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Abstract: In this paper, we consider the global wellposedness of the 3-D incompress-
ible anisotropic Navier-Stokes equations with initial data in the critical Besov-Sobolev
11
type spaces 3 and B, *'* (see Definitions 1.1 and 1.2 below). In particular, we proved
that there exists a positive constant C such that (AN S,) has a unique global solu-
tion with initial data ug = (uf'), u?)) which satisfies ||ug||3 exp(%”u%”%) < c¢ov or
||ug|| 11 exp(%||u(3)||4 L1 ) < cov for some ¢ sufficiently small. To overcome the
64 2°2 v 4—
difficulty that Gronwall’s inequality can not be applied in the framework of Chemin-

[S]
[Nl

Lerner type spaces, LY (B), we introduced here sort of weighted Chemin-Lerner type

spaces, L?’ f(B) for some apropriate L' function f(r).

1. Introduction

We first recall the classical (isotropic) Navier-Stokes system for incompressible fluids
in the whole space:

du+u-Vu—vAu=—Vp, (t,x) e (0,00) x R,
(NS,) {divu =0,
uli=0 = uo,

where u(t, x) denote the fluid velocity and p(z, x) the pressure. In the seminal paper
[21],J. Leray proved the global existence of finite energy weak solutions to (N S,). This
result used the structure of the nonlinear terms in (N S,) in order to obtain the energy
inequality.

An approach due to T. Kato reduces the solving of (N S,) to the search of a fixed
point for some quadratic functional. The first result in that direction is the theorem of
H. Fujita and T. Kato (see [13]) in which the authors proved that the system (N S,) is
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globally wellposed for small initial data in the homogeneous Sobolev spaces H 2 R
which is the space of tempered distributions u# with Fourier transform of which satisfy

def

hl” = /R €1 178 Pd§ < oo.

Cannone, Meyer and Planchon [3], Cannone [4], and Planchon [25] proved a similar
3

result for (N S,) with initial data in the negative Besov spaces B pﬁ.? (R?) for3 < p <00.
The interest of Besov spaces with negative regularity indices concerns the global wellpo-
sedness of the Navier-Stokes equations with highly oscillatory initial data. A different
important role of Besov spaces is to give a functional framework to construct global
self-similar solutions for (N S,) with small data homogeneous of degree —1 (see [3]).
This approach has reached its end point with the theorem of Koch and Tataru [18]. Their
theorem implies in particular that, for a given function ¢ in the Schwartz space S RY),
if we consider the family of initial data u{ defined by

def

e A LX)
uf (x) & gsm(?) 0, =33, ) , (1.1)

if A is small enough, a positive &g exists such that for any & < & the initial data u; gen-
erates a unique global solution to (N S,,). Those theorems are global existence results for
a generalized Navier-Stokes system with small initial data and do not take into account
any particular properties of the nonlinear structure in the Navier-Stokes equation. One
may check [20] for complete references in this direction.

In this text, we are going to study a version of the system (N S,) where the usual
Laplacian A is substituted by the Laplacian in the horizontal variables Aj, = 8%1 + 8)%2,
namely

du+u-Vu—vAu=—Vp, (t,x)€(0,00) xR,
(ANS,) {divu =0,
Uli=0 = ug.

Systems of this type appear in geophysical fluids (see for instance [8]). In fact, instead
of putting the classical viscosity —vA in (N S,), meteorologists often modelize turbu-
lent diffusion by putting a viscosity of the form: —v, A, — v3 8)%3, where v, and v3 are
empirical constants, and v3 is usually much smaller than v,. We refer to the book of
J. Pedlovsky [22], Chap. 4 for a more complete discussion. We note also that in the par-
ticular case of the so-called Ekman layers (see [12, 14]) for rotating fluids, v3 = €vy, and
€ is a very small parameter. The system (AN S,) has been studied first by J. Y. Chemin,
B. Desjardins, I. Gallagher and E. Grenier in [7] and D. Iftimie in [17] where it is proved
that the anisotropic Navier-Stokes system (AN S,) is locally wellposed for initial data
in the anisotropic Sobolev space

11¢ def def ~
HO E ue LR el 1., = /R 651142 (&, £3)2dE < +00,

for some ¢ > 0. Moreover, it has also been proved that if the initial data uq is small
enough in the sense that

e 1—¢
<
luolalluoll' < ev (12)
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for some sufficiently small constant c, then they have a global wellposedness result. Let
us notice that the space in which uniqueness is proved in [7,17], is the space of contin-

uous functions with value in H%2*¢ (R%) and the horizontal gradient of which belongs
to L2, ([0, T1; H% 2% (R3)).

loc
On the other hand, we notice that, as a classical Navier-Stokes system, the system
(ANS,) has a scaling. Indeed, if u is a solution of (AN S,) on a time interval [0, T'] with

initial data u¢, then the vector field u, defined by

wi(t, %) & (02, ax) (1.3)

is also a solution of (AN S,) on the time interval [0, A ~27'] with the initial data Auo(1x).
The smallness condition (1.2) is of course scaling invariant. But the norm || - ”H Lie is
not and this norm determines the level of regularity required to have wellposedness.
M. Paicu proved in [23] a theorem of the same type for the system (AN S,) in the case
when the initial data u belongs to B (see Definition 1.1 below). This result can be looked
upon as the equivalence of Fujita-Kato’s theorem in the case of the (AN S,) system.

In [11], the authors proved a theorem which in particular implies the following global
wellposedness result of (AN S,,) for initial data with high oscillation in the horizontal
variable: for a given function ¢ in the Schwartz space S(R?), if we consider the family
of initial data u{ defined by

w2 sin(=1) (0, ~d56. 520). (1.4)
ez €

then, if A is small enough, there exists a small positive constant &q such that for any small

enough & < &, the system (AN'S,) is globally wellposed with the initial data ug. This

is analogous (with a smaller power of ¢) to the example of initial data given in (1.1) for

the case to the (N S,) system.

The purpose of this paper is to extend the wellposedness results in [11,23], in par-
ticular, our theorem here will provide examples of larger initial data such that (AN S,)
has a unique global solution. In the first part of the paper, we shall prove the global
wellposedness of the anisotropic Navier-Stokes system with initial data having a large
vertical component provided that the horizontal component is small enough (compared
with the vertical one and with the horizontal viscosity coefficient). The functional frame-
work that we shall use is invariant by scaling and by vertical dilation and is given by
the anisotropic Besov-Sobolev space B (see Definition 1.1 below). Moreover, we note
that we are able to obtain the energy estimate in this anisotropic space without using an
additional vertical derivative, and consequently our results are valid also in the case of
a vanishing vertical viscosity. The main idea to handle this anisotropic model is that the
velocity field verifies a 2-D Navier-Stokes type system in the horizontal variables while
in the vertical variable we have to deal with a 1D hyperbolic type equation. We shall use
energy estimates in the horizontal variables so that the divergence free condition allows
to control the vertical derivatives to the vertical component of the velocity field.

We emphasize that our proof uses in a fundamental way the algebraic structure of
the Navier-Stokes system. The first step is to obtain energy estimates on the horizontal
components on the one hand and on the vertical component on the other hand. One of
the difficulties with this strategy is that the pressure term does not disappear but has to
be estimated. We remark that the equation on the vertical component is a linear equation
with coefficients depending on the horizontal components. Therefore, the equation on
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the vertical component does not demand any smallness condition. While the equation
on the horizontal component contains bilinear terms in the horizontal components and
also terms taking into account the interactions between the horizontal components and
the vertical one. In order to solve this equation, we need a smallness condition on the
horizontal component (amplified by the vertical component) of the initial data. At this
point, we need to use the Gronwall Lemma which can not be applied directly in the

framework of Chemin-Lerner type spaces I:? (B). To overcome this difficulty we shall

introduce here sort of weighted Chemin-Lerner type spaces, Ltz’ ¥ (B) for some appropri-

ate L' function f (7). As we already explained, our result allows to give some examples
of large data which are slowly varying in the vertical direction and which are larger than
the “well prepared” case studied in [9] for the classical Navier-Stokes system.

In the second part of this paper, we shall give an analogous result in the case of
initial data with very rough regularity, namely belonging to Besov-Sobolev spaces with
negative regularity in the horizontal variables. The main ingredient of the proof is a
combination between the strategy that we already explained above and the methods
introduced in [11]. The idea is to decompose the initial data in a part where the hor-
izontal frequencies are higher than the vertical frequencies and the rest which belong
to the Besov-Sobolev spaces B for which we can use our previous methods. This new
result allows us to present another new example of large data where we combine the
high frequencies feature in the horizontal variables with a slow varying vertical variable.

Asin[7,23] and [11] (or more recently the book [1]), the definition of the spaces we
are going to work with requires anisotropic dyadic decomposition of the Fourier space.
Let us recall

Ala = F Y@@ Mga), Ala=F (2 b gDa), and

Sta = Z Ala, SYa= z AVa, (1.5)
k'<k—1 U<t—1

where Fa and @ denote the Fourier transform of the distribution a, and ¢(t) is a smooth
function such that

Blw

8 .
SuppgoC{reR/ §|r|§§} and Vr >0, > o2 70)=1.

JEZ

Before we present the spaces we are going to work with, let us first recall the
1l

Besov-Soblev type space B from [16,23] and B, *"* from [11].

Definition 1.1. We call B the space of tempered distributions, which is the completion
of S(R?) by the following norm:

def ¢
lalls = D22 1A}al 2 @3- (1.6)
LeZ
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The space B(T) is the completion of C*°([0, T; S(R?)) by the norm:

lallser) < lalzsg, + VoI Viall 75, with

def
el = >os IAball o2y, and (1.7)
LeZ
def £
IVaallzz s, = 2222 1VhA Al 12 12 @)
LeZ

In [23], the author proved the local wellposedness of (AN S,) with initial data in 5.
Moreover, if the initial data is small enough compared to the horizontal viscosity, he
also established the global wellposedness result. Note from the above definition that ug
defined in (1.4) is not small in this space no matter how small ¢ is. The main motivation

11

for the authors to introduce the space B, 2’2 in [11] is to find a scaling invariant Besov-
Soblev type space, which is very close to the classical Besov spaces of negative indices,
such that in particular u, defined in (1.4) is small in this space for & and A sufficiently
small. We emphasize that such a space has to be Besov type space with negative regu-
larity indices in the horizontal variables in order to take into account strong oscillations
in the horizontal variables. Meanwhile for the vertical variable, we have to use a space
which is invariant by vertical dilation in order to consider “slowly varying” data in the
vertical variable. This justifies the following definition:

_11
Definition 1.2. We denote by B, 23 the space of distributions, which is the completion

of S(R3) by the following norm:

1

ef 2 i
lall _y . Zzz( > 2 k||AkAza||L4(Lz)) + D 2208 Alall agsy (18)

22
B, el k=0—1 JjEZL

The space B 2} (T) is the completion of C*°([0, T'1; S@®RY) by the norm:

di
lal 1y el VRISl g i
B42'2(T) LOOB 2'2) 42 2)
1
def h 2
Il Zzz( > 2hAg AgauLw(Wz)))
4 el k=0—1
Lich
+ D 2RSS Al oy and (1.9)
JEZL
1
def 2
IVial o3 Zzz( > 2"||A”Aga||Lz(L4(Lz)))
e k=C—1

s h
+D, k. IVaSj_185all 2 2@
JEZ



718 M. Paicu, P. Zhang

More recently, Zhang [26] claimed the following result:

Theorem 1.1. A positive constant C exists such that ifuy € B which satisfies divug = 0
and

Cvuglsexp{C1o ugls + DY < 1, (1.10)
then (AN S,) has a unique global solution.

