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Abstract: The formation and propagation of singularities for the Boltzmann equation
in bounded domains has been an important question in numerical studies as well as in
theoretical studies. In this paper, we consider the nonlinear Boltzmann solution near
Maxwellians under in-flow, diffuse, or bounce-back boundary conditions. We demon-
strate that discontinuity is created at the non-convex part of the grazing boundary, and
then it propagates only along the forward characteristics inside the domain before it hits
on the boundary again.

1. Introduction

A density of a dilute gas is governed by the Boltzmann equation
F+v-VyF=0Q(F,F) , Fli==Fo, (1

where F(t, x, v) is a distribution function for the gas particles at a time ¢ > 0, a position

x € Q C R? and a velocity v € R3. Throughout this paper, the collision operator takes
the form

Q(F1,F2)=/ / B —u,w)Fiu)F0)dwdu
R3 JS2
_ / / B — u, ) Fy () Fa (v)dedu
R3 JS2

= 0.+(F1. F2) = Q_(F1, F2), 2)

where ' =u+[(v—u) - wlw, vV =v—[(v—1u)  o]lowand B(v —u, w) = |[v—ul|’
qo(ﬁ -w), with 0 < y < 1 (hard potential) and sz qo(it - w)dw < +00, (angular

cutoff) for all i € S2.
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In terms of the standard perturbation f such that F = u + ,/u f, the Boltzmann
equation can be rewritten as

Wf+v-Vof +Lf =T(f, f) . [fli=o = fo, 3)

where the standard linear Boltzmann operator([15,20]) is given by

Lf =vf — Kf,

with the collision frequency v (v) = f |v—u|7’u(u)q0(‘z:5| -w)dwdu and Clv(l+|v|)y <
v(v) < Cy(1+ v,

1 1

1
Kf = k(v, ! Ndv' = +L, —F U+ s - — y ),
f /R3 (v, V) f(v)dv ﬁQ (e ﬁf)+ﬁQ Vrfow J,UQ Wrfow
1 1
Lo f= ﬁQ+(«/Mf, Vif) - ﬁQ—(«/Mf, Ny =Tu(f, ) —=T-(f ).

If the gas is contained in bounded regions or flows past solid bodies, the Boltzmann
equation must be accompanied by boundary conditions describing the interactions of
the gas molecules with the solid walls. Let the domain €2 be a smooth bounded domain.
We consider three basic types of boundary conditions ([11,12,21,30,39]) for f(z, x, v)
at (x,v) € 99 x R3 with v - n(x) < 0, where n(x) is an outward unit normal vector at
X € 02

1. In-flow injection boundary condition. Incoming particles are prescribed:
f x,v) =g, x,v). 4)

2. Diffuse reflection boundary condition. Incoming particles are the probability average
of the outgoing particles;

f@t, x,v) = Cm/u(v)// F@ x, V) p@i{nx) - v'}dv, (5)

v n(x)>0

. . . _l? .
with a normalized Maxwellian © = ¢ 2, a normalized constant ¢,, > 0 such that

Cu/ p@)n(x) - v'|dv" =1, (6)
v'-n(x)>0

which implies that mass is conserved at the boundary and the temperature of the
wall to be constant and equals 1.

3. Bounce-back reflection boundary condition. Incoming particles bounce back at the
reverse of the velocity:

ft,x,v) = f(t,x, —v). @)

The purpose of this paper is to investigate a possible formation and propagation of
discontinuity for the nonlinear Boltzmann equation under these boundary conditions. In
order to state our results, we need the following definitions.
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Fig. 1. Grazing Boundary yq

1.1. Domain. Throughout this paper, we assume the domain € C R? is open and
bounded and connected. For simplicity, we assume that the boundary 9€2 is smooth, i.e.
for each point xp € 9€2, there exists r > 0 and a smooth function @, : R2 - R such
that - upon relabeling and reorienting the coordinates axes if necessary - we have

QN B(xg,r) ={x € B(xg,r) : x3 > Py, (x1, x2)}. (®)
The outward normal vector at €2 is given by

1
V14|V, ®(x1, x2) ]2

n(xy, xp) = ( Oy Py (X1, x2), Oxy Do (X1, x2), —1).

Given (¢, x, v), let [X(s), V(s)] = [X(s; ¢, x,v), V(s; t,x,v)] =[x — ( — 5)v, v] be
a trajectory (or a characteristics) for the Boltzmann equation (1):

dX(s) av(s)
ds Vi), ds 0.

with the initial condition: [ X (¢; ¢, x, v), V(¢; ¢, x, v)] = [x, v].

Definition 1 ([21]). For (x, v) € Q xR>, we define the backward exit time, t,(x, v) > 0
to be the last moment at which the back-time straight line [X (s; 0, x, v), V(s; 0, x, v)]
remains in the interior of Q2:

tp(x,v) =sup({O}U{r >0:x —sveQforall 0 <s < 1}).
We also define the backward exit position in 0<2,
xp(x,v) =x — tp(x, V)V € 02,

and we always have v - n(xp(x, v)) < 0 (Fig. 1).

1.2. Discontinuity set and discontinuity jump. We denote the phase boundary in the
phase space Q@ x R? as y = 9 x R3, and split it into outgoing boundary y,, the
incoming boundary y_, and the grazing boundary yq ([21]):

y+:{(x,v)€8§2xR3: n(x)-v > 0},
y_:{(x,v)eanR3: nx)-v < 0},
vo={(x,v) € 0Q xR>: n(x)-v=0}.

We need to study the grazing boundary yp more carefully.
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Definition 2. We define the concave(singular) grazing boundary in the grazing bound-
ary yo as

¥o = {(x.v) € Yo : th(x, v) # 0 and ty(x, —v) # 0},
and the outward inflection grazing boundary in the grazing boundary yy as
V()I+ = {(x, v) € Yo : tp(x,v) # 0and ty(x, —v) = 0 and there is § > 0 such that
x+tveQ for T e (0,8)},
and the inward inflection grazing boundary in the grazing boundary yy as
yol_ = {(x, V) € yp : tp(x, v) = 0 and th(x, —v) # 0 and there is § > 0 such that
x—1veQ for T €(0,8)},
and the convex grazing boundary in the grazing boundary yy as
yOV ={(x,v) €y : tp(x,v) =0and m(x, —v) = 0}.

We say an open subset 2 of R? is non-convex if and only if yos # (. It turns out that
the concave (singular) grazing boundary yOS is the only part at which discontinuity can
be created and propagates into the interior of the phase space 2 x R3.

Definition 3. Define the discontinuity set in [0, 00) x Q x R3 as
D = {000 x [ Uy Un* 1}

U{ (t,x,v) € (0,00) x {2 x R3U Vi)t t > tp(x,v) and (xp(x,v),v) € yos},

9)
and the continuity set in [0, 00) X Q x R3as
¢ = {{0}xQxR3]u{(o,oo)x[y,u;/({*]}
U{(t,x,v)e(O,oo) X {QXR3UV+}: t < ty(x,v) or
(e, v),v) € - Uy~ . (10)

For the bounce-back reflection boundary condition case (7), we need slightly different
definitions: the bounce-back discontinuity set and the bounce-back continuity set are

Dpp =D U {(z,x, v) € (0,00) x 2 x R?: 1 > 21 (x, v) + i (x, —v)
and (xy(x. —v), —v) € yg“},
@ = {10} x @ x R} U {0,000 x [y~ U] 1}
U [(t,x, ) €10,00) x {2 x R3Ups) : 1 < tn(x, v)
or [(xb(x, v).v) €y Uyl™ and t < 2m(x,v)+ 1, —v)]

or [ (xp(x, —v), —v) € y_ U yol_ and (xp(x,v),v) € y_U )/OI_ ] },

respectively.
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The discontinuity set ® consists of two parts: The first set of (9) is the grazing bound-
ary part yp of ®. This set mainly consists of the phase boundary where the backward
exit time fp(x, v) is not continuous (Lemma 2). The second set of (9) is mainly the
interior phase space part of D, i.e. ® N {[0, 00) x © x R3}, which is a subset of a union
of all forward trajectories in the phase space emanating from yos. Notice that ® does
not include the forward trajectories emanating from yOV U yol * because those forward
trajectories are not in the interior phase space [0, 00) x € x R3. We also exclude the
case t < tp(x, v) from ®. In fact, considering the pure transport equation, ¢ < fp(x, v)
implies the transport solution at (¢, x, v) equals the initial data at (x — tv, v) and if the
initial data is continuous, we expect the transport solution is continuous around (z, x, v).
Notice that we exclude the initial plane {0} x Q x R3 from ® because we assume that
the Boltzmann solution is continuous at ¢ = 0. The continuity set € consists of points
either emanating from the initial plane or from y_ U )/01 ~, but not from yOS.

Furthermore we define a set including the grazing boundary yy and all forward tra-
jectories emanating from the whole grazing boundary yy.

Definition 4. The grazing set is defined as
& ={(x,v) e QxR n(xp(x,v)) -v=n(x —tp(x,v)v) - v =0}, (11)
and the grazing section is defined as
G, ={veR:(x,v) €®) ={veR: nxpx,v)-v=0)

Obviously the grazing set & includes the discontinuity set . In order to study the
continuity property of the Boltzmann solution, we define:

Definition 5. For a function ¢ (t, x, v) defined on [0, 00) x {Q x R3\®}, we define the
discontinuity jump in space and velocity

[p(D)]x,v = lim sup lp(t, x",v') —p(t, x", V"),
80 (v vy, (e v (@ X RINBIN(B((x, v): )\ (x,v))

and the discontinuity jump in time and space and velocity

[¢]t,x,v = 1lm Sup |¢(t/1 x/v U/) - ¢(t//7 -x//v U”)lv
510 t',t" € B(t; 8)
@), (7 0") € {2 x RA\G) N {B((x, v): H\(x, v)}

where & is defined in Definition 4. We say a function ¢ is discontinuous in space
and velocity (in time and space and velocity) at (t, x, v) if and only if [¢(t)]xv #
0 ([¢]r.x.v # 0) and continuous in space and velocity (in time and space and velocity)
at (¢, x, v) lfand Only if[d)(t)]x,v =0 ([¢]t,x,v = O)

Notice that the function ¢ is only defined away from the grazing set &. If the dis-
continuity jump of a given function ¢ is zero at (¢, x, v) then the function ¢ can be
extended to [0, 00) x Q x R3 near (7, x, v). Because of these definitions we can con-
sider a function which has a removable discontinuity as a continuous function. And a
non-zero discontinuity jump [¢]; x.» 7 O means ¢ has a ‘real’ discontinuity which is
not removable.



646 C. Kim

1.3. Main result. The main result consists of two parts:

e continuity and discontinuity of the Boltzmann solution (Theorem 1, 2, 3),
e continuity of the gain term Q4 (Theorem 4).

In the first part, we study such qualitative properties of the Boltzmann solution which has
been established near Maxwellian regime in [21]. Recall the theorem of [21]. In order
to state the theorem in a unified way for several boundary conditions, we introduce the
weight function

w(v) = {1+’ (12)
Theorem of [21]. Assume w2{1 + |v|}®> € L. Let Q be an open subset of R3 with a

smooth boundary 9€2. There exists § > 0 such that if Fo = u + /i fo > 0 and

lwfoll pe@xrs + sup € [|wg(®)llLxq.) <. (13)
t€[0,00)

for the in-flow injection boundary condition (4) and

||wf0||LOO(QX]R3) < 4, (14)

for the diffuse reflection (5), bounce-back reflection (7) boundary conditions with 1o >
0, then there exists a unique Boltzmann solution F (¢, x,v) = u + ,/uf > 0 to the
in-flow injection (4), the diffuse reflection (5), the bounce-back reflection (7) boundary
conditions respectively. Moreover, there exists A € (0, o) such that

sup e)‘t||wf(t)||L<x>(QXR3 =< CH||wa||Loo(QXR3)+ sup 6A0t||Wg([)||L°O(V)}’
t€[0,00) t€[0,00)

15)

for the in-flow injection boundary condition (4) and

sup M ||wf (D]l @iy < ClIWSoll oo @xrd): (16)
t€[0,00)

for the diffuse reflection (5), bounce-back reflection (7) boundary conditions.
Now we are ready to state the main theorems of this paper.

Theorem 1 (Formation of Discontinuity). Let 2 be an open subset of R? with a smooth
boundary 0Q2. Assume 2 is non-convex, i.e. yOS # (). Choose any non-convex point

(x0, vg) € )/OS with vy # O.

1. For in-flow boundary condition(4), there exist an initial datum Foy = p + /it fo €
CO(QXR3U{J/,UJ/OS}) and an in-flow boundary datum G = ju+,/j1g € ([0, 00) x
{y_u )/OS}) satisfying (13) and

folx,v) = g0, x,v) for (x,v) € y- Uy, (17)

such that the Boltzmann solution F = u + /i f of (1) with the in-flow boundary
condition (4) is discontinuous in space and velocity at (ty, Xg, Vo), i.e. [ F (t0)lxy,vo 7
0 for some to € (0, ty(x0, —v0)).
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2. For diffuse boundary condition(5), there exists an initial datum Fo = pu + /it fo €
COQxR3U{y_u yos}) satisfying (14) and

Jox, v)=cyv M(U)/, o o, V)V @) {nx) - v'}dv for (x,v)ey_ U yos,
(18)

such that the Boltzmann solution F = p + /uf of (1) with the diffuse boundary
condition (5) is discontinuous in space and velocity at (ty, X, Vo), i.e. [F (t0)]1xy,v0 7
0 for some ty € (0, tp(x0, —v0)).

3. For bounce-back boundary condition(7), there exists an initial datum Fy = | +
I fo € COQxR3U{y_u yOS}) satisfying (14) and

folx,v) = folx, —v) for (x,v) € y_ Uy, (19)

such that the Boltzmann solution F = p + /i f of (1) with the bounce-back
boundary condition(7) is discontinuous in space and velocity at (ty, xg, Vo), i.e.
[F (t0)]xg,vy 7 O for some ty € (0, min{tp(x0, —v0), th (X0, v0)}).

Notice that in Theorem 1 we construct an initial datum Fy = u + /i fo ( and an
in-flow boundary datum G = p + /g for the in-flow boundary condition case) satis-
fying the smallness condition for fj and g (13) or (14). Due to Theorem of [21], this
condition (13) or (14) ensures that the Boltzmann solution F = u+.,/u f in Theorem 1
exists globally in time. Moreover, since the initial datum Fy (and G for the in-flow bound-
ary condition case ) is continuous and satisfies the compatibility conditions (17), (18) and
(19), the Boltzmann solution is initially continuous. However the continuity breaks down
afteratime #p > O at the chosen point (xg, vo) of the concave (singular) grazing boundary
yos. Therefore, for any generic non-convex domain €2, we are able to observe the forma-
tion of discontinuity. In particular if 7y < tp (xg, —vo)(fo < min{m, (xo, —vo), th (X0, o)}
for the bounce-back boundary condition case) we said the Boltzmann solution F has a
local-in-time formation of discontinuity at (79, xq, vg).

Once we have the formation of discontinuity at (¢, xo, vo) € yos, we further establish
that the discontinuity propagates along the forward characteristics.

Theorem 2 (Propagation of Discontinuity). Let Q be an open bounded subset of R
with a smooth boundary 0S2. Let F = p+ /it f be the Boltzmann solution to the initial

datum Fo = p + /it fo which is continuous on € x R3U({y_U yos}, and with one of
the following boundary conditions:

1. For in-flow boundary condition (4), let (17) and (13) be valid and G(t,x,v) =
W+ /1ug be continuous on [0, 00) x {y_ U yOS}.

2. For diffuse boundary condition (5), assume (14) and (18).

3. For bounce-back boundary condition (7), assume (14) and (19).

Then for all t € [ty, to + ty(x0, —Vv9)) we have
[Flrxor—toovp < € PO ETOLE (1) ] 0, (20)

where C1 > 0 only depends on ||wf||L°°([0,oo)x§2xR3)'
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On the other hand, assume [ F (t9)]xy,v, 7 0, andtg € (0, ty(xo, —vo)) for in-flow and
diffuse boundary conditions and to € (0, min{f, (xo, —vo), th (X0, v0)}) for bounce-back
boundary condition, and a strict concavity of 92 at xo along vy, i.e.

D (00)id; 0, D (x0)(00) ) < —Cixgg- 1)
i,j

Then forall t € [ty, to +tp (X9, —v0)), the Boltzmann solution F is discontinuous in time
and space and velocity at (t, xo + (t — t)vo, Vo), L.e. [Fl; xog+(t—t0)vo.v 7 0 and

Ce™ 2+ E=101 F (1) ] w0 < [Froxot(t—10)v0.00 (22)

where 0 < C < 1, and Cr = C2(| |wF—Jﬁ’L||Lm) € R which is positive for sufficiently

small | |wF_\/ffL | |L°°([0,oo)><§2><R3)'

The strict concavity condition (21) rules out some technical issue of the backward
exit time f,. Our theorem characterize the propagation of discontinuity before the for-
ward trajectory reaches the boundary. In the case that the forward trajectory reaches the
boundary, i.e. t > fo + tp(x9, —v0), the situation is much more complicated. Denote
X1 = xq + tp(x9, —v0)vo, 1 = to + th(xp, —vg). If the trajectory hits on the boundary
non-tangentially, i.e. (x1, vg) € ¥4, for in-flow and diffuse boundary cases, the disconti-
nuity disappears because of the continuity of the in-flow datum and the average property
of diffuse boundary operator. For bounce-back case the discontinuity is reflected and
continues to propagate along the trajectory. If the trajectory hits on the boundary tan-
gentially, i.e. (x1, vg) € yp, there are three possibilities. First, if (x1, vg) € yol *, then
the situation is the same as the case (x1, vg) € y; above. Second, if the trajectory is
contained in the boundary for awhile, i.e. there exists § > 0 so that x| + svg € Q2
for s € (0, 6) then it is difficult to predict the propagation of discontinuity in general.
Assuming a certain condition on €2, Definition 6 for example, we can rule out such an
unlikely case.

