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Abstract: We prove the limiting absorption principle for a dressed electron at a fixed
total momentum in the standard model of non-relativistic quantum electrodynamics. Our
proof is based on an application of the smooth Feshbach-Schur map in conjunction with
Mourre’s theory.

1. Introduction

In this paper, we study the dynamics of a single charged non-relativistic quantum-
mechanical particle - an electron - coupled to the quantized electromagnetic field. In
units such that the bare electron mass and the speed of light are m = 1 and c = 1, which
we employ in what follows, its quantum Hamiltonian is given by

H := 1

2

(
pel + α

1
2 A(xel))

2 + H f , (1.1)

acting on H = Hel ⊗ F , where Hel = L2(R3) is the Hilbert space for an electron (for
the sake of simplicity, the spin of the electron is neglected), and F is the symmetric Fock
space for the photons defined as

F := �s(L
2(R3 × Z2)) ≡ C ⊕

∞⊕

n=1

Sn

[
L2(R3 × Z2)

⊗n
]
, (1.2)

where Sn denotes the symmetrization operator on L2(R3 × Z2)
⊗n

. In Eq. (1.1), xel
denotes the position of the electron, pel := −i∇xel is the electron momentum operator,
α is the fine structure constant (in our units the electron charge is e = −α1/2), A(xel) is
the quantized electromagnetic vector potential,

A(xel) := 1√
2

∑

λ=1,2

∫

R3

κ�(k)

|k| 1
2

ελ(k)(a
∗
λ(k)e

−ik·xel + aλ(k)e
ik·xel)dk, (1.3)
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and H f is the Hamiltonian for the free quantized electromagnetic field given by

H f :=
∑

λ=1,2

∫

R3
|k|a∗

λ(k)aλ(k)dk. (1.4)

The photon creation- and annihilation operators, a∗
λ(k), aλ(k), are operator-valued dis-

tributions on F obeying the canonical commutation relations
[
a#
λ(k), a#

λ′(k′)
]

= 0,
[
aλ(k), a∗

λ′(k′)
] = δλλ′δ(k − k′), (1.5)

where a# stands for a∗ or a; ελ(k), λ = 1, 2, are normalized polarization vectors, i.e.,
vector fields orthogonal to one another and to k (we assume, in addition, that ελ(k) =
ελ(k/|k|), so that (k · ∇kελ)(k) = 0), and κ� is an ultraviolet cutoff function, chosen
such that

κ� ∈ C∞
0 ({k, |k| ≤ �}; [0, 1]) and κ� = 1 on {k, |k| ≤ 3�/4}. (1.6)

There is no external potential acting on the electron. It can, however, absorb and emit
photons, (i.e., field quanta of the electromagnetic field), which dramatically affects its
dynamical properties. This is the simplest system of quantum electrodynamics. In the
present paper, we take an important step towards understanding the dynamics of this
system: We exhibit a local decay property saying, roughly speaking, that the probability
of finding all photons within a ball of an arbitrary radius R < ∞ centered at the position,
xel, of the electron tends to 0, as time t tends to ∞. In other words, asymptotically, as
time t tends to ∞, the distance between some photons and the electron tends to ∞, and
the electron relaxes into a “lowest-energy state”.

The above result is proven for an arbitrary initial state of the system, assuming only
that its maximal total momentum has a magnitude smaller than pc < mc = 1; (recall
that m = 1 and c = 1). In the following, we set pc = 1/40, but we expect our result
to hold for any value of pc smaller than 1. The physical origin of the restriction on the
total momentum will be described below.

It has long been expected and has recently been proven that an electron coupled to
the quantized electromagnetic field is an “infra-particle”: The infimum, E(P), of the
spectrum of the Hamiltonian at total momentum P is not an eigenvalue, except when
P = 0. (This result is sometimes referred to as “infrared catastrophe”. Precise notions
will be given later in this Introduction.) However, there is an “infrared representation”
of the canonical commutation relations of the electromagnetic field that is disjoint from
the Fock representation and such that the corresponding representation space contains
an eigenvector associated to inf σ(H |P ); see [Fr2,Pi,CF,CFP2]. This suggests that if
we prepare the system, at some initial time t (= 0), in an arbitrary state described by a
vector in the tensor product of the one-electron Hilbert space and the photon Fock space,
whose maximal total momentum has a magnitude strictly smaller than mc = 1, and then
study the time evolution of this vector, we will find that the probability of finding photons
within a ball of an arbitrary radius R < ∞ centered at the position, xel, of the electron
tends to 0, as time t tends to ∞.

This intuitive picture is expressed in precise language in terms of the local decay
property, which is formulated as

∥∥∥ (d�(〈xph − xel〉) + 1)−s e−it H g(H , Ptot)


∥∥∥ ≤ C t−(s−
1
2 ) , (1.7)
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with 〈a〉 := √
a2 + 1. Here d�(b) denotes the usual (Lie-algebra) second quantization

of an operator b acting on L2(R3 × Z2), xph denotes the photon “position” operator,
xph = i∇k , acting on L2(R3 × Z2), Ptot := pel + Pf is the total momentum operator,
where the field momentum, Pf , is given by

Pf :=
∑

λ=1,2

∫

R3
ka∗
λ(k)a(k)dk, (1.8)

g is an arbitrary smooth function compactly supported on the set

Ma.c. := {(λ, P) ∈ R × S | λ > E(P)} , (1.9)

where S := {P ∈ R
3| |P| ≤ pc}, and 
 ranges over a certain dense set in H. This is

one of the key results of this paper. Another related consequence of our analysis is that
the spectrum of the Hamiltonian of the system at total momentum P different from 0,
with |P| < pc, is purely absolutely continuous.

One expects, in fact, that, asymptotically, as time t tends to ∞, the system approaches
a scattering state describing an electron and an outgoing cloud of infinitely many freely
moving photons of finite total energy, with the spatial separation between the electron
and the photon cloud diverging linearly in t ; (Compton scattering, see [CFP1]).

The system studied in this paper is translation invariant, in the sense that H commutes
with the total momentum operator Ptot = pel + Pf . This implies that H admits a “fiber
decomposition”

U H U−1 =
∫ ⊕

R3
H(P)dP, (1.10)

over the spectrum of Ptot. The r.h.s. of (1.10) acts on the direct integral
H̃ := ∫ ⊕

R3 HP dP, with fibers HP ∼= F , (i.e. H̃ = L2(R3, dP;F)), the fiber opera-
tors H(P), P ∈ R

3, are self-adjoint operators on the spaces HP , and U is the unitary
operator

(U�)(P) :=
∫

R3
ei(P−Pf )·y�(y)dy. (1.11)

It maps the state space H = Hel ⊗ F onto the direct integral H̃ = ∫ ⊕
R3 HP dP. (The

inverse is given by (U−1
)(xel) = ∫
R3 e−ixel·(P−Pf )
(P)dP.)

The quantity E(P) mentioned above is defined as E(P) := inf σ(H(P)). It is the
energy of a dressed one-particle state of momentum P , provided |P| is small enough.
Its regularity, which turns out to be essential in our analysis, has been investigated in
[Chen,BCFS2,CFP2,FP]. In [AFGG], related results for a model of a dressed non-rel-
ativistic electron in a magnetic field are established.

For the uncoupled system, α = 0, at total momentum P, E(P) = P2/2 is an eigen-
value of the Hamiltonian H(P). For |P| smaller than or equal to mc = 1, it is at the
bottom of the spectrum of H(P). But if |P| > 1 the bottom of the spectrum of the
Hamiltonian of the uncoupled system at total momentum P reaches down to

|P| − 1/2,
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Fig. 1. The map E(P) = inf σ(H(P)), for α = 0: If |P| ≤ 1, E(P) = P2/2 ∈ σpp(H(P)), if |P| > 1,
E(P) = |P| − 1/2 /∈ σpp(H(P))

which is strictly smaller than P2/2, and hence the eigenvalue P2/2 is embedded in the
continuous spectrum; see Fig. 1. In this range of momenta, the charged particle may
propagate faster than the speed of light and, hence, it emits Cerenkov radiation. Thus,
one expects the dynamics of the system to be quite different depending on whether
|P| < 1 or |P| > 1. This is the physical origin of our restriction on the total momentum
(|P| ≤ pc < 1) which appeared above.

We will analyze the spectra of the fiber Hamiltonians H(P) at a fixed total momen-
tum P ∈ R

3, with |P| ≤ pc. We prove the limiting absorption principle (LAP) for
H(P), for α1/2 small enough and |P| ≤ pc. As a consequence, we obtain local decay
estimates and absolute continuity of the spectrum of H(P) in the interval (E(P),+∞).
(In Appendix C, we explain how to modify the proof given in this paper to arrive at a
LAP for electrons bound to static nuclei and linearly coupled to the radiation field.) Our
method can be also easily adapted to the P-fibers of particle systems, like atoms and
molecules (see, e.g., [LMS]). If such a system, in the center-of-mass frame, has a ground
state at the bottom of its spectrum, then of course the approach simplifies considerably
and becomes similar to the one outlined in Appendix C.

Our proof of the LAP is based on an application of the isospectral smooth Feshbach-
Schur map introduced in [BCFS1]; see also [GH,FGS3]. This map depends on the choice
of an unperturbed Hamiltonian. An important and new point in our analysis is to choose
an unperturbed Hamiltonian obtained by decoupling the low-energy photons from the
electron; (a similar idea was suggested independently by M. Griesemer [Gr]; such Ham-
iltonians were used previously, but in a different context, in, e.g., [BFP,FGS1,FP].) We
combine the Feshbach-Schur map with Mourre’s theory (see [Mo,PSS,ABG,HS]). Our
proofs incorporate many important earlier ideas, methods and results; (especially from
[BCFS1,GH,FGS1,FP]). To compare our approach with that of [FGS1, FGS2], we apply
it in Appendix C to the Nelson model involving bound particles linearly coupled to the
quantized radiation field. We emphasize that our methods are well adapted to coping
with the infrared singularity of the form factor in the interaction Hamiltonian.

If one attempted to establish local decay for the Hamiltonian in (1.1) directly, i.e.,
without using the fiber decomposition (1.10), one would face a major difficulty: One
would have to deal with a continuum of thresholds, E(P), potentially leading to extremely
slow decay.
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For the standard model of charged non-relativistic particles bound to a static nucleus
and interacting with the quantized electromagnetic field, a LAP just above the ground
state energy has been recently proven in [FGS1] and [FGS3]. The proof in [FGS1] is
based on an infrared decomposition of the photon Fock space: In order to establish a
LAP in an interval located at a distance σ from the bottom of the spectrum, the initial
Hamiltonian is approximated by an infrared-cutoff Hamiltonian (which is obtained by
turning off the interaction between the charged particles and photons of energies smaller
than σ ). The Mourre estimate is then established in a perturbative way. A feature of the
infrared-cutoff Hamiltonian, which the method of [FGS1] is based upon, is that only the
free-field energy operator affects the low-energy photons.

The proof in [FGS3] is based on a spectral renormalization group analysis; (see
[BFS,BCFS1,FGS2]) and could possibly be adapted to our context. However, the proof
we present in the following is significantly simpler, in that we require only one appli-
cation of the smooth Feshbach-Schur map, whereas renormalization group methods are
based on an iteration of this map.

While progress on understanding the standard model of charged non-relativistic par-
ticles bound to static nuclei and interacting with the quantized electromagnetic field has
been fairly robust, our understanding of free electrons coupled to the quantized elec-
tromagnetic field has emerged rather slowly and has always come at the price of very
involved and lengthy arguments. Many techniques that work beautifully for the former
(see, e.g., the extensive literature on existence of ground states) are hitting upon walls
in the latter case. To begin with, an important ingredient in various proofs, including the
one in [FGS1], namely the use of a unitary Pauli-Fierz transformation (combined with
exponential decay of states bound to nuclei in the position variables of the electrons), is
not available in the free-electron model. Furthermore, the important feature that, after
an infrared cutoff has been imposed, only the free-field energy operator determines the
dynamics of the low energy photons, is no longer true in our model. More precisely, a
term coupling the low- and high-energy photons appears in the infrared cutoff Hamilto-
nian (see (1.30) and the discussion after it), so that the methods in [FGS1] do not apply
directly.

Main results. We now state our main results and outline the strategy of our proof.
Whenever the readers meet an unfamiliar notation they are encouraged to consult Appen-
dix D.

We prove a limiting absorption principle for H(P) in an energy interval just above
E(P) = inf σ(H(P)), for |P| ≤ pc, where 0 < pc < 1. In this paper we choose
pc = 1/40, and we do not attempt to find an optimal estimate on pc.

The main result of this paper can be formulated as follows: For an interval J ⊆ R,
we set J± := {

z ∈ C,Rez ∈ J, 0 < ±Imz ≤ 1
}
. Since the operator d�(〈xph − xel〉) is

translationally invariant (it commutes with Ptot), it is represented as the fiber integral,

Ud�(〈xph − xel〉)U−1 =
∫ ⊕

R3
d�(〈y〉)dP, (1.12)

where y := i∇k is the “position” operator of the photon, but now relative to the electron
position. (To distinguish it from the original photon “position” operator xph = i∇k , we
use the symbol y.) We have
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Theorem 1.1. There exists an α0 > 0 such that, for any |P| ≤ pc (= 1/40), 0 ≤ α ≤
α0, 1/2 < s ≤ 1, and any compact interval J ⊂ (E(P),∞), we have that

sup
z∈J±

∥
∥(d�(〈y〉) + 1)−s[H(P)− z

]−1
(d�(〈y〉) + 1)−s

∥
∥ ≤ C, (1.13)

where C is a constant depending on J and s. Moreover, the map

J � λ �→ (d�(〈y〉) + 1)−s[H(P)− λ± i0+]−1
(d�(〈y〉) + 1)−s ∈ B(H) (1.14)

is uniformly Hölder continuous in λ of order s − 1/2.