However, we found that there is a serious gap in the proof of Theorem 1.1 in [26],
the main reason is that one can not use the Gronwall type inequality in the framework

of spaces LY (B). Indeed, the only gap in the proof of Theorem 1.1 lies in the proof of
Proposition 3.2 in [26]. For instance, using the Holder inequality and Lemma 3.3 in [26],
what one can obtain is

T ; 1 1 1 1
GY(T) < /0 d; (027 2w O 1 51 Vi Ol 31> O 1 VR OIZIAYVaw ()] 2 de,

which can not be dominated by
i [T h s By 103 (112 302
dj2 "/O lu O I Vau" Ol zllu” Ol 51 Vau” Ol I Vaw (@)l 8 dt,

asitis claimed in [26], where both (d;) je7 and (d;()) jez are generic elements in N7
with the norm of which equal to 1.

To overcome the difficulty mentioned above, the authors [15] basically proved the
global wellposedness of (AN S,)) provided that

h —1 3 4
el 1 0.0 exp(Co(v 3] 0.0) ) <cv

for so > % and some c sufficiently small. Moreover, a sort of global stability result was
proved for the classical Navier-Stokes system (N S,,) with anisotropic type perturbation
of the initial data to any given global smooth solution of (N S, ). However, the regularity
level of the initial data in this result is not scaling invariant and this is our main motivation
to obtain the following Theorem 1.2.

Now we present the main results in this paper:

Theorem 1.2. Let ug = (ug, ug) € B be a divergence free vector field, and there exists
a positive constant L such that

def L
n'= lubllpexp (F”“g”%) < cov (1.11)

Jfor some cq sufficiently small. Then the system (AN S,) has a unique global solution
u € C([0, 00); B) with Vyu € L2(R*; B). Moreover,

16

”u3”’1:37(R+;B) + “th3||25(R+;B) < 2||u(3)||3 +v holds.

L
" e gy + I Vi 1 35 e ) < 2€XP (—) n and 1)
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Remark 1.1. (1) This theorem ensures the global wellposedness of (AN S,) with initial
data of the form ug = (ug, ug) with divug = 0 and ||u8||5 < Cv for any positive

constant C while ||ug||5 < cv for some sufficiently small ¢, which in particular
implies the global wellposedness result in [23].

(2) Theorem 1.2 also ensures the global wellposedness of (AN S,) with initial data of
the form

ug = (e(— In e)‘sv{)‘(xh, €x3), (—In e)‘sug(xh, ex3))

for 0 < § < 1/4 and ¢ sufficiently small, as that claimed in [26].
(3) Very recently, Zhang [27] corrected his former result (1.10) in [26] to be

Civ M ugllipexp{C10~ uglls + D} < 1
by using basically the same idea of [26].

The main tool that we shall use to overcome the difficulty that we can not use the

Gronwall inequality in the framework of L! (3), as we mentioned before, is to introduce
the following weighted Chemin-Lerner [10] type norm:

Definition 1.3. Let f(t) € L} (R,), f(t) = 0. We define

loc

T 1
—_— — g v 2 2
Il iz, = Eq 24( /0 FOIAL®]3dr)*.

Remark 1.2. In fact, Definition 1.3 is very much motivated by the following variant of
Gronwall’s Lemma. Let X (¢), f(¢), h(t) be positive functions so that

LX) < CrHX 1) +h(1),
I?‘(I(O) ~ %o, (1.13)

Instead of directly applying Gronwall’s Lemma to (1.13), we get by multiplying
g1 (1) def exp{—k fot f@)Hdt } to (1.13) and integrating the resulting inequality over
[0, ¢] that

t t t
aOX @)+ /\/ng(t/)f(t’)X(t/) dr' <Xo+ C/ng " f(HX (@) dt’+/0gx (tHh('ydt',
in particular, if we take A > C, this gives rise to
t
G (DX () < Xo+ /0 (IR dr,
that is
t t t
X(1) < Xo exp{k/ £ dﬂ} +/ exp{k/ f(1) dz}h(ﬂ) dr', (114
0 0 t

for A > C. The main motivation to introduce Definition 1.3 is to adapt the proof of
(1.14) to the framework of Chemin-Lerner type spaces, namely, integrating any dyadic
block with respect to time first and then making the summation with respect to ¢.
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_11
On the other hand, it follows from [11] that: given ug = (ug, ug) eB,” : ,(ANS,)
has a unique solution of the form

U=ur+uw, (1.15)

where w € B(T) for some positive time 7 and u r is given by

up ey and  u €T AlAYu. (1.16)
k>t—1
Substituting (1.15) into (AN S,)) results in
ow+w- -Vw —vAyw+w - -Vup+up-Vw = —ur-Vur — Vp,
divw = 0, (1.17)
def
Wlt=0 = Ueh = U0 — Uph.
Notice that
1A uenll 2 S D0 IS%_ Abuol 2, (1.18)

lji—J'I=1

1
2

which along with Definition 1.2 implies that if #( belongs to B 2
to 5 and

, then uyj, belongs
luenllg < lluoll 1 1. (1.19)
84 2°2

Combining the techniques used in the proof of Theorem 1.2 and the above observa-
tion, we can prove the following wellposedness result for (AN S)) :

Theorem 1.3. Let ug = (uo, ”O) € B, 23 be a divergence free vector field, and there
exists a positive constant M such that

def M
m = lubll _ygexpl St )< (1.20)
vV 842‘7

22
B,

for some c1 sufficiently small. Then the system (AN S,) has a unique global solution
u = up + w such that ug is given by (1.16) and w € C([0, 00); B) with Vyw €
L2(R*; B). Moreover; there exists a positive constant K such that

" e, ) + 1 V0w | gy < Kt and

3 30— 3
0 b+ 1V Ty < KRl gy 4 (121)
Remark 1.3. (1) This theorem ensures the global wellposedness of (AN S,) with ini-
tial data of the form uy = (uo, ”0) with divug = 0 and ||u0|| 11 < Cv for

4
any positive constant C while ||u0 || 11 < cv for some sufficiently small c¢. In

particular, this theorem implies the global wellposedness result in [11].
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(2) For a given function ¢ in the Schwartz space S R, Theorem 1.3 along with Prop-
osition 1.1 (which claims that ||e!*!/ €¢|| 1 < C¢82 ) also ensures the global

wellposedness of (AN S,) with initial data of the form
uf = (—Ine)’sin (=) (0. =203 (. £3x3). & 202 (1. £33))

for 0 < § < 1/4 and ¢ sufficiently small.

(3) Both Theorem 1.2 and Theorem 1.3 holds for classical Navier-Stokes equations
(N S,). We emphasize that our results strongly use the algebraic structure of the non-
linear terms and the divergence-free condition of the velocity field. In our subsequent
paper [24], we obtained similar global wellposedness results for the 3-D inhomo-
geneous Navier-Stokes equations with initial data in the critical Besov spaces.

In the rest of the paper, we shall constantly use the anisotropic version of the isotropic
para-differential decomposition due to J. M. Bony [2] that: for a, b € S'(R?),

ab=T/b+R"(a,b), or ab=T/b+T)a+R"a,b), where

Ta”b=ZS;’71aAZb, R”(a,b)=ZA;asg+2b, and (1.22)
qeZ qeZ
RY(a,b)= > AbaAlb.
lg—q'I<1

Similar decomposition for the horizontal variables will also be used frequently.
The organization of this paper follows:

Scheme of the proof and organization of the paper. In Sect. 2, we shall present the proof
of Theorem 1.2. The main idea can be outlined as follows: we first work out the energy
estimate for the horizonal components of the velocity field so that

hy— h —
I g + R + VIV 3
< s+ o112 g 19 3 )+ I ) 0

where

(8, ) e N IOy vy with () € POV 01, (1.24)

2
Along the same lines as Remark 1.2, if we take A = % in (1.23) and take 7* so small
that

def 1
T max{t: 1 25 )+ VI 5 g5, < min; 2,80)\)} (1.25)
0

we infer from (1.23) that

I} Iz ) + VYNVl 5 gy < 2luglls for ¢ < T,
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Then thanks to (1.24), we arrive at

hy_ hy—
I 7y + VNVt I
h 4C(% ! 3 2 3 2
sznuonsexp{7/ 1@ s IV '} (1.26)
0

fort < T*.

The second step of the proof is to obtain the energy estimate for the vertical compo-
nent of the velocity field. We use at this point, the important fact that 1> verifies a linear
equation with coefficients depending on u” so that

12

h
22 19|

Il g5 ) + V2 Ve | 7 5, < Nlls +C (nu I s

1/4 1/4 1/4
AL 1Vl L L

Va1 2L
L (B) L2(B) L (B) L2(B)

Then thanks to (1.25), we obtain

3
30— 1/4 3,1/4
1z sy + V2V IV I 55, < ||u0||B+C(eov+eovs||u I 51V ”Zz(B))’

fort < T*. Taking g9 = 80(6 ) small enough, we obtain
||u3||i‘[06(3) +ﬁ||th3||Z?(B) <2udllg+v for r<T* (1.27)

The last step is to prove that 7* = oo, provided that cg in (1.11) is sufficiently small.
Indeed if T* < o0, it follows from (1.27) that

16
3 3 34 4
/ [|ue (I)IIBIIVhM (I)IIBdl < |lu? ”LOO(B)HV/’! ||L2(B) 5 (16””0”8%,% +v )
4

Substituting the above inequality into (1.26) ensures that

4C2
||uh||;§(6)+ﬁ||vhu"||;g(8)52exp<64C§>||uﬁ||sexp( -l 0||B)
<1 '(1 ) for t <T*
—min(—-~5, €g)v or < s
=20 ac

provided that we take L = 1024CO and ¢p < 7 exp( 64C0)m1n(4 3,8()) in (1.11).

This contradicts the definition of 7* defined in (1.25), and therefore T* = +o0.

In Sect. 2, we shall rigorously work out the above estimates for appropriate approxi-
mate solutions of (AN S,), and then prove the existence part via the compactness argu-
ment.

Exactly following the same line as the proof of Theorem 1.2 in Sect. 2, we shall
present the proof of Theorem 1.3 in Sect. 3. However, comparing (1.17) with (AN S,,),
three additional new terms appear in (1.17). Therefore more a complicated argument
has to be involved in the proof of the estimates like (1.26) and (1.27) for w. One may
check (3.50) and (3.54) for more details.