The last case is that (x1, vg) € yos. Assume we have a sequence of {t, = t,_1 +
th(n—1, —v0)} and {x, = Xu—1 + m(xa—1, —V0)vo} € IR s0 that (x,,v0) € ¥y,
and a directional strict concavity (21) is valid for each (x,, vgp). We can show the
propagation of discontinuity also between the first and the second intersections, i.e.
[F ]t xo(t—t0)vo.vo 7= O for ¢t € [t1, 12) in general. For t > 1, if we have a very simple
geometry, for example the first picture of Fig. 2, we can show the propagation of dis-
continuity, i.e. [Fl; xo(t—tp)vo,v0 7 0 for t € [, th41) evenif n = 2, 3. But in general,

Fig. 2. Grazing Again
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for example the second picture of Fig. 2, we cannot show [Fl; y¢—zp)vo,ve 7= O for
t € [ty, tyy1) forn > 2.

The next result states that Theorem 1 and Theorem 2 capture all the possible singu-
larities (discontinuities) for the generic non-convex domain (Definition 6), despite the
nonlinearity in the Boltzmann equation. In other words, the singularity of the Boltzmann
solution is propagating as the linear Boltzmann equation and no new singularities created
from the nonlinearity of the Boltzmann equation.

Definition 6. Assume Q € R3 is open and the boundary 9 is smooth. We say the
boundary 9S2 does not include a line segment if and only if for each xy € 02 and for
all (uy, us) € S! there is no 8 > 0 such that

Dy (Tur, Tuz)
is a linear function for T € (=8, §) where @, from (8).
Theorem 3 (Continuity away from ®). Let Q be an open bounded subset of R® with

a smooth boundary 092. Let F(t, x, v) be a Boltzmann solution of (1) with the initial
datum Fy which is continuous on 2 x R3 U {y_ Uy, U )/017} and with one of

1. In-flow boundary condition (4). Assume (13) is valid and the compatibility condition
Fo(x,v) = G(0,x,v) for (x,v) € y-Uy; ", (23)

and G(t, x, v) is continuous on [0, 00) x {y_ U yol_}.
2. Diffuse boundary condition (5). Assume (14) is valid and the compatibility condition

Fo(x, v) = cupu(v) Fo(x, v){n(x) - v'}dv for (x,v) e y_ U yol_.

v -n(x)>0

(24)

3. Bounce-back boundary condition (7). Assume (14) is valid and the compatibility
condition

Fo(x,v) = Fo(x, —v) for (x,v) € y_U 7/01_. (25)

Then F(t, x, v) is a continuous function on € for 1,2 and a continuous function on
Cpp for 3. If the domain Q2 does not include a line segment (Definition 6) then the
continuity set € and Cpp, are the complementary of ® and Dy, respectively. Therefore
F(t, x, v) is continuous on (D)€ for 1,2 and continuous on (Dpp)€ for 3.

The last theorem is a qualitative property of the gain term in (2). This theorem is
crucial to prove Theorem 2 and Theorem 3.

Theorem 4 (Continuity of Q). Assume that F(t,x,v) is a function defined on
(t,x,v) € [0, T] x 2 x R3 and is continuous away from the grazing set in (4), i.e.

F e C%0, T] x (2 x R*)\&),
and

__1 _
™" Fll oo (0, 7]x0xR3) < +00,

[v]2

where@:%withpeRandﬂ > 0.
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Then the gain term Q. (F, F)(t, x, v) is continuous, i.e.
Q.(F.F) € C°([0, T] x @ x RY),
and

sup vl QL(F, F)(1, x, v)| < oo. (26)
[0, T1xQxR3

Notice that the function F in Theorem 4 need not be a solution of the Boltzmann
equation.

1.4. Previous works and significance of this work. There are many references for the
mathematical study of different aspects of the boundary value problem of the Boltzmann
equation such as [2,10,18,21,23,32] and the references therein. In [21], an unified
L? — L theory in the near Maxwellian regime is developed to establish the exis-
tence, uniqueness and exponential decay toward a Maxwellian, for all four basic types
of the boundary conditions and rather general domains.

The qualitative study of the particle-boundary interaction in a bounded domain and
its effects on the global dynamics is a fundamental problem in the Boltzmann the-
ory. One of the challenging questions is the regularity theory of kinetic equations in a
bounded domain. This problem is particularly difficult because even for the simplest
kinetic equations with the differential operator v - V,, the phase boundary Q2 x R3 is
always characteristic but not uniformly characteristic at the grazing set yp = {(x, v) :
x € 02, and v - n(x) = 0}. In a convex domain a continuity of the Boltzmann solution
away from yy is established in [21] for all four basic boundary conditions. In a convex
domain, backward trajectories starting from the interior points of the phase space cannot
reach points of the grazing boundary yp, due to the Velocity Lemma ([19,25]), where
possible singularities may exist.

On the other hand, in a non-convex domain, generally the backward trajectories start-
ing at the interior points of the phase space can reach the grazing boundary. Therefore,
we expect singularities will be created at some part of grazing boundary y; and propagate
in the inside of the phase space. In general, the formation and propagation of singularity
has been an important issue for the various partial differential equations ([24,31,37]).
For the Boltzmann equation, this question has been attracting much attention since the
early "90s (the references in pp. 91-92 in Sone’s book [34]). For the Boltzmann equation,
most of the works are numerical studies [34—36] and few mathematical studies.

There are several works about the propagation of ‘given’ singularities. For exam-
ple, an initial datum or a boundary datum already has some singularities (mathematical
works [4,7-9,14] as well as numerical works [5,34]). In [4], for the linear BGK model,
a propagation of discontinuity, which exists already in the boundary data, is studied
mathematically and also numerically. In [7], for the full Boltzmann equation in the near
vacuum regime, a propagation of the Sobolev H!/?3 singularity, which exists already
in the initial data, is studied and the same effect has been recently shown in the near
Maxwellian regime ([8, 14]).

In Vlasov theory, we refer to [3, 16,40] for the boundary value problem. Singular solu-
tions were studied in [19] extensively. In [19], the non-convexity condition of boundary
is replaced by the inward electric field which has a similar effect with non-convexity of
the boundary. In convex domains, Holder estimates of the Vlasov solution with specular
reflection boundary is solved recently ([25,26]), but the Sovolev-type estimate is still
widely open.
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Our results give a rather complete characterization of formation and propagation of
singularity for the nonlinear Boltzmann equation near Maxwellian in general domain
under in-flow, diffuse, bounce-back boundary conditions. There is no restriction of the
time interval. More precisely we show that for any non-convex point x of the boundary
and velocity tangent to d€2 at x, there exists an initial datum (and in-flow datum, for the
in-flow boundary condition case) such that the Boltzmann solution has a jump disconti-
nuity at (x, v) (Theorem 1: Formation of Discontinuity). Once the discontinuity occurs
at the grazing boundary, this discontinuity propagates inside along the forward trajectory
until it hits the boundary again (Theorem 2: Propagation of Discontinuity). And except
for those points we can show that the Boltzmann solution is continuous (Theorem 3:
Continuity away from D).

1.5. Main ingredients of the proofs.

1. The equality induced by non-convex domain. We consider the near Maxwellian
regime and the linearized Boltzmann equation (3). The formation of discontinuity
is a consequence of the following estimate. Assume (x, v) € yOS as below, pic-
tured so that for sufficiently small # > 0 the backward trajectory x — fv is in an
interior of the phase space. For simplicity we impose the trivial in-flow boundary
condition G (t, x, v) = u(v) which corresponds to g(¢, x, v) = 0 (93). Consider
points (x},, v,) in y— and (x,/, v/') missing the non-convex part near (x, v) and both
sequences converge (x, v) asn — 00.

Now suppose the solution f of the linearized Boltzmann equation is continuous

around (x, v). Then the Boltzmann solution f at (x,,, v),)

@, x,,v,) = g(t, x,,v,) =0,

"o
v

and at (x,), v))),

/"
- t
Flts vy = e oGl = o], )

t
; / YOS K F LT D)5 5! — (1 — )0l ol)ds
0

converges with each other as n — o0o. Then we have the following equality (Fig. 3):

t
folx —tv,v) = —/ VK +T(f, s, x — (1 —s)v,v)ds.  (27)
0

Thanks to [21], the pointwise estimate of f, with some standard estimates of K, I,
the right-hand side of the above equality has magnitude O (?)|| folloo (1 +1] folloo)- If
you choose fo(x —tv, v) = || follco, then the above equality (27) cannot be true for
sufficiently small # unless the trivial case fy = O(F = w). Therefore the Boltzmann
solution f cannot be continuous at (x, v). For diffuse (5), bounce-back (7) boundary
conditions we also obtain the equality induced by the non-convex domain similar
to (27). This argument is based on the idea that the free transport effect is dominant

to the collision effect if time ¢ > 0 and the perturbation f = F\/_ﬁ“

2. New proof of continuity of Boltzmann solution with diffuse boundary condition. We
consider the near Maxwellian regime and the linearized Boltzmann equation (4).
In Sect. 5.2 we prove a continuity away from © of the Boltzmann solution with

is small.
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x
Xn

Fig. 3. Non-Convex Domain

diffuse boundary condition using a simple iteration scheme (102) with iteration dif-
fuse boundary condition (131). This iteration scheme has several advantages. First
it preserves a continuity away from ® as m increasing, that is, if A" is continuous
away from ® then 2"*! is also continuous away from . Second, the sequence {h™}
has uniform L* bound and moreover it is Cauchy in L*° for the in-flow boundary
condition A™|,_ = wg. Therefore A = lim 2™, a solution of the linear Boltzmann
equation is continuous local in time. Combining with uniform-in-time boundedness
of the Boltzmann solution ([21]), we achieve the continuity for all time. In order to
apply this idea to diffuse boundary condition, we use Guo’s idea [21]: A norm of the
diffuse boundary operator is less than 1 effectively, if we trace back several bounces.
This approach gives a simpler proof for the continuity of the Boltzmann equation
with diffuse boundary condition with convex domain (see Lemma 23-25 of [21]).

3. Continuity of the gain term Q. In contrast to the previous two ingredients, in this
part we consider the non-perturbation setting and the gain term Q. of the Boltzmann
equation (1). The smoothing effect of the gain term Q. is one of the fundamental
features of the Boltzmann theory. There are lots of results about the smoothing effect
in Sobolev regularity, for example

1Q+@. Yl w1 = ClN L1 1] 2,

with some assumption on various collision kernels [28,41,42]. To study the propa-
gation of singularity and regularity, in the case of the angular cutoff kernel (1), it is
standard to use Duhamel formulas and combine the Velocity Average Lemma and
the regularity of Q. [7]. For details see [28,33] and the Villani review [39] especially
pp- 77-79.

In order to study the propagation of discontinuity and continuity we need a totally
different smooth effect of Q.. For the discontinuity induced by the non-convex domain,
we need the following: Recall the grazing set & in Definition 4. A test function ¢ (¢, x, v)
is continuous on [0, T] x (2 x R3)\Q5 and bounded on [0, T] x € x R3. Then

0.(¢, )1, x,v) € C°I0, T] x 2 x R). (28)

Recall that the grazing set & = {(x,v) € Q x R : v € &,}. The grazing section
B, ={tu e R¥:1 >0, u e &, NS?} is aunion of straight lines in velocity space R
and two dimensional Lebesgue measure of &, N S? is zero (Hongjie Dong’s Lemma,
Lemma 17 of [21]). Moreover, using continuous behavior of &, in x, one can invent a
very effective covering of &, (Guo’s covering, Lemma 18 of [21]). Recall that the gain
term Q. (2) is an integration operator in v alone and a local operator in x. Therefore, in
order to show the continuity of Q. (¢, ¢) for ¢, x, v(especially for x) we need to utilize
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both the geometric property and the smallness of &. Notice that the smoothing effect
on Ct .y has been believed to be true for long time without a mathematical proof in
numerical communities [11, p1587 of [4], p502 of [35]

The main idea to prove the smoothing effect in Ct x.v 18 to use Carleman’s represen-
tation for Q4 (¢, ¢)(¢, x, v) which has been a very effective tool [20,41,42],

/

RGeS v) ¢(x x, v})BQv — vi,u)dvldv (29)
V2 JE v — v

with the hyperplane E,, = {v] € R3 : (v} —v) - (v —v) = 0}. We will show the
smallness of

10+(, )7, %, V) — Q+(9, §) (1, x, V)],

for |(z, x, v) — (7, X, V)| < 8. Assume we have sufficient decay of ¢ for large v. Replace
the integrable kernel 1 |2 by a smooth compactly supported function and cut off the

singular part of B (2v —v' =, ‘v, ‘ ) to control the above difference as
0Bl + C/ 9, x,v") — (1, %, 0] ¢, %, v])|dvidv
v |<N EgnN{[v]|<N}

+C/ lp (2, x, V") / B (t, x, v))dv)
v |<N E,/N{jv]|<N}

_ / o, %, U;’)dv/{} dv'
EgrN{Iv}]<N}

where v”(v’) is chosen to be v/ — (v — ¥) for convenience.

One can easily control the integration at the first line. Because for the first term,
integrating over v/, we can cut off a small neighborhood of &, from [v/| < N. Away
from that neighborhood, using the continuity of ¢ away from &, we can control the
integrand pointwisely.

In order to control the second line integration we have to control the difference in
big braces. To do that we choose a special change of variables for v} ,(41). Under this
change of variables the second line is bounded by

C/ |¢(txv)|/ | (1, x,v)) — ¢, x,v])| dv)dv'.
V'|<N o N{lv][<N}

The underbraced integration above is a function of ¢, x, 7, X, v and v’. Unfortunately, for
fixed t, x, 7, v one cannot expect a smallness of the underbraced integration for all v’.
(Since ¢ mlght be discontinuous at &, the difference | ¢ (7, x, v}) — ¢ (7, ¥, v{)| could
be large for (¢, x, vﬁ) € B,. Moreover the 2-dimensional Lebesgue measure of the inter-
section of &, and the plane E,,s could be large or even infinite.) However, in Sect. 3.3,
we can show that that bad situation happens for very rare v’ in {v/ € R3 : |v/| < N} and
use the integration over v’ to control the above integration.
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1.6. Structure of paper. In Sect. 2, we state some preliminary facts which are useful
tools for this paper. In Sect. 3, we state and prove the continuity of O+ (Theorem 4). In
Sects. 4—6, we deal with in-flow boundary, diffuse boundary and bounce-back boundary,
respectively. For each section, first we prove the formation of discontinuity (Theorem 1).
Then we show the continuity away from ®© (Theorem 3). Using this continuity, combin-
ing with continuity of O, we show the propagation of discontinuity (Theorem 2).

2. Preliminary

In this section we study continuity properties of the backward exit time #,(x, v) and, a
measure theoretic property and geometric covering of the grazing set &, and estimates
of Boltzmann operators and Carleman’s representation.

We use Lemma 1 of [21], basic properties of the backward exist time f},(x, v):

Lemma 1 [21]. Let Q be an open bounded subset of R3 with a smooth boundary 3S2.
Let (t, x, v) be connected with (t — ty(x, v), xp(x, v), v) backward in time through a
trajectory of (1.1).

1. The backward exit time ty(x, v) is lower semicontinuous.
2. If

v - n(xp(x, v)) <0, (30)
then (ty(x, v), xp(x, v)) are smooth functions of (x, v) so that

Vot = n(xp) V= tb”(xb)’
v - n(xp) v - n(xp)

Vixp =1+ Vity @ v, Vyxp =t + Vyip @ 0.

For a convex domain, if a point (x, v) is in the interior of the phase space, i.e.
(x, v) € Qx R3, then the condition (30) is always satisfied and hence 1, (x, v) is smooth
due to the second statement of Lemma 1. However for a non-convex domain, there is a
point (x, v) in £ x R3 but (xp(x, v, ), v) € y, i.e. v - n(xp(x, v)) = 0. Hence fy(x, v)
is not smooth at that point (x, v). We further investigate a continuity propertsy of 1, for
that case. Indeed, the discontinuity behavior of 7, (x, v) for (xp(x, v), v) € ¥y is a main
ingredient of the formation of discontinuity.

Lemma 2. Let Q € R3 be an open set with a smooth boundary 9S2. Assume (xg, vo) €
Q x R3 with v # 0 and ty (xg, vo) <00. Consider (xg, vg) € &, i.e. (xp(x0, Vo), Vo) E Yo,

If (xp(x0, v0), Vo) € yOI_ then ty(x, v) is continuous around (xg, vg),

If (xp(x0, vo), Vo) € yOS then ty(x, v) is not continuous around (xop, Vo).
Recall yol ~and yos in Definition 2.

Proof. Throughout this proof, without loss of generality we assume that d€2 is a graph
of ® locally and ®(0,0) = 0 and (9y, P, dx, )(0,0) = (0,0). Moreover assume
x0 = (]xo], 0, 0), vg = (Jvgl, 0, 0) and 1, (x0, vg) = % so that xp (xg, vg) = (0,0,0) =
0,0, ©(0,0)).

First, let (xp(x0, vo), vo) € yOI ~. By the definition of 7/01 ~, we have &(—71,0) > 0
and ®(7,0) < 0 for 0 < t << 1. Using the continuity of ®, choose sufficiently small
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e > 0, § > 0 such that ®(=48,y) > § and ®(5,y) < —5 for 0 < |y| < &. Fix
x = (x1, x2,x3) ~ x9 and v = (vy, v2, vV3) ~ vg. We define

W(x,v,t) =x3 —tvy — P(x; — tvy, xo — tvn).