This theorem follows from Corollaries 2.3 and 5.4 below. Our proof will show that,
if dist(E(P), J ) = σ , then the constant C in (1.13) is bounded by O(σ−1). Finding an
optimal upper bound on C with respect to σ is beyond the scope of this paper.

As a consequence of Theorem 1.1, we have the following

Corollary 1.2. There exists α0 > 0 such that for any |P| ≤ pc and 0 ≤ α ≤ α0, the
spectrum of H(P) is purely absolutely continuous in the interval (E(P),+∞).

Physical interpretation of our results. We describe a consequence of Theorem 1.1 point-
ing to a key physical property of the system. We consider an initial state consisting of a
dressed electron together with a cloud of photons located in a finite ball centered at the
position of the electron.

Corollary 1.3. Recall that S = {P ∈ R
3| |P| < pc}, and let
 ∈ H = Hel ⊗ F denote

an arbitrary state such that U
 = ∫ ⊕
S 
(P)dP and

‖ (d�(〈y〉) + 1)s 
(P) ‖ < ∞ , (1.15)

for some 1/2 < s ≤ 1 and for all P ∈ S. Then our system has the local decay property
(1.7).

Proof. Let 
g := g(H , Ptot)
. The state U
g ∈ ∫ ⊕
R3 HP dP can be written as

U
g = Ug(H , Ptot)
 =
∫ ⊕

S
g(H(P), P)
(P) dP. (1.16)

We note that

Ue−it H
g = lim
ε→0

1

2iπ

∫

S
dP

∫
dλ f (λ, P) e−itλIm

1

H(P)− λ− iε

(P),

(1.17)

so that
∥∥∥ (d�(〈xph − xel〉) + 1)−s e−it H 
g

∥∥∥

= sup
‖
′‖=1

∣∣∣ lim
ε→0

∫

S
dP

∫
dλ e−itλ f (λ, P)

〈

′, (d�(〈y〉) + 1)−sIm

1

H(P)− λ− iε

(P)

〉 ∣∣∣. (1.18)
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Since g(λ, P) is supported on the set {λ > E(P)}, Theorem 1.1 implies that the scalar
product in (1.18) is (s − 1

2 )-Hölder continuous in λ, for any choice of 
′, and for a
Hölder constant independent of 
′, because 
̃(P) := (d�(〈y〉) + 1)s
(P) ∈ F . The
Fourier transform ĥ(t) = ∫

eitλh(λ)dλ of an (s − 1
2 )-Hölder continuous function h(λ)

satisfies |̂h(t)| ≤ Ct−(s−1/2). Thus, (1.7) follows. ��
This corollary implies that photons that are not permanently bound to the dressed

electron move out of any bounded domain around the dressed electron with probability
one, as time tends to ∞.

We consider an observable A, given by a selfadjoint operator on H which we assume
to satisfy

∥
∥(d�(〈xph − xel〉) + 1)s A(d�(〈xph − xel〉) + 1)s

∥
∥ < ∞. (1.19)

Then,

lim
t→0

〈

g, eit H A e−it H 
g

〉
= 0. (1.20)

Indeed, we have
∣
∣∣
〈

e−it H
g , A e−it H
g

〉∣∣∣ ≤ ‖(d�(〈xph − xel〉) + 1)s A(d�(〈xph − xel〉) + 1)s‖
×‖ (d�(〈xph − xel〉) + 1)−s e−it H 
g ‖2

≤ C t−2(s− 1
2 ). (1.21)

More generally, we expect the following picture to hold true. We assume that h ∈
C∞((−∞, Ec)× S), where Ec = E(P) with |P| = pc, and consider the state


h := h(H , Ptot)
,

where 
 ∈ H is as in Corollary 1.3. Let A = U−1
∫ ⊕ AP dPU denote a bounded

translation invariant observable. Then, we expect that

lim
t→∞

〈
e−it H
h , A e−it H
h

〉
=

∫

S
dμ
h (P)

〈
�P , AP �P

〉
, (1.22)

where supp{dμ
h } ⊆ S. Here, 〈�P , ( · )�P 〉 denotes an expectation in the generalized
ground state of the fiber Hamiltonian H(P). This describes the relaxation of the state

h to the mass shell, asymptotically as t → ∞, under emission of photons that dis-
perse to spatial infinity. (Note that, for P �= 0, �P does not belong to the Fock space,
but to a Hilbert space carrying an infrared representation of the canonical commutation
relations.)

We end this discussion by presenting the explicit expression for the fiber Hamiltoni-
ans H(P). Using (1.10) and (1.11) and using that A(xel)eixel·(P−Pf ) = eixel·(P−Pf )A(0),
we compute H (U−1
)(xel) = ∫

R3 eixel·(P−Pf )H(P)
(P)dP , where H(P) is given
explicitly by

H(P) = 1

2

(
P − Pf + α

1
2 A

)2 + H f , (1.23)

with

A := A(0) = 1√
2

∑

λ=1,2

∫

R3

κ�(k)

|k| 1
2

ελ(k)(a
∗
λ(k) + aλ(k))dk. (1.24)
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Strategy of the proof of Theorem 1.1. First, we prove an easy part - a LAP in any compact
interval J ⊂ (E(P),∞) with the property that inf J ≥ E(P) + C0α

1/2, where C0 is
a sufficiently large, positive constant (Sect. 2). This follows from a Mourre estimate of
the form

1J (H(P))[H(P), iB]1J (H(P)) ≥ c1J (H(P)), (1.25)

where B is the generator of dilatations on Fock space (see Eq. (2.1)) and c is positive.
Using the assumption that inf J ≥ E(P) + C0α

1/2 and standard estimates, Eq. (1.25)
can be proven in a straightforward way.

A considerably more difficult task is to prove a limiting absorption principle near
E(P). We use a theorem due to [FGS3] (see Theorem B.2 in Appendix B of the present
paper), which essentially says that one can derive a LAP for H(P) from a LAP for an
operator resulting from applying a smooth Feshbach-Schur map to H(P). We explain
these points in detail.

Our construction of the smooth Feshbach-Schur map is based on a low-energy decom-
position of the Hamiltonian H(P):

H(P) = Hσ (P) + Uσ (P), (1.26)

where σ ≥ 0,Uσ (P) is defined by this equation and the infrared cutoff Hamiltonian
Hσ (P), σ ≥ 0, is given by

Hσ (P) := 1

2
(P − Pf + α

1
2 Aσ )

2 + H f , (1.27)

for every P ∈ R
3, with

Aσ := 1√
2

∑

λ=1,2

∫

{|k|≥σ }
κ�(k)

|k| 1
2

ελ(k)(a
∗
λ(k) + aλ(k))dk, (1.28)

(see Sect. 3). Note that Hσ (P) is defined by decoupling photons of energy less than σ
from the electron. Such a decomposition was used previously in the analysis of non-rel-
ativistic QED; (see, e.g., [BFP,FGS1]).

Next we use the fact that the Hilbert space F is isometrically isomorphic to Fσ ⊗Fσ ,

where Fσ := �s(L2({(k, λ), |k| ≥ σ })) and Fσ := �s(L2({(k, λ), |k| ≤ σ })). Below
we will use this representation without always mentioning it. The operator Hσ (P) leaves
invariant the Fock space Fσ of photons of energies larger than σ , and its restriction
to Fσ ,

Kσ (P) := Hσ (P)|Fσ
, (1.29)

has a gap of order O(σ ) in its spectrum above the ground state energy. Moreover, in
Fσ ⊗ Fσ , Hσ (P) decomposes as

Hσ (P) = Kσ (P)⊗ 1 + 1 ⊗ (1

2
P2

f + H f
) − ∇Kσ (P)⊗ Pf , (1.30)

where ∇Kσ (P) := P − Pf +α1/2 Aσ . The central difficulty in our analysis comes from
the presence of the last term in (1.30), which couples the low- and high-energy photons.
This is the main reason why we are not able to prove a Mourre estimate for H(P) near
E(P) by using a suitable σ -dependent conjugate operator (as is done in [FGS1]). To
circumvent this difficulty, we apply the Feshbach-Schur map.
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We use the projection, Pσ (P), onto the ground state of Kσ (P) in order to construct
a smooth Feshbach-Schur map Fχ , where χ = Pσ (P) ⊗ χσf (H f ), with χσf (H f ) a
smoothed “projection” onto the spectral subspace H f ≤ σ ; (see Sect. 4). This map
projects out the degrees of freedom corresponding to photons of energies larger than σ .
The resulting operator F(λ) := Fχ (H(P)− λ), where λ is the spectral parameter, is of
the form

F(λ) = Kσ (P)⊗ 1 + 1 ⊗ (1

2
P2

f + H f
) − ∇Eσ (P)⊗ Pf − λ + W, (1.31)

where Eσ (P) := inf σ(Hσ (P)) and W is defined by this relation. We notice that, due
to the last term in (1.30), the unperturbed operator chosen to construct F(λ) cannot be
Hσ (P). Instead we choose the following operator:

Tσ (P) = Kσ (P)⊗ 1 + 1 ⊗ (1

2
P2

f + H f
) − ∇Eσ (P)⊗ Pf . (1.32)

Thanks to the uniform regularity of Eσ (P) with respect to P (see Proposition 3.1)
and using the Feynman-Hellman formula (see Lemma 5.6), we see that the difference
Hσ (P)− Tσ (P) is small in an appropriate sense. In particular, the operator W in (1.31)
can be estimated to be O(α1/2σ).

Next, in order to obtain a LAP for F(λ), we use again Mourre’s theory, choosing a
conjugate operator Bσ defined as the generator of dilatations with a cutoff in the photon
momentum variable,

Bσ :=
∑

λ=1,2

∫

R3
a∗
λ(k)κ

σ (k)bκσ (k)aλ(k)dk, (1.33)

with κσ (k) a cutoff in the photon momentum variable, see (1.6), and b := i
2 (k ·∇k +∇k ·k)

the generator of dilatations; (see Sect. 5). Let λ be in the interval

J<σ := [E(P) + 11ρσ/128, E(P) + 13ρσ/128], (1.34)

where σ satisfies σ ≤ C′
0α

1/2 for some fixed, sufficiently large positive constant C′
0 ≥

C0, and ρσ is the size of the gap above Eσ (P) in the spectrum of Kσ (P). The Mourre
estimate for F(λ), on the spectral interval�σ = [−ρσ/128, ρσ/128], is established as
follows. By energy localization and the facts that the operator Kσ (P) commutes with
Bσ and that |∇Eσ (P)| ≤ |P| + Cα ≤ 1/4, for |P| ≤ 1/40 and α sufficiently small,
the commutator of the “unperturbed” part in F(λ) with Bσ yields a positive term of
order O(σ ). This and the fact that the commutator with the “perturbation” W is of order
O(α1/2σ) lead to the Mourre estimate and, therefore, to the LAP for F(λ). Once the
LAP is established for F(λ), it is transferred by the theorem of [FGS3] mentioned above
(see Theorem B.2 in the present paper), to the original Hamiltonian H(P) on the interval
J<σ . Finally, we use that the intervals J>σ in (1.34) with σ ≤ C′

0α
1/2 cover the interval

(E(P),C0α
1/2].

Organization of the paper. Our paper is organized as follows. In the next section, we
prove the LAP for H(P) outside a certain neighborhood of E(P) = inf σ(H(P)).
Section 3 is concerned with the approximation of H(P) by the infrared cutoff Hamil-
tonian Hσ (P). In Sect. 4, we prove the existence of the Feshbach-Schur operator F(λ)
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mentioned above. We establish the Mourre estimate for F(λ) in Sect. 5, from which
we deduce the LAP for H(P) near E(P). In Appendix A, we collect some technical
estimates used in Sects. 4 and 5. Appendix B recalls the definition of the smooth Fesh-
bach-Schur map and some of its main properties. In Appendix C, we briefly explain how
to adapt the methods used in this paper to a model of bound non-relativistic electrons
coupled to the radiation field. Finally, for the convenience of the reader, a list of notations
used in this paper is contained in Appendix D.

Throughout the paper, C,C′,C′′ denote positive constants that may vary from one
line to another.

