)| ×
⊙

= C N 2||h||∞ sup
v,v′

|Z(v, v′)| × {(74) + (75)}

≤ C N 2||h||∞ sup
v,v′

|Z(v, v′)|
{
ε

N∗
+ ||h||∞

{
4� + �−1 N × ε

N∗

}}
, (85)

where
⊙

is the underbraced integration in (65).
To summarize, from (53), (54), (55), (56), (58), (60), (64), (73) and (85), we have

established

(43) ≤ C ||h||2∞{ 1

N
+ e− N2

16 } + C ||h||2∞ sup
|v|≤N ,|v′|≤2N

|Z(v, v′)| N γ

M2

+C ||h||2∞ sup
|v|≤N ,|v′|≤2N

|Z(v, v′)|(N 6√� + 4N 2�)

+
ε

N∗
C ||h||∞ sup

|v|≤N ,|v′|≤2N
|Z(v, v′)|

{
N 2 + ||h||∞

(
1 +

3N 6

�
+ N 4 + N 3�

)}
.

(86)

We choose N ,M, N∗ > 0 sufficiently large and � > 0 sufficiently small so that we
can control (43) < ε

2 . Combining with the result of the previous subsection (52), we
conclude (38) and and prove Theorem 4.

3.4. Continuity of collision operators K f and �( f, f ). The following is a consequence
of Theorem 4.

Corollary 5. Assume f (t, x, v) is continuous on [0, T ] × (�̄× R
3)\G and

w(v) f (t, x, v) = (1 + ρ2|v|2)β f (t, x, v) ∈ L∞([0, T ] × (�̄× R
3)).

Then K f (t, x, v) and �+( f, f )(t, x, v) are continuous in [0, T ] ×�× R
3 and

sup
[0,T ]×�̄×R3

|ν−1(v)w(v)K ( f )| < ∞, sup
[0,T ]×�̄×R3

|ν−1(v)w(v)�+( f, f )| < ∞.

Proof. The above boundedness is a direct consequence of (35) and (36). Thanks to The-
orem 4, we already established the continuity of �+. Therefore we only need to show
the continuity of

1√
μ

Q−(
√
μ f, μ) = e− |v|2

4

∫
R3

∫
S2

B(v − u, ω) f (t, x, u)e− |u|2
4 dωdu.
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Choose (t̄, x̄, v̄) ∼ (t, x, v) so that |(t̄, x̄, v̄)− (t, x, v)| < δ. We will estimate

1√
μ

Q−(
√
μ f, μ)(t̄, x̄, v̄)− 1√

μ
Q−(

√
μ f, μ)(t, x, v)

= 1√
μ

∫
R3

∫
S2

e− |u|2
4 {B(v − u, ω) f (t, x, v)− B(v̄ − u, ω) f (t̄, x̄, u)}dωdu

= 1√
μ

∫
R3

∫
S2

B(v − u, ω)e− |u|2
4 f (t, x, v)dωdu

− 1√
μ

∫
R3

∫
S2

B(v − u′, ω)e− |u′−(v−v̄)|2
4 f (t̄, x̄, u′ − (v − v̄))dωdu′

≤ 1√
μ

∫
u∈R3

∫
S2

|B(v−u, ω)||e− |u|2
4 −e− |u−(v−v̄)|2

4 |w−1(u − (v−v̄))||w f ||∞dωdu

(87)

+
1√
μ

∫
R3

∫
S2

|B(v − u, ω)|e− |u|2
4 | f (t, x, u)− f (t̄, x̄, u − (v − v̄))|︸ ︷︷ ︸⊕

dωdu,

(88)

where we used a change of variables u′ = u + (v − v̄) for the underlined term. Using
Taylor’s expansion we control

e− |u−(v−v̄)|2
4 = e− |u|2

4 +
1

2
|u∗|e− |u∗|2

4 |v − v̄| ≤ 1

2
(|u| + δ)e

δ2
4 e− |u|2

4 × |v − v̄|,
where u∗ = s∗{u − (v− v̄)} + (1 − s∗)u for some s∗ ∈ (0, 1) and |v− v̄| < δ. Therefore
we control

|(87)| ≤ e
|v|2

4

∫
R3

|v − u|γ 1

2
(|u| + δ)e

δ2
4 e− |u|2

4 du × sup
v,u

∫
S2

q0
( v − u

|v − u| · ω)dω|v−v̄|||w f ||∞

≤ C(1 + |v|)γ e
|v|2

4 ||w f ||∞, (89)

where we have used the the angular cutoff assumption (1). Now we estimate (88) with
following steps:

Case 1: |u| ≥ N . Since e− |u|2
4 ≤ e− N2

8 e− |u|2
8 , we estimate∫

|u|≥N

∫
S2

⊕
dωdu ≤ Ce− N2

8

∫
R3

e− |u|2
8 |u − v|γ du × ||w f ||∞

≤ Ce− N2
8 ν(v)||w f ||∞, (90)

where
⊕

is the underbraced term in (88).

Case 2: |u| ≤ N . A function f is continuous on [0, T ]× (�̄× B(0; N ))\G. By Lemma
5, we can choose Ux ⊂ B(0; N ) with |Ux | < ε

N with | f (t, x, u) − f (t̄, x̄, u − (v −
v̄))| < ε

N for |(t, x, u) − (t̄, x̄, u − (v − v̄))| ≤ δ with u ∈ B(0; N )\Ux . Therefore∫
|u|≤N

∫
S2

⊕
dωdu is bounded by

∫
u∈B(0;N )∩Ux

∫
S2

⊕
dωdu +

∫
u∈B(0;N )\Ux

∫
S2

⊕
dωdu ≤ C

ε

N
ν(v)||w f ||∞,

(91)
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where
⊕

is the underbraced term in (88). From (89), (90) and (91), we summarize

1√
μ

|Q−(
√
μ f, μ)(t̄, x̄, v̄)−Q−(

√
μ f, μ)(t, x, v)|≤(o(δ)+e− N2

8 +
ε

N
)
ν(v)√
μ

||w f ||∞,

which is less than ε for sufficiently large N and sufficiently small δ. ��

4. In-Flow Boundary Condition

In this section, we consider the weighted linearized Boltzmann equation

{∂t + v · ∇x + ν − Kw}h = w�(
h

w
,

h

w
), (92)

where Kwh ≡ wK ( h
w
) with the in-flow injection boundary condition:

h(t, x, v) = w(v)g(t, x, v) for (x, v) ∈ γ−. (93)

where the weight functionw(v) = {1+ρ2|v|2}β in (12). First we will show the formation
of discontinuity using a pointwise estimate of the Boltzmann solution [21]. Then we use
the continuity of collision operators, Theorem 4, to show a continuity of solution on the
continuity set C and the propagation of discontinuity on the discontinuity set D.

4.1. Formation of discontinuity. We prove Part 1 of Theorem 1. Without loss of gen-
erality we may assume x0 = (0, 0, 0) and v0 = (1, 0, 0) and (x0, v0) ∈ γ S

0 . Locally
the boundary is a graph, i.e. � ∩ B(0; δ) = {(x1, x2, x3) ∈ B(0; δ) : x3 > �(x1, x2)}.
The condition (x0, v0) ∈ γ S

0 implies tb(x0, v0) �= 0 and tb(x0,−v0) �= 0 which means
�(ξ, 0) < 0 for ξ ∈ (−δ, δ)\{0} (see Fig. 3).

For simplicity we assume a zero boundary datum, i.e. g ≡ 0. From Theorem 1 of
[21], we have a global solution of the linearized Boltzmann equation (92) with zero
in-flow boundary condition, satisfying the decay estimate (15). In the proof we do not
use the decay estimate but just boundedness

sup
t∈[0,∞)

||h(t)||∞ ≤ C ′||h0||∞. (94)

Recall the constants Ck and C� from (35) and (36). Choose t0 ∈ (0,min{ δ2 , tb(x0,−v0)
2 })

sufficiently small so that

1

2
≤
(

e−ν(1)t0 − t0CkC ′ − (1 − e−ν(1)t0)C�(C ′)2
)
, (95)

where ν(1) ≡ ν(v0) for any v0 ∈ R
3 with |v0| = 1. This choice is possible because

the right-hand side of (95) is a continuous function of t0 ∈ R and it has a value 1 when
t0 = 0. Furthermore assume a condition for our initial datum h0: there is sufficiently
small δ′ = δ′(�, t0) > 0 such that B((−t0, 0, 0); δ′) ⊂ � and

h0(x0, v0) ≡ ||h0||∞ > 0 for (x, v) ∈ B((−t0, 0, 0); δ′)× B((1, 0, 0); δ′). (96)
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We claim the Boltzmann solution h with such an initial datum h0 and zero in-flow
boundary condition is not continuous at (t0, x0, v0) = (t0, (0, 0, 0), (1, 0, 0)). We will
use a contradiction argument: Suppose

[h(t0)]x0,v0 = 0. (97)

Choose sequences of points (x ′
n, v

′
n) = ((0, 0, 1

n ), (1, 0, 0)) and (xn, vn) = (( 1
n , 0,

�( 1
n , 0)), (1, 0, 1

n )). Because of our choice, for sufficiently large n ∈ N, the character-
istics [X (0; t0, x0, v0), V (0; t0, x0, v0)] is near to ((−t0, 0, 0), (1, 0, 0)), i.e.

(x ′
n − t0v

′
n, v

′
n) = ((−t0, 0,

1

n
), (1, 0, 0)) ∈ B((−t0, 0, 0); δ′)× B((1, 0, 0); δ′).

Hence the Boltzmann solution at (t0, x ′
n, v

′
n) is

h(t0, x ′
n, v

′
n) = h0(x

′
n − t0v

′
n, v

′
n)e

−ν(v′
n)t0

+
∫ t0

0
e−ν(v′

n)(t0−τ)
{

Kwh + w�(
h

w
,

h

w
)

}
(τ, x ′

n − v(t0 − τ), v′
n)dτ

= ||h0||∞e−ν(v′
n)t0 +

∫ t0

0
e−ν(v′

n)(t0−τ)
{

Kwh + w�(
h

w
,

h

w
)

}

×(τ, x − v′
n(t0 − τ), v′

n)dτ.

Combining h(t0, xn, vn) = w(vn)g(t0, xn, vn) = 0 with (97), we conclude

h(t ′0, x ′
n, v

′
n) → 0 as n → 0. (98)

On the other hand, using (94) we can estimate

lim inf
n→∞ |h(t0, x ′

n, v
′
n)|

= lim inf
n→∞ |h(t0, x ′

n, v
′
n)− h(t0, xn, vn)|

≥ lim inf
n→∞

∣∣||h0||∞e−ν(v′
n)t0 −

∫ t0

0
CkC ′||h0||∞dτ

+
∫ t0

0
ν(v′

n)e
−ν(v′

n)(t−τ)C�(C ′)2||h0||2∞dτ
∣∣

≥ ||h0||∞e−ν(1)t0 − t0CkC ′||h0||∞ − (1 − e−ν(1)t0)C�(C ′)2||h0||2∞
= ||h0||∞

(
e−ν(1)t0 − t0CkC ′ − (1 − e−ν(1)t0)C�(C ′)2

)
≥ ||h0||∞

2
�= 0,

which is contradiction to (98).

4.2. Continuity away from D. We aim to prove Part 1 of Theorem 3 in this section. First
we recall Lemma 12 of [21], the representation for the solution operator G(t, 0) for the
homogeneous transport equation with in-flow boundary condition:
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Lemma 11 [21]. Let h0 ∈ L∞ and wg ∈ L∞. Let {G(t, 0)h0} be the solution to the
transport equation

{∂t + v · ∇x }G(t, 0)h0 = 0, G(0, 0)h0 = h0, {G(t, 0)h0}γ− = wg.

For (x, v) /∈ γ0 ∩ γ−,

{G(t, 0)h0}(t, x, v) = 1t−tb≤0h0(x − tv, v) + 1t−tb>0{wg}(t − tb, x − tbv, v).

Next we prove a generalized version of Lemma 13 in [21].

