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Abstract: We investigate 3-dimensional globally hyperbolic AdS manifolds (or more
generally constant curvature Lorentz manifolds) containing “particles”, i.e., cone singu-
larities along a graph �. We impose physically relevant conditions on the cone singu-
larities, e.g. positivity of mass (angle less than 2π on time-like singular segments). We
construct examples of such manifolds, describe the cone singularities that can arise and
the way they can interact (the local geometry near the vertices of �). We then adapt to this
setting some notions like global hyperbolicity which are natural for Lorentz manifolds,
and construct some examples of globally hyperbolic AdS manifolds with interacting
particles.
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1. Introduction

1.1. Three-dimensional cone-manifolds. The 3-dimensional hyperbolic space can be
defined as a quadric in the 4-dimensional Minkowski space:

H
3 = {x ∈ R

3,1 | 〈x, x〉 = −1 & x0 > 0} .

Hyperbolic manifolds, which are manifolds with a Riemannian metric locally isometric
to the metric on H

3, have been a major focus of attention for modern geometry.
More recently attention has turned to hyperbolic cone-manifolds, which are the types

of singular hyperbolic manifolds that one can obtain by gluing isometrically the faces of
hyperbolic polyhedra. Three-dimensional hyperbolic cone-manifolds are singular along
lines, and at “vertices” where three or more singular segments intersect. The local geom-
etry at a singular vertex is determined by its link, which is a spherical surface with cone
singularities. Among key recent results on hyperbolic cone-manifolds are rigidity results
[HK98,MM,Wei] as well as many applications to three-dimensional geometry (see e.g.
[Bro04,BBES03]).
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1.2. AdS manifolds. The three-dimensional anti-de Sitter (AdS) space can be defined,
similarly as H3, as a quadric in the 4-dimensional flat space of signature (2, 2):

AdS3 = {x ∈ R
2,2 | 〈x, x〉 = −1} .

It is a complete Lorentz space of constant curvature −1, with fundamental group Z.
AdS geometry provides in certain ways a Lorentz analog of hyperbolic geometry, a

fact mostly discovered by Mess (see [Mes07,ABB+07]). In particular, the so-called glob-
ally hyperbolic AdS 3-manifolds are in key ways analogs of quasifuchsian hyperbolic
3-manifolds. Among the striking similarities one can note an analog of the Bers double
uniformization theorem for globally hyperbolic AdS manifolds, or a similar description
of the convex core and of its boundary. Three-dimensional AdS geometry, like 3-dimen-
sional hyperbolic geometry, has some deep relationships with Teichmüller theory (see
e.g. [Mes07,ABB+07,BS09a,BKS06,KS07,BS09b,BS10]).

Lorentz manifolds have often been studied for reasons related to physics and in partic-
ular gravitation. In three dimensions, Einstein metrics are the same as constant curvature
metrics, so the constant curvature 3-dimensional Lorentz manifolds – and in particular
AdS manifolds – are the 3-dimensional models of gravity. From this point of view, cone
singularities have been extensively used to model point particles, see e.g. [tH96,tH93].

The goal pursued here is to start a geometric study of 3-dimensional AdS manifolds
with cone singularities. We will in particular

• describe the possible “particles”, or cone singularities along a singular line,
• describe the singular vertices – the way those “particles” can “interact”,
• show that classical notions like global hyperbolicity can be extended to AdS cone-

manifolds,
• give examples of globally hyperbolic AdS particles with “interesting” particles and

particle interactions.

We focus here on the presentation of AdS manifolds for simplicity, but most of the
local study near singular points extends to constant curvature-Lorentz 3-dimensional
manifolds. More specifically, the first three points above extend from AdS manifolds
with particles to Minkowski or de Sitter manifolds. The fourth point is mostly limited to
the AdS case, although some parts of what we do here can be extended to the Minkowski
or de Sitter case.

We outline in more details those main contributions below.

1.3. A classification of cone singularities along lines. We start in Sect. 3 an analysis of
the possible local geometry near a singular point. For the hyperbolic cone-manifold this
local geometry is described by the link of the point, which is a spherical surface with
cone singularities. In the AdS (as well as the Minkowski or de Sitter) setting there is an
analog notion of link, which is now what we call a singular HS-surface, that is, a surface
with a geometric structure locally modelled on the space of rays starting from a point in
R

2,1 (see Sect. 3.4).
We then describe the possible geometry in the neighborhood of a point on a singular

segment (Proposition 3.1). For hyperbolic cone-manifolds, this local description is quite
simple: there is only one possible local model, depending on only one parameter, the
angle. For AdS cone-manifolds – or more generally cone manifolds with a constant cur-
vature Lorentz metric – the situation is more complicated, and cone singularities along
segments can be of different types. For instance it is clear that the fact that the singular
segment is space-like, time-like or light-like should play a role.
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There are two physically natural restrictions which appear in this section. The first is
the degree of a cone singularity along a segment c: the number of connected components
of time-like vectors in the normal bundle of c (Sect. 3.3). In the “usual” situation where
each point has a past and a future, this degree is equal to 2. We restrict our study to the
case where the degree is at most equal to 2. There are many interesting situations where
this degree can be strictly less than 2, see below.

The second condition (see Sect. 3.6) is that each point should have a neighborhood
containing no closed causal curve – also physically relevant since closed causal curves
induce causality violations. AdS manifolds with cone singularities satisfying those two
conditions are called causal here. We classify and describe all cone singularities along
segments in causal AdS manifolds with cone singularities, and provide a short descrip-
tion of each kind. They are called here: massive particles, tachyons, Misner singularities,
BTZ-like singularities, and light-like and extreme BTZ-like singularities.

We also define a notion of positivity for those cone singularities along lines.
Heuristically, positivity means that those geodesics tend to “converge” along those cone
singularitites; for instance, for a “massive particle” – a cone singularity along a time-like
singularity – positivity means that the angle should be less than 2π , and it corresponds
physically to the positivity of mass.

Remark 1.1. All this analysis is local, even infinitesimal. It applies in a much wider set-
ting than the one we restricted ourselves to here, and leads to a general description of all
possible singularities in a 3-dimensional Lorentzian spacetime. Our first concern here
is the case of singular AdS-spacetimes, hence we will not develop here further the other
cases.

1.4. Interactions and convex polyhedra. In Sect. 4 we turn our attention to the verti-
ces of the singular locus of AdS manifolds with cone singularities, in other terms the
“interaction points” where several “particles” – cone singularities along lines – meet and
“interact”. The construction of the link as an HS-surface, in Sect. 3, means that we need
to understand the geometry of singular HS-surfaces. The singular lines arriving at an
interaction point p correspond to the singular points of the link of p. An important point
is that the positivity of the singular lines arriving at p, and the absence of closed causal
curves near p, can be read directly on the link; this leads to a natural notion of causal
singular HS-surface, those causal singular HS-surfaces are precisely those occurring as
links of interaction points in causal singular AdS manifolds.

The first point of Sect. 4 is the construction of many examples of positive causal
singular HS-surfaces from convex polyhedra in HS3, the natural analog of HS2 in one
dimension higher. Given a convex polyhedron in HS3 one can consider the induced
geometric structure on its boundary, and it is often an HS-structure and without closed
causal curve. Moreover the positivity condition is always satisfied. This makes it easy to
visualize many examples of causal HS-structures, and should therefore help in following
the arguments used in Sect. 5 to classify causal HS-surfaces.

However the relation between causal HS-surfaces and convex polyhedra is perhaps
deeper than just a convenient way to construct examples. This is indicated in Theorem
4.3, which shows that all HS-surfaces having some topological properties (those which
are “causally regular”) are actually obtained as induced on a unique convex polyhedron
in HS3.

1.5. A classification of HS-structures. Section 5 contains a classification of causal
HS-structures, or, in other terms, of interaction points in causal singular AdS manifolds
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(or, more generally, in any singular spacetime). The main result is Theorem 5.6, which
describes what types of interactions can, or cannot, occur. The striking point is that there
are geometric restrictions on what kind of singularities along segments can interact at
one point.

1.6. Global hyperbolicity. In Sect. 6 we consider singular AdS manifolds globally. We
first extend to this setting the notion of global hyperbolicity which plays an important
role in Lorentz geometry.

A key result for non-singular AdS manifolds is the existence, for any globally hyper-
bolic manifold M , of a unique maximal globally hyperbolic extension. We prove a similar
result in the singular context (see Proposition 6.22 and Proposition 6.24). However this
maximal extension is unique only under the condition that the extension does not contain
more interactions than M .

Once more, this analysis could have been performed in a wider context. It applies in
particular in the case of singular spacetimes locally modeled on the Minkowski space-
time, or the de Sitter spacetime.

1.7. Construction of global examples. Finally Sect. 7 is intended to convince the reader
that the general considerations on globally hyperbolic AdS manifolds with interacting
particles are not empty: it contains several examples, constructed using basically two
methods.

The first relies again on 3-dimensional polyhedra, but not used in the same way as in
Sect. 4: here we glue their faces isometrically so as to obtain cone singularities along the
edges, and interactions points at the vertices. The second method is based on surgery:
we show that, in many situations, it is possible to excise a tube in an AdS manifold
with non-interacting particles (like those arising in [BS09a]) and replace it by a more
interesting tube containing an interaction point.