2. Limiting Absorption Principle Outside a Neighborhood of the Ground State
Energy

In this section we shall prove Theorem 1.1 for any interval J of the form

J = J>σ := E(P) + [σ, 2σ ],
where the parameter σ is chosen to satisfy σ ≥ C0α

1
2 , for some fixed positive constant

C0. Our proof is based on the standard Mourre theory ([Mo]), the conjugate operator B
being chosen as the generator of dilatations on F , i.e.,

B := d�(b), with b := i

2
(k · ∇k + ∇k · k). (2.1)

One can verify that

[H f , iB] = H f , (2.2)

in the sense of quadratic forms on D(H f ) ∩ D(B), and that, for j ∈ {1, 2, 3},
[d�(k j ), iB] = d�(k j ), (2.3)

in the sense of quadratic forms on D(d�(k j )) ∩ D(B). Likewise, for any f ∈ D(b),

[
( f ), iB] = −
(ib f ) (2.4)

in the sense of quadratic forms on D(
( f )) ∩ D(B). Here


(h) := 1√
2
(a∗(h) + a(h)), (2.5)

where, as usual, for any h ∈ L2(R3 × Z2), we set

a∗(h) :=
∑

λ=1,2

∫

R3
h(k, λ)a∗

λ(k)dk, a(h) :=
∑

λ=1,2

∫

R3
h̄(k, λ)aλ(k)dk, (2.6)

so that

A = 
(h), h(k, λ) := κ�(k)

|k| 1
2

ελ(k). (2.7)

We recall that our choice of the polarization vectors ελ(k) implies that k · ∇kελ(k) = 0.
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Theorem 2.1. There exist constants α0 > 0 and C0 > 0 such that, for all |P| ≤ pc, 0 ≤
α ≤ α0 and σ ≥ C0α

1/2,

1J>σ (H(P))[H(P), iB]1J>σ (H(P)) ≥ σ

2
1J>σ (H(P)). (2.8)

Proof. Note that H(P) can be written as

H(P) = 1

2
P2 +

1

2
P2

f + H f − P · Pf + α
1
2 P ·
(h)

−α
1
2

2

(

(h) · Pf + Pf ·
(h)) +

α

2

(h)2. (2.9)

It follows from (2.2), (2.3) and (2.4) that

[H(P), iB] = −1

2

(
P − Pf + α

1
2
(h)

) · (
Pf + α

1
2
(ibh)

)

−1

2

(
Pf + α

1
2
(ibh)

) · (
P − Pf + α

1
2
(h)

)
+ H f , (2.10)

in the sense of quadratic forms on D(H(P))∩D(B). Since D(H(P)) = D(P2
f /2+ H f ),

one can check, in the same way as in [FGS1, Prop. 9], that for all t ∈ R,

eit B D(H(P)) ⊂ D(H(P)). (2.11)

Hence D(H(P)) ∩ D(B) is a core for H(P) and (2.10) extends by continuity to an
identity between quadratic forms on D(H(P)). Now, by (2.9), we get

[H(P), iB] ≥ H(P)− 1

2
P2 − α

1
2 P · (


(h) +
(ibh)
) − α

2

(h)2

+
α

1
2

2

(

(ibh) · (Pf − α

1
2
(h)) + (Pf − α

1
2
(h)) ·
(ibh)

)
. (2.12)

Multiplying both sides of Ineq. (2.12) by 1J>σ (H(P)), using in particular that Pf ,
(h)
and 
(ibh) are H(P)-bounded, this yields

1J>σ (H(P))[H(P), iB]1J>σ (H(P)) ≥ (
E(P)− 1

2
P2 + σ − Cα

1
2
)
1J>σ (H(P)).

(2.13)

Since |E(P)− P2/2| ≤ C′α (see Proposition 3.1), we obtain

1J>σ (H(P))[H(P), iB]1J>σ (H(P)) ≥ (
σ − C′′α

1
2
)
1J>σ (H(P))

≥ σ

2
1J>σ (H(P)), (2.14)

provided that σ ≥ C0α
1/2, the constant C0 being chosen sufficiently large. ��
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Corollary 2.2. There exists α0 > 0 such that, for any |P| ≤ pc, 0 ≤ α ≤ α0 and
1/2 < s ≤ 1, and for any compact interval J ⊂ [E(P) + C0α

1/2,∞),

sup
z∈J±

∥∥〈B〉−s[H(P)− z
]−1〈B〉−s

∥∥ < ∞. (2.15)

Here C0 > 0 is given by Theorem 2.1. Moreover, the map

J � λ �→ 〈B〉−s[H(P)− λ± i0+]−1〈B〉−s ∈ B(H) (2.16)

is uniformly Hölder continuous in λ of order s − 1/2.

Proof. Using the well-known conjugate operator method (see [Mo,ABG]), it suffices
to show that H(P) ∈ C2(B). Since (2.11) holds, in order to obtain the C2-property of
H(P) with respect to B, it is sufficient to verify that [H(P), iB] and [[H(P), iB], iB]
extend to H(P)-bounded operators. This follows easily from the expression of the com-
mutator of H(P)with iB, Eq. (2.10), and by computing similarly the double commutator
[[H(P), iB], iB]. ��
Corollary 2.3. Under the conditions of Corollary 2.2,

sup
z∈J±

∥∥(d�(〈y〉) + 1)−s[H(P)− z
]−1

(d�(〈y〉) + 1)−s
∥∥ < ∞, (2.17)

and the map

J � λ �→ (d�(〈y〉) + 1)−s[H(P)− λ± i0+]−1
(d�(〈y〉) + 1)−s ∈ B(H) (2.18)

is uniformly Hölder continuous in λ of order s − 1/2.

Proof. Letφ ∈ C∞
0 (R; [0, 1]) be such thatφ = 1 on a neighborhood of J . Let φ̄ = 1−φ.

It follows from the spectral theorem that

sup
z∈J±

∥∥φ̄(H(P))
[
H(P)− z

]−1∥∥ < ∞. (2.19)

Therefore, to establish (2.17), it suffices to prove that

sup
z∈J±

∥∥(d�(〈y〉) + 1)−sφ(H(P))
[
H(P)− z

]−1
(d�(〈y〉) + 1)−s

∥∥ < ∞. (2.20)

Let us show that
∥∥(d�(〈y〉) + 1)−1φ(H(P))B

∥∥ < ∞. (2.21)

Since [H(P), iB] extends to an H(P)-bounded operator (see (2.10)), an easy applica-
tion of the Helffer-Sjöstrand functional calculus shows that [φ(H(P)), iB] extends to a
bounded operator on F . Moreover, considering the restriction of the operator below to
all n-particles subspaces of the Fock space, one verifies that

∥∥(d�(〈y〉) + 1)−1 B(H f + 1)−1
∥∥ < ∞. (2.22)
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Since H f is relatively bounded with respect to H(P), it follows that (d�(〈y〉) + 1)−1

Bφ(H(P)) extends to a bounded operator on F . Hence, writing

(d�(〈y〉) + 1)−1φ(H(P))B = (d�(〈y〉) + 1)−1[φ(H(P)), B]
+(d�(〈y〉) + 1)−1 Bφ(H(P)), (2.23)

this proves (2.21). Now, using an interpolation argument, (2.21) implies that
∥
∥(d�(〈y〉) + 1)−sφ(H(P))〈B〉s

∥
∥ < ∞, (2.24)

for any 0 ≤ s ≤ 1. Likewise, if φ̃ ∈ C∞
0 (R; [0, 1]) is such that φ̃φ = φ, we have that

∥∥〈B〉s φ̃(H(P))(d�(〈y〉) + 1)−s
∥∥ < ∞. (2.25)

Combining Corollary 2.2 with (2.24) and (2.25), we obtain (2.20), which concludes the
proof of (2.17). The Hölder continuity stated in (2.18) follows similarly. ��

Henceforth and throughout the remainder of this paper, we assume that

σ ≤ C′
0α

1
2 , (2.26)

where C′
0 is a positive constant such that C′

0 ≥ C0 (here C0 is given by Theorem 2.1).

3. Low Energy Decomposition

With this section we begin our proof of the LAP in a neighborhood of E(P). Recall the
infrared cutoff Hamiltonian Hσ (P) we defined for σ ≥ 0,

Hσ (P) := 1

2
(P − Pf + α

1
2 Aσ )

2 + H f , (3.1)

where

Aσ := 
(hσ ), hσ (k, λ) := κ�σ (k)

|k| 1
2

ελ(k), (3.2)

and

κ�σ (k) := 1{|k|≥σ }(k)κ�(k). (3.3)

Note that H0(P) = H(P). Let

Eσ (P) := inf σ(Hσ (P)). (3.4)

For σ = 0 we set E(P) := E0(P). Let Fσ := �s(L2({(k, λ), |k| ≥ σ })) and

Kσ (P) := Hσ (P)|Fσ
. (3.5)

Let Gap(H) be defined by Gap(H) := inf{σ(H)\{E(H)}}−E(H), where E(H) :=
inf{σ(H)}, for any self-adjoint and semi-bounded operator H . The following proposi-
tion is proven in [Chen,BCFS2,CFP2,FP].

Proposition 3.1. There exists α0 > 0 such that, for all 0 ≤ α ≤ α0, the following
properties hold:
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1) For all σ > 0 and |P| ≤ pc,

Gap(Kσ (P)) ≥ ρσ, for some 0 < ρ < 1. (3.6)

Moreover inf σ(Kσ (P)) = Eσ (P) is a non-degenerate (isolated) eigenvalue of
Kσ (P).

2) For all σ ≥ 0 and |P| ≤ pc,
∣∣Eσ (P)− E(P)

∣∣ ≤ Cασ, (3.7)

where C is a positive constant independent of σ .
3) For all σ > 0, the map P �→ Eσ (P) is twice continuously differentiable on {P ∈

R
3, |P| ≤ pc} and satisfies

∣
∣Eσ (P)− P2

2

∣
∣ ≤ Cα,

∣
∣∇Eσ (P)− P

∣
∣ ≤ Cα, (3.8)

∣∣∇Eσ (P)− ∇Eσ (P
′)
∣∣ ≤ C|P − P ′|, for all |P|, |P ′| ≤ pc, (3.9)

where C is a positive constant independent of σ .
4) For all σ ≥ 0, |P| ≤ pc and k ∈ R

3,

Eσ (P − k) ≥ Eσ (P)− 1

3
|k|. (3.10)

We fix P ∈ R
3 and, to simplify notations, we drop, from now on, the dependence

on P everywhere unless some confusion may arise. Note that the Hilbert space F is
isometric to Fσ ⊗ Fσ , where Fσ := �s(L2({(k, λ), |k| ≤ σ })). In this representation,
we have that

Hσ = Kσ ⊗ 1 + 1 ⊗ (1

2
P2

f + H f
) − ∇Kσ ⊗ Pf , (3.11)

where we use (with obvious abuse of notation) that Pf = Pf ⊗ 1 + 1 ⊗ Pf ,
H f = H f ⊗ 1 + 1 ⊗ H f and Aσ = Aσ ⊗ 1, and where we use the notation

∇Kσ := ∇Hσ |Fσ
, with ∇Hσ := P − Pf + α

1
2 Aσ . (3.12)

In concluding this section we mention the decomposition

H = Hσ + Uσ , (3.13)

where

Uσ := α
1
2 ∇Kσ ⊗ Aσ − α

1
2

2
1 ⊗

(
Aσ · Pf + Pf · Aσ

)
+
α

2
1 ⊗ (Aσ )2, (3.14)

and

Aσ := 
(hσ ), hσ (k, λ) := h(k, λ)− hσ (k, λ) = 1{|k|≤σ }(k)
|k| 1

2

ελ(k). (3.15)
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4. Feshbach-Schur Operator

In this section we use the “smooth Feshbach-Schur map”, Fχ , introduced in [BCFS1]
to map the operators H − λ onto more tractable operators. Define

χσf := χσf (H f ) ≡ κρσ (H f ), χ̄σf :=
√
1 − (χσf )

2, (4.1)

with κρσ as defined in (1.6), ρ the same as in (3.6), and

χ := Pσ ⊗ χσf , χ̄ := Pσ ⊗ χ̄σf + P̄σ ⊗ 1, (4.2)

where

Pσ := 1{Eσ }(Kσ ) and P̄σ := 1 − Pσ . (4.3)

Note that χ2 + χ̄2 = 1 and [χ, χ̄] = 0.
To define the smooth Feshbach-Schur map Fχ for H − λ, we have to choose an

“unperturbed” operator - we call it T - around which we construct our perturbation the-
ory (see Appendix B). It is tempting to choose it as T = Hσ −λ. However this choice is
not suitable, since, due to the term −∇Kσ ⊗ Pf in Hσ (see Eq. (3.11)), the commutator
[Hσ , χ ] does not vanish; (hence Hypothesis (1) of Appendix B is not satisfied). Another
choice would be T = Hσ + ∇Kσ ⊗ Pf − λ. However, as far as the Mourre estimate of
Sect. 5 is concerned, this choice does not work either, since it gives rise to “perturbation”
terms of order O(σ ) in Fχ (H − λ), that is the same order as the leading order terms in
Fχ (H − λ).

To circumvent this difficulty, we set Tσ := Hσ + (∇Kσ − ∇Eσ )⊗ Pf , that is

Tσ = Kσ ⊗ 1 + 1 ⊗ (1

2
P2

f + H f
) − ∇Eσ ⊗ Pf . (4.4)

Notice that [χ, Tσ ] = 0, and that

H = Tσ + Wσ , where Wσ := Uσ − (∇Kσ − ∇Eσ )⊗ Pf . (4.5)

Using the Feynman-Hellman formula, we shall see in the following that the term (∇Kσ−
∇Eσ )⊗ Pf can indeed be treated as a perturbation, and leads to terms of order O(α1/2σ)

in Fχ (H − λ); (see Lemmata 5.6, 5.7 and 5.8).
On operators of the form H − λ we introduce the Feshbach-Schur map (see Appen-

dix B):

Fχ (H − λ) = Tσ − λ + χWσχ − χWσ χ̄
[
Hχ̄ − λ

]−1
χ̄Wσχ, (4.6)

where (cf. Appendix B)

Hχ̄ := Tσ + χ̄Wσ χ̄ . (4.7)

This family is well-defined as follows from the fact that the operators χWσ and Wσχ

are bounded and from Proposition 4.1 below. The Feynman-Hellman formula says that
Pσ∇Kσ Pσ = ∇Eσ Pσ and hence χWσχ = χUσχ . Thus Eqs. (4.4) and (4.6) imply

Fχ (H − λ) = Kσ ⊗ 1 + 1 ⊗ (1

2
P2

f + H f
) − ∇Eσ ⊗ Pf − λ

+χUσχ − χWσ χ̄
[
Hχ̄ − λ

]−1
χ̄Wσ χ. (4.8)
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Proposition 4.1. For any C0 > 0, there exists α0 > 0 such that, for all |P| ≤ pc, 0 ≤
α ≤ α0 and 0 < σ ≤ C0α

1/2, for all λ ≤ Eσ + ρσ/4, Hχ̄ − λ is bounded invertible on
Ran(χ̄) and

∥∥χ̄
[
Hχ̄ − λ

]−1
χ̄

∥∥ ≤ Cσ−1, (4.9)
∥∥χ̄

[
Hχ̄ − λ

]−1
χ̄Wσχ

∥∥ ≤ C. (4.10)

Proof. By (4.5), the perturbation Wσ consists of two terms. As a first step in the proof
of Proposition 4.1, we focus on the term (∇Kσ − ∇Eσ )⊗ Pf , which is analyzed in the
following lemma.