Lemma 12 (Continuity away from D: Transport Equation). Let � be an open sub-
set of R

3 with a smooth boundary ∂� and an initial datum h0(x, v) be continuous in
�×R

3 ∪{γ−∪γ+ ∪γ I−
0 } and a boundary datum g be continuous in [0, T ]×{γ−∪γ I−

0 }.
Also assume q(t, x, v) and φ(t, x, v) are continuous in the interior of [0, T ] ×�× R

3

and satisfy sup[0,T ]×�×R3

∣∣q(t, x, v)
∣∣ < ∞ and sup[0,T ]×�

∣∣φ(·, ·, v)∣∣ < ∞ for all
v ∈ R

3. Let h(t, x, v) be the solution of

{∂t + v · ∇x + φ}h = q , h(0, x, v) = h0 , h|γ− = wg.

Assume the compatibility condition on γ− ∪ γ I−
0 ,

h0(x, v) = w(v)g(0, x, v). (99)

Then the Boltzmann solution h(t, x, v) is continuous on the continuity set C. Further-
more, if the boundary ∂� does not include a line segment (Definition 6) then h(t, x, v)
is continuous on a complementary set of the discontinuity set, i.e. {[0, T ]× �̄×R

3}\D.

Proof. Continuity on {{0} × �̄ × R
3} ∪ {(0,∞) × [γ− ∪ γ I−

0 ]} is obvious from the
assumption. Fix (t, x, v) ∈ C. Notice that
{

d

ds
{h(s, X (s), V (s))e− ∫ t

s φ(τ,X (τ ),V (τ ))dτ } − q(s, X (s), V (s))e− ∫ t
s φ(τ,X (τ ),V (τ ))dτ

}

×1[max{0,t−tb(x,v)},t](s) = 0, (100)

along the characteristics X (s; t, x, v) = x −v(t − s), V (s; t, x, v) = v until the charac-
teristics hits on the boundary. Choose (t̄, x̄, v̄) ∼ (t, x, v) and use a change of variables
s̄ = s − (t̄ − t) with s̄ ∈ [t − t̄, t] to have

{ d

ds̄
{h(s̄ + (t̄ − t), X̄(s̄), V̄ (s̄))e− ∫ t

s̄ φ(τ+(t̄−t),X̄(τ ),V̄ (τ ))dτ }
−q(s̄+(t̄ −t), X̄(s̄), V̄ (s̄))e−

∫ t
s̄ φ(τ+(t̄−t),X̄(τ ),V̄ (τ ))dτ

}
1[−(t̄−t)+max{0,t̄−tb(x̄,v̄)},t](s)=0,

(101)

where X̄(s̄) = X (s̄ + (t̄ − t); t̄, x̄, v̄) and V̄ (s̄) = V (s̄ + (t̄ − t); t̄, x̄, v̄).
By the definition C, we can separate two cases: t < tb(x, v) , (xb(x, v), v) ∈

γ− ∪ γ I−
0 .

Case of t − tb(x, v) < 0. From the assumption t − tb(x, v) < 0, we know that (100)
holds for 0 ≤ s ≤ t . Now we choose (t̄, x̄, v̄) near (t, x, v) so that t̄ − tb(x̄, v̄) < 0, and
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X̄(s̄) = X (s̄ + (t̄ − t); t̄, x̄, v̄) is in the interior of � for all s̄ ∈ [t − t̄, t]. Taking the
integration over [min{0, t − t̄}, t] of (100)–(101) to have

h(t, x, v)− h(t̄, x̄, v̄) = h0(X (0), V (0))e− ∫ t
0 φ(τ,X (τ ),V (τ ))dτ

−h0(X̄(t − t̄), V̄ (t − t̄))e− ∫ t
t−t̄ φ(τ+(t̄−t),X̄(τ ),V̄ (τ ))dτ

+
∫ t

min{0,t−t̄}

{
1[max{0,t−tb(x,v)},t](s)q(s, X (s), V (s))e− ∫ t

s φ(τ,X (τ ),V (τ ))dτ

−1[t−t̄+max{0,t̄−tb(x̄,v̄)},t](s)q(s + (t̄ − t), X̄(s), V̄ (s))e− ∫ t
s φ(τ+(t̄−t),X̄(τ ),V̄ (τ ))dτ

}
ds.

Since h0 and φ is continuous, it is easy to see that the first line above goes to zero when
(t̄, x̄, v̄) → (t, x, v). For the remainder we separate cases: t − t̄ > 0 and t − t̄ ≤ 0. If
t − t̄ > 0 the remainder is bounded by

∫ t

t−t̄
|q(s)e

∫ t
s φ(τ)τ − q(s + (τ t − t))e− ∫ t

s φ(τ+(t̄−t)|
+|t − t̄ | sup

0≤s≤t
||q(s)||∞et sup0≤s≤t ||φ(s)||∞,

where the first term is small using continuity of q and φ, and the second term is small
as (t̄, x̄, v̄) → (t, x, v). The case t − t̄ ≤ 0 is similar.

Case of (xb(x, v), v) ∈ γ− ∪ γ I−
0 . We only have to consider cases of t > tb(x, v)

and t = tb(x, v). By definition (xb(x, v), v) ∈ γ− ∪ γ I−
0 . From Lemma 2, we know

that tb(x, v) is a continuous function when (xb(x, v), v) /∈ γ− ∪ γ I−
0 . In the case of

t > tb(x, v), for (t̄, x̄, v̄) ∼ (t, x, v), we have t̄ > tb(x̄, v̄). Taking the integration over
[min{0, t − t̄}, t] of (100)–(101) to have

h(t, x, v)− h(t̄, x̄, v̄)

= wg(t − tb(x, v), X (tb(x, v)), V (tb(x, v)))e
− ∫ t

t−tb(x,v)
φ(τ,X (τ ),V (τ ))dτ

−wg(t̄ − tb(x̄, v̄), X (tb(x̄, v̄)), V (tb(x̄, v̄)))e
− ∫ t

t̄−tb(x̄,v̄)
φ(τ+(t̄−t),X̄(τ ),V̄ (τ ))dτ

+
∫ t

t−tb(x,v)
q(s, X (s), V (s))e− ∫ t

s φ(τ,X (τ ),V (τ ))dτds

−
∫ t

t−tb(x̄,v̄)
q(s + (t̄ − t), X̄(s), V̄ (s))e− ∫ t

s φ(τ+(t̄−t),X̄(τ ),V̄ (τ ))dτds.

Using the continuity of tb and q and φ, it is easy to show that |h(t, x, v)−h(t̄, x̄, v̄)| → 0
as (t̄, x̄, v̄) → (t, x, v). In the case of t = tb(x, v)we can choose (t̄, x̄, v̄) ∼ (t, x, v) so
that tb(x̄, v̄) ∈ (t −ε, t +ε). Taking the integration over [min{0, t − t̄}, t] of (100)–(101)
to have

|h(t, x, v)− h(t̄, x̄, v̄)| ≤ wg(t − tb(x, v), X (tb(x, v)),

×V (tb(x, v)))e
− ∫ t

t−tb(x,v)
φ(τ,X (τ ),V (τ ))dτ

−1t̄>tb(x̄,v̄)wg(t̄ − tb(x̄, v̄), X (tb(x̄, v̄), V (tb(x̄, v̄))))e
− ∫ t

t̄−tb(x̄,v̄)
φ(τ+(t̄−t),X̄(τ ),V̄ (τ ))dτ

−1t̄≤tb(x̄,v̄)h0(X̄(t − t̄), V̄ (t − t̄))e− ∫ t
t−t̄ φ(τ+(t̄−t),X̄(τ ),V̄ (τ ))dτ
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+
∫ t

t−tb(x,v)+ε

∣∣∣q(s, X (s), V (s))e− ∫ t
s φ(τ,X (τ ),V (τ ))dτ

−q(s + (t̄ − t), X̄(s), V̄ (s))e− ∫ t
s φ(τ+(t̄−t),X̄(τ ),V̄ (τ ))dτ

∣∣∣ds

+2ε sup
0≤s≤t

||q(s)||∞et sup0≤s≤t ||φ(s)||∞,

where the first three lines can be small using the compatibility condition and continuity
of h0 in �× R

3 ∪ {γ− ∪ γ+ ∪ γ I−
0 } and a continuity of g on [0, T ] × {γ− ∪ γ I−

0 } and
continuity of φ. For the fourth line above, we use the continuity of q and φ.

If the boundary ∂� does not include a line segment (Definition 6) we have C =
{[0, T ] × �̄× R

3}\D. ��
Proof of Part 1 of Theorem 3. We will use the following iteration scheme

{∂t + v · ∇x + ν}hm+1 = Kwhm + w�+

(
hm

w
,

hm

w

)
− w�−

(
hm

w
,

hm+1

w

)
, (102)

with hm+1|t=0 = h0 and hm+1(t, x, v) = wg(t, x, v) with (t, x, v) ∈ γ− ∪ γ I−
0 . Notice

that this sequence is used in (242), p. 803 of [21] and we use the smallness of the initial
datum and in-flow datum crucially. For simplicity we define

qm = Kwhm + w�+

(
hm

w
,

hm

w

)
− w�−

(
hm

w
,

hm+1

w

)
. (103)

Step 1. We claim

hi is a continuous function in CT (104)

for all i ∈ N and for any T > 0 where

CT ≡ C ∩ {[0, T ] × �̄× R
3}, (105)

where the continuity set C is defined in (10). We will use mathematical induction to
show (104). We choose h0 = 0, then (104) is satisfied for i = 0. Assume (104) for all

i = 0, 1, 2, . . .,m. Rewrite w�−
(

hm

w
, hm+1

w

)
= ν
(√
μ hm

w

)
hm+1, then the equation of

hm+1 is

{∂t + v · ∇x + ν(v) + ν

(√
μ

hm

w

)
}hm+1 = Kwhm + w�+

(
hm

w
,

hm

w

)
. (106)

From Theorem 4 and Corollary 5 we know thatν
(√
μ hm

w

)
andw�+

(
hm

w
, hm

w

)
is continu-

ous in [0, T ]×�×R
3. Apply Lemma 12 whereφ(t, x, v) corresponds to ν(v)+ν(

√
ν hm

w
)

and q(t, x, v) corresponds to the right hand side of (106). Then we check (104) for
i = m + 1.

Step 2. We claim that there exist C > 0 and δ > 0 such that if C{||h0||∞ +
sup0≤s<∞ ||wg(s)||∞} < δ and C ||h0||∞ < δ then there exists T = T (C, δ) > 0
so that

sup
0≤s≤T

||hm(s)||∞ ≤ C ||h0||∞, (107)

for all m ∈ N. Moreover {hm}∞m=0 is Cauchy in L∞([0, T ] × �̄× R
3).
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First we will show a boundedness (107) for all m ∈ N. We use mathematical induc-
tion on m. Assume sup0≤s≤T ||hm(s)||∞ ≤ C ||h0||∞, where T > 0 will be determined
later. Integrating (102) along the trajectory, we have

hm+1(t, x, v) = 1t<tb(x,v)e
−ν(v)t h0(x − tv, v)

+1t≥tb(x,v)e
−ν(v)tb(x,v)w(v)g(t − tb(x, v), xb(x, v), v)

+
∫ t

max{t−tb(x,v),0}
e−ν(v)(t−s){Kwhm + w�+

(
hm

w
,

hm

w

)

−w�−
(

hm

w
,

hm+1

w

)}
(s, x − (t − s)v, v)ds

≤ ||h0||∞ + sup
0≤s≤t

||wg(s)||∞ + tCk sup
0≤s≤t

||hm(s)||∞

+C� sup
0≤s≤t

||hm(s)||∞ sup
0≤s≤t

(
||hm(s)||∞ + ||hm+1(s)||∞

)
,

and

sup
0≤s≤t

||hm+1(s)||∞ ≤ 1 + tCkC + C�C{||h0||∞ + sups ||wg(s)||∞}
1 − C�C{||h0||∞ + sups ||wg(s)||∞}

×
{

||h0||∞ + sup
0≤s≤t

||wg(s)||∞
}

≤ C

{
||h0||∞ + sup

0≤s≤t
||wg(s)||∞

}
,

where we choose C > 4 and then {||h0||∞ + sup0≤s≤t ||wg(s)||∞} ≤ 1
2C�C and then

T = C−3
2CkC .

