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Abstract: The compressible Navier-Stokes system (CNS) with density-dependent vis-
cosity coefficients is considered in multi-dimension, the prototype of the system is the
viscous Saint-Venat model for the motion of shallow water. A spherically symmetric
weak solution to the free boundary value problem for CNS with stress free boundary
condition and arbitrarily large data is shown to exist globally in time with the free bound-
ary separating fluids and vacuum and propagating at finite speed as particle path, which
is continuous away from the symmetry center. Detailed regularity and Lagrangian struc-
ture of this solution have been obtained. In particular, it is shown that the particle path is
uniquely defined starting from any non-vacuum region away from the symmetry center,
along which vacuum states shall not form in any finite time and the initial regularities
of the solution is preserved. Starting from any non-vacuum point at a later-on time, a
particle path is also uniquely defined backward in time, which either reaches at some
initial non-vacuum point, or stops at a small middle time and connects continuously with
vacuum. In addition, the free boundary is shown to expand outward at an algebraic rate
in time, and the fluid density decays and tends to zero almost everywhere away from
the symmetry center as the time grows up. This finally leads to the formation of vacuum
state almost everywhere as the time goes to infinity.

1. Introduction

The compressible isentropic Navier-Stokes equations (CNS) with density-dependent
viscosity coefficients in R

N , N = 2, 3, can be written for t > 0 as{
ρt + div(ρU) = 0,

(ρU)t + div(ρU ⊗ U)− div(2μ(ρ)D(U))− ∇(λ(ρ)divU) + ∇ P(ρ) = 0,
(1.1)

where ρ(x, t),U(x, t) and P(ρ) = ργ (γ > 1) stand for the fluid density, velocity and
pressure, respectively, D(U) = 1

2 (∇U+∇UT ) is the stress tensor, andμ(ρ) and λ(ρ) are
the Lamé viscosity coefficients satisfying μ(ρ) ≥ 0 and μ(ρ) + Nλ(ρ) ≥ 0 for ρ ≥ 0.
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There is huge literature on the studies about global existence and behaviors of solu-
tions to (1.1) in the case that the viscosity coefficients μ and ξ are both constants. The
important progress on the global existence of strong or weak solutions in spatial one-
dimension (1D) or multi-dimension (multi-D) has been made by many authors, refer to
[7,9,13,27,28,31,35] and references therein. However, the regularity, uniqueness and
dynamical behavior of the weak solutions for arbitrary initial data remain largely open
for the compressible Navier-Stokes equations with constant viscosity coefficients, but
there is new progress recently [19,21]. As emphasized in many related papers (refer
to [6,15,16,18–20,32,42,53] for instance), the possible appearance of vacuum is one
of the main difficulties, which indeed leads to the singular behaviors of solutions in the
presence of vacuum, such as the failure of continuous dependence of weak solutions on
initial data [15] and the finite time blow-up of smooth solutions [19,53]. To overcome
the above singularities of solutions near the vacuum state, Liu-Xin-Yang [32] investigate
the compressible Navier-Stokes equations with density-dependent viscosities, derived
from the fluid-dynamical approximation to the Boltzmann equation and the isentro-
pic reduction of temperature, and show the well-posedness of the local weak solution
even in the appearance of vacuum. Moreover, it should be emphasized that the viscous
Saint-Venant system in the description of the motion for shallow water was also derived
recently [10,34], which is expressed exactly as (1.1) with N = 2, μ(ρ) = ρ, λ(ρ) = 0
and γ = 2. Such viscous compressible models with density-dependent viscosity coeffi-
cients and its variants appear in geophysical flows [31,40].

The global existence of weak solution with large aptitude to (1.1) remains to be car-
ried in terms of the Lions’ compactness framework of renormalized solutions [31] due to
the new mathematical challenges encountered below. Indeed, the system (1.1) is highly
degenerate at vacuum because of the dependence of viscosity coefficients on the flow
density. This makes it very difficult to obtain the uniformly a-priori estimates for the
velocity and trace the motion of particle paths near vacuum regions, which is the essential
difference of (1.1) from compressible Navier-Stokes equations with constant viscosity
coefficients where the particle path can be defined a-priorily even near vacuum [14,15].
In particular, unlike the case for CNS with constant viscosity coefficients investigated
in [16,54], it is not known yet whether the vacuum states shall form or not for global
(weak) solutions to (1.1) even if initial data is far from vacuum. The significant progress
on global existence of weak solutions has been established recently to (1.1) for the case
with either a drag friction or a cold pressure term and for the case with spherical symme-
try, refer to [1–3,11] and references therein. In general, however, it still seems to be a chal-
lenge to show the global existence of weak solutions for general multi-dimensional data.

It is a natural and interesting problem to investigate the influence of the vacuum
state on the existence and dynamics of global solutions to (1.1). One of the prototype
problems is the time-evolution of the compressible viscous flow of finite mass expand-
ing into infinite vacuum. This corresponds to free boundary value problems (FBVP)
for the compressible Navier-Stokes equations (1.1) for general initial data and variant
boundary conditions imposed on the free surface. The study is a fundamental issue of
fluid mechanics and has attracted lots of research interests [38,45]. These free boundary
problems have been studied with rather abundant results concerned with the existence
and dynamics of global solution for CNS (1.1) in 1D, refer to [8,26,32,33,37,41,51,55]
and references therein. Some important progress has been made about free boundary
value problems for multi-dimensional compressible viscous Navier-Stokes equations
with constant viscosity coefficients for either barotropic or heat-conducive fluids by
many authors, refer to [4,44,46,47,49,56–61] and references therein. In particular, in the
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case that across the free surface stress tensor is balanced by a constant exterior pressure
and/or the surface tension, classical solutions with strictly positive densities in the fluid
regions to FBVP for CNS (1.1) with constant viscosity coefficients is shown locally in
time for either heat-conductive flows [44,49,57] or barotropic flows [46,61,59]. In the
case that across the free surface the stress tensor is balanced by surface tension [47],
exterior pressure [59], or both surface tension and exterior pressure [60] respectively,
global existence of classical solutions with small amplitude and positive densities in
fluid region to the FBVP for CNS (1.1) with constant viscosity coefficients is estab-
lished, where initial data is assumed to be near to non-vacuum equilibrium state. Global
existence of classical solutions to FBVP for compressible viscous and heat-conductive
fluids are also obtained with the stress tensor balanced by the surface tension and/or
exterior pressure across the free surface, refer to [56,58] and references therein. There
are also very interesting investigations about free boundary value problems for the com-
pressible Navier-Stokes equations with the self-gravitation force taken for granted, refer
to [22,39,43,48,62,63] and references therein.

It is not known in general about the existence and dynamics of global solutions to
the free boundary value problem for (1.1) in multi-dimension with stress free bound-
ary condition imposed on the free surface. This problem is rather interesting and hard
to investigate. Indeed, it should be noted that the previous studies on FBVP for (1.1)
in [47,59,60,63], subject to the boundary condition that stress tensor is balanced by
an exterior pressure and/or surface tension, depend crucially on the facts that in fluid
region the density is strictly positive everywhere and the momentum equation is uni-
formly parabolic. In our case, however, the fluid region expands outward at an algebraic
rate in time due to the stress free boundary condition (already observed in 1D for (1.1)
in [30,33,37]), which implies the decay of fluid density to zero almost everywhere time-
asymptotically and the loss of uniform parabolicity of momentum equation. These make
the analysis rather delicate and difficult.

It is also of great interest to study the dynamical behaviors and the Lagrangian proper-
ties (such as existence and uniqueness of particle paths, transportation of initial regulari-
ties, non-formation of vacuum, or finite time vanishing of vacuum, etc.) for global weak
solutions to FBVP for CNS (1.1). It is noted that for CNS (1.1) with constant viscosity
coefficients, Hoff-Smoller [16] prove that vacuum states shall not form for global weak
solutions in 1D so long as there is no vacuum state initially, which is also generalized to
multi-D spherically symmetric case [54], Hoff-Santos make important progress on the
analysis of Lagrange structure and the propagation of jump discontinuities in (2D and
3D) whole space, Hoff-Tsyganov successfully show the time analyticity and backward
uniqueness of global weak solutions with small (relative) energy in terms of Lagrangian
formulation (fluid particle trajectory) [17]. Li-Li-Xin [29] discover and prove rigorously
the phenomena of the finite time vanishing of vacuum states to (1.1) in 1D where a
global entropy weak solution gains regularities to become a strong one after the van-
ishing of vacuum. There is also interesting recent progress on local well-posedness of
free boundary value problems for the compressible Euler equations based on Lagrangian
formulation, see [23,24] and references therein. It should be noted, however, that the
dynamical behaviors and the Lagrangian properties are also unknown for CNS (1.1)
in multi-dimension even if the global existence of weak solution is already shown for
special cases as mentioned above.

In the present paper, we study the free boundary value problem for the compressible
multi-dimensional Navier-Stokes equations (1.1) with stress free across the free surface
and focus on the existence and dynamical behaviors of global solutions. For simplicity,
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we deal with the case μ(ρ) = ρ and λ(ρ) = 0 (namely, the FBVP (2.1)-(2.7) in Sect. 2
below). First, we show that a global spherically symmetric entropy weak solution to the
FBVP (2.1)-(2.7) exists for general initial data with finite entropy, and the free surface
moves as particle paths in radial direction. Away from the symmetry center the density is
continuous in both space and time (up to the free surface), and the total mass is conserved
for all time (refer to Theorem 2.1 in Sect. 2 for details).

Then, we investigate the Lagrangian structure of global weak solutions. It is shown
that starting from any point at initial non-vacuum regions (away from the symmetry
center), a particle path is uniquely defined globally in time, along which the flow density
is strictly positive and bounded from upper and below in finite time. Any two particle
paths starting from two initially separated points (including the initial boundary point) in
non-vacuum regions shall be separated uniformly from each other for all time. Between
the two particle paths, vacuum states shall not form in any finite time so long as there
is no vacuum state initially, and the initial regularities of the solution are maintained, in
particular, the solution gains enough regularities to become a classical one. In addition,
the free surface (or the free boundary) is shown to expand outward in the radial direction
at an algebraic rate in time and the density decays to zero time-asymptotically almost
everywhere away from the symmetry center, which lead to the formation of vacuum
states as the time goes to infinity (refer to Theorems 2.2–2.3 in Sect. 2 for details). This
is a completely different phenomena compared with the initial boundary value problem
for (2.1) investigated in [12,29,30] where it was shown that any finite vacuum shall
vanish in finite time.

Next, we study the dynamics of vacuum states for the global spherically symmetric
entropy weak solution constructed in Theorem 2.1. It is proved that starting from any
non-vacuum point (r ′

0, t ′0) at any positive time t ′0 > 0, a particle path is uniquely defined
backward in time along which the density remains positive. It propagates either back-
ward to some initial non-vacuum point r0 as the time approaches zero, or terminates at
a smaller time t ′1 ∈ [0, t ′0) so that the density connects continuously to some vacuum
state which is originated from the initial one and separated from any other vacuum states
by non-vacuum fluid regions. This actually implies the finite time vanishing of initial
vacuum and the blow-up phenomena (refer to Theorem 2.4 and Remark 2.4 in Sect. 2
for details).

Finally, the large time behavior of any global entropy weak solution and formation of
vacuum state almost everywhere time-asymptotically are shown too. It is proved that the
free surface (or the free boundary) moves outward in the radial direction at an algebraic
rate in time from above and below, along which the density decays algebraically in time.
These together with the uniform entropy estimates lead to the decay of fluid density to
zero almost everywhere away from the symmetry center as the time approaches infinity
(refer to Theorem 2.5 in Sect. 2 for details).

As stated above, the dynamics of vacuum states and the Lagrangian properties of the
global spherically symmetric entropy weak solution (refer to Theorems 2.2–2.4) imply
that any two separated vacuum states shall never meet in any finite time, and in particu-
lar, any initial vacuum state separated from the symmetry center (by some region with
positive mass) shall not go into or be originated from the center in any finite time. On
the other hand, any particle path along which the density is strictly positive in positive
finite time can not go into either the symmetry center or the free surface backward or
forward in time, unless it coincides identically with them for all time. It should be noted
that all results stated above apply to the viscous Saint-Venant system.
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It seems more involved to show all the results stated above for the FBVP (2.1)–
(2.7). Indeed, besides the difficulties already mentioned above, additional difficul-
ties also appear. For example, in contrast to the FBVP problems studied for (1.1)
in one-dimension [26,32,41,51,55] and in multi-dimensional spherically symmetric
domain between solid core and free boundary [4,5,52], the FBVP (2.1)-(2.7) investi-
gated here contains the symmetry center and is a truly multi-dimensional problem. In
particular, the spherically symmetric form of (2.1) becomes singular at the center r = 0
(see (2.3) in Sect. 2 and (3.11) in Sect. 3.2 respectively), which makes it hard to show the
existence of global weak solutions. Furthermore, unlike CNS (1.1) with constant viscous
coefficients where any particle path can be defined a-priorily even near vacuum, it is hard
to define particle path a-priorily for CNS (2.1) due to possible degeneracy of viscous
diffusion near vacuum states. Therefore, no information can be obtained a-priorily about
Lagrange structures of solutions.

To overcome these difficulties and avoid the possible singularity at the origin, we first
consider the FBVP for the spherically symmetric (2.3) on the domain excluding the ball
Bε(0) centered at the origin with radius ε > 0, which then makes it possible to construct
global smooth approximate solutions, trace the motion of particle paths, control lower
and upper bounds for the density of the approximate solutions, and investigate their
Lagrange properties. With these, one can extend the global approximate solutions to
the whole domain including the ball Bε(0) as [11], obtain the Bresch-Desjardins (BD)
entropy estimates as [1,2,11], and especially establish the desired uniform estimates on
Lagrange properties for the approximate solutions with respect to ε > 0. These enable
us to show the strong convergence of approximate solutions near the free boundary,
while the convergence of approximate solutions on the whole domain follows from the
uniform entropy estimates and the compactness framework founded by Mellet-Vasseur
in [36]. And the expected Lagrange structure of solutions to the original problem can be
justified also.

It should be noted that although the general strategy to construct the global approx-
imate solution sequences for the FBVP (2.1)–(2.7) is similar to the initial boundary
problem for (2.1) investigated in [11], however, the free boundary yields new phenom-
ena and difficulties and new arguments are introduced in the present paper to obtain
the regularities, dynamics of vacuum states and long time behaviors of global weak
solutions to the FBVP (2.1)–(2.7). As already shown in [11,12,29,30] on compressible
Navier-Stokes equations (2.1) in bounded domains, any possible existing vacuum state
shall vanish in finite time and the density becomes uniformly positive in large time.
This makes the equation of velocity strictly parabolic so that the weak solution can gain
enough regularity. Therefore, it is possible to define the particle path and investigate
the Lagrangian properties and dynamical behaviors of the weak solution. However, the
situation is quite different for the FBVP (2.1)–(2.7). Indeed, as one can see in the present
paper, the free boundary (the interface) moves outwards and the region of finite fluid
mass expands continuously into the vacuum due to the free motion of viscous com-
pressible fluid and the dispersion of total pressure. These in particular make the fluid
density decay to zero (the formation of vacuum state) time-asymptotically and lead to
the strong degeneracy of the system (loss of strict parabolicity and so on). Thus, it is
nontrivial to investigate the regularity of the weak solution to the FBVP (2.1)–(2.7),
define the particle path to analyze the Lagrangian structure and dynamical behaviors of
global weak solutions (refer to Sect. 4–Sect. 5 for details). Moreover, these dynamical
behaviors established in Theorems 2.2–2.5 for the first time are new and different from
the phenomena observed in [12,29,30].
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The rest of this paper is as follows. In Sect. 2 we state the main results of this paper.
In Sect. 3, we construct the global approximate solutions and derive the desired entropy
estimates. The key uniform estimates away from the symmetry center are established in
Sect. 4, and the convergence of the global approximate solutions and the main results
of the paper are presented in Sect. 5. The long time behavior of global weak solutions
is shown in Sect. 6.