Lemma 4.2. Let

H1
χ̄ := Tσ − χ̄(∇Kσ − ∇Eσ )⊗ Pf χ̄ . (4.11)

For any C0 > 0, there exists α0 > 0 such that, for all |P| ≤ pc, 0 ≤ α ≤ α0 and
0 < σ ≤ C0α

1/2, for all λ ≤ Eσ + ρσ/4, H1
χ̄ − λ is bounded invertible on Ran(χ̄) and

∥∥χ̄
[
H1
χ̄ − λ

]−1
χ̄

∥∥ ≤ Cσ−1, (4.12)
∥∥χ̄

[
H1
χ̄ − λ

]−1
χ̄ (∇Kσ − ∇Eσ )⊗ Pf χ

∥∥ ≤ C. (4.13)

Proof. Let 
 = χ̄� ∈ D(Hσ ) ∩ Ran(χ̄), ‖
‖ = 1. Let us first prove that

(
, Hσ
) ≥ Eσ +
3

8
ρσ. (4.14)

We decompose

(
, Hσ
) = (
, Hσ (1 ⊗ 1H f ≤3ρσ/4)
) + (
, Hσ (1 ⊗ 1H f ≥3ρσ/4)
), (4.15)

and use that
 = χ̄� = (P̄σ ⊗1)� + (Pσ ⊗ χ̄σf )�. Using Lemma A.4 and the fact that
1H f ≤3ρσ/4 χ̄

σ
f = 0, we obtain that

(
, Hσ (1 ⊗ 1H f ≤3ρσ/4)
) ≥ (1 − 3

4
ρσ)(
, Kσ ⊗ 1(1 ⊗ 1H f ≤3ρσ/4)
)

= (1 − 3

4
ρσ)((P̄σ ⊗ 1)�, Kσ ⊗ 1(P̄σ ⊗ 1H f ≤3ρσ/4)�).

(4.16)

Since, by Proposition 3.1, P̄σ Kσ P̄σ ≥ Eσ + ρσ , this implies that

(
, Hσ (1 ⊗ 1H f ≤3ρσ/4)
) ≥ (1 − 3

4
ρσ)(Eσ + ρσ)(
, (1 ⊗ 1H f ≤3ρσ/4)
)

≥ (Eσ +
3

8
ρσ)(
, (1 ⊗ 1H f ≤3ρσ/4)
). (4.17)

Note that in the last inequality we used that, by Proposition 3.1, Eσ ≤ 1/100 for
|P| ≤ 1/40 and α sufficiently small. The second term on the right-hand side of (4.15)
is estimated with the help of Lemma A.3, which gives:
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(
, Hσ (1 ⊗ 1H f ≥3ρσ/4)
) ≥ Eσ +
1

2
(
, (1 ⊗ H f )(1 ⊗ 1H f ≥3ρσ/4)
)

≥ (Eσ +
3

8
ρσ)(
, (1 ⊗ 1H f ≥3ρσ/4)
). (4.18)

Hence (4.14) is proven.
From the definition of H1

χ̄ , we infer that

H1
χ̄ = Hσ + (∇Kσ − ∇Eσ )⊗ Pf − χ̄ (∇Kσ − ∇Eσ )⊗ Pf χ̄

= Hσ +
(
Pσ ⊗ (χ̄σf − 1)

)∇Kσ ⊗ Pf
(
P̄σ ⊗ 1

)

+
(
P̄σ ⊗ 1

)∇Kσ ⊗ Pf
(
Pσ ⊗ (χ̄σf − 1)

)
, (4.19)

where we used that χ̄ = Pσ ⊗ (χ̄σf − 1) + 1 ⊗ 1, and

(
1 ⊗ 1

)
(∇Kσ − ∇Eσ )⊗ Pf

(
Pσ ⊗ (χ̄σf − 1)

)

= (
P̄σ ⊗ 1

)∇Kσ ⊗ Pf
(
Pσ ⊗ (χ̄σf − 1)

)
. (4.20)

Equation (4.20) follows from the Feynman-Hellman formula, Pσ∇Kσ Pσ = ∇Eσ Pσ ,
and orthogonality, Pσ P̄σ = 0. By Proposition 3.1, for |P| ≤ pc = 1/40 and α suffi-
ciently small,

∥∥∇Kσ Pσ
∥∥2 ≤ 2Eσ ≤ P2 + Cα ≤ 1

362 . (4.21)

Thus, when combined with

‖Pf (χ̄
σ
f − 1)‖ ≤ 2‖H f (χ̄

σ
f − 1)‖ ≤ 2ρσ (4.22)

and (4.14), Eqs. (4.19)–(4.21) imply that

(
, H1
χ̄
) ≥ Eσ + (

3

8
− 1

9
)ρσ = Eσ +

19

72
ρσ, (4.23)

provided that α is sufficiently small. This implies that H1
χ̄ − λ is bounded invertible for

any λ ≤ Eσ + ρσ/4, and leads to (4.12). To obtain (4.13), it suffices to combine (4.12)
with (4.21) and the fact that ‖Pf χ

σ
f ‖ ≤ Cσ . ��

We now return to the proof of Proposition 4.1. Using the operator H1
χ̄ introduced in

the statement of Lemma 4.2, we have that

Hχ̄ = H1
χ̄ + χ̄Uσ χ̄ . (4.24)

Consider the Neumann series

χ̄
[
Hχ̄ − λ

]−1
χ̄ = χ̄

[
H1
χ̄ − λ

]−1 ∑

n≥0

(
− χ̄Uσ χ̄

[
H1
χ̄ − λ

]−1
)n
χ̄ . (4.25)

We claim that

∥∥[
H1
χ̄ − λ

]− 1
2 χ̄Uσ χ̄

[
H1
χ̄ − λ

]− 1
2 χ̄

∥∥ ≤ Cα
1
2 . (4.26)
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Indeed, inserting the expression (3.14) of Uσ into the left-hand side of (4.26), we obtain
three terms: The first one is given by

∥∥α
1
2
[
H1
χ̄ − λ

]− 1
2 χ̄∇Kσ ⊗ Aσ χ̄

[
H1
χ̄ − λ

]− 1
2 χ̄

∥∥. (4.27)

It follows from Lemmata A.1, A.3 and 4.2 that

∥∥(1 ⊗ a(hσ ))χ̄
[
H1
χ̄ − λ

]− 1
2 χ̄

∥∥ ≤ Cσ
1
2 . (4.28)

Using in addition that, by Lemma 4.2,

∥∥(∇Kσ ⊗ 1)χ̄
[
H1
χ̄ − λ

]− 1
2 χ̄

∥∥ ≤ Cσ− 1
2 , (4.29)

we get ‖(4.27)‖ ≤ Cα1/2. The second and third terms from (3.14) are estimated simi-
larly, which leads to (4.26). Together with (4.12) from Lemma 4.2, this implies that, for
any n ∈ N,

∥∥
∥χ̄

[
H1
χ̄ − λ

]−1
(

− χ̄Uσ χ̄
[
H1
χ̄ − λ

]−1
)n
χ̄

∥∥
∥ ≤ Cσ−1(C′α

1
2 )n . (4.30)

Hence, for α sufficiently small, the right-hand-side of (4.25) is convergent and (4.9)
holds. Estimate (4.10) follows similarly. ��

5. Mourre Estimate for the Feshbach-Schur Operator

In this section we shall prove Theorem 1.1 in the case where

J = J<σ := [E(P) + 11ρσ/128, E(P) + 13ρσ/128],
and σ is such that σ ≤ C0α

1/2. We shall begin with proving a limiting absorption
principle for the Feshbach-Schur operator

F(λ) := Fχ (H − λ)|Ran(Pσ⊗1), (5.1)

defined in (4.6), Sect. 4. Note that the operator F(λ) is self-adjoint ∀λ ∈ J<σ . Here the
parameter λ shall be fixed such that λ ∈ J<σ and we shall prove a LAP for F(λ) on the
interval �σ defined in this section by

�σ = [−ρσ/128, ρσ/128]. (5.2)

Then we shall deduce a limiting absorption principle for H near the ground state energy
E by applying Theorem B.2.

We begin with showing the Mourre estimate for F(λ), λ ∈ J<σ .
Recall that κσ denotes a function in C∞

0 ({k, |k| ≤ σ }; [0, 1]) such that κσ = 1 on
{k, |k| ≤ 3σ/4}. The conjugate operator we shall use in this section is the operator Bσ ,
defined by:

Bσ = d�(bσ ), with bσ = κσbκσ . (5.3)

Clearly, Bσ acts on the second component of the tensor product Fσ ⊗ Fσ . The main
theorem of this section is:
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Theorem 5.1. For any C0 > 0, there exists α0 > 0 such that, for all |P| ≤ pc, 0 ≤ α ≤
α0, 0 < σ ≤ C0α

1/2, and λ ∈ J<σ ,

1�σ (F(λ))[F(λ), iBσ ]1�σ (F(λ)) ≥ ρσ

128
1�σ (F(λ)). (5.4)

Before proceeding to the proof of this theorem we draw the desired conclusions from
it.

Proposition 5.2. For any C0 > 0, there exists α0 > 0 such that, for any |P| ≤ pc, 0 ≤
α ≤ α0, 0 < σ ≤ C0α

1/2, 1/2 < s ≤ 1, and λ ∈ J<σ ,

sup
z∈(�σ )±

∥∥〈Bσ 〉−s[F(λ)− z
]−1〈Bσ 〉−s

∥∥ < ∞. (5.5)

Here (�σ )± = {z ∈ C,Rez ∈ [−ρσ/128, ρσ/128], 0 < ±Imz ≤ 1}. Moreover, the
map

J<σ ×�σ � (λ, μ) �→ 〈Bσ 〉−s[F(λ)− μ± i0+]−1〈Bσ 〉−s ∈ B(H) (5.6)

is uniformly Hölder continuous in (λ, μ) of order s − 1/2.

Proof. It follows from Eqs. (4.4) and (4.6) that

F(λ) = 1 ⊗ (1

2
P2

f + H f
) − ∇Eσ ⊗ Pf + Eσ − λ,

+χWσχ − χWσ χ̄
[
Hχ̄ − λ

]−1
χ̄Wσχ. (5.7)

By standard Mourre theory (see for instance [ABG]) and in view of Theorem 5.1, the
limiting absorption principle (5.5) and the Hölder continuity in μ follow from the fact
that F(λ) ∈ C2(Bσ ). Since χWσ and Wσχ are bounded operators, it follows that
D(F(λ)) = D(1⊗ ( 1

2 P2
f + H f )), and, using the method of [FGS1, Prop. 9], one verifies

that

eit Bσ D(1 ⊗ (
1

2
P2

f + H f )) ⊂ D(1 ⊗ (
1

2
P2

f + H f )), (5.8)

for all t ∈ R. Hence it suffices to show that [F(λ), iBσ ] and [[F(λ), iBσ ], iBσ ] are
bounded with respect to 1⊗ ( 1

2 P2
f + H f ), which follows easily from the expressions of

the commutators; (see, in particular, the proofs of Lemmata 5.5 and 5.8).
Now, for λ, λ′ ∈ J<σ , we have

F(λ)− F(λ′) = (λ′ − λ)
(
Pσ ⊗ 1 + χWσ χ̄

[
Hχ̄ − λ

]−1[
Hχ̄ − λ′]−1

χ̄Wσχ
)
.

(5.9)

Equation (4.10) in the statement of Proposition 4.1 implies that

∥
∥χWσ χ̄

[
Hχ̄ − λ

]−1[
Hχ̄ − λ′]−1

χ̄Wσχ
∥
∥ ≤ C, (5.10)

where C is independent of λ and λ′. Thus, the Hölder continuity in (λ, μ) stated in (5.6)
follows again by standard arguments of Mourre theory (see [PSS,AHS,HS]). ��
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This proposition and Theorem B.2 imply the following

Corollary 5.3. For any C0 > 0, there exists α0 > 0 such that, for any |P| ≤ pc, 0 ≤
α ≤ α0, 0 < σ ≤ C0α

1/2 and 1/2 < s ≤ 1,

sup
z∈(J<σ )±

∥
∥〈Bσ 〉−s[H(P)− z

]−1〈Bσ 〉−s
∥
∥ < ∞, (5.11)

where (J<σ )± = {z ∈ C,Rez ∈ [E(P) + 11ρσ/128, E(P)+13ρσ/128], 0<±Imz ≤1}.
Moreover, the map

[E(P) +
11ρσ

128
, E(P) +

13ρσ

128
] � λ �→ 〈Bσ 〉−s[H(P)− λ± i0+]−1〈Bσ 〉−s ∈ B(H)

(5.12)

is uniformly Hölder continuous in λ of order s − 1/2.

By arguments similar to ones used in the proof of Corollary 2.3, Corollary 5.3 implies
the following result.

Corollary 5.4. Under the conditions of Corollary 5.3, for any compact interval J ⊂
(E(P),C0α

1
2 ],
sup
z∈J±

∥∥(d�(〈y〉) + 1)−s[H(P)− z
]−1

(d�(〈y〉) + 1)−s
∥∥ < ∞, (5.13)

and the map

J � λ �→ (d�(〈y〉) + 1)−s[H(P)− λ± i0+]−1
(d�(〈y〉) + 1)−s ∈ B(H) (5.14)

is uniformly Hölder continuous in λ of order s − 1/2.