Next we will show the sequence {hm} is Cauchy in L∞([0, T ] × �̄ × R
3). The

equation of hm+1 − hm is

{∂t + v · ∇x + ν}(hm+1 − hm) = q̃m, (108)

(hm+1 − hm)|t=0 = 0, (hm+1 − hm)|γ− = 0,

where

q̃m = Kw(h
m − hm−1) + w�+

(
hm

w
,

hm − hm−1

w

)
− w�+

(
hm−1 − hm

w
,

hm−1

w

)

−w�−
(

hm

w
,

hm+1 − hm

w

)
+ w�−

(
hm−1 − hm

w
,

hm

w

)
. (109)

From (35) and (36), we have a bound of q̃m ,

sup
0≤s≤t

||q̃m(s)||∞ ≤ Ck sup
0≤s≤t

||{hm − hm−1}(s)||∞
+C�ν(v){ sup

0≤s≤t
||{hm − hm−1}(s)||∞ + sup

0≤s≤t
||{hm+1 − hm}(s)||∞}

×( sup
0≤s≤t

||hm(s)||∞ + sup
0≤s≤t

||hm+1(s)||∞). (110)
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Integrating (108) along the trajectory, we have

||{hm+1 − hm}(t)||∞
≤
∫ t

0
e−ν(v)(t−s)||q̃m(s, x − (t − s)v, v)||∞ds

≤ Ckt sup
0≤s≤t

||{hm − hm−1}(s)||∞

+CC�

(
||h0||∞ + sup

0≤s≤t
||wg(s)||∞

)

×
{

sup
0≤s≤t

||{hm − hm−1}(s)||∞ + sup
0≤s≤t

||{hm+1 − hm}(s)||∞
}
.

If we choose CC�||h0||∞ ≤ 1
4 and CkT ≤ 1

8 then

sup
0≤s≤T

||{hm+1 − hm}(s)||∞ ≤ 1

2
sup

0≤s≤T
||{hm − hm−1}(s)||∞.

Then we have

sup
0≤s≤T

||{hm − hm−1}(s)||∞
≤ sup

0≤s≤T
||{hm − hm−1}(s)||∞ + · · · + sup

0≤s≤T
||{hn+1 − hn}(s)||∞

≤ { 1

2m−n−1 + · · · +
1

20 } sup
0≤s≤T

||{hn+1 − hn}(s)||∞

≤ 2

2n
sup

0≤s≤T
||{h1 − h0}(s)||∞

≤ 4

2n
C{||h0||∞ + sup

0≤s≤T
||wg(s)||∞},

which means that the sequence {hm} is Cauchy in L∞([0, T ] × �̄× R
3).

Step 3. From previous steps we obtain that h with limn→∞ hn is a continuous function
on CT . Now we claim that h is continuous in C. Notice that T only depends on ||h0||∞
and sup0≤s≤T ||wg(s)||∞. Using a uniform bound of sup0≤s<∞ ||h(s)||∞ (Theorem 1
of [21]) we can obtain the continuity for h for all time by repeating [0, T ], [T, 2T ], . . ..
If the boundary ∂� does not include a line segment (Definition 6) then every step is
valid with [0,∞)× {�̄× R

3}\D instead of C and [0, T ] × {�̄× R
3}\D instead of CT .

4.3. Propagation of discontinuity.

Proof of 1 of Theorem 2.

Proof of (20). In order to show the upper bound of discontinuity jump (20), we will show

[h(t)]x0+(t−t0)v0,v0 ≤ [h]t0,x0,v0 e−( 1
Cν

+ C ′
Cw

||h0||∞)(1+|v0|)γ (t−t0), (111)
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when (x0, v0) ∈ γ S
0 and t ∈ (t0, t0 + tb(x0,−v0)). Choose two points (x ′, v′), (x ′′, v′′) ∈

{�̄× R
3\G} ∩ B((x, v); δ)\(x, v) and compare the representation

|h(t, x ′, v′)− h(t, x ′′, v′′)|
≤
∣∣∣1t−t0≥tb(x ′,v′)h(t − tb(x

′, v′), xb(x
′, v′), v′)

×e
−ν(v′)tb(x ′,v′)−∫ t

t−tb(x
′,v′) ν(

√
μ h
w
)(τ,x ′−(t−τ)v′,v′)dτ

+1t−t0<tb(x ′,v′)h(t0, x ′ − (t − t0)v
′, v′)e−ν(v′)(t−t0)−

∫ t
t0
ν(

√
μ h
w
)(τ,x ′−(t−τ)v′,v′)dτ

−1t−t0≥tb(x ′′,v′′)h(t − tb(x
′′, v′′), xb(x

′′, v′′), v′′)

×e
−ν(v′′)tb(x ′′,v′′)−∫ t

t−tb(x
′′,v′′) ν(

√
μ h
w
)(τ,x ′−(t−τ)v′,v′)dτ

−1t−t0<tb(x ′′,v′′)h(t0, x ′′ − (t − t0)v
′′, v′′)e−ν(v′′)(t−t0)−

∫ t
t0
ν(

√
μ h
w
)(τ,x ′′−(t−τ)v′′,v′′)dτ

∣∣∣
+
∣∣∣
∫ t

max{0,t−t0−tb(x ′,v′)}
{Kwh + w�+(

h

w
,

h

w
)}(s, x ′ − (t − s)v′, v′)

×e−ν(v′)(t−s)−∫ t
s ν(

√
μ h
w
)(τ,x ′−(t−τ)v′,v′)dτds

−
∫ t

max{0,t−t0−tb(x ′′,v′′)}
{Kwh + w�+(

h

w
,

h

w
)}(s, x ′′ − (t − s)v′′, v′′)

×e−ν(v′′)(t−s)−∫ t
s ν(

√
μ h
w
)(τ,x ′′−(t−τ)v′′,v′′)dτds

∣∣∣.
It is easy to see that if t − t0 ≥ tb(x ′, v′) then as δ → 0 we have

t − tb(x
′, v′) → t0 , xb(x

′, v′) → x0 ,

and if t − t0 < tb(x ′, v′) then as δ → 0 we have

x ′ − (t − t0)v
′ → x0.

Therefore the first four lines converge to

[h]t0,x0,v0 ×e
−ν(v0)(t−t0)−

∫ t
t0
ν(

√
μ h
w
)(τ,x0−(t0−τ)v0,v0)dτ . For the last two lines, using the

continuity of Kwh, �( h
w
, h
w
), ν(

√
μ h
w
)we conclude that it converges to zero. Therefore

we have

[h(t)]x0+(t−t0)v0,v0 ≤ [h]t0,x0,v0 e
−ν(v0)(t−t0)−

∫ t
t0
ν(

√
μ h
w
)(τ,x0−(t0−τ)v0,v0)dτ

≤ [h]t0,x0,v0 × e−( 1
Cν

−CwC ′||h0||∞)(1+|v0|)γ (t−t0),

where we used

νw(v) ≡
∫

R3

∫
S2

B(v − u, ω)e− |u|2
4 w−1(u)dωdu (112)

with
1

Cw
(1 + |v|)γ ≤ νw(v) ≤ Cw(1 + |v|)γ . (113)

Remark that the Proof of (20) is valid for in-flow, diffuse and bounce-back cases.

Proof of (22). Assume [h(t0)]x0,v0 �= 0 and t0 ∈ (0, tb(x0,−v0)) with (x0, v0) ∈ γ S
0 .

Further assume that the boundary ∂� is strictly concave at x0 along the v0 direction (21).
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Step 1 Claim. We can choose sequences (t ′n, x ′
n, v

′
n), (t

′′
n , x ′′

n , v
′′
n ) ∈ [0,∞) × �̄ ×

R
3 ∩ B((t0, x0, v0); 1

n )\(t0, x0, v0) such that limn→∞ |h(t ′n, x ′
n, v

′
n)− h(t ′′n , x ′′

n , v
′′
n )| ≥

1
2 [h(t0)]x0,v0 �= 0. From [h(t0)]x0,v0 �= 0 we may assume

sup
(x ′

0,v
′
0),(x

′′
0 ,v

′′
0 )∈B((x0,v0); 1

n )\(x0,v0)

|h(t0, x ′
0, v

′
0)− h(t0, x ′′

0 , v
′′
0 )| ≥ 3

4
[h(t0)]x0,v0 �= 0,

(114)

for all n ∈ N. And for each n ∈ N we can choose the desired sequences.

Step 2 Claim. For given ε > 0, up to the subsequence we may assume that

(xb(x
′
n, v

′
n), v

′
n) ∈ B((x0, v0); ε)\G ,

(xb(x
′′
n , v

′′
n ), v

′′
n ) /∈ B((x0, v0); ε) ∪ G for all n ∈ N. (115)

We remark that a continuity G(t, x, v) = w(v)g(t, x, v) on [0,∞)× {γ− ∪ γ S
0 }, i.e.

[ G|[0,∞)×γ−]t0,x0,v0 = w(v0)[ g|[0,∞)×γ−]t0,x0,v0 = 0 for all

(t0, x0, v0) ∈ [0,∞)× {γ− ∪ γ S
0 } (116)

is crucially used in this step. In order to show the final goal (115) of this step, we need
to prove following statement.

Assume (x0, v0) ∈ γ S
0 and tb(x0, v0) > t0. Then for sufficiently small ε > 0

there exists N > 0 such that if (x, v) ∈ B((x0, v0); 1

n
) for n > N and xb(x, v)

/∈ B((x0, v0); ε) then we have tb(x, v) > t0. (117)

We will prove (117) later and show (115) using (117). It suffices to show that there are
only finite n ∈ N such that

(xb(x
′
n, v

′
n), v

′
n) ∈ B((x0, v0); 1

n
)\G , (xb(x

′′
n , v

′′
n ), v

′′
n ) ∈ B((x0, v0); 1

n
)\G, (118)

or (xb(x
′
n, v

′
n), v

′
n) /∈ B((x0, v0); 1

n
) ∪ G , (xb(x

′′
n , v

′′
n ), v

′′
n ) /∈ B((x0, v0); 1

n
) ∪ G.

(119)

Suppose there are infinitely many n′ ∈ N satisfying (118). If ε > 0 is sufficiently small
then (118) implies that t0 > tb(x ′

n′ , v′
n′) and t0 > tb(x ′′

n′ , v′′
n′). The Boltzmann solution

h at (t0, x ′
n′ , v′

n′) is

h(t0, x ′
n′ , v′

n′) = h(t0 − tb(x
′
n′ , v′

n′), xb(x
′
n′ , v′

n′), v′
n′)

×e
−ν(v′

n′ )(t0−tb(x ′
n′ ,v′

n′ ))−
∫ t0

t0−tb(x
′
n′ ,v′n′ )

ν(
√
μ h
w
)(τ,x ′

n′−(t0−τ)v′
n′ ,v′

n′ )dτ

+
∫ t0

t0−tb(x ′
n′ ,v′

n′ )
{Kwh + �+(

h

w
,

h

w
)}(s, x ′

n′ − (t0 − s)v′
n′, v′

n′)

×e−ν(v′
n′ )(t0−s)−∫ t0

s ν(F)(τ,x ′
n′−(t0−τ)v′

n′ ,v′
n′ )dτds,
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and a similar representation for h(t0, x ′′
n′ , v′′

n′). Compare representations of h(t0, x ′
n′ , v′

n′)
and h(t0, x ′′

n′ , v′′
n′) to conclude

lim
n′→∞

|h(t0, x ′
n′ , v′

n′)− h(t0, x ′′
n′ , v′′

n′)|
= lim

n′→∞
|h(t0 − tb(x

′
n′ , v′

n′), xb(x
′
n′ , v′

n′), v′
n′)

−h(t0 − tb(x
′′
n′ , v′′

n′), xb(x
′′
n′ , v′′

n′), v′′
n′)|

×e
−ν(v0)(t0−tb(x0,v0))−

∫ t0
t0−tb(x0,v0)

ν(
√
μ h
w
)(τ,x0−(t0−τ)v0,v0)dτ

≤ [h|[0,∞)×γ−]t0−tb(x0,v0),xb(x0,v0),v0

×e
−ν(v0)(t0−tb(x0,v0))−

∫ t0
t0−tb(x0,v0)

ν(
√
μ h
w
)(τ,x0−(t0−τ)v0,v0)dτ

,

where we used the continuity of ν(
√
μ h
w
) and �+(

h
w
, h
w
). Further using the in-flow

boundary condition h|γ− = wg, we have

lim
n′→∞

|h(t0, x ′
n′ , v′

n′)− h(t0, x ′′
n′ , v′′

n′)| ≤ [ g|[0,∞)×γ−]t0,x0,v0w(v0)

×e
−ν(v0)(t0−tb(x0,v0))−

∫ t0
t0−tb(x0,v0)

ν(
√
μ h
w
)(τ,x0−(t0−τ)v0,v0)dτ = 0,

where we used the continuity of g on [0,∞) × {γ− ∪ γ0}, (116) at the last line.
This is contradicted because we choose the sequences (x ′

n′ , v′
n′), (x ′′

n′ , v′′
n′) satisfying

limn→∞ |h(t0, x ′
n′ , v′

n′)− h(t0, x ′′
n′ , v′′

n′)| ≥ 1
2 [h(t0)]x0,v0 �= 0 in Step 1.