2. Main Results

For simplicity, the viscosity terms are assumed to satisfy μ(ρ) = ρ, λ(ρ) = 0 in (1.1).
The pressure is assumed to be P(ρ) = ργ . Then (1.1) become

{
ρt + div(ρU) = 0,

(ρU)t + div(ρU ⊗ U)− div(2ρD(U)) + ∇ργ = 0.
(2.1)

Consider a spherically symmetric solution (ρ,U) to (2.1) in R
3 so that

ρ(x, t) = ρ(r, t), ρU(x, t) = ρu(r, t)
x
r
, r = |x|, x ∈ R

3, (2.2)

and (2.1) are changed to

⎧⎨
⎩
(r2ρ)t + (r2ρu)r = 0,

(r2ρu)t + (r2ρu2)r + r2(ργ )r − r2(ρ(ur +
2

r
u)

)
r + 2rρr u = 0,

(2.3)

for (r, t) ∈ �T with

�T = {(r, t)| 0 ≤ r ≤ a(t), 0 ≤ t ≤ T }. (2.4)

The initial data is taken as

(ρ, ρu)(r, 0) = (ρ0,m0)(r) =: (ρ0, ρ0u0)(r), r ∈ (0, a0). (2.5)

At the center of symmetry we impose the Dirichlet boundary condition

ρu(0, t) = 0, (2.6)

and the free surface ∂�t moves in the radial direction along the “particle path” r = a(t)
with the stress-free boundary condition

(ργ − ρ(ur +
2

r
u))(a(t), t) = 0, t > 0, (2.7)

where a′(t) = u(a(t), t), t > 0, and a(0) = a0.
First, we define a weak solution to the FBVP (2.1)–(2.7) as follows.

Definition 2.1. (ρ,U, a) with ρ ≥ 0 a.e. is said to be a weak solution to the free surface
problem (2.1)–(2.7) on �t × [0, T ], provided that it holds that
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ρ ∈ L∞(0, T ; L1(�t ) ∩ Lγ (�t )) ∩ C([0, T ]; L3/2(�t ),
√
ρ ∈ L∞(0, T ; H1(�t )),√

ρ U ∈ L∞(0, T ; L2(�t )),
√
ρ ∇U ∈ L2(0, T ; W −1,1(�t )),

ρ(a(t), t) > 0, t ∈ [0, T ], a(t) ∈ H1([0, T ]) ∩ C0([0, T ]),
and the equations are satisfied in the sense of distributions. Namely, it holds for any
t2 > t1 ≥ 0 and φ ∈ C1(�̄t × [0, T ]) that

∫
�t

ρφdx|t2t=t1 =
∫ t2

t1

∫
�t

(ρφt + ρU · ∇φ)dxdt, (2.8)

and for ψ = (ψ1, ψ2, ψ3) ∈ C1(�̄t × [0, T ]) satisfying ψ(x, t) = 0 on ∂�t and
ψ(x, T ) = 0 that

∫
�t

m0 · ψ(x, 0)dx +
∫ T

0

∫
�t

[√ρ (√ρ U) · ∂tψ +
√
ρ U ⊗ √

ρ U : ∇ψ]dxdt

+
∫ T

0

∫
�t

ργ divψdxdt− < 2ρD(U),∇ψ >= 0, (2.9)

where m0 = m0
x
r and the diffusion term is defined for any φ ∈ C1(�̄t × [0, T ]) as

<ρ∂ j Ui , φ>= −
∫ T

0

∫
�t

√
ρ(

√
ρ Ui )∂ jφ dxdt −

∫ T

0

∫
�t

(
√
ρ Ui )φ∂ j

√
ρ dxdt

for i, j = 1, 2, 3. The free boundary condition (2.7) is satisfied in the sense of trace.

Remark 2.1. That a weak solution to compressible Navier-Stokes equations (2.1) admits
additional regularity on the fluid density

√
ρ ∈ L∞(0, T ; H1(�t )) is due to the Bresch-

Desjardins (BD) entropy estimate, as discovered by Bresch and Desjardins [1,3]. It
should be mentioned that the BD entropy estimate is also important in establishing
the compactness estimates and analyzing the qualitative behaviors of solutions, refer to
[1,2,11,29,30] and the references therein.

Notations. Throughout this paper, C and c denote generic positive constants, C f,g > 0
denotes a generic constant which may depend on the sub-index f and g, and CT > 0 a
generic constant depending on T .

Assume further for �0 = [0, a0] that

⎧⎪⎪⎨
⎪⎪⎩
ρ0(r) ≥ 0, r ∈ �0, ρ0 ∈ W 1,∞(�0), ∇√

ρ0 ∈ L2(�0),

∫
�0

r2ρ0(r)dr = 1,

m0(r)=0 for r ∈ �0
0 =:{r ∈ �0| ρ0(r)=0 }, m0 ∈W 1,∞(�0),

m2+η
0

ρ
1+η
0

∈ L1(�0),

(2.10)

with η ∈ (0, 1) a constant small enough. Throughout this paper the initial data and
boundary value are assumed to be consistent at the point (r, t) = (a0, 0). Then, we have
the following global existence result.
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Theorem 2.1 (Global existence). Let N = 2, 3, γ ∈ (1, N
N−2 ). Assume that (2.10) holds

and the initial data and boundary values are consistent in the sense

(
ρ
γ
0 − ρ0

(
u0r +

2

a0
u0

))
(a0) = 0, ρ0(a0) > 0. (2.11)

Then, the FBVP (2.1)–(2.7) has a global spherically symmetric weak solution

(ρ, ρU, a)(x, t) =
(
ρ(r, t), ρu(r, t)

x
r
, a(t)

)
, r = |x|,

in the sense of Definition 2.1 satisfying for any T > 0 that

∫ a(t)

0
r2ρ(r, t)dr =

∫ a0

0
r2ρ0(r)dr, (2.12)

c ≤ a(t) ≤ CT , t ∈ [0, T ], ‖a‖H1([0,T ]) ≤ CT , (2.13)

0 ≤ ρ(r, t) ∈ C0((0, a(t)] × [0, T ]), ρ ∈ C0([0, T ]; L3/2(�̄t )), (2.14)

sup
t∈[0,T ]

∫
�t

(ργ + |√ρ U|2)(x, t)dx +
∫ T

0

∫
�t

|√ρ ∇U|2dxdt ≤ C, (2.15)

sup
t∈[0,T ]

∫
�t

|∇√
ρ |2(x, t)dx +

∫ T

0

∫
�t

|∇ρ γ
2 |2dxdt + ργ (a(t), t)aN (t) ≤ C, (2.16)

with C > 0 and CT > 0 two constants. Furthermore, it holds that ργ − ρ(ur + 2
r u) ∈

L2(0, T ; H1(�δ)) with �δ = (a(t) − δ, a(t)) for some small constant δ > 0, and the
free boundary condition (2.7) is satisfied in the sense of trace.

Remark 2.2. (i) The assumption (ρ0, u0) ∈ W 1,∞(�0) in (2.10) can be relaxed. For
instance, it can be replaced by (ρ0, u0) ∈ W 1,∞(�0\�0

0) as follows from the
proofs in Sect. 5.

(ii) Theorem 2.1 yields the global existence of spherically symmetric weak solutions
for two/three dimensional compressible Navier-Stokes equation with free surface
separating fluid and vacuum states. In particular, it applies to the viscous Saint-
Venant model for shallow water (which is (2.1) with N = 2, μ(ρ) = ρ, λ(ρ) = 0,
and γ = 2). As it will follow from our analysis, the same existence result holds
for general viscosity coefficients in (1.1), for instance, μ(ρ) = ρα and λ(ρ) =
(α − 1)ρα with N

N+1 < α ≤ 1 and N ≥ 2.

Next, we investigate the Lagrangian properties of global weak solutions to the
FBVP (2.1)–(2.7), such as the motion of particle paths, transportation of fluid mass,
non-formation of vacuum states, maintenance of initial regularities, etc. For simplicity,
we treat only the case N = 3, the case N = 2 can be dealt with similarly. We have the
following results

Theorem 2.2 (Lagrangian structure). Let N = 3 and γ ∈ [2, 3). Assume that (2.10)
and (2.11) hold. Then, the global weak solution (ρ, ρU, a) = (ρ(r, t), ρu(r, t) x

r , a(t))
to the FBVP (2.1)–(2.7) constructed in Theorem 2.1 satisfies the following properties:



Lagrange Structure and Dynamics for CNS 379

(i) (Non-concentration of mass) There is no mass concentration at the symmetry
center, namely,

∫ η

0
r2ρ(r, t)dr → 0, as η → 0+ holds. (2.17)

(ii) (Non-formation of vacuum state in finite time) For any r0 ∈ (0, a0) with
ρ0(r0) > 0, there exists a particle path r = rx (t) for t ∈ [0, T ] uniquely defined
by d

dt rx (t) = u(rx (t), t) with rx0(0) = r0 and x0 = 1 − ∫ a0
r0

r2ρ0(r)dr ∈ (0, 1),
so that ⎧⎪⎨

⎪⎩
0 < cx

γ
3(γ−1)
0 ≤ rx0(t) < a(t) ≤ CT t ∈ [0, T ],

0 < cx0,T ≤ ρ(rx0(t), t) ≤ Cx
− 2γ

3(γ−1)
0 , t ∈ [0, T ] holds,

(2.18)

where C,CT , c and cx0,T are positive constants, and cx0,T → 0 as x0 → 0+.
Furthermore, for any 0 < r1 < r2 ≤ a0 with ρ0(ri ) > 0, there exist two particle
paths r = rxi (t) uniquely defined by

d

dt
rxi (t) = u(rxi (t), t), (2.19)

with rxi (0) = ri and xi = 1 − ∫ a0
ri

r2ρ0(r)dr ∈ (0, 1], i = 1, 2, such that

⎧⎨
⎩

c(x2 − x1)
γ
γ−1 ≤ r3

x2
(t)− r3

x1
(t), t ∈ [0, T ],

0 < cxi ,T ≤ ρ(rxi (t), t) ≤ Cx
− 2γ

3(γ−1)
i , i = 1, 2, t ∈ [0, T ],

(2.20)

where the constant cxi ,T > 0 satisfies cxi ,T → 0 as xi → 0+.
(iii) (Long time dynamics) The free surface expands at the following rates

C(1 + t)
γ

3(γ−1) ≥ a(t) ≥ c(1 + t)
1

3γ , as t → +∞, (2.21)

and the fluid density ρ decays almost everywhere as follows:

ρ(a(t), t) = O(1)(1 + t)−
1

γ−1 , γ > 1, (2.22)

1

a3(t)

∫ a(t)

0
ρ(r, t)r2dr ≤ C(1 + t)−

1
(γ−1) , (2.23)

where C > 0 and c > 0 are constants independent of time, and

ρ(r, t) −→ 0, t → ∞, r ∈ [r0, a(t)], (2.24)

for any fixed r0 ∈ (0, a(t)) with t > 0.

Theorem 2.3 (Regularity). Let N = 3 and γ ∈ [2, 3). Assume that (2.10) and (2.11)
hold. Then, the global weak solution (ρ, ρU, a) = (ρ(r, t), ρu(r, t) x

r , a(t)) to the
FBVP (2.1)–(2.7) constructed in Theorem 2.1 satisfies the following regularities:
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(i) (Interior regularity) Assume further that there exist 0 < r−
1 < r1 < r2 < r+

2≤ a0 and a constant ρ∗ > 0 such that

inf
r∈[r1,r2] ρ0(r) ≥ ρ∗ > 0, u0 ∈ H2([r−

1 , r
+
2 ]), (2.25)

then⎧⎨
⎩ 0 < cx1,T ≤ ρ(r, t) ≤ Cx

− 2γ
3(γ−1)

1 , r ∈ [rx1(t), rx2(t)], t ∈ [0, T ],
‖(ρ, u)‖L∞(0,T ;H1([rx1 (t),rx2 (t)])) + ‖u‖L2(0,T ;H2([rx1 (t),rx2 (t)])) ≤ Cx1,T ,

(2.26)

and the following interior regularities hold:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ρ, u) ∈ C0([rx1(t), rx2(t)] × [0, T ]),
ρ ∈ L∞(0, T ; H1([rx1(t), rx2(t)])), ρt ∈ L∞(0, T ; L2([rx1(t), rx2(t)])),
u ∈ L∞(0, T ; H2([rx1(t), rx2(t)])) ∩ L2(0, T ; H3([rx1(t), rx2(t)])),
ut ∈ L∞(0, T ; L2([rx1(t), rx2(t)])) ∩ L2(0, T ; H1([rx1(t), rx2(t)])),

(2.27)

where r = rxi (t) is the particle path defined by (2.19), and the constant Cxi ,T > 0
satisfies Cx1,T → ∞ as x1 → 0+.

(ii) (Boundary regularity) Assume, in addition, that there exist 0 < r−
3 < r3 < a0

and a constant ρ∗ > 0 such that

inf
r∈[r1,a0]

ρ0(r) ≥ ρ∗ > 0, u0 ∈ H2([r−
3 , a0]), (2.28)

then⎧⎨
⎩ 0 < cx3,T ≤ ρ(r, t) ≤ Cx

− 2γ
3(γ−1)

3 , r ∈ [rx3(t), a(t)], t ∈ [0, T ],
‖(ρ, u)‖L∞(0,T ;H1([rx3 (t),a(t)])) + ‖u‖L2(0,T ;H2([rx3 (t),a(t)])) ≤ Cx3,T ,

(2.29)

and the following boundary regularities hold
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ρ, u) ∈ C0([rx3(t), a(t)] × [0, T ]), a(t) ∈ H2([0, T ]) ∩ C1([0, T ]),
ρ ∈ L∞(0, T ; H1([rx3(t), a(t)])), ρt ∈ L∞(0, T ; L2([rx3(t), a(t)])),
u ∈ L∞(0, T ; H2([rx3(t), a(t)])) ∩ L2(0, T ; H3([rx3(t), a(t)])),
ut ∈ L∞(0, T ; L2([rx3(t), a(t)])) ∩ L2(0, T ; H1([rx3(t), a(t)])),

(2.30)

where r = rx3(t) is the particle path with rx3(0) = r3 and x3 = 1 −∫ a0
r3

r2ρ0(r)dr ∈ (0, 1). The free boundary condition (2.7) is also satisfied point-
wisely since

ργ − ρ(ur +
2

r
u) ∈ L∞(0, T ; H1([rx3(t), a(t)])) ∩ C0([0, T ]

×[rx3(t), a(t)]) holds. (2.31)
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Remark 2.3. (i) It follows from Theorems 2.2–2.3 that for the FBVP (2.1)–(2.7) any
initial non-vacuum point is transported along the particle path, vacuum states shall
not appear away from the symmetry center in any finite time so long as there is
no vacuum state initially, the initial regularities of solution are maintained on
(non-vacuum) fluid regions. In fact, (2.27) and (2.30) imply that the solution gains
regularities in the interior non-vacuum regions and becomes a classical one. The
free surface expands outward in the radial direction along “particle path” at an
algebraic rate in time. In particular, there is no mass concentration at the symme-
try center, and the flow density shall tend to zero everywhere time-asymptotically
away from the symmetry center, which leads to the formation of vacuum states as
time goes to infinity.