1.8. Further extension. We wish to continue in [BBS10] the investigation of globally
hyperbolic AdS metrics with interacting particles, and to prove that the moduli space
of those metrics is locally parameterized by 2-dimensional data (a sequence of pairs of
hyperbolic metrics with cone singularities on a surface).

2. Preliminaries

2.1. (G, X)-structures. Let G be a Lie group, and X an analytic space on which G
acts analytically and faithfully. In this paper, we are essentially concerned with the
case where X = AdS3 and G its isometry group, but we will also consider other pairs
(G, X).

A (G, X)-structure on a manifold M is a covering of M by open sets with homeomor-
phisms into X , such that the transition maps on the overlap of any two sets are (locally) in
G. A (G, X)-manifold is a manifold equipped with a (G, X)-structure. Observe that if X̃
denotes the universal covering of X , and G̃ the universal covering of G, any (G, X)-struc-
ture defines a unique (G̃, X̃)-structure, and, conversely, any (G̃, X̃)-structure defines a
unique (G, X)-structure. An isomorphism between two (G, X)-manifolds is a homeo-
morphism whose local expressions in charts of the (G, X)-structures are restrictions of
elements of G.
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A (G, X)-manifold is characterized by its developing map D : ˜M → X (where ˜M
denotes the universal covering of M) and the holonomy representation ρ : π1(M) → G.
Moreover, the developing map is a local homeomorphism, and it is π1(M)-equivariant
(where the action of π1(M) on ˜M is the action by deck transformations).

For more details, we refer to the recent expository paper [Gol10], or to the book
[Car03] oriented towards a physics audience.

2.2. Background on the AdS space. Let R
2,2 denote the vector space R

4 equipped with
a quadratic form q2,2 of signature (2, 2). The Anti-de Sitter AdS3 space is defined as the
−1 level set of q2,2 in R

2,2, endowed with the Lorentz metric induced by q2,2.
On the Lie algebra gl(2, R) of 2 × 2 matrices with real coefficients, the determinant

defines a quadratic form of signature (2, 2). Hence we can consider the anti-de Sitter
space AdS3 as the group SL(2, R) equipped with its Killing metric, which is bi-invariant.
There is therefore an isometric action of SL(2, R) × SL(2, R) on AdS3, where the two
factors act by left and right multiplication, respectively. It is well known (see [Mes07])
that this yields an isomorphism between the identity component Isom0(AdS3) of the
isometry group of AdS3 and SL(2, R) × SL(2, R)/ ± (I, I ). It follows directly that
the identity component of the isometry group of AdS3,+ (the quotient of AdS3 by the
antipodal map) is PSL(2, R)× PSL(2, R). In all of this paper, we denote by Isom0,+ the
identity component of the isometry group of AdS3,+, so that Isom0,+ is isomorphic to
PSL(2, R) × PSL(2, R).

Another way to identify the identity component of the isometry group of AdS3 is by
considering the projective model of AdS3,+, as the interior (one connected component of
the complement) of a quadric Q ⊂ RP3. This quadric is ruled by two families of lines,
which we call the “left” and “right” families and denote by Ll ,Lr . Those two families of
lines have a natural projective structure (given for instance by the intersection of the lines
of Ll with a fixed line of Lr ). Given an isometry u ∈ Isom0,+, it acts projectively on both
Ll and Lr , defining two elements ρl , ρr of PSL(2, R). This provides an identification
of Isom0,+ with PSL(2, R) × PSL(2, R).

The projective space RP3 referred to above is of course the projectivization of R
2,2,

and the elements of the quadric Q are the projections of q2,2-isotropic vectors. The geo-
desics of AdS3,+ are the intersections between projective lines of RP3 and the interior
of Q. Such a projective line is the projection of a 2-plane P in R

2,2. If the signature of
the restriction of q2,2 to P is (1, 1), then the geodesic is said to be space-like, if it is
(0, 2) the geodesic is time-like, and if the restriction of q2,2 to P is degenerate then the
geodesic is light-like.

Similarly, totally geodesic planes are projections of 3-planes in R
2,2. They can be

space-like, light-like or time-like. Observe that space-like planes in AdS3,+, with the
induced metric, are isometric to the hyperbolic disk. Actually, their images in the pro-
jective model of AdS3,+ are Klein models of the hyperbolic disk. Time-like planes in
AdS3,+ are isometric to the anti-de Sitter space of dimension two.

Consider an affine chart of RP3, complement of the projection of a space-like hyper-
plane of R

2,2. The quadric in such an affine chart is a one-sheeted hyperboloid. The
interior of this hyperboloid is an affine chart of AdS3. The intersection of a geodesic of
AdS3,+ with an affine chart is a component of the intersection of the affine chart with an
affine line �. The geodesic is space-like if � intersects1 twice the hyperboloid, light-like
if � is tangent to the hyperboloid, and time-like if � avoids the hyperboloid.

1 Of course, such an intersection may happen at the projective plane at infinity.
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For any p in AdS3,+, the q2,2-orthogonal p⊥ is a space-like hyperplane. Its comple-
ment is therefore an affine chart, that we denote by A(p). It is the affine chart centered at
p. Observe that A(p) contains p, any non-time-like geodesic containing p is contained
in A(p).

Unfortunately, affine charts always miss some region of AdS3,+, and we will consider
regions of AdS3,+ which do not fit entirely in such an affine chart. In this situation, one
can consider the conformal model: there is a conformal map from AdS3 to D

2 × S
1,

equipped with the metric ds2
0 − dt2, where ds2

0 is the spherical metric on the disk D
2,

i.e. where (D2, ds2
0 ) is a hemisphere (see [HE73, pp. 131–133]).

One needs also to consider the universal covering ÃdS3. It is conformally isometric
to D

2 × R equipped with the metric ds2
0 − dt2. But it is also advisable to consider it as

the union of an infinite sequence (An)(n∈Z) of closures of affine charts. This sequence
is totally ordered, the interior An of every term lying in the future of the previous
one and in the past of the next one. The interiors An are separated one from the other
by a space-like plane, i.e. a totally geodesic plane isometric to the hyperbolic disk.
Observe that each space-like or light-like geodesic of ÃdS3 is contained in such an
affine chart; whereas each time-like geodesic intersects every copy An of the affine
chart.

If two time-like geodesics meet at some point p, then they meet infinitely many times.
More precisely, there is a point q in ÃdS3 such that if a time-like geodesic contains p,
then it contains q also. Such a point is said to be conjugate to p. The existence of
conjugate points corresponds to the fact that for any p in AdS3 ⊂ R

2,2, every 2-plane
containing p contains also −p. If we consider ÃdS3 as the union of infinitely many cop-
ies An (n ∈ Z) of the closure of the affine chart A(p) centered at p, with A0 = A(p),
then the points conjugate to p are precisely the centers of the An , all representing the
same element in the interior of the hyperboloid.

The center of A1 is the first conjugate point p+ of p in the future. It has the property
that any other point in the future of p and conjugate to p lies in the future of p+. Inverting
the time, one defines similarly the first conjugate point p− of p in the past as the center
of A−1.

Finally, the future in A0 of p is the interior of a convex cone based at p (more
precisely, the interior of the convex hull in RP3 of the union of p with the space-like
2-plane between A0 and A1). The future of p in ÃdS3 is the union of this cone with all
the An with n > 0.

In particular, one can give the following description of the domain E(p), intersection
between the future of p− and the past of p+: it is the union of A0, the past of p+ in A1
and the future of p− in A−1.

We will need a similar description of 2-planes in ÃdS3 (i.e. of totally geodesic
hypersurfaces) containing a given space-like geodesic. Let c be such a space-like
geodesic, consider an affine chart A0 centered at a point in c (therefore, c is the segment
joining two points in the hyperboloid). The set composed of the first conjugate points
in the future of points in c is a space-like geodesic c+, contained in the chart A1. Every
time-like 2-plane containing c contains also c+, and vice versa. The intersection between
the future of c and the past of c+ is the union of:

• a wedge between two light-like half-planes both containing c in their boundary,
• a wedge between two light-like half-planes both containing c+ in their boundary,
• the space-like 2-plane between A0 and A1.
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3. Singularities in Singular AdS-Spacetimes

In this paper, we require spacetimes to be oriented and time oriented. Therefore, by
(regular) AdS-spacetime we mean an (Isom0(AdS3), AdS3)-manifold. In this section,
we classify singular lines and singular points in singular AdS-spacetimes. Actually, our
first concern is the AdS background, but all this analysis can be easily extended to a more
general situation, leading in a straightforward way to the notion of singular dS-space-
times; or singular flat spacetimes (with regular part locally modelled on the Minkowski
space).