Now we proceed to the proof of Theorem 5.1. It will be divided into a sequence of
lemmata. In what follows we often do not display the argument λ. First, let us write

F = F0 + W1 + W2, (5.15)

where

F0 := 1 ⊗ (1

2
P2

f + H f
) − ∇Eσ ⊗ Pf + Eσ − λ, (5.16)

W1 := χUσχ (= χWσχ by Feynman-Hellman; see above), (5.17)

W2 := −χWσ χ̄
[
Hχ̄ − λ

]−1
χ̄Wσχ. (5.18)

Let us begin by estimating [F0, iBσ ] from below on the range of 1⊗1H f ≤δρσ , for some
suitably chosen δ > 0.

Lemma 5.5. Let |P| ≤ pc and δ > 0 be such that δρσ < 3σ/4. Then on Ran(1 ⊗
1H f ≤δρσ ),

[
F0, iBσ

] ≥ 1

2
(1 ⊗ H f )− Cσ 2, (5.19)

where C is a positive constant.
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Proof. We have that

[H f , iBσ ] = d�(κσ (k)2|k|), [Pf , iBσ ] = d�(κσ (k)2k). (5.20)

Therefore,
[
F0, iBσ

] = 1 ⊗ (Pf · d�(κσ (k)2k) + d�(κσ (k)2|k|))− ∇Eσ ⊗ d�(κσ (k)2k).

(5.21)

For j = 1, 2, 3, we have

± d�(κσ (k)2k j ) ≤ d�(κσ (k)2|k|) ≤ 1 ⊗ H f , (5.22)

so that

∇Eσ ⊗ d�(κσ (k)2k) ≥ −(
∑

j

|(∇Eσ ) j |)d�(κσ (k)2|k|)

≥ −2|∇Eσ |d�(κσ (k)2|k|). (5.23)

Moreover, using again (5.22), it can easily be checked that

1 ⊗ (
Pf · d�(κσ (k)2k)1H f ≤δρσ

) ≥ −Cσ 2. (5.24)

Hence Eqs. (5.21), (5.23) and (5.24) yield
[
F0, iBσ

]
(1 ⊗ 1H f ≤δρσ )

≥ (1 − 2|∇Eσ |)(1 ⊗ d�(κσ (k)2|k|))(1 ⊗ 1H f ≤δρσ )− Cσ 2(1 ⊗ 1H f ≤δρσ )

≥ 1

2
(1 ⊗ d�(κσ (k)2|k|))(1 ⊗ 1H f ≤δρσ )− Cσ 2(1 ⊗ 1H f ≤δρσ ). (5.25)

In the second inequality we used that, by Proposition 3.1, |∇Eσ | ≤ |P| + Cα
1
2 ≤ 1/4

for |P| ≤ 1/40 and α sufficiently small. To conclude the proof of the lemma, it remains
to justify that the operator d�(κσ (k)2|k|) in (5.25) can be replaced by H f . To this end,
we define

Hσ
f,3σ/4 =

∑

λ=1,2

∫

3σ/4≤|k|≤σ
|k|a∗

λ(k)aλ(k)dk,

(5.26)
Nσ

3σ/4 =
∑

λ=1,2

∫

3σ/4≤|k|≤σ
a∗
λ(k)aλ(k)dk,

and Pσ3σ/4 = 1{0}(Hσ
f,3σ/4), P̄σ3σ/4 = 1 − Pσ3σ/4. Then we have that

(1 ⊗ H f )P̄
σ
3σ/4 ≥ Hσ

f,3σ/4 P̄σ3σ/4 ≥ 3σ

4
Nσ

3σ/4 P̄σ3σ/4 ≥ 3σ

4
P̄σ3σ/4. (5.27)

Therefore, since 1 ⊗ H f commutes with Pσ3σ/4, we get

δρσ P̄σ3σ/4(1 ⊗ 1H f ≤δρσ ) ≥ (1 ⊗ H f )P̄
σ
3σ/4(1 ⊗ 1H f ≤δρσ )

≥ 3σ

4
P̄σ3σ/4(1 ⊗ 1H f ≤δρσ ), (5.28)
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and since δρσ < 3σ/4 by assumption, this implies

(1 ⊗ 1H f ≤δρσ ) = Pσ3σ/4(1 ⊗ 1H f ≤δρσ ). (5.29)

Since κσ (k) = 1 for any |k| ≤ 3σ/4, we obtain that
(
1 ⊗ d�(κσ (k)2|k|))Pσ3σ/4 = (1 ⊗ H f )P

σ
3σ/4. (5.30)

We conclude the proof using (5.25), (5.29), (5.30), and the fact that

1 ⊗ d�(κσ (k)2|k|) ≥ (
1 ⊗ d�(κσ (k)2|k|))Pσ3σ/4. (5.31)

��
The following lemma is an important ingredient in showing Theorem 5.1. It justifies

the fact that one can consider the term (∇Kσ − ∇Eσ ) ⊗ Pf in Wσ as a small pertur-
bation. The idea of its proof is due to [AFGG], and is based on the C2-regularity of the
map P �→ Eσ (P) uniformly in σ , established in [Chen] and [FP] (see more precisely
inequality (3.9) in Proposition 3.1).

Let (e j , j = 1, 2, 3) be the canonical orthonormal basis of R
3. For any y ∈ R

3, we
set y j = y · e j .

Lemma 5.6. For any C0 > 0, there exists α0 > 0 such that, for all |P| ≤ pc, 0 ≤ α ≤
α0, 0 < σ ≤ C0α

1/2, λ ∈ J<σ , j ∈ {1, 2, 3}, and 0 < δ � 1,
∥∥∥
[
Hχ̄ − λ

]− 1
2 χ̄

(
(∇Kσ − ∇Eσ ) j Pσ

) ⊗ 1H f ≤δ
∥∥∥ ≤ C

(
1 + δ

1
2 σ− 1

2
)
. (5.32)

Proof. For any u > 0, we can write

(∇Kσ ) j = 1

u

(
Kσ (P + ue j )− Kσ (P)

) − u

2
. (5.33)

Using that Kσ (P)Pσ = Eσ (P)Pσ , this implies

(∇Kσ − ∇Eσ ) j Pσ = 1

u
(Kσ (P + ue j )− Eσ (P + ue j ))Pσ

+
( 1

u
(Eσ (P + ue j )− Eσ (P))− (∇Eσ ) j − u

2

)
Pσ . (5.34)

By Proposition 3.1,

∣∣ 1

u
(Eσ (P + ue j )− Eσ (P))− (∇Eσ ) j

∣∣ ≤ Cu, (5.35)

where C is independent of σ . Consequently, it follows from the Feynman-Hellman
formula, Pσ (∇Kσ ) j Pσ = (∇Eσ ) j Pσ , together with Eq. (5.33) that, for any 
 ∈
Ran(Pσ ), ‖
‖ = 1,

∥∥(Kσ (P + ue j )− Eσ (P + ue j ))
1
2


∥∥2

= (

, (Kσ (P + ue j )− Eσ (P + ue j ))


)

= (

, (Kσ (P) + u(∇Kσ ) j +

u2

2
− Eσ (P + ue j ))


)

= Eσ (P)− Eσ (P + ue j ) + u(∇Eσ ) j +
u2

2
≤ Cu2. (5.36)
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From (5.34), we obtain that

(∇Kσ − ∇Eσ ) j Pσ = (Kσ (P + ue j )− Eσ (P + ue j ))
1
2 B1 + B2, (5.37)

where

B1 := 1

u
(Kσ (P + ue j )− Eσ (P + ue j ))

1
2 Pσ , (5.38)

B2 :=
( 1

u
(Eσ (P + ue j )− Eσ (P))− (∇Eσ ) j − u

2

)
Pσ . (5.39)

By (5.36) and (5.35), the operators B1, B2 are bounded and satisfy

‖B1‖ ≤ C, ‖B2‖ ≤ Cu. (5.40)

Thus, choosing u ≤ σ , the lemma will follow if we show that
∥∥∥χ̄

[
Hχ̄ − λ

]− 1
2 χ̄(Kσ (P + ue j )− Eσ (P + ue j ))

1
2 ⊗ 1H f ≤δ

∥∥∥
2 ≤ Cδσ−1. (5.41)

Let us prove (5.41). To simplify notations, we set

χ̄≤δ := (1 ⊗ 1H f ≤δ)χ̄ . (5.42)

Let 
 ∈ Ran(χ̄), ‖
‖ = 1. Since
∥
∥(

H1
χ̄ − λ

)[
Hχ̄ − λ

]−1
χ̄

∥
∥ ≤ C, (5.43)

(see the proof of Proposition 4.1), it suffices to estimate
(

, χ̄

[
H1
χ̄ − λ

]− 1
2 χ̄≤δ

(
(Kσ (P + ue j )− Eσ (P + ue j ))⊗ 1

)
χ̄≤δ

[
H1
χ̄ − λ

]− 1
2 χ̄


)
.

(5.44)

Using that
∥∥∥χ̄

[
H1
χ̄ − λ

]− 1
2 χ̄

(
(∇Kσ − ∇Eσ )⊗ 1

)
χ̄

[
H1
χ̄ − λ

]− 1
2 χ̄

∥∥∥ ≤ Cσ−1, (5.45)

and since 0 < u ≤ σ , we get

(5.44) ≤
(

, χ̄

[
H1
χ̄ − λ

]− 1
2 χ̄≤δ

(
(Kσ (P)− Eσ (P))⊗ 1

)
χ̄≤δ

[
H1
χ̄ − λ

]− 1
2 χ̄


)
+ C.

(5.46)

Next, by Lemma A.4,

χ̄≤δ
(
(Kσ (P)− Eσ (P))⊗ 1

)
χ̄≤δ

≤ 1

1 − δ
χ̄≤δ

((
Hσ (P)− Eσ (P)

)
+ 4δEσ

)
χ̄≤δ. (5.47)

Using the expression (4.19) of H1
χ̄ , we conclude from (5.47) that

χ̄≤δ
(
(Kσ (P)− Eσ (P))⊗ 1

)
χ̄≤δ

≤ χ̄≤δ
((

H1
χ̄ (P)− Eσ (P)

)
+ C(σ + δ)

)
χ̄≤δ. (5.48)

The statement of the lemma follows from (5.46), (5.48) and Lemma 4.2. ��
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In the following lemma, we prove that the “perturbation” operators W1,W2 in (5.17)–
(5.18) are of order O(α1/2σ).

Lemma 5.7. For any C0 > 0, there exists α0 > 0 such that, for all |P| ≤ pc, 0 ≤ α ≤
α0, 0 < σ ≤ C0α

1/2, and λ ∈ J<σ ,

∥∥Wi
∥∥ ≤ Cα

1
2 σ, i = 1, 2, (5.49)

where W1 and W2 are as in (5.17), (5.18).

Proof. Let us first prove (5.49) for i = 1. Equation (3.14) combined with the Feynman-
Hellman formula gives

χUσχ = α
1
2
(∇Eσ Pσ

) ⊗ (
χσf Aσχσf

) − α
1
2

2
Pσ ⊗

(
χσf

(
Pf · Aσ + Aσ · Pf

)
χσf

)

+
α

2
Pσ ⊗

(
χσf (A

σ )2χσf

)
. (5.50)

It follows from Lemma A.1 that
∥∥Aσχσf

∥∥ ≤ Cσ
1
2
∥∥[H f + σ ] 1

2χσf

∥∥ ≤ C′σ, (5.51)
∥∥(Aσ · Pf )χ

σ
f

∥∥ ≤ Cσ
1
2
∥∥[H f + σ ] 1

2 |Pf |χσf
∥∥ ≤ C′σ 2. (5.52)

Therefore (5.49) for i = 1 follows.
To prove (5.49) for i = 2 it suffices to show that for λ ∈ J<σ ,

∥∥
∥
[
Hχ̄ − λ

]− 1
2 χ̄Wσ χ

∥∥
∥ ≤ Cα

1
4 σ

1
2 . (5.53)

By Eqs. (3.14) and (4.5),

Wσ χ = α
1
2
(∇Kσ Pσ

) ⊗ (
Aσχσf

)
(5.54)

−α
1
2

2
Pσ ⊗

((
Pf · Aσ + Aσ · Pf

)
χσf

)
(5.55)

+
α

2
Pσ ⊗ (

(Aσ )2χσf
)

(5.56)

−
((∇Kσ − ∇Eσ

)
Pσ

)
⊗ (

Pf χ
σ
f

)
. (5.57)

We insert this expression into (5.53) and estimate each term separately. First, it follows
from Proposition 4.1 and Estimate (5.51) that

∥∥∥
[
Hχ̄ − λ

]− 1
2 χ̄ (5.54)

∥∥∥ ≤ Cα
1
2 σ

1
2 . (5.58)

Similarly, Lemma A.2 combined with Proposition 4.1 and (5.51)–(5.52) implies
∥∥∥
[
Hχ̄ − λ

]− 1
2 χ̄

(
(5.55) + (5.56)

)∥∥∥ ≤ Cα
1
2 σ

3
2 . (5.59)

Finally the contribution from (5.57) is estimated thanks to Lemma 5.6: Using (5.32)
with δ = ρσ , we get, for j ∈ {1, 2, 3},

∥∥∥
[
Hχ̄ − λ

]− 1
2 χ̄

((∇Kσ − ∇Eσ
)

j Pσ
)

⊗ 1H f ≤ρσ
∥∥∥ ≤ C. (5.60)
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Together with ‖(Pf ) jχ
σ
f ‖ ≤ Cσ , this yields

∥
∥∥
[
Hχ̄ − λ

]− 1
2 χ̄ (5.57)

∥
∥∥ ≤ Cσ ≤ C′α

1
4 σ

1
2 . (5.61)

Estimates (5.58), (5.59) and (5.61) imply (5.53), so (5.49), i = 2, follows. ��
In the next lemma, we estimate the commutators [Wi , iBσ ], i = 1, 2.