(ii) It should be emphasized that all Lagrange properties in Theorems 2.2–2.3 hold
also for the FBVP (2.1)–(2.7) in 2D for γ ∈ [2,∞), in particular, it applies to the
viscous Saint-Venat model.

(iii) Theorems 2.2 present the time-asymptotical formation of vacuum state for the
compressible viscous fluid with free boundary. This is a completely different
phenomena compared with the initial boundary value problem for CNS (2.1) in
bounded domain investigated in [12,29,30], where it is shown that any finite vac-
uum shall vanish in finite time. Moreover, the analysis on Lagrangian properties of
global weak solutions to the FBVP (2.1)–(2.7) can be used to study the dynamical
behaviors of the global weak solution to the Dirichlet problem for CNS (2.1) in
multi-dimension, where the regularity and finite vanishing of the vacuum state are
shown, refer to [12] for details.

(iv) It should be mentioned that the Lagrangian analyticity and backward uniqueness
of global weak solutions away from vacuum for CNS with constant viscosity
coefficients have been obtained in [17].

Further properties on the dynamical behaviors of vacuum states away from the sym-
metry center are stated as follows.

Theorem 2.4 (Dynamics of vacuum states). Let the assumptions in Theorem 2.2 hold.
Assume that the global weak solution (ρ, ρU, a) to the FBVP (2.1)-(2.7) constructed in
Theorem 2.1 satisfies ρ(r ′

0, t ′0) > 0 for some (r ′
0, t ′0) ∈ (0, a(t ′0))× (0, T ]. Then, either

case (a) or case (b) holds:

(a) There exist an initial point r0 ∈ (0, a0) and a particle path r = rx0(t)with rx0(0) =
r0 and x0 = 1 − ∫ a(t ′0)

r ′
0

r2ρ(r, t ′)dr ∈ (0, 1) so that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rx0(0) = r0, rx0(t
′
0) = r ′

0, ρ0(r0) > 0,

0 < cx
γ

3(γ−1)
0 ≤ rx0(t) < a(t) ≤ CT , t ∈ [0, t ′0],

0 < cx0,T ≤ ρ(rx0(t), t) ≤ CT x
− 2γ

3(γ−1)
0 , t ∈ [0, t ′0].

(2.32)

(b) There exist a time t ′1 ∈ [0, t ′0) and a subset V t
x0

⊂ (0, a(t)) defined for t ∈ [0, t ′0) as

V t
x0

=: {(r, t)|ρ(r, t) = 0, r ∈ (0, a(t));
∫ a(t)

r
y2ρ(y, t)dy = 1 − x0} (2.33)

with x0 = 1 − ∫ a(t ′0)
r ′

0
r2ρ(r, t ′0)dr ∈ (0, 1), so that

V t
x0

�= φ0 for t ∈ [0, t ′1], V t
x0

= φ0 for t ∈ (t ′1, t ′0], (2.34)
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with φ0 being the empty set. In particular, there exist a point (r ′
1, t ′1) ∈ V t ′1

x0 and a
particle path r = rx0(t) on (t ′1, t ′0] with rx0(t

′
0) = r ′

0, so that

ρ(r ′
1, t ′1) = 0, 1 − x0 =

∫ a(t ′1)

r ′
1

r2ρ(r, t ′1)dr

=
∫ a(t)

rx0 (t)
r2ρ(r, t)dr, t ∈ (t ′1, t ′0]. (2.35)

Meanwhile, the solution blows up in the sense for any small but fixed η0 > 0 that

lim
t→t ′+1

∫ t ′1+η0

t
‖ur (s)‖L∞([rx1 (s), rx2 (s)])ds = +∞, (2.36)

where r = rxi (t) is the particle path on [0, t ′0] with rxi (t
′
1) = r ′

i ∈ (0, a0) and
xi = 1 − ∫ a0

r ′
i

r2ρ0(r)dr, i = 1, 2, for any r ′
1 < r ′

2 chosen appropriately so that

ρ0(r) > 0 for r ∈ [r ′
1, r

′
2]\V0

x0
and ρ(r, t) > 0 for (r, t) ∈ [rx1(t), rx2(t)]\V t

x0
.

Remark 2.4. (i) It follows from Theorem 2.4 that starting from any non-vacuum point
(r ′

0, t ′0)with t ′0 > 0, there is a unique particle path defined backward in time along
which the density remains positive. It propagates either back to some initial point
with positive density as the time approaches zero, or terminates at a time t ′1 ∈ [0, t ′0)
so that the density tends to zero (vacuum state) as the time decreases to t ′1. In this
case, there is an initial point r0 > 0 such that ρ0(r0) = 0 and the mass between r0
and initial boundary point is the same as the one between r ′

0 > 0 and the free bound-
ary at the time t ′0 > 0. It implies the finite time vanishing of initial vacuum state.

(ii) Theorem 2.2 and Theorem 2.4 imply that any connected vacuum state in later-on
time separated (by non-vacuum flow regions) from the symmetry center is origi-
nated continuously from some initial one, and is separated from both sides before
vanishing by particle paths along which the flow densities are strictly positive.

(iii) Similar phenomena occur for the 2D case, in particular, for the viscous Saint-Venat
model.

Finally, we investigate the long time behavior of global solutions and the motion of
the interface of the free surface problem (2.1)–(2.7). We have

Theorem 2.5 (Long time behaviors). Let T > 0, N ≥ 2 and γ > 1. Let (ρ, u, a) be any
global (strong or weak) solution to the FBVP (2.1)–(2.7) in the sense of Definition 2.1
for t ∈ [0, T ] with ργ − ρ(ur + 2

r u) ∈ L2(0, T ; H1(�η)) and �η = (a(t) − η, a(t))
for some small constant η > 0. Then, for any t > 0,

aM (t) =: max
s∈[0,t] a(s) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C(1 + t)
1

Nγ , γ > N+1
N ,

C(1 + t)
1−ν
Nγ , γ = N+1

N ,

C(1 + t)
γ−1
γ , γ ∈ (1, N+1

N ),

(2.37)

c(1 + t)−
1

γ−1 ≤ ρ(a(t), t) ≤ C(1 + t)−
1

γ−1 holds, (2.38)

where ν > 0 is a constant small enough, and c > 0,C > 0 are constants independent
of time.
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In addition, for γ ≥ 2,

C(1 + t)
γ

N (γ−1) ≥ a(t) ≥ C(1 + t)
1

Nγ , (2.39)

C(1 + t)−
1

(γ−1) ≥ 1

aN (t)

∫ a(t)

0
ρ(r, t)r2dr ≥ c(1 + t)−

γ
(γ−1) holds, (2.40)

as t → +∞, and for any fixed r0 ∈ (0, a(t)) that

ρ(r, t) −→ 0, t → ∞, r ∈ [r0, a(t)], (2.41)

provided that (2.15)–(2.16) hold for the solution (ρ, u, a) with N ≥ 2.

Remark 2.5. Theorem 2.5 shows that the fluid domain expands outward at the algebraic
rates in time from above and below and the density decays along the free boundary,
which together with the uniform entropy estimates lead to the decay of fluid density and
the formation of the vacuum state almost everywhere as time goes to infinity.

3. Global Existence of Approximate FBVP Problem

The proofs of Theorems 2.1–2.4 consist of the construction of approximate solutions,
the a-priori estimates and regularity analysis, and compactness arguments. These can be
carried out by investigating the related properties of global approximate solutions and
then passing into the limit. To this end, we first consider in this section an approximate
FBVP problem on spatial exterior domain, show the global existence of solutions, and
establish the Lagrangian properties, such as the existence and uniqueness of particle
paths, transportation of initial regularities, and dynamics of vacuum states, etc.

3.1. Approximate FBVP problem. Consider a modified FBVP problem for Eq. (2.3)
with the following initial data and boundary conditions for any fixed ε > 0:

(ρ, u)|t=0 = (ρ0, u0)(r), ε ≤ r ≤ a0, (3.1)

u(ε, t) = 0, (ργ − ρ(ur +
2

r
u))(a(t), t) = 0, t ≥ 0, (3.2)

where a′(t) = u(a(t), t)(t > 0) and a(0) = a0. Without loss of generality, it is assumed
in this section that the initial data (3.1) is smooth enough and consistent with the bound-
ary values (3.2) to high order.

The main result for the FBVP (2.3) and (3.1)–(3.2) is stated as follows.

Proposition 3.1. Let T > 0, γ > 1, and ε > 0 be fixed. Assume that the initial data
(ρ0, u0) satisfies

inf
x∈[ε,a0] ρ0(x) > 0, (ρ0, u0) ∈ W 1,∞([ε, a0]). (3.3)

Then, there exists a unique global strong solution (ρ, u, a) of the FBVP problem (2.3)
and (3.1)–(3.2), which satisfies for t ∈ [0, T ] that⎧⎪⎪⎪⎨

⎪⎪⎪⎩

cx
γ

3(γ−1)
i ≤ rxi (t) ≤ a(t), c ≤ a(t) ≤ CT ,

c(x2 − x1)
γ
γ−1 ≤ r3

x2
(t)− r3

x1
(t), t ∈ [0, T ],

C−1
ε,T ≤ ρ(r, t) ≤ Cε,T , r ∈ [0, a(t)],

(3.4)
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where r = rxi (t) is the particle path with rxi (0) = ri ∈ [ε, a0] and xi = 1 −∫ a0
ri

r2ρ0(r)dr, i = 0, 1, 2, and

‖(ρ, u)(t)‖H1([ε,a(t)]) +
∫ t

0
‖(ρr , ρtr , ut , ur , urr )(s)‖2

L2([ε,a(s)])ds

+
∫ t

0
‖(ργ − ρ(ur +

2

r
u))(s)‖2

H1([ε,a(s)])ds +
∫ t

0
|(a, a′)(s)|2ds ≤ Cε,T λ0, (3.5)

where λ0 =: ‖(ρ0, u0)‖W 1,∞([ε,a0]), and c,CT and Cε,T are positive constants. In addi-
tion, it holds for any r ∈ [r0, a(t)] that

ρ(r, t) → 0, as t → ∞, (3.6)

uniformly with respect to any fixed r0 ∈ (0, a(t)).
Furthermore, if u0 ∈ H2([ε, a0]), then

‖u(t)‖H2[ε,a(t)]) + ‖ut (t)‖L2([ε,a(t)]) + ‖
(
ργ − ρ

(
ur +

2

r
u

))
(t)‖H1([ε,a(t)])

+
∫ t

0
(‖ut (s)‖2

H1([ε,a(s)]) + |a(s)|2 + |a′(s)|2 + |a′′(s)|2)ds ≤ Cε,T λ1 (3.7)

for t ∈ [0, T ], with λ1 =: ‖ρ0‖W 1,∞([ε,a0]) + ‖u0‖H2([ε,a0]).

3.2. Approximate FBVP in the Lagrangian coordinates. In this subsection, we prove
Proposition 3.1. It is convenient to deal with the FBVP (2.3) and (3.1)-(3.2) in the
Lagrangian coordinates. For simplicity we assume that

∫ a
ε
ρ0r2dr = 1, which implies

∫ a(t)

ε

ρr2dr =
∫ a

ε

ρ0r2dr = 1.

For r ∈ [ε, a(t)] and t ∈ [0, T ], define the Lagrangian coordinates transformation

x(r, t) =
∫ r

ε

ρy2dy = 1 −
∫ a(t)

r
ρy2dy, τ = t, (3.8)

which translates the domain [0, T ] × [ε, a(t)] into [0, T ] × [0, 1] and satisfies

∂x

∂r
= ρr2,

∂x

∂t
= −ρur2,

∂τ

∂r
= 0,

∂τ

∂t
= 1, (3.9)

and

r3(x, τ ) = ε3 + 3
∫ x

0

1

ρ
(y, τ )dy = a(t)3 − 3

∫ 1

x

1

ρ
(y, τ )dy,

∂r

∂τ
= u. (3.10)

The free boundary value problem (2.3) and (3.1)-(3.2) is changed to
{
ρτ + ρ2(r2u)x = 0,

r−2uτ + (ργ − ρ2(r2u)x )x + 2
r ρx u = 0,

(3.11)
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for (x, τ ) ∈ [0, 1] × [0, T ], with the initial data and boundary conditions given by

(ρ, u)(x, 0) = (ρ0, u0)(x), x ∈ [0, 1], (3.12)

u(0, τ ) = 0, (ργ − ρ2(r2u)x )(1, τ ) = 0, τ ∈ [0, T ], (3.13)

where r = r(x, τ ) is defined by

d

dτ
r(x, τ ) = u(x, τ ), x ∈ [0, 1], τ ∈ [0, T ], (3.14)

and the fixed boundary x = 1 corresponds to the free boundary a(τ ) = r(1, τ ) in
Eulerian form determined by

d

dτ
a(τ ) = u(1, τ ), τ ∈ [0, T ], a(0) = a0. (3.15)

It is clear that the initial data (3.12) is smooth enough and well consistent with the
boundary data (3.13).

We now have the following global existence and uniqueness results as follows.

Proposition 3.2. Let T > 0 and γ > 1. Assume that the initial data (ρ0, u0) satisfy

inf
x∈[0,1] ρ0(x) > 0, (ρ0, u0) ∈ W 1,∞([0, 1]). (3.16)

Then, there exists a unique global strong solution (ρ, u, a) to the FBVP (3.11)–(3.15)
satisfying for τ ∈ [0, T ] that⎧⎪⎪⎪⎨

⎪⎪⎪⎩

cx
γ

3(γ−1)
0 ≤ r(x0, τ ) ≤ a(τ ) ≤ C(1 + τ)

γ
3(γ−1) , ∀ x0 ∈ [0, 1],

c(x2 − x1)
γ
γ−1 ≤ r3(x2, τ )− r3(x1, τ ), 0 ≤ x1 < x2 ≤ 1,

c ≤ a(τ ) ≤ Cε,T , C−1
ε,T ≤ ρ(x, τ ) ≤ Cε, x ∈ [0, 1],

(3.17)

where r = r(xi , τ ), i = 0, 1, 2, is the particle path defined by (3.14) with r(xi , 0) =
ri ∈ [ε, a0] and xi = 1 − ∫ a0

ri
r2ρ0(r)dr, and

‖(ρ, u)(τ )‖H1 +
∫ T

0
‖(ρx , ρτ x , uτ , ux , uxx )(τ )‖2

L2 dτ

+
∫ T

0
(‖(ργ − ρ2(r2u)x )(τ )‖2

H1 + |(a, a′)(τ )|2)dτ ≤ Cε,T δ0, (3.18)

with Cε,T > 0 a constant and δ0 =: ‖(ρ0, u0)‖W 1,∞([0,1]). Moreover, it holds for x ∈
[x0, 1] with any fixed x0 ∈ (0, 1)

ρ(x, τ ) → 0, as τ → ∞, (3.19)

uniformly with respect to ε > 0.
Furthermore, if u0 ∈ H2([0, 1]), then

‖u(τ )‖H2 + ‖uτ (τ )‖L2 + ‖(ργ − ρ2(r2u)x )(τ )‖H1

+
∫ T

0
(‖uτ (τ )‖2

H1 + |(a, a′, a′′)(τ )|2)dτ ≤ Cε,T δ1. (3.20)

with δ1 =: ‖ρ0‖W 1,∞([0,1]) + ‖u0‖H2([0,1]).
The proof of Proposition 3.2 will be given in the next section.
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3.3. The a-priori estimates. In this subsection, we establish the a-priori estimates for
any (regular approximate) solution (ρ, u, a) with ρ > 0 to FBVP (3.11)–(3.15). We
start with a basic energy estimate.