Fort' = xlv—]_‘s, V(x,v, 1)) = 7 for (x1, x2, x3) ~
(Ix0l,0,0), (vi,v2,v3) ~ (vol,0,0). For ¢ = M W, v, t") = —P(=8,x2 —

A s) + 3 — Sy < —£ for (x1, x2, x3) ~ (1x01,0,0), (vl,vz,m) ~ (Ivol, 0, 0).
Using the continuity of ® and\IJ there exists t, € (__W’ ﬁ+ 8y sothat W(x, v, 1) =
5 s
0,1e. tp(x, v) = ty. Ifx ~ xgand v ~ vo,then - % — W = tp(x0, vo) — |U0|
i 1xol _ 9
and + Tool T oo |v0| tb(xo, Vo) + o o] sothatt* € (th(x0, vo) Ivol , I (x0, Vo) + Ivol)'

Next, let (xp(x,v),v) € Vo' By the definition of the concave grazing boundary
yos, we have &(—7,0) > 0 and ®(7,0) < 0 for 0 < 7 << 1. Choose a sequence
X, = (|xo], 0, %). There exists ¢ > 0 such that ty(x,, vo) > f(x0, vo) + & for suffi-
ciently large n. This implies that (x,, vo) — (x0, vo) but ty(x,, vo) = (X0, Vo) as
n— o0o. 0O

In the next two lemmas, we consider the grazing set & (Definition 4) including the
discontinuity set ®. Lemma 3, Lemma 17 of [21] due to Hongjie Dong, is important
to control a size of &. We denote m; as a standard 2-dimensional Lebesgue measure
and m3 as a standard 3-dimensional Lebesgue measure. Recall the grazing section &,
in Definition 4.

Lemma 3 [21]. If Q2 is C! then the grazing section & restricted to S? has zero 2-
dimensional Lebesgue measure for all x € Q2 ,i.e.

ma (&, NS?) =0,
forall x € Q.

With condition m» (&, N'S?) = 0, we can construct Guo’s covering which is little
bit stronger than the original one in Lemma 18 in [21].

Lemma 4 (Guo’s covering) [21]. Assume m(&, N S?) = 0 is valid for all x € Q.
Let By = {v € R3 : |v| < N). Then for any ¢ > 0 and N, > 0 there exist

Se.Nn.N, > 0, and lg N N,.@ balls B(xy;r1), B(x2;12)..., B(xi;r) C 2, as well as
open sets Oy, Ox,,...Oy, of By which are radial symmetric, i.e.

O, =t eR:1>0, be 0, NS?,

withm3(0y,) < - and my(Oy, NS?) < 5y

any x € Q, there exlsts X; so that x € B(x;;r;) and forv ¢ Oy,

foralll <i <l NN, q, such that for

[v - n(xp(x, V)] > 8NN, >0,

or equivalently

0x> |J tveBy:lv-nmE@ vl <dwnn)d |J &:NBy.

xeB(x;ri) xX€B(xi;ri)
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Combining Lemma 3 and Lemma 4, we have the following lemma. Later we will use
this lemma to prove Theorem 4. Namely, a function which is continuous away from the
grazing set ® is uniformly continuous except for an arbitrary small open set containing &.

Lemma 5. Assume ¢(t, x, v) is continuous on [0, T] x (Q x {v € R3 : % < |v| <
NP\®. For fixed x € Q and ¢ > 0 and N, > 0, there exist
1
8 =468(¢,Q,¢, N*,x,M,N)>0, (€2))

and an open set Uy C {v € R? : ﬁ < |v| < N} which is radial symmetric, i.e.
U=t eRP:1 >0, 0 € Uy NS} withm3(Ux) < 5~ and ma(Uy NS?) < 555
such that

6t x, v) — B (7, %, D)| < Ni

*

forve{veR: & <|v| < N\Uy and |(t, x,v) — (7, %, 0)| < 8.

Proof. Let x ~ x. Due to Guo’s covering [21], Lemma 4, we can choose B(x;;r;)
including x and ¥, as well as O,, C R? so that

0,> |J &nBy> (J &,nBy.
YEB(xi;ri) yeB(x:8)

with m3(0y;) < Ni* Notice that m3(0xi) = m3(0y;). We can choose an open set Uy,

so that m3(Uy;) < 2m3(0y;) and O_x,« C Uy,. Since both Ox,. and By\U,, are compact
subsets of By, we have a positive distance between two sets, i.e.

0<0=inf{|¢ —&|:¢ €0, and & e By\Uy}.

Assume § < 9/2. Fix x € Qand v € {v € R® : - < |v| < N}\U,. Then
[(x,v)—(x,v)| < dimpliesthatv € {v € R3 : % < |v| £ N}\O,,.Forsuchx, v, x and
v, consider the function ¢ as its restriction on a compact set [0, 7] x B(x; 8) x Bn\Oy;.
Therefore @1y 75 5 (x:8)x By\ Oy, is a uniformly continuous function. Hence |¢ (¢, x, v) —

¢(t, X, v)| can be controlled as small uniformly, if § > 0 is chosen sufficiently small.
O

We will use Carleman’s representation ([20,41]) in the proof of Theorem 4 cru-
cially. Let Q1(¢, V) be defined by (2) and assume Q. (y, ¢) < oo for ¥ = ¥ (v) and
¢ = ¢ (v). Then Carleman’s representation is

/

ﬁ)dvldv

0., ¢)<v>—2/ V= ,|2/ $W)BQU— v — v,

(32)
where E,, is a hyperplane containing v € R? and perpendicular to 2=% ‘v eS%i
Eyy ={v] eR: (0] —v)- (v —v) =0} (33)

In the proof of Theorem 4, we need to control the underbraced integration over E,,,/
in (32) frequently:
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Lemma 6. For a rapidly decreasing function ¢ : Ry — R, we have

A
¢ﬂmDBQv—d—vﬂl%—ﬂﬁﬂm’SCM1+w—UVL (34)

E,y v — v
where Cy only depends on ¢.

Proof. For fixed v" and v, let us denote {€1, €;, €3}, with €3 = ‘5:;’1’ and let be the ortho-

normal basis of R? such that any v/l € E,, can be written as v/l = v+n€| +12€;. Since

v —v L E,, from (33), there is 13 such that v/ — v = 13€3, where |n3| = |[v — V/|.
Then we can write 2v — v — v} = v — V' +v —v] = —n € — neé — n3é3 and
2v — v — vi|2 = n% + r/% + v/ — v|%. Moreover v/ — V) = —n1€ — meé + n3é3. We

can write the left hand side of (34) as

00 00 5 5 5 —N1 14 1 —N1 —N1
/ / oy +ny+v)| | —m e Bl N dnidna
—00 /00 —pz ) | niHmEY = VIR gy n3

o0 o0
Y _
5/ /‘¢m%m%ﬁ+%+W—m%z%%+ﬁ—W—w%mmW
—00 J —00

*© *© 2 2 2 2 2
5/ / o (7 +772)(771 +712+|U/—U| )
—00 J —00
< Cyp(1+ v —v]").

Y
2

dnidny

We recall two estimates of linearized operators K and I' from [21].

Lemma 7 ([21]). The Grad estimate for hard potentials:

,l‘v,UqZ,lM
kv, )| < C{lv — V| + v =0/ }e ® 8 2
Recall win (12). Let 0 <0 < JT. Then there exists 0 < €(0) < 1 and Cy > 0 such that
for(Q <e < ¢e(0),

ey loe 2=/ 22 olv|?

B T e L R L w(v)e Ck

/{|v —V]|+v=2]""e °® 5 =i —dv' < . (35)
w(v)e? V'l 1+ |v|

For the nonlinear collision operator,

lwI'(g1, 82)(W)| = Cr(1 + D)’ [[wg ool [wg2]loo- (36)

Also we recall a standard estimate
/ d (W) =" 1"dv ~ (1+ v, (37)
]R3

for ¢ € L'(R3).
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3. Continuity of the Collision Operators

In this section we mainly prove Theorem 4, a smooth effect of Q. in C? t.x.ps Lheorem 4 is
the crucial ingredient to prove Theorem 2 and Theorem 3. This smooth effect of the gain
term ensures that there is no singularity created by the nonlinearity of the Boltzmann
equation.

Proof of (26). 1t is easy to show the boundedness (26) from
v*‘w*‘Q+(F F)(t, x,v)
/ / B —u, o)ww)w®@)dwdu x ||12)_1F||00
RrR3 Js2?

_

——1 2
v(v)~ /W/ B(v —u, (l+,o P |2)ﬁda>du X [|lw™ FI5,
< Cv) vwllw ! FIIA < Cllw FI)?

<
- v(v)w(v)

IA

Lo([0,T1x (2xR3))’
where we used (37) and |u/|Z + |V |2 = |u|? + |v|®. O

Next we will show the continuity part of Theorem 4. The goal of following three
subsections is to show

For fixed ¢ > Oand (¢, x,v) € [0, T] x Q X ]R3, there is § > O such that
|Q+(Wh, wh)(t, X, v) — Q4 (wh, wh)(t, x,v)| < & for |(f,X,v) — (1, x,v)] <.
(33)

3.1. Decomposition and change of variables. In this section, we use Carleman’s rep-
resentation (32) to split Q4+ (wh, wh)(f, X, v) — Q+(wh, wh)(z, x, v) in a natural way
(39), and introduce two change of variables (40) and (41).

It is convenient to define

h=w'F,

where ||]’l| |OO = | |h||L°°([0,T]X(QXR3)) = | |7.ZJ_1 F| |L°°([O,T]X(§_2><R3)) . Choose (ZT, )E, l_)) ~
(t, x, v). Using Carleman’s Representation (32) we have

0+ (wh, Wh)(f, %, §) — Q4+ (Wh, Wh)(t, x, v)

_ 1 B
o (v i, v (v = - "oan
:2/]1%3 w(U )h(I,X,U )|1_)—1)N|2 /.E{)v// W(Ul)h(t,x, UI)B(ZU_U —V, m) d‘UldU

A B

—2/ w A, x, V)
R3

1 — ! / / r v 1 rg/
m/{; /w(Ul)h(t,x,Ul)B(zv_U _Ul, W)dvldv
v

_2/ {A-A"} de/’dv” +2/3 A / {B—B’}dv'{du’. 39)
E // E’ 4

In order to control the first term of (39), we need to compare the arguments v”, 7, X, v’
of A and the arguments v/, 7, x, v of A’. For that purpose, we introduce the following
change of variables:
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Lemma 8. For fixed v and v in R3, we define

V=0, 0) =v — (v—0). (40)
Then two planes Ej,» and E, have the same normal direction. The distance between
to planes is |(v — v) -

v|I

Proof. Assume (40). Clearly the Jacobian matrix a”(;/("/) = I, where [ is 3 x 3 identity

/
matrix. The normal direction of Ey, is | o l”” ﬁ = Wthh is also the normal direction

of E,, . To measure a distance between two planes E,, and Ej,”, we consider the line

passing v and directing IU _5‘ , whichisv(s) = Iv ‘s +v. The solution of v(sy) € Egyr
isasolutionof 0 = (v —v)-(v(s)—0v) = (V' —=v)-(v(s)—V) = [V —v|s+(V —v)-(v—D).
Easily we have the solution s, = % Since v(s) is the unit-speed line we know
that |v(s,x) — v(0)] is the distance between Ej,» and E,,y. 0O

An important property of (40) is that two planes Ej,» and E,,» have the same normal
direction. In order to control the second term of (39), we need to compare the argu-
ments v, , X, v, v” of B and the argument v/, 7, x, v, v" of B', especially v| € E,,s and
v{ € Ej,. For that purpose, we introduce the following change of variables:

Lemma 9. For fixed v, v/ and v in R3, we define a unit Jacobian change of variables
/!

_ v —v _
v =v{ (v, v, D) = v+ ——— {0 —v) - —
[v/ — v| [v/ — v|

vV —v

) (41)

In this change of variables v| € Egy if and only if v| € Ey,.

31)1 (vl)

Proof. Assume (40) and (41). Clearly = I. We can check the following equality:

/ /

(Ui/_l_))'(l)”—ﬂ)z(l)l/—l_}+ v _v{(ﬁ—v). v _v})'(l)/—v)
[v" — vl [v/ — ]

=(Ul/—ﬁ)'(vl—v)+|v/—v|{({;—v).v;v}

v — vl

=@ —v)- @ -v+@=-0) -V -v)+@—v) @V —v)
:(U/I—U)'(U/_U).

By definition, v] € E,, is equivalent to (vj — v) - = 0. From the above equality,

—_ //__ . .
we conclude (v] — ¥) - ﬁ = 0 which is equlvalent to v{ € Egyr. O

Under the first change of variables (40), we can rewrite the first term of (39) as

2/Rg ﬁ{ﬁ)(v”)h(f,i, V") — w@HA(, x, U’)}

©

v — v
x/ W, %, v])B(25 —v" — ], I/—}’I) dvjdv.  (42)
Egyn v vy

(D)



660 C. Kim

Under the second change of variables (41), we can rewrite the second term of (39) as

2/ w)h(t, x, V)
JR3

lv—v'|?

&

" " / /

_ _ v _ v
x/ [BODRGE Fv)BRI—" =], —— ) =B WA, x, 0] BRo=v v}, ——L) | dvjav/.
E, v _U1| v _v1|

(F)
(43)
We will estimate (42) and (43) separately in following two sections.
3.2. Estimate of (42). We divide into several cases:
Case 1. |v| > N. From Lemma 6, for N > 0 we can estimate
1 1

- - 2 -/ /

Q+(wh7 wh)(ta X, U)1|v|>N S C||h||oollv‘>N /1;3 w(v ) (lU o U/|2 + |U . U/|2_y ) dv

< C||hl|? o, Lon < SinIP
= <\ A+o)2 " A+pp2r ) N =N e

Hence we have
C
@2y < IR (44)

Case 2. |lv| < N and |[v'| > 2N, or |v] < N and V| < % Also assume 0 < § << 1:

2 x 1|v|§N/ ©) (D) dv’l’dv/
{IV'|=2N or |v/|< 47} Egyr

< C1|v|<N/ I : + : ] ef#dvle%HhHZ
= Jwsan L=V v —vFY *©
+c/ ’L+—1 ]evézdv/eizllhﬂz
wisd LVE T P °°
o(4)
sc(i+ : )||h||2 +o(—) I, (45)
N2 N2 Ty %

_ _W? - _W2 s
where we have used w(v') < e~ 4 and w(®”) <e 8 e and Lemma 6.

Case 3. |[v| < N and 1 < |[v/| < 2N.
2 X 1jy<n / ©) (D)dv]|dv'
& <lv|<2N Egyr

1 1 ~ L
< Cllhlloo /1 1<n ( 5t - 2—y) [ Yh(F, X, 0"
L <lv|<2N lv—=V>  |Jv=17]

—w)h(E, x,v)|dv. (46)
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Since (ﬁ + m) is integrable we can choose a smooth function z(v, v’) with
compact support such that

1 1 1
sup / ( — + P ) —z(v, V)| dv < —. (47)
<N Ji<en I\ |v == v ==Y N
Therefore we can bound (46) by two parts
clmi~ [ 1 ‘( Lo, ! ) 20, )| e T T’ (48)
00 - . e e
e AN R R R
€ sup o) x bl Loy [B0" WA, 5, 0" ()
[vl<N,Jv'|<2N I <Iv|<2N
—w@)h(t, x,v)|dv. (49)
From (47), it is easy to control the first term
C
|(48)] = 1Al (50)

Now we are going to estimate the second term (49). Applying Lemma 5 to
w)h(t, x,v’), we can choose § = §(wh, Q, &, Ny, x, % 2N) > 0 and an open set
Ux C {7 < Iv] < 2N} with |Uy| < - such that

0" (N, X, 0" () — D)HAE, x, V)] < Ni

forv' € {v e R : % < |v] < N\U, and |(f, X, D) — (t, x, v)| < 8. Therefore we can
split the second part (49) as an integration over U, and U{ and control it as

C  sup  |z(v, V)] x [|h]|2% x m3(Uy) + Cllhloo
[V|<N,|v|<2N

></ lw@" WA, X, 0" (V") — w@)HAE, x, v)|dV
{37 SWVI<2N)NU§

£ &£
<C  sup  |z(u, V)| x |hlA~— + CllhlleoN> —. 1)
[v|<N,|v'|<2N N, N,

In summary, combining (44), (45), (50) and (51), we have established

1 1 & e
42) < Cllh|% ] — +o(—)+  su 2(v, V)|~ { + Cl|hlloc N> —.
1IN M |v\§N,|vB|§2N N, 7N,

Choosing sufficiently large N, M > 0 and N, > 0, then

42) < —. (52)

| ™
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3.3. Estimate of (43). The estimate of (43) is much more delicate. The reason is that we
cannot expect [,  (F) dv] in (43) is small for all v' € R3. We know that A(z, x, v))

may not be continuous on vi € &,. Even &, is radial symmetric and has a small mea-
sure by Lemma 3, a bad situation the intersection of &, and E,,,» could have large (even
infinite) 2-dimensional Lebesgue measure, can happen. However we can show that such
bad situations only happen for very rare v"’s in R?. Using the integration over v’ € R3,
we are able to control (43) small.

Recall (£) and (F) in (43). We divide into several cases:

Case 1. |v] > N. Follow exactly the same proof of Case 1 of the previous subsection,
we conclude

C
@3)1yay < ﬁnhnio. (53)

Case 2. |v] < N and |[v'| > 2N. We go back to the original formula, the second term of
(39), and use Lemma 6 to estimate

2 / © [ (Favidv'1 -y
[v/|>2N E,,

< 4|h|[2 / D) —— (1 + o = V)Y do Ty
- v
® Jiwi=an lv— /|2 =

(11
< 4lhll5 ek (54

1

Case 3. |v| < N, |v'| < 2N, and |v]| < % or [vj| = N.In the case of |[v]| < 5, we
have
2x 1|v|§N/ &) (F) dvydv'
v'|>2N (W] I<§INE,,
"y /
ey
R3 [v — V| {1 |< 5 1nE,,
2 52 1 v 2 1 /
x{e 8 et (AN +—+8) +e 4 (4N + —)V { dv)
N N
ILIIES
=CN (55)

In the case of [v}| > N we have

2x 1|v\§N/ © (F) dvidv'
[v'[=2N {IV 1< HINEy

- /
<o, [ 22 gy
o0 / 2
R3 [v — '] (v} I=N}NE,

W2 2 1 Ivf 12 1
x1e B eT AN+ —+8) +e T (AN +—)" t dv)
N N

/|2

) _N2 _me _N2 5 _N?
< C||h||5.e~ T° e 16 dv' x NVe 16 < C||h||5 e 16 (56)
R3
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Case4. |v| < N, |[v/| < 2N, and % < |vj| < N.In order to remove the unboundedness
of v+v/‘2 in (43), we choose a positive smooth function Z(v, v) with compact support

|
sup /
[v|=N J|V'|<2N

such that
Splitting 2 x 1)<y flv,‘SZN(S) fﬁf\vﬁ\sN(}-) dvjdv’ into two parts

1
2 x 1|v|<N/ N -
= Jwi<aN —v'?