In order to understand the notion of singularities, let us consider first the similar
situation in the classical case of Riemannian geometric structures, for example, of (sin-
gular) Euclidean manifolds (see p. 523-524 of [Thu98]). Locally, a singular point p in a
singular Euclidean space is the intersection of various singular rays, the complement of
these rays being locally isometric to R

3. The singular rays look as if they were geodesic
rays. Since the singular space is assumed to have a manifold topology, the space of rays,
singular or not, starting from p is a topological 2-sphere L(p): the link of p. Outside
the singular rays, L(p) is locally modeled on the space of rays starting from a point in
the regular model, i.e. the 2-sphere S

2 equipped with its usual round metric. But this
metric degenerates on the singular points of L(p), i.e. the singular rays. The way it may
degenerate is described similarly: let r be a singular point in L(p) (a singular ray), and
let �(p) be the space of rays in L(p) starting from r . It is a topological circle, locally
modeled on the space �0 of geodesic rays at a point in the metric sphere S

2. The space
�0 is naturally identified with the 1-sphere S

1 of perimeter 2π , and locally S
1-structures

on topological circles �(p) are easily classified: they are determined by a positive real
number, the cone angle, and �(p) is isomorphic to �0 if and only if this cone angle is
2π . Therefore, the link L(p) is naturally equipped with a spherical metric with cone-
angle singularities, and one easily recovers the geometry around p by a fairly intuitive
construction, the suspension of L(p). We refer to [Thu98] for further details.

Our approach in the AdS case is similar. The neighborhood of a singular point p is
the suspension of its link L(p), this link being a topological 2-sphere equipped with
a structure whose regular part is locally modeled on the link HS2 of a regular point
in AdS3, and whose singularities are suspensions of their links �(r), which are circles
locally modeled on the link of a point in HS2.

However, the situation in the AdS case is much more intricate than in the Euclidean
case, since there is a bigger variety of singularity types in L(p): a singularity in L(p),
i.e. a singular ray through p can be time-like, space-like or light-like. Moreover, non-
time-like lines may differ through the causal behavior near them (for the definition of
the future and past of a singular line, see Sect. 3.6).

Proposition 3.1. The various types of singular lines in AdS spacetimes are:

• Time-like lines: they correspond to massive particles (see Sect. 3.7.1).
• Light-like lines of degree 2: they correspond to photons (see Remark 3.24).
• Space-like lines of degree 2: they correspond to tachyons (see Sect. 3.7.2).
• Future BTZ-like singular lines: These singularities are characterized by the property

that it is space-like, but has no future.
• Past BTZ-like singular lines: These singularities are characterized by the property

that it is space-like, but has no past.
• (Past or future) extreme BTZ-like singular lines: they look like past/future BTZ-like

singular lines, except that they are light-like.
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• Misner lines: they are space-like, but have no future and no past. Moreover, any
neighborhood of the singular lines contains closed time-like curves.

• Light-like or space-like lines of degree k ≥ 4: they can be described as k/2-branched
cover over light-like or space-like lines of degree 2 (in particular, the degree k is even).
They have the “unphysical” property of admitting a non-connected future.

The several types of singular lines, as a not-so-big surprise, reproduce the several
types of particles considered in physics. Some of these singularities appear in the physics
litterature, but, as far as we know, not all of them (for example, the terminology tachyons,
that we feel is adapted, does not seem to appear anywhere).

In Sect. 3.1 we briefly present the space HS2 of rays through a point in AdS3. In
Sect. 3.2, we give the precise definition of regular HS-surfaces and their suspensions.
In Sect. 3.3 we classify the circles locally modeled on links of points in HS2, i.e. of sin-
gularities of singular HS-surfaces which can then be defined in the following Sect. 3.4.
In this Sect. 3.4, we can state the definition of singular AdS spacetimes.

In Sect. 3.5, we classify singular lines. In Sect. 3.6 we define and study the cau-
sality notion in singular AdS spacetimes. In particular we define the notion of causal
HS-surface, i.e. singular points admitting a neighborhood containing no closed causal
curve. It is in this section that we establish the description of the causality relation near
the singular lines as stated in Proposition 3.1.

Finally, in Sect. 3.7, we provide a geometric description of each singular line; in
particular, we justify the “massive particle”, “photon” and “tachyon” terminology.

Remark 3.2. More generally, HS2 is the model of links of points in arbitrary Lorentzian
manifolds. Analogs of Proposition 3.1 still hold in the context of flat or locally de Sitter
manifolds.

3.1. HS geometry. Given a point p in ÃdS3, let L(p) be the link of p, i.e. the set of
(non-parametrized) oriented geodesic rays based at p. Since these rays are determined
by their tangent vector at p up to rescaling, L(p) is naturally identified with the set of
rays in TpÃdS3. Geometrically, TpÃdS3 is a copy of Minkowski space R

1,2. Denote by
HS2 the set of geodesic rays issued from 0 in R

1,2. It admits a natural decomposition in
five subsets:

• the domains H
2
+ and H

2− composed respectively of future oriented and past oriented
time-like rays,

• the domain dS2 composed of space-like rays,
• the two circles ∂H

2
+ and ∂H

2−, boundaries of H
2± in HS2.

The domains H
2± are the Klein models of the hyperbolic plane, and dS2 is the Klein

model of de Sitter space of dimension 2. The group SO0(1, 2), i.e. the group of time-
orientation preserving and orientation preserving isometries of R

1,2, acts naturally (and
projectively) on HS2, preserving this decomposition.

The classification of elements of SO0(1, 2) ≈ PSL(2, R) is presumably well-known
by most of the readers, but we stress here that it is related to the HS2-geometry: let g be
a non-trivial element of SO0(1, 2).

• g is elliptic if and only if it admits exactly two fixed points, one in H
2
+, and the other

(the opposite) in H
2−,

• g is parabolic if and only if it admits exactly two fixed points, one in ∂H
2
+, and the

other (the opposite) in ∂H
2−,
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• g is hyperbolic if and only if it admits exactly 6 fixed points: two pairs of opposite
points in ∂H

2±, and one pair of opposite points in dS2.

In particular, g is elliptic (respectively hyperbolic) if and only if it admits a fixed in
H

2± (respectively in dS2).

3.2. Suspension of regular HS-surfaces.

Definition 3.3. A regular HS-surface is a topological surface endowed with a (SO0(1, 2),

HS2)-structure.

The SO0(1, 2)-invariant orientation on HS2 induces an orientation on every regular
HS-surface. Similarly, the dS2 regions admit a canonical time orientation. Hence any
regular HS-surface is oriented, and its de Sitter regions are time oriented.

Given a regular HS-surface �, and once a point p is fixed in ÃdS3, we can construct
a locally AdS manifold e(�), called the suspension of �, defined as follows:

• for any v in HS2 ≈ L(p), let r(v) be the geodesic ray issued from p tangent to v. If
v lies in the closure of dS2, it defines e(v) := r(v); if v lies in H

2±, let e(v) be the
portion of r(v) between p and the first conjugate point p±.

• for any open subset U in HS2, let e(U ) be the union of all e(v) for v in U .

Observe that e(U )\{p} is an open domain in ÃdS3, and that e(HS2) is the intersection
E(p) between the future of the first conjugate point in the past and the past of the first
conjugate point in the future (cf. the end of Sect. 2.2).

The regular HS-surface � can be understood as the disjoint union of open domains
Ui in HS2, glued one to the other by coordinate change maps gi j given by restrictions
of elements of SO0(1, 2):

gi j : Ui j ⊂ U j → U ji ⊂ Ui .

But SO0(1, 2) can be considered as the group of isometries of AdS3 fixing p. Hence
every gi j induces an identification between e(Ui j ) and e(U ji ). Define e(�) as the dis-
joint union of the e(Ui ), quotiented by the relation identifying q in e(Ui j ) with gi j (q) in
e(U ji ). This quotient space contains a special point p̄, represented in every e(Ui ) by p,
and called the vertex (we will sometimes abusively denote p̄ by p). The fact that � is a
surface implies that e(�)\ p̄ is a three-dimensional manifold, homeomorphic to � × R.
The topological space e(�) itself is homeomorphic to the cone over �. Therefore e(�)

is a (topological) manifold only when � is homeomorphic to the 2-sphere. But it is
easy to see that every HS-structure on the 2-sphere is isomorphic to HS2 itself; and the
suspension e(HS2) is simply the regular AdS-manifold E(p).

Hence in order to obtain singular AdS-manifolds that are not merely regular AdS-
manifolds, we need to consider (and define!) singular HS-surfaces.

Remark 3.4. A similar construction holds for locally flat or locally de Sitter spacetimes,
leading, mutatis mutandis to the notion of flat or de Sitter suspensions of HS-surfaces.

3.3. Singularities in singular HS-surfaces. The classification of singularities in singular
HS-surfaces essentially reduces (but not totally) to the classification of RP

1-structures
on the circle.
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3.3.1. Real projective structures on the circle. Let RP
1 be the real projective line, and

let ˜RP
1

be its universal covering. We fix a homeomorphism between ˜RP
1

and the real

line: this defines an orientation and an order < on ˜RP
1
. Let G be the group PSL(2, R)

of projective transformations of RP
1, and let G̃ be its universal covering: it is the group

of projective transformations of R̃P1. We have an exact sequence:

0 → Z → G̃ → G → 0.

Let δ be the generator of the center Z such that for every x in ˜RP
1

the inequality

δx > x holds. The quotient of ˜RP
1

by Z is projectively isomorphic to RP
1.