Lemma 3.3. Let γ > 1, T > 0, and (ρ, u, a) with ρ > 0 be any regular solution to the
FBVP (3.11)–(3.15) for τ ∈ [0, T ] under the assumptions of Proposition 3.2. Then,

∫ 1

0
(
1

2
u2 +

1

γ − 1
ργ−1)dx + 2

∫ τ

0

∫ 1

0

u2

r2 dxds

+
∫ τ

0

∫ 1

0
ρ2(r2ux )

2dxds + 2
∫ τ

0
ρu2r (1, s)ds

= E0 =:
∫ 1

0

(
1

2
u2

0 +
1

γ − 1
ρ
γ−1
0

)
dx, τ ∈ [0, T ] holds. (3.21)

Proof. Taking the inner product of (3.11)2 with r2u on [0, 1], and using (3.11)1, one
gets

d

dτ

∫ 1

0

(
u2

2
+
ργ−1

γ − 1

)
dx +

∫ 1

0
ρ2(r2u)2x dx + 2ρu2r (1, τ )

= 2
∫ 1

0
ρ(u2r )x dx = 4

∫ 1

0
ρuuxrdx + 2

∫ 1

0

u2

r2 dx . (3.22)

Due to the fact ρ2(r2u)2x = 4u2

r2 + 4ρuuxr + ρ2(r2ux )
2, it follows from (3.22) that

d

dτ

∫ 1

0

(
u2

2
+
ργ−1

γ − 1

)
dx +

∫ 1

0
(
2u2

r2 + ρ2(r2ux )
2)dx + 2ρu2r (1, τ ) = 0,

which yields (3.21) after integration over [0, τ ].
Lemma 3.4. Under the same assumptions as Lemma 3.3,

E
− 1

3(γ−1)
0 x

γ
3(γ−1) ≤ r(x, τ ) ≤ a(τ ), (x, τ ) ∈ [0, 1] × [0, T ], (3.23)

E
− 1

3(γ−1)
0 (x2 − x1)

γ
3(γ−1) ≤ r3(x2, τ )− r3(x1, τ ), 0 ≤ x1 < x2 ≤ 1,

τ ∈ [0, T ] holds, (3.24)

with E0 = ∫ 1
0 (

u2
0

2 +
ρ
γ−1
0
γ−1 )dx. In particular, it holds for x = 1 that

E
− 1

3(γ−1)
0 ≤ a(τ ) ≡ r(1, τ ), τ ∈ [0, T ]. (3.25)

Proof. First, for any x ∈ (0, 1) and ε ≤ r(x, τ ) ≤ a(τ ), then it is easy to deduce from
(3.8) and (3.21) that

x =
∫ r(x,τ )

ε

ρy2dy ≤ (

∫ r(x,τ )

ε

ργ y2dy)
1
γ (

∫ r(x,τ )

ε

y2dy)
γ−1
γ ≤ 3

1−γ
γ E

1
γ

0 r(x, τ )
3(γ−1)
γ ,

which implies for (x, τ ) ∈ (0, 1] × [0, T ] that

r(x, τ ) ≥ (3E
− 1
γ−1

0 x
γ
γ−1 )

1
3 ≥ E

− 1
3(γ−1)

0 x
γ

3(γ−1) . (3.26)
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Similarly, for any 0 < x1 ≤ x2 < 1,

x2 − x1 =
∫ r(x2,τ )

r(x1,τ )

ρy2dy ≤ 3
1−γ
γ E

1
γ

0 (r
3(x2, τ )− r3(x1, τ ))

γ−1
γ holds,

which implies (3.24). The proof is completed. ��
Lemma 3.5. Under the same assumptions as Lemma 3.3,

1

2

∫ 1

0
(u + ρxr2)2dx +

1

γ − 1

∫ 1

0
ργ−1dx +

4γ

(γ + 1)2

∫ τ

0

∫ 1

0
((ρ

γ+1
2 )xr2)2dxds

+
1

3
ργ (1, τ )a3(τ ) +

γ

3

∫ τ

0
ρ2γ−1(1, s)a3(s)ds = E1, τ ∈ [0, T ] holds, (3.27)

with E1 =: 1
2

∫ 1
0 (u + ρxr2)2(x, 0)dx + 1

γ−1

∫ 1
0 ρ

γ−1
0 (x)dx + 1

3ρ
γ
0 (1)a

3
0 , and

ρ(1, τ ) = ρ0(a0)(1 + (γ − 1)ργ−1
0 t)−

1
γ−1 , τ ∈ [0, T ], (3.28)

E
− 1

3(γ−1)
0 ≤ a(τ ) ≤ C(1 + τ)

γ
3(γ−1) , τ ∈ [0, T ]. (3.29)

Proof. Differentiating Eq. (3.11)1 with respect to x , rewriting it in the following form

ρxτ = −[ρ2(r2u)x ]x , (3.30)

and substituting (3.30) into (3.11)2, we have

r2ρxτ + 2ρx ur3−2 = −uτ − (ργ )xr2.

Since ∂r
∂τ

= u, the above equation can also be rewritten as

(u + r2ρx )τ + (ργ )xr2 = 0. (3.31)

Multiplying (3.31) by (u + r2ρx ), integrating the resulted equation over [0, 1] × [0, τ ] ,
we obtain after integration by parts that

∫ 1

0

{
1

2
(u + r2ρx )

2 +
ργ−1

γ − 1

}
dx +

4γ

(γ + 1)2

∫ τ

0

∫ 1

0
((ρ

γ+1
2 )xr2)2dxds

=
∫ 1

0

{
1

2
(u0 + r2(ρ0)x )

2 +
ρ
γ−1
0

γ − 1

}
dx −

∫ τ

0
(ργ ur2)(1, s)ds. (3.32)

It follows from (3.13) and Eq. (3.11)1 that

ρτ (1, τ ) + ργ (1, τ ) = 0, (3.33)

which yields (3.28) and ρ(1, τ ) ≤ ρ0(a0). One may get from (3.32) and (3.33) that

−
∫ τ

0
(ργ ur2)(1, t)dt = −1

3

∫ τ

0
{(ργ r3)τ − (ργ )τ r3}(1, t)dt

= −γ
3

∫ τ

0
ρ2γ−1r3(1, t)dt − 1

3
ργ r3(1, τ ) +

1

3
ργ r3(a0, 0).

(3.34)
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Substituting (3.34) into (3.32) leads to (3.27). One can deduce from (3.27) and (3.28)
that

a(τ ) ≤ Cρ−γ /3(1, τ ) ≤ C(1 + τ)
γ

3(γ−1) , (3.35)

which, together with (3.25), shows (3.29). ��
Remark 3.6. All the estimates in Lemmas 3.3–3.5 hold for N−dimensional case. Indeed,
the following entropy estimates hold

∫ 1

0

(
1

2
u2 +

1

γ − 1
ργ−1

)
dx +(N − 1)

∫ τ

0

∫ 1

0

u2

r2 dxds+
∫ τ

0

∫ 1

0
ρ2(r N−1ux )

2dxds

+(N − 1)
∫ τ

0
ρu2r N−2(a(s), s)ds =

∫ 1

0

(
1

2
u2

0 +
1

γ − 1
ρ
γ−1
0

)
dx, (3.36)

and∫ 1

0

1

2
(u + ρxr N−1)2dx +

1

γ − 1

∫ 1

0
ργ−1dx +

4γ

(γ + 1)2

∫ τ

0

∫ 1

0
((ρ

γ+1
2 )xr2)2dxds

+
1

N
ργ (1, τ )aN (τ ) +

γ

N

∫ τ

0
ρ2γ−1(1, s)aN (s)ds

=
∫ 1

0

1

2
(u + ρxr N−1)2(x, 0)dx +

1

γ − 1

∫ 1

0
ρ
γ−1
0 (x, 0)dx +

1

N
ρ
γ
0 (1)a

N
0 . (3.37)

In addition, it holds

ρ(1, τ ) = ρ0(a0)(1 + (γ − 1)ργ−1
0 t)−

1
γ−1 , τ ∈ [0, T ], (3.38)

E
− 1

N (γ−1)
0 ≤ a(τ ) ≤ C(1 + τ)

γ
N (γ−1) , τ ∈ [0, T ]. (3.39)

By Lemmas 3.4–3.5, we can establish an upper bound and long time behavior of the
density for the global solution as follows.

Lemma 3.7. Under the same assumptions as Lemma 3.3,

0 ≤ ρ(x, τ ) ≤ Cx− 2γ
3(γ−1) , (x, τ ) ∈ (0, 1] × [0, T ], (3.40)

0 ≤ ρ(x, τ ) ≤ Cε−2, (x, τ ) ∈ [0, 1] × [0, T ] holds, (3.41)

with C > 0 a constant, and

ρ(x, τ ) → 0, as τ → ∞, (3.42)

for x ∈ [x0, 1] with any fixed x0 ∈ (0, 1).

Proof. Collecting (3.23)–(3.24) and (3.27)–(3.28), we obtain for (x, τ ) ∈ (0, 1]×[0, T ]
that

ρ(x, τ ) = ρ(1, τ )−
∫ 1

x
ρy(y, τ )dy ≤ ρ(1, τ ) +

∫ 1

x
r−2|r2ρy(y, τ )|dy (3.43)

≤ C + Cx− 2γ
3(γ−1) (

∫ 1

0
ρ2

x r4dx)
1
2 ≤ Cx− 2γ

3(γ−1) , (3.44)
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which yields (3.40). Equation (3.41) follows from (3.43), (3.28) and the fact

r(x, τ ) ≥ ε > 0, for all (x, τ ) ∈ [0, 1] × [0, T ]. (3.45)

Next, we show the pointwise decay in time, (3.42), with the help of (3.21) and
(3.27)–(3.28). Indeed, it holds for x ∈ [x0, 1] with any fixed x0 ∈ (0, 1) that

|ρ γ+1
2 (x, τ )− ρ

γ+1
2 (1, τ )| ≤ C‖ρ γ+1

2 (., τ )−ρ γ+1
2 (1, τ )‖1/2

L2([x0,1])‖(ρ
γ+1
2 )x (τ )‖1/2

L2([x0,1])

≤ Cx0‖ρ
γ+1

2 (., τ )− ρ
γ+1

2 (1, τ )‖1/2
L2([x0,1]), (3.46)

where Cx0 > 0 is a constant. By (3.21), (3.23) and (3.27)-(3.28), one can verify for

g(t) =: ‖ρ γ+1
2 (., t)− ρ

γ+1
2 (1, t)‖2

L2([x0,1]) that

∫ T

0
g(t)dt ≤C

∫ T

0

∫ 1

x0

(ρ
γ+1

2 )2x dxdt ≤Cx
− 4γ

3(γ−1)
0

∫ T

0

∫ 1

x0

(r2(ρ
γ+1

2 )x )
2dxdt ≤Cx0 ,

(3.47)

and
∫ T

0
|g′(t)|dt ≤C

∫ T

0

∫ 1

x0

|(ρ γ+1
2 −ρ γ+1

2 (1, t))(ρ
γ−1

2 ρτ−ρ
γ−1

2 (1, t)ρτ (1, t))|dxdt ≤Cx0 .

Thus, by (3.46) and (3.28), we have

ρ(x, τ )≤Cρ(1, τ ) + Cx0‖ρ
γ+1

2 (., τ )−ρ γ+1
2 (1, τ )‖

1
γ+1

L2([x0,1])→0, as τ→∞, (3.48)

for any x ∈ [x0, 1] with fixed x0 ∈ (0, 1). The proof is complete. ��
Lemma 3.8. Under the same assumptions as Lemma 3.3, it holds that

∫ 1

0
u2ndx +

∫ τ

0

∫ 1

0

(u2n

r2 + ρ2u2n−2u2
xr4)dxds + 2

∫ τ

0
ρu2nr (1, s)ds ≤ Cn,ε,T δ0,

(3.49)

for any integer n ≥ 2, where Cn,ε,T > 0 is a constant.

Proof. Taking inner product of (3.11)2 with r2u2n−1 over [0, 1], using (3.11)1 and the

fact (r2u)x (r2u2n−1)x = 22u2n

ρ2r2 + (2n − 1)u2n−2(r2ux )
2 + 4nu2n−1ux r

ρ
, it follows that

1

2n

d

dτ

∫ 1

0
u2ndx + 2

∫ 1

0

u2n

r2 dx + (2n − 1)
∫ 1

0
ρ2u2n−2(r2ux )

2dx + 2ρu2nr (1, τ )

≤ Cε,T +
∫ 1

0

u2n

r2 dx +
2n − 1

2

∫ 1

0
ρ2u2n−2(r2ux )

2dx + C‖ρ‖2(γ−1)
L∞

∫ 1

0
u2ndx,

which, by Gronwall’s lemma and (3.41), yields (3.49) after integration over [0, τ ]. ��
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Lemma 3.9. Under the same assumptions as Lemma 3.3, it holds for any γ > 1 + 1
2n

with n ∈ N large enough and Cn,ε,T > 0 a constant that∫ τ

0
‖ρ2n(γ−1)u2n‖L∞([0,1])ds ≤ Cn,ε,T , 0 < τ < T, (3.50)

∫ τ

0
[r2(ργ )x (x, s)]2nds ≤ Cn,ε,T , x ∈ [0, 1], 0 < τ < T . (3.51)

Proof. Using the Sobolev imbedding theorem and the Cauchy-Schwartz inequality, by
virtue of (3.21), (3.27), (3.41) and (3.45), we obtain

‖ρ2n(γ−1)u2n‖L∞([0,1]) ≤
∫ 1

0
ρ2n(γ−1)u2ndx +

∫ 1

0
|(ρ2n(γ−1)u2n)x |dx

≤ Cn,ε,T ‖(ρ0, u0)‖W 1,∞([0,1]) + Cn,ε,T

∫ 1

0
ρ2u2n−2u2

xr4dx

with Cn,ε,T > 0 a constant, and (3.49) yields (3.50) after integration over [0, τ ].
Next, integrating (3.31) over [0, τ ] to get

r2ρx (x, τ ) = r2(x, 0)ρ0x (x)−
∫ τ

0
(ργ )xr2(x, s)ds − u(x, τ ) + u0(x), (3.52)

then it follows from (3.40), (3.50) and (3.52) that∫ τ

0
[(ργ )xr2]2nds = γ 2n

∫ τ

0
ρ2n(γ−1)[r2

0 (ρ0)x −
∫ s

0
(ργ )xr2dτ − u + u0]2nds

≤ C
∫ τ

0
ρ2n(γ−1)[(ρ0)

2n
x + u2n + u2n

0 ]ds + C
∫ t

0
ρ2n(γ−1)

∫ s

0
[(ργ )xr2]2ndτds

≤ Cn,ε,T ‖(ρ0, u0)‖W 1,∞ + Cn,ε,T

∫ t

0

∫ s

0
[(ργ )xr2]2ndτds,

from which and Gronwall’s Lemma, (3.51) follows. ��
With the help of Lemmas 3.3–3.9, we are now able to obtain the lower and upper

bounds of the density for the global solution (ρ, u, a) to the FBVP (3.11)–(3.15) as
follows.