<[ () dvidv <C||h||oomzvy+2 (58)
Nt <lof1=N)

1 S

/
—Z(U,v) Nlo

—Z(,v)

c / ke sup  1Z(, )] / F)dvdv', (59
[v'|<2N [v[<N,|[V'[<2N /N5 =ZIV]I=N}

where we used (57) for the first line. From now we will focus on estimate (59).
Case 5. |v| < N, |v/| <2N, %+ < |vj| < Nand [2v — v —v}| < 2 or [v/ — v]| < 4.

This region includes the part where the collision kernel B(-, -) has a singular behavior.

C/ [17]]00 sup |Z(v, V)|
[v/|<2N [v|<N,|v/|<2N

X (f) 1 NI O AT (U/, 'U/l) dvidv’
/ i <Ivj <N} H@u=v)—vil<g or [v'=vil<3}

<C sup |Z. V)| x |3

0| <N, v |<2N
/ ‘” 2 / { / / } y
X/lv/fz,v dve: /E @y« OD gty D XN
/ 2 N)/
<C  sup 1Z(v, V)| x ||hll5 - (60)
<N Jv'|<2N M

Case6|v|<N|v|<2N §|v|<Nand|2v—v v1|> and|v—v1|>—
and0 < 6 < W.We estlmate

2 x 1Iv\sN/ dv'w()h(t, x, v)Z(v, V")
[v'|<2N

x/ {w)h(, X, v])BQ2v —v" —vf, %)
N{&<v} <N} [V — v

V]

x — wh(, x,v))BQRv — v — v, ﬁ)} (2v—/—v]|> )

1

/
{lU ﬁ}dvl.

(61)

We need this step because of the singular behavior of

ui uj
B(ui,uz) = |ui|”qo(—— - —) = lu1]” (g0 o F)(u1, u2),
lur]  luz|
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where § : R3 x R} > R with F(u1,u2) = IZ—‘ qul The function F(u1, uz) is not
continuous at (u1, u2) = (0, 0) and continuous away from (0, 0), i.e. the restriction of
§ on a compact set,

1 1
SMN {ﬁ < lu1] = 6N} x {ﬁ < |uz] =4N} - R

is uniformly continuous. From [2v — v" — v]| > % and [v — 7] <8 < ﬁ we have a
lower bound of

/! v /!

v — v —v 1
|2v—v’—v’1|—|17—v——{(ﬁ—v)-—}l‘>

20— 0" —v| > —.
| 1= v — vl W —vl''| T 2M

Similarly from [v" — v]| > yandv—1] <é < ()IM we have a lower bound of

/ /

7= o1 2 | = = v = (=) | =
Therefore for any ¢ > 0, we can choose § > 0 so that
'3(25 — 0, LUZ) BQu—v' — v}, Q)‘
v —vf] v — v
= ‘|21‘) ) (o o F) (20 — v — v, v — )
20— — v (go o F) Qv — v — v}, v — v)) <Ni*, (62)

1 / 1
for|2v—v—v1|>Mand|v—v1|> and 0 <4 < 1557-

Now we split (61) into two parts

/ — VA T = "
2 x 1|v|5N/ dv / 1 w(vh(t, x, v))
[v/|<2N E, Ny <Ivi|<N}

1 1 / /
_ v —v vV —v
X[B(Zv—v”—v”, —1)—B(2v—v/—v/,—l)}
1 1 1 1 /
V" — vy v |
1

1 1
{I2v—v'—vi|> 37} IV =v 1> 37}

+2 x 1|U|§N/ dv/../ [w(vl)h(t x,v]) — wh(, x, vl)}
lv'|<2N E,y N <Ivj <N}

v — v

v — v1|

x 1 dv}

xBQ2v — v — v}, ). (63)
Using (62), the continuity of B(-, -) away from (0, 0), the first line above is bounded by

CsuplZ(v V)| x ||h||OO . (64)

UU
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In the remainder of this section we will focus on (63):

Estimate of (63).

(63) < CN?||hl|oo sup |Z(v, V') w(v)
v,V [v/|<2N

x/ lw (A, X, v]) — w)h(t, x, v))|dv] dv', (65)
/Ny =<[v] =N}

O]

where we used Suplv‘<N [v/|<2N, |v’|<N B(2U
of v" and v{ from (40) and (41) to have

U
vl, = |) < 00. Recall our choice

—v v — v _
(@ —v)- }\s|v—v|<6.

[V — v| v/ — v|

We will use the following strategy: separate |, E. 0L <p/|<N} .dv) into two parts
Vv N—=1"11=

/ ...dvi+/ vy
U NE,N{ 5 <[v}|<N} USNE N5 <[v}|<N)

The first part is the integration over Uy, a neighborhood of &, that contains possible dis-
continuity of . Moreover we expect the measure of the neighborhood Uy, is small so we
can control the first term. For the second term, we will use the continuity of the integrand
wh. However if v = 0 then &, could be a large measure set in £,y N {% < |vj| < N}.
For example if &, NS> = {u € S? : u3 = 0} then &, is the xy—plane and Eqe, is also
the xy—plane. Therefore we have to divide the two cases v # 0 and v = 0 and study
them separately.

i /
[vy — vyl S’

Case of v # 0. In the case of v # 0, assume ¢ < |v|%/2 for sufficiently small o > 0.
We will divide the velocity space R> into

%:{v’eR3:|v| %fv %§|v|+£|} and
v

||‘ ]

The important property of ‘B is that if v € ‘B¢ then E,,» does not contain zero. We can
split the underbraced integration () of (65) into

‘Bcz{v’eR3: v

/ w(@) lw(W)h(7, %, v]) — w)h(t, x, v))|dvidv’
v'eByyNDB EyN{x <[v}|<N}
(66)
+/ u_)(v’)/ lw()h(T, x, v]) — w)h(t, x, v))|dvidv'.
v'eBuy\B N IV} I<N)

(67)
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Notice that B N By has a small measure:

m3(B N Bay) < 27(2N)2 x 22 <27 (2N)? x 2-2_

<227 (2N)2 /0.
vl = Tr S amene

Therefore we have
(66) < CN*||h||L= /2. (68)
Now we are going to estimate (67). Here we use a property of B¢: for v’ € B¢ we have

2
Vv | _ =Pl o o _ o

diStO,E ) = (v > > —
©. Evw) v/ — v v/ —v| = 2N +|v] — 3N

v — v

where we also have used |v’ | < 2N and |v| < N. From Lemma 5 we use U,, an open
radial symmetric subset of {N < |vj| < N} with a small measure and wh is uniformly
continuous on U<, to split (67) into

/ w(v)/ lw)h(T, %, v]) — w)h(t, x, v))|dvidv’
v'eBv\B N <[V <NINU,
(69)
+/ w(v’)/ lw()h(T, X, v])—w)h(t, x, v))|dvidv'’.
v eByny\B /ﬂ{N<|U <NINUS
(70)

For the last line, we use Lemma 5 to know estimate |w (v{)A(f, X, v{) —w ()h(t, x, v})|
< 3, for V] € Eyy N {% < |vj| < N)\Uy and |[v] — V|| < |[v — 9| < §. Therefore

€
|(T0)] < CN2—[1lloc- (71)
*
In order to show that (69) is small, we introduce following projection:

Lemma 10. Assume 0 < o < u Let Eyy = {v] € R3: (v —v)- (v —v) =0}. We
define a projection

P S* > E,y,
. /_
MESZI—) [%] u < Evv/.

Forv' € {v/ € R3: |v/| < 2N\'B, define the restricted projection
P’ = Plp-1(g, n(n<oj<vp P (Ewr N{1/N < [V]] < N})
— Eyw N{1/N < |vj| < N}.
Then for v € Ban\B the Jacobian of P’ is bounded:

"—v\? 3N*
=(v' v/ ) |sec?ftanf| < —,
[v" =] Y

P’
Jac@®) = |—
ou

where 0 is defined by cos0 = u - e (Flg 4).
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, N\ U
= PJu) v'—”_"%'

$2

N

Fig. 4. Projection Map

Proof. Without loss of generality, we may assume ﬁ = (0,0, 1)7. Using the spher-
ical coordinate,

L v . Y=v [sin@ cos
, U'(U/_U) v v —v]| v v —v] . . ¢
P'(u) = W= )u= U= sin 0 sin ¢
u-(v—-v - =y cos cos 0
v — v tan 6 cos ¢
=v- tanfsing |,
[V — ]
1

and a Jacobian matrix of [,

P’ . V' —v (sec?fcos¢ —tanO sin
Ao, p) v — ] sec2fsing tanfcos¢ )

Therefore a Jacobian of P’ is

o o 2
Jac(P) = =(v- L= sec?6ltan 0| < dist(0, E,y)?| sec ).
a0, @) v/ — vl
Notice that
1 | v —v) 1 P ()|
|secO| = = = u = — .
| cosf| u. Y= u- @ —v) ’v L v—v dist(0, Eyyr)
[v'—v| [v'—v|

Because P (1) € {% < |vj| < N} and dist(0, E,) > 5% we have

/ 3 4
Jac®) < LT3N
|d15t(07 Evv’)l o

O

Assume we choose ma (Uy NS?) < Nf]g\fz . By definition we know that P/ (U, NS?) =

E,y N {% < |v§| < N} N Uy and the 2-dimension Lebesgue measure of E,,y N {% <
|vj| < N} N U, is bounded by

IA

1
ma(Euy 0 (5 = i1 < NN U») = ma(P'(Us NSY) < Jac(P) x U, NS

3N4 P 3N2

x = €.
0 N.N2  ©oN,

IA



668 C. Kim

Therefore we have an upper bound of (69):
1(69)] < CN2¢]|h]|co. (72)
where C = fR3 w(v")dv’. In case of v # 0, from (68), (71) and (72), we have

(63) < CN?||hlloo sup | Z(v, )| x ()
v,V

3N? ¢
<CNYIRIE,  sup |Z@o)INE/e+ L+ o) —) (73)
[v|<N,V'|<2N o Ny

where () is the underlined integration in (65).

Case of v = 0. In this case, we do not have a upper bound of the Jacobian of . Instead
we will use the structure of &, of Lemma 4 crucially. In the case of v = 0, we split (65)

/ w(v’)/ lw)h(F, %, v]) — WA, x, v))|dvidv’
lv'|<2N Egy N{y <[V} <N}

:/ w(u’)/ lw A, X, v]) — WA, x, )] x 1y, (v])dvidv’
Iv'|<2N EgyN{ % <[vj|<N}

(74)
+/ @(v/)/ [w @A, X, v]) — DDA, x, V)]
v=2N EgyN{ <vjI<N}
g i <ijisnin, @04V’ (75)
For v/, we use spherical polar coordinates (r/, 8’, ¢”) so that
v = (' sin6’ cos @', r'sin @ sin @', ' cos ). (76)

By definition, Ey, is a plane containing the origin and normal to v’. We know that E(,,
is generated by two unit vectors

cos 6’ cos ¢’ —sin ¢’
Eogy = < cos@'sing’ |, [ cos¢’ >
—sin@’ 0
We will use a polar coordinate (r{, ;) for v € Eq,, i.e.
) cosf' cos¢p’ —sing’ sin6’ cos ¢’ cos 6]
vi=| W2 | (7], 01:0",¢)=r | cos 9/. sin/q)/ cos¢’ sind’ SiI/l ¢ sin 6
)3 —sinf 0 cos 6 0
(77)

. . . a(v)) _
Direct computation gives det (W) =

(r)?*cos o]
cos 6’ cos ¢’ cos 0] — sing’ sin00]; —cos6’ cos’sinf] — sin¢’ cos O] sinb’ cos ¢’
xdet | cos@ sing’ cosfi +cos¢’sind] —cos@’ sin¢’sin6] +cos¢’cosf] sinf’sing’
sin 6’ cos 0] sin 0’ sin 6 cos '

= (r})*cos 6.
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Therefore we have following identity:

oo pr2m pm
/ coedv) = / / / coo (r))? cos 0]d6'd6)dr]. (78)
R3 0 0 0

Recall the standard 3-dimensional polar coordinates and 2-dimensional polar coordi-

nates:
2N 27 T
/ coedv / / / < (r)?sin0'do’d g’ dr’,
[V|<2N 0 0 0
N 2
/ e dv // e rldoldr,
EgyN{% <[v}|<N} +Jo

and use the above identities to control (74) by

2N 2
/ dr' (r' )y w(r') / d¢/
0 0

T N (ri)z 2
x/ d9’sin9’/] dr{r{e_T/ doj1y, (vi(ry, 010", ) |1hlleo-  (79)
0 ~ 0

N

We focus on the underbraced integration in (79) and divide it into

T / N /o G / /
/0 df’" sin 6 /L dl’ll’le 8 /O d91lUx(vl)1016(%—9,%+p)u(37”—g,37”+9) (80)

N

T / N 7 T / /
+/0 do s1n9A dririe” s /0 dellUx(”1)1916[0,%—Q]U[%@,%—Q]U[%w,h]'
N
(81)

cos 6]

1 2
Easily (80) < 20(e 832 — e_NT) < 4p. For (81), we use 1 <
6; €10, 7 —elU[F +o. 37” —Q]U[%”+Q,2n] andr| € [%,N] to have

and I < Nr{ on

T N 2
(81) < Q”N/ d@’/1 dr;(r;)z/ do] cos 0]1y, (v} (r1,61:6', ¢"))
0 + 0
1
=0 'N x m3(Uy N (i =il =N, (82)
where we used (78). To sum we have

(714) = (79) = Cllhllo {49 +07'N x Ni] . (83)

On the other hand for (75) we can use Lemma 5 to have

&€
(75) < CF. (84)

*
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From (83) and (84) we have
(63) < CN?||hlloo sup|Z(v, v")| x (-) = CN?||h]|oo sup |Z (v, V)| x {(74) + (75)}
v,V v,V

& _ &
= CN2lhl]oo 50 120, o) = + llhlloo{ 40 + 07" N x <} (85)
v, v’ N, Ny

where (©) is the underbraced integration in (65).
To summarize, from (53), (54), (55), (56), (58), (60), (64), (73) and (85), we have
established

1 2 NY
@3) < Cllh|%{~ +e W)+ ClIAL,  sup  |Z@.v)|5s
N o <N.J'|<2N M

+Cllhl%,  sup  |Z(v,v)|(N®/o +4N?0)
[v|<N,V[<2N

) / 2 3N® 4 s
+—Clihllse  sup  |Z(, V)| IN +||h||oo(1+—+N +N g) .
N VI<N, v/ <2N 0

(86)

We choose N, M, N, > 0 sufficiently large and ¢ > O sufficiently small so that we

can control (43) < % Combining with the result of the previous subsection (52), we

conclude (38) and and prove Theorem 4.

3.4. Continuity of collision operators K f and I'(f, f). The following is a consequence
of Theorem 4.

Corollary 5. Assume f(t, x, v) is continuous on [0, T] x (Q x R)\& and
w) £, x,v) = (1+ p* )P Ft, x,v) € L0, T] x (€ x R)).
Then Kf(t, x,v) and U+(f, f)(t, x, v) are continuous in [0, T] x Q x R3 and

sup v @wK(f)l <o,  sup v @w@)TL(f, )] < oo.
[0,T1xQxR3 [0,T1xQxR3

Proof. The above boundedness is a direct consequence of (35) and (36). Thanks to The-
orem 4, we already established the continuity of I'y. Therefore we only need to show
the continuity of

1

ﬁQ,(ﬂf, nw) = e_# /]R3 /SZ B(v—u,w)f,x, u)e_%da)du.
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Choose (7, x, v) ~ (¢, x, v) so that |(f, X, V) — (¢, x, v)| < . We will estimate

%Q—(ﬁﬁ m(t, x,0) — %Q—(\/ﬁﬁ m)(t, x, v)

=%/ / efﬁ{B(v—u,a))f(t,x,v)—B(t_)—u,a))f(t_,i,u)}da)du
e Js

1 / / _lu?
= — B(v —u,w)e” 4 f(t,x,v)dwdu
NIT) S

1 / / , _Wee-0? _ _ _ ,
e B(v—u', w)e E ft,x,u — (v —v))dwdu
VIR s

w? =)
q

|Blv—u,w)|le” 4 —e

Eﬁ . lw™ u — (V=) [Jwf||cdwdu
ue

(87)

1 luf? -
+—/ / [B(v —u, w)le” 4| f(t,x,u) — f(t,X,u — (v—0))|dodu,
ViR Js?
@
(88)
where we used a change of variables u’ = u + (v — ) for the underlined term. Using
Taylor’s expansion we control

 lu—=0)]? lu?

1 _lus? 1 2 P _
e 4 =e 2 +§|u*|e 4 |v—v|§§(|u|+8)e4e T X |v—r],

where u, = s.{u — (v —0v)}+ (1 — s,)u for some s, € (0, 1) and |v — v| < §. Therefore
we control

2 1 82 w2 v—u B
[(87) < e lv—ul” < (lul+8)e ¥ e” 4+ du x sup | gof - w)dwlv—7|||lwf]lc
R3 2 vu JS2 [v —u|

v
= CA+ )’ e+ [lwflloo (89)

where we have used the the angular cutoff assumption (1). Now we estimate (88) with
following steps:

. _w? N2 .
Case I1: |u| > N.Sincee™ 4 <e~ 8 e 8 ,we estimate

2 ul?
/ / @ dodu < Ce_NT/ e_%lu —v"du x |lwfleo
u|>N JS§? R3

I
N2
< Ce T v)||lwflloo, (90)
where @ is the underbraced term in (88).