Let us complete the introduction with the notations we are going to use in this context.
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Notations. Let A, B be two operators; we denote [A; B] = AB — BA, the commu-
tator between A and B, a < b. We mean that there is a uniform constant C, which
may be different on different lines, such that a < Cb. We shall denote by (a|b) (or
(alb);2) the L*(R%) inner product of a and b. We denote L%.(LY(L?)) the space
L™ ([0, T]; LP (Ry; x Ry,; LY(IRy;))). Finally, we denote by (cx)rez (resp. (d;)jez)
a generic element of the sphere of 02(7) (resp. ¢Y7)), and (d., f)(k jez? @ generic
sequence such that ’

S(xa) -t

JEZL kel

2. The Proof of Theorem 1.2

The goal of this section is to present the proof of Theorem 1.2. For the convenience of
the readers, we first recall the following Bernstein type lemma from [6, 11]:

Lemma 2.1. Let B, be a ball of Ry, and C,, a ring of Ry, let 1 < py < p; < 00 and
1 < g2 < q1 < 0. Then the following hold:

If the support of @ is included in 2F By, then

k(jo+2( L —L
||3f:ha||L51(Lgl) <2 ( (”2 m>)“a”L}':2(L?)1)‘

If the support of @ is included in 2°B,, then

(p+(L-L
195 all o o) <210z ql))||a||L£1(Lzz),

If the support of @ is included in 25Cy,, then
—kN o
”a”L;:l(Lgl) SZ \;|u=pN ||8Xha”Lﬁ:1(Lgl)'

If the support of @ is included in 2°C,, then
—¢N
lall ooy < 27N 193 all v oy

Proof. Those inequalities are classical (see for instance [23] or [11]). For the reader’s
convenience, we shall prove the last one in the particular case when N = 1. Let us con-
sider ¢ in D(R? \{0}) such that ¢ has value 1 near C,.. Then for any tempered distribution
a such that the support of @ is included in 2¢C,, we have

T =2 gt E win e & -EE

Then, we have

a=2""%A0% with Al a & r-1 @ tea). 2.1

This formula will be useful later on and it proves the fourth inequality of the lemma in
the particular case when N = 1. O
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The proof of Theorem 1.2 will mainly be based on the following two propositions.
The first proposition is to deal with the L? inner product of a - Vb and b for any dyadic
block on vertical frequencies, without using any vertical derivative of a and b. Here, the
divergence free condition of a plays an essential role. The idea is to use integration by
parts for the term [p3 Sy—1 a’ds Aga-Ajadx and to use the divergence free condition of

a = (a", @3) in the form d3a® = — div;, a”. We remark that in the horizontal variables,
we shall use classical energy estimates for the 2D Navier-Stokes equation. The second
proposition presents the estimate to the anisotropic L? inner product of the horizontal
derivative to the pressure with the horizontal components of the velocity field, which
does not disappear in our energy estimates. There again the divergence-free condition
of the velocity field as well as the algebraic expression of the equation satisfied by the
pressure plays a key role.

Proposition 2.1. Let a = (a,a%), b € B(t) with diva = 0. Let g € L*®(0, 1), and

we denote a,(t, x) df gMa(t, x) and by (t, x) dof g(@®)b(t, x). Then there holds for all
q €,

t
|/0 (A;(a - Vby) | A;bg)L2 dt|
1 1 1 3
Sd27 (a1 IVaal s 161P— . IVabell %
Sdy (lla |PL;.0/(B)|| hagllL%(B)ll ILL;,C/(B)II h g”L%(B)

AN ||vhbg||;;(5)) : 2:2)

Proof. The main idea of the proof to this lemma essentially follows from that of Lemma 3
of [7] and proposition 3.3 of [11]. Noticing that the right-hand side of (2.2) does not
contain the term with 93b, we distinguish the terms with the horizontal derivatives from
the term with the vertical one so that

t
def def
I, ()< /0 (A;(a . ng)mgbg)Lz ar €Il )+ 12, (),

with

t
def def
I () é/0(Af,(ah-Vhbg)|Agbg)L2dt’ and 1} ()=

t
3
/ (A;(a a3bg)|A;bg)L2 dr'.
0
Thanks to Bony’s decomposition (1.22), we have
a" - Vybg = TV, Vb + RV (a", Viby).
Whereas a simple interpolation in 2-D gives
1 1
h hy2 hy2
IVEA A" sty S N N o) IVH ARG Lo o)

1 1
4 hns hny
S g2 1 w5, 1Vhag I 55 (2.3)
t
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which along with Lemma 2.1 implies

IVEAY (R (@", Vabe)l 4

L (LG (L)

S D IVEAY A" s wanlISea Vibell 22 100y

~

q'zq—4

< -3 —~
< dg272a" ||Lw(8)||vha ||L2(B)||vhbg||L;(B),

and similarly

IVEA TV 3 s

h
tdw S 2 IVESpaa s 18y Vgl 2z
[ h

lg’—ql1<5

< -3 -
dg272||d" ||Lw(6)||vh gan 1 Vibel s

As a consequence, we obtain
|1y o] S IVEAY@" - Vabll 4 4 IVEALDl st 2y
o ! L7 (L] (L)

h
V ~§ . .4
” hbg” ,2(13) (2.4)

d22 q V,a b
lla" || Vi glle(B)ll IILOO(B)

L (B)

On the other hand, to deal with / ;, g(t), we need to use the assumption that diva = 0
and the trick from [7,11]. Toward this, we first use Bony’s decomposition for a383b in
the vertical variables and then a commutator process for AZ (T,303by) so that

t
L) = /0 (Sy_1a°03 A0 bg|ALby) - dt

+ Z / ([AY: Sy @193 A0 bg| Abby) ., dt

lg'=q1=5
- / ((Sy1a® = Sp_1a) 0 8 Al by|AYby) 1
lg'—ql=<5
£ 3 [ @pgasyanbia,) s ar
/>q —4

L)+ 220 + 1200 + IR00), (2.5)

In what follows, we shall successively estimate all the terms above. Firstly as diva = 0,
we get by using integration by parts that

1PNt = < // g?Sy_ divya|ALbI* dx dt',

from which and (2.3), we deduce that
g2 O1 = 1Sg_ (@ivi @)l 212130 IWEAGE N3 1 12,

S 4327 divi a7 5 1B T ) | Vb1 3
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To handle the commutator in qu j;f (1), we first use Taylor’s formula to get

t 1
o= 2‘1/0/Rs/Rh(2q ()C3—y3))/0 Sy 030’ (xp, Ty3 + (1—1)x3) dT

lg—q'1<5
x(y3 — xa)aaAZ/bg(t’, xn, y3)dys Agbg(t', x)dx dt’, (2.6)

where h(x3) def F~ Y (@(|&]))(x3). Applying Lemma 2.1, (2.3) and Young’s inequality
yields

2, 3
5 OIS D0 1S)183a3 122 oo IVEAY B 212 12 IVEALD 1312 12y
lg—q’'1=<5

S 3279 divh af 73 5 161 T ) | Ve | 75 g5
Whereas thanks to Lemma 2.1 and diva = 0, we have

_4q _ .
18Ga3 1 22100y S 2721883311212y S dg27 | divi gl 2.7)

LBy’

which together with (2.3) ensures that

3, 3 2
eI S2 > 18522 aey IVEALI s sz
lg—q'|<5

S 3279 divi af 73 5 161 T ) Ve | 75 g5
Finally again thanks to Lemma 2.1 and (2.7), we obtain

4, ! 3
eI S D0 27 180a 202 IVES bl 18 ooy IVEAGEN 311 12y,
q'zq—4

< 27 divi a5 5, 1611 25 5y | Vb1 5
Therefore, we obtain
g O S d327NVaag 77 45 1173y I Vb | 7 5
This along with (2.4) completes the proof of Lemma 2.1. O
Taking g(¢) = 1 in Proposition 2.1 immediately gives

Corollary 2.1. Under the assumptions of Proposition 2.1, we have

t 1 1 1 3
Ab(a-Vb) | AVb),,dt] S d227 0 (lla" 12— IVha" 1% 1612—  IIVibll%
|/0( gla-Vb) | Ab) . di| S dg (na e A N L AN
+Vha" |75, . IIb Vibll 5 e ) -
V4" 1 75, 1B I, I Vi ||L[2(B))

To handle the pressure term, we need the following proposition:
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Proposition 2.2. Let 1. > 0, u = (u”, u?) € B(t) with divu = 0. We define

3
d. d, _
0 Y gou.x)  and  p DD () adwtiad),

k=1

for f(1) dof lu @) 1% Vit ()% and g;.(t) = exp(—A [y f(t")dt'). Then, one has for
allq € Z,

13
|/0 (AYVipy | Abul)2dr|

1 3
< d22—q( ul Vil |12 e VRl A ) 2.8
<d, e ) IVt N ) + AIIL%f(B)II h )»”LIZ(B) (2.8)

Proof. Motivated by [15,19,26], here we again distinguish the terms with horizontal
derivatives from the terms with a vertical one so that

3 t
def —_ .
GRS / (AL (=A)"0pdk utuf) | AYdivyul),,dt’ = Pl (6) + P ().
0
k=1
(2.9)
where
def — [
PlL= D / (AY (=) " 0pd ' uf) | AL divyu}) o dr
k=170
and

ot 2
def _ .
Py, (1) é/o (A;(—A) l[ag(u3u§)+2§ R0k ()] | AY divy u’;) dr’.
L2

k=1

‘We start with the estimate to th , (1). Indeed thanks to Bony’s decomposition (1.22), we
have

2 2

0k ¢ k
DAL D20y D0 2 IVERSy o1 st IVERAp U8 1t 12
=1

£k=1 L.k lg’—ql=5

4 k
+ Z ||\/g)LA;,u “L4T(L2(L%))“\/3ASZ;’+2M ”L‘}(Lﬁ(LgC))) s

q'>q—4

from which and (2.3), we deduce that

2
v, bk < g% hy— hyj—
D AL U 22y < dg2 2 " I g )| Vit 3 5,
k=1
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Whence we obtain

2
h 0k : h
}Pq,x(f)| 5 Z ||AZ(M MA)||L,2(L2)”AZ divy, M)L”L,Z(LZ)
k=1

S A2 g gy | Vi35 g (2.10)
While as divu = 0, we get by using Bony’s decomposition that
s ! k 3 h
Py, (1) = 22/0 (A (=) 3@l o) | A divyu)),, di’
(2.11)
= Pl () + P,
with
def .
qk(t)EZZ > / AY(=A) 03 (AL UL Sy 0wy | AL diviyul) o di,
k=1¢q'>q-5
and
P dﬁfzz > / (A=A 1 33(SY_uk AL ) | AL divy ul) 2 di'.
k=1 |q'—q|<5

Let us begin by the estimate of P; )} (t). Indeed using integration by parts, one has
N 22 > (/ A (ALl SY ) | AY(—A) 193 divy ul) . di’
k=1¢q'>q-5
/ (A AL SY ) | A=) 03 divy Bl 2dt’) AL 1)+ A2 5 0.
Then it follows from

1
la(D)gll 4.2 = Clla(D)gll; zlla(D)thlle = Cligll 2||th||zz

for any homogeneous function a (&) of degree zero, that

A0S D] / 18500 I ooy |1 A0 Vit | 2 I AU 8 12,

q'z9=5
h
<2 / [ ||L2(Lm)||sv+2vhu ||L2(Lw)||A;/vhuAan
/>q 5
1
hy2 hy2
AL ALV 12, d' (2.12)

applying Holder’s inequality gives

1
AL 0] S / 1 1190 I 1 A @2 ) 1AL (Vi) 22,16 (thnnmz)
q'29-5
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from which and Definition 1.3, we deduce that

(2.13)

[ AL 0] < dg2” qnuxnm(g)n h Aan(B)

ff

The same estimate holds for A3 () and for qu )} (1) as well.
Whereas again we get by using integration by parts and div # = 0 that

PIR() = —22 > (/ A3 (SY_ul ALy | AL(—=A) " divy ) o i’
k=11]q'—q|<5
t
—2/0 (A;(Sg,_lam%;,ui) | AL (—A) " divy d3ul) f2dt!
def

= Dia(t) + D2 .(1).
Thanks to Lemma 2.1, one has
DS D V&St s 13 ooy 1 A% 03163 1 202y I /x AYU" I 3
EAMES E0g 1Lt 1 2g Bl Lz ) IV 8 gL wf )
lg'—ql=5
which along with (2.3) and div # = 0 ensures that

DO ( Y dp2®)dg2 i s g Vi M
lg'—ql<5

< d?21
dg2” " IILoo(B)IIthAIILZ(B) (2.14)
And a similar argument gives
D2 0)] < / 18016 ey 1AL 0303 2 | B s g
lg’—q|<5
1 1
1 bl
s D / Il ||5||th ||B||A” Vitdh | 2 | ALl 2, | AL V]| 2, dif
Iq —q|<5
from which and Definition 1.3, we deduce that
D2 0] S / o 1511V 131 A} 17 d ) P P IN A
lg’'—q1=5
< 27w P
I 12 ! AnLZ(B)