Now suppose there are infinitely many n′′ ∈ N satisfying (119). Because of (117) we
have t0 < tb(x ′

n′′ , v′
n′′) and t0 < tb(x ′′

n′′ , v′′
n′′). The Boltzmann solution h at (t0, x ′

n′′ , v′
n′′)

is

h(t0, x ′
n′′ , v′

n′′) = h0(x
′
n′′ − t0v

′
n′′ , v′

n′′), v′
n′′)e

−ν(v′
n′′ )t0−

∫ t0
0 ν(

√
μ h
w
)(τ,x ′

n′′−(t0−τ)v′
n′′ ,v′

n′′ )dτ

+
∫ t0

0
{Kwh + �+(

h

w
,

h

w
)}(s, x ′

n′′ − (t0 − s)v′
n′′ , v′

n′′)

×e−ν(v′
n′′ )(t0−s)−∫ t0

s ν(
√
μ h
w
)(τ,x ′

n′′−(t0−τ)v′
n′′ ,v′

n′′ )dτds,

and same representation for h(t0, x ′′
n′′ , v′′

n′′). Using the continuity of h0 we see that

lim
n→∞ |h(t0, x ′

n′′ , v′
n′′)− h(t0, x ′′

n′′ , v′′
n′′)|

= lim
n→∞ |h0(x

′
n′′ − t0v

′
n′′ , v′

n′′)− h0(x
′′
n′′ − t0v

′′
n′′ , v′′

n′′)|

×w(v0)e
−ν(v0)(t0−tb(x0,v0))−

∫ t0
t0−tb(x0,v0)

ν(
√
μ h
w
)(τ,x0−(t0−τ)v0,v0)dτ

= 0,

which is also a contradiction.
Now we prove (117). We can choose ε > 0 sufficiently small so that ∂�∩ B(x0; ε) =

{(x1, x2,�(x1, x2)) ∈ B(x0; ε)}. From tb(x0, v0) > t0 we know that a line segment
between x0 and x0 − t0x0 has only one intersection point x0 with ∂�, i.e. x0, x0 − t0v0 ∩
∂� = {x0}. Furthermore we can choose � > 0 so large that

⋃
s∈[0,t0] B(x0 − sv0; �) ∩

∂� ⊂ B(x0; ε). Choose N ∈ N sufficiently large so that x, x − t0v ⊂⋃s∈[0,t0] B(x0 −
sv0; �) for all (x, v) ∈ B((x0, v0); 1

n ). If xb(x, v) /∈ B((x0, v0); ε), then x, x − t0v ∩
∂� = ∅ and this implies tb(x, v) > t0.
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Step 3 Claim. Choose t > 0 so that t − t0 ∈ [0, tb(x0,−v0)) and denote x = x0 + (t −
t0)v0, v = v0. Then there exists N ∈ N so that t −t0 < tb(x ′

n,−v′
n) for all n > N . Using

(117) we only have to prove xb(x ′
n,−v′

n) /∈ B((x0,−v0); ε). From (115) we know that
xb(x ′

n, v
′
n) ∈ B(x0; ε). We assume that�∩ B(x0; ε) = {x ∈ B(x0; ε) : x3 > �(x1, x2)}

and n(x0) = (0, 0,−1) and v0 = |v0|(1, 0, 0). Let’s define

�(s) = �((x ′
n)1 + s(v′

n)1, (x
′
n)2 + s(v′

n)2)− ((x ′
n)3 + s(v′

n)2).

Since x ′
n ∈ � we have �(0) < 0 and �(tb(x ′

n,−v′
n)) = 0 = �(−tb(x ′

n, v
′
n)). Because

of the strict concavity along the v0 direction at x0 (21), for sufficiently large n so that
(x ′

n, v
′
n) ∼ (x0, v0) we have

� ′′(s) = ((v′
n)1, (v

′
n)2)

(
∂2

x1
� ∂x1∂x2�

∂x2∂x1� ∂2
x2
�

)(
(v′

n)1
(v′

n)2

)
< −1

2
Cx0,v0 ,

where the Hessian of � is evaluated at ((x ′
n)1 + s(v′

n)1, (x
′
n)2 + s(v′

n)2). Since
{x ′

n + sv′
n : s ∈ (−tb(x ′

n, v
′
n), tb(x ′

n,−v′
n))} ⊂ � we have �(s) < 0 for s ∈

(−tb(x ′
n, v

′
n), tb(x ′

n,−v′
n)). Therefore �′(−tb(x ′

n, v
′
n)) ≤ 0 and �′(tb(x ′

n,−v′
n)) ≥ 0.

This is a contradiction because

0 ≤ �′(tb(x ′
n,−v′

n)) = �′(−tb(x
′
n, v

′
n)) +
∫ tb(x ′

n ,−v′
n)

−tb(x ′
n ,v

′
n)

�′′(s)ds ≤ 0

−1

2
Cx0,v0{tb(x ′

n,−v′
n) + tb(x

′
n, v

′
n)} < 0.

The consequence of this step is that for n > N we have a representation of h at (t, x, v),

h(t, x ′
n + (t − t0)v

′
n, v

′
n) = h(t0, x ′

n, v
′
n)e

−ν(v′
n)(t−t0)−

∫ t
t0
ν(

√
μ h
w
)(τ,x ′

n+(τ−t0)v′
n ,v

′
n)dτ

+
∫ t

t0
{Kw + w�+(

h

w
,

h

w
)}(s, xn + (s − t0)v

′
n, v

′
n)

×e−ν(v′
n)(t−s)−∫ t

s ν(
√
μ h
w
)(τ,x ′

n+(τ−t0)v′
n ,v

′
n)dτds. (120)

Step 4 Claim. For given ε > 0 there exists δ > 0 so that if |(y, u) − (x0, v0)| < δ and
|(x, v)− (x0, v0)| < δ and t0 < tb(y, u) and t0 < tb(x, v) then

|h(t0, y, u)− h(t0, x, v)| < ε. (121)

We have h(t0, y, u) = h0(y − t0u, u)e−ν(u)t0−∫ t0
0 ν(

√
μ h
w
)(τ,y−(t0−τ)u,u)dτ

+
∫ t0

0
{Kwh + �+(

h

w
,

h

w
)}(s, y − (t0 − s)u, u)e−ν(u)(t0−s)−∫ t0

s ν(
√
μ h
w
)(τ,y−(t0−τ)u,u)dτds,

and similarly h(t0, x, v) = h0(x − t0v, v)e−ν(v)t0−∫ t0
0 ν(

√
μ h
w
)(τ,x−(t0−τ)v,v)dτ

+
∫ t0

0
{Kwh + �+(

h

w
,

h

w
)}(s, x − (t0 − s)v, v)e−ν(v)(t0−s)−∫ t0

s ν(
√
μ h
w
)(τ,x−(t0−τ)v,v)dτds.
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Let’s compare the arguments of two representations:

|(y − t0u, u)− (x − t0v, v)| < 2(1 + t0)δ for h0,

|(τ, y − (t0 − τ)u, u)− (τ, x − (t0 − τ)v, v)| < 2(1 + t0)δ for ν(
√
μ

h

w
),

|(s, y − (t0 − s)u, u)− (s, x − (t0 − s)v, v)| < 2(1 + t0)δ for Kwh + �+(
h

w
,

h

w
).

Using the continuity of h0, ν(
√
μ h
w
), Kwh and �+(

h
w
, h
w
) we can choose the desired

ε > 0 to conclude (121).

Step 5 Claim. Choose t > 0 so that t ∈ [t0, t0 + tb(x0,−v0)) and denote x = x0 + (t −
t0)v0, v = v0. Let ε ≤ 1

10 [h(t0)]x0,v0 and δ > 0 be chosen in Step 4. Then we can
choose u′′

n ∈ � so that |u′′
n − v′′

n | < δ and t0 < tb(x ′′
n , u′′

n) and t − t0 < tb(x ′′
n ,−u′′

n).
If there are infinitely many u′′

n so that t0 < tb(x ′′
n , u′′

n) and t−t0 < tb(x ′′
n ,−u′′

n), then up
to subsequence we can define u′′

n = v′′
n . Therefore we may assume t − t0 ≥ tb(x ′′

n ,−v′′
n )

for all n ∈ N. We assume that � ∩ B(x0; ε) = {x ∈ B(x0; ε) : x3 > �(x1, x2)} and
n(x0) = (0, 0,−1) and v0 = |v0|(1, 0, 0). Now we illustrate how to choose such a u′′

n .
Denote x ′′

n = x = (x1, x2, x3) and v′′
n = (v1, v2, v3). First we will choose (u1, u2, u3)

and s > 0 so that

n(xb(x,−u)) · u = 0, (122)

and xb(x,−u) = (x1 + s u1√
u2

1+u2
2

, x2 + s u2√
u2

1+u2
2

,�(x1 + s u1√
u2

1+u2
2

, x2 + s u2√
u2

1+u2
2

)). The

condition (122) implies that

u3√
u2

1 + u2
2

= d

ds
�(x1 + s

u1√
u2

1 + u2
2

, x2 + s
u2√

u2
1 + u2

2

) =
�(x1 + s u1√

u2
1+u2

2

)− x3

s
.

(123)

In order to use the implicit function theorem we define

�(x1, x2, x3; u1, u2; s) = �(x1 + s
u1√

u2
1 + u2

2

, x2 + s
u2√

u2
1 + u2

2

)− x3

−s

⎧⎨
⎩

u1√
u2

1 + u2
2

∂x1�(x1 + s
u1√

u2
1 + u2

2

, x2 + s
u2√

u2
1 + u2

2

)

+
u2√

u2
1 + u2

2

∂x2�(x1 + s
u1√

u2
1 + u2

2

, x2 + s
u2√

u2
1 + u2

2

)

⎫⎬
⎭ ,

and compute, using (21),

∂s� = −s(
u1√

u2
1 + u2

2

,
u2√

u2
1 + u2

2

)

(
∂2

x1
� ∂x1∂x2�

∂x1∂x2� ∂2
x2
�

)⎛⎜⎝
u1√

u2
1+u2

2
u2√

u2
1+u2

2

⎞
⎟⎠ < −1

2
Cx0,v0 ,

(124)
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for x ∼ x0, v ∼ v0 and the Hessian is evaluated at (x1 + s u1√
u2

1+u2
2

, x2 + s u2√
u2

1+u2
2

).

Hence s = s(x1, x2, x3;w1, w2) is a smooth function near x ∼ x0 and (u1, u2) ∼
(v1, v2). In order to study the behavior of s we use Taylor’s expansion: from
�(x1, x2, x3; u1, u2; s) = 0 we have

�(x1, x2)− x3 = 1

u2
1 + u2

2

{
(u1, u2)

(
∂2

x1
� ∂x1∂x2�

∂x1∂x2� ∂2
x2
�

)

︸ ︷︷ ︸
(∗)

(
u1
u2

)

−1

2
(u1, u2)

(
∂2

x1
� ∂x1∂x2�

∂x1∂x2� ∂2
x2
�

)

︸ ︷︷ ︸
(∗∗)

(
u1
u2

)}
s2,

where the Hessian (∗) is evaluated at (x1 +s∗ u1√
u2

1+u2
2

, x2 +s∗ u2√
u2

1+u2
2

) and the Hessian (∗∗)
is evaluated at (x1 + s∗∗ u1√

u2
1+u2

2

, x2 + s∗∗ u2√
u2

1+u2
2

) with s∗, s∗∗ ∈ (0, s). For x ∼ x0 and

(u1, u2) ∼ (v1, v2) we know that the right hand side of the above equation converges to

− 1

2(v2
1 + v2

2)
(v1, v2)

(
∂2

x1
�((x0)1, (x0)2) ∂x1∂x2�((x0)1, (x0)2)

∂x1∂x2�((x0)1, (x0)2) ∂2
x2
�((x0)1, (x0)2)

)(
v1
v2

)
�= 0.