Case 2: lu| < N. A function f is continuous on [0, T'] x (€ x B(0; N)\&. By Lemma
5, we can choose U, C B(0; N) with |Uy| < % with | f(t,x,u) — f({, X, u — (v —
v)| < 5 for [(t,x,u) — (t,X,u — (v — )| < 8 withu € B(0; N)\U,. Therefore
I\MISN sz @ dwdu is bounded by

e
da)du+/ / dodu < C—vW)||wf]lso,
/ueB(O;N)mUx /SZ @ ueBO; N)\U, JS? @ N =

oD
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where € is the underbraced term in (88). From (89), (90) and (91), we summarize

1 _ N2
ﬁ|Q—(\/ﬁf, W, %, 0)— 0 (/i f, W(t, x, v)| 5(0(5)+€_8+%)%||wf||oo,

which is less than ¢ for sufficiently large N and sufficiently small §. O

4. In-Flow Boundary Condition

In this section, we consider the weighted linearized Boltzmann equation
h h
{0 +v-Vi+v—Kyth=wl'(—, —), (92)
wow

where K,,h = wK ( %) with the in-flow injection boundary condition:
h(t,x,v) =w()g(,x,v) for (x,v) € y_. (93)

where the weight function w(v) = {1+ p2|v|2}# in (12). First we will show the formation
of discontinuity using a pointwise estimate of the Boltzmann solution [21]. Then we use
the continuity of collision operators, Theorem 4, to show a continuity of solution on the
continuity set ¢ and the propagation of discontinuity on the discontinuity set .

4.1. Formation of discontinuity. We prove Part 1 of Theorem 1. Without loss of gen-
erality we may assume xog = (0,0,0) and v9p = (1,0, 0) and (xg, vg) € yOS. Locally
the boundary is a graph, i.e. 2 N B(0; §) = {(x1, x2,x3) € B(0;6) : x3 > O(x1, x2)}.
The condition (xq, vg) € yos implies 1, (x0, vo) # 0 and #,(x0, —vg) 7 0 which means
®(£,0) < 0for& e (-6, 8)\{0} (see Fig. 3).

For simplicity we assume a zero boundary datum, i.e. g = 0. From Theorem 1 of
[21], we have a global solution of the linearized Boltzmann equation (92) with zero
in-flow boundary condition, satisfying the decay estimate (15). In the proof we do not
use the decay estimate but just boundedness

sup [|A(1)]loo < C'lIo]]oo- (94)

te[0,00)

Recall the constants Cx and Cr from (35) and (36). Choose ty € (0, min{%, M})
sufficiently small so that

< (700 — 10 €' = (1 = e D) Cr(C)?) 95)

N =

where v(1) = v(vg) for any vg € R? with |vg| = 1. This choice is possible because
the right-hand side of (95) is a continuous function of 7y € R and it has a value 1 when
top = 0. Furthermore assume a condition for our initial datum /¢: there is sufficiently
small 8’ = §'(2, o) > 0 such that B((—zg, 0, 0); §’) C  and

ho(x0, v0) = ||hollee > 0 for (x,v) € B((—to,0,0);8") x B((1,0,0); §). (96)
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We claim the Boltzmann solution /4 with such an initial datum /&g and zero in-flow
boundary condition is not continuous at (fo, xg, vo) = (o, (0, 0, 0), (1,0, 0)). We will
use a contradiction argument: Suppose

[h(to)]xo,vo =0. (97)
Choose sequences of points (x), v,) = ((0,0, %), (1,0,0)) and (x,,v,) = ((%, 0,

CD(%, 0)), (1,0, %)). Because of our choice, for sufficiently large n € N, the character-
istics [X (0; tg, x0, vo), V (0; ty, x0, vo)] is near to ((—zg, 0, 0), (1, 0, 0)), i.e.

1
(x;, — 1oV, v),) = ((=t0, 0, =), (1,0,0)) € B((—10,0,0); 8") x B((1,0,0); 8.
n
Hence the Boltzmann solution at (fo, x),, v},) is
h(to, x},, v)) = ho(x!, — tov)), vl )e "0
1o / h h
+/ e~ VW) (t0—1) [Kwh +wl(—, —)] (T, x), — v(ty — 7), v,)dT
0 w w
/ fo / h h
= [[holloce ™" + / e M n)toT) {Kwh +wl(—, —)}
0 w w
X (T, x — v (to — 7), v))dT.
Combining & (ty, x,, v,) = w(v,)g(to, Xn, v,) = 0 with (97), we conclude
h(th, x,, v,) — 0 asn — 0. (98)
On the other hand, using (94) we can estimate
tim inf |5 (0, x}, v},
= liminf [(t0, X, v}) = 1 (t0, X, o)
/ 0
> timin [lolle™ " ~ [ GuCliollocde
n—oQ 0
to ,
+ / v(vy)e "D Cr () lhol 3d |
0
> [lholloce™" ™M — 1CkC'lholloo — (1 — e~ D0)Cr(C)? 1ol 15

h
= ||holloo (e—v(l)to —1CkC' — (1 — e—v(l)to)cr(c/)Z) - I 02||oo £0,

which is contradiction to (98).

4.2. Continuity away from®. We aim to prove Part 1 of Theorem 3 in this section. First
we recall Lemma 12 of [21], the representation for the solution operator G (¢, 0) for the
homogeneous transport equation with in-flow boundary condition:
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Lemma 11 [21]. Let hg € L and wg € L. Let {G(t, 0)hg} be the solution to the
transport equation
{0 +v - V}G(t,00hg =0, G(0,0)hg = ho, {G(t,0)ho},. = wg.
For (x,v) ¢ yo Ny,
{G(t,0)ho}(t, x,v) = 1,_y<0ho(x —tv, v) + 1;_p ~0f{wg(t — 1y, x — 1V, V).
Next we prove a generalized version of Lemma 13 in [21].

Lemma 12 (Continuity away from ®: Transport Equation). Let 2 be an open sub-
set of R3 with a smooth boundary 02 and an initial datum hy(x, v) be continuous in
QxR3U{y_Uy,U )/01_} and a boundary datum g be continuous in [0, T]x {y_U )/01_}.
Also assume q(t, x,v) and ¢ (t, x, v) are continuous in the interior of [0, T] x Q x R3
and satisfy sup(o 71xQxR? |q(t,x, v)| < 00 and supy rixq |¢(-, " v)| < oo for all
veR3 Let h(t, x, v) be the solution of

(0 +v-Vi+pth=¢q, h0,x,v)=ho, h|,_=wg.
Assume the compatibility condition on y_ U yol o,
ho(x,v) = w()g(, x, v). 99)

Then the Boltzmann solution h(t, x, v) is continuous on the continuity set €. Further-
more, if the boundary 92 does not include a line segment (Definition 6) then h(t, x, v)
is continuous on a complementary set of the discontinuity set, i.e. {[0, T]x Q x R3\D.

Proof. Continuity on {{0} x 2 x R3} U {(0, 00) x [y— Uy, 1} is obvious from the
assumption. Fix (¢, x, v) € €. Notice that

[di (h(s, X(5), V()e™ h #@XOVOMTy _ g (5 X (5), V(s))e b o X @V M0
N

X Lmax{0,1—m (x,0)},61(8) = 0, (100)

along the characteristics X (s; ¢, x, v) = x —v(t —s), V(s; t, x, v) = v until the charac-
teristics hits on the boundary. Choose (7, X, v) ~ (¢, x, v) and use a change of variables
§s=s5—(f—1t)withs € [t — 1, 1] to have

(LG + T~ 0, K@), Ve H oK 7oy
N
_ - S v —[! ). X v
—qG+(E—1), XG), VG))e ks ¢’(”(H)’X(’)‘V(f))dr}1[7(571) +max{0, 7 (%, 5)},11(8) =0,
(101)

where X(5) = X5+ (f —1);1,%,0) and V(5) = V(5 + (f — 1); 1, %, V).
By the definition €, we can separate two cases: ¢ < tp(x,v) , (xp(x,v),v) €
I—
y-Uyy -

Case of t — tp(x, v) < 0. From the assumption ¢ — 1,(x, v) < 0, we know that (100)
holds for 0 < s < t. Now we choose (7, X, U) near (¢, x, v) so that f — #,(X, v) < 0, and
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X(5) = X(5+ (f —1);1,%,v) is in the interior of Q for all 5 € [t — 7, t]. Taking the
integration over [min{0, ¢ — 7}, ¢] of (100)—(101) to have

h(t, x,v) — h(F, %, 1) = ho(X(0), V(0))e~ Jo (=X @.V(ndr
—ho(X(t — 1), V(t —))e™ o +i—0.X(1),V(r))dr

4 1
+/ {1[max{o,t—tb(x,v>},t1(S)q(s, X(5), V(s)e ™ Js #@X@.V)dr

min{0,r—17}

_ _ _ ot PPN
L emax(0.7—1y 5.5, (5 + (T = 1), X(5), V(s))e™ hr 440 ”’X(’)’V(”)d’]d&

Since hg and ¢ is continuous, it is easy to see that the first line above goes to zero when
(f,x,v) — (¢, x, v). For the remainder we separate cases: t —f > Oand ¢t — f < 0. If
t —t > 0 the remainder is bounded by

t ' ) i
/ i 1g(s)els $OT _ (s + (1 — 1))e s 2T+T=D)
1—t

+|t — t_| sup ||q(s)||oogtsup05s§r ||¢(S)Hoo’

0<s<t

where the first term is small using continuity of ¢ and ¢, and the second term is small
as (f,x,0) — (t,x,v). The case t — < 0 is similar.

Case of (xp(x,v),v) € y_ U )/01_. We only have to consider cases of t > 1,(x, v)
and t = tp(x, v). By definition (xp(x, v),v) € y— U )/017. From Lemma 2, we know

that 7 (x, v) is a continuous function when (xp(x, v), v) ¢ y— U yol_. In the case of
t > tp(x, v), for (7, X, 0) ~ (t, x, v), we have 7 > t,(X, v). Taking the integration over
[min{0, ¢ — 7}, ] of (100)—(101) to have

h(t,x,v) — h(f, X, D)
=wgt —tp(x, v), X(p(x, v)), V(tn(x, v)))e
—wg(t — (X, 0), X ((x, 1)), V(tp (X, 0)))e

! 1
+ / q(s, X (), V(s)e™ Js #EXOV @M
1

—tp(x,v)

t _ _ _
—/ q(s+ (T — 1), X(5), V(s))e™ b o+T=0.X@.V(@)dr g
t

—tp(X,0)

— e #EX @),V (D)

*f}'t—w,m ¢ (T+(i—1),X(7),V(1))dT

Using the continuity of 7, and ¢ and ¢, it is easy to show that |k (¢, x, v) —h(f, X, V)| — 0
as (¢, x, V) — (¢, x,v). Inthe case of t = 1, (x, v) we can choose (¢, X, V) ~ (t, x, V) SO
that f, (X, v) € (t — ¢, t +¢). Taking the integration over [min{0,  — 7}, ¢] of (100)—(101)
to have
|h(t1 X, U) - h(fv )Ev ﬁ)l S wg(t - tb(xs U), X([b(xs U)),

XV (tp(x, v)))e S PEX OV OME

gy 0w — (%, D), X (1y(F, D), V (1 (%, D))))e Jrmmien ¢TI0 X0V (mdr

_ - _ ot SN Y >
ey cho (Xt — 1), V(1 — i)™ hr o+ E=0.X @V @)dr
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t
+/
t—tp(x,v)+e

—q(s + (T — 1), X(5), V(s))e™ ks #@+EDXO V@ |y

q(s. X (), V(s))e™ b #rX@.VEnde

+2¢ sup ||g(s)] |ooet5up05s§r H‘b(s)Hoo’
0<s<t
where the first three lines can be small using the compatibility condition and continuity
of hQ in. QxR3U{y_ Uy, U )./OI_} and a continuity of glon.[O, T] x {y-U yol_} and
continuity of ¢. For the fourth line above, we use the continuity of ¢ and ¢.

If the boundary 92 does not include a line segment (Definition 6) we have € =
{0, T] x @ xRN\D. O

Proof of Part 1 of Theorem 3. We will use the following iteration scheme

hmo pm hm hm+]
(0, +v- Ve + VI = K hm+w[‘+( )—wF_ (—, ) (102)
w w w w

with h"*1|,_g = ho and A"+ (z, x, v) = wg(t, x, v) with (t, x, v) € y- Uy . Notice
that this sequence is used in (242), p. 803 of [21] and we use the smallness of the initial
datum and in-flow datum crucially. For simplicity we define

wnoopm W hm+1
qg" = Kyh™ +wl, (— —)—wF_ (—, ) (103)
w

w w w

Step 1. We claim
h' is a continuous function in €7 (104)
foralli € N and for any T > 0 where
Cr=¢n{0,T] x Q x R}, (105)

where the continuity set € is defined in (10). We will use mathematical induction to
show (104). We choose h° = 0, then (104) is satisfied for i = 0. Assume (104) for all

i=0,1,2,..., m. Rewrite wl'_ (ﬂ hmH) =v (\/ﬁh—ulf) h"*1 then the equation of

w’ w
hm+l is

R\ e m hm "
{0; +v-Vy+v()+V f }h = K,h" +wl', . (106)
w w

From Theorem 4 and Corollary 5 we know that v (ﬂ h ) andwly ( h ) is continu-

w’ow
ousin[0, T]1x 2 xR3. Apply Lemma 12 where ¢ (¢, x, v) corresponds to v(v)+v(\/5h7)
and ¢(z, x, v) corresponds to the right hand side of (106). Then we check (104) for
i=m+1.

Step 2. We claim that there exist C > 0 and § > 0 such that if C{||h¢|lco +
SUP)<s <00 [lWE(S)|loo} < & and Cllho|lcc < & then there exists T = T(C,d) > 0
so that

sup ||2" ()loe < Cllholloos (107)
0<s<T

for all m € N. Moreover {h"}°°_ is Cauchy in L>°([0, T] x Q x R?).
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First we will show a boundedness (107) for all m € N. We use mathematical induc-
tion on m. Assume SUpy<; <7 1" (5)|loo < Cllholloo, Where T > 0 will be determined

later. Integrating (102) along the trajectory, we have

Rt x,0) = Ly epe” "M ho(x — tv, v)
Ly emye Oy ) g (t — 1y (x, ), xp(x, V), V)

t hm hm
+/ e—v(v)(t—s){Kwhm +wl, (_’ _)
w

max{t—1,(x,v),0} w

L hm+l
—wl_ (—, ) s, x = (t = s)v, v)ds
w'ow

= llholloc + sup [lwg(s)lloo +1Ck sup [|A"(s)]loo

0<s<t 0<s<t

+Cr sup (11" )lloo sup (116" @)lloe + 1"+ (9)]I0)

0<s<t 0<s<t
and

1+tCxC + CrC{||h +
sup ||hm+l(s)||oo < k r {|| 0||OO Supg ||wg(s)||00}
0s=r 1= CrCHllhollno + supy [[wg()lloo)

X[Ilholloo+ sup ||Wg(s)||oo}

0<s<t

<C [Ilholloo + sup IIwg(S)Iloo] ,
0<s<t
where we choose C > 4 and then {[|/¢]]c0 + SUPp<s<; llWg()]loo} < ﬁ and then

_ C-3
T = 2CkC "

Next we will show the sequence {A™} is Cauchy in L*°([0, T] x Q x R3). The
equation of A"+ — p™ is

(0, +v - Ve + V}(R" — My = ™, (108)
"™ — ™)|=o = 0, (W™ —h™)|,_ =0,
where
Wnopm — hmfl hmfl —pm hmfl
§" = Ky(W" — " Y+ wly (—,—)—wF+( , )
w w w w
W hm+1 —pm hmfl —pm pm
—wl_ (— —) +wl_ (— —) . (109)
w w w w
From (35) and (36), we have a bound of g™,
sup 1" (s)|leo < Ck sup |[{A™ —h"~1}(5)]loo
0<s<t 0<s<t
+Crv){ sup [[{A™ — """} ($)lloo + sup [[{A™ — "™} ($)]loo0}
0<s<t 0<s<t
x(sup [|hA™(s)|loc + sup 12" (5)]loo)- (110)

0<s<t O<s<t
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Integrating (108) along the trajectory, we have
A" = R ()]loo
t
< [ s~ @ - vl
0

< Ckt sup [[{A"™ — " "11() oo

0<s<t

0<s<t

+CCr (Wlolloo + sup ||wg(s)||oo)
x 1 sup [[{A™ = K"} ($)lloo + sup [[{A™ — A" }(5)]loo | -
()Ssst 05&51
If we choose CCr|lhol|os < § and CxT < § then
1
sup |[{A™ — B} ()]0 < 5 sup |I{A" - R O
0<s<T 0<s<T

Then we have

sup [I{A™ = A"} (5)]loo

0<s<T
< sup [{A" = A" () oo+ -+ sup [[{A" — B"Y(9)]loo
0<s<T 0<s<T
1 1 +1
=gt "+E}0;1£T|I{h” — 1"} loo

2 1 0
< o5 sup IR = h)s)lle
0<s<T

4
Z—nC{Ilholloo + sup |[lwg(s)lloo}s

0<s<T

IA

which means that the sequence {#"} is Cauchy in L>([0, T] x Q x R3).

Step 3. From previous steps we obtain that 4 with lim,,_, o, 4" is a continuous function
on €r. Now we claim that 4 is continuous in €. Notice that 7" only depends on ||/40]|so
and supy—, -7 [|lwg(s)|lec. Using a uniform bound of supy—, o, [[/2(s)]lcc (Theorem 1
of [21]) we can obtain the continuity for / for all time by repeating [0, T1, [T, 271, .. ..
If the boundary 92 does not include a line segment (Definition 6) then every step is
valid with [0, co) x {Q x R*}\D instead of € and [0, T'] x {Q x R3}\® instead of ¢7.