As a consequence, we obtain

v,2 2n—q hy— 2
|Pq,k(f)| quZ (llM ||L[oo(3)||th 1= 26 + |lu )””/,\7(8 (| Vhu ,\lle(B))- (2.15)

Summing up (2.9), (2.10), (2.13) and (2.15), we complete the proof of (2.8). O
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Taking A = 0 in the above proposition implies that

Corollary 2.2. Under the assumptions of Proposition 2.2, we have for all q € 7Z,

v v h < J29—q h
/(A Vipo | A2 di'| S dg2” (nu A o

+ V 3 2 h V h 2
e’ |pys)|| Wl g 'Wm” s )

Proof. Indeed taking A = 0 in (2.12) gives

h
[ALo@ £ D2 1500 ||LW(L2(LOO))||S”+2VW ||L2(L2(Lm))||A;,vhu Iz

q'z9-5
x||A“uh||Lm(L2)||A”vhu ||L2(L2)
27 —q 2 2 h 2 h %
< Z
g2 W gy 19007 5 g " s g IV 5 (2.16)

The same estimate also holds for 4, o (7).
On the other hand, notice that

3 3 h
[D20(0)] < | ,ZKS 1Sg 1 W ea g oenlAg 83U 22 18G5 Lo 14 12y
q —q1=

which along with the proof of (2.16) ensures that

h
l[u |I2

3 2
IVa 125 o e s

20| £ 221l 56

h 2
=5 19" 12,

LB

This together with (2.10), (2.14) for A = 0 and (2.16) completes the proof of the corol-
lary. O

Now we are in a position to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. We shall use the classical Friedrichs’ regularization method to
construct the approximate solutions to (AN S,). For simplicity, we just outline it here
(for the details in this context, see [23] or [6]). In order to do so, let us first define the
sequence of projection operators (P,),cn by

Poa & 7 (150.0a) 2.17)

and we define (u!, u?) via

el — VARl + Pyt - Vull) + 33 ) PaVi(—=A) " 83y (ubuk) =0,
ity — VAR + Pty - Viid) + 30—y Puds(—A) "' dpdi (uluk) = 0,
divy ul + d3u =0,

Wh, u)li=0 = (Puutgy. Puttd).

(2.18)

where (—A)~19 0k 18 defined precisely by

(—A) "0 & —F (g% 8a).



Global Solutions to 3-D Incompressible Anisotropic NS System in Critical Spaces 731

Because of properties of L and L! functions the Fourier transform of which are sup-
ported in the ball B(0, n), the system (2.18) appears to be an ordinary differential equa-
tion in the space

2% {a e L2(R%) : Supp @ C B(0, n)}. (2.19)

This ordinary differential equation is globally wellposed because

t
llun (1172 +2v / IVhun ()72 dt" = || Pauoll72 < lluoll7-. (2.20)
0

We refer to [6] and [23] for the details.
Next let us turn to the uniform estimates for the thus obtained approximate solution
sequence (u,),eN- To overcome the difficulty that we can not use Gronwall inequality in

the framework of Chemin-Lerner type spaces L” (1), for any positive A > 0, we define:

def s (* £ (") dt’ def
(8, x) S e IOy G xy with f(0) Sl OB VA (015, (2.21)
Then uﬁ solves

8tun 5 +an(t)un 5 vAhun 5 +73n(un Vu )

— 1
= Z” 1 PuVi(—=A)""0;0; (unun s (2.22)
divu, =0,
”Z,x|l=0 = Pnug.
The main idea will be now to use the sort of weighted Chemin-Lerner spaces Ltz, ’ (B)
introduced in Definition 1.3 which allows to avoid Gronwall-type lemma in the energy
estimates. This kind of spaces will be useful also in the proof of Theorem 1.3 in Sect. 3.
We ﬁrst apply A/ to (2.22) and then take the L? inner product of the resulting equation

with A” uy, ; to get

1d
EEHA;u,’;,muiz + A fa N AY Ul , (D72 + VAL Vault , (O]
3
— (AL - VUl ;) | Abuy) — Z (Vi(—=A)""9;0; A (u} uM) | Abul ).
i,j=I

Applying Proposition 2.1 and Proposition 2.2, we obtain
t t
IAYu:, ()17 +24 / L@ AUk, ()72 dt’ +2v / 1AL Vhult, ()17, dt’

1

h2 2 h 2

< NAguIEs + Cdg2™ (1" N gy IV 12+l 1 1V S )
t.fn

which along with (1.7) and Definition 1.3 ensures

h
IIMMIILoc(B)+V M), ll—— 0 +V2V||th,,,kll

fn

L2(B)

< s+ C (1 2

IVt 2+ eV MIILZ(B))

[fn
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Note that Young’s inequality ensures that

1/4
Cllu ’un/ IV, 1124
lfn(B

=< Cov™ 2||u =

+ (V2= DIVt 511 3,

LZ(B> L}, (B)

whence we obtain

e s 1z ) + VAl 51l 5= o + VI Vattn 2l 73

L2, (B)

1/2 3
< i + Co( 12 s IVt sl 75y + v H k15— ) 223)
f

Let ¢o be a small positive constant, which will be determined later on, we denote

def 1
T = max{ ||u ||L°°(B) +f||th ||L2(B) < rnln( 2,80)1)} (2.24)
0
Then taking A = 1n (2.23), we obtain
||un AIILOO(B) +f||thn K”Lz(B) 2||u0||5 for t < T, . (2.25)

While thanks to (2.21), we have
t N4
e o OL (i 7 gy + 1R 3 )) < N Nz sy + 1V 3175
which together with (2.25) implies that

Iz ) *+ VY I Vit 72
h 4C(% ! 3.2 3.2 ’
< 2Juglizexpy—* | Ny OB Vaus ()l dr'}. (2.26)
0

On the other hand, we get by applying A(’; to the vertical equation in (2.18) and then
taking the L? inner product of the resulting equation with AZufl that

1 ! 1
SIAGL 172 +v /0 1 AGVnit (D12 dt' = SIAG PGl
t
- _/0 (A Qun - Vi) | Abuy) 2 dt’

—Z/ 9 (—A) "B A uhup) | Abuy) o dt'.

k=1

Notice that div #,, = 0, and one gets by using integration by parts

Z/ (03(=A) T AL (ubuy) | Abuy ), dt’

k=1

- Z/ (V=AY 80 AL il | ALl d,

k=1
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which along with Corollary 2.1 and Corollary 2.2 gives

1/2
|z ) + V2Vt 75 ) < ||Mo||B+C(||” ||LQO(B)||vhu2||;z(B)
1/4 3,1/4 1/4 h,3/4 )
V L
H 175 gy 1Vl g 1015 ) V0015

Then thanks to (2.24), we obtain

3
1/4 1/4
l ) + V20 Vi | 755, < ||Mo||B+C(80V+80V8||M 175 5,1V 3||L/2(B))

fort < T,. Taking g9 = £0(C) small enough, we obtain
luzll 7= s, + ﬁnvhuﬁnﬁ(lg) <2lujllg+v for t <T}. (2.27)

Now we claim that 7, = oo provided that cg in (1.11) is sufficiently small. Indeed
if T < oo, it follows from (2.27) that

[N
[

16
2 4 4
/ IIM (t)IIBIIthn(t)IIBdt < IIM l m(B)IIVhM ”L2(3)<_(16”M0”81’1 +v )
4

Substituting the above inequality into (2.26) claims that

h h 2 h 1024C8 3,14
Iz + VOV | 55, < 2exp(@4C) Nl exp | ——2 g I

=

1
min(—-=, g)v, 2.28
(4C§ 0) (2.28)

N =

provided that we take L = 1024C§ and ¢y < %exp(—64C ) min( 02’80) in (1.11).

This contradicts the definition of 7,* defined in (2.24), and therefore T* = +00.

With (2.27) and (2.28) being obtained for T, = oo, one can prove the existence
part of Theorem 1.2 via a standard compactness argument. And the uniqueness of the
solution to (AN S)) in B(T) has already been proved in [23]. One may check [23] or [6]
for the details. This completes the proof of the theorem. O

3. The Proof of Theorem 1.3

The goal of this section is to prove Theorem 1.3. As a convention in what follows, we
11

shall always assume that ug € B, *'?, then according to Definition 1.2, we split ug as
Upp + wep, With

def h def h
Upp = Z AkAzu(), Ugp = ZS,/'—lA;uO' 3.1)
k-1 jez

Correspondingly, we shall seek the solution of (AN S,) of the form u = up + w given
by (1.15). We notice that the low horizontal frequencies part u,;, belongs to B so that
we can use part of the techniques used in the previous section to build the solution of
(1.17) for w. For up, we shall use the fact that any vertical derivative of u;;, can be
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controlled by its horizontal derivative. Finally, we have to use once again the weighted
Chemin-Lerner spaces given by Definition 1.3 in order to avoid using the Gronwall type
lemma in the energy estimates.

The following lemma from [11] will be very useful in this section.

Lemma 3.1. Let ur be given by (1.16). Then there hold
(1)

d 1_2
Liﬁzk(z ”)2_%”140” 11, for k>10—1,

||AZAZMF”L¥(L2(L%)) N 7 B, (3.2)
0, otherwise,

forany 1 < p < oc;
(2) Forany (p, q) in[1, oo] x [4, oo], we have

SIEOR)
h < — Pa
IA uFl Lo @ L8 (L)) S V%Ckz IIMOIIB;% ! (3.3)
. TS N |
If in addition — + — > —> we have
P q
1 _i(2(Ls1) 1
||A;MF||L1;(R+;LZ(L%)) S —dj2 J( (p q) z)||u0|| 1L (3.4)
! vr B,
3)
1A% p 2w oo < 204wl 11 and
JEPILAEE L) ~ Vv ° B2 (3.5)

ur . 3 ,S— uoll _11.
lurll @@y = 50 ”B4m

Outline of the proof. Indeed thanks to Lemma 2.1 of [5], there exists a positive constant ¢
such that

h —cve2?y ah
||AkAguF(t)”L2(L%) S, e’ ”AkAzuhh”L;t(L%)

_ 2k k¢t
S eV d 2227 2 gl i, (3.6)
847’7

from which and Lemma 2.1, we deduce (3.2-3.4).
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To prove (3.5), we write
|AY uF||L2(R+ Loy = ||(A MF) ”U(R“’ LE(LL))»

and using Bony’s paradifferential decomposition (1.22) in the horizonal variables, one
has

v 2 h v h Av h Av h v
(A%up)? =D SE ASupAfASup + > ALAYup Sy, Alur,
keZ keZ

which along with (3.2) gives (3.5). One may check Lemma 2.5, Corollary 2.3 and Lemma
2.6 of [11] for the detailed proof. O

In what follows, everything will be different for terms involving the horizontal deriv-
atives and for terms involving the vertical derivative. For terms involving horizontal
derivatives, the following Lemma 3.2 and Corollary 3.1 will be very useful.