Lemma 3.10. Under the same assumptions as Lemma 3.3, it holds that

0 < cε,T ≤ ρ(x, τ ) ≤ Cε, (x, τ ) ∈ [0, 1] × [0, T ], (3.53)

with Cε,T > 0 and cε,T > 0 being constants.

Proof. Set

v(x, τ ) = 1

r2(x, τ )ρ(x, τ )
, V (τ ) = max[0,1]×[0,τ ] v(x, s). (3.54)

By the facts ∂r
∂τ

= u, ∂r
∂x = 1

ρr2 , and (3.11)1, it is easy to verify that for any β > 1,

(vβ)τ = βvβ−1 (r
2u)x
r2 − 2βvβu

r
. (3.55)
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Integrating (3.55) over [0, 1] × [0, τ ] and using (3.13), (3.52) show

∫ 1

0
vβdx + β(β − 1)

∫ τ

0

∫ 1

0
vβu2dxds +

β

2β − 3
r1−2(β−1)ρ1−β(1, τ )

=
∫ 1

0
v
β
0 dx +

β

2β − 3
r1−2(β−1)

0 ρ
1−β
0 (1)+

β(β − 1)

2β − 3

∫ τ

0
a1−2(β−1)(s)ργ−β(1, s)ds

+β(β − 1)
∫ τ

0

∫ 1

0
vβur2

0 (ρ0)x dxds + β(β − 1)
∫ τ

0

∫ 1

0
vβuu0dxds

−β(β − 1)
∫ τ

0

∫ 1

0
vβu(

∫ s

0
(ργ )xr2dτ)dxds + 2β(β − 1)

∫ τ

0

∫ 1

0

uvβ

r
dxds

=:
∫ 1

0
v
β
0 dx +

β

2β − 3
r3−2β

0 ρ
1−β
0 (1) + I0 + I1 + I2 + I3 + I4, (3.56)

where r0 = r(x, 0). The right hand side terms of (3.56) can be estimated as follows. By
(3.28) and (3.29), it holds that for β ≥ 2,

I0 = β(β − 1)

2β − 3

∫ τ

0
a1−2(β−1)(s)ργ−β(1, s)ds ≤ C

∫ τ

0
(1 + s)−

γ−β
γ−1 ds ≤ CT . (3.57)

It follows from Young’s inequality that

I1 + I2 ≤ β(β − 1)

6

∫ τ

0

∫ 1

0
vβu2dxds + C

∫ τ

0

∫ 1

0
vβdxds, (3.58)

I4 ≤ β(β − 1)

6

∫ τ

0

∫ 1

0
vβu2dxds + Cε−2

∫ τ

0

∫ 1

0
vβdxds. (3.59)

Note that (
∫ τ

0 (ρ
γ )xr2ds)2 ≤ C(

∫ τ
0 [(ργ )xr2]2nds)

1
n ≤ Cε,T for n ≥ 1 due to (3.51),

we can get

I3 ≤ β(β − 1)

6

∫ τ

0

∫ 1

0
vβu2dxds + Cε,T

∫ τ

0

∫ 1

0
vβdxds. (3.60)

Substituting all estimates above into (3.56) yields for any β > 2,

∫ 1

0
vβdx ≤ CT + Cε,T

∫ t

0

∫ 1

0
vβdxds, (3.61)

which, together with (3.61) and Gronwall’s inequality, gives for any β > 2 that

∫ 1

0
vβdx ≤ Cε,T , τ ∈ [0, T ]. (3.62)

Therefore, one can deduce from (3.61), (3.62) and (3.23) that for β > 2,

V (T )β = max[0,1]×[0,T ] v
β(x, τ ) ≤

∫ 1

0
vβdx +

∫ 1

0
|(vβ)x |dx

≤
∫ 1

0
vβdx + β

( ∫ 1

0
v2(β+1)dx

) 1
2 + Cε−1

∫ 1

0
vβ+1dx ≤ Cε,T (1 + V (T )1+ β2 ),
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which shows for β = 3 that

V (τ ) ≤ Cε,T , τ ∈ [0, T ].
This, together with (3.54), (3.23), (3.29) and (3.41), leads to (3.53). ��

Finally, we have the following higher order regularity estimates.

Lemma 3.11. Under the same assumptions as Lemma 3.3, it holds that
∫ 1

0
u2

x dx +
∫ T

0

∫ 1

0
(u2
τ + u2

x + u2
xx + ρ2

xτ )dxdτ

+
∫ T

0

∫ 1

0
(ργ − ρ2(r2u)x )

2
x dxdτ +

∫ T

0
(|a(τ )|2 + |a′(τ )|2)dτ ≤ Cε,T δ0, (3.63)

∫ 1

0
(u2

xx +u2
τ )dx +

∫ 1

0
((ργ − ρ2(r2u)x )

2+(ργ − ρ2(r2u)x )
2
x )dx +

∫ T

0

∫ 1

0
u2

xτdxdτ

+
∫ T

0
u2
τ (1, τ )dτ +

∫ T

0
(|a(τ )|2 + |a′(τ )|2 + |a′′(τ )|2)dτ ≤ Cε,T δ1, (3.64)

with Cε,T > 0 a constant.

Proof. To prove (3.63), we re-write (3.11)2 as

r−2uτ + (ργ − ρ2r2ux )x − ρ(
2u

r
)x = 0. (3.65)

Taking the inner product of (3.65) with ρ−2uτ over [0, 1] × [0, τ ], and making use of
(3.13), Lemma 3.3 and the following facts:

Cε,T ≤r(x, τ )≤a(τ )≤CT , C−1
ε,T ≤ρ(x, τ )≤Cε, (x, τ ) ∈ [0, 1] × [0, T ], (3.66)

derived from (3.23), (3.29) and (3.53), we can obtain after a tedious computation that
∫ 1

0
r2u2

x dx +
∫ τ

0

∫ 1

0
ρ−2r−2u2

τdxds + r−1ρ−1u2(1, τ )

≤ Cε,T

∫ τ

0
(‖ργ−1u(s)‖L∞ + ‖[(ργ )xr2(s)]2‖L∞ + ‖ρxr2(s)‖2

L2)

∫ 1

0
r2u2

x dxds,

+Cε,T δ0 +
∫ τ

0
r−1ρ−1u2(1, s)dτ,

which, together with Lemma 3.9 and (3.66), yields
∫ 1

0
u2

x dx +
∫ T

0

∫ 1

0
u2
τdxds ≤ Cε,T δ0. (3.67)

It follows from (3.11)2, (3.66) and (3.67) that
∫ T

0

∫ 1

0
u2

xx dxdτ ≤ Cε,T

∫ T

0

∫ 1

0
(u2
τ + u2

x + u2 + ρx )dxdτ ≤ Cε,T δ0. (3.68)

The combination of (3.67), (3.68), (3.11)2 and (3.15) leads to (3.63).
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Next, we prove (3.64). Differentiating (3.65) with respect to τ gives

r−2uττ − 2r−3uuτ + (ργ − ρ2r2ux )xτ +

(
ρ

(
2u

r

)
x

)
τ

= 0. (3.69)

Taking the inner product of (3.69) with uτ over [0, 1] and making use of (3.13),
Lemma 3.3, Lemma 3.5, (3.63) and (3.66), one may get after a complicated compu-
tation that

1

2

d

dt

∫ 1

0
r−2u2

τdx +
1

2

∫ 1

0
ρ2r2u2

xτdx +ρ
u2
τ

r
(1, τ )≤Cε,T +Cε,T

∫ 1

0
(r−2u2

τ +u2
xx )dx .

(3.70)

Applying Gronwall’s inequality to (3.70) and using (3.21), (3.23), (3.29) and (3.53)
show that

∫ 1

0
u2
τdx +

∫ T

0

∫ 1

0
u2

xτdxdτ +
∫ T

0
u2
τ (1, τ )dτ ≤ Cε,T δ1. (3.71)

Furthermore, it follows from (3.11)2, (3.71), (3.66), Lemma 3.3 and Lemma 3.5 that

∫ 1

0
u2

xx dx +
∫ 1

0
(ργ − ρ2(r2u)x )

2
x dx ≤ Cε,T

∫ 1

0
(u2
τ + ρ2

x + u2)dx ≤ Cε,T δ1.

The combination of (3.71)–(3.72), (3.63) and (3.15) leads to (3.64). The proof is com-
pleted. ��

The proofs of Propositions 3.1–3.2. With the help of Lemmas 3.3–3.10, Proposition 3.2
can be proved quite easily in terms of short time existence, a-priori estimates, and a
continuity argument. Indeed, the short time existence of the unique classical solution
(ρ, u, a) to the FBVP (3.11)–(3.15) under the assumptions of Proposition 3.2 can be
shown by the standard argument as in [26]. By the a-priori estimates established in
Lemmas 3.3–3.11 for (ρ, u, a) and a continuity argument, we show that it is indeed a
global classical solution to the FBVP (3.11)–(3.13) satisfying (3.17)–(3.20).

The proof of Proposition 3.1 follows from Proposition 3.2 and the coordinates trans-
form (3.9)–(3.10). The proofs are completed.

4. Uniform Estimates Away from Symmetry Center

This section is devoted to the proof of the uniform Lagrangian properties of the approx-
imate global solutions to the FBVP (2.3) and (3.1)–(3.2) constructed in Sect. 3. As
shown in Sect. 5, these properties can be maintained for the global approximate solu-
tions to the original FBVP (2.1)–(2.7) and thus hold also for the global weak solution to
FBVP (2.1)–(2.7) after passing into the limit in the approximate solution sequences.
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4.1. Uniformly localized spatial estimates. In this sub-section, we derive some desired
uniform estimates for (ρ, u, a) to the modified FBVP (2.3) and (3.1)–(3.2) as follows.

Proposition 4.1. Let T > 0 and γ ≥ 2. In addition to the assumptions of Proposi-
tion 3.1, assume further that for 0 < ε < r−

1 < r+
2 ≤ a0 and a constant ρ∗ > 0,

(ρ0, u0) ∈ W 1,∞([r−
1 , r

+
2 ]), inf

r∈[r−
1 ,r

+
2 ]
ρ0(r) ≥ ρ∗ > 0 holds. (4.1)

Then the solution (ρ, u, a) to the FBVP (2.3) and (3.1)-(3.2) satisfies the following
additional properties:

(i) (Non-formation of vacuum state) For any r0 ∈ [r1, r2] ⊂ (r−
1 , r

+
2 ), there exists

a unique particle path r = rx0(t)with rx0(0) = r0 and x0 = 1−∫ a0
r0

r2ρ0(r)dr ∈
(0, 1], such that

⎧⎪⎨
⎪⎩

0 < cx
γ

3(γ−1)
0 ≤ rx0(t) ≤ a(t) ≤ CT , t ∈ [0, T ],

0 < cx0,T ≤ ρ(rx0(t), t) ≤ Cx− 2γ
3(γ−1) , t ∈ [0, T ],

(4.2)

where cx0,T > 0 satisfying cx0,T → 0 as x0 → 0+. In particular, for any r1 ≤
r3 < r0 ≤ r2,

c(xi − x j )
γ
γ−1 ≤r3

xi
(t)− r3

x j
(t), i, j ∈{0, 1, 2, 3}, xi < x j , t ∈[0, T ],

(4.3)

0 < cxi ,T ≤ ρ(rxi (t), t) ≤ Cx
− 2γ

3(γ−1)
i , t ∈ [0, T ], (4.4)

0 < cx1,T ≤ ρ(r, t) ≤ Cx
− 2γ

3(γ−1)
1 , r ∈ [rx1(t), rx2(t)], t ∈ [0, T ], (4.5)

‖(ρ, u)‖L∞(0,T ;H1([rx1 (t),rx2 (t)])+‖u‖L2(0,T ;H2([rx1 (t), rx2 (t)]))≤Cx1,T λ3 holds,

(4.6)

where r = rxi (t) is the particle path with rxi (0) = ri and xi = 1 −∫ a0
xi

r2ρ0(r)dr, i = 1, 2, 3, and λ3 =: ‖(ρ0, u0)‖W 1,∞([r−
1 ,r

+
2 ]). The constants

cxi ,T > 0 and Cx1,T > 0 satisfy cxi ,T → 0 as xi → 0+ and Cx1,T → ∞ as
x1 → 0+.

(ii) (Interior regularity) Assume that r+
2 < a0 in (4.1) and u0 ∈ H2([r−

1 , r
+
2 ]). Then

(ρ, u) possess the following interior regularities

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ρ, u) ∈ C0([rx1(t), rx2(t)] × [0, T ]),
ρ ∈ L∞(0, T ; H1([rx1(t), rx2(t)])), ρt ∈ L∞(0, T ; L2([rx1(t), rx2(t)])),
u ∈ L∞(0, T ; H2([rx1(t), rx2(t)])) ∩ L2(0, T ; H3([rx1(t), rx2(t)])),
ut ∈ L∞(0, T ; L2([rx1(t), rx2(t)])) ∩ L2(0, T ; H1([rx1(t), rx2(t)])),

(4.7)
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and

‖(ρr , ur , urr , ut )(t)‖2
L2([rx1 (t), rx2 (t)]) +

∫ T

0
‖(ρr , ρtr )(s)‖2

L2([rx1 (s), rx2 (s)])ds

+
∫ T

0
(‖(ur , uxx , ut )(s)‖2

L2([rx1 (s), rx2 (s)])+|(a, a′)(s)|2)ds ≤Cx1,T λ4, (4.8)

with λ4 =: ‖ρ0‖W 1,∞([r−
1 ,r

+
2 ]) + ‖u0‖H2([r−

1 ,r
+
2 ]).