4.3. Propagation of discontinuity.
Proof of 1 of Theorem 2.
Proof of (20). In order to show the upper bound of discontinuity jump (20), we will show

1,
[A() xos(r—t0v0v0 < [hig.x0.uge € FCu1h0llo) (HI0l7 (1 =10), (111)
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when (xg, vg) € yos and t € (fo, 1o+t (xg, —v0)). Choose two points (x, v'), (x”,v”) €
{2 x R3\&} N B((x, v); §)\(x, v) and compare the representation
|h(r, x",v") — h(t, x", v")]
= IZ—IOZlb(x’,v’)h(t - tb(-x/a U/), .Xb(.x/, U/)9 U/)
Xe_“(”/)lb(x/’v/)_.ftr—rb(x’.u’) V(/EL) (e x' (=) v)de
_ Nt —ta)— [T h I (4 ’o
+1t—fO<tb(X/,U/)h([03 x' - (t— IO)U/» U/)e V= fro VWX T nde
_lt—t()ztb(x”,v”)h(t - tb(-x”a U”), Xb(.x//, v”)’ U”)
xe_v(v”)th(x”’v”)_-[:*’b("”-”” v(\/ﬁ%)(r,x’—(t—r)v’,v’)df
_ Ny [T h " (g "oon
e T (O L
! h h ! / /
+‘ {Kwh+wli(—, =)}, x = —s)v,v)
max{0,r—rto—t, (x', ")} w w

1

eV =s)= [ v(ﬁg)(r,x’—(t—r)u’,v’)drds

! h h 7 "noon
- {Kwh+wli(—, =)}s,x" — (@ —s)v,v)
w w

max{0,t—tg—tp(x”,v")}
e VW E=9)= [ v(JE ) (Tx" —(t=)" W)d g |
It is easy to see that if £ — 7y > 11,(x’, v') then as § — 0 we have
t—t(x, V) = 19, xp(x', V) = xp,
and if t — #9 < tp(x’, V') then as § — 0 we have
x' = (t —to)v' = xo.

Therefore the first four lines converge to
o0 —t0)= [ V(L) (1,50~ (to—T)v0. v0)d T

L3
w

. For the last two lines, using the
), v( /1 %) we conclude that it converges to zero. Therefore

[h]to,xo,vo X
continuity of K/, I‘(%,
we have
— t—ty)— ! 4 Xo—(fo— s d
[h(t)]x0+(t—t0)vo,vo = [h]lo,xo,voe Vo) fto V(ﬁw)(f o=t
(L 4 _
< [y xop X € (g7 —CuwC'llholloo) A+[vo])” (¢ to)’

where we used

vw(v)z/ / B(u—u,w)e*#w”(u)dwdu (112)
R3 JS2
with Ci(1+|v|)y < vp() < Cu(l+|v])Y. (113)

Remark that the Proof of (20) is valid for in-flow, diffuse and bounce-back cases.

Proof of (22). Assume [h(t0)]x,,0, 7 0 and 1y € (0, 1 (x0, —v9)) With (xg, vp) € yOS.
Further assume that the boundary 92 is strictly concave at x( along the v direction (21).
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Step 1 Claim. We can choose sequences (¢, x,, v)), (t/, x), v)) € [0,00) X Q x
R3 N B((to, x0. v0); 1)\(f0, X0, vo) such that lim,— o [A(t), X}, v)) — h(t), X}, V)| >

%[h(t())]xo,v0 # 0. From [h(t))]xy,v, 7 0 We may assume

3
sup |h (1o, xg, vo) — h(to, xq, vg)| = Z[h(tO)]xo,vo #0,
(00 (xf v ) €B(x0,v0); )\ (x0,v0)
(114)
for all n € N. And for each n € N we can choose the desired sequences.
Step 2 Claim. For given ¢ > 0, up to the subsequence we may assume that
(b (x5 ), V) € B((x0, v0); €)\B
(xp(x), v, v & B((x0,v0); ) UG foralln € N. (115)

We remark that a continuity G (¢, x, v) = w(v)g(¢, x, v) on [0, 00) x {y_ U yOS}, ie.

[ G|[0,oo)xy7]to,xo,v0 = w(vo)[ gl[O,oo)xy,]to,xo,vo =0 forall
(0, X0, v0) € [0, 00) x {y_ Uy} (116)

is crucially used in this step. In order to show the final goal (115) of this step, we need
to prove following statement.

Assume (xq, vg) € yos and 1 (x0, vo) > t9. Then for sufficiently small ¢ > 0
1
there exists N > 0 such that if (x, v) € B((xg, vo); —) forn > N and xp(x, v)
n
¢ B((xg, vo); €) then we have 1, (x, v) > 1. (117)

We will prove (117) later and show (115) using (117). It suffices to show that there are
only finite n € N such that

1 1
(b (x5 V), v,) € B((x0, v0); AR (b (x5 ), ) € B((x0, v0); NG, (118)

1 1
or (xn(xy, vy), vy) ¢ B((x0, o); A (b (x5 vy), vy) & B((x0, v0); U 6.
(119)

Suppose there are infinitely many n’ € N satisfying (118). If ¢ > 0 is sufficiently small
then (118) implies that 7o > m(x/,, v/,) and 7o > tp(x/),, v",). The Boltzmann solution
h at (o, x;,, v”,l/) is

h(to, x),, v)) = h(to — tp(x,,, V), Xp (X, VL)), U)))

_ ’ _ 77 vy o h I roo
e v )(to—tp(x],,v)))) fr(rtb<lenv,’,>v(‘/ﬁw)(r’x"’ (o=, )dT

10 h h !/ /! !
+ {Kwh +Ti(—, —)}s, x, — (o = $)v,, v,)
l()*[b()C;L,,U;,) w o w

e~V U 0=9)= [0 V)] —o=T)v), v dT g o
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"

and a similar representation for i (g, X,

and h(to, x;l’,, v;l’,) to conclude

v",). Compare representations of % (to, x/,, v/,)

/lim |h(t0, x,;/, U’/l/) - h(to, x’/l,/, v;l//)|
n—oo

= lim |h(to — (X, V), Xb (X7, V), v))
n—0o0

_h(t() - tb(x;,//a U,//l//)7 -xb(-x,/ll/a v;l//)5 v;{’)'

0 h
Xe_v(UO)(IO_tb(XO’UO))_LO—!b(xO,UQ) V(1) (T,x0—(to—T)v0,v0)dT

= [hl{0,00) x = ]to—tb (x0,v0),xp (x0,v0),v0

0 h
Xe*V(UO)(IO*tb(XOsUO))*f,O,,b(Xo_UO) V() (T, x0—(t0—T) v, v0)d T

)

where we used the continuity of v(ﬁ%) and F+(%, %). Further using the in-flow
boundary condition 4|,_ = wg, we have

,hm |7 (1o, xr/z” U;,/) — h(t, -x;l/’v U;l//)| =< [gl[O,oo)xy,]to,xo,vow(UO)
n’'— 00

.[0
Xe_”(UO)(to_tb(xo’UO))_-fto—th(Xow

0 VW ER0—(o=D)o.0)dT _ ()
where we used the continuity of g on [0, 00) X {y_ U yp}, (116) at the last line.

This is contradicted because we choose the sequences (x/,,v!,), (x,, v/,) satisfying

im0 | (o, X}y, v},) = h(to, X)) vi)| = 5Th(10) 1,09 # O in Step 1.

n/ 9
Now suppose there are infinitely many n” € N satisfying (119). Because of (117) we
have 1 < t(x/,, v, ,) and tp < ty(x)),, v)’,). The Boltzmann solution % at (19, x,,, v.,,)
is

’ 0 h ’ ’ ’
- th— - )T, —(to— s d
h(to, .x;l//, v’;//) = ho(.x’;// - tOU}/’l”’ v;l//), U;l//)e U(U"”) 0 fO V(\/ﬁw)(t X"” (o t)v"” U””) !

to h h / / /
+ {Kwh+F+(E, E)}(S, P (t() —S)Un//, vn//)
0
Xefv(v;,,)(tofs),f;() v(ﬁ%)(Tyx:[//*(IO*T)U,;//,U,;//)deS’
and same representation for A(z9, x',, v//,). Using the continuity of /o we see that
lim |h(tg, x' 0, v 0) — h(tg, x", V"
n%oo| (o n’ "”) (to n’ n”)l

!, — t()UI/,l//, U;l//) - h()(x,/,/// - t()v// v;,///)|

== nli)ngo |h0(.xn// n'»
4] h
« w(vo)ew(vo)(toftb(xo,vo))fj}o,,b(xo,vo) V(I ;) (T, x0—(10—T)vo,v0)dT
=0,

which is also a contradiction.

Now we prove (117). We can choose ¢ > 0 sufficiently small so that 02N B(xg; &) =
{(x1, x2, P(x1,x2)) € B(xp; €)}. From tp(x0, vg) > fo we know that a line segment
between xg and x( — foxo has only one intersection point xo with 9€2, i.e. xg, xo — fovg N
02 = {xo}. Furthermore we can choose ¢ > 0 so large that Use[O,to] B(xg — svp; 0) N
9 C B(xq; €). Choose N € N sufficiently large so that x, x — fov C Usero.10) BGo —

svg; o) for all (x, v) € B((xg, vo); rll). If xp(x, v) ¢ B((x0, vo); &), then x, x — fpv N
02 = () and this implies ,(x, v) > 19.
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Step 3 Claim. Choose t > 0 so that r — 1y € [0, f(x0, —vo)) and denote x = xo + (¢ —
fo)vo, v = vp. Then there exists N € Nsothatr—zy < fp(x,,, —v,) foralln > N.Using
(117) we only have to prove xp(x;,, —v,,) ¢ B((x0, —vo); &). From (115) we know that

n’
xp(x),, v),) € B(xo; €). We assume that 2N B(xo; €) = {x € B(xp; €) : x3 > ®(x1, x2)}
and n(xg) = (0,0, —1) and vg = |vg|(1, 0, 0). Let’s define

W(s) = @((x)1 + 51, ()2 +5()2) — ((x,)3 +5(v;)2).

Since x], €  we have W(0) < 0 and ¥ (1 (x),, —v),)) = 0 = W(—tp(x}, v),)). Because

n’
of the strict concavity along the vg direction at xo (21), for sufficiently large n so that

(x),, v),) ~ (x0, vo) we have

/" _ / / a)%lcb axlaxzcb (U;,)l 1
w(s)—<(vn>1,<vn>z)(3x28x1q, 25 ) () < —2C0m

where the Hessian of @ is evaluated at ((x))1 + s(v))1, (x})2 + s(v})2). Since
{x, +sv, : s € (—tp(x),v,), tp(x,,—v,))} C Q we have W(s) < 0 for s €
(—tp(x,, v),), tb(x,,, —v))). Therefore &' (—m(x, vy,)) < 0 and &' (1, (x),, —v,,)) > 0.
This is a contradiction because

tb(x,/l,—vﬁl)
0< d>/(tb(x;l, —v,/l)) = q)’(—tb(x,;, v;l)) +/ " (s)ds <0

—tp(x;,,0,)

1
_ECX(),U(){tb(x;l’ _U:,l) + tb(-x,/flv v,/,l)} < 0'

The consequence of this step is that for n > N we have a representation of & at (¢, x, v),

/ 't h ’ ’oo
- —19)— = - d
h(t, x;, + (t — 19)vy,, vy,) = h(tg, x;,, v),)e V) —t0) = fiy VR @ X HT—10) vy, v)d T

t h h .,
+ [ Ky +wl(—, =)}, x4 + (s — t0)v,,, v,)
0 wow

e VU =)= [{ V() (@3 +HT—10)v,.v)dT g o (120)

Step 4 Claim. For given ¢ > 0 there exists § > 0 so that if |(y, u) — (x0, v9)| < 6 and
[(x,v) — (x0,v0)| < 8 and ty < tp(y, u) and ty < tp(x, v) then

|h(to, y, u) — h(tg, x, v)| < &. (121)

We have h(to, y, u) = ho(y — fou, w)e~ @0~ VR @y=(to—0yuu)de
o h h 10 h
+ / {Kwh +To(—, )5,y = (t — ), u)e ™ W09 J7 vV @y =t —ouandr g
0 w w
and similarly A (19, x, v) = ho(x — fov, V)e YW= Jo’ V) (Tx—(o=)v.v)dT

‘o h h 10 h
+/ {Kph+Ty(—, —)}(s, x — (tg — $)v, v)e” "D~ P vEpEe=to—Dv.0dT g g
0 w w
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Let’s compare the arguments of two representations:
[(y — tou, u) — (x — tov, v)| < 2(1 +19)8 for ho,
h
(T, y — (to — Du, u) — (7, x — (to — T)v, V)| < 2(1 +10)8 for v(/u—),
w

h h
(s, y — (to = S)u, u) — (s, x — (1o — $)v, V)| < 2(1 +10)8 for Kyh+T4(—, —).
wow

Using the continuity of ho, v(/® %), K,,h and F+(%, %) we can choose the desired
& > 0 to conclude (121).

Step 5 Claim. Choose t > 0 so that ¢ € [#g, fo + tp(x0, —vo)) and denote x = xo + (t —
fo)vg, v = vg. Let & < %[h(to)]xo,v0 and § > 0 be chosen in Step 4. Then we can
choose u)] € Q2 sothat [u), —v)/| < §and to < tp(x), u,) and t — to < t(x], —ul)).

If there are infinitely many u), sothatty < ty(x,/, u))) andt—tg < ty(x, , —u),), thenup
to subsequence we can define u/, = v;/. Therefore we may assume ¢ — fo > f(x}/, —v))
for all n € N. We assume that 2 N B(xg; &) = {x € B(xp;¢) : x3 > O(x1, x2)} and
n(xp) = (0,0, —1) and vo = |vg|(1, 0, 0). Now we illustrate how to choose such a u/,.
Denote x;, = x = (x1, x2, x3) and v, = (vy, v2, v3). First we will choose (u1, u2, u3)
and s > 0 so that

n(xp(x, —u)) -u =0, (122)

2 2,2
M1+M2

and xp(x, —u) = (x; +5—L— xp + 52—, D(x1 + 52—, x2 +5—2—)). The
Jud+id Jud+d W+l W+l

condition (122) implies that

u3 d ui us Uy
= —®(x1+s

2, 2 ds [, 2 2 2): s
M1+M2 M1+M2 M1+u2

In order to use the implicit function theorem we define

(123)

W(xy, X2, x3; U1, U2;8) = P(xp +S————=, X2+ 5§ —=—=) — X3

ui uz
[5 . 3 [5 . 2
Ml +M2 Ml +M2
ui
S I I
[5 . >
ul +M2
us
2 5 Dy +s
u? +u?
| Hu;

.X2+S—)

Uy
[5 5 2. 2
u1+u2 u1+u2
uy uy
[5, 5] [ 2)’
M1+M2 M1+M2

X2 +S

and compute, using (21),

uj

ui uy 2D 9,0, u?+u 1

W = —s( , )(a xa‘ @ ’32% ) w | < ==Cryros
\/u%+u% \/u%+u§ F17x2 *2 2

ul+u2

[S]

[S]

(124)
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for x ~ xp,v ~ vo and the Hessian is evaluated at (x| + s Z‘ =, X2 +§ 42 )

\/u1+u2 \/u%m% '
Hence s = s(x1, x2, x3; wy, wy) is a smooth function near x ~ xg and (up, up) ~
(v1,v2). In order to study the behavior of s we use Taylor’s expansion: from
W(x1, x2, x3; Uy, uz; s) = 0 we have

1 2D 9y 0.,D\ (u
d(xy, x0) —x3 = Ui, u 1 *1x2 )( 1)
(x1,x2) — x3 u%_'_u%[(l 2)(3x13x2<1> 83243 1

*)
1 P 040u,®\ (ur1)] .2
_5(“1’”2)(axlaxz<b 2o J\u) |

(k)

where the Hessian (x) is evaluated at (x| +5« —=—, x2 45, ——2—) and the Hessian ()
,/u%+u% A\ u%+u%

is evaluated at (x; + s**%, Xy + s**%) with sy, Sxx € (0, 5). For x ~ x¢ and
A u1+u2 ,/u|+u2

(u1, uz) ~ (v1, v2) we know that the right hand side of the above equation converges to

B 92 ®((x0)1. (x0)2) axlaxﬂ((xo)l,(xo)z))(vl)
2(v%+v§>(”1’”2)(axléxﬂ((xo)l,(xo)z) 02,0 ((xo)r. (o)) ) \w2 ) 70

Hence we have control of s, i.e

1
E|¢(X1,X2)—X3I% §S§C|®(X1,X2)—XSI%. (125)

2 2d
From(123),ug:,/ul+u2ﬁ<1>()c1+s\/z1 2,x2+s\/’;2 2)equals

M1+M2 M1+M2

uy
/2,2
uytu
“%"‘”% Y °

2,2
u1+u2

A, D (x1, x2) + —L=02 D (x], x})s + 2=y, Dy, P(x], X))
u%+u% M u%+u% (126)

2 )
Ox, D (x1, x2) + \/%axl 0y, P (x], X5)s + ';2 - 8x2d>(xi, x5)s
M1+M2 A u1+u2

uj u

: 2,xé=x2+s’ : 2forsome0<s’<s§C|<I>(x1,x2)—
A u1+u2 ,/ul+u2

x3| %. Using the smoothness of & we can bound (126) as

where x| = x1 + 5’

1 ® 1
Sl w)l (16 3]+ 100 x) = x5 1)

1
< (126) = Clwr, w)] (11, )|+ 191, x2) = x3?) (127)
To sum for fixed x and direction 21 2(141,142) we can choose u3 such that
u]+u2

n(xp(x, —(u1, uz,u3))) - (ur,uz,u3) = 0 and u3 is controlled by (127). Finally
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2,2
M%‘HA%
U1+U2

we choose (uy, up) = (v1, v2) and find the corresponding u3 so that |v| =
(uy,u,u3)

s us)] )(u1, up, u3z). Then we have the desired

[(u1, uz, uz)|. Define u), = —v+2(v-
u), for sufficiently large n € N.