The elliptic-parabolic-hyperbolic classification of elements of G induces a similar
classification for elements in G̃, according to the nature of their projection in G. Observe

that non-trivial elliptic elements act on ˜RP
1

as translations, i.e. freely and properly dis-
continuously. Hence the quotient space of their action is naturally a real projective
structure on the circle. We call these quotient spaces elliptic circles. Observe that it
includes the usual real projective structure on RP

1.
Parabolic and hyperbolic elements can all be decomposed as a product g̃ = δk g,

where g has the same nature (parabolic or hyperbolic) as g̃, but admits fixed points in
˜RP

1
. The integer k ∈ Z is uniquely defined. Observe that if k 
= 0, the action of g̃ on

˜RP
1

is free and properly discontinuous. Hence the associated quotient space, which is
naturally equipped with a real projective structure, is homeomorphic to the circle. We
call it a parabolic or hyperbolic circle, according to the nature of g, of degree k. Inverting
g̃ if necessary, we can always assume, up to a real projective isomorphism, that k ≥ 1.

Finally, let g be a parabolic or hyperbolic element of G̃ fixing a point x0 in ˜RP
1
.

Let x1 be the unique fixed point of g such that x1 > x0 and such that g admits no fixed
point between x0 and x1: if g is parabolic, x1 = δx0; and if g is hyperbolic, x1 is the
unique g-fixed point in ]x0, δx0[. Then the action of g on ]x0, x1[ is free and properly
discontinuous, the quotient space is a parabolic or hyperbolic circle of degree 0.

These examples exhaust the list of real projective structures on the circle up to a real

projective isomorphism. We briefly recall the proof: the developing map d : R → ˜RP
1

of a real projective structure on R/Z is a local homeomorphism from the real line into
the real line, hence a homeomorphism onto its image I . Let ρ : Z → G̃ be the holonomy
morphism: being a homeomorphism, d induces a real projective isomorphism between
the initial projective circle and I/ρ(Z). In particular, ρ(1) is non-trivial, preserves I ,
and acts freely and properly discontinuously on I . An easy case-by-case study leads to
a proof of our claim.

It follows that every cyclic subgroup of G̃ is the holonomy group of a real projective
circle, and that two such real projective circles are projectively isomorphic if and only if
their holonomy groups are conjugate one to the other. But some subtlety appears if one
takes into consideration the orientations: usually, by real projective structure we mean
a (PGL(2, R), RP

1)-structure, i.e. coordinate changes might reverse the orientation. In
particular, two such structures are isomorphic if there is a real projective transforma-
tion conjugating the holonomy groups, even if this transformation reverses the orien-
tation. But here, by RP

1-circle we mean a (G, RP
1)-structure on the circle, with G =

PSL(2, R). In particular, it admits a canonical orientation, preserved by the holonomy
group: the one whose lifting to R is such that the developing map is orientation preserving.
To be a RP

1-isomorphism, a real projective conjugacy needs to preserve this orientation.
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Let L be a RP
1-circle. Let γ0 be the generator of π1(L) such that, for the canonical

orientation defined above, and for every x in the image of the developing map:

ρ(γ0)x > x . (1)

Let ρ(γ0) = δk g be the decomposition such that g admits fixed points in ˜RP
1
.

According to the inequality (1), the degree k is non-negative. Moreover:
The elliptic case. Elliptic RP

1-circles (i.e. with elliptic holonomy) are uniquely
parametrized by a positive real number (the angle).

The case k ≥ 1. Non-elliptic RP
1-circles of degree k ≥ 1 are uniquely parametrized

by the pair (k, [g]), where [g] is a conjugacy class in G. Hyperbolic conjugacy classes
are uniquely parametrized by a positive real number: the modulus of their trace. There
are exactly two parabolic conjugacy classes: the positive parabolic class, composed of

the parabolic elements g such that gx ≥ x for every x in ˜RP
1
, and the negative para-

bolic class, made of the parabolic elements g such that gx ≤ x for every x in ˜RP
1

(this
terminology is justified in Sect. 3.7.5, and Remark 3.18).

The case k = 0. In this case, L is isomorphic to the quotient by g of a segment
]x0, x1[ admitting as extremities two successive fixed points of g. Since we must have
gx > x for every x in this segment, g cannot belong to the negative parabolic class:
Every parabolic RP

1-circle of degree 0 is positive. Concerning the hyperbolic RP
1-cir-

cles, the conclusion is the same as in the case k ≥ 1: they are uniquely parametrized by
a positive real number. Indeed, given a hyperbolic element g in G̃, any RP

1-circle of
degree 0 with holonomy g is a quotient of a segment ]x0, x1[, where the left extremity
x0 is a repelling fixed point of g, and the right extremity an attractive fixed point.

3.3.2. HS-singularities. For every p in HS2, let �(p) the link of p, i.e. the space of rays
in Tp HS2. Such a ray v defines an oriented projective line cv starting from p. Let �p be
the stabilizer in SO0(1, 2) ≈ PSL(2, R) of p.

Definition 3.5. A (�p, �(p))-circle is the data of a point p in H S2 and a (�p, �(p))-
structure on the circle.

Since HS2 is oriented, �(p) admits a natural RP
1-structure, and thus every (�p, �(p))-

circle admits a natural underlying RP
1-structure.

Given a (�p, �(p))-circle L , we construct a singular HS-surface e(L): for every ele-
ment v in the link of p, define e(v) as the closed segment [−p, p] contained in the
projective ray defined by v, where −p is the antipodal point of p in HS2, and then
operate as we did for defining the AdS space e(�) associated to a regular HS-surface.
The resulting space e(L) is topologically a sphere, locally modeled on HS2 in the com-
plement of two singular points corresponding to p and −p. These singular points will
be typical singularities in singular HS-surfaces. Here, the singularity corresponding to
p as a preferred status, as representation a (�p, �(p))-singularity.

There are several types of singularity, mutually non isomorphic:

• time-like singularities: they correspond to the case where p lies in H
2±. Then, �p is

a 1-parameter elliptic subgroup of G, and L is an elliptic RP
1-circle. When p lies

in H
2
+ (respectively H

2−), then the singularity is a future (respectively past) time-like
singularity.

• space-like singularities: when p lies in dS2, �p is a one-parameter subgroup con-
sisting of hyperbolic elements of SO0(1, 2), and L is a hyperbolic RP

1-circle.
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• light-like singularities: it is the case where p lies in ∂H
2±. The stabilizer �p is a

one-parameter subgroup consisting of parabolic elements of SO0(1, 2), and the link
L is a parabolic RP

1-circle. We still have to distinguish between past and future
light-like singularities.

It is easy to classify time-like singularities up to (local) HS-isomorphisms: they are
locally characterized by their underlying structure of the elliptic RP

1-circle. In other
words, time-like singularities are nothing but the usual cone singularities of hyperbolic
surfaces, since they admit neighborhoods locally modeled on the Klein model of the
hyperbolic disk.

But there are several types of space-like singularities, according to the causal struc-
ture around them. More precisely: recall that every element v of �(p) is a ray in Tp HS2,
tangent to a parametrized curve cv starting at p and contained in a projective line of
HS2 = P(R1,2). Taking into account that dS2 is the Klein model of the 2-dimensional
de Sitter space, it follows that v, as a direction in a Lorentzian spacetime, can be a time-
like, light-like or space-like direction. Moreover, in the two first cases, it can be future
oriented or past oriented.

Definition 3.6. If p lies in dS2, we denote by i+(�(p)) (respectively i−(�(p))) the set of
future oriented (resp. past oriented) directions.

Observe that i+(�(p)) and i−(�(p)) are connected, and that their complement in �(p)

has two connected components.
This notion can be extended to light-like singularities:

Definition 3.7. If p lies in ∂H
2
+, the domain i+(�(p)) (respectively i−(�(p))) is the set

of directions v such that cv(s) lies in H
2
+ (respectively dS2) for s sufficiently small.

Similarly, if p lies in ∂H
2−, the domain i−(�(p)) (respectively i+(�(p))) is the set of

directions v such that cv(s) lies in H
2− (respectively dS2) for s sufficiently small.

In this situation, i+(�(p)) and i−(�(p)) are the connected components of the com-
plement of the two points in �(p) which are directions tangent to ∂H

2±.
For time-like singularities, we simply define i+(�(p)) = i−(�(p)) = ∅.
Finally, observe that the extremities of the arcs i±(�(p)) are precisely the fixed points

of �p.

Definition 3.8. Let L be a (�p, �(p))-circle. Let d : L̃ → �(p) the developing map.
The preimages d−1(i+(�(p))) and d−1(i−(�(p))) are open domain in L̃, preserved by
the deck transformations. Their projections in L are denoted respectively by i+(L) and
i−(L).

We invite the reader to convince himself that the RP
1-structure and the additional

data of i±(L) determine the (�p, �(p))-structure on the link, hence the HS-singular
point up to HS-isomorphism.

In the sequel, we present all the possible types of singularities, according to the
position in HS2 of the reference point p, and according to the degree of the underlying
RP

1-circle. Some of them are called BTZ-like or Misner singularities; the reason for
this terminology will be explained later in Sects. 3.7.4, 3.7.3, respectively.