(iii) (Boundary regularity) Assume that r+
2 = a0 in (4.1) and u0 ∈ H2([r−

1 , a0])
hold. Then, (ρ, u, a) satisfies the following boundary regularities

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 < cx1,T ≤ ρ(r, t) ≤ Cx
− 2γ

3(γ−1)
1 , (r, t) ∈ [rx1(t), a(t)] × [0, T ],

(ρ, u) ∈ C0([rx1(t), a(t)] × [0, T ]),
ρ ∈ L∞(0, T ; H1([rx1(t), a(t)])), ρt ∈ L∞(0, T ; L2([rx1(t), a(t)])),
u ∈ L∞(0, T ; H2([rx1(t), a(t)])) ∩ L2(0, T ; H3([rx1(t), a(t)])),
ut ∈ L∞(0, T ; L2([rx1(t), a(t)])) ∩ L2(0, T ; H1([rx1(t), a(t)])),
ργ − ρur ∈ C0([0, T ] × [rx1(t), a(t)]) ∩ L∞(0, T ; H1([rx1(t), a(t)])),
a(t) ∈ H2([0, T ]) ∩ C1([0, T ]),

(4.9)

and (4.5) holds with x2 = a0, and

‖(ρr , ur , urr , ut )(t)‖2
L2([rx1 (t), a(t)]) + ‖(ργ − ρur )r (t)‖L2([rx1 (t), a(t)])

+
∫ T

0
(‖ut (τ )‖2

H1([rx1 (s), a(s)]) + |(a, a′, a′′)(s)|2)ds ≤ Cx1,T λ5, (4.10)

with λ5 =: ‖ρ0‖W 1,∞([r−
1 , a0]) + ‖u0‖H2([r−

1 , a0]).

4.2. The uniform a-priori estimates. In order to prove Proposition 4.1, it suffices to
establish the corresponding uniform estimates for the reformulated FBVP (3.11)–(3.15)
in Lagrange coordinates, which together with the coordinates transformation (3.9)–
(3.10) gives rise to the expected estimates in Proposition 4.1.

We start with

Lemma 4.2. Let T > 0 and γ ≥ 2. Let (ρ, u, a) with ρ(x, τ ) > 0 be the solution to
FBVP (3.11)–(3.15) for (x, τ ) ∈ [0, 1] × [0, T ] constructed in Proposition 3.2. Assume
further that

(ρ0, u0) ∈ W 1,∞([x−
1 , x+

2 ]), ρ0(x) ≥ ρ∗ > 0, x ∈ [x−
1 , x+

2 ], (4.11)

for 0 < x−
1 < x+

2 ≤ 1 and ρ∗ constant.
Then (ρ, u, a) satisfies∫ τ

0
[ργ−1u]2(x, s)ds ≤ Cx1,T,1, (x, τ ) ∈ [x1, x2] × [0, T ], (4.12)

∫ τ

0
[(ργ )xr2]2(x, s)ds ≤ Cx1,T,2(1 + δ2), (x, τ ) ∈ [x1, x2] × [0, T ], (4.13)
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for any [x1, x2] satisfying that either x−
1 < x1 < x2 < x+

2 in the case x+
2 < 1, or

x−
1 < x1 < x2 ≤ 1 in the case x+

2 = 1, where δ2 =: ‖(ρ0, u0)‖W 1,∞([x−
1 ,x

+
2 ]), and

Cx1,T,i > 0 satisfying Cx,T,i → ∞ as xi → 0+.

Proof. We only show (4.12)–(4.13) for x+
2 = 1, the case x+

2 < 1 can be proved similarly.
It follows from Lemma 3.4 and Lemma 3.7 that for any (x, τ ) ∈ [x1, 1] × [0, T ],

ρ(x, τ ) ≤ Cx
− 2γ

3(γ−1)
1 , cx

γ
3(γ−1)
1 ≤ r(x, τ ) ≤ CT . (4.14)

Then, by virtue of (3.21), (3.27), for any γ ≥ 2, one can show that for x ∈ [x1, 1],

|ργ−1u(x, τ )| ≤ 1

1 − x1

∫ 1

x1

ργ−1|u|(x, τ )dx +
∫ 1

x1

|(ργ−1u)x |dx

≤ CT x
− 2γ

3
1 + CT x

− 2γ
3

1 (‖ρxr2‖L2([0,1])‖u‖L2([0,1]) + ‖ρuxr2‖L2([0,1])) ≤ CT x
− 4γ

3
1 ,

(4.15)

which leads to (4.12) with CT > 0.
Next, one deduces from (4.12), (4.14) and (3.52) that for any (x, τ ) ∈ [x1, x2]×[0, T ],

∫ τ

0
[(ργ )xr2]2(x, s)ds =γ 2

∫ τ

0
ρ2(γ−1)[r2(x, 0)ρ0x (x)−

∫ s

0
(ργ )xr2dτ−u + u0]2ds

≤ CT x
− 4γ

3
1 + CT x

− 4γ
3

1 δ2 + CT x
− 4γ

3
1

∫ τ

0

∫ s

0
[(ργ )xr2]2(x, z)dzds, (4.16)

which implies (4.13) by Gronwall’s inequality.

Lemma 4.3. Under the assumptions of Lemma 4.2,

cx1,T ≤ ρ(x, τ ) ≤ Cx− 2γ
3(γ−1) , (x, τ ) ∈ [x1, 1] × [0, T ] holds, (4.17)

in the case x+
2 = 1 in (4.11), while for x+

2 < 1 in (4.11), then

cx1,T ≤ ρ(x, τ ) ≤ Cx− 2γ
3(γ−1) , (x, τ ) ∈ [x1, x2] × [0, T ], (4.18)

with [x1, x2] ⊂ (x−
1 , x+

2 ), where C > 0 and cx1,T are constants such that cx1,T → 0 as
x1 → 0+.

Proof. We only prove (4.17). First, we consider the mass transportation in Eulerian
coordinates and Lagrangian coordinates respectively. Without loss of generality, we
assume that ρ0(r) > 0 for r ∈ [ε, a0] with

∫
ρ0(r)r2dr = 1 in Eulerian coordinates,

namely, ρ0(x) > 0 for x ∈ [0, 1] in Lagrangian coordinates. Then, for any constant
η ∈ (1/2, 1) with 1 − η small enough so that x5 =: ηx1 > x−

1 , we define particle paths
rxi (t) = r(xi , t) as

d

dt
rxi (t) = u(rxi (t), t), rxi (0) = ri ∈ (ε, a0), i = 1, 5, (4.19)



Lagrange Structure and Dynamics for CNS 397

where ri = (a3
0 − 3

∫ 1
xi
ρ−1

0 dy)
1
3 satisfies ε < r5 < r1 < a0 due to (3.10). The con-

servation of mass between the particle paths rx5(t) and rx1(t) implies the existence of
m5,1 = x1 − x5 = (1 − η)x1 so that

∫ rx1 (t)

rx5 (t)
r2ρ(r, t)dr =

∫ r1

r5

r2ρ0(r)dr = m5,1 = x1 − x5 >
1

2
x1, t ≥ 0. (4.20)

Thus, there is a particle path r = rx3(t) ∈ [rx5(t), rx1(t)] for t ∈ [0, T ] defined by

d

dt
rx3(t) = u(rx3(t), t), t > 0, rx3(0) = r3 ∈ [r5, r1], (4.21)

with u0r (r3) = u0(r1)−u0(r5)
r1−r5

and x3 = 1 − ∫ a0
r3

r2ρ0(r)dr ∈ [x5, x1], so that it holds in
Eulerian coordinates

r2
x3
(t)ρ(rx3(t), t)= 1

rx1(t)−rx5(t)

∫ rx1 (t)

rx5 (t)
r2ρ(r, t)dr = x1 − x5

rx1(t)− rx5(t)
, t ≥0,

(4.22)

and in Lagrangian coordinates

(r2ρ)−1(x3, τ ) = r(x1, τ )− r(x5, τ )

x1 − x5
, τ ≥ 0. (4.23)

Similar to (3.54), one can define

v(x, τ ) = 1

r2(x, τ )ρ(x, τ )
, V (τ ) = max[x3,1]×[0,τ ] v(x, s) (4.24)

for any (x, τ ) ∈ [x3, 1] × [0, T ].
It is easy to verify that v satisfies (3.55). Integrating (3.55) over [0, τ ] × [x3, 1], and

using (3.13), (4.21) and (3.52), we get after a complicated but straightforward compu-
tation that

∫ 1

x3

vβdx + β(β − 1)
∫ τ

0

∫ 1

x3

vβu2dxds

=
∫ 1

x3

v
β
0 dx + β(β − 1)

∫ τ

0

∫ 1

x3

vβur2ρx (x, 0)dxds

+β(β − 1)
∫ τ

0

∫ 1

x3

vβuu0dxds − β(β − 1)
∫ τ

0

∫ 1

x3

vβu(
∫ s

0
(ργ )xr2dt)dxds

+ 2β(β − 1)
∫ τ

0

∫ 1

x3

vβ
u

r
dxds + β

∫ τ

0
vβ−1u(y, s)|1y=x3

ds

=
∫ 1

xc(0)
v
β
0 dx + I1 + I2 + I3 + I4 + I5. (4.25)
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The right-hand side terms of (4.25) can be estimated as follows. Similar to (3.58)–(3.59),
we have

I1 + I2 ≤ β(β − 1)

3

∫ τ

0

∫ 1

x3

vβu2dxds + C
∫ τ

0

∫ 1

x3

vβdxds, (4.26)

I3 + I4 ≤ β(β − 1)

6

∫ τ

0

∫ 1

x3

vβu2dxds + Cx1

∫ τ

0

∫ 1

x3

vβdxds, (4.27)

by virtue of (4.13) and the fact that r(x, τ ) ≥ cx
γ

3(γ−1) ≥ cx
γ

3(γ−1)
1 for x ∈ [x3, 1] ⊂

[x5, x1].
One can show by (3.29) and (3.28) that

v(1, τ ) = r−2(1, τ )ρ−1(1, τ ) ≤ CT , τ ∈ [0, T ], (4.28)

and by (4.23) and the fact, r(x5, τ ) ≤ r(x1, τ ) ≤ a(τ ) ≤ CT , that

v(x3, τ ) = (r2ρ(x3, τ ))
−1 = r(x1, t)− r(x5, t)

x1 − x5
≤ CT x−1

1 , τ ∈ [0, T ]. (4.29)

Due to (3.21) and the Sobolev embedding theorem, it holds that
∫ T

0
‖u‖2

L∞([x3,1])ds ≤ C

1 − x1

∫ T

0

∫ 1

x3

u2dxds + C
∫ T

0

∫ 1

x3

|uux |dxds (4.30)

≤ CT + CT (

∫ T

0

∫ 1

0
ρ2u2

xr4dxds)
1
2 (

∫ T

0

∫ 1

x3

v2u2dxds)
1
2

≤ CT (1 + V (T )). (4.31)

One concludes from (4.28), (4.29) and (4.31) that for any β ≥ 2,

I5 ≤ β

∫ T

0
|vβ−1u(x3, τ )|dτ + β

∫ T

0
|vβ−1u(1, τ )|dτ ≤ CT x−(β−1)

1 (1 + V (T )
1
2 ).

(4.32)

Substituting (4.26), (4.27), and (4.32) into (4.25) and using Young’s inequality yield that
for any β ≥ 2,

∫ 1

x3

vβdx ≤ Cx1,T,4(1 + V (T )
1
2 ), τ ∈ [0, T ], (4.33)

with Cx1,T,4 > 0 satisfying Cx1,T,4 → ∞ as x1 → 0+.
Finally, by Sobolev imbedding, (4.33) and (4.28), we deduce that for β > 3,

V (T )β = max[x3,1]×[0,T ] v
β(x, τ ) ≤ vβ(1, τ ) +

∫ 1

x3

|(vβ)x |dx

≤ CT + β
( ∫ 1

x3

v2(β+1)dx
) 1

2 + Cx−1
1

∫ 1

x3

vβ+1dx ≤ Cx1,T,5(1 + V (T )
β+3

2 ),

with Cx1,T,5 > 0 satisfying Cx1,T,4 → ∞ as x1 → 0+, which implies in particular that
for β = 4,

V (T ) ≤ Cx1,T,0, (4.34)
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where Cx1,T,0 > 0 satisfying Cx1,T,0 → ∞ as x1 → 0+. The combination of (4.24),
(4.34), (3.23) and (3.29) yields (4.17).

Furthermore, repeating the above arguments with few modifications on the domain
[(1 − η)x1, (1 + η)x2] × [0, T ] with η ∈ (0, 1) a constant small enough, we can prove
(4.18). The details are omitted here. The proof of Lemma 4.3 is complete. ��

With the help of Lemma 4.3, we can further establish the higher order regularities of
the global solution (ρ, u, r) as follows.

Lemma 4.4. Under the assumptions of Lemma 4.2, it holds for x+
2 = 1 in (4.11),

sup
τ∈[0,T ]

‖(ρx , ux )(τ )‖2
L2([x1, x2])

+
∫ T

0
‖(ρx , ux , uxx , uτ , σx )(τ )‖2

L2([x1, x2])dτ ≤ Cx1,T δ4, (4.35)

∫ T

0
(|a(τ )|2 + |a′(τ )|2)dτ ≤ Cx1,T δ4, (4.36)

for any [x1, x2] ⊂ (x−
1 , 1], where σ = ργ − ρ2(r2u)x . Assume further that u0 ∈

H2([x−
1 , 1]). Then

sup
τ∈[0,T ]

‖(ρx , ux , uxx , uτ , σx )(τ )‖2
L2([x1, x2]) +

∫ T

0
‖uxτ (τ )‖2

L2([x1, x2])dτ ≤ Cx1,T δ5,

(4.37)
∫ T

0
(|a(τ )|2 + |a′(τ )|2 + |a′′(τ )|2)dτ ≤ Cx1,T δ5, (4.38)

with Cx1,T > 0 independent of ε > 0, δ4 =: ‖ρ0‖W 1,∞([x−
1 , x+

2 ]) + ‖u0‖H1([x−
1 ,x

+
2 ]), and

δ5 =: ‖ρ0‖W 1,∞([x−
1 , x+

2 ]) + ‖u0‖H2([x−
1 , x+

2 ]).
In addition, (4.35) and (4.37) hold on any interior domain [x1, x2] ⊂ (x−

1 , x+
2 ) in the

case that x+
2 < 1 in (4.11).

Proof. We only show (4.35)–(4.38) for the case x+
2 = 1, the other case can be proven

similarly. Rewrite (3.11)2 as

r−2uτ + (ργ − ρ2r2ux )x − ρ

(
2u

r

)
x

= 0. (3.65)

Take the inner product of (3.65) with φ2ρ−2uτ , where φ = ψ2(x) and ψ ∈ C∞([0, 1])
satisfies 0 ≤ ψ(x) ≤ 1, ψ(x) = 1 for x ∈ [(1 − η)x1, 1], and ψ(x) = 0 for x ∈ [0, 1 −
2η] with η ∈ (0, 1) small enough so that (1 − 2η)x1 > x−

1 . It follows from (3.13) that

d

dt

∫ 1

0
(
1

2
φr2u2

x − φργ−2ux )dx +
∫ 1

0
φρ−2r−2u2

τdx +
d

dτ
(r−1ρ−1u2(1, τ ))

=
∫ 1

0
φ(ruu2

x −(ργ−2)τux )dx +
∫ 1

0
(ργ −ρ2r2ux )(φρ

−2)x uτdx +(r−1ρ−1)τu2(1, τ ).