Lemma 5.8. For any C0 > 0, there exists α0 > 0 such that, for all |P| ≤ pc, 0 ≤ α ≤
α0, 0 < σ ≤ C0α

1/2, and λ ∈ J<σ ,

‖[Wi , iBσ ]‖ ≤ Cα
1
2 σ, i = 1, 2, (5.62)

where W1 and W2 are as in (5.17), (5.18).

Proof. Using for instance the Helffer-Sjöstrand functional calculus, the following iden-
tities follow straightforwardly from (5.20):

[χ, iBσ ] = Pσ ⊗ (
d�(κσ (k)2|k|)(χσf )′(H f )

)
, (5.63)

[χ̄ , iBσ ] = Pσ ⊗ (
d�(κσ (k)2|k|)(χ̄σf )′(H f )

)
. (5.64)

Furthermore,

[Aσ , iBσ ] = −
(ibσ hσ ). (5.65)

We first prove (5.62) for i = 1. We have that

[W1, iBσ ] = [χ, iBσ ]Uσχ + χ [Uσ , iBσ ]χ + χUσ [χ, iBσ ]. (5.66)

As in the proof of (5.49), i = 1, in Lemma 5.7, we obtain, using (5.63), that
∥
∥[χ, iBσ ]Uσχ

∥
∥ = ∥

∥χUσ [χ, iBσ ]∥∥ ≤ Cα
1
2 σ. (5.67)

It follows from (3.14), (5.20) and (5.65) that

[Uσ , iBσ ] = −α 1
2 ∇Kσ ⊗
(ibσ hσ ) +

α
1
2

2
1 ⊗ (


(ibσ hσ ) · Pf + Pf ·
(ibσ hσ )
)

−α
1
2

2
1 ⊗ (


(hσ ) · d�(κσ (k)2k) + d�(κσ (k)2k) ·
(hσ ))

−α
2
1 ⊗ (


(hσ ) ·
(ibσ hσ ) +
(ibσ hσ ) ·
(hσ )). (5.68)

Arguing as in the proof of (5.49), i = 1, in Lemma 5.7, we then obtain
∥∥χ [Uσ , iBσ ]χ∥∥ ≤ Cα

1
2 σ. (5.69)

Hence (5.62), i = 1, is proven. In order to prove (5.62), i = 2, let us decompose

[W2, iBσ ] = −[χ, iBσ ]Wσ χ̄
[
Hχ̄ − λ

]−1
χ̄Wσχ + h.c., (5.70)

−χ [Wσ , iBσ ]χ̄[
Hχ̄ − λ

]−1
χ̄Wσχ + h.c., (5.71)

−χWσ [χ̄ , iBσ ][Hχ̄ − λ
]−1

χ̄Wσχ + h.c., (5.72)

−χWσ χ̄
[[

Hχ̄ − λ
]−1

, iBσ
]
χ̄Wσχ. (5.73)
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Using Eqs. (5.20), (5.63), (5.64) and (5.65) for the different commutators entering the
terms (5.70), (5.71) and (5.72), one can check in the same way as in the proof of (5.49),
i = 2, in Lemma 5.7 that

∥∥(5.70) + (5.71) + (5.72)
∥∥ ≤ Cα

1
2 σ. (5.74)

To conclude we need to estimate (5.73). We expand [Hχ̄ −λ]−1 into the Neumann series
(4.25), which leads to

[[
Hχ̄ − λ

]−1
, iBσ

]

= −[
Hχ̄ − λ

]−1[
Hχ̄ , iBσ

][
Hχ̄ − λ

]−1

= −[
H1
χ̄ − λ

]−1 ∑

n≥0

(
− χ̄Uσ χ̄

[
H1
χ̄ − λ

]−1
)n[

Hχ̄ , iBσ
]

×[
H1
χ̄ − λ

]−1 ∑

n′≥0

(
− χ̄Uσ χ̄

[
H1
χ̄ − λ

]−1
)n′
. (5.75)

Inserting this series into (5.73) yields a sum of terms of the form

χWσ χ̄
[
H1
χ̄ − λ

]−1
(
χ̄Uσ χ̄

[
H1
χ̄ − λ

]−1
)n[

Hχ̄ , iBσ
]

×[
H1
χ̄ − λ

]−1
(
χ̄Uσ χ̄

[
H1
χ̄ − λ

]−1
)n′
χ̄Wσχ, (5.76)

where n, n′ ∈ N. To estimate (5.76), we notice that, by Lemma A.2, Wσχ
σ
f = (1 ⊗

1H f ≤3σ )Wσχ
σ
f , and likewise with Uσ replacing Wσ . Thus, since 1 ⊗ H f commutes

with H1
χ̄ , we conclude from (5.53) and (4.26) that

∥∥(5.76)
∥∥ ≤ Cα

1
2 σ

(
C′α

1
2
)n+n′ ∥∥∥

[
H1
χ̄ − λ

]− 1
2 (1 ⊗ 1H f ≤(2n+1)σ )

[
Hχ̄ , iBσ

]
(1 ⊗ 1H f ≤(2n′+1)σ )

[
H1
χ̄ − λ

]− 1
2

∥∥∥.

(5.77)

Using identities (5.20) and (5.63)–(5.65), one can check that, for any γ ≥ 1,
∥∥[

Hχ̄ , iBσ
]
(1 ⊗ 1H f ≤γ σ )

∥∥ ≤ Cγ 2σ. (5.78)

This implies

∥∥(5.76)
∥∥ ≤ Cα

1
2 σ(n + n′ + 1)2

(
C′α

1
2
)n+n′

. (5.79)

Summing over n, n′, we get that

∥∥(5.73)
∥∥ ≤ Cα

1
2 σ, (5.80)

for α small enough, which concludes the proof of (5.62), i = 2. ��
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In the proof of Theorem 5.1, it will be convenient to replace F by an operator F̃ ,
translated from F in such a way that the unperturbed part in F̃ does not depend on the
spectral parameter λ anymore. More precisely, let

F̃ := F + λ− Eσ . (5.81)

Then we have that F̃ = F̃0 + W1 + W2, where

F̃0 := F0 + λ− Eσ = 1 ⊗ (1

2
P2

f + H f
) − ∇Eσ ⊗ Pf , (5.82)

and W1,W2 are defined as in (5.17), (5.18).

Lemma 5.9. For any C0 > 0, there exists α0 > 0 such that, for all |P| ≤ pc, 0 ≤ α ≤
α0, 0 < σ ≤ C0α

1/2, and λ ∈ J<σ ,

1�σ (F) = 1�σ (F)1�′
σ
(F̃), (5.83)

where �′
σ := [ρσ/16, ρσ/8] and �σ is given in (5.2).

Proof. Since F̃ is a translate of F , it is only necessary to check that�σ ⊆ �′
σ −λ+ Eσ

for allλ ∈ J<σ , or equivalently, that�σ ⊆ �′
σ− J<σ +Eσ in the sense of “sumsets”. Using

the definitions of �σ ,�′
σ , J<σ , and the fact that |E − Eσ | ≤ Cασ by Proposition 3.1,

one can verify that this is the case for α sufficiently small. ��
Let fσ ∈ C∞

0 (R; [0, 1]) be such that fσ = 1 on �′
σ = [ρσ/16, ρσ/8] and

supp( fσ ) ⊂ [ 3

64
ρσ,

9

64
ρσ ]. (5.84)

Lemma 5.10. For any C0 > 0, there exists α0 > 0 such that, for all |P| ≤ pc, 0 ≤ α ≤
α0, 0 < σ ≤ C0α

1/2, and λ ∈ J<σ ,
∥∥ fσ (F̃)− fσ (F̃0)

∥∥ ≤ Cα
1
2 . (5.85)

Proof. Let f̃σ be an almost analytic extension of fσ obeying

supp( f̃σ ) ⊂ {
z ∈ C,Re(z) ∈ supp( fσ ), |Im(z)| ≤ σ

}
, (5.86)

∂z̄ f̃σ (z) = 0 if Im(z) = 0, and

∣
∣∂ f̃σ
∂ z̄

(z)
∣
∣ ≤ Cn

σ

( |y|
σ

)n
, (5.87)

for any n ∈ N (see for instance [HS]). Here we used the notations

z = x + iy,
∂

∂ z̄
= ∂

∂x
+ i

∂

∂y
. (5.88)

By the Helffer-Sjöstrand functional calculus and the second resolvent equation,

fσ (F̃)− fσ (F̃0) = i

2π

∫
∂ f̃σ
∂ z̄

(z)
[
F̃ − z

]−1(
F̃ − F̃0

)[
F̃0 − z

]−1dz ∧ dz̄. (5.89)

Lemma 5.7 implies
∥∥F̃ − F̃0

∥∥ = ∥∥F − F0
∥∥ = ∥∥W1 + W2‖ ≤ Cα

1
2 σ. (5.90)

The statement of the lemma then follows from (5.86)–(5.90). ��
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Lemma 5.10 will allow us to replace fσ (F̃) by fσ (F̃0) in our proof of Theorem 5.1.
In view of Lemma 5.5, we shall also need to replace fσ (F̃0) by some function of H f .
This is the purpose of the following lemma.

Lemma 5.11. For any C0 > 0, there exists α0 > 0 such that, for all |P| ≤ pc, 0 ≤ α ≤
α0, 0 < σ ≤ C0α

1/2, and λ ∈ J<σ ,

fσ (F̃0)(1 ⊗ 1 1
32ρσ≤H f ≤ 1

4ρσ
) = fσ (F̃0). (5.91)

Proof. We recall that

F̃0 = F̃0(H f , Pf ) = 1 ⊗ (1

2
P2

f + H f
) − ∇Eσ ⊗ Pf . (5.92)

The claim of the lemma is equivalent to the statement that whenever F̃0(X0, X) ∈
supp( fσ ) with |X | ≤ X0, then X0 ∈ [ 1

32ρσ,
1
4ρσ ].

Let [a, b] ≡ [ 3
64ρσ,

9
64ρσ ] ⊃ supp( fσ ). We assume that

a ≤ F̃(X0, X) = X0 +
1

2
X2 − ∇Eσ · X ≤ b (5.93)

with |X | ≤ X0. Clearly, this implies, on the one hand, that

X0 − |∇Eσ |X0 ≤ F̃(X0, X) ≤ b (5.94)

so that X0 ≤ (1 − |∇Eσ |)−1b, and, on the other hand,

X0 +
1

2
X2

0 + |∇Eσ |X0 ≥ F̃(X0, X) ≥ a (5.95)

so that X0 ≥ (1 + |∇Eσ |)−1(a − 1
2 (1 − |∇Eσ |)−2b2).

By Proposition 3.1, |∇Eσ | ≤ |P| + Cα ≤ 1/10 for |P| ≤ 1/40 and α sufficiently
small. Thus, one concludes that X0 ∈ [ 1

32ρσ,
1
4ρσ ], as claimed.

We will also make use of the following easy lemma.

Lemma 5.12. For any C0 > 0, there exists α0 > 0 such that, for all |P| ≤ pc, 0 ≤ α ≤
α0, 0 < σ ≤ C0α

1/2, and λ ∈ J<σ , the operators [F, iBσ ] fσ (F̃0) and [F, iBσ ] fσ (F̃)
are bounded on Ran(Pσ ⊗ 1) and satisfy

∥
∥[F, iBσ ] fσ (F̃0)

∥
∥ ≤ Cσ,

∥
∥[F, iBσ ] fσ (F̃)

∥
∥ ≤ Cσ. (5.96)

Proof. The first bound in (5.96) is a consequence of Lemmata 5.8 and 5.11. Indeed,
using expression (5.21) for [F0, iBσ ], we get

∥∥[F, iBσ ] fσ (F̃0)
∥∥ ≤ ∥∥[F0, iBσ ](1 ⊗ 1H f ≤ 1

4ρσ
)
∥∥ +

∥∥[W1, iBσ ]∥∥ +
∥∥[W2, iBσ ]∥∥

≤ Cσ. (5.97)

Likewise, to prove the second bound in (5.96), it suffices to show that

fσ (F̃) = (1 ⊗ 1H f ≤ρσ ) fσ (F̃). (5.98)
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Since χσf 1H f ≤ρσ = χσf , and since F̃0 commutes with 1 ⊗ 1H f ≤ρσ , it follows that F̃
commutes with 1 ⊗ 1H f ≤ρσ . By Lemma 5.7,

F̃(1 ⊗ 1H f ≥ρσ ) ≥ F̃0(1 ⊗ 1H f ≥ρσ )− Cα
1
2 σ(1 ⊗ 1H f ≥ρσ ). (5.99)

Using the fact that |∇Eσ | ≤ 1/8 for |P| ≤ 1/40 and α sufficiently small (see Proposi-
tion 3.1), we obtain

F̃0(1 ⊗ 1H f ≥ρσ ) = (
1 ⊗ (1

2
P2

f + H f
) − ∇Eσ ⊗ Pf

)
(1 ⊗ 1H f ≥ρσ )

≥ (1 − 2|∇Eσ |)(1 ⊗ H f )(1 ⊗ 1H f ≥ρσ )

≥ 3

4
ρσ(1 ⊗ 1H f ≥2ρσ ). (5.100)

Hence, for α sufficiently small,

F̃(1 ⊗ 1H f ≥ρσ ) ≥ 1

2
ρσ(1 ⊗ 1H f ≥ρσ ). (5.101)

Since supp( fσ ) ⊂ [3ρσ/64, 9ρσ/64], it follows that (1 ⊗ 1H f ≥ρσ ) fσ (F̃) = 0, which
establishes (5.98) and concludes the proof. ��

Next, we turn to the proof of Theorem 5.1. Recall that the intervals �σ ,�′
σ are

given by �σ = [−ρσ/128, ρσ/128],�′
σ = [ρσ/16, ρσ/8], and that the function

fσ ∈ C∞
0 (R; [0, 1]) is such that fσ = 1 on�′

σ and supp( fσ ) ⊂ [3ρσ/64, 9ρσ/64]. Let
us also recall the notations F̃ = F + λ − Eσ , F̃0 = F0 + λ − Eσ . By Lemma 5.9, we
have that

1�σ (F)[F, iBσ ]1�σ (F)
= 1�σ (F)1�′

σ
(F̃)[F, iBσ ]1�′

σ
(F̃)1�σ (F) (5.102)

= 1�σ (F)1�′
σ
(F̃) fσ (F̃)[F, iBσ ] fσ (F̃)1�′

σ
(F̃)1�σ (F). (5.103)

Next, we write

fσ (F̃)[F, iBσ ] fσ (F̃)

= fσ (F̃0)[F, iBσ ] fσ (F̃0) (5.104)

+( fσ (F̃)− fσ (F̃0))[F, iBσ ] fσ (F̃) + fσ (F̃0)[F, iBσ ]( fσ (F̃)− fσ (F̃0)).