(1) time-like singularities: We have already observed that they are easily classified:
they can be considered as H

2-singularities. They are characterized by their cone
angle, and by their future/past quality.
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(2) space-like singularities of degree 0: Let L be a space-like singularity of degree
0, i.e. a (�p, �(p))-circle such that the underlying hyperbolic RP

1-circle has
degree 0. Then the holonomy of L is generated by a hyperbolic element g, and
L is isomorphic to the quotient of an interval I of �(p) by the group 〈g〉 gen-
erated by g. The extremities of I are fixed points of g, therefore we have three
possibilities:
• If I = i+(�(p)), then L = i+(L) and i−(L) = ∅. The singularity is then called

a BTZ-like past singularity.
• If I = i−(�(p)), then L = i−(L) and i+(L) = ∅. The singularity is then called

a BTZ-like future singularity.
• If I is a component of �(p) \ (i+(�(p)) ∪ i−(�(p))), then i+(L) = i−(L) = ∅.

The singularity is a Misner singularity.
(3) light-like singularities of degree 0: When p lies in ∂H

2
+, and when the underlying

parabolic RP
1-circle has degree 0, then L is the quotient of i+(�(p)) or i−(�(p))

by a parabolic element.
• If I = i+(�(p)), then L = i+(L) and i−(L) = ∅. The singularity is then called a

future cuspidal singularity. Indeed, in that case, a neighborhood of the singular
point in e(L) with the singular point removed is an annulus locally modelled
on the quotient of H

2
+ by a parabolic isometry, i.e., a hyperbolic cusp.

• If I = i−(�(p)), then L = i−(L) and i+(L) = ∅. The singularity is then called
a extreme BTZ-like future singularity.

The case where p lies in ∂H
2− and L of degree 0 is similar; we get the notion of

past cuspidal singularity and extreme BTZ-like past singularity.
(4) space-like singularities of degree k ≥ 1: when the singularity is space-like of degree

k ≥ 1, i.e. when L is a hyperbolic (�p, �(p))-circle of degree ≥ 1, the situation
is slightly more complicated. In that situation, L is the quotient of the universal

covering L̃ p ≈ ˜RP
1

by a group generated by an element of the form δk g, where δ

is in the center of G̃ and g admits fixed points in L̃ p. Let I ± be the preimage in L̃ p

of i±(�(p)) by the developing map. Let x0 be a fixed point of g in L̃ p which is a
left extremity of a component of I + (recall that we have prescribed an orientation,
i.e. an order, on the universal covering of any RP

1-circle: the one for which the
developing map is increasing). Then, this component is an interval ]x0, x1[, where
x1 is another g-fixed point. All the other g-fixed points are the iterates x2i = δi x0
and x2i+1 = δi x1. The components of I + are the intervals δ2i ]x0, x1[ and the com-
ponents of I − are δ2i+1]x0, x1[. It follows that the degree k is an even integer. We
have a dichotomy:
• If, for every integer i , the point x2i (i.e. the left extremities of the components

of I +) is a repelling fixed point of g, then the singularity is a positive space-like
singularity of degree k.

• In the other case, i.e. if the left extremities of the components of I + are attract-
ing fixed points of g, then the singularity is a negative space-like singularity of
degree k.

In other words, the singularity is positive if and only if for every x in I + we have
gx ≥ x .

(5) light-like singularities of degree k ≥ 1: Similarly, parabolic (�p, �(p))-circles have
even degree, and the dichotomy past/future among parabolic (�p, �(p))-circles of
degree ≥ 2 splits into two subcases: the positive case for which the parabolic
element g satisfies gx ≥ x on L̃ p, and the negative case satisfying the reverse
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Fig. 1. A cuspidal singularity appears by taking the quotient of a half-sphere in HS2 containing H
2
+ and tangent

to ∂H
2
+ at a point p. The opposite point −p then corresponds to a past extreme BTZ-like singularity

inequality (this positive/negative dichotomy is inherent of the structure of ˜RP
1
-cir-

cle data, cf. the end of Sect. 3.3.1).

Remark 3.9. In the previous section we observed that there is only one RP
1 hyperbolic

circle of holonomy 〈g〉 up to RP
1-isomorphism, but this remark does not extend to

hyperbolic (�p, �(p))-circles since a real projective conjugacy between g and g−1, if
preserving the orientation, must permute time-like and space-like components. Hence
positive hyperbolic (�p, �(p))-circles and negative hyperbolic (�p, �(p))-circles are
not isomorphic.

Remark 3.10. Let L be a (�p, �(p))-circle. The suspension e(L) admits two singular
points p̄, − p̄, corresponding to p and −p. Observe that when p is space-like, p̄ and
− p̄, as HS-singularities, are always isomorphic. When p is time-like, one of the sin-
gularities is future time-like and the other is past time-like. If p̄ is a future light-like
singularity of degree k ≥ 1, then − p̄ is a past light-like singularity of degree k, and vice
versa.

Finally, let p̄ be a future cuspidal singularity. The (�p, �(p))-circle L is the quotient
by a cyclic group of the set of rays in Tp HS2 tangent to projective rays contained in H

2
+.

It follows that the suspension e(L) is a cyclic quotient of the domain in HS2 delimited
by the projective line tangent to ∂H

2
+ at p and containing H

2
+. This half-space does not

contain H
2−. It follows that − p̄ is not a past cuspidal singularity, but rather a past extreme

BTZ-like singularity (see Fig. 1).

3.4. Singular HS-surfaces. Once we know all possible HS-singularities, we can define
singular HS-surfaces:

Definition 3.11. A singular HS-surface � is an oriented surface containing a discrete
subset S such that � \ S is a regular HS-surface, and such that every p in S admits a
neighborhood HS-isomorphic to an open subset of the suspension e(L) of a (�p, �(p))-
circle L.

The construction of AdS-manifolds e(�) extends to singular HS-surfaces:

Definition 3.12. A singular AdS spacetime is a 3-manifold M containing a closed subset
L (the singular set) such that M \ L is a regular AdS-spacetime, and such that every
x in L admits a neighborhood AdS-isomorphic to the suspension e(�) of a singular
HS-surface.
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Since we require M to be a manifold, each cone e(�) must be a 3-ball, i.e. each
surface � must be actually homeomorphic to the 2-sphere.

There are two types of points in the singular set of a singular AdS spacetime:

Definition 3.13. Let M be a singular AdS spacetime. A singular line in M is a connected
subset of the singular set composed of the points x such that every neighborhood of x
is AdS-isomorphic to the suspension e(�x ), where �x is a singular HS-surface e(Lx ),

where Lx is a (�p, �(p))-circle. An interaction (or collision) in M is a point x in the
singular set which is not on a singular line.

Consider point x in a singular line. Then, by definition, a neighborhood U of x is
isomorphic to the suspension e(�x ), where the HS-sphere �x is the suspension of a
(�p, �(p))-circle L . The suspension e(L) contains precisely two opposite points p̄ and
− p̄. Each of them defines a ray in U , and every point x ′ in these rays are singular points,
whose links are also described by the same singular HS-sphere e(L).

Therefore, we can define the type of the singular line: it is the type of the (�p, �(p))-
circle describing the singularity type of each of its elements. Therefore, a singular line
is time-like, space-like or light-like, and it has a degree.

On the other hand, when x is an interaction, then the HS-sphere �x is not the sus-
pension of a (�p, �(p))-circle. Let p̄ be a singularity of �x . It defines in e(�x ) a ray,
and for every y in this ray, the link of y is isomorphic to the suspension e(L) of the
(�p, �(p))-circle defining the singular point p̄.

It follows that the interactions form a discrete closed subset. In the neighborhood
of an interaction, with the interaction removed, the singular set is an union of singular
lines, along which the singularity-type is constant (however see Remark 3.10).

3.5. Classification of singular lines. The classification of singular lines, i.e. of
(�p, �(p))-circles, follows from the classification of singularities of singular
HS-surfaces:

• time-like lines,
• space-like or light-like line of degree 2,
• BTZ-like singular lines, extreme or not, past or future,
• Misner lines,
• space-like or light-like line of degree k ≥ 4. Recall that the degree is necessarily

even.

Indeed, according to Remark 3.10, what could have been called a cuspidal singular
line, is actually an extreme BTZ-like singular line.

3.6. Local future and past of singular points. In the previous section, we almost com-
pleted the proof of Proposition 3.1, except that we still have to describe, as stated in this
proposition, what is the future and the past of the singular line (in particular, that the
future and the past of non-time-like lines of degree k ≥ 2 has k/2 connected compo-
nents), and to see that Misner lines are surrounded by closed causal curves.

Let M be a singular AdS-manifold M . Outside the singular set, M is isometric to an
AdS manifold. Therefore one can define as usual the notion of time-like or causal curve,
at least outside singular points.

If x is a singular point, then a neighborhood U of x is isomorphic to the suspension
of a singular HS-surface �x . Every point in �x , singular or not, is the direction of a
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line � in U starting from x . When x is singular, � is a singular line, in the meaning of
Definition 3.13; if not, �, with x removed, is a geodesic segment. Hence, we can extend
the notion of causal curves, allowing them to cross an interaction or a space-like singular
line, or to go for a while along a time-like or a light-like singular line.

Once this notion is introduced, one can define the future I +(x) of a point x as the
set of final extremities of future oriented time-like curves starting from x . Similarly, one
defines the past I −(x), and the causal past/future J±(x).

Let H
+
x (resp. H

−
x ) be the set of future (resp. past) time-like elements of the HS-sur-

face �x . It is easy to see that the local future of x in e(�x ), which is locally isometric
to M , is the open domain e(H+

x ) ⊂ e(�x ). Similarly, the past of x in e(�x ) is e(H−
x ).