(4.39)
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Integrating (4.39) over [0, τ ], making use of Lemmas 3.3–3.5, Lemma 4.2 and the fol-
lowing facts:

cx1 ≤ r(x, τ ) ≤ CT , cx1,T ≤ ρ(x, τ ) ≤ Cx1, (x, τ ) ∈ [(1 − 2η)x1, 1] × [0, T ],
(4.40)

derived from (3.23), (3.29) and (4.17), we obtain after a tedious computation that
∫ 1

0
φr2u2

x dx +
∫ τ

0

∫ 1

0
φρ−2r−2u2

τdxds

≤ Cx1,T δ4 + Cx1,T

∫ τ

0
‖(ργ−1u, [(ργ )xr2]2)(s)‖L∞

([(1−2η)x1,1])

∫ 1

0
φr2u2

x dxds.

(4.41)

This, together with Lemma 4.2, (4.40) and the fact that φ(x) = 1 for x ∈ [(1 −η)x1, 1],
yields

∫ 1

(1−η)x1

u2
x dx +

∫ T

0

∫ 1

(1−η)x1

u2
τdxds ≤ Cx1,T δ4. (4.42)

It follows from (4.42), (3.11)2, (4.40), and Lemma 4.2 that
∫ T

0

∫ 1

(1−η)x1

[u2
xx + (ργ − ρ2(r2u)x )

2
x + ρ2

xτ ]dxdτ ≤ Cx1,T δ4. (4.43)

Now (4.35) and (4.36) follow from (4.42)–(4.43) and the definition (3.15) of the free
boundary.

The higher order regularities of the solution near the free boundary can be shown by
similar arguments as proving (3.64) with some modifications. Indeed, taking the inner
product of (3.69) with φuτ over [0, 1], where φ = ψ2(x) and ψ ∈ C∞

0 ([0, 1]) satisfies
0 ≤ ψ(x) ≤ 1, ψ(x) = 1 for x ∈ [x1, 1], and ψ(x) = 0 for x ∈ [0, (1 − η)x1] with
η > 0 small enough so that (1 − 2η)x1 > x−

1 , and using (3.13), we can obtain

1

2

d

dτ

∫ 1

0
φr−2u2

τdx −
∫ 1

0
φ(ργ − ρ2r2ux )τuxτdx +

(
ρ

2u

r

)
τ

uτ (1, τ )

=
∫ 1

0
φx (ρ

γ − ρ2r2ux )τuτdx +
∫ 1

0
φr−3uu2

τdx +
∫ 1

0
φ

(
ρ

(
2u

r

)
x

)
τ

uτdx .

(4.44)

By a similar argument for (3.63) and using (3.13), (4.35), (4.40), (4.42)–(4.43), we can
obtain from (4.44) after a complicated computation that
∫ 1

0
φ(ργ+1u2

x + r−2u2
τ )dx +

∫ T

0

∫ 1

0
φρ2r2u2

xτdxdτ +
∫ T

0
u2
τ (1, τ )dτ ≤ Cx1,T δ5,

(4.45)

which with (4.40) imply that
∫ 1

x1

(u2
x + u2

τ )dx +
∫ T

0

∫ 1

x1

u2
xτdxdτ +

∫ T

0
u2
τ (1, τ )dτ ≤ Cx1,T δ5. (4.46)
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It follows from (4.46), (3.11)2, (4.40) and Lemma 4.2 that
∫ 1

x1

u2
xx dx +

∫ 1

x1

(ργ − ρ2(r2u)x )
2
x dx ≤ Cx1,T δ5. (4.47)

The combination of (4.45)–(4.47), (4.35)–(4.36), (3.11), and (3.15) gives rise to (4.37)–
(4.38). The proof of Lemma 4.4 is completed. ��
The proof of Proposition 4.1. Proposition 4.1 follows from Proposition 3.1, the uniform
estimates established in Lemmas 4.3–4.4 for the solution (ρ, u, a), and the coordinates
transformation (3.9)–(3.10), the details are omitted.

5. Proof of the Main Results

This section is devoted to the proofs of Theorems 2.1–2.4. Indeed, we can construct
global approximate solutions to the FBVP (2.1)–(2.7), establish uniform a-priori esti-
mates based on Proposition 3.1 and Proposition 4.1, show their convergence to a solution
of the original FBVP problem, and then justify the expected properties in Theorems 2.1–
2.4 for the limiting solution.

5.1. Construction of global approximate solutions. For any ε > 0 fixed, we can modify
the initial data (ρ0, u0) in (2.5) and construct a sequence of global approximate solutions
(ρε, uε, aε) to the FBVP (2.3)–(2.7) as

(ρε, uε) =
{
(ρ̃ε,δ, ũε,δ)(r, t), (r, t) ∈ [ε, aε(t)] × [0, T ],
(ρ̃ε,δ(ε, t), 0), (r, t) ∈ [0, ε] × [0, T ], (5.1)

respectively, where aε(t) = ãε,δ(t) defined by

d

dt
ãε,δ(t) = ũε,δ(ãε,δ(t), t), ãε,δ(0) = a0, (5.2)

and (ρ̃ε,δ, ũε,δ, ãε,δ) is the unique global strong solution on [ε, aε,δ(t)] × [0, T ] to the
modified FBVP (2.3) with following initial data and boundary conditions:

(ρ, u)(r, 0) = (ρδ0, uδ0), r ∈ [ε, a0], (5.3)

uδ(ε, t) = 0, ((ρδ)γ − ρδuδr )(a(t), t) = 0, t ≥ 0, (5.4)

so that initial data (ρδ0, uδ0) satisfies all assumptions in Proposition 3.1 and Proposition 4.1
on [ε, a0] (uniformly with respect to δ > 0 and ε > 0) and the following properties:

inf
r∈[ε,a0] ρ

δ
0(r) > 0,

∫ a0

ε

r2ρδ0(r)dr =
∫ a0

ε

r2ρ0(r)dr; uδ0(r) = 0, r ∈ [0, ε],

and is well consistent with the boundary values (5.4). In particular, (ρδ0, ρ
δ
0uδ0) →

(ρ0,m0) strongly in W 1,∞([ε, a0]),
√
ρδ0 → √

ρ0 strongly in H1([ε, a0]), and

(mδ
0)

2+η

(ρδ0)
1+η → m2+η

0

ρ
1+η
0

strongly in L1(�0) as δ → 0+. These can be carried out by the stan-

dard arguments as used in [11,26,29], we omit the details. Thus, by Proposition 3.1
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and Proposition 4.1, the FBVP (2.3) and (5.3)–(5.4) admits a unique global strong solu-
tion (ρ̃ε,δ, ũε,δ, ãε,δ) on the domain [ε, aε,δ(t)] × [0, T ], which satisfies (3.4)–(3.7) and
(4.2)–(4.10) (uniformly with respect to ε > 0 and δ > 0), in particular, the free bound-
ary r = ãε,δ(t) is uniformly bounded from below and above with respect to ε > 0 and
δ > 0.

By (5.1)–(5.4), we obtain a sequence of spherically symmetric approximate solutions
to the original FBVP (2.1)–(2.7) for any ε > 0 as

(ρε(x, t), ρεUε(x, t), aε(t)) = (ρε(|x|, t), ρεuε(x, t)
x
|x| , aε(t)), (x, t) ∈ �εT ,

(5.5)

where (ρε, uε, aε) satisfies (5.1)–(5.4) with δ = o(εη) with η > 0 a constant (refer to
[11,29] for details), and �εt is given by

�εt =: {(x, s)| 0 ≤ |x| ≤ aε(s), s ∈ [0, t] }, t ∈ (0, T ].
In addition, it is easy to verify that (ρε,Uε) is differentiable with respect to x in terms
of (ρε, uε) in the following sense:

(∂r
√
ρε, ∂r uε) =

{
(∂r

√
ρε, ∂r uε), r ∈ (ε, aε(t)],

(0, 0), r ∈ [0, ε]. (5.6)

Similar to [11,29], we can show that the solution (ρε(x, t),Uε(x, t), aε(t)) also sat-
isfies the following estimates with respect to ε > 0.

Lemma 5.1. Under the assumptions of Theorem 2.1, (ρε,Uε, aε) satisfies that
∫
�εt

ρε(x, t)dx =
∫
�ε0

ρε0(x)dx, (5.7)

sup
t∈[0,T ]

∫
�εt

(|√ρε Uε|2 + (ρε)γ )(x, t)dx +
∫ T

0

∫
�εt

|√ρε ∇Uε|2dxdt ≤ C, (5.8)

sup
t∈[0,T ]

∫
�εt

|∇√
ρε |2(x, t)dx +

∫ T

0

∫
�εt

(|∇(ρε) γ2 |2 + (ρε)
5γ
3 )dxdt ≤ C, (5.9)

sup
t∈[0,T ]

∫
�εt

ρε|Uε|2+ν(x, t)dx ≤ CT , (5.10)

where C > 0 and CT > 0 are two constants independent of ε > 0, and ν > 0 is a small
constant.

5.2. Compactness and dynamical behavior of solutions.

The proof of Theorem 2.1. It remains to show the convergence, as ε → 0+, of the
approximate solutions (ρε,Uε, aε) constructed in (5.5) to the FBVP (2.1)–(2.7) under the
assumptions of Theorem 2.1. This consists of the strong convergence near the free bound-
ary in Lagrangian coordinates and the convergence in the whole domain in Euerlian
coordinates.
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We start with the strong convergence of (ρε, ρεUε, aε) = (ρε(|x|, t), ρεuε(x, t)
x
|x| , aε) near the free boundary. It suffices to prove the strong convergence on the domain
[rεxb

(t), aε(t)] × [0, T ], where r = rεxb
(t) is a particle path with rεxb

(0) = rb ∈ (a1, a0]
and xb = ∫ a0

rb
r2ρ0(r)dr , and the initial data satisfies (ρ0, u0) ∈ W 1,∞([a1, a0]) and

infr∈[a1,a0] ρ0(r) > 0. It is convenient to show the strong convergence of (ρε, uε, aε)
in Lagrangian coordinates on [xb, 1] × [0, T ] in terms of the coordinate transforma-
tions (3.8)–(3.9). Indeed, one can show under the assumptions of Theorem 2.1 that
(ρε, uε, aε) satisfies the uniform estimates established in Lemmas 3.3–3.5 and Lem-
mas 4.3–4.4 on [xb, 1] × [0, T ]. Thus, by Lions-Aubin’s Lemma, there is a limiting
function (ρb(x, τ ), ub(x, τ ), a(τ )) so that up to a subsequence (ρε j , uε j , aε j ), it holds
as ε j → 0,
⎧⎪⎨
⎪⎩
(ρε j , uε j ) → (ρb, ub) strongly in C([0, T ] × [xb, 1])× C([0, T ] × [xb, 1]),
(rε j , σ ε) → (r, σ ) strongly in H1([0, T ] × [xb, 1])× L2([0, T ] × [xb, 1]),

aε j → a, strongly in Cα([0, T ]), α ∈ (0, 1/2),

(5.11)

where rτ = ub and (r3)x = 3
ρb
, σ = ρ

γ

b − ρ2
b (r

2ub)x .
It is easy to verify that (ρb, ub, a) satisfies (3.11) on [xb, 1] × [0, T ] and (3.13). By

(3.8)–(3.10), Lemmas 3.3–3.5 and Lemmas 4.3–4.4, we easily deduce that (ρb, ub, a)
satisfies⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρb ∈ C([0, T ] × [rxb(t), a(t)]), ub ∈ C([0, T ] × [rxb(t), a(t)]),
ρb ∈ L∞(0, T ; H1([rxb(t), a(t)])), ρτ ∈ L2(0, T ; L2([rxb(t), a(t)])),
ub ∈ L∞(0, T ; H1([rxb(t), a(t)])) ∩ L2(0, T ; H2([rxb(t), a(t)])),
a(t) ∈ H1([0, T ]), c ≤ a(t) ≤ CT , t ∈ [0, T ],

(5.12)

and⎧⎨
⎩ cxb,T ≤ ρb(r, t) ≤ Cx

− 2γ
3(γ−1)

b , r ∈ [rxb(t), a(t)], t ∈ [0, T ],
‖ρb‖L∞(0,T ;H1([rxb (t),a(t)])) + ‖ub‖L2(0,T ;H1([rxb (t),a(t)])) + ‖a‖H1([0,T ]) ≤ Cxb,T ,

(5.13)

where r = rxb(t) is the particle path with rxb(0) = rb ∈ (a1, a0].
Denote (ρb,Ub, a) by

(ρb,Ub, a)(x, t)=(ρb(|x|, t), ub(|x|, t)
x
|x| , a(t)), rx1(t)≤|x| ≤ a(t), t ∈[0, T ].

(5.14)

We conclude from the above analysis that (ρε j ,Uε j , aε j ) converges to (ρb,Ub, a)
strongly on the domain [rxb(t), a(t)] × [0, T ]. In addition, (ρb,Ub, a) satisfies (2.3),
the free boundary condition (2.7), and (3.4)–(3.7) and (4.2)–(4.10) on the domain
[rxb(t), a(t)] × [0, T ].

Next, we show the convergence of (ρε j ,Uε j , aε j ) on an interior domain�
ε j
in defined

by

�
ε j
in = �

ε j
t ∩ {(x, t) | 0 ≤ |x| < a(t), t ∈ [0, T ] }. (5.15)
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Due to the strong convergence (5.11) of the velocity and particle path as ε j → 0+, it
holds that for ε j > 0 small enough,

�in =: {(x, t) | 0 ≤ |x| ≤ rxin (t), t ∈ [0, T ] } ⊂⊂ �εin, (5.16)

where r = rxin (t) is a particle path defined by

d

dt
rxin (t) = ub(rxin (t), t), rxin (0) = rin ∈ (rb, a0), (5.17)

which satisfies that for xb < xin = 1 − ∫ a0
rin

r2ρ0(r)dy,

0 < c(xin − xb)
γ
γ−1 ≤ r3

xin
(t)− r3

xb
(t), t ∈ [0, T ]. (5.18)

It is easy to show that (ρε j , ρε j Uε j ) satisfies (5.11) on the domain [rxb(t), a(t)] ×
[0, T ] and admits a converging sub-subsequence, still denoted by (ρε j , ρε j Uε j ), on
�in . Indeed, since (5.7)–(5.10) hold uniformly for (ρε j , ρε j Uε j ) on�in , using a similar
compactness argument as in [11,29,36], one can show that there is a limiting function

(ρin, ρinUin)(x, t) =
(
ρin(|x|, t), ρinuin(|x|, t)

x
|x|

)
, (x, t) ∈ �in, (5.19)

so that up to a sub-subsequence (ρε j , ρε j Uε j ) converges to (ρin, ρinUin) in the sense

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρε j → ρin strongly in C([0, T ]; L3/2(�in)),

(ρε j )γ → ρ
γ

in strongly in L1(0, T ; L1(�in)),

∇√
ρε j → ∇√

ρin weakly in L2(0, T ; L2(�in)),√
ρε j Uε j → √

ρin Uin strongly in L1((0, T )×�in),√
ρε j ∇Uε j → √

ρin ∇Uin weakly in L2((0, T )×�in),

ρε j Uε j → ρinUin strongly in L2(0, T ; L p(�in)), p ∈ (1, 2),

(5.20)

as ε j → 0+, details are omitted. In addition, the momentum mε j = ρε j Uε j converges
almost everywhere to min(x, t) = ρinUin , and min(x, t) = 0 a.e. on {ρin(x, t) = 0}. It
is easy to verify by a similar argument as in [11] that (ρin, ρinUin) solves (2.3) on �in
in the sense of distributions.