Hence we have control of s, i.e

1

C
|�(x1, x2)− x3| 1

2 ≤ s ≤ C |�(x1, x2)− x3| 1
2 . (125)

From (123), u3 =
√

u2
1 + u2

2
d
ds�(x1 + s u1√

u2
1+u2

2

, x2 + s u2√
u2

1+u2
2

) equals

√
u2

1 + u2
2

⎛
⎜⎝

u1√
u2

1+u2
2

u2√
u2

1+u2
2

⎞
⎟⎠

·
⎛
⎜⎝
∂x1�(x1, x2) + u1√

u2
1+u2

2

∂2
x1
�(x ′

1, x ′
2)s + u2√

u2
1+u2

2

∂x1∂x2�(x
′
1, x ′

2)s

∂x2�(x1, x2) + u1√
u2

1+u2
2

∂x1∂x2�(x
′
1, x ′

2)s + u2√
u2

1+u2
2

∂2
x2
�(x ′

1, x ′
2)s

⎞
⎟⎠ , (126)

where x ′
1 = x1 + s′ u1√

u2
1+u2

2

, x ′
2 = x2 + s′ u2√

u2
1+u2

2

for some 0 < s′ < s ≤ C |�(x1, x2)−

x3| 1
2 . Using the smoothness of � we can bound (126) as

1

C
|(u1, u2)|

(
|(x1, x2)| + |�(x1, x2)− x3| 1

2

)

≤ (126) ≤ C |(u1, u2)|
(
|(x1, x2)| + |�(x1, x2)− x3| 1

2

)
. (127)

To sum for fixed x and direction 1√
u2

1+u2
2

(u1, u2) we can choose u3 such that

n(xb(x,−(u1, u2, u3))) · (u1, u2, u3) = 0 and u3 is controlled by (127). Finally
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we choose (u1, u2) =
√

u2
1+u2

2
v2

1+v2
2
(v1, v2) and find the corresponding u3 so that |v| =

|(u1, u2, u3)|. Define u′′
n = −v + 2(v · (u1,u2,u3)|(u1,u2,u3)| )(u1, u2, u3). Then we have the desired

u′′
n for sufficiently large n ∈ N.

Step 6. To sum for (t, x ′′
n +(t−t0)u′′

n, u′′
n)we have t−t0 < tb(x ′′

n ,−u′′
n) and t0 < tb(x ′′

n , u′′
n)

and |h(t0, x ′′
n , u′′

n) − h(t0, x ′′
n , v

′′
n )| < 1

10 [h(t0)]x0,v0 . Hence the representation of the
Boltzmann solution h at (t, x ′′

n + (t − t0)u′′
n, u′′

n) is given by

h(t, x ′′
n + (t − t0)v

′′
n , u′′

n) = h(t0, x ′′
n , u′′

n)e
−ν(u′′

n)(t−t0)−
∫ t

t0
ν(

√
μ h
w
)(τ,x ′′

n +(τ−t0)u′′
n ,u

′′
n)dτ

+
∫ t

t0
{Kwh + w�(

h

w
,

h

w
)}(s, x ′′

n + (s − t0)u
′′
n, u′′

n)

×e−ν(u′′
n)(t−s)−∫ t

s ν(
√
μ h
w
)(τ,x ′′

n +(τ−t0)u′′
n ,u

′′
n)dτds.

Using (120) we have

lim
n→∞ |h(t, x ′

n + (t − t0)v
′
n, v

′
n)− h(t, x ′′

n + (t − t0)u
′′
n, u′′

n)|

= lim
n→∞ |h(t0, x ′

n, v
′
n)− h(t0, x ′′

n , u′′
n)|e−ν(v0)(t−t0)−

∫ t
t0
ν(

√
μ h
w
)(τ,x0+(τ−t0)v0,v0)dτ

≥
{

lim
n→∞ |h(t0, x ′

n, v
′
n)− h(t0, x ′′

n , v
′′
n )|

− lim
n→∞ |h(t0, x ′′

n , v
′′
n )− h(t0, x ′′

n , u′′
n)|
}

e
−ν(v0)(t−t0)−

∫ t
t0
ν(

√
μ h
w
)(τ,x0+(τ−t0)v0,v0)dτ

≥ 1

4
[h(t0)]x0,v0 e

−ν(v0)(t−t0)−
∫ t

t0
ν(

√
μ h
w
)(τ,x0+(τ−t0)v0,v0)dτ ,

which implies that

[h(t)]x,v ≥ 1

4
[h(t0)]x0,v0 × e−(Cμ+C ′Cw ||h0||∞)(1+|v|)γ (t−t0) �= 0.

Remark. Through Step 1 to Step 6, we only used the in-flow boundary datum g explicitly
in Step 2. All the other steps are valid for diffuse and bounce-back boundary condition
cases. In Step 2, we only used (116), the continuity of G = wg on [0,∞)× {γ− ∪ γ S

0 }.
Therefore, if we can show the continuity of F on [0,∞)×{γ− ∪ γ S

0 } then we can prove
(22). For diffuse and bounce-back boundary we will prove such a continuity to conclude
(22).

5. Diffuse Reflection Boundary Condition

In this section, we consider the weighted linearized Boltzmann equation (92) with the
diffuse boundary condition

h(t, x, v) = w(v)
√
μ(v)

∫
v′·n(x)>0

h(t, x, v′)

× 1

w(v′)
√
μ(v′)

cμμ(v
′){nx · v′}dv′ for (x, v) ∈ γ−. (128)

In spite of the averaging effect of the diffuse reflection operator, we can observe the
formation and propagation of discontinuity. Continuity away from D is also established.
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5.1. Formation of discontinuity. We prove Part 2 of Theorem 1. The idea of proof is sim-
ilar to the in-flow case but we also use |v0| not only t0 as a parameter. Without loss of gen-
erality we may assume x0 = (0, 0, 0) and v0 = (|v0|, 0, 0) and (x0, v0) ∈ γ S

0 . Locally
the boundary is a graph, i.e. � ∩ B(0; δ) = {(x1, x2, x3) ∈ B(0; δ) : x3 > �(x1, x2)}
and �(ξ, 0) < 0 for ξ ∈ (−δ, δ)\{0} (see Fig. 3).

Assume that ||h0||∞ < δ is sufficiently small so that the global solution h of (92)
with diffuse boundary (128) has a uniform bound (94), from Theorem 4 of [21]. Choose
t0 ∈ (0,min{δ, tb(x0,−v0)}) sufficiently small and |v0| > 0 sufficiently large so that

1

2
≤
(

e−ν(|v0|)t0 − t0CkC ′ − (1 − e−ν(|v0|)t0)C�(C ′)2||h0||∞

−C ′ 1

w̃(v0)

∫
{v′

1>0}
w̃(v′)dσ(v′)

)
, (129)

where ν(|v|) = ν(v) and Ck and C� from (35) and (36). More precisely, first choose
|v0| > 0 large enough to have

1

w̃(v0)
= (1 + ρ2|v0|2)β

e
|v0 |2

4

≤ 1

10C ′ ,

then choose t0 > 0 as

0 < t0 = min

{
δ

2
,

tb(x0,−v0)

2
,
δ

|v0| ,
1

10ν(|v0|) ,
1

10CkC ′ ,

1

ν(|v0|) log

(
10C�(C ′)2

10C�(C ′)2 − 1

)}
.

Assume the condition for initial datum h0: there is sufficiently small δ′ =δ′(�, t0|v0|)>0
such that B((−t0|v0|, 0, 0), δ′) ⊂ � and

h0(x0, v0) ≡ ||h0||∞ > 0 for (x, v) ∈ B((−t0|v0|, 0, 0); δ′)× B((|v0|, 0, 0); δ′).
(130)

We claim that the Boltzmann solution h with such initial datum h0 is not contin-
uous at (t0, x0, v0) = (t0, (0, 0, 0), (|v0|, 0, 0)). We will use a contradiction argu-
ment: Assume the Boltzmann solution h is continuous at (t0, x0, v0), i.e (97) is
valid. Choose sequences of points (x ′

n, v
′
n) = ((0, 0, 1

n ), (|v0|, 0, 0)) and (xn, vn) =
(( 1

n , 0,�( 1
n , 0)), 1√

1+ 1
n2

(|v0|, 0, |v0|
n )). Because of our choice, for sufficiently large

n ∈ N, we have

(x ′
n − t0v

′
n, v

′
n) = ((−t0|v0|, 0,

1

n
), (|v0|, 0, 0))

∈ B((−t0|v0|, 0, 0); δ′)× B((|v0|, 0, 0); δ′).
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Hence the Boltzmann solution at (t0, x ′
n, v

′
n) is

h(t0, x ′
n, v

′
n) = h0(x

′
n − t0v

′
n, v

′
n)e

−ν(v′
n)t0

+
∫ t0

0
e−ν(v′

n)(t0−τ)
{

Kwh + w�(
h

w
,

h

w
)

}
(τ, x ′

n − v(t0 − τ), v′
n)dτ

= ||h0||∞e−ν(|v′
n |)t0

+
∫ t0

0
e−ν(|v′

n |)(t0−τ)
{

Kwh + w�(
h

w
,

h

w
)

}
(τ, x − v′

n(t0 − τ), v′
n)dτ.

Using the diffuse boundary condition (128), the Boltzmann solution at (t0, xn, vn) ∈
[0,∞)× γ− is

h(t0, xn, vn) = 1

w̃(|v0|)
∫
V(xn)

h(t0, xn, v
′)w̃(v′)dσ(v′).

Using a pointwise boundedness (94) of h, and ||h0||∞ ≤ 1, we can estimate

|h(t0, x ′
n, v

′
n)− h(t0, xn, vn)|

≥ ∣∣ ||h0||∞e−ν(|v0|)t0 −
∫ t0

0
{CkC ′||h0||∞ + ν(v′

n)e
−ν(v′

n)(t0−τ)C�(C ′)2||h0||2∞}dτ

−C ′||h0||∞ 1

w̃(|v0|)
∫
V
w̃(v′)dσ(v′)

∣∣
≥ ||h0||∞e−ν(|v0|)t0 − t0CkC ′||h0||∞ − (1 − e−ν(|v0|)t0)C�(C ′)2||h0||2∞

−C ′||h0||∞ 1

w̃(|v0|)
∫
V
w̃(v′)dσ(v′)

= ||h0||∞
(

e−ν(|v0|)t0 − t0CkC ′ − (1 − e−ν(|v0|)t0)C�(C ′)2||h0||∞

−C ′ 1

w̃(|v0|)
∫
V
w̃(v′)dσ(v′)

)

≥ ||h0||∞
2

�= 0,

which is contradiction to (97).

5.2. Continuity away from D. Instead of using the argument of [21] to show continuity
in the case of the diffuse reflection boundary condition we will use the sequence (102)
with the boundary condition (131) and Lemma 12. Notice that this sequence is used
in (242), p. 803 of [21]. This argument also gives a new proof of the continuity of the
Boltzmann solution in a strictly convex domain in a simpler way than [21].

Proof of 2 of Theorem 3. We will use the sequence (102) with hm+1|t=0 = h0 with the
following boundary condition:

hm+1(t, x, v) = 1

w̃(v)

∫
V(x)

hm(t, x, v′)w̃(v′)dσ, (131)
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with (t, x, v) ∈ γ−. Notice that the smallness of the initial datum is used crucially in the
following steps.

Step 1. We claim that

1

w̃(v)

∫
V(x)

hm(t, x, v′)w̃(v′)dσ(v′), (132)

is a continuous function on [0, T ] × γ even if hm ∈ L∞([0, T ] × �̄ × R
3) is only

continuous on [0, T ] × �̄× R
3\G. We will show as (t̄, x̄, v̄) → (t, x, v),

1

w̃(v)

∫
V(x)

hm(t, x, v′)w̃(v′)dσ(v′) → 1

w̃(v̄)

∫
V(x̄)

hm(t̄, x̄, v′)w̃(v′)dσ(v′).