It follows that the causality relation in the neighborhood of a point in a time-like
singular line has the same feature as the causality relation near a regular point: the
local past and the local future are non-empty connected open subsets, bounded by light-
like geodesics. The same is true for a light-like or space-like singular line of degree
exactly 2.

On the other hand, points in a future BTZ-like singularity, extreme or not, have no
future, and only one past component. This past component is moreover isometric to the
quotient of the past of a point in ÃdS3 by a hyperbolic (parabolic in the extreme case)
isometry fixing the point. Hence, it is homeomorphic to the product of an annulus by
the real line.

If L has degree k ≥ 4, then the local future of a singular point in e(e(L)) admits k/2
components, hence at least 2, and the local past as well. This situation is quite unusual,
and in our further study we exclude it: from now on, we always assume that light-like
or space-like singular lines have degree 0 or 2.

Points in Misner singularities have no future, and no past. Besides, any neighborhood
of such a point contains closed time-like curves (CTC in short). Indeed, in that case,
e(L) is obtained by glueing the two space-like sides of a bigon entirely contained in the
de Sitter region dS2 by some isometry g, and for every point x in the past side of this
bigon, the image gx lies in the future of x : any time-like curve joining x to gx induces
a CTC in e(L). But:

Lemma 3.14. Let � be a singular HS-surface. Then the singular AdS-manifold e(�)

contains closed causal curves (CCC in short) if and only if the de Sitter region
of � contains CCC. Moreover, if it is the case, every neighborhood of the vertex of
e(�) contains a CCC of arbitrarily small length.

Proof. Let p̄ be the vertex of e(�). Let H
±
p̄ denote the future and past hyperbolic part

of �, and let dS p̄ be the de Sitter region in �. As we have already observed, the future
of p̄ is the suspension e(H+

p̄). Its boundary is ruled by future oriented lightlike lines,
singular or not. It follows, as in the regular case, that any future oriented time-like line
entering in the future of p̄ remains trapped therein and cannot escape anymore: such a
curve cannot be part of a CCC. Furthermore, the future e(H+

p̄) is isometric to the prod-

uct (−π/2, π/2) × H
+
p̄ equipped with the singular Lorentz metric −dt2 + cos2(t)ghyp,

where ghyp is the singular hyperbolic metric with cone singularities on H
+
p̄ induced by

the HS-structure. The coordinate t induces a time function, strictly increasing along
causal curves. Therefore, e(H+

p̄) contains no CCC.
It follows that CCC in e(�) avoid the future of p̄. Similarly, they avoid the past of

p̄: all CCC are entirely contained in the suspension e(dS2
p̄) of the de Sitter region of �.
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For any real number ε, let fε : dS2
p̄ → e(dS2

p̄) be the map associating to v in the
de Sitter region the point at distance ε to p̄ on the space-like geodesic r(v). Then the
image of fε is a singular Lorentzian submanifold locally isometric to the de Sitter space
rescaled by a factor λ(ε). Moreover, fε is a conformal isometry: its differential multiply
by λ(ε) the norms of tangent vectors. Since λ(ε) tends to 0 with ε, it follows that if �

has a CCC, then e(�) has a CCC of arbitrarily short length.
Conversely, if e(�) has a CCC, it can be projected along the radial directions on a

surface corresponding to a fixed value of ε, keeping it causal, as can be seen from the
explicit form of the metric on e(�) above. It follows that, when e(�) has a CCC, � also
has one. This finishes the proof of the lemma. ��

The proof of Proposition 3.1 is now complete.

Remark 3.15. All this construction can be adapted, with minor changes, to the flat or de
Sitter situation, leading to a definition of singular flat or de Sitter spacetimes, locally mod-
eled on suspensions of singular HS-surfaces. For examples, in the proof of Lemma 3.14,
one has just to change the metric −dt2 + cos2(t)ghyp by −dt2 + y2ghyp in the flat case,
and by −dt2 + cosh2(t)ghyp in the de Sitter case.

From now on, we will restrict our attention to HS-surfaces without CCC and corre-
sponding to singular points where the future and the past, if non-empty, are connected:

Definition 3.16. A singular HS-surface is causal if it admits no singularity of degree
≥ 4 and no CCC. A singular line is causal if the suspension e(L) of the associated
(�p, �(p))-circle L is causal.

In other words, a singular HS-surface is causal if the following singularity types are
excluded:

• space-like or light-like singularities of degree ≥ 4,
• Misner singularities.

3.7. Geometric description of HS-singularities and AdS singular lines. The approach
of singular lines we have given so far has the advantage to be systematic, but is quite
abstract. In this section, we give cut-and-paste constructions of singular AdS-spacetimes
which provide a better insight on the geometry of AdS singularities.

3.7.1. Massive particles. Let D be a domain in ÃdS3 bounded by two time-like totally
geodesic half-planes P1, P2 sharing as common boundary a time-like geodesic c. The
angle θ of D is the angle between the two geodesic rays H ∩ P1, H ∩ P2 issued from
c ∩ H , where H is a totally geodesic hyperbolic plane orthogonal to c. Glue P1 to P2

by the elliptic isometry of ÃdS3 fixing c pointwise. The resulting space, up to isometry,
only depends on θ , and not on the choices of c and of D with angle θ . The complement
of c is locally modeled on AdS3, while c corresponds to a cone singularity with some
cone angle θ .

We can also consider a domain D, still bounded by two time-like planes, but not
embedded in ÃdS3, wrapping around c, maybe several times, by an angle θ > 2π .
Glueing as above, we obtain a singular spacetime with angle θ > 2π .

In these examples, the singular line is a time-like singular line, and all time-like
singular lines are clearly produced in this way.
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Remark 3.17. There is an important literature in physics involving such singularities, in
the AdS background like here or in the Minkowski space background, where they are
called wordlines, or cosmic strings, describing a massive particle in motion, with mass
m := 1 − θ/2π . Hence θ > 2π corresponds to particles with negative mass - but they
are usually not considered in physics. See for example [Car03, p. 41-42]. Let us mention
in particular a famous example by R. Gott in [Got91], followed by several papers (for
example, [Gra93,CFGO94,Ste94]) where it is shown that a (flat) spacetime containing
two such singular lines may present some causal pathology at large scale.

3.7.2. Tachyons. Consider a space-like geodesic c in ÃdS3, and two time-like totally
geodesic planes Q1, Q2 containing c. We will also consider the two light-like totally
geodesic subspaces L1 and L2 of ÃdS3 containing c, and, more generally, the space P of
totally geodesic subspaces containing c. Observe that the future of c, near c, is bounded
by L1 and L2.

We choose an orientation of c: the orientation of ÃdS3 then induces a (counterclock-
wise) orientation on P , hence on every loop turning around c. We choose the indexation
of the various planes Q1, Q2, L1 and L2 such that every loop turning counterclockwise
around x , enters in the future of c through L1, then crosses successively Q1, Q2, and
finally exits from the future of c through L2. Observe that if we had considered the past
of c instead of the future, we would have obtained the same indexation.

The planes Q1 and Q2 intersect each other along infinitely many space-like geode-
sics, always under the same angle. In each of these planes, there is an open domain Pi
bounded by c and another component c+ of Q1 ∩ Q2 in the future of c and which does
not intersect another component of Q1 ∩ Q2. The component c+ is a space-like geodesic,
which can also be defined as the set of first conjugate points in the future of points in c
(cf. the end of Sect. 2.2).

The union c ∪ c+ ∪ P1 ∪ P2 disconnects ÃdS3. One of these components, denoted
W , is contained in the future of c and the past of c+. Let D be the other component,
containing the future of c+ and the past of c. Consider the closure of D, and glue P1

to P2 by a hyperbolic isometry of ÃdS3 fixing every point in c and c+. The resulting
spacetime contains two space-like singular lines, still denoted by c, c+, and is locally
modeled on AdS3 on the complement of these lines (see Fig. 2).

Clearly, these singular lines are space-like singularities, isometric to the singularities
associated to a space-like (�p, �(p))-circle L of degree two. We claim furthermore that
c is positive. Indeed, the (�p, �(p))-circle L is naturally identified with P . Our choice
of indexation implies that the left extremity of i+(L) is L1. Since the holonomy sends
Q1 onto Q2, the left extremity L1 is a repelling fixed point of the holonomy. Therefore,
the singular line corresponding to c is positive according to our terminology.

On the other hand, a similar reasoning shows that the space-like singular line c+ is
negative. Indeed, the totally geodesic plane L1 does not correspond anymore to the left
extremities of the time-like components in the (�p, �(p))-circle associated to c+, but to
the right extremities.

Remark 3.18. Consider a time-like geodesic � in ÃdS3, hitting the boundary of the future
of c at a point in P1. This geodesic corresponds to a time-like geodesic �′ in the singular
spacetime defined by our cut-and-paste surgery which coincides with � before crossing
P1, and, after the crossing, with the image �′ of � by the holonomy. The direction of �′
is closer to L2 than was �.
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Fig. 2. By removing the domain W and glueing P1 to P2 one gets a spacetime with two tachyons. If we keep
W and glue P1 to P2, we obtain a spacetime with one future BTZ singular line and one past BTZ singular line

In other words, the situation is as if the singular line c were attracting the lightrays,
i.e. had positive mass. This is the reason why we call c a positive singular line (Sect. 3.8).