Finally, set

(ρ, ρU) =
{
(ρb, ρbUb)(x, t), rx1(t) ≤ |x| ≤ a(t), t ∈ [0, T ],
(ρin, ρinUin)(x, t), 0 ≤ |x| ≤ rx2(t), t ∈ [0, T ]. (5.21)

This is well-defined due to (5.18) and

(ρb, ρbUb) = (ρin, ρinUin), a.e. x ∈ [rx1(t), rx2(t)], t ∈ [0, T ].
We can easily deduce that (ρ, ρU, a) is a solution to the FBVP (2.3)–(2.7) in the sense
of Definition 2.1, which also satisfies (2.13)–(2.16) and the free boundary condition.
The proof of Theorem 2.1 is completed. ��
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The proof of Theorem 2.2. To obtain the desired properties (2.17)–(2.24) for the global
weak solution (ρ, ρU, a) to the FBVP (2.1)–(2.7) constructed in Theorem 2.2, it suffices
to justify them for approximate solutions (ρε,Uε, aε) defined by (5.5) uniformly with
respect to ε > 0.

Indeed, for any 0 < r−
1 < r1 ≤ r0 < r3 ≤ r2 < r+

2 ≤ a0 with infr∈[r−
1 ,r

+
2 ] ρ0(r) ≥

ρ∗ > 0, there is a ε0 > 0 so that r−
1 > ε for all ε ∈ (0, ε0]. In addition, the modified

and regularized initial data (ρδ0, uδ0) in (5.3) satisfies all the assumptions of Proposi-
tion 4.1, in particular, infr∈[r−

1 ,r
+
2 ] ρδ0(r) > 0 uniformly with respect to ε > 0. Therefore,

for x−
1 < xε1 ≤ xε0 < xε3 ≤ xε2 < x+

2 ≤ 1 determined by xεi = ∫ a0
ε

r2ρδ0(r)dr −∫ a0
ri

r2ρδ0(r)dr, i = 0, 1, 2, 3, and x±
i = ∫ a0

ε
r2ρδ0(r)dr − ∫ a0

r±
i

r2ρ0(r)dr, i = 1, 2, we

can define the particle path

d

dt
rxεi
(t) = ũε(rxεi

(t), t), rxεi
(0) = ri ∈ [r−

1 , r
+
2 ], (5.22)

so that the global approximate solution (ρε(r, t), uε(r, t), aε(t)) satisfies all properties
(4.2)–(4.4) along particle paths r = rxεi

(t), (4.5)–(4.8) on [rxε1
(t), rxε2

(t)] × [0, T ], and
(4.9)–(4.10) on [rxε1

(t), aε(t)] × [0, T ] uniformly with respect to ε > 0. These lead
to the expected properties (2.18)–(2.31) for the global weak solution (ρ, ρU, a), after
passing into the limit ε → 0+. Equation (2.17) follows from the continuity of r2ρ on
the domain [0, a(t)] × [0, T ] derived based on (2.3)1, (2.15) and (2.16). The point-wise
decays (2.22)–(2.24) of the solution follow from (3.6) and Theorem 2.5 for N = 3, for
which we omit the details. The proof of Theorem 2.2 is completed. ��
The proof of Theorems 2.4. Let (ρ, ρU, a) = (ρ(r, t), ρu(r, t) x

r , a(t)) with r = |x|
be the global weak solution to (2.1)–(2.7) constructed in Theorem 2.1. First, we show
(2.32)–(2.35). Indeed, due to the assumption that ρ(r ′

0, t ′0) > 0 for some point (r ′
0, t ′0) ∈

(0, a(t ′0)) × (0, T ] and the continuity (2.14) of the density away from symmetry cen-
ter, we deduce that there exist a small constant η0 > 0 and a constant ρ1 > 0 so that
[r ′

0 − η0, r ′
0 + η0] ⊂ (0, a0), and

inf
r∈[r ′

0−η0,r ′
0+η0]

ρ(r, t ′0) ≥ ρ1 > 0, x0 = 1 −
∫ a(t ′0)

r ′
0

r2ρ(r, t ′0)dr ∈ (0, 1), (5.23)

where we recall that the conservation of total mass holds
∫ a0

0
r2ρ0(r)dr =

∫ a(t0)

0
r2ρ(r, t0)dr = 1.

In particular, we have

(a) either for some initial point 0 < r ′
0 < a0,

ρ0(r
′
0) > 0, x0 =

∫ a0

r ′
0

r2ρ0(r)dr, (5.24)

(b) or for some points 0 < r1 < r3 ≤ r4 < r2 < a0,

x0 = 1 −
∫ a0

r j

r2ρ0(r)dr, j = 3, 4, (5.25)
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and {
ρ0(r) = 0, r ∈ {r : r3 ≤ r ≤ r4},
ρ0(r) > 0, r ∈ [r1, r3) ∪ (r4, r2]. (5.26)

We deal with the case (5.24) first. By (2.18) there is a particle path r = rx0(t) defined
by

d

dt
rx0(t) = u(rx0(t), t), rx0(0) = r ′

0 ∈ (0, a0),

so that ⎧⎨
⎩

0 < cx
γ

3(γ−1) ≤ rx0(t) < a(t) ≤ CT , t ∈ [0, t0],
0 < cx0,t0 ≤ ρ(rx0(t), t) ≤ Ct0 x

− 2γ
3(γ−1)

0 , t ∈ [0, t0],
(5.27)

and the conservation of mass between r = rxi (t) and r = a(t), and (5.24) imply

x0 = 1 −
∫ a0

r ′
0

r2ρ0(r)dr = 1 −
∫ a(t)

rx0 (t)
r2ρ(r, t)dr, t ∈ [0, t0]. (5.28)

As a consequence of (5.23), (5.27), (5.28) and the uniqueness of particle paths, r0 =
rxi (t0) and (2.32) holds.

Now assume that (5.25) and (5.26) hold, and define �t0
x0 and V t

x0
as

�
t ′0
x0 =: { (r, t)|ρ(r, t) ≥ 0, r ∈ (0, a(t)), t ∈ [0, t ′0];

∫ a(t)

r
s2ρ(s, t)ds = 1 − x0 },

(5.29)

V t
x0

=: { (r, t)|ρ(r, t) = 0, r ∈ (0, a(t));
∫ a(t)

r
s2ρ(s, t)ds = 1 − x0 }. (5.30)

By the continuity (2.14) of the density away from symmetry center, (5.23), (5.25)–(5.26)
and (2.18), one can show that there exists a time t ′1 ∈ [0, t ′0) so that V t

x0
is a non-empty

closed subset on [0, t ′1] with V0
x0

= [r3, r4] and V t
x0

× [0, t ′1] ⊂ �
t ′0
x0 . In addition, there

exists a particle path r = rx0(t) uniquely defined backward in time by

d

dt
rx0(t) = u(rx0(t), t), t ≤ t0, rx0(t

′
0) = r0,

along which it holds
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 < cx
γ

3(γ−1)
0 ≤ rx0(t) < a(t) ≤ CT , t ∈ (t ′1, t ′0],

0 < ρ(rx0(t), t) ≤ Ct ′0 x
− 2γ

3(γ−1)
0 , t ∈ (t ′1, t ′0],

1 − x0 = ∫ a(t)
rx0 (t)

r2ρ(r, t)dr, t ∈ (t ′1, t ′0].

(5.31)

It is easy to show that {(rx0(t), t)|t ∈ (t ′1, t ′0]} ⊂ �
t ′0
x0 , and

�
t ′0
x0 = {V t

x0
× [0, t ′1]} ∪ {(rx0(t), t)|t ∈ (t ′1, t ′0]}. (5.32)
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Indeed, for any (r, t) ∈ �t0
x0 , it holds either ρ(r, t) = 0 with (r, t) ∈ V t

x0
, or ρ(r, t) > 0

with r = rx0(t) due to the uniqueness of particle path, which implies (5.32). The above
facts lead to (2.33)–(2.35).

The blow-up phenomena (2.36) can be shown by the contradiction argument as used
in [29], the details are omitted. The proof of Theorem 2.4 is completed. ��

6. Long Time Expanding and Decay Rate

In this section, we investigate the large time behavior of any global spherical symmet-
ric weak solutions to FBVP (2.1)–(2.7). Indeed, we can obtain an expanding rate of
the domain occupied by the fluid and the pointwise decay of density away from the
symmetry center as follows.

Lemma 6.1. Let the assumptions in Theorem 2.5 hold. Then the estimates (2.37) and
(2.39)-(2.41) holds. Furthermore,

aM (t) ≤ C(1 + t)
γ

N (γ−1) , (6.1)

and

ρ(a(t), t) ≤ C(1 + t)−
1

γ−1 , γ > 1, t > 0. (6.2)

Proof. Define an energy functional for a spherically symmetric solution as

Hδ(t) =
∫ a(t)

0

(
r − (δ + t)u)2ρr N−1dr +

2

γ − 1
(δ + t)2

∫ a(t)

0
ργ r N−1dr (6.3)

=
∫ a(t)

0
ρr N+1dr − 2(δ + t)

∫ a(t)

0
ρur N dr + (δ + t)2

∫ a(t)

0
ρu2r N−1dr

+
2

γ − 1
(δ + t)2

∫ a(t)

0
ργ r N−1dr, (6.4)

where a′(t) = u(a(t), t) is the free boundary. For simplicity, we only consider the case
δ = 1 and set H(t) = H1(t) below. A direct computation gives

H ′(t) =
∫ a(t)

0
(ρt r

N+1 − 2ρur N )dr + (1 + t)2
∫ a(t)

0

(
(ρu2)t +

2

γ − 1
(ργ )t

)
r N−1dr

+ 2(1 + t)
∫ a(t)

0

(
ρu2r N−1 − (ρu)t r

N +
2

γ − 1
ργ r N−1)dr

+ (ρur N+1 − 2(1 + t)ρu2r N + (1 + t)2ρu3r N−1)|r=a(t)

+
2

γ − 1
(1 + t)2ργ ur N−1|r=a(t) =: I1 + I2 + I3 + IB D . (6.5)
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By (2.3)1 and (2.6)–(2.7), one has

I1 = −
∫ a(t)

0

(
r2(r N−1ρu)r + 2ρur N )

dr =−
∫ a(t)

0
(ρur N+1)r dr =−ρur N+1(a(t), t),

I2 = −2(1 + t)2
∫ a(t)

0
(ρu2

r r N−1 + (N − 1)ρu2r N−3)dr

− (1 + t)2
[
ρu3r N−1 + 2

γ−1ρ
γ ur N−1 + 2(N − 1)ρu2r N−2](a(t), t),

I3 = 2(1 + t)
∫ a(t)

0

(
ρurr N−1 + (N − 1)ρur N−2 + 2−N (γ−1)

γ−1 ργ r N−1)dr

+2(1 + t)ρu2r N (a(t), t) + 2(N − 1)(1 + t)ρur N−1(a(t), t).

Substituting above estimates into (6.5) yields

H ′(t) ≤ 2(N + 2 − Nγ )

γ − 1
(1 + t)

∫ a(t)

0
ργ r N−1dr +

N

2

∫ a(t)

0
ρr N−1dr

−2(N − 1)(1 + t)2ρu2(1, t)aN−2(t) + 2(N − 1)(1 + t)ρu(1, t)aN−1(t)

(6.6)

≤ 2(N + 2 − Nγ )

γ − 1
(1 + t)

∫ a(t)

0
ργ r N−1dr +

N

2
+

1

2
(N − 1)ρaN (t). (6.7)

Therefore, we deduce from (6.7) that for γ ≥ N+2
N ,

H ′(t) ≤ N

2
+

1

2
(N − 1)ρ(1, t)aN (t) ⇔ H(t) ≤ C(1 + t) + C(1 + t)1− 1

γ−1 aN
M (t),

where

aM (t) = max
s∈[0,t] a(s) ≥ c0 > 0.

This leads to
∫ a(t)

0
ργ r N−1dr ≤ C(1 + t)−1aN

M (t), γ ≥ N + 2

N
. (6.8)

For 1 < γ < N+2
N , re-write (6.7) as

H ′(t) ≤ N + 2 − Nγ

1 + t
H(t) +

N

2
+

1

2
(N − 1)ρ(1, t)aN (t),

from which it follows that for 1 < γ < N+2
N with γ �= N+1

N ,

H(t) ≤ C(1 + t)N+2−Nγ + C(1 + t)aN
M (t), (6.9)

and for γ = N+1
N

H(t) ≤ C(1 + t)aN
M (t) + C(1 + t) log(1 + t). (6.10)
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These, together with the fact a(t) ≥ c > 0, give rise to

∫ a(t)

0
ργ r N−1dr ≤

⎧⎪⎪⎨
⎪⎪⎩

C(1 + t)−1aN
M (t), γ > N+1

N ,

C(1 + t)−1 log(1 + t)aN
M (t), γ = N+1

N ,

C(1 + t)−N (γ−1)aN
M (t), γ ∈ (1, N+1

N ).

(6.11)

Note that

1 =
∫ a

0
ρ0(r)r

N−1dr =
∫ a(t)

0
ρr N−1dr ≤ Ca(t)

N (γ−1)
γ

(∫ a(t)

0
ργ r N−1dr

) 1
γ

.

(6.12)

Combining (6.12) with (6.13) implies that

aM (t) = max
s∈[0,t] a(s) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C(1 + t)
1

Nγ , γ > N+1
N ,

C(1 + t)
1−ν
Nγ , γ = N+1

N ,

C(1 + t)
γ−1
γ , γ ∈ (1, N+1

N ),

(6.13)

where we have used (1 + t)ν ∼ log(1 + t) for any ν > 0 small enough, and

aM (t) → +∞, as t → +∞. (6.14)

Next, we show the exact expanding rate of the interface r = a(t) for γ ≥ 2 ≥ N+2
N .

Indeed, applying a similar argument as for (6.6), we can obtain

H ′
δ(t) ≤ N

2
+

2(N − 1)

N
((1 + t)ρ(1, t)aN (t))′ − 2(N − 1)

N
aN (t)[(δ + t)ρ(1, t)]′

≤ N

2
+

2(N − 1)

N
((δ + t)ρ(1, t)aN (t))′

which, together with the facts that [(δ + t)ρ(1, t)]′ ≥ 0 for γ ≥ 2 and δ =
(γ − 1)−

1
γ−1 ρ

1−γ
0 (a0), leads to

Hδ(t) ≤ Hδ(0) +
N

2
t +

2(N − 1)

N
(δ + t)ρ(1, t)aN (t). (6.15)

We deduce by (6.15), (3.28) and (6.3) that

∫ a(t)

0
ργ r N−1dr ≤ C(1 + t)−1(1 + (N − 1)aN (t)), (6.16)

which with (6.12) imply that

a(t) ≥ C(1 + t)
1

Nγ , γ ≥ 2, N ≥ 2. (6.17)

The upper bound on the expanding rate of the free boundary follows similarly to (3.27),
and the point-wise decay of density can be shown as for (3.42); we omit the details. ��
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