11
Lemma 3.2. Let a € B, *'*(t) and b € B(t). Let 0 < g € L*(0,1); we denote
ag(t, x) défg(t)a(t, x). Then there holds for all g € Z,

q 1 1
IVgAg(@- Vbl 4 4 $dg27 2 all? 1 IVRagll? o IVRbgllss -
— ) LZ(B 2 2 L?(B)

t

L} (L} (L2) LR B, %

[S]

Proof. We first get by using Bony’s decomposition (1.22) in the vertical variable that
Ab(a-Vib) = D ANSH_jaAbVibo)+ D Ab(ALaSy,,Vabg). (3.7)
la’—ql|=<5 q'zq—4

While according to Definition 1.2, we can split a into a part where the horizontal fre-
quencies are greater than the vertical ones and a part where the horizontal frequencies
are smaller than the vertical ones, more precisely,

a =ay+a; with ah Z AlAVa and a[de Z _1Aja. (3.8)
k>t—1 JEL
Notice that
2 2
”“/gAf]/ab”L;‘(L;t(L%)) = “g(AZ/ab) ”L,Z(L%(L})))’
and using Bony’s decomposition in the horizontal variables gives

(Abag)? =D S AbapALAbay+ D StoAbagALAYay.
keZ keZ

However it follows from Lemma 2.1 and Definition 1.2 that

h h
llg Z SisaBgran Ay Ag.ay LA(LA(L)))

keZ
h h
S D ISt Ayayll oo ) 188 Ay (an)l 218 12y,
keZ
S i Il b4 IVl
keZ B, L}, %'?)
S22 all__ 1y IVaagl~ 11

L:>0< 47 7) Lt2(647'7)
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which gives

(3.9)

) L} (B,

IV Ay apl a2y S d2” k2 ||a||2 ||Vhag||2

1
L°°(B '2)

r\)\
o=
Bl—

On the other hand, notice that

Abar= D Ab(S]_ ASa),

lji—q'I=1

which along with the simple interpolation in 2-D gives

IvEAyal sy S Al m(Lz)ngA” vha[an(Lz)

_q 5 5
Sdg277 Ilallz~ . IIVhaglli - (3.10)

L¥(B, 22 L}(B, 22

Thanks to Lemma 2.1 and (3.9), (3.10), we obtain

IIVhagII2 B

IR (3.11)
LB,

||«/_S ’ 1a||L4(L4(LO<>)) ~ ||a||2
L°°(B

I\)

1
%)
from which we deduce that

IVE D AySy_1all Vbl 4 4

lg'—q|<5 L7 (L} (L2)

S 20 IVESpialswamy Ay Vibelzaz
lg’—q|=5

> dg2't )2—f||a||2 . ||vhag||2 ||vhb I3,
lg’—ql=5

LOO(B 7 7) L (B
<d, 2—7||a||2 ||V;,ag||2 f IIVhb 172

I\)

(3.12)

LOO(B 2) LZ(B

N

Similar argument shows that

IVE D Ay(Ayasy Vbl «

Wl L3 2y
S D IVEAYal s ISy Vibsll 22 )
q'zq—4

g 1
Sdg2 2 all”_ IIVhagII2 1 IIVhb I

, LX(B)
T, 77 2s,? ®

This along with (3.7) and (3.12) concludes the proof of the lemma. O
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An immediate corollary implied by the proof of the above lemma is:

Corollary 3.1. (1) Under the assumptions of Lemma 3.1, we have

1
Ay (ab)ll 2072y S d 277||61||2 Vhagl?_ ||b||f«/ Vb ||
a §7NLI(L) 1 LDC(B %%) & L? (877 7 LX(B) 8 LZ(B)
_11
(2) Leta, b be in B, >’ (t). We have
4
¢ 1 1
HAU(abg)llL2 L2 ,quz_jHa”,zv 11 ”vhag”i 11 HbHZ 11 ”vhb ” 11 -
1 e x5, 27) 2,77 LR ) L5,

Proof. Indeed thanks to (3.7), one has

1AG@b)l 20 S 2. IVESy 1@l st IVEAG P2y
lg’—q|=5

+ 2 IVBAYall iz IVES bl i)

q'zq—4
which along with (2.3) and (3.9-3.11) gives the corollary. O
The following propositions are the key ingredients in the proof of Theorem 1.3.

Proposition 3.1. Let ug be given by (1.16). Let a € B(t) and 0 < m € L*°(0,1). We
denote

d
. L exp(—Aluyl* | —m@),
B, ** (3.13)
d def
wpo(t.0) Y g up@, ), ant.x) ¥ giar, x),

and

def t
1,n% / (ALGup - Vul,) | Alay) odi and
O

def

It = (A (up - Vul) | A va),adt.

Then we have for all g € Z,

1
h 2~— h 2
1, 0] S d22 q(—nuhhnB Ly Va3,

x/; 4_
o [ @ e (3.14)
—||U _1 1 |jay ) ) :
Adv " B,?? LE®)
1
v < J429—=q)|,,h
12| < dj2 ||uhh||34 11 ||u,1h||8455(ﬁnwnm@ IIGIWB)) (3.15)
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Proof. Asdivur = 0, we first get by using integration by parts that

t t
L, = —/O (Ab@lh @ult ) | Vialas) s dt+/0 (03A) (upu'y ) | Abay),» dt

C o+ 2. (3.16)

Applying Corollary 3.1 gives

h,1
o] < Ay (u’; ® u'}m) 2 IV AL a2

S22y 1y Vi I b4 IVaaalzz s,
q F =B, 5 2 F 2B, 2?) L}(B)
However, thanks to Definition 1.2 and (3.2), we have
1
h h h
lupll — 10 Sllugyll 10 and  ([Vaupll— 10 S —=llup,ll _11,
F =B, 77) hh B, 22 g2~ hh B, 27
(3.17)
from which we deduce that
h,1 d2 h 2
, q H— .
[H O] £ —=27 Ny | 190205 (3.18)

B, 22
For the term with the vertical derivative, let us write using Lemma 2.1 that
h,2 3 h
|I)L’q (t)| 5 21 I AZ (uFu F,A) ”Lrl (L2) I Azak ||L$°(L2)~
Using Bony’s decomposition in the vertical variable, we infer
3 . h 3 h h
Ay ,) = D ANSH_jupAbul )+ D ANAL Sy L), (3.19)
lg'—q1<5 q'zq—4

whereas using Bony’s decomposition (1.22) in the horizontal variables and the definition
of up, gives

v
k>q'—4

+ AZS;,_IM%SIQZAZ,M%A). (3.20)

The two terms of the above sum can be estimated along the same lines. Whereas thanks
to (3.2) and (3.6), we have

h v 3 Ah AV B
z Sk—1Sg 1 UF A Bt L2

k=q'—4
S Z ”Sk 15' 1”F”L°°(L4(L°°))”Ak ’”FA"L (L}(L2))
k=q'—4
; N —Mluzhu“ 1
k —cvt'2 2 2
S( X ad? [ e a)2r F iyl y e fill s
0

k=q'—4 By B,
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which gives
k—19g'—1UF 2k B g UF Ll 12 < _1 ”hh -4
qu/*4 A4y B4
and consequently

2
1 79 —
OIS -2yl ol

This along with (3.18) proves (3.14).
On the other hand, again as divur = 0, we write by using integration by parts

t
10 = _/0 (A ) | AbVya) . dt’ —/O (AY(W3)?) | 03AYa),, dt,
which along with Lemma 2.1 ensures

|I (t)| S Ay (MFMF)”LZ(LZ)”A Vha”LZ(L2)
+2q||AZ((Mp) Mt lAgal e - (3.21)

Applying Corollary 3.1 and (3.17) gives

IAY @lu) 22y S fz Sl ya gl (3.22)

11
2 22
B, B,

On the other hand, applying Lemma 2.1 and divur = 0 yields

h v 3 AhAv 3
D S uE ALl o)

k=q'—4
—q' h v 3 hAv 3
S 2 Z “Sk—lSq’—luF||L?C(L2(L8°))”AkAq’a3”F”L}(L2(L%))
k=q'—4
<1 SET h
S (2 erdig )2 Tl gyl _yy
v p 22 g 22
k>q'—4 4 4
dy 3¢
q — =
S =272 ””hh” -4 L”Mhh” ,l,L,
v By B, *?

from which we deduce by a similar version of (3.19) and (3.20) for A, ((u%)z) that

d 3q
V(32 < %,-3 h
||Aq((u17) )”L,‘(Lz) ST ||Mhh||34,7 %”uhh”B‘:%’%’

which along with (3.21) and (3.22) ensures (3.15). This completes the proof of the
proposition. 0O
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Proposition 3.2. Let up be given by (1.16). Let a = (a”, a®) and b be in B(t) with
diva = 0. For a given nonnegative function m € L*°(0, t) and A > 0, we denote

def def !
FO S NEOIEIVia® 1% and  gi.(1) = exp(—2 / f&yde —m@),
0
(3.23)
and
o™ [(Ara- vty | A, L d d
g = 0( gla-Vup,) | Aub)pdt  an
d
J20) ﬁf/(Av(a Vi) | Ab) s di,
with ur j, a, and by, being given by (3.13). Then there holdsfor q €z,
1 1
NG <d22"1(—Vah~ b 1Viby |2 b by |12
| x,q()|N p I AZEA P ”Z?“/ Vb |l @) vZ” xllz;o/(B)ll A” o)
w || IIrL«O;(B)IIVh AIILZ(B)IIVthIILz(B) IIVhaxIILz(B)IIsz;;(B))IIMh;,IIB,%%,
(3.24)
and
EAGIBS " (Iluhhllgﬁ,%ll na”ll 3 gy + i | 4,%,%II ha Ile(B))
7 \V/ 2 h 3 2
XIIbIIfL?C/ [ hblle(B) (”uhh”zs;% 1lla? IIAO;B)II ||L2(B)
1
3 hy3 hy 2 _
+||uhh||B;%_%lla IIZ?CV(B)IIVW ||Z§(B))||Vhb||L,2(B>}‘ (3.25)

Proof. Again we first distinguish the terms with horizontal derivatives from terms with
the vertical one to write

t t
@ =/(Ag(ah-th’};yk)|A(’;bl)L2dt’+/ (Ab(@dsul ) | Abby) 2 dt’
0

SR ORI} (3.26)

Note that one gets by using integration by parts

t t
T = _/ (AL (divy a"uf ;) | ALBL) dt/—/ (AL(@"ult ) | VaALby) 2 dt’
0 0
so that applying (2.3), Lemma 3.2 and Corollary 3.1 gives
1 .
iJA,q (t)| 5 ||ngA;(leh aA“F)” L4(Lz))”Vg)LA;b”LﬂLi(L%))

3
h

+||A”(ailuf;)||Lz(Lz)||A vhbuuz@z)

S d;27ulh 12 , ||vhu”||2 o (1Vaal - ||b||2w
LOO(B** ) 1 (B*ji) L7 (B) L (B)
x||vhbx||L2(B) lla" ||Lm(8)||vhak||L2(B)||vhbx||zg(3)),
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from which and (3.17), we deduce that

2
_‘1 q hy~ 3
| (t)| 12 ||Mhh||8 1] (ltha,x||er(8)||b||Lm(B)||Vth||

~5.3 2
22 (B)

+a"| (3.27)

L 1T I o IVl 5 ).

While again we get by using Bony’s decomposition (1.22) in the vertical variable, we
write

o= / AY(SY_ a0z AL ult ) | Abby) . dY
lg’—ql<5

+ > / (AU(ALa03S) o1k ) | Abby) s dt
q'>q—4

P (1) + Ha g ().