Step 6. To sum for (¢, x, +(t—to)u,, u,) wehaver—ty < t(x,, —u)) andty < tp(x)), u)
and |h(to, x), u))) — h(to, x)/, v))| < %[h(lo)]xo,vo- Hence the representation of the
Boltzmann solution £ at (¢, x, + (t — to)u),, u,) is given by

h(t,x)) + (t — to)v), ul) = h(to, x,,, u”)e_”(”;’/)(’_’())_frg VR )@ T =10y ) d T

d h h
+/ {Kyh +wl(—, =)}, x,) + (s — to)u, u)
0 wow
e VU E=)= [{ V(R ) (T +(T—t0)u) uy)dT g o
Using (120) we have
ngngo |h(t, x, + (t — to)v),, v,) — h(t, x), + (t — to)u,y, u))]

t h
'Y = hto, x’/l/’ u;:)|e_v(v0)(t_t0)_f’0 V(I ) (T, x0+(T—10)vo,v0)dT

= Jim, it .,

v

lim |A(tg, x,, v,) — h(to, x/, v
[ tim_1ato, %7, vj) = htto, 57, v}

o oo —v(w)(t—t0)— [} V(L) (T, x0+(T—10)v0,v0)d T
Vv = hito, ) u)l} e 0"

— lim |h(tg, x
n— 0o

b

1 h
> %[h(lo)]xo,voe_v(m)(l_m)_f’o (/115 (T x0+(T —t0)vo, v0)d T

which implies that
1 _ / —
[h(t)]x,v = Z[h(to)]xo,vo xe (CutC Cullhollao) (1D (t—10) # 0.

Remark. Through Step 1 to Step 6, we only used the in-flow boundary datum g explicitly
in Step 2. All the other steps are valid for diffuse and bounce-back boundary condition
cases. In Step 2, we only used (116), the continuity of G = wg on [0, 00) x {y_ U yOS}.
Therefore, if we can show the continuity of F on [0, co) x {y_ U )/OS} then we can prove
(22). For diffuse and bounce-back boundary we will prove such a continuity to conclude
(22).

5. Diffuse Reflection Boundary Condition

In this section, we consider the weighted linearized Boltzmann equation (92) with the
diffuse boundary condition

h(t,x,v) = w(v)\/,u(v)/ h(t,x,v)

v n(x)>0

xmcﬂu(v’){m v for (x,v) ey_. (128)

In spite of the averaging effect of the diffuse reflection operator, we can observe the
formation and propagation of discontinuity. Continuity away from ®© is also established.
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5.1. Formation of discontinuity. We prove Part 2 of Theorem 1. The idea of proof is sim-
ilar to the in-flow case but we also use |vg| not only 7 as a parameter. Without loss of gen-
erality we may assume xo = (0, 0, 0) and vy = (Jvol, 0, 0) and (xp, vo) € yOS. Locally
the boundary is a graph, i.e. 2 N B(0; §) = {(x1, x2,x3) € B(0;6) : x3 > P(x1,x2)}
and ®(&,0) < 0 for & € (-6, 6)\{0} (see Fig. 3).

Assume that ||ho||cc < 6 is sufficiently small so that the global solution £ of (92)
with diffuse boundary (128) has a uniform bound (94), from Theorem 4 of [21]. Choose
to € (0, min{$, #p(x0, —vo)}) sufficiently small and |vg| > O sufficiently large so that

% < (ev<lvol>fo — 10CkC" — (1 — 1Dy L ()[R oo

1

w(vo) Jiw)>0)

!

&)(v’)do(v’)), (129)

where v(|v]) = v(v) and Ck and Cr from (35) and (36). More precisely, first choose
|vg| > O large enough to have

L a+pmf 1
w(vo) U (e

then choose #y > 0 as

. |8 t(xo,—vo) 9 1 1
0<tp=min{=, ———, —, , ,
2 lvol” T0v(Jvol)” 10CKC’

2
1 ( 10Cr(C)? )}
log .

v(|vol) 10Cr(C")? -1

Assume the condition for initial datum /¢: there is sufficiently small 8’ =§"($2, 9| vg|) >0
such that B((—#|vo|, 0, 0), §") C € and

ho(x0, vo) = |lholleo > 0 for (x,v) € B((—to|vol, 0, 0); 8") x B((Jvol, 0, 0); 8").
(130)

We claim that the Boltzmann solution 4 with such initial datum % is not contin-
uous at (7o, xp, vo) = (%, (0,0, 0), (Jvo|, 0,0)). We will use a contradiction argu-
ment: Assume the Boltzmann solution 4 is continuous at (fg, xg, vg), 1.e (97) is
valid. Choose sequences of points (x,,, v,) = ((0, 0, %), (Jvol, 0,0)) and (x,, v,) =
((%,0, CIJ(%, 0)), \/%?(lvm,o, %)). Because of our choice, for sufficiently large
n € N, we have

1
(x;l - tOU;l, U;l) = ((_t0|v0|s 07 ;l)’ (lvol’ Ov O))
€ B((—tolvol, 0,0); 8") x B((Jvol, 0, 0); 8.
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Hence the Boltzmann solution at (fg, x,, v},) is

h(to, X3, vp) = ho(x;, — touy, vy )e ™"
R hoh

* / et [Kwh +wl (=, —)] (t, %, = v(to — 7), v))d™
0 w’ w

= | |h()||ooe_v(|v’/’|)to

o / h h
+/0 e V(D=7 [Kwh +wl (-, E)] (T, x — v, (tg — 7), v,)dT.

Using the diffuse boundary condition (128), the Boltzmann solution at (ty, x,, v,) €
[0, 00) x y_is

1
w(lvol) Sy,

h(ty, Xn, vp) = h(ty, x,, V)W do (V).

Using a pointwise boundedness (94) of i, and ||hp||cc < 1, we can estimate

|h(t07 x’/,l, v;l) - h(t()’ xnv Un)|

i) ,
> | [|hol]oce " P0P0 — / (CKC o]0 + V(W,)e " W=D CL(C')2| o 12, }dT
0

ol [ B )
B0 Jy

> ||hol|oce P00 — 10CxC7||ho |00 — (1 — e DY CL(C)? o)A,
1

(v /V’Z’(” ydo (V)

= [lhollso (e—”“”O”O — 19CkC’ — (1 — "W Cr(C')? | hol oo

/ 1 ~ ! /
—C m/vw(v Ydo (v ))

[1holloo
> 0,
2 — #

—C'llhollo

which is contradiction to (97).

5.2. Continuity away from ®. Instead of using the argument of [21] to show continuity
in the case of the diffuse reflection boundary condition we will use the sequence (102)
with the boundary condition (131) and Lemma 12. Notice that this sequence is used
in (242), p. 803 of [21]. This argument also gives a new proof of the continuity of the
Boltzmann solution in a strictly convex domain in a simpler way than [21].

Proof of 2 of Theorem 3. We will use the sequence (102) with 2”"*!|,_o = hq with the
following boundary condition:

Wt x, v) = (¢, x, V) w()do, (131)

w(v) V(x)
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with (¢, x, v) € y_. Notice that the smallness of the initial datum is used crucially in the
following steps.

Step 1. We claim that

1
W) Jy)

W™ (t, x, v )Yw®@)do (v, (132)

is a continuous function on [0, T] x y even if A" € L°°([0, T'] x Q x RY) is only
continuous on [0, 7] x  x R3\Q§. We will show as (7, X, v) — (t, x, v),

! ' (t, x, v w@)do () —

W) Sy w(v) V(j)h (t, x, v)w()do (v).

(133)

Using the fact [V(x)\V(X)], |[V(x)\V(x)| = 0 as x — x and the exponentially decay
weight function of wdo it suffices to show that

/ (@)~ R (@, 0, YD) — B@) R F, V) D))o (v),
V(x)NVE)N{|v'|<M}
(134)

for sufficiently large M > 0. Using Lemma 5 we can choose the open set U, C {v' €
R3 : [v'| < M} so that |U,| is small and A" is uniformly continuous on {|v'| < M}\Uy.
Therefore we can make fV(x)ﬂV()E)ﬂ (1v'|<mynu, Smallusing the smallness of Uy and make

fV(x)ﬂV()?)ﬂ{\v’KM}\Ux small using the uniform continuity of 2™ on {|v'| < M}\Uy.
Hence (133) is valid.

Step 2. We claim

h' is a continuous function in Cr (135)

for all i € N where €7 is defined in (105). By induction choose #° = 0 and (135) is
satisfied for i = 0. Assume (135) foralli = 0,1,2,...,m. Let wI'_ (h’" h”’“) _

W w
v (%) h™*1. Then the equation of h™*! is

m m hl’n

h
{0y +v-Vy+v(@)+v (—)}h’”+l = K,h" + wl, (_, _) )
w w

w

From Theorem 4 and Corollary 5 we know that v (hm) and wly (M M) are

w W’ w
both continuous in [0, 7] x € x R3. Because of Step 1 we know that ﬁ fV(x)
n"(t, x, vV)W (' )do (V') is also a continuous function on [0, T'] x y. So we can apply
Lemma 12 to conclude (135) is valid fori = m + 1.

Step 3. We claim h™ is a Cauchy sequence in €7 for some small 7 > 0. First
we will compute some constants explicitly. From (6) the normalized constant ¢, is
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2 -1
fn(x)_v,>0 e_%{n(x) -v'}dv’' | . Choose n(x) = (1, 0, 0) and then we can compute

the right hand side of the above term:

o I A B I
/ dv vle_T/ dvy 6_7/ dvye 2 =/ —_— (—e_z) dvy X (\/271)2
0 -0 —0o0 0 dvy

37
=27 [—e_2i| =27.

0
Therefore we have ¢, = % Next we will show
1 ~
- W ()do (v') < Cpp* (136)
w(v) v/ -n(x)>0
o2
where w(v)~! = (1 + p2|v|2)ﬂe’%. We follow the computation of Lemma 25 in [21].
For ﬁ, in the case of ,B,o2 > }1 we can see that @w(v)~! has a maximum value at
lv| = ,/4*’*;# which is
o2 .
A+ e | o =dPpPePes p?, (137)
PRV
P

and the underbraced integration in (136) is bounded above by

2

- 1 |2
/ w@)do (V') = —/ (1+p* W) Pe e 2 vjdv
v-n(x)>0 2 v{>0

—2Ju)? 1 1
= — A+u>Pe 0 p™turdu < p~* x — ————du
27 Juy>0 27 Juy=0 (1 + |u|2)f~2
=Cpp™,
where 8 > 2 and combining with (137) we conclude (136).
First we will show a boundedness (107).

Lemma 13. Let k'™ be a solution of (102) with h;":ol = hg and the boundary condition
(131). Then there exist Ty, C, 8 > 0 such that if ||ho||cc < 6 then

sup [|A"($)|loo < Cllholloc forall m € N.

0<s<T,

Proof. We will use mathematical induction. Choose 1° = hq and assume ||/1g||oo < &
and

sup [|A' (9)lloc < Cllhollco, (138)
0<s<Ti
fori =0,1,2,..., m, whered, C, T, > 0 will be determined later. From Lemma 24 of

[21] the representation of 2"+ which is a solution of (102) with the boundary condition
(131) is given by



690 C. Kim

™, x, v)
t
=1, <o(t. x, v){ho(x — v, v)e—”<v>f+/ W= gm (s ¢ (t — ), v)ds}
0
[initial data]
I
(139)
t e~V W(t—t1)
+1()<tl(t,x,v){/ VW= g (g x—(t — 5)v, v)ds+— H},
1 w(v) I, v,
I
(140)
where ¢ was defined (103) and
k
H =1y, <0<yho(xs — 1oy, v1) d%(0)
=1 [initial data]
ko g l
3 [ Mizomaa" o = 0= s odEi)ds (14
—'Jo
m
ko g
+Z/ o< g™ (s, 51 — (01 = $)vp, v)d T (5)ds
1=1 Jl+1
v
+10<pe BT (g, xir, VA Sk (trr1) - (142)
[many bounces]
Here d X (tx+1) is evaluated at s = g4 of
d%(s) = (I5_, doj e i (v)doy} T, e 00U~ dorj ).
First we can estimate [initial data] in (139) and (141),
|k
[1t|§0|h0(x tv, U)|+TZ r,+150<zllho(m—t1vz,Ul)lﬁf(vl)]dUl-udUk
H?:l Vij
<max {1, —— max w(v do...do}h
< max {1, = max ey, oo kol

= {1+ G} 1m0l

where we used (136).
Next we estimate the [many bounces] term in (142) which is a crucial estimate in this
proof. We use Lemma 23 in [21] to bound a contribution of the [many bounces] term in
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(142) in the last term of (140) by

1 - _
_ / Lt 250001020y DGR .. doy X sup [T (5) oo
w) JIE, v 0<s<t

1

< m/vk w(vg)doy /Hl,‘-=11 ), L rx 0,010 )>0)d0%—1 . . .dOY

—k+1
x sup [[A" () oo
0<s<t
5/4 5/4

~ o 2B—4 r 1 =~ g4l 2r
< CgpP~ H sup |1 ($)|loo < Cpp®P™ H Cllholloo,

2 0<s<t

where we used (136) at the last step. The remainders I, I, III and IV are contributions
of ¢, ..., q’”_k. We introduce a notation

H; = tCx sup || (9)lloo + Cr sup [|h'(5)]]o

0<s<t 0<s<t
x( sup |4 (s)||oo + SUp ||h"“(s>||oo) (143)
0<s<t O<s<t
< C|1holloo (CkTi + 2CCr||hol|c0) (144)

where the above inequality holds for 0 < ¢ < T, andi =0,1,2,...,m — 1 and

Hm < (TuCx + CrCllholloo)Cllholloo + CrCllholloo sup [Ih"™*!(5)|loo,  (145)

0<s<T:
where we used the induction hypothesis (138) for (144) and (145). Easily we have

LII <H,,

k
1
IIL IV < E = / dU]../ dUl_l/ d(71+1../ doy
=1 w(v) Vi Vi—i Vit Vi

1
x// Hypre A=) 5 () dsdoy
vV, JOo

k k
1 3
<§H,— b(v)do; < C 2/3—4271,.
=2 m lw(v) v,w(vl) o < Cgp 2- m—1

To summarize, we can estimate all terms of representation of W™ (t, x, v) in (139) to
obtain

112, %, 0)] < kol oo € [2TCic+ 2Cr Cllolloo
5/4

~ - 1 Cap
+kCpp*P~H(Ck Ty +2CCr||hol|o) + Cpp* H

41+ Cp? = w CrCllholloc sup (11" (5)]loc-

0<s<Ti
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N 5/4
Choose k = p>/*. Choose p > 0 sufficiently large so that Cgp?f—* {%}Czp

and then choose T, > 0 sufficiently small so that T, x Cr(1 + Cgp>/*p?=4)
and then Choose C > 0 sufficiently large C > 10(1 + C 8 0*#=*) and choose §

min {zocrc , 30Cr (CCpp/4p*P=4)" } Finally assume ||A0||oo < 8. Then we have

1A IA
I &-&-

5/4

1 - 5 11627
sup (I (9)] oo = o Ilholloe{ 14+Cpp¥ ~H4C [ € pzﬂ—4[ ]
0<s<T, = T=CrCllholleo ' UTTE A 2

+Cr(1+ Cpp/*p?P=4
+CrCllhollos +2CrCyp* P =C|lhol s |}
20 1

C 1 1
< Tollholloe { 15+ C[ 55+ 55 + 50 + 72 || = Cllholl.
19 10 30 30 20 15

Next we will show that 2™ is a Cauchy sequence in L*°.

Lemma 14. Let i be a solution of (102) with h"*'|,—q = ho and the boundary con-
dition (131). Then there exist Ty, C, 8 > 0 so that if ||ho||loc < & then h"™ is Cauchy in
L%([0, T,] x  x R3).

Proof. The equation of h™*! — p™ is
(0, +v - Ve + )BT — ™)y =™ with (B — h™}|,—0 = 0,

(Bt —pmy), = L (", x,v) — "N, x, V)W) do V),
w() J)

where g" is defined at (109). From Lemma 24 of [21] we have the representation

'
(R — W™y (1, x, v) = 1, <0(t, x, v)/ eV gm (s x — (1 — 5)v, v)ds
0

I

i oV —11) i
+1o<s, (t,x,v){/ e WM (s x — (1 — s)v, v)ds+~—/ H},
1 U)(U) K V

I

Jj=1

(146)

where

k f
H=2" [ ly,<02d" " (s, 51 = (tr = )i, v)d Ty (s)ds
1=129

11

1
3 [ S5 = = v w5 ds
1

=1 Y i+l

v
k1 —k
+ o< (B = BT (a1, Xiers 0O S (T4

[[many bounces]]
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First using Lemma 24 of [21], we estimate the [[many bounces]] term for sufficiently
large k > 0 by

1 -
) Hljle v, l{tk+1(t,x,v,v1,v2 ..... vk)>0}w(vk)d0kd0k—l~ ..doy
x sup [[{A" T — B Ky ()] |00
0<s<t
< ! / v (vr)d / 1 d d
_— wI(v 0, Ofk—1...4d0
= QI)(U) Ve k k ];;llvj {te (t,x,v,01,..., vg—1)>0}80k—1 1
x sup [[{A" T — B Ky ()] |00
0<s<t
3 Cyp%4
< Cpp*P™* {5] sup [[{" T — AR () | so
OSSSI

Easily we have i, I < §Hu, IiI, v < C’ﬂpzﬂ_“(??'(mfl,where

§H; = 1Cx sup [|{h — R} (5)]]oo

0<s<t

+C|lhollooCr ( sup [I{h' —h' "1 ($)lloo + sup [{A™F = B'}(5)|]oc)

O<s<t O<s<t

0<s<t 0<s<t

< 2’ sup [I{h" = """ }(s)lloo + sup [|(h""! —h"}@)“oo]’

with T = 4 max{tCxg, C||ho|lccCr}.
To summarize, we can estimate all terms of representation of h’”“(t,x, v) —

h™(t, x, v) in (146) for any m > k to obtain

sup |[{A"™ — h"™}(9)]loo <

0<s<t

k
T ~ _ _ ]
iicﬁpw 3 (Csup T =H 0o
=1

0<s<t

1-27

+ sup [I(A" 7= h ) (6) 1)

0<s<t

T _
+= sup [[{h"™ — B (9) oo

O0<s<t

| Cap¥t
+Cpp?P~* {5} sup [[{h" ! — h’”_k}(S)Iloo],

0<s<t

which is our starting point. Fix a small number 7 > 0 chosen later. Choose p > 0

~ 5/4 ~
sufficiently large so that 2Cg P4 {%}Czp < 7 and then choose T > 0 so small that

—11/22t Cpp*P= < % and 11/22T < %. Then we have

sup [[{A"™" — h™}(5)loo

0<s<t

sf[ sup [[{h™ — K"} ($)lloo + - - -+ sup |[{p" K —h’"‘"}(smoo]. (147)

0<s<t 0<s<t
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Using (147) form, j € Nsothatm — (i + 1)k >0and j =0, 1,...,m — 1 itis easy to
show

sup |[{p™ R — iR ()| oo < F(1 4 )Y

0<s<t

x {sup (A" — =K1Y (5) || oo+ - -+ sup ||{hm—<”“k+1—hm—<"+1>’<}<s)||oo] :

O<s<t 0<s<t
We apply the above inequality term by term in (147) to have
sup [[{A"* = h"}($)lloo < T+ = L sup [[(A" 7 = B K71 () ]loo + - -

0<s<t O<s=<t

+ sup [[{R" 2R — 2Ky (5) o)

0<s<t

< HA+ D = 1) sup (A" — A" THR () oo + - -

O<s<t

+ sup ||{hm7(i+1)k+1 _hmf(i+l)k}(s)||oo}.