(133)

Using the fact |V(x)\V(x̄)|, |V(x)\V(x̄)| → 0 as x̄ → x and the exponentially decay
weight function of w̃dσ it suffices to show that

∫
V(x)∩V(x̄)∩{|v′|≤M}

{w̃(v)−1hm(t, x, v′)w̃(v′)− w̃(v̄)−1hm(t̄, x̄, v′)w̃(v′)}dσ(v′),

(134)

for sufficiently large M > 0. Using Lemma 5 we can choose the open set Ux ⊂ {v′ ∈
R

3 : |v′| ≤ M} so that |Ux | is small and hm is uniformly continuous on {|v′| ≤ M}\Ux .
Therefore we can make

∫
V(x)∩V(x̄)∩{|v′|≤M}∩Ux

small using the smallness of Ux and make∫
V(x)∩V(x̄)∩{|v′|≤M}\Ux

small using the uniform continuity of hm on {|v′| ≤ M}\Ux .
Hence (133) is valid.

Step 2. We claim

hi is a continuous function in CT (135)

for all i ∈ N where CT is defined in (105). By induction choose h0 = 0 and (135) is

satisfied for i = 0. Assume (135) for all i = 0, 1, 2, . . .,m. Let w�−
(

hm

w
, hm+1

w

)
=

ν
(

hm

w

)
hm+1. Then the equation of hm+1 is

{∂t + v · ∇x + ν(v) + ν

(
hm

w

)
}hm+1 = Kwhm + w�+

(
hm

w
,

hm

w

)
.

From Theorem 4 and Corollary 5 we know that ν
(

hm

w

)
and w�+

(
hm

w
, hm

w

)
are

both continuous in [0, T ] × � × R
3. Because of Step 1 we know that 1

w̃(v)

∫
V(x)

hm(t, x, v′)w̃(v′)dσ(v′) is also a continuous function on [0, T ] × γ . So we can apply
Lemma 12 to conclude (135) is valid for i = m + 1.

Step 3. We claim hm is a Cauchy sequence in CT for some small T > 0. First
we will compute some constants explicitly. From (6) the normalized constant cμ is
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[∫
n(x)·v′>0 e− |v′ |2

2 {n(x) · v′}dv′
]−1

. Choose n(x) = (1, 0, 0) and then we can compute

the right hand side of the above term:

∫ ∞

0
dv1 v1e− v2

1
2

∫ ∞

−∞
dv2 e− v2

2
2

∫ ∞

−∞
dv3 e− v2

3
2 =
∫ ∞

0

d

dv1

(
−e− v2

1
2

)
dv1 × (

√
2π)2

= 2π

[
−e− v2

1
2

]∞
0

= 2π.

Therefore we have cμ = 1
2π . Next we will show

1

w̃(v)

∫
v′·n(x)>0

w̃(v′)dσ(v′)
︸ ︷︷ ︸

≤ C̃βρ
2β−4, (136)

where w̃(v)−1 = (1 + ρ2|v|2)βe− |v|2
4 . We follow the computation of Lemma 25 in [21].

For 1
w̃(v)

, in the case of βρ2 > 1
4 we can see that w̃(v)−1 has a maximum value at

|v| =
√

4βρ2−1
ρ2 which is

(1 + ρ2|v|2)βe− |v|2
4
∣∣
|v|=
√

4βρ2−1
ρ2

= 4βββe−βe
1

4ρ2 ρ2β, (137)

and the underbraced integration in (136) is bounded above by
∫
v′·n(x)>0

w̃(v′)dσ(v′) = 1

2π

∫
v′

1>0
(1 + ρ2|v′|2)−βe

|v′ |2
4 e− |v′ |2

2 v′
1dv′

= 1

2π

∫
u1>0

(1 + |u|2)−βe
−2|u|2

4ρ ρ−4u1du ≤ ρ−4 × 1

2π

∫
u1>0

1

(1 + |u|2)β− 1
2

du

= Cβρ
−4,

where β ≥ 2 and combining with (137) we conclude (136).
First we will show a boundedness (107).

Lemma 13. Let hm be a solution of (102) with hm+1
t=0 = h0 and the boundary condition

(131). Then there exist T∗,C, δ > 0 such that if ||h0||∞ < δ then

sup
0≤s≤T∗

||hm(s)||∞ < C ||h0||∞ for all m ∈ N.

Proof. We will use mathematical induction. Choose h0 = h0 and assume ||h0||∞ < δ

and

sup
0≤s≤T∗

||hi (s)||∞ ≤ C ||h0||∞, (138)

for i = 0, 1, 2, . . .,m, where δ,C, T∗ > 0 will be determined later. From Lemma 24 of
[21] the representation of hm+1 which is a solution of (102) with the boundary condition
(131) is given by
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hm+1(t, x, v)

= 1t1≤0(t, x, v)
{

h0(x − tv, v)e−ν(v)t︸ ︷︷ ︸
[initial data]

+
∫ t

0
e−ν(v)(t−s)qm(s, x − (t − s)v, v)ds

︸ ︷︷ ︸
I

}

(139)

+10<t1(t, x, v)
{ ∫ t

t1
e−ν(v)(t−s)qm(s, x−(t − s)v, v)ds

︸ ︷︷ ︸
II

+
e−ν(v)(t−t1)

w̃(v)

∫
∏k

j=1 V j

H
}
,

(140)

where qm was defined (103) and

H =
k∑

l=1

1tl+1≤0<tl h0(xl − tlvl , vl)︸ ︷︷ ︸
[initial data]

d�l(0)

+
k∑

l=1

∫ tl

0
1tl+1≤0<tl q

m−l(s, xl − (tl − s)vl , vl)d�l(s)ds
︸ ︷︷ ︸

III

(141)

+
k∑

l=1

∫ tl

tl+1

10<tl+1qm−l(s, xl − (tl − s)vl , vl)d�l(s)ds

︸ ︷︷ ︸
IV

+ 10<tk+1 hm−k+1(tk+1, xk+1, vk)d�k(tk+1)︸ ︷︷ ︸
[many bounces]

. (142)

Here d�k(tk+1) is evaluated at s = tk+1 of

d�l(s) = {�k
j=l+1dσ j }{e−ν(vl )(tl−s)w̃(vl)dσl}�l−1

j=1{e−ν(v j )(t j −t j+1)dσ j }.

First we can estimate [initial data] in (139) and (141),

∫
∏k

j=1 V j

{
1t1≤0|h0(x−tv, v)|+ 1

w̃(v)

k∑
l=1

1tl+1≤0<tl |h0(xl −tlvl , vl)|w̃(vl)

}
dσ1. . .dσk

≤ max
{

1,
1

w̃(v)
max

1≤l≤k

∫
∏k

j=1 V j

w̃(vl)dσ1. . .dσk

}
||h0||∞

≤
{

1 + C̃βρ
2β−4
}

||h0||∞,

where we used (136).
Next we estimate the [many bounces] term in (142) which is a crucial estimate in this

proof. We use Lemma 23 in [21] to bound a contribution of the [many bounces] term in
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(142) in the last term of (140) by

1

w̃(v)

∫
∏k

j=1 V j

1{tk+1(t,x,v,v1,v2,...,vk )>0}w̃(vk)dσkdσk−1. . .dσ1 × sup
0≤s≤t

||hm−k+1(s)||∞

≤ 1

w̃(v)

∫
Vk

w̃(vk)dσk

∫
∏k−1

j=1 V j

1{tk (t,x,v,v1,...,vk−1)>0}dσk−1. . .dσ1

× sup
0≤s≤t

||hm−k+1(s)||∞

≤ C̃βρ
2β−4
{

1

2

}C2ρ
5/4

sup
0≤s≤t

||hm−k+1(s)||∞ ≤ C̃βρ
2β−4
{

1

2

}C2ρ
5/4

C ||h0||∞,

where we used (136) at the last step. The remainders I, II, III and IV are contributions
of qm, . . ., qm−k . We introduce a notation

Hi ≡ tCk sup
0≤s≤t

||hi (s)||∞ + C� sup
0≤s≤t

||hi (s)||∞

×
(

sup
0≤s≤t

||hi (s)||∞ + sup
0≤s≤t

||hi+1(s)||∞
)

(143)

≤ C ||h0||∞(CkT∗ + 2CC�||h0||∞), (144)

where the above inequality holds for 0 ≤ t ≤ T∗ and i = 0, 1, 2, . . .,m − 1 and

Hm ≤ (T∗Ck + C�C ||h0||∞)C ||h0||∞ + C�C ||h0||∞ sup
0≤s≤T∗

||hm+1(s)||∞, (145)

where we used the induction hypothesis (138) for (144) and (145). Easily we have

I, II ≤ Hm,

III, IV ≤
k∑

l=1

1

w̃(v)

∫
V1

dσ1..

∫
Vl−1

dσl−1

∫
Vl+1

dσl+1..

∫
Vk

dσk

×
∫
Vl

∫ tl

0
Hm−l e

−ν(vl )(tl−s)w̃(vl)dsdσl

≤
k∑

l=1

Hm−l
1

w̃(v)

∫
Vl

w̃(vl)dσl ≤ C̃βρ
2β−4

k∑
l=1

Hm−l .

To summarize, we can estimate all terms of representation of hm+1(t, x, v) in (139) to
obtain

|hm+1(t, x, v)| ≤ ||h0||∞
{

C
[
2T∗Ck + 2C�C ||h0||∞

+kC̃βρ
2β−4(CkT∗ + 2CC�||h0||∞) + C̃βρ

2β−4
{

1

2

}C2ρ
5/4 ]

+1 + C̃βρ
2β−4
}

+ C�C ||h0||∞ sup
0≤s≤T∗

||hm+1(s)||∞.
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Choose k = ρ5/4. Choose ρ > 0 sufficiently large so that C̃βρ2β−4
{ 1

2

}C2ρ
5/4 ≤ 1

30
and then choose T∗ > 0 sufficiently small so that T∗ × C�(1 + C̃βρ5/4ρ2β−4) ≤ 1

30
and then choose C > 0 sufficiently large C > 10(1 + C̃βρ2β−4) and choose δ =
min
{

1
20C�C , 1

30C�

(
CC̃βρ5/4ρ2β−4

)−1
}

. Finally assume ||h0||∞ ≤ δ. Then we have

sup
0≤s≤T∗

||hm+1(s)||∞ ≤ 1

1 − C�C ||h0||∞ ||h0||∞
{

1+C̃βρ
2β−4+C

[
C̃βρ

2β−4
{

1

2

}C2ρ
5/4

+tC�(1 + C̃βρ
5/4ρ2β−4)

+C�C ||h0||∞ + 2C�C̃βρ
5/4ρ2β−4C ||h0||∞

]}

≤ 20

19
||h0||∞

{
C

10
+ C
[ 1

30
+

1

30
+

1

20
+

1

15

]}
≤ C ||h0||∞.

��
Next we will show that hm is a Cauchy sequence in L∞.

Lemma 14. Let hm be a solution of (102) with hm+1|t=0 = h0 and the boundary con-
dition (131). Then there exist T∗,C, δ > 0 so that if ||h0||∞ < δ then hm is Cauchy in
L∞([0, T∗] × �̄× R

3).

Proof. The equation of hm+1 − hm is

{∂t + v · ∇x + ν}(hm+1 − hm) = q̃m with {hm+1 − hm}|t=0 = 0,

{hm+1 − hm}|γ− = 1

w̃(v)

∫
(x)

{hm(t, x, v′)− hm−1(t, x, v′)}w̃(v′)dσ(v′),

where q̃m is defined at (109). From Lemma 24 of [21] we have the representation

{hm+1 − hm}(t, x, v) = 1t1≤0(t, x, v)
∫ t

0
e−ν(v)(t−s)q̃m(s, x − (t − s)v, v)ds

︸ ︷︷ ︸
Ĩ

+10<t1(t, x, v)
{ ∫ t

t1
e−ν(v)(t−s)q̃m(s, x − (t − s)v, v)ds

︸ ︷︷ ︸
ĨI

+
e−ν(v)(t−t1)

w̃(v)

∫
∏k

j=1 V j

H̃
}
,

(146)

where

H̃ =
k∑

l=1

∫ tl

0
1tl+1≤0<tl q̃

m−l(s, xl − (tl − s)vl , vl)d�l(s)ds
︸ ︷︷ ︸

˜III

+
k∑

l=1

∫ tl

tl+1

10<tl+1 q̃m−l(s, xl − (tl − s)vl , vl)d�l(s)ds

︸ ︷︷ ︸
˜IV

+ 10<tk+1{hm−k+1 − hm−k}(tk+1, xk+1, vk)d�k(tk+1)︸ ︷︷ ︸
[[many bounces]]

.
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First using Lemma 24 of [21], we estimate the [[many bounces]] term for sufficiently
large k > 0 by

1

w̃(v)

∫
∏k

j=1 V j

1{tk+1(t,x,v,v1,v2,...,vk )>0}w̃(vk)dσkdσk−1. . .dσ1

× sup
0≤s≤t

||{hm−k+1 − hm−k}(s)||∞

≤ 1

w̃(v)

∫
Vk

w̃(vk)dσk

∫
∏k−1

j=1 V j

1{tk (t,x,v,v1,...,vk−1)>0}dσk−1. . .dσ1

× sup
0≤s≤t

||{hm−k+1 − hm−k}(s)||∞

≤ C̃βρ
2β−4
{

1

2

}C2ρ
5/4

sup
0≤s≤t

||{hm−k+1 − hm−k}(s)||∞.