Then it follows from Lemma 2.1 that

t
! 3 h
Hi OIS D> 21 / 1Sy 1@ o) |1 AD e 3 12y | AY Bl 2 1’
lg'—q1<5

s > Zq / &> )5 Vra® @)1 AL bx(t)lledt)

\q —q|=5

v _h
AR g o 18 bxnmw

h

which along with Definition 1.2 and (3.4) gives

9, ! )
IHig O < 2270l | 1 1 1ball e bl 2,
q i Ml dd 12 LB

And again thanks to Lemma 2.1, we write

Hag OIS D0 14N 11212 ISy satli | 2100 1 AL 20 12
q'zq—4

which along with 33a3 = —divj, a’ and (3.5) gives

q
( > 42 )dg2 Il 1.1 19 35 1D
q'>q—4 4

H2,q (D] S

<
|§:) N‘_I

< ||yt Vid' |5 . 1bl7= -
~ l hh“Bi%’%” h K”L,Z(B)” ”Lfo(B)

4

=

v
As a consequence, we obtain

h,2 27— h 1 %
< q N
72| S d22 ””hh”sg%’%(v%”b*”m ||bx||Loo(B) ||vhak||Lz(B)||b||LOO(B))

tf

This together with (3.26) and (3.27) proves (3.24).
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To deal with J(; (1), we first use divu p = 0 and integration by parts to get

t
TV = —/O (AY(divy a"uj — Viaul) | AYD),, dt’

/ def

t
—/ (Ab(a"uy — a’ul) | VaALD) 2 dt S TP ) + JP2(@).  (3.28)
0

Thanks to (2.3) and Corollary 3.1, we write

.1 ;
|J; (t)| = ||A;(d1Vha Vha MF)” 4( 4( 2))||A2b||L;‘(L2(L%))
t v
1
o 1
el (T L ||vhuF||2 A
LB, 77 L}(B, %)
1
hoy2
+IIMFII2 I Vaupll 2 L IVid® | )IIbII % IIVthI
X8, 27) IR L@/ LB LI B)
which along with (3.17) gives
d2
v,1 <_qz—q<3 Vid'll~  +llu" V3~)
ARG "””h"s;‘-%" b 55 * il 1.4 190" U5
x||b Vb 3.29
161 g IV ||L2(B) (3.29)
Exactly following the same line, we obtain
2 h3 3 h
1) 2(0)] < 1Ay (@"uy —a wp)llp22) 1A Vbl 22,
d2
< J45- (u IS a
el (AN ||L2(B)
h 2 32 —
il 1y 11012 5 | Vi ||Z?(B))||vhbuhz(8),

which together with (3.28) and (3.29) shows (3.25). This completes the proof of the
proposition. 0O

Proposition 3.3. Letr 0 < g(¢t) < 1 and b € B(t). We denote

def

by (t, Y ot x) and Fy (1) < / (ALur - Vbg) | Albg),

Then there holds for all g € Z,

2n—q . h
|Fq,g(t)|§dq2 gy, | 1

b Vibg 2
5 ( I |pw3)|| wbell%

Bl—

1
L3B) v%”b”ffv(l%)”v”bg”ﬁ(zs))'
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Proof. The proof of this proposition basically follows from the proof of Proposition 2.1.
Indeed, we first write Fy ¢(f) as

t t
Fuqt) = / (A;(u’;.v,,bgnAgbg)det’+/0 (Ag(u;%bg)m;bg)ﬂdﬂ
Lph 0+ FL 0. (3.30)
Thanks to (2.3), (3.17) and Lemma 3.2, we have

h h
|Fq,g(t)| § ”\/é,_’A;(uF : Vhbg)”L%(L%(Lz))”\/gAgb”Lf(Lz(L%))

h

(3.31)

N

d2
l]
—27 4 u b hb
vZ ” hh” 4 ” ||LOO(B)|| g”LZ(B)

Whereas similar to (2.5), we write
! 3
P = [ (53t nabelagh,)

+ Z / (LAY S up103A0bg | ALby) - di’

lg'—q|<5

+ Z / (SU/ 1“F Sv 1”F)33AvAvbg|A;bé’)L2dt/
lg'—q|<5

2 / Ay (AL UGS 03| Aby) > di’

q'>q—4

LRIV + F2U0) + FRU0) + FRL().

Then one gets by using divur = 0 and integration by parts that

[Fi(n)] = ‘/ / U AYby AL Vb, dx dtf
<

~ || q_luF ||L,2(L°°) ||AZb||L?°(L2) ||A2Vhbg ||L,2(L2)
2

4 ~7—q — —
N 2 ”Mhh”B;%-%”b”L?O(B)”Vhbg”L,Z(B)’

where we used (3.5) in the last step.
While thanks to (2.6) and using integration by parts, we write

2= 24// /h(Zq(X3—y3))/ Yl G Tys + (1= T)x3) d

lg—q'|<5
X (v = x3) | 0380 Vb (1, xa, 3) dys Al (1, 3)

F03AY by (1, xh, v3) dys AL Vibg(r, x)] dx dr’,
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from which and (3.5), we deduce that

2, h
GRS Z 1Sy 1wl 200y (185 Vabgll 212 | Agbll e r.2)
la’—ql=5
+||A;'bg”L,°°(L2)”Asvhbg”LtZ(LZ))
2
< Zdo=q,h — ~
S =2yl 3y 1Bl sy 1 Ve I 3

V2 B,
On the other hand, let A”’3 be defined by (2.1). Then it is easy to observe that
Fyi() = Z 2~ ‘I/ (AY (A“A“,;BWF Syra03bg) | Abbg) o dit’
q'zq—4
= Z 274 {/ AV (A"SA”/;MFS" 203Vibg)|Abby),, dt’
q'=zq—4
/(A”(AU3A“,;uF Y 283bg) AL Vb zdﬂ},

which along with Lemma 2.1 and (3.5) ensures that

4, h
[Fre OIS 20 1AGuE 2wz (152 Vabel 22wy 18D e )
q'>q—-4

185 1068 [l 0012 (150 18 Vabe Il 2(1.2))

< —1( > 2 )2l bl 1 Vb7

2
/>q —4 B4
d2
< L=k bll7=m\ I Vabell 73 1o -
S Sy 4 1 el

A similar argument shows the same estimate for F;g (t). As a consequence, we obtain

d2
q — ~
7] S ~F27 gy LT T
This along with (3.30) and (3.31) concludes the proof of the proposition. O
To deal with the pressure term, we need the following two propositions:

Proposition 3.4. Let a = (a”, a®) be in B(t) and gy, a;., ur. be given by (3.13). We
denote

Bys(t) d—efZ/ (VAL (—A) " 0k otk ) | ALal),, di'.

£k=1
Then there holds for all q € 7Z,

| Py (0] S dg27 Nyl _y l(inuh Iy 3 IVaali la} I, )-
a2~ Gy Mg e\ g e * BRI
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Proof. Similar to the proof of Proposition 2.2, we again distinguish the terms with
horizontal derivatives from the terms with the vertical one so that

Pyo(t) = P, 1)+ PY, (1), (3.32)
with

2 t
S def —
L= D /O(th;(—A) 'Ogon (uloul ;) | Abal),.dt’. and

k=1
def (" 2
g (&) —
P = /0 (AL (=) OF gy ) +2 D B30k uiul )1 | Abal), .
k=1
Then the proof of (3.18) ensures
2
IZNGIES d—q2*Q||uZh||2 L1 1Vaal (3.33)
q, ~ ﬁ B;j,j L;(B)

Whereas a similar proof of (2.11) gives

2yt
Pq”)k(t)=22/0 (AL @t ) | AY(=A) 03 divya)) de’ = Py (1) + PURD),
k=1

where
2 t
NG EEDYY /(A;(A;,u’;sg,ﬂaku%)|A;(—A)—1a3divha’;)L2dt’,
k=1q'zg—4"°
- 2 t
P;;f(t) d:"'fzz Z /O(A;(S;,_lu’;A;,aku;A)|A;(—A)—la3divhaQ)L2dt/.
k=11|q"—q|<5

Using Bony’s decomposition (1.22) in the horizontal variables, we write

vk qu 3 hav h h Qv 3
Ay St i lli ey S D (||Aqu/“F||L%(Lg(L§))||Sj—15q'+2vh”F,x||L,2(L;§(Lg°))
Jzq'—4

h v h h qu 3
+HSj Ay Uy ||L,°C(L2(Lg)) A5 S0 Vit ”L}(Lﬁ(Lgo)))'

Notice that (3.6) implies that there holds for any 1 < p < oo,

t ) 1 C _)‘””2;,”44 1
hav, 3 < —cvt’2% 5 \P ;. AtA—L, 3 B, 22
||A‘,A@uF,A||L,p<L;(Lg))N(/0 e ar') d 242 il gge O
d; 1_2y: ¢
< 26 (3.34)
VP AR
Whence applying Lemma 2.1 gives
h qu 3 Ci 54
187 SqraVar a2 ey S 7 727 and
V2A4
< _le 277,

h qv 3
A SgraaVatp sl Lt s roey S ¥
V
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as a consequence, we obtain

1 q
v v 3 -5,k
ALYy Vit 1) l( > c.,dj,q,)z Sl gy

vAE j>q'—4 B4
d, 4
q 5,0
S 7277 (lup,ll 11,
VAE 34 2°2

from which, we deduce that

5V, 1
201 S (D0 1Ay Skl as 1A e
q'>q—4
<% 27 ul, | laf 17 (3.35)
ST Uppy s GNL= By ‘

VAE 4
Whereas again using Bony’s decomposition (1.22) in the horizontal variables, we obtain
v 3 h h v 3
||S/ luFAq’vhuF,A||L1 L2)~ Z (|A ’ IMF”L,Z(L‘IE(L;’,C))“ijlAq’vhuF,)»”L,z(Lz(L%))
jzq'—

h h 3
ST 2 Sg 11 o 18 oo 1 AT Ay Ve ”L%(Li(L%)))’

which along with (3.34) yields

1
h 3
I8 s ALVt i < —1 (2 eidig )2 S Iyl 1
VAE M. 84
/>q—4
dy i
§—2 ”"‘hh” ~1.1
1))»4 B4
so we obtain
v,2 v h AV 3 v _h
1Byl S D ISy AL Va2 | Abal e )
lg’—ql=5
2

~ hh —72:7 AL B):
1))\,71‘ 81 ! ( )

This along with (3.32), (3.33) and (3.35) concludes the proof of the proposition. O

Corollary 3.2. Under the assumptions of Proposition 3.4, we have for all q € Z,

Z/ (Vi AL (=D g uluy) | Abat),, dr’

£ k=1

1 1
29— h o2 h 3 h
S a2y 19 I3, Sl Tl s )

v 22 B, 34 :
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Proof. Indeed notice that
3 h h h 3
|A U SY Vil ) S D (||AjA;,uF||L%(L2(L%))||Sj,lsg,+2vhuF||L12(L2(LSO))
jzq'—4
3
HISE o AU o g8 12 I A q+2vhuF”L}(L2(Lv°0)))’
which along with (3.2) ensures that

1 q
v v 3 -5 1,3 h
A /”FS s VauElll 2y S ;( E dej,q’)2 : ””hh”B—%,% ””hh”B—%.%
jzq'—4 4 4

!’ q/
N [ Y (7
~ hhll -5, hhll —5.5°
v B, %2 B, 2?2

from which, we deduce that
1
1By S D0 IAb Sy o Viugll g2 | Aa" | e 2

q'>q—4
2

“49—q,,3 h hy—
< » 27 uyy, ”B;%% ”uhh”B‘:%’% lla ”L?C(B)'
Following the same line, we obtain the same estimate for 13; 7’3 (#). This along with (3.33)
completes the proof of the corollary. O
Proposition 3.5. Let a = (a”, a®) € B(t) with diva = 0. Let ur be given by (1.16).

For any positive number A and 0 < m € L*(0, t), we denote

def 3 2 3 2 def ! INPW,
F@) = lup@ie +1Vea’ @Ollg, &.(t) = exp(—2 A f@Hdi" —m@)),

a0 Y g a0, upst.0) Y g Oura, v, (3.36)

and

def

Py “ Z/ (VAAY(—A) B uboab) | Alal) . dr.