There is an alternative description of these singularities: start again from a space-like
geodesic c in ÃdS3, but now consider two space-like half-planes S1, S2 with common
boundary c, such that S2 lies above S1, i.e. in the future of S1, and such that every time-
like geodesic intersecting S1 intersects S2 (see Fig. 3). Then remove the intersection V
between the past of S2 and the future of S1, and glue S1 to S2 by a hyperbolic isometry
fixing every point in c. The resulting singular spacetime contains a singular space-like
line. It should be clear to the reader that this singular line is space-like of degree 2 and
negative. If instead of removing a wedge V we insert it in the spacetime obtained by
cutting ÃdS3 along a space-like half-plane S, we obtain a spacetime with a positive
space-like singularity of degree 2.

Last but not least, there is another way to construct space-like singularities of degree
2. Given the space-like geodesic c, let L+

1 be the future component of L1 \ c. Cut along
L+

1, and glue back by a hyperbolic isometry γ fixing every point in c. More precisely,
we consider the singular spacetime such that for every future oriented time-like curve
in ÃdS3 \ L+

1 terminating at L+
1, a point x can be continued in the singular spacetime

by a future oriented time-like curve starting from γ x . Once more, we obtain a singular
AdS-spacetime containing a space-like singular line of degree 2. We leave to the reader
the proof of the following fact: the singular line is positive mass if and only if for every
x in L+

1 the light-like segment [x, γ x] is past-oriented, i.e. γ sends every point in L+
1 in

its own causal past.

Remark 3.19. As a corollary we get the following description space-like HS-singulari-
ties of degree 2: consider a small disk U in dS2 and a point x in U . Let r be one light-like
geodesic ray contained in U issued from x , cut along it and glue back by a hyperbolic
dS2-isometry γ like described in Fig. 4 (be careful that in this figure, the isometry, glue-
ing the future copy of r in the boundary of U \ r into the past copy of r ; hence γ is
the inverse of the holonomy). Observe that one cannot match one side on the other, but
the resulting space is still homeomorphic to the disk. The resulting HS-singularity is
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Fig. 3. The cylinder represents the boundary of the conformal model of AdS. If we remove the domain V and
glue S1 to S2 we get a spacetime with one tachyon. If we keep V and glue S1 to S2, we obtain a spacetime
with one Misner singular line

Fig. 4. Construction of a positive space-like singular line of degree 2

space-like, of degree 2. If r is future oriented, the singularity is positive if and only if
for every y in r the image γ y lies in the future of y. If r is past oriented, the singularity
is positive if and only if γ y lies in the past of y for every y in r .

Remark 3.20. As far as we know, this kind of singular line is not considered in physics
literature. However, it is a very natural extension of the notion of massive particles.
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It sounds to us natural to call these singularities, representing particles faster than light,
tachyons, which can be positive or negative, depending on their influence on lightrays.

Remark 3.21. Space-like singularity of any (even) degree 2k can be constructed as k-
branched cover of a space-like singularity of degree 2. In other words, they are obtained
by identifying P1 and P2, but now seen as the boundaries of a wedge turning k times
around c.

3.7.3. Misner singularities. Let S1, S2 be two space-like half-planes with common
boundary as appearing in the second version of definition of tachyons in the previ-
ous section, with S2 lying in the future of S1. Now, instead of removing the intersection
V between the future of S1 and the past of S2, keep it and remove the other part (the main
part!) of ÃdS3. Glue its two boundary components S1, S2 by an AdS-isometry fixing c
pointwise. The reader will easily convince himself that the resulting spacetime contains
a space-like line of degree 0, i.e. what we have called a Misner singular line (see Fig. 3).

The reason of this terminology is that this kind of singularity is often considered, or
mentioned2, in papers dedicated to gravity in dimension 2 + 1, maybe most of the time
in the Minkowski background, but also in the AdS background. They are attributed to
Misner who considered the 3 + 1-dimensional analog of this spacetime (for example, the
glueing is called “Misner identification” in [DS93]; see also [GL98]).

3.7.4. BTZ-like singularities. Consider the same data (c, c+, P1, P2) used for the
description of tachyons, i.e. space-like singularities, but now remove D, and glue the
boundaries P1, P2 of W by a hyperbolic element γ0 fixing every point in c. The resulting
space is a manifold B containing two singular lines, that we abusively still denote c and
c+, and is locally AdS3 outside c, c+ (see Fig. 2). Observe that every point of B lies in
the past of the singular line corresponding to c+ and in the future of the singular line
corresponding to c. It follows easily that c is a BTZ-like past singularity, and that c+ is
a BTZ-like future singularity.

Remark 3.22. Let E be the open domain in ÃdS3, intersection between the future of c
and the past of c+. Observe that W \ P1 is a fundamental domain for the action on E
of the group 〈γ0〉 generated by γ0. In other words, the regular part of B is isometric
to the quotient E/〈γ0〉. This quotient is precisely a static BTZ black-hole as first intro-
duced by Bañados, Teitelboim and Zanelli in [BTZ92] (see also [Bar08a,Bar08b]). It is
homeomorphic to the product of the annulus by the real line. The singular spacetime B
is obtained by adjoining to this BTZ black-hole two singular lines: this follows that B is
homeomorphic to the product of a 2-sphere with the real line in which c+ and c can be
naturally considered respectively as the future singularity and the past singularity. This
is the explanation of the “BTZ-like” terminology. More details will be given in Sect. 7.3.

Remark 3.23. This kind of singularity appears in several papers in the physics literature.
We point out among them the excellent paper [HM99] where Gott’s construction quoted
above is adapted to the AdS case, and where a complete and very subtle description
of singular AdS-spacetimes interpreted as the creation of a BTZ black-hole by a pair
of light-like particles, or by a pair of massive particles is provided. In our terminology,
these spacetimes contains three singularities: a pair of light-like or time-like positive
singular lines, and a BTZ-like future singularity. These examples show that even if all

2 Essentially because of their main feature pointed out in Sect. 3.6: they are surrounded by CTC.
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the singular lines are causal, in the sense of Definition 3.16, a singular spacetime may
exhibit big CCC due to a more global phenomenon.

3.7.5. Light-like and extreme BTZ-like singularities. The definition of a light-like sin-
gularity is similar to that of space-like singularities of degree 2 (tachyons), but starts with
the choice of a light-like geodesic c in ÃdS3. Given such a geodesic, we consider another
light-like geodesic c+ in the future of c, and two disjoint time-like totally geodesic annuli
P1, P2 with boundary c ∪ c+.

More precisely, consider pairs of space-like geodesics (cn, cn
+) as those appearing in

the description of tachyons, contained in time-like planes Qn
1, Qn

2, so that cn converge
to the light-like geodesic c. Then, cn

+ converge to a light-like geodesic c+, whose past
extremity in the boundary of ÃdS3 coincide with the future extremity of c. The time-like
planes Qn

1, Qn
2 converge to time-like planes Q1, Q2 containing c and c+. Then Pi is the

annulus bounded in Qi by c and c+. Glue the boundaries P1 and P2 of the component
D of ÃdS3 \ (P1 ∪ P2) contained in the future of c by an isometry of ÃdS3 fixing every
point in c (and in c+): the resulting space is a singular AdS-spacetime, containing two
singular lines, abusely denoted by c, c+. As in the case of tachyons, we can see that these
singular lines have degree 2, but they are light-like instead of space-like. The line c is
called positive, and c+ is negative.

Similarly to what happens for tachyons, there is an alternative way to construct light-
like singularities: let L be one of the two light-like half-planes bounded by c. Cut ÃdS3
along L , and glue back by an isometry γ fixing pointwise c: the result is a singular
spacetime containing a light-like singularity of degree 2.

Finally, extreme BTZ-like singularities can be described in a way similar to what
we have done for (non extreme) BTZ-like singularities. As a matter of fact, when we
glue the wedge W between P1 and P2 we obtain a (static) extreme BTZ black-hole as
described in [BTZ92] (see also [Bar08b, Sect. 3.2, Sect. 10.3]). Further comments and
details are left to the reader.

Remark 3.24. Light-like singularities of degree 2 appear very frequently in physics,
where they are called wordlines, or cosmic strings, of massless particles, or even some-
times “photons” ([DS93]).

Remark 3.25. As in the case of tachyons (see Remark 3.21) one can construct light-like
singularities of any degree 2k by considering a wedge turning k times around c before
glueing its boundaries.

Remark 3.26. A study similar to what has been done in Remark 3.18 shows that positive
photons attract lightrays, whereas negative photons have a repelling behavior.

Remark 3.27. However, there is no positive/negative dichotomy for BTZ-like singular-
ities, extreme or not.

Remark 3.28. From now on, we allow ourselves to qualify HS-singularities according to
the nature of the associated AdS-singular lines: an elliptic HS-singularity is a (massive)
particle, a space-like singularity is a tachyon, positive or negative, etc...

Remark 3.29. Let [p1, p2] be an oriented arc in ∂H
2
+, and for every x in H

2
+ consider

the elliptic singularity (with positive mass) obtained by removing the wedge composed
of geodesic rays issued from x and with extremity in [p1, p2], and glueing back by an



170 T. Barbot, F. Bonsante, J.-M. Schlenker

elliptic isometry. Move x until it reaches a point x∞ in ∂H
2 \ [p1, p2]. It provides a

continuous deformation of an elliptic singularity to a light-like singularity, which can be
continued further into dS2 by a continuous sequence of space-like singularities. Observe
that the light-like (resp. space-like) singularities appearing in this continuous family are
positive (resp. have positive mass).