Easily we have Ĩ, ĨI ≤ δHm, ˜III, ˜IV ≤ C̃βρ2β−4δHm−l , where

δHi ≡ tCk sup
0≤s≤t

||{hi − hi−1}(s)||∞
+C ||h0||∞C�

(
sup

0≤s≤t
||{hi − hi−1}(s)||∞ + sup

0≤s≤t
||{hi+1 − hi }(s)||∞

)

≤ τ

4

{
sup

0≤s≤t
||{hi − hi−1}(s)||∞ + sup

0≤s≤t
||{hi+1 − hi }(s)||∞

}
,

with τ = 4 max{tCk,C ||h0||∞C�}.
To summarize, we can estimate all terms of representation of hm+1(t, x, v) −

hm(t, x, v) in (146) for any m > k to obtain

sup
0≤s≤t

||{hm+1 − hm}(s)||∞ ≤ 1

1 − 2τ

{
τ

2
C̃βρ

2β−4
k∑

l=1

(
sup

0≤s≤t
||{hm−l −hm−l−1}(s)||∞

+ sup
0≤s≤t

||{hm−l+1 − hm−l}(s)||∞
)

+
τ

2
sup

0≤s≤t
||{hm − hm−1}(s)||∞

+C̃βρ
2β−4
{

1

2

}C2ρ
5/4

sup
0≤s≤t

||{hm−k+1 − hm−k}(s)||∞
}
,

which is our starting point. Fix a small number τ̃ > 0 chosen later. Choose ρ > 0

sufficiently large so that 2C̃βρ2β−4
{ 1

2

}C2ρ
5/4

< τ̃
4 and then choose τ > 0 so small that

τ/2
1−2τ C̃βρ2β−4 < τ̃

4 and τ/2
1−2τ <

τ̃
4 . Then we have

sup
0≤s≤t

||{hm+1 − hm}(s)||∞

≤ τ̃

{
sup

0≤s≤t
||{hm − hm−1}(s)||∞ + · · · + sup

0≤s≤t
||{hm−k+1 − hm−k}(s)||∞

}
. (147)
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Using (147) for m, j ∈ N so that m − (i + 1)k > 0 and j = 0, 1, . . .,m − 1 it is easy to
show

sup
0≤s≤t

||{hm−ik+1+ j − hm−ik+ j }(s)||∞ ≤ τ̃ (1 + τ̃ ) j

×
{

sup
0≤s≤t

||{hm−ik −hm−ik−1}(s)||∞+· · ·+ sup
0≤s≤t

||{hm−(i+1)k+1−hm−(i+1)k}(s)||∞
}
.

We apply the above inequality term by term in (147) to have

sup
0≤s≤t

||{hm+1 − hm}(s)||∞ ≤ τ̃ {(1 + τ̃ )k − 1}{ sup
0≤s≤t

||{hm−k − hm−k−1}(s)||∞ + · · ·

+ sup
0≤s≤t

||{hm−2k+1 − hm−2k}(s)||∞}

≤ τ̃ {(1 + τ̃ )k − 1}i { sup
0≤s≤t

||{hm−ik − hm−ik−1}(s)||∞ + · · ·

+ sup
0≤s≤t

||{hm−(i+1)k+1 − hm−(i+1)k}(s)||∞}.

Now we estimate

sup
0≤s≤t

||{hm − hn}(s)||∞ ≤
m−n−1∑

l=0

sup
0≤s≤t

||{hm−l − hm−l−1}(s)||∞

≤
m−n−1∑

l=0

τ̃ {(1 + τ̃ )k − 1}i { sup
0≤s≤t

||hm−ik−l−1 − hm−ik−l−2||∞ + . . .

+ sup
0≤s≤t

||hm−(i+1)k−l − hm−(i+1)k−l−1||∞}

≤
m−n−1∑

l=0

τ̃ {(1+τ̃ )k − 1}
[

m−l−1
k

]
−1{ sup

0≤s≤t
||h2k −h2k−1||∞+. . .+ sup

0≤s≤t
||h1 − h0||∞}

≤ τ̃ {(1 + τ̃ )k − 1}
[ n

k

]−1
m−n−1∑

l=0

{(1 + τ̃ )k − 1}
[

m−l−1
k

]
−[ n

k

]
{ sup
0≤s≤t

||h2k − h2k−1||∞ + . . .

+ sup
0≤s≤t

||h1 − h0||∞}

≤ τ̃ {(1+τ̃ )k − 1}
[ n

k

]−1 1

2 − (1+τ̃ )k
{ sup
0≤s≤t

||h2k − h2k−1||∞+. . . + sup
0≤s≤t

||h1 − h0||∞},

where we choose i = [m−l−1
k

] − 1 so that m − (i + 1)k − l − 1 ∈ [0, k). If τ̃ > 0 is

chosen sufficiently small so that (1 + τ̃ )k − 1 ≤ 1
2 , then {(1 + τ̃ )k − 1}

[ n
k

]−1 → 0 as
n → ∞ which implies that

sup
0≤s≤t

||{hm − hn}(s)||∞ → 0, (148)

as m, n → ∞. Thus hm is Cauchy in L∞. ��
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Step 4. We claim that h is continuous in C. Notice that T only depends on
||h0||∞ and sup0≤s≤T ||wg(s)||∞ (Theorem 1 of [21]). Using a unform bound of
sup0≤s<∞ ||h(s)||∞, we can obtain the continuity of h for all time by repeating
[0, T ], [T, 2T ], . . .. If the boundary ∂� does not include a line segment (6) then every
step is valid with [0,∞)× {�̄× R

3}\D instead of C and [0, T ] × {�̄× R
3}\D instead

of CT .

5.3. Propagation of discontinuity.

Proof of 2 of Theorem 2.

Proof of (20). The proof is exactly same as the in-flow case in Sect. 4.3.

Proof of (22). The proof is exactly same as the proof of the in-flow case in Sect. 4.3 except
for Step 2. As we mentioned in the Remark of Step 2, we need to show a continuity of a
boundary datum on γ− ∪ γ S

0 . In the diffuse reflection boundary condition case, we need

0 = [ h|[0,∞)×γ−]t,y,v = lim
δ↓0

sup
t ′, t ′′ ∈ B(t; δ)

(y′, v′), (y′′, v′′) ∈ γ− ∩ B((y, v); δ)\(y, v)

|h(t ′, y′, v′)− h(t ′′, y′′, v′′)|

= lim
δ↓0

sup
t ′, t ′′ ∈ B(t; δ)

(y′, v′), (y′′, v′′) ∈ γ− ∩ B((y, v); δ)\(y, v)

∣∣∣∣ 1

w̃(v′)

∫
V(y′)

h(t ′, y′, v)w̃(v)dσ(v)

− 1

w̃(v′′)

∫
V(y′′)

h(t ′′, y′′, v)w̃(v)dσ(v)
∣∣∣∣

for (y, v) ∈ γ− ∪ γ S
0 . This is already proven in Sect. 5.2, Continuity away from D.

6. Bounce-Back Boundary Condition

In this section, we consider the linear Boltzmann equation (92) with the bounce-back
boundary condition

h(t, x, v) = h(t, x,−v) for (x, v) ∈ γ−. (149)

6.1. Formation of discontinuity. We prove part 3 of Theorem 1. Without loss of gen-
erality we may assume x0 = (0, 0, 0) and v0 = (1, 0, 0) and (x0, v0) ∈ γ S

0 . Locally
the boundary is a graph, i.e. � ∩ B(0; δ) = {(x1, x2, x3) ∈ B(0; δ) : x3 > �(x1, x2)}.
The condition (x0, v0) ∈ γ S

0 implies tb(x0, v0) �= 0 and tb(x0,−v0) �= 0 which means
�(ξ, 0) < 0 for ξ ∈ (−δ, δ)\{0} (see Fig. 3).

Assume that ||h0||∞ < δ is sufficiently small so that the global solution h of (92)
with bounce-back boundary (149) has a uniform bound (94), from Theorem 2 of [21].

Recall the constants Ck and C� from (35) and (36). Choose t0 ∈ (0,min
{ δ2 , tb(x0,−v0)

2 ,
tb(x0,v0)

2 }) sufficiently small so that

1

2
≤
(

e−ν(1)t0 − t0CkC ′ − (1 − e−ν(1)t0)C�(C ′)2
)
. (150)

Assume a condition for the initial datum h0: there is sufficiently small δ′ = δ′(�, t0) > 0
such that
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B((−t0, 0, 0), δ′), B((t0, 0, 0), δ′) ⊂ � and

h0(x, v) ≡ ||h0||∞ > 0 for (x, v) ∈ B((−t0, 0, 0); δ′)× B((1, 0, 0); δ′),
h0(x, v) ≡ −||h0||∞ > 0 for (x, v) ∈ B((t0, 0, 0); δ′)× B((−1, 0, 0); δ′).

We will use a contradiction argument: Assume the Boltzmann solution h is continuous at
(t0, x0, v0), i.e. (97) is valid. Choose sequences of points (x ′

n, v
′
n) = ((0, 0, 1

n ), (1, 0, 0))
and (xn, vn) = (( 1

n , 0,�( 1
n , 0)), 1√

1+ 1
n2

(1, 0, 1
n )). Because of our choice, for sufficiently

large n ∈ N, we have

(x ′
n − t0v

′
n, v

′
n) = ((−t0, 0,

1

n
), (1, 0, 0)) ∈ B((−t0, 0, 0); δ′)× B((1, 0, 0); δ′),

(xn − t0(−vn),−vn) = ((
1

n
+

t0√
1 + 1/n2

, 0,�(
1

n
, 0) +

t0

n
√

1 + 1/n2
),

1√
1 + 1/n2

(−1, 0,−1

n
))

∈ B((t0, 0, 0); δ′)× B((−1, 0, 0); δ′).

Hence the Boltzmann solution at (t0, x ′
n, v

′
n) and (t0, xn, vn) is

h(t0, x ′
n, v

′
n) = ||h0||∞e−ν(v′

n)t0

+
∫ t0

0
e−ν(−v′

n)(t0−τ){Kwh + w�

(
h

w
,

h

w

)
}(τ, x ′

n − (−v′
n)(t0 − τ),−v′

n)dτ,

h(t0, xn, vn) = h(t0, xn,−vn)

= −||h0||∞e−ν(−vn)t0

+
∫ t0

0
e−ν(−vn)(t0−τ){Kwh + w�

(
h

w
,

h

w

)
}(τ, xn − (−vn)(t0 − τ),−vn)dτ.

Using a pointwise boundedness (94) of h with (35) and (36), we have

h(t0, x ′
n, v

′
n) ≥ ||h0||∞e−ν(1)t0 − t0CkC ′||h0||∞ − (1 − e−ν(1)t0)C�(C ′)2||h0||2∞,

h(t0, xn, vn) ≤ −||h0||∞e−ν(1)t0 + t0CkC ′||h0||∞ + (1 − e−ν(1)t0)C�(C ′)2||h0||2∞.

Therefore using (150),

h(t0, x ′
n, v

′
n)− h(t0, xn, vn) ≥ 2||h0||∞

(
e−ν(1)t0 − t0CkC ′ − (1 − e−ν(1)t0)C�(C ′)2

)

≥ ||h0||∞ �= 0,

which is a contradiction to (97).

6.2. Continuity away from Dbb. We recall some basic facts to study the bounce-back
boundary condition from [21].
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Definition 7 [21] (Bounce-Back Cycles). Let (t, x, v) /∈ γ0 ∪ γ−. Let (t0, x0, v0) =
(t, x, v) and inductively define for k ≥ 1:

(tk+1, xk+1, vk+1) = (tk − tb(xk, vk), xb(xk, vk),−vk).