£ k=1

Then we have for all q € Z,

~ 1
< 72 —q(_ h h By By hyj—
|Pq,/\(l)’Nd,,2 ﬁlluhhllg,%,% lla H’L:.-qB)IIVhaAIILtz(B)JFIIaAIIlef(B)IIVhaAIILtz(B)
4 .
L hy2 Lo
+—— llupp 1 1 llai | — Vi All + — llup, |l ||a,\|| )
(V)i B, 22 L2 (B) LB 3 B L} ;(B)

Proof. Again as in the proof of Proposition 2.2 and Proposition 3.4 , we distinguish the
terms with horizontal derivatives from the terms with a vertical one so that

Pys(t)y =P, )+ P2, (1), (3.37)
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with
def o [’
PlL,in= > / (Vi AL (=D 0oy (ulpa)) | Abal),,di',  and
k=170
def [’ -
Py, (1) é/o(VhA;(—A)_l[Z)%(u%ai)+Za3ak(u%kak+aiul;)]IAZaf)det’.
k=1

Applying Bony’s decomposition (1.22) and (3.5) gives
||A; (u};;ai’)HLtz(Lz) ,S Z ”S;’—IM}IZV”L,Q(L“)”AZ’QQ ||L,°°(L2)
la’'—ql=<5

v h v h
20 AL 2 w2y 14205 e 12 10y
q'zq—4

d q
S L2727l aalld" o= s
~ hh B2 L2 (B)

from which, we deduce that

[Pl O] S NAY@Ea) 22 1AL Va1 12,2)
2
< _4 »—q,,h hy—— hy—
S =2 ||uhh||B4,%_%ua Iz I V4] 1 3 - (3.38)

On the other hand, using the fact that diva = 0 and divu r = 0, we write

2
P!, (1) = Z/O (VaAy (= A) " 93(duy a* + dpajuly) | Abalt) . di’
k=1
&ef pv.l sy + P2 3.39
= P () + Py (o), (3.39)

Using integration by parts, we obtain

t
Bl = - /0 (A divia”y | A=) 03 divy a)) . di’

2 t
-y /0 (AL Gk, | AYOR(—A) " B3 divy al) ., di’
k=1

Ly, )+ W, ). (3.40)

Applying Bony’s decomposition (1.22) in the vertical variables gives

t
Wa (1) = Z /(AZ(S};,_IM%AZ,dthaf)|AZ(—A)_183dthai’)L2dt/
lg'—ql<57°
t
+ Z /0(AZ(A;,M%,AS;,Jrzdivhah)|A;(—A)_183divhaff)det/
q'zq—4

def |+ ~
= W)L+ W2, 0.



Global Solutions to 3-D Incompressible Anisotropic NS System in Critical Spaces 749

Thanks to Definition 1.3, one has

1
Al h
’Wq‘)h(t)‘ S / ||MF||L00||AvaA||L2 dt) ||AZ'VhaA||L[2(L2)
lg'—q1=<5

25—q .
S g2l 10 U 5

Whereas thanks to (2.1), dive = 0 and divur = 0, we write by using integration by
parts

Wi, => 2" q( / (AL (A”A“/umsv,ﬁawha )AL (=AY s divyal) o di’
q'>q—4

/O(A (AL ALY, divy al) | Al (—A) a5 divy Vial) zdt’),

from which and Lemma 2.1, we deduce that
!
-~ 2
Wil < > ||A;,u’;||Ltz(Lm){( /0 IVaa® Bl Abal 12, dr’)
q'zq—4

HI8Y 2 Vhal 202 18T e )
dZ
q q hy— hy—
S 52 gy (1ol + o 7 195 7 )

To deal with W;’ 20, again we use Bony’s decomposition (1.22) in the vertical variable
to write

Wh (1) = Z > / (AY(Sy_yupAbay) | Ayok(—A)" 03 divy ay) o di’

k=1 lq'—q|<5
+ > / (A (AL Ut , S8 0d") | ALk (=2) 103 divy a)) dt’)
q'zq—4
def ~
= W3, 0+ W, 0.
It is easy to observe that
1
W2, 0| S / 1 AL 132 dr') 185 Vhal 2.2,
lg'—ql=<5

< d227al — _ IVha'l= ...
S A2l )L”Ltz B)” h l”L,z(B)

Whereas again thanks to (2.1) and divur = 0, we get by using integration by parts that

A(r)_z > 2 {/ AV (A“3A”,umsg+2vhak) | Abd(—A) " o3 divy all) ., di’
k=1gq'>q—4

t
+/ (A;(AZ?A;,u’;.Asg,ﬂak) | Abok(—A) B3 divy Via)) dz/},
0
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from which and Lemma 2.1, we deduce

A h h h
Wil < 2. ”AZ’“F”L?(L;;%L%))(”53’+2VWA”L%(Lﬁ(LsO»HAZ“ lzge(r2)
q'zq—4

h h
+ ||S3/+2a “L;’O(L%(Lgo)) I A;Vhak ”L[Z(LZ))

2
< _qz—q h h — V h —
S 52 kel s 1 Vg 10
Therefore, we obtain
S, 1 27— h h
, < q . —
Py 0] 5 a2 (1l I 19 I 3

ol g (e + e I g | VU 3 ). G4
Ju' R MLz @) L (B) A2y ) ’

It remains to estimate of ﬁ; f (t). Indeed using Bony’s decomposition (1.22) in the
vertical variable, we write

2 t
P;;f(z) = Z Z /0(VhAZ(—A)_l83(S;/+28ka3A;,u]}’A)|A;ai')L2dt’

k=1¢q'>q—4
2 '
+> > /(th;(—A)—lag(A;,akaisg/_lu’;)|A;af)deﬂ
k=1 l¢'—q|=5"°
def
= Gy +G,, (0. (3.42)

It is easy to observe that

t
1 < v 3 v h v _h 1
|gq’)\4(t)|w E /0 ||Sq/+zvha ”Li(LgO)”Aq/”F,)\”L‘Z(L%)”Aqa)L”th(L%)dl
q'>q—4

t 1 1
3 h hz hyz .
D / VA BN Ay 5 3 12 | Aar I 2 1AL Vaal |12, di
0 :
q'zq—4

t
2
> /O 1Vha N Ak 5 13y ')

I>q—4

1

[~}

S
q

t 1 1
2 2 1 2
<( /0 1Vha 1A a2, di') 1A, Via) 12,
However, applying Bony’s decomposition (1.22) in the horizontal variables, we obtain
13 t
hoy2 h N2
| 1vna sl g By ' = [0 A0y,

h v _h h v h
S 20 (IS Akl + 1St byl @i @)
k=q'—4

t

3 h h /

X/ Viha ”B”AkAZ’MF,A”Lz(L%)dtv
0
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whereas thanks to (3.6) and (3.36), we have

t
3 h h
/0 IVaa Bl AL ALl 3 12, de’

’ 13 /
ko4 [t 312 02k
S dig2227 7 upyll _y / IVha? | ge ™o 1Vl dremev> gy
B,*? Jo
dk ! k q'
S22 T lugyll oy
Vv B, 2?2
which gives
! 3 voh 2 / 1 2 N—q' b 2
IVaa IBIAYh e oy dt' S —=( D di )27 Ny l®
0 h\Fv AV ; B, 22
k>q'—4 4
d?
4 A—q' 1, h 2
5 274 ||Mhh|| 11
AV B2
Whence thanks to Definition 1.3, we infer
61, dg h 3 hy3
G| S 27 MNup, | 11 llag P— Vel . (3.43)
¢ ()1 B, 22 L2 ,(B) L} (B)

To deal with ng , (1), we write, using integration by parts and divur = 0,
t
G = > {/ (A233(ALa; Sy up) | AL (=)' divyay) o di’
lq'—ql<s 70
t
+/0 (AY(AYa Sy d3uz) | AY(—=A) ' Vidsay) d;’}
def =, =
= Go s +G) ). (3.44)
Applying Lemma 2.1, (3.5) and diva = 0, we obtain

et 3 h h
G2, 0] S D NALGa N 202 IS8l 2 0o | A" | 2o )

lg'—q|<5
2
< 4 ~=q hy— By —
~ \/;2 ”uhh”B;%’%”a ”L;’C(B)”Vha)»”LtZ(B)’

and

t 1
~b 32 h 2 2 3
aols > ( /0 il Ayl 12 ') 1 AD 3363l 2 e,
lg’—q1=5
27— h h
< d27 )l |l [ Vaal |

12,5 L2(By’

from which, we deduce that

1
2 < 329—q h h hy__ hy—
62,0 S d22 (—ﬁ”’lhh”B;l.%”a ||L?O(B>+||ax||Lif(3))||vhak||L;(B). (3.45)
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Thanks to (3.42), (3.43) and (3.45), we arrive at

1 1
Pvzt <d22 q{ "N u L e 1A i
|P)5 ()] (M)Z ] h;,||B4 1ol A”L;{f(B)” )‘”LZ(B)

Ly By h Ry —
+(Enuhhu8ﬁ la" 17 5+ - ) Vi 755 |-
This along with (3.37), (3.38) and (3.41) completes the proof of the proposition. O

Corollary 3.3. Under the assumptions of Proposition 3.5, we have for all g € 7Z,

Z/ ViAL(—A) 0k upa®) | Abd"),, dr’

£,k=1

1
2H— h - 3
Sdg2 q{—f(lluhhll 1.3 IVhall 5 g + |

hy— h
. 13 1V 1550 I,

B,

A\ h 2 }
. | g1 IH.O/B)“ na Iz )

Proof. The proof of this corollary essentially follows from the proof of Proposition 3.5.
Firstly thanks to (3.40), we have

v,1 v h v _h
|P (t)| S ”A (uFVha )” fu é(Lz))”Aqa ”Lf(Lﬁ(L%))
+|AY (uya >||L;(Lz)||Aqvha”||L;(Lz),

which along with (2.3), Lemma 3.2 and Corollary 3.1 ensures that

42

|P (t)| qz q”uhh”87£ ”a ”230(8)
4

Vi || (3.46)

L2(B)
Whereas thanks to (3.42), we obtain

1 3 h h
G001 S D 1802 Vha 22 wpen | gl 2 e w2y 1 A5 2y

q'zq—4

1 q’
< , =4 ||, hy— 3~
< (2 42 ) a2l gy U 1V I

q'>q—4 4
2

< 4 r—q |, hy— 3
S Ml 1 N 19 (3.47)

and it follows from (3.44) that
2 3 h
|gq,0(t)| ,S Z ||AZ,33a ||L$(L2)(”S;/_]uF”L%(LaO)
lg'—ql=<5

v 3 v _h
HISE Ul 2o 1AYE" | oo 12y
2
< q —q h P V /’l —
S 52wl g 41"z g IV U5

This together (3.38), (3.46) and (3.47) completes the proof of the corollary. O
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With the above preparations, we are in a position to compete the proof of Theorem 1.3.

Proof of Theorem 1.3. Motivated by [11], we shall look for a solution of (AN S,) with
the form (1.15). Then w satisfies (1.17). Again we shall use the classical Friedrichs’
regularization method to construct the approximate solutions of (1.17). For simplicity,
we just outline it here. In order to do so, let (P,), <N be the projection operator given by
(2.17), we define w,, via

orw, — vARw, + Py(wy, - Vwy,) + Pp(wy, - VMF,n) + 7)n(uF,n - Vwy)
= ~Pulttr - Vitp) = PaV(=A) " 0g0k ((uf, + w0l + wh)

(ANSv.n) divw, =0
n — ’
def
Wnli=0 = Pn(uen) = Pn(uo — unp),
where ur def (Id — S;-”)MF with j, = —logj. Because of properties of the L?and L!

functions, the Fourier transforms of which are supported in the ball B(0, n), the system

(m v.n) appears to be an ordinary differential equation in the space L% defined by
(2.19). This ordinary differential equation is globally wellposed (one may check [11]
for the details).