(5.105)

Lemmata 5.10 and 5.12 imply

‖(5.105)‖ ≤ Cα
1
2 σ. (5.106)
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Using Lemmata 5.5, 5.8, 5.10 and 5.11, we estimate (5.104) from below as follows:

fσ (F̃0)[F, iBσ ] fσ (F̃0)

≥ fσ (F̃0)[F0, iBσ ] fσ (F̃0)− Cα
1
2 σ fσ (F̃0)

2

≥ fσ (F̃0)[F0, iBσ ](1 ⊗ 1 1
32ρσ≤H f ≤ 1

4ρσ
) fσ (F̃0)− Cα

1
2 σ fσ (F̃0)

2

≥ 1

2
fσ (F̃0)(1 ⊗ H f )(1 ⊗ 1 1

32ρσ≤H f ≤ 1
4ρσ

) fσ (F̃0)− C′α
1
2 σ fσ (F̃0)

2

≥ ρσ

64
fσ (F̃0)

2 − C′α
1
2 σ fσ (F̃0)

2

≥ ρσ

64
fσ (F̃)

2 − C′′α
1
2 σ. (5.107)

Inequality (5.107) combined with (5.106) yield

fσ (F̃)[F, iBσ ] fσ (F̃) ≥ ρσ

64
fσ (F̃)

2 − Cα
1
2 σ

≥ ρσ

128
fσ (F̃)

2 − Cα
1
2 σ

(
1 − fσ (F̃)

2), (5.108)

provided that α is sufficiently small. Multiplying both sides of (5.108) by 1�′
σ
(F̃) gives

1�′
σ
(F̃)[F, iBσ ]1�′

σ
(F̃) ≥ ρσ

128
1�′

σ
(F̃). (5.109)

Inserting this into (5.102) and using Lemma 5.9 conclude the proof of the theorem. ��

Acknowledgements. J.Fr. and I.M.S. are grateful to Marcel Griesemer for all he has taught them in the course
of joint work on [FGS1]. The ideas of this paper are fundamental for the present paper. We also thank
Alessandro Pizzo for sharing his important insights with us; (see [CFP2,FP]). J.Fa., I.M.S., and T.C. are grate-
ful to J.Fr. for hospitality at ETH Zürich. T.C. thanks I.M.S. for hospitality at the University of Toronto. The
authors acknowledge the support of the Oberwolfach Institute. Part of this work was done during I.M.S.’s stay
at the IAS, Princeton. The research of I.M.S. has been supported by NSERC under Grant NA 7901. T.C. has
been supported by the NSF under grant DMS-070403/DMS-0940145.

Appendix A: Technical Estimates

In this appendix we collect some estimates that were used in Sects. 4 and 5. For f :
R

3 × Z2 �→ C and γ > 0, we define

f γ (k, λ) = f (k, λ)1|k|≤γ . (A.1)

Similarly we set

Hγ

f =
∑

λ=1,2

∫

|k|≤γ
|k|a∗

λ(k)aλ(k)dk. (A.2)

We begin with two well-known lemmata (see for instance [BFS] for a proof).

Lemma A.1. For any f ∈ L2(R3 × Z2) such that |k|−1/2 f ∈ L2(R3 × Z2), and any
γ > 0,

‖a( f γ )[Hγ

f + γ ]−1/2‖ ≤ ‖|k|− 1
2 f γ ‖, (A.3)

‖a∗( f γ )[Hγ

f + γ ]−1/2‖ ≤ ‖|k|− 1
2 f γ ‖ + γ− 1

2 ‖ f γ ‖. (A.4)
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Lemma A.2. For any f ∈ L2(R3 × Z2), and any γ > 0, δ > 0,

a( f γ )1Hγ
f ≤δ = 1Hγ

f ≤δa( f γ )1Hγ
f ≤δ, (A.5)

a∗( f γ )1Hγ
f ≤δ = 1Hγ

f ≤γ+δa
∗( f γ )1Hγ

f ≤δ. (A.6)

Proof. The statement of the lemma follows directly from the “pull-through formula”

a(k)g(Hγ

f ) = g(Hγ

f + |k|)a(k), (A.7)

which holds for any bounded measurable function g : [0,∞) → C, and any k ∈
R

3, |k| ≤ γ . ��
In the following, the parameters α, σ and P are fixed with 0 ≤ α ≤ α0, where α0 is

sufficiently small, 0 < σ ≤ C0α
1/2, where C0 is a positive constant, and |P| ≤ pc =

1/40. We use the notations introduced in Sect. 3.

Lemma A.3. For any c ≥ 1/2, we have that

Kσ ⊗ 1 + 1 ⊗ (1

2
P2

f + cH f
) − ∇Kσ ⊗ Pf ≥ Eσ . (A.8)

In particular,

1 ⊗ H f ≤ 2(Hσ − Eσ ). (A.9)

Proof. To simplify notations, we set

Hσ,c = Hσ,c(P) = Kσ ⊗ 1 + 1 ⊗ (1

2
P2

f + cH f
) − ∇Kσ ⊗ Pf . (A.10)

Note that

Hσ,c = 1

2

(
P − Pf − α

1
2 Aσ

)2 + H f ⊗ 1 + c1 ⊗ H f

= 1

2

(∇Hσ
)2 + H f ⊗ 1 + c1 ⊗ H f . (A.11)

Let 
 ∈ D(Hσ,c), ‖
‖ = 1. We propose to show that

(
, Hσ,c
) ≥ Eσ . (A.12)

Since the number operator Nσ = ∑
λ=1,2

∫
|k|≤σ a∗

λ(k)aλ(k)dk commutes with Hσ,c, in
order to prove (A.12), it suffices to consider 
 ∈ D(Hσ,c) of the form 
 = 
1 ⊗
2,
where
1 ∈ Fσ and
2 is an eigenstate of Nσ |Fσ . Let us prove the following assertion
by induction:

(hn) For all
 = 
1⊗
2 ∈ D(Hσ,c) such that‖
1‖ = ‖
2‖ = 1 and Nσ
2 = n
2,
(A.12) holds.
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Since Hσ,c(
1 ⊗�) = (Kσ
1)⊗� and since Eσ = inf σ(Kσ ) (see Proposition 3.1),
(h0) is obviously satisfied. Assume that (hn) holds and let 
 = 
1 ⊗ 
2 ∈ D(Hσ,c)
with ‖
1‖ = ‖
2‖ = 1 and Nσ
2 = (n + 1)
2. Let us write


2
(
(k, λ), (k1, λ1), . . . , (kn, λn)

) = 
2(k, λ)
(
(k1, λ1), . . . , (kn, λn)

)
. (A.13)

One can compute

(
, Hσ,c
) =
∑

λ=1,2

∫

|k|≤σ
(

1 ⊗
2(k, λ),

(Hσ,c(P − k) + c|k|)
1 ⊗
2(k, λ)
)
dk. (A.14)

Next, it follows from (A.11) that
(

1 ⊗
2(k, λ), (Hσ,c(P − k) + c|k|)
1 ⊗
2(k, λ)

)

=
(

1 ⊗
2(k, λ),

(
Hσ,c − k · ∇Hσ +

k2

2
+ c|k|

)

1 ⊗
2(k, λ)

)
. (A.15)

Using that k · ∇Hσ ≤ |k|/4 + |k|(∇Hσ )2 and that (∇Hσ )2 ≤ 2Hσ,c, we obtain that
(

1 ⊗
2(k, λ), (Hσ,c(P − k) + c|k|)
1 ⊗
2(k, λ)

)

≥
(

1 ⊗
2(k, λ),

(
Hσ,c − |k|(∇Hσ )

2 +
k2

2
+ (c − 1

4
)|k|

)

1 ⊗
2(k, λ)

)

≥
(

1 ⊗
2(k, λ),

(
(1 − 2|k|)Hσ,c + (c − 1

4
)|k|

)

1 ⊗
2(k, λ)

)
. (A.16)

Since by the induction hypothesis (
1⊗
2(k, λ), Hσ,c
1⊗
2(k, λ))≥ Eσ‖
2(k, λ)‖2,
this implies

(

1 ⊗
2(k, λ), (Hσ,c(P − k) + |k|)
1 ⊗
2(k, λ)

)

≥
(
(1 − 2|k|)Eσ + (c − 1

4
)|k|

)
‖
2(k, λ)‖2

≥
(

Eσ + |k|(c − 1

4
− 2Eσ )

)
‖
2(k, λ)‖2. (A.17)

By Rayleigh-Ritz (see Proposition 3.1),

Eσ ≤ 1

2
P2 + Cα ≤ 1

100
(A.18)

for α sufficiently small and |P| ≤ 1/40, so that, in particular, c−1/4−2Eσ ≥ 0 (recall
that c ≥ 1/2). Therefore (hn+1) holds, and hence (A.12) is proven.

To prove (A.9), it suffices to write, using (A.8) with c = 1/2,

Hσ = Kσ ⊗ 1 + 1 ⊗ (1

2
P2

f +
1

2
H f

) − ∇Kσ ⊗ Pf +
1

2

(
1 ⊗ H f

)

≥ Eσ +
1

2

(
1 ⊗ H f

)
. (A.19)

��
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Lemma A.4. Let 0 < δ < 1. Then

Hσ (1 ⊗ 1H f ≤δ) ≥ (1 − δ)
(
Kσ ⊗ 1

)
(1 ⊗ 1H f ≤δ). (A.20)

Proof. Note that 1⊗1H f ≤δ commutes both with Hσ and Kσ ⊗1. In addition, since the
number operator Nσ also commutes with Hσ and Kσ ⊗1, it suffices to prove (A.20) on
states 
 ∈ D(Hσ ) of the form 
 = 
1 ⊗
2 with ‖
1‖ = ‖
2‖ = 1,
1 ∈ D(Kσ ),
and 
2 ∈ Ran(1H f ≤δ) is an eigenstate of Nσ |Fσ . For such a vector 
, we have

(

, Hσ


) = (

1, Kσ
1

)
+

(

2, (

1

2
P2

f + H f )
2
)

−(

1,∇Kσ
1

)(

2, Pf
2

)
. (A.21)

One can check that
∣
∣(
1,∇Kσ
1

)∣∣ ≤ (

1, (∇Kσ )

2
1
)1/2

, (A.22)
∣
∣(
2, Pf
2

)∣∣ ≤ (

2, H f
2

)
, (A.23)

and hence

(

1,∇Kσ
1

)(

2, Pf
2

) ≤ 1

2

(

1, (∇Kσ )

2
1
)(

2, H f
2

)
+

1

2

(

2, H f
2

)
.

(A.24)

Inserting this into (A.21) and using that (∇Kσ )2 ≤ 2Kσ , we obtain

(

, Hσ


) ≥ (

1, Kσ
1

)
+

1

2

(

2, H f
2

) − 1

2

(

1, (∇Kσ )

2
1
)(

2, H f
2

)

≥ (

1, Kσ
1

) − δ
(

1,

1

2
(∇Kσ )

2
1
)

≥ (1 − δ)
(

1, Kσ
1

)
, (A.25)

which concludes the proof. ��

Appendix B: The Smooth Feshbach-Schur Map

In this appendix we recall the definition and some of the main properties of the smooth
Feshbach-Schur map introduced in [BCFS1]. The version we present uses aspects devel-
oped in [GH] and [FGS3].

Let H be a separable Hilbert space. Let χ, χ̄ be nonzero bounded operators on H,
such that [χ, χ̄] = 0 and χ2 + χ̄2 = 1. Let H and T be two closed operators on H such
that D(H) = D(T ). Define W = H − T on D(T ) and

Hχ = T + χWχ, Hχ̄ = T + χ̄W χ̄ . (B.1)

We make the following hypotheses:

(1) χT ⊂ Tχ and χ̄T ⊂ T χ̄ .
(2) T, Hχ̄ : D(T ) ∩ Ran(χ̄) → Ran(χ̄) are bijections with bounded inverses.
(3) Wχ and χW extend to bounded operators on H.
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Given the above assumptions, the (smooth) Feshbach-Schur map Fχ (H) is defined by

Fχ (H) = Hχ − χW χ̄H−1
χ̄ χ̄Wχ. (B.2)

Note that Fχ (H) is well-defined on D(T ). If Hypotheses (1),(2),(3) above are satisfied,
we say that H is in the domain of Fχ . In addition, we consider the two auxiliary bounded
operators Qχ (H) and Q#

χ (H) defined by

Qχ (H) = χ − χ̄H−1
χ̄ χ̄Wχ, Q#

χ (H) = χ − χW χ̄H−1
χ̄ χ̄ . (B.3)

It follows from [BCFS1,GH,FGS3] that the smooth Feshbach-Schur map Fχ is isospec-
tral in the following sense:

Theorem B.1. Let H, T, χ, χ̄ be as above. Then the following holds:

(i) Let V be a subspace such that Ranχ ⊂ V ⊂ H, T : D(T ) ∩ V → V and
χ̄T −1χ̄V ⊂ V . Then H : D(T ) → H is bounded invertible if and only if
Fχ (H) : D(T ) ∩ V → V is bounded invertible, and we have

H−1 = Qχ (H)Fχ (H)
−1 Q#

χ (H) + χ̄H−1
χ̄ χ̄ , (B.4)

Fχ (H)
−1 = χH−1χ + χ̄T −1χ̄ . (B.5)

(ii) If φ ∈ H\{0} solves Hφ = 0 then ψ := χφ ∈ Ranχ\{0} solves Fχ (H) ψ = 0.
(iii) If ψ ∈ Ran χ\{0} solves Fχ (H) ψ = 0 then φ := Qχ (H)ψ ∈ H\{0} solves

Hφ = 0.
(iv) The multiplicity of the spectral value {0} is conserved in the sense that

dim KerH = dim KerFχ (H). (B.6)

Next, we recall a result given in [FGS3] showing that a LAP for H can be deduced
from a corresponding LAP for Fχ (H−λ), for suitably chosenλ’s. Notice that, in [FGS3],
Fχ (H − λ) is considered as an operator on H, whereas its restriction to some closed
subspace V is considered here. However, the following theorem can be proven in the
same way. For the convenience of the reader, we recall the proof.