0<s<t

Now we estimate

m—n—1

sup [[{h" = h"}$)loo < D sup [[{A" T = "9l
0<s<t =0 0<s<t
m—n—1
< D HU+H =1 {sup [T g2
1=0 0<s<t
+ Sup ||hm—(i+1)k—l _ hm—(i+1)k—l—1||oo}
0<s<t
m—n—1 mei-1]
<> st — U aap 1022 et sup (10— A1)
=0 O<s<t 0<s<t
. m—n—1 [m—l—l]i[g]
<#{a+of =yl ST qa b -l W Csup 1p2 - n2 g+
=0 0<s<t
+ sup [|h' = h'lloc)
0<s<t
< #{+o)f — yliH —(sup [[h% — B o+ sup (R — B0},
{ } PPy {OSI;II loo 05&” oo}

where we choose i = [2==1] — 1 so thatm — (i + Dk — 1 — 1 € [0,k). If T > O is

chosen sufficiently small so that (1 + Hk—1 < %, then {(1 + 7)% — 1}[%]_1 — 0 as

n — oo which implies that

sup [[{A"™ — h"}($)||loo — O, (148)

0<s<t

as m,n — 0o. Thus A is Cauchy in L*°. O
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Step 4. We claim that & is continuous in €. Notice that 7 only depends on
[lholloo and supy<,<7 |lwg(s)|loo (Theorem 1 of [21]). Using a unform bound of
SUPp<s o0 |11(5)]l00, We can obtain the continuity of A for all time by repeating
[0, TT, [T, 2T], .. .. If the boundary a2 does not include a line segment (6) then every
step is valid with [0, 00) x {€ x R3}\® instead of ¢ and [0, T'] x {€ x R3}\D instead
of Q:T.

5.3. Propagation of discontinuity.
Proof of 2 of Theorem 2.
Proof of (20). The proof is exactly same as the in-flow case in Sect. 4.3.

Proofof (22). The proof is exactly same as the proof of the in-flow case in Sect. 4.3 except
for Step 2. As we mentioned in the Remark of Step 2, we need to show a continuity of a
boundary datum on y_ U )/OS. In the diffuse reflection boundary condition case, we need

0 = [ hljo.00)xy-lr.y,v = lim sup A,y V) =R, Y 07|
' 810 1" € B(t;8)
O, 070" € y— N By, v); H\(y, )
, 1 §
= lim sup — h(t',y', )i (v)do (v)
810 .t € B(t;8) w(v ) V(')

o), (") € y— N By, v); O\, v)
1

w") Sy

h(t”,y", )W (v)do (v)

for (y,v) e y_ U yos. This is already proven in Sect. 5.2, Continuity away from ©.

6. Bounce-Back Boundary Condition

In this section, we consider the linear Boltzmann equation (92) with the bounce-back
boundary condition

h(t,x,v) =h(,x,—v) for (x,v) € y_. (149)

6.1. Formation of discontinuity. We prove part 3 of Theorem 1. Without loss of gen-
erality we may assume xg = (0,0,0) and vo = (1,0, 0) and (xo, vg) € yOS. Locally
the boundary is a graph, i.e. 2 N B(0; §) = {(x1, x2, x3) € B(0; ) : x3 > D(x1,x2)}.
The condition (xg, vg) € yos implies 1, (x0, vo) # 0 and ,(x0, —vg) # 0 which means
D (,0) < Ofor& € (-3, 8)\{0} (see Fig. 3).

Assume that [|hg||cc < § is sufficiently small so that the global solution 4 of (92)
with bounce-back boundary (149) has a uniform bound (94), from Theorem 2 of [21].

Recall the constants Cx and Cr from (35) and (36). Choose o € (0, min
{%, M, M}) sufficiently small so that

1
- < (e—““)fo — 1oCkC — (1 — e_”(l)’O)Cr(C/)Z) . (150)

Assume a condition for the initial datum A there is sufficiently small 8’ = §(£2, 7o) > 0
such that
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B((—t0,0,0),8"), B((t,0,0),8) C 2 and

ho(x,v) = [lhollee > 0 for (x,v) € B((—10,0,0);8") x B((1,0,0); 8,
ho(x, v) = =|lhollec > 0 for (x,v) € B((t9,0,0);8") x B((—1,0,0); 8.

We will use a contradiction argument: Assume the Boltzmann solution / is continuous at
(to, x0, vo), i.e. (97) is valid. Choose sequences of points (x/,, v,) = ((0, 0, }l), (1,0,0))
and (x,,, v,) = ((}l, 0, <I>(,ll, 0)), ———(1, 0, %)). Because of our choice, for sufficiently

large n € N, we have

1
(x,, = tovy, v,) = ((—t0, 0, =), (1,0,0)) € B((—t9, 0,0); 8") x B((1,0,0); 8",
n

1 fo 1 fo
n = 10(=vn), —vn) = (- + ——=.0, ®(-, 0 nSl+ 12
(xn — t0(—vp), —vp) ((n"' 1+ 1/n2 (n )+n\/m)
1 1
R — _]10a__
NS n

Hence the Boltzmann solution at (o, x,, v;,) and (f, X,, v,) is

h(to. x},. v}) = ||ollece™ M0
f0 —v(—=v)(to—71) h h / / ’
+ e WO R ph + wl | —, — )}, x, — (—v,)(to — ), —v,)dT,
0 w w

h(to, X, vp) = h(to, Xp, —Vy)

—[lholloce™ 0

fo h h
+/ eV K b+ wD (7, —)}(r, Xy — (—v)(t0 — T), —vy)dT.
0 w w

Using a pointwise boundedness (94) of 4 with (35) and (36), we have

h(to, X, v},) > ||hollece "D — 1CkC'[|o]]00 — (1 — e DY Cr(CN?||ho ||,
h(t0, Xn, va) < —||holloce ™M + 1CxC’| |00 + (1 — VD) CR(C")?||ho||%, -

Therefore using (150),

B0, X3 0,) = B0, % ) = 2lholloe (7710 = 10CiC’ = (1 = e D) Cr(C)?)
> hollos # 0.

which is a contradiction to (97).

6.2. Continuity away from Dpp. We recall some basic facts to study the bounce-back
boundary condition from [21].
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Definition 7 [21] (Bounce-Back Cycles). Let (¢, x,v) ¢ yo U y—_. Let (ty, x9, Vo) =
(t, x, v) and inductively define for k > 1:

(B Xk15 Vka1) = (B — o (Xk, V), xp(Xk, Vk), —Vk).

We define the back-time cycles as:
Xa(si t,x,0) = D i)+ (s — ek, Valsit,6,0) = D T ()i
k k

(151)
Clearly, we have v = (—1)**v, fork > 1,
1 — (=1 1+ (=Dk
= X1+
2 2
where x| = x —tp(x, v)vand xp = x — [21p(x, v) +tp(x, —v)](—v) and letd = t; — 1p,
thenty — tpe1 =d > ty(t, x,v) > 0fork > 1, and

Xk X2, (152)

t(t,x,v) =1t —tp(x,v),
B, x,v) =1 —tp(x1, v1) =11 — (tp(x, V) + (X1, V1))
=1 — 2p(x,v) +tp(x, —v)), (153)

te1(t, x,0) =11 — kQty(x, v) + 1 (x, —v)).

Lemma 15 [21]. Lethg € L¥(Q2 xR3) and ¢ (¢, x, v) with supp, 71xq 19 (- v)| < oo.
There exists a unique solution G(t)ho of

{0r +v- Vi +p{G()ho} =0, {G(0)ho} = ho,
with the bounce-back reflection {G(t)ho}(t, x,v) = {G()ho}(t, x, —v) for x € 0.
For almost any (x, v) € 2 x R?>\ yp,
(GOhoHt, x,0) = D Ligr,10(Oho (Xa(0), Vea(0)) €™ o #7-Xal®:Valoddr (154
k
where X¢(t) = Xa(t;t, x,v) and Vo (t) = Va(r; t,x,v) in (151).
Next we prove a generalized version of Lemma 16 in [21].

Lemma 16 (Continuity away from ®j,: Transport Equation). Let Q2 be an open sub-
set of R3 with a smooth boundary 02 and an initial datum ho(x, v) be continuous in
QxR3 Uf{y— Uy+UyOI }. Also assume q(t, x, v) and ¢ (t, x, v) is continuous in the interior
of [0, T1x Q x R3 and suppg 1o xRr3 19, x, v)| < 00 and supyy r1xq [P (-, V)| < 00
forall v e R3. Let h(t, x, v) be the solution of

{0 +v-Vy+olh=¢q, hO,x,v)=ho, hl|, (& x,v)=~h(x,—v).
Assume the compatibility condition on y_ U yOI -,
ho(x, v) = ho(x, —v).

Then the Boltzmann solution h(t, x, v) is continuous on Cpp. Further, if the boundary
0S2 does not include a line segment (6) then h(t, x, v) is continuous on a complementary
set of the discontinuity set, i.e. [0, T] x {2 x R3}\©bb.
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Proof. The proof is similar to the proof of Lemma 16 of [21]. Take any point (¢, x, v) €
[0, T] x 2 x R3 and recall its back-time cycle and (154). Assume ;41 < 0 < t;,;,. Using
(154), h(t, x, v) takes the form

1o Gl — oy U, )e—zzgf,’kﬁl¢(r,xk—(rk—r)vk,vk)dr—.fé’"¢<r,xm—<zm—r)vm,vm)dr
m mvYm, Ym

m—1 .
+ Z/ q(s, xx — (tx — $) vk, vk)
k=0 v lk+1

o™ 2450 Jiy B xi— =0y vde— [ ¢ (rn—(t—T)ug.vp)de
Im
+/ q(s, X — (tm — $)Um, V)
0

xe zr'n:701 ﬁilﬂ ¢ (T —(t _T)Uisvi)df_f;m & (T, Xm— (i —T) U, U )dT . (155)

Take any point (¢, x, v) € €. By the definition of €, we assume that (x, v) € Q x R3
or(x,v) € y_U )/01_ and we can separate three cases: r —fp(x, v) < 0, (xp(x,v),v) €
y— Uy~ with 1 < 2t5(x, v) + tp(x, —v), and (xp(x, —v), —v) € y— Uy]  with
(xp(x, V), v) € y- Uy

Case of t < ty(x, v). Simply we have A(t, x, v) = ho(x — tv, v)e™ o $Ex—(=—DvV)dT |

fol q(s,x — (t — s)v, v)efsr¢(T’x_(’_f)”’”)dfds and use the continuity of ¢(¢, x, v) and
¢ (t, x, v) to conclude the continuity of i(¢, x, v).

Case of (xp(x,v),v) € y_ U )/01_ with t < 2tp(x, v) + tp(x, —v). A representation of
h(t, x, v) takes the form

[t —(f— _(h —(t —
ho(x1 — tiv1, v1)e f,ld)(t,x (t—t)v,v)dr—[y! ¢ (r.x1—(11—7)v1,v1)dT

t ”
+/ q(s,x — (t —s)v, v)e_-/s ¢rx—(t—)v.v)dt g
f
n ot L 1 e
+/ 45, x1 — (11 — $)vy. v)e S oo de=[{ ¢t —(—vwrvndr 4
0

Thanks to Lemma 1 and Lemma 2, the condition (xp(x, v),v) € y_ U yOI ~ implies
continuity of x1(x,v) = x — xp(x,v), t1(t, x,v) =t — tp(x, v). Therefore we can
show the continuity of i(¢, x, v).

Case of (xp(x, —v), —v) € y_ U yOI_ with (xp(x,v),v) € y_ U yol_. We have (155)
for h(t, x,v). Thanks to (152) and (153) and Lemma 1 and Lemma 2, the condi-
tions (xp(x, —v), —v) € y_ U )/01_ and (xp(x,v),v) € y_ U yol_ imply continuity
of xx (x, v), vi(x, v), t (t, x, v). Therefore we can show the continuity of i (¢, x, v).

O

Proof of Part 1 of Theorem 3. Following the in-flow and diffuse cases, we use the iter-
ation scheme (102) which is equivalent to (106) with bounce-back boundary condition
R, (2, x, v) = K™ 1(t, x, —v) and an initial condition 21|, = hy.

Step 1. We claim that hiis a continuous function in & 7 for all i € N and for any
T > 0, where Cpp 7 = Cpp N{[0, T] x 2 X R3}. Choose hY = 0 and use mathematical
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induction. Assume A’ is continuous Cpp,7 fori =0,1,2,...,m. Apply Lemma 16 to
conclude that 2"*! is continuous in Cpb.T-

Step 2. We claim that there exist C > 0 and § > 0 such that if C||hglleoc < & then
there exists T = T'(C, §) > 0 so that supy_,—7 ||1" (5)|loc < C||hol|0o and {A™}0_ is
Cauchy in L*°([0, T x Q x R3). First we will show the boundedness using mathemat-
ical induction. Assume supy,<7 || (s)||cc < C||ho||oo, Where T > 0 will be chosen
later. Applying Lemma 15, ¢ and ¢ correspond with v and the right hand side of (102)
respectively to have a representation of pmtl (t, x,v),

t o pm
ho(Xa(0), vcl(O))e—“<”>’+/ V=g b wly, (— —)
0 w w

w

hm hm+1
—wl_ (— ” )}(s,Xcl(S),Vcl(S))ds,

where [Xa(s), Va(s)] = [Xa(s; t, x, v), Va(s; t, x,v)] is in (151). The above term is
bounded by

[lholloo+1Ck sup K" ()|loo + Cr sup 1K™ ()lloo sup (A" ()loo + 1A ($)]loo),
0<s<t 0<s<t 0<s<t
where the constants are coming from basic estimates, (35) and (36). Choose C > 4 and
S < 2C and T = 2C C Then we have supy<, <7 A" () ||oo < CllH0]loo-
Next we will show {2} is Cauchy in L*°([0, T'] x Q x R3). Recall g (¢, x, v)

from (109). The equation of A”*! — h™ is (108) with a zero initial condition (A"*! —
h™)|,—o = 0 and a bounce-back boundary condition (h"*! — ™) l,_(t,x,v) = (hm+ —
h"™)(t, x, —v). Applying Lemma 15 to (108) we have

t
(R — ™) (t, x, v) = /O e WE=DGM (5 X a(s), Va(s))ds,

where [Xq(s), Va(s)] = [Xa(s;t, x,v), Va(s; t, x,v)] is in (151). Then we have
exactly the same estimates of the in-flow case to conclude {#™} is Cauchy.

Step 3. Same argument as the in-flow case but substitute Cpp 7, Cpp, Dpp. 7, Dpp for
Cr, €, D7, D respectively.

6.3. Propagation of discontinuity.
Proof of 2 of Theorem 2.
Proof of (20). The proof is exactly same as the in-flow case in Sect. 4.3.

Proof of (22). Recall that we have [h(fg)]y,,0, 7 O for (xp,vg) € yos and ty €
(0, min{#y (xo, —v0), (X0, vo)}). The proof is exactly same as the proof of in-flow case
in Sect. 4.3 except for Step 2. We need to show a continuity of a boundary datum on
y_ U yOS. In the bounce-back reflection boundary condition case, we need to show

0= [hl[0,00)X)/,]t(),xo,v()

= lim sup lh(', y', vy — (", y", v")].
510 t', 1" € B(t; )
o0, (¢, v") € y— N B((x0, v0); $)\(x0, vo)
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Because (y’, v') is in the incoming boundary y_, using the bounce-back boundary con-
dition, we have h(t’, y',v") = h(¢’, y’, —v’). Further due to the condition 0 < fy <
t (xg, —vg) we have 0 < t' < 1 (y’, —v’) and

W,y V) = by, —0') = oy + 10!, v e @ = VR 0 e

: hoh
+/ {Kwh+wr+(_v —)}(S, y/+(t/_5)v/7 U/)
0 w w

Xe—v(v/)(t/—s)—fot, v(ﬁg)(r,y/+(z/—r)v’,v/)drds’

and a similar representation for i (¢’, y’, v"). Using the continuity of v(/ 1 %), Ky h and

wF+(%, %) we have

0= [ h|[0,oo)><y,]to,x0,v0

= lim sup lho(y/ + V', v)) — ho(¥” +1"V", v")|

840 v, 1" € B(t; 8)
o5, 00" € y— N B((x0, vp); $)\(x0, vp)

e~V (00— [ V() (T X0+t —T)vo.v0)d T

where we used the continuity of the initial datum % in the last equality.
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