Now let us turn to the uniform estimate of w,. For a clear presentation, we shall
neglect the subscript n. Toward this, as in the proof of Theorem 1.2, for arbitrary positive
numbers A, A; and A,, which we shall choose later on, we denote

def

fil) =

t
g.(1) dgeXp(—kolluihll‘;_H - /0 (A + hafa(t))) di), (3.48)
4

def
I3 OIEIVIw O, ) F Juk@ e + IVaw (0115,

def def
wit,x) = g (Owt,x) and  up;(t,x) = g (Oupt,x).
Then w’{ solves

drwl + (1 f1(0) + 22 faO)w] — vAWY + Py(w - Vwll) + Py (w - Vuuli ;)
#Puur - Vwl) =Py (up - Vult ) =Py V(=) gy ((ufF rwd)ak, + w’;)),
divw, =0,
wali=0 = Paluen) exp(—rolluz, II* ;).
4

[S]
D=

from which, we get by a standard energy estimate that
1 h 2 ! hy 2 hy2
Shagwl 1, + /O LA + A2 o DAL di’ + 0 Vw2,

1
= 2 IPatuen) Iz exp(=230llujlI* 1)

B,

t t
—/0 (ALw - Vul | A;wf)dez’—/o (Ab(w - Vil ) | Abw)), . dr’

[S]
[~

t

t
_/0 (A;(uF.Vw’;) | Agwﬁ)Lz dt’—/o (AZ(uF.Vu}},A) | A;;wQ)L2 ar’

t
_/0 (ALVA(=A) "9 ((u%+we)(ul},k+w§)) | Abw]) ,di’. (3.49)
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Applying Proposition 2.1 for a = w and b = w” gives

t
|/O (Abw - Vwl) | Abw]) 2 dt'| < dj279 |w" ||Lm(8)||vhwk||L2(B)

Equation (3.24) applied with ¢ = w and b = w" yields

}/ (Ab(w - Vi) | Abw}),,dr'| S dj2- q( l||w ||LOO(B)

+_

h 7
2 v ) .
1)4|| *”LOO(B)” x||L2 5 2||w Ile(B)II hwk”H(B) ||Mhh|| _11

wn® v B, *?

Proposition 3.3 applied with b = w" gives

|

t 1 3
v . h v, h 1 2~n—q hy2_ hy 2
|/ (Aq(up vul) | agul) o de| S 2270 (<l IVl I

Al

v

Lw "z 1 9HwE 1 5, )

1,

—2°2
V2 84

while (3.14) applied with a = w" gives

t
[ g il )

1
29— h o2
Sdg2 q( LT e A/
V2 842

N\

R .
LZ(B) )\% hh 34—7,7 A L,OC(B) .
OU

Finally Proposition 2.2 applied with u = w, and Proposition 3.4, Proposition 3.5 applied
with a = w claims that

t
|/ (AL VA (=A) " 90y ((ufv +wh) W, + w’;)) | Abw}) . dt|

< d227 | lw" 1 g | Vi)

hy 2
Wy || —~—
I1%5 26 +| AIIL2 (B)II w125

2
1.1 LB
1
h 2 h h
+—|lu Viaw, |73 ., + |lw Vw73
STl Il 1l A TS
h | — hy— h hy—
%””hh”B_%,%”w ||L[OO(B)||Vth‘”Lt2(B) + % ”uhh”B—%,%”wA”L,“’(B)
v 4 oV 4
T R Ly LAV R A R A J
1 e iy Az T _1 llwy
(A2v)# B, 72 " Li®) 2 B2 L, B



Global Solutions to 3-D Incompressible Anisotropic NS System in Critical Spaces

755
Plugging all the above estimates into (3.49), we arrive at
IIw,\IlLoc(g)+x/2?» ||wA|| (B)\/Zk IIwkll +V2V||Vhwfllzt§(3)
tfl ’f2
1
hy— hy 4
< llufy I+ € { " ||Lw(8)||vhwk||Lg(3) o 19 Wik
A T A LY (AT E
A A 11 A=
szfz( L2(B) 2 AN L2, B
1
+— llw" || 5 g VAW ||4 lw) || o 1 Vw1
v xR ) |V L2, (B)
1|| || Viw || rllw hll Viw ||
w = hW hW
o Ee T e ()Qv)g e T e
h) 2 2
+ wy || 5= u 3.50
S )t .|| il y 19 Wl ) (3.50)
01)2 4

For some small enough positive constant £, which will be determined later on, we define

% def . hy By . 1
7+ & max{t. lw" iz ) + VIR I Smm(sl,m)v}. (3.51)
1 1
Applying (1.20) and Young’s inequality, arbi <

a4
- p
a, b, p, g satisfying % + é =1, gives

&I&‘

for any positive numbers

1
Cllw ||Lm(,3)||vhw£ug(3) < Ce{ IVawl 3 5.

cnw’;u%fj(g [ (oS CTL e T
cnw’;uéz( R e CTL e v
v—inuzhn;%_% ||vhwx||22(8) < Coci ”“hh”34 1t %whwi‘u;;@,
and

cnuhhn;ﬁ (1 i 1 v%||w£||%;(6)
| il||%§;(8)+vl”wh”%;é(3>” ol
+$u i’nL[&(B IVl % + Aéjnw’;n%%)

= €l rerserer+ O30 Dyl g + vz v i,

4
Al 1+ 6o+ LTl
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fort < T*. Without loss of generality, we may assume that c1, &1 < 5. Then it follows
from (1.19) and (3.50) that

||w;\ ||L°°(B) ++/2A1 ||w)L || ITZ(B)

V2wl 5= * V2u [Vl
t

t il B fz

1
<CiB+ 04w Dllugl 11 +— ||wx||Loo(,3)+2c1v 3wl | 5—

3Jv

3417 ,f] (B)
+ = IVhw} 1 5 g5,
’fZ(B) 5 t

+Civ™ 2(2+(A2v) 2)Ilwxll

fort < T*. Taking hg = v™4, A1 = 4C12v_3 and Ay = 9C12v_1 in the above inequality,
we infer that

hy_— hy h *
I Nz + Ii0 gy < SCUluglyy for 1< T,
which along with a similar derivation of (2.26) ensures that

h h h
I lIz= ) + VIV I 77 45 < SCillugll -

20 —4y. 3 .4
847,%exp{9cl O A

~22
B,

[S]

t
S 7 R / 2w O +v IV Ol ar)) (3.52)
B, 0

where we used (3.5) so that [y [lu3 ()12 dt’ S v ug, |12

Bl—
=

4
Now let us turn to the uniform estimate of w?>. Indeed we get by first applying Ay

to the w? equation of (m v.n) and then taking the L? inner product of the resulting
equation with Ap w? that

t
||w D172 + VIV I3z, ) /(Ag(w.w%m;w%dr’
t
+/0 (Ab(w - Vup) | Abw?), dt’+/0 (Ab(up - Vw?) | Abw?),, dt’
1 t
= SIAG Pz = /0 (Ab(up - Vup) | Abw?),, dt’
! 1 k k h
+/0 (Videdk (=)' AY (e + wO) y + w5)) | AYw") , dr, (3.53)

where in the last step, we used divw = 0 and integration by parts.
Applying Proposition 2.1 fora = w, b = w? and g = 1 gives

t
‘/ (Al(w - Vo) | ALw?), df’

1
h
IViw ||2 ||w ||2

<22 (I 12 =5

=5 i

LX(B)

V" 5, 107 ||;oz(5)||vhw ||i;(3)).
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Applying (3.25) for a = w and b = w? implies

! 3 3 qu h
AY(w - Vu A’w dt"<— _q{ u w v,w"
[ @y viiy sy | < i I hh”34 10 g 90"
il oy (V" 5 1 VAR
hh 34‘7‘7 L}(B) L (B) L2(B)
h h 31—
0 g 100 o 190
whereas applying Proposition 3.3 for » = w3 and g = 1 ensures
! 3 3 3
v . 3 v ’ q
[y vty agwd) zar] s dz2 “”hh”B;%z( 0 g 190 s

+—1 ||u)3||Noo [I Vhw3||~ )
v% L (B) L2(B)
Applying (3.15) for a = w? gives

t
‘/0 (Ab(up - Vug) | Abw’),,dt’

1 1
< 422l |l 11(—Vw3~ +—wd = )
S My g1l (I + S

Finally applying Corollary 2.2 for u = w, Corollary 3.2 and Corollary 3.3 fora = w
claims that

t
)/0 (Vadedk (=) " AL (el + wh) @l +wh)) | Abw") 2 dt’

1

1
<d22 (1{ w V), w wh 2 Y, w h 2 w3 2 3 2
Il H’BCJ(B) Vi ”LZ(B) I ”z;“/(B) IViw ”LZ(B) I ”Z,FC/(B) Vi ”Lz(B)
Looh 2 h h 3 h
+—llupp, 17 1 IVRW™ 73 +*||Mhh|| 1wl C1flw ||’“/
v% R L;(B) v 842*2 B, 2?2 L®(B
Lo hy2 3
+— g, |l ||w s e IVewl 3 ||M I ||w ||,2L_/ || ||2
v% hh 34 L¥(B) LZ(B) 1 hh 84 =B Lz(B)

.3 h h
Wl 1 g 1 ||L?(B)}.

Substituting all the above estimates into (3.53) and using (1.19), we obtain

3 31—
1w gz, + V2 IVl )

1 1
<C +C { i Vaw i Vw
2||140||B;%% 1" 1 g, V0 ||L2(B)|| g 1V ”m)
2 2 2 hy—
Vw1 1w g Vi ||L2(B)+||w N AT P
4 4 4 4
#1900 15 5 10 g 1907 s
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+u II% (— : flw? ||4 IVhw? ||4 +Lllw IIL IIVhw H2
Mty B L3B) b L3B)
1 hy s
— 2_ vV, w 2
+ ||w IILOQ(B)(HVhw IIL2 +[Vaw?| 2(B)))
1 1
2 _ h 3 4 3 gt 4 h
+||Mhh||B H(V%IIW IILZ(B)II IILOO(B)II ”LZ(B) rllw ||Lw(B)HVh ||L2(B)
4
1 — " ||4 IIVhthIi IIVh H2 1 — " ||2 IVhw ||2 )
v L (B) LX(B (B) v L (B) L2(B)
1 1 1
N L - LI LA LA I i }
Mgy Bﬁ‘%(vi RS RO Vl =m)
Thanks to (1.20) and (3.51), we infer that for t < T*,
30— 3~
1wz + V2UIViwdlz
< Cz{(l +e1 +/Crer + N/—conuéug_%,% + (o1 + 31 + 3D’ I 7z
4
+(81 + /C1€1 + ./6181)V+(81 +44/81+24/6‘1 + 4/C181)«/;||Vhw3||z§(8)} holds.
t
(3.54)
Choosing ¢y in (1.20) and €7 in (3.51) small enough so that
1
g1+ Jc1e1 +Jep <1, g1 +3Jc1 +3 /g1 < % and
2
1
g1 +Jc1e1 +Jc1e1 < f g1 +4/e1 +2./c1 +Jcie1 < 2C
then we deduce from (3.54) that
3 — 3~ 3
I Iy + VIV g5, < AC Ry g + . (3.55)

4

for t < T*. Thanks to (3.52), (3.55), and a similar proof of (2.28), there exist positive
constants K, M which depend on Cy, C> such that

hy_— hy 4
I s+ IV < Ky e exp (Mo~ ||B,%,%)
4

1
5 (51, 100C2) v for t <T* (3.56)

provided that we take ¢ = % min(el, 100 C2) in (1.20). Equation (3.56) contradicts

(3.52) if T* < oo. This shows that the solution sequence defined by (AN Syv.n) satisfies
(3.55) and (3.56) for t = co. With (3.55) and (3.56), one can follow the compactness

argument in [11] to prove the global existence of solutions to (m v) in the function
space B(00o). Moreover, the (1.21) holds. And the uniqueness part has been proved in
[11]. This completes the proof of Theorem 1.3. O
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