Theorem B.2. Let H, T, χ, χ̄ be as above. Let � be an open interval in R. Let V be
a closed subspace of H satisfying the assumptions of Theorem B.1(i). Let B be a self-
adjoint operator on H such that B : D(B) ∩ V → V and [B ± i]−1V ⊂ V . Assume
that ∀λ ∈ �,

[Aλ, B] extends to a bounded operator, (B.7)

where Aλ stands for one of the operators Aλ = χ, χ, χW, Wχ, χ̄ [Hχ̄ − λ]−1χ̄ . If
H − λ is in the domain of Fχ , then for any ν ≥ 0 and 0 < s ≤ 1,

λ �→ 〈B〉−s(Fχ (H − λ)− i0)−1〈B〉−s ∈ Cν(�;B(V ))
implies that λ �→ 〈B〉−s(H − λ− i0)−1〈B〉−s ∈ Cν(�;B(H)). (B.8)
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Proof. It follows form Eq. (B.4) with H replaced by H − λ− iε that

[H − λ− iε]−1 = Qχ (H − λ− iε)Fχ (H − λ− iε)−1 Q#
χ (H − λ− iε)

+χ̄ [Hχ̄ − λ− iε]−1χ̄ . (B.9)

The map ε �→ [Hχ̄ − λ − iε]−1 ∈ B(Ran(χ̄)) is analytic in a neighborhood of 0, and
can be expanded as

[Hχ̄ − λ− iε]−1 = [Hχ̄ − λ]−1 + iε[Hχ̄ − λ]−1χ̄2[Hχ̄ − λ]−1 + O(ε2).

(B.10)

This yields

lim
ε→0

〈B〉−s Fχ (H − λ− iε)−1〈B〉−s = 〈B〉−s[Fχ (H − λ)− i0]−1〈B〉−s .

(B.11)

Note that

〈B〉−s = Cs

∫ ∞

0

dω

ωs/2 (ω + 1 + B2)−1, (B.12)

where Cs := [ ∫ ∞
0

dω
ωs/2 (ω + 1)−1

]−1. Hence, Conditions (B.7) imply that the operators

〈B〉−sχ〈B〉s, 〈B〉−sχ〈B〉s, 〈B〉sχ〈B〉−s, 〈B〉s χ̄〈B〉−s (B.13)

are bounded. Similarly, the maps

λ �→ 〈B〉−s χ̄[Hχ̄ − λ]−1χ̄〈B〉s and λ �→ 〈B〉s χ̄[Hχ̄ − λ]−1χ̄〈B〉−s (B.14)

are in C∞(�;B(H)). This property shows that

〈B〉−s Qχ (H − λ)〈B〉s and 〈B〉s Q#
χ (H − λ)〈B〉−s (B.15)

are bounded and smooth in λ ∈ �. The theorem then follows from (B.11), the fact that
H − λ is in the domain of Fχ , and (B.4). ��

Appendix C: Bound Particles Coupled to a Quantized Radiation Field

In this appendix, we explain how to adapt the proof of Theorem 1.1 to the case of non-rel-
ativistic particles interacting with an infinitely heavy nucleus and coupled to a massless
radiation field. To simplify matters, we assume that the non-relativistic particles are spin-
less, and that the bosons are scalar (Nelson’s model). The Hamiltonian HN associated
to this system acts on H = Hel ⊗ F , where Hel = L2(R3N ), and F = �s(L2(R3)) is
the symmetric Fock space over L2(R3). It is given by

HN := Hel ⊗ 1 + 1 ⊗ H f + W. (C.1)

Here, Hel = ∑N
j=1 p2

j/2m j + V denotes an N -particle Schrödinger operator on Hel.

For k in R
3, we denote by a∗(k) and a(k) the usual phonon creation and annihilation

operators on F obeying the canonical commutation relations
[
a∗(k), a∗(k′)

] = [
a(k), a(k′)

] = 0 ,
[
a(k), a∗(k′)

] = δ(k − k′). (C.2)
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The operator associated with the energy of the free boson field, H f , is given by the
expression (1.4), except that the operators a∗(k) and a(k) now are scalar creation and
annihilation operators as given above. The interaction W in (C.1) is assumed to be of
the form W = gφ(Gx ), where g is a small coupling constant, x = (x1, x2, . . . , xn) and

φ(Gx ) := 1√
2

N∑

j=1

∫

R3

κ�(k)

|k|1/2−μ
[
e−ik·x j a∗(k) + eik·x j a(k)

]
dk. (C.3)

As above, the function κ� denotes an ultraviolet cutoff, and the parameter μ is assumed
to be non-negative.

We assume that V is infinitely small with respect to
∑

j p2
j , and that the spectrum

of Hel consists of a sequence of discrete eigenvalues, e0, e1, . . ., below some semi-axis
[�,∞). Let EN := inf(σ (HN)) and y := i∇k . Adapting the proof of Theorem 1.1, one
can show the following

Theorem C.1. Let HN be given as above. For any μ ≥ 0, there exists g0 > 0 such that,
for any 0 ≤ g ≤ g0, 1/2 < s ≤ 1, and any compact interval J ⊂ (EN, (e0 + e1)/2),

sup
z∈J±

∥∥(d�(〈y〉) + 1)−s[HN − z
]−1

(d�(〈y〉) + 1)−s
∥∥ ≤ C, (C.4)

where C is a positive constant depending on J and s. In particular, the spectrum of H N

in (EN, (e0 + e1)/2) is absolutely continuous. Moreover, the map

J � λ �→ (d�(〈y〉) + 1)−s[HN − λ± i0+]−1
(d�(〈y〉) + 1)−s ∈ B(H) (C.5)

is uniformly Hölder continuous in λ of order s − 1/2.

Let us emphasize that Theorem C.1 does not require any infrared regularization in
the form factor. In comparison, the proof of [FGS1] would give Theorem C.1 for any
μ ≥ 1, and the one in [FGS3] for any μ > 0. In [FGS1], this restriction comes from
the estimate ‖ f (HN − EN) − f (HN

σ − EN
σ )‖ ≤ Cgσ which holds for μ ≥ 1 (where

f is a smooth function compactly supported in [σ/3, 2σ/3], HN
σ is the infrared cutoff

Hamiltonian, see (C.6) below, and EN
σ = inf σ(HN

σ )). In [FGS3], the assumption that
μ > 0 is needed to apply the renormalization group. However, for the standard model
of non-relativistic QED (which is considered in [FGS1] and [FGS3]), thanks to a Pa-
uli-Fierz transformation, the methods given in [FGS1] and [FGS3] work without any
infrared regularization.

Proof. We briefly explain how to adapt the proof of Theorem 1.1. First, using the gen-
erator of dilatations on Fock space, B, as a conjugate operator, it follows from standard
estimates that a Mourre estimate holds outside a neighborhood of EN; see [BFS].

To obtain the LAP near EN, we modify Sects. 4 and 5 as follows: We take Tσ = HN
σ ,

where HN
σ is the infrared cutoff Hamiltonian

HN
σ := Hel ⊗ 1 + 1 ⊗ H f + Wσ . (C.6)

Here Wσ = gφ(Gx,σ ), and φ(Gx,σ ) is given by (C.3) except that the integral over R
3 is

replaced by the integral over {k ∈ R
3, |k| ≥ σ }. We define similarly

W σ = HN − HN
σ = gφ(Gσ

x )with the obvious notation. The Hilbert space H is unitarily
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equivalent to Hσ ⊗ Fσ , where Hσ = Hel ⊗ Fσ and Fσ = �s(L2({k ∈ R
3, |k| ≥ σ })),

respectively Fσ = �s(L2({k ∈ R
3, |k| ≤ σ })). In this representation, we can write

HN = K N
σ ⊗ 1 + 1 ⊗ H f + W σ , (C.7)

where K N
σ denotes the restriction of HN

σ to Hσ . It is known that the ground state energy
EN
σ of K N

σ is separated from the rest of the spectrum by a gap of order O(σ ). Thus,
letting Pσ = 1{EN

σ }(K N
σ ) and χ = Pσ ⊗χσf , one can define the smooth Feshbach-Schur

operator in the same way as in Sect. 4, that is

F(λ) = Fχ (H
N − λ)|Ran(Pσ⊗1)

= EN
σ − λ + 1 ⊗ H f + χW σχ − χW σ χ̄

[
Hχ̄ − λ

]−1
χ̄W σ χ, (C.8)

for λ in a neighborhood of EN
σ . The proof of the Mourre estimate for F(λ) follows then

in the same way as in Sect. 5, using Bσ as a conjugate operator. Note that the “pertur-
bation” W σ is simpler here than the one considered in Sect. 4, in that it only consists of
the sum of a creation and an annihilation operator. However, some exponential decay in
the electronic position variables x j has to be used in order to control the commutator of
W σ with Bσ . (We do not present details.) ��

Appendix D: List of Notations

Hilbert spaces

H = L2(R3)⊗ F , (D.1)

F = �s(L
2(R3 × Z2)), (D.2)

Fσ = �s(L
2({(k, λ) ∈ R

3 × Z2, |k| ≥ σ })), (D.3)

Fσ = �s(L
2({(k, λ) ∈ R

3 × Z2, |k| ≤ σ })). (D.4)

Hamiltonians

H = 1

2
(P − Pf + α

1
2 A)2 + H f , (D.5)

Hσ = 1

2
(P − Pf + α

1
2 Aσ )

2 + H f (as an operator on F), (D.6)

= Kσ ⊗ 1 + 1 ⊗ (1

2
P2

f + H f )

−∇Kσ ⊗ Pf (as an operator on Fσ ⊗ Fσ ), (D.7)

∇Hσ = P − Pf + α
1
2 Aσ , (D.8)

Kσ = Hσ |Fσ
, ∇Kσ = ∇Hσ |Fσ

, (D.9)

Uσ = H − Hσ , (D.10)
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Tσ = Kσ ⊗ 1 + 1 ⊗ (1

2
P2

f + H f )− ∇Eσ ⊗ Pf , (D.11)

Wσ = H − Tσ = Uσ − (∇Kσ − ∇Eσ )⊗ Pf , (D.12)

Hχ = Tσ + χWσχ, Hχ̄ = Tσ + χ̄Wσ χ̄, (D.13)

H1
χ̄ = Tσ − χ̄(∇Kσ − ∇Eσ )⊗ Pf χ̄ , (D.14)

F = Fχ (H − λ)|Ran(Pσ⊗1) (D.15)

= Eσ − λ + 1 ⊗ (1

2
P2

f + H f
) − ∇Eσ ⊗ Pf + χUσχ

−χWσ χ̄
[
Hχ̄ − λ

]−1
χ̄Wσχ, (D.16)

F0 = Eσ − λ + 1 ⊗ (1

2
P2

f + H f
) − ∇Eσ ⊗ Pf , (D.17)

W1 = χUσχ, (D.18)

W2 = −χWσ χ̄
[
Hχ̄ − λ

]−1
χ̄Wσχ, (D.19)

F̃ = F + λ− Eσ , F̃0 = F0 + λ− Eσ . (D.20)

Conjugate operators

B = d�(b), b = i

2
(k · ∇k + ∇k · k), (D.21)

Bσ = d�(bσ ), bσ = κσbκσ . (D.22)

Intervals (Fig. 2)

E = inf σ(H), Eσ = inf σ(Hσ ), (D.23)

J>σ = E + [σ, 2σ ] (for σ ≥ C0α
1
2 ), (D.24)

J<σ = E + [11ρσ/128, 13ρσ/128] (for σ ≤ C′
0α

1
2 ), (D.25)

ρ : fixed parameter such that 0 < ρ < 1 and Gap(Kσ ) ≥ ρσ, (D.26)

�σ = [−ρσ/128, ρσ/128], (D.27)

�′
σ = [ρσ/16, ρσ/8], (D.28)
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Fig. 2. The intervals J<σ and J>σ

Functions

κ� ∈ C∞
0 ({k, |k| ≤ �}; [0, 1]) and κ� = 1 on {k, |k| ≤ 3�/4}, (D.29)

fσ ∈ C∞
0 ([3ρσ/64; 9ρσ/64]; [0, 1]) and fσ = 1 on �′

σ , (D.30)

f̃σ : almost analytic extension of fσ . (D.31)

(Almost) projections

Pσ = 1{Eσ }(Kσ ), P̄σ = 1 − Pσ , (D.32)

χσf = κρσ (H f ), χ̄σf =
√
1 − (χσf )

2, (D.33)

χ = Pσ ⊗ χσf , χ̄ = Pσ ⊗ χ̄σf + P̄σ ⊗ 1. (D.34)
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