We define the back-time cycles as:

Xcl(s; t, x, v) =
∑

k

1[tk+1,tk )(s){xk + (s − tk)vk}, Vcl(s; t, x, v) =
∑

k

1[tk+1,tk )(s)vk .

(151)

Clearly, we have vk+1 ≡ (−1)k+1v, for k ≥ 1,

xk = 1 − (−1)k

2
x1 +

1 + (−1)k

2
x2, (152)

where x1 = x − tb(x, v)v and x2 = x −[2tb(x, v)+ tb(x,−v)](−v) and let d = t1 − t2,
then tk − tk+1 = d ≥ tb(t, x, v) > 0 for k ≥ 1, and

t1(t, x, v) = t − tb(x, v) ,

t2(t, x, v) = t1 − tb(x1, v1) = t1 − (tb(x, v) + tb(x1, v1))

= t1 − (2tb(x, v) + tb(x,−v)), (153)
...

tk+1(t, x, v) = t1 − k(2tb(x, v) + tb(x,−v)).
Lemma 15 [21]. Let h0 ∈ L∞(�×R3) and φ(t, x, v)with sup[0,T ]×� |φ(·, ·, v)| < ∞.
There exists a unique solution G(t)h0 of

{∂t + v · ∇x + φ}{G(t)h0} = 0, {G(0)h0} = h0,

with the bounce-back reflection {G(t)h0}(t, x, v) = {G(t)h0}(t, x,−v) for x ∈ ∂�.

For almost any (x, v) ∈ �̄× R3 \ γ0,

{G(t)h0}(t, x, v) =
∑

k

1[tk+1,tk )(0)h0 (Xcl(0), Vcl(0)) e− ∫ t
0 φ(τ,Xcl(τ ),Vcl(τ ))dτ , (154)

where Xcl(τ ) = Xcl(τ ; t, x, v) and Vcl(τ ) = Vcl(τ ; t, x, v) in (151).

Next we prove a generalized version of Lemma 16 in [21].

Lemma 16 (Continuity away from Dbb: Transport Equation). Let � be an open sub-
set of R

3 with a smooth boundary ∂� and an initial datum h0(x, v) be continuous in
�×R

3∪{γ−∪γ+∪γ I
0 }. Also assume q(t, x, v) andφ(t, x, v) is continuous in the interior

of [0, T ]×�×R
3 and sup[0,T ]×�×R3 |q(t, x, v)| < ∞ and sup[0,T ]×� |φ(·, ·, v)| < ∞

for all v ∈ R
3. Let h(t, x, v) be the solution of

{∂t + v · ∇x + φ}h = q , h(0, x, v) = h0 , h|γ−(t, x, v) = h(t, x,−v).
Assume the compatibility condition on γ− ∪ γ I−

0 ,

h0(x, v) = h0(x,−v).
Then the Boltzmann solution h(t, x, v) is continuous on Cbb. Further, if the boundary
∂� does not include a line segment (6) then h(t, x, v) is continuous on a complementary
set of the discontinuity set, i.e. [0, T ] × {�̄× R

3}\Dbb.
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Proof. The proof is similar to the proof of Lemma 16 of [21]. Take any point (t, x, v) ∈
[0, T ]× �̄×R

3 and recall its back-time cycle and (154). Assume tm+1 ≤ 0 < tm . Using
(154), h(t, x, v) takes the form

h0(xm − tmvm, vm)e
−∑m−1

k=0

∫ tk
tk+1

φ(τ,xk−(tk−τ)vk ,vk )dτ−
∫ tm

0 φ(τ,xm−(tm−τ)vm ,vm )dτ

+
m−1∑
k=0

∫ tk

tk+1

q(s, xk − (tk − s)vk, vk)

×e−∑k−1
i=0

∫ ti
ti+1

φ(τ,xi −(ti −τ)vi ,vi )dτ−
∫ tk

s φ(τ,xk−(tk−τ)vk ,vk )dτ

+
∫ tm

0
q(s, xm − (tm − s)vm, vm)

×e−∑m−1
i=0

∫ ti
ti+1

φ(τ,xi −(ti −τ)vi ,vi )dτ−
∫ tm

s φ(τ,xm−(tm−τ)vm ,vm )dτ . (155)

Take any point (t, x, v) ∈ Cbb. By the definition of Cbb we assume that (x, v) ∈ �×R
3

or (x, v) ∈ γ− ∪γ I−
0 and we can separate three cases: t − tb(x, v) < 0 , (xb(x, v), v) ∈

γ− ∪ γ I−
0 with t < 2tb(x, v) + tb(x,−v), and (xb(x,−v),−v) ∈ γ− ∪ γ I−

0 with
(xb(x, v), v) ∈ γ− ∪ γ I−

0 .

Case of t < tb(x, v). Simply we have h(t, x, v) = h0(x − tv, v)e− ∫ t
0 φ(τ,x−(t−τ)v,v)dτ +∫ t

0 q(s, x − (t − s)v, v)e
∫ t

s φ(τ,x−(t−τ)v,v)dτds and use the continuity of q(t, x, v) and
φ(t, x, v) to conclude the continuity of h(t, x, v).

Case of (xb(x, v), v) ∈ γ− ∪ γ I−
0 with t < 2tb(x, v) + tb(x,−v). A representation of

h(t, x, v) takes the form

h0(x1 − t1v1, v1)e
− ∫ t

t1
φ(τ,x−(t−τ)v,v)dτ−∫ t1

0 φ(τ,x1−(t1−τ)v1,v1)dτ

+
∫ t

t1
q(s, x − (t − s)v, v)e− ∫ t

s φ(τ,x−(t−τ)v,v)dτds

+
∫ t1

0
q(s, x1 − (t1 − s)v1, v1)e

− ∫ t
t1
φ(τ,x−(t−τ)v,v)dτ−∫ t1

s φ(τ,x1−(t1−τ)v1,v1)dτds.

Thanks to Lemma 1 and Lemma 2, the condition (xb(x, v), v) ∈ γ− ∪ γ I−
0 implies

continuity of x1(x, v) = x − xb(x, v) , t1(t, x, v) = t − tb(x, v). Therefore we can
show the continuity of h(t, x, v).

Case of (xb(x,−v),−v) ∈ γ− ∪ γ I−
0 with (xb(x, v), v) ∈ γ− ∪ γ I−

0 . We have (155)
for h(t, x, v). Thanks to (152) and (153) and Lemma 1 and Lemma 2, the condi-
tions (xb(x,−v),−v) ∈ γ− ∪ γ I−

0 and (xb(x, v), v) ∈ γ− ∪ γ I−
0 imply continuity

of xk(x, v), vk(x, v), tk(t, x, v). Therefore we can show the continuity of h(t, x, v).
��

Proof of Part 1 of Theorem 3. Following the in-flow and diffuse cases, we use the iter-
ation scheme (102) which is equivalent to (106) with bounce-back boundary condition
hm+1|γ−(t, x, v) = hm+1(t, x,−v) and an initial condition hm+1|t=0 = h0.

Step 1. We claim that hi is a continuous function in Cbb,T for all i ∈ N and for any
T > 0, where Cbb,T = Cbb ∩ {[0, T ] × �̄× R

3}. Choose h0 ≡ 0 and use mathematical
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induction. Assume hi is continuous Cbb,T for i = 0, 1, 2, . . .,m. Apply Lemma 16 to
conclude that hm+1 is continuous in Cbb,T .

Step 2. We claim that there exist C > 0 and δ > 0 such that if C ||h0||∞ < δ then
there exists T = T (C, δ) > 0 so that sup0≤s≤T ||hm(s)||∞ ≤ C ||h0||∞ and {hm}∞m=0 is
Cauchy in L∞([0, T ] × �̄× R

3). First we will show the boundedness using mathemat-
ical induction. Assume sup0≤s≤T ||hm(s)||∞ ≤ C ||h0||∞, where T > 0 will be chosen
later. Applying Lemma 15, φ and q correspond with ν and the right hand side of (102)
respectively to have a representation of hm+1(t, x, v),

h0(Xcl(0), Vcl(0))e
−ν(v)t +

∫ t

0
e−ν(v)(t−s){Kwhm + w�+

(
hm

w
,

hm

w

)

−w�−
(

hm

w
,

hm+1

w

)
}(s, Xcl(s), Vcl(s))ds,

where [Xcl(s), Vcl(s)] = [Xcl(s; t, x, v), Vcl(s; t, x, v)] is in (151). The above term is
bounded by

||h0||∞+tCk sup
0≤s≤t

||hm(s)||∞ + C� sup
0≤s≤t

||hm(s)||∞ sup
0≤s≤t

(||hm(s)||∞ + ||hm+1(s)||∞),

where the constants are coming from basic estimates, (35) and (36). Choose C > 4 and
δ < 1

2C�
and T = C−3

2CkC . Then we have sup0≤s≤T ||hm+1(s)||∞ ≤ C ||h0||∞.

Next we will show {hm}∞m=0 is Cauchy in L∞([0, T ] × �̄× R
3). Recall q̃m(t, x, v)

from (109). The equation of hm+1 − hm is (108) with a zero initial condition (hm+1 −
hm)|t=0 = 0 and a bounce-back boundary condition (hm+1 −hm)|γ−(t, x, v) = (hm+1 −
hm)(t, x,−v). Applying Lemma 15 to (108) we have

(hm+1 − hm)(t, x, v) =
∫ t

0
e−ν(v)(t−s)q̃m(s, Xcl(s), Vcl(s))ds,

where [Xcl(s), Vcl(s)] = [Xcl(s; t, x, v), Vcl(s; t, x, v)] is in (151). Then we have
exactly the same estimates of the in-flow case to conclude {hm} is Cauchy.

Step 3. Same argument as the in-flow case but substitute Cbb,T , Cbb , Dbb,T , Dbb for
CT , C , DT , D respectively.

6.3. Propagation of discontinuity.

Proof of 2 of Theorem 2.

Proof of (20). The proof is exactly same as the in-flow case in Sect. 4.3.

Proof of (22). Recall that we have [h(t0)]x0,v0 �= 0 for (x0, v0) ∈ γ S
0 and t0 ∈

(0,min{tb(x0,−v0), tb(x0, v0)}). The proof is exactly same as the proof of in-flow case
in Sect. 4.3 except for Step 2. We need to show a continuity of a boundary datum on
γ− ∪ γ S

0 . In the bounce-back reflection boundary condition case, we need to show

0 = [ h|[0,∞)×γ−]t0,x0,v0

= lim
δ↓0

sup
t ′, t ′′ ∈ B(t; δ)

(y′, v′), (y′′, v′′) ∈ γ− ∩ B((x0, v0); δ)\(x0, v0)

|h(t ′, y′, v′)− h(t ′′, y′′, v′′)|.
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Because (y′, v′) is in the incoming boundary γ−, using the bounce-back boundary con-
dition, we have h(t ′, y′, v′) = h(t ′, y′,−v′). Further due to the condition 0 < t0 <
tb(x0,−v0) we have 0 < t ′ < tb(y′,−v′) and

h(t ′, y′, v′) = h(t ′, y′,−v′) = h0(y
′ + t ′v′, v′)e−ν(v′)t ′−∫ t ′

0 ν(
√
μ h
w
)(τ,y′+(t ′−τ)v′,v′)dτ

+
∫ t ′

0
{Kwh + w�+(

h

w
,

h

w
)}(s, y′ + (t ′ − s)v′, v′)

×e−ν(v′)(t ′−s)−∫ t ′
0 ν(

√
μ h
w
)(τ,y′+(t ′−τ)v′,v′)dτds,

and a similar representation for h(t ′, y′, v′). Using the continuity of ν(
√
μ h
w
), Kwh and

w�+(
h
w
, h
w
) we have

0 = [ h|[0,∞)×γ−]t0,x0,v0

= lim
δ↓0

sup
t ′, t ′′ ∈ B(t; δ)

(y′, v′), (y′′, v′′) ∈ γ− ∩ B((x0, v0); δ)\(x0, v0)

|h0(y
′ + t ′v′, v′)− h0(y

′′ + t ′′v′′, v′′)|

×e−ν(v0)t0−
∫ t0

0 ν(
√
μ h
w
)(τ,x0+(t0−τ)v0,v0)dτ ,

where we used the continuity of the initial datum h0 in the last equality.
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