3.8. Positive HS-surfaces. Among singular lines, i.e. “particles”, we can distinguish the
ones having an attracting behavior on lightrays (see Remark 3.17, 3.18, 3.26):

Definition 3.30. A HS-surface, an interaction or a singular line is positive if all space-
like and light-like singularities of degree ≥ 2 therein are positive, and if all time-like
singularities have a cone angle less than 2π .

4. Particle Interactions and Convex Polyhedra

This short section briefly describes a relationship between interactions of particles in
3-dimensional AdS manifolds, HS-structure on the sphere, and convex polyhedra in
HS3, the natural extension of the hyperbolic 3-dimensional by the de Sitter space.

Convex polyhedra in HS3 provide a convenient way to visualize a large variety of
particle interactions in AdS manifolds (or more generally in Lorentzian 3-manifolds).
This section should provide the reader with a wealth of examples of particle interactions
– obtained from convex polyhedra in HS3 – exhibiting various interesting behaviors. It
should then be easier to follow the classification of positive causal HS-surfaces in the
next section.

The relationship between convex polyhedra and particle interactions might however
be deeper than just a convenient way to construct examples. It appears that many, and
possibly all, particle interactions in an AdS manifold satisfying some natural conditions
correspond to a unique convex polyhedron in HS3. This deeper aspect of the relation-
ship between particle interactions and convex polyhedra is described in Sect. 4.5 only
in a special case: interactions between only massive particles and tachyons. It appears
likely that it extends to a more general context, however it appears preferable to restrict
those considerations here to a special case which, although already exhibiting interesting
phenomena, avoids the technical complications of the general case.

4.1. The space HS3. The definition used above for HS2 can be extended as it is to higher
dimensions. So HS3 is the space of geodesic rays starting from 0 in the four-dimensional
Minkowski space R

3,1. It admits a natural action of SO0(1, 3), and has a decomposition
in 5 components:

• The “upper” and “lower” hyperbolic components, denoted by H3
+ and H3−, corre-

sponding to the future-oriented and past-oriented time-like rays. On those two com-
ponents the angle between geodesic rays corresponds to the hyperbolic metric on
H3.

• The domain d S3 composed of space-like geodesic rays.
• The two spheres ∂ H3

+ and ∂ H3− which are the boundaries of H3
+ and H3−, respectively.

We call Q their union.

There is a natural projective model of HS3 in the double cover of RP
3 – we have to

use the double cover because HS3 is defined as a space of geodesic rays, rather than as a
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Fig. 5. Three types of polyhedra in HS3

space of geodesics containing 0. This model has the key feature that the connected com-
ponents of the intersections of the projective lines with the de Sitter/hyperbolic regions
correspond to the geodesics of the de Sitter/hyperbolic regions.

Note that there is a danger of confusion with the notations used in [Sch98], since the

space which we call HS3 here is denoted by H̃S
3

there, while the space HS3 in [Sch98]
is the quotient of the space HS3 considered here by the antipodal action of Z/2Z.

4.2. Convex polyhedra in HS3. In all this section we consider convex polyhedra in HS3

but will always suppose that they do not have any vertex on Q. We now consider such
a polyhedron, calling it P .

The geometry induced on the boundary of P depends on its position relative to the
two hyperbolic components of HS3, and we can distinguish three types of polyhedra
(Fig. 5).

• polyhedra of hyperbolic type intersect one of the hyperbolic components of HS3, but
not the other. We find for instance in this group:
– the usual, compact hyperbolic polyhedra, entirely contained in one of the hyper-

bolic components of HS3,
– the ideal or hyperideal hyperbolic polyhedra,
– the duals of compact hyperbolic polyhedra, which contain one of the hyperbolic

components of HS3 in their interior.
• polyhedra of bi-hyperbolic type intersect both hyperbolic components of HS3,
• polyhedra of compact type are contained in the de Sitter component of HS3.

The terminology used here is taken from [Sch01].
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We will see below that polyhedra of bi-hyperbolic type play the simplest role in rela-
tion to particle interactions: they are always related to the simpler interactions involving
only massive particles and tachyons. Those of hyperbolic type are (sometimes) related
to particle interactions involving a BTZ-type singularity. Polyhedra of compact type
are the most exotic when considered in relation to particle interactions and will not be
considered much here, for reasons which should appear clearly below.

4.3. Induced HS-structures on the boundary of a polyhedron. We now consider the
geometric structure induced on the boundary of a convex polyhedron in HS3. Those
geometric structures have been studied in [Sch98,Sch01], and we will partly rely on
those references, while trying to make the current section as self-contained as possible.
Note however that the notion of HS metric used in [Sch98,Sch01] is more general than
the notion of HS-structure considered here.

In fact the geometric structure induced on the boundary of a convex polyhedron
P ⊂ HS3 is an HS-structure in some, but not all, cases, and the different types of
polyhedra behave differently in this respect.

4.3.1. Polyhedra of bi-hyperbolic type. This is the simplest situation: the induced geo-
metric structure is always a causal positive singular HS-structure.

The geometry of the induced geometric structure on those polyhedra is described in
[Sch01], under the condition that there there is no vertex on the boundary at infinity of
the two hyperbolic components of HS3. The boundary of P can be decomposed in three
components:

• A “future” hyperbolic disk D+ := ∂ P ∩ H3
+ , on which the induced metric is hyper-

bolic (with cone singularities at the vertices) and complete.
• A “past” hyperbolic disk D− = ∂ P ∩ H3−, similarly with a complete hyperbolic

metric.
• A de Sitter annulus, also with cone singularities at the vertices of P .

In other terms, ∂ P is endowed with an HS-structure. Moreover all vertices in the de
Sitter part of the HS-structure have degree 2.

A key point is that the convexity of P implies directly that this HS-structure is
positive: the cone angles are less than 2π at the hyperbolic vertices of P , while the
positivity condition is also satisfied at the de Sitter vertices. This can be checked by
elementary geometric arguments or can be found in [Sch01, Def. 3.1 and Thm. 1.3].

4.3.2. Polyhedra of hyperbolic type. In this case the induced geometric structure is
sometimes a causal positive HS-structure. The geometric structure on those polyhedra
is described in [Sch98], again when P has no vertex on ∂ H3

+ ∪ ∂ H3−.
Figure 6 shows on the left an example of polyhedron of hyperbolic type for which

the induced geometric structure is not an HS-structure, since the upper face (in gray) is
a space-like face in the de Sitter part of HS3, so that it is not modelled on HS2.

The induced geometric structure on the boundary of the polyhedron shown on the
right, however, is a positive causal HS-structure. At the upper and lower vertices, this
HS-structure has degree 0. The three “middle” vertices are contained in the hyperbolic
part of the HS-structure, and the positivity of the HS-structure at those vertices follows
from the convexity of the polyhedron.
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Fig. 6. Two polyhedra of hyperbolic type

Fig. 7. Two polyhedra of compact type

4.3.3. Polyhedra of compact type. In this case too, the induced geometric structure is
also sometimes a causal HS-structure.

On the left side of Fig. 7 we find an example of a polyhedron of compact type on
which the induced geometric structure is not an HS-structure – the upper face, in gray,
is a space-like face in the de Sitter component of HS3. On the right side, the geometric
structure on the boundary of the polyhedron is a positive causal HS-structure. All faces
are time-like faces, so that they are modelled on HS2. The upper and lower vertices
have degree 0, while the three “middle” vertices have degree 2, and the positivity of the
HS-structure at those points follows from the convexity of the polyhedron (see [Sch01]).

4.4. From a convex polyhedron to a particle interaction. When a convex polyhedron
has on its boundary an induced positive causal HS-structure, it is possible to consider
the interaction corresponding to this HS-structure.
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This interaction can be constructed from the HS-structure by a warped product metric
construction. It can also be obtained as in Sect. 2, by noting that each open subset of
the regular part of the HS-structure corresponds to a cone in Ad S3, and that those cones
can be glued in a way corresponding to the gluing of the corresponding domains in the
HS-structure.

The different types of polyhedra – in particular the examples in Fig. 7 and Fig. 6 –
correspond to different types of interactions.

4.4.1. Polyhedra of bi-hyperbolic type. For those polyhedra the hyperbolic vertices in
H3

+ (resp. H3−) correspond to massive particles leaving from (resp. arriving at) the inter-
action. The de Sitter vertices, at which the induced HS-structure has degree 2, correspond
to tachyons.

4.4.2. Polyhedra of hyperbolic type. In the example on the right of Fig. 6, the upper and
lower vertices correspond, through the definitions in Sect. 3, to two future BTZ-type
singularities (or two past BTZ-type singularities, depending on the time orientation).
The three middle vertices correspond to massive particles. The interaction correspond-
ing to this polyhedron therefore involves two future (resp. past) BTZ-type singularities
and three massive particles.

The interactions corresponding to polyhedra of hyperbolic type can be more com-
plex, in particular because the topology of the intersection of the boundary of a convex
polyhedron with the de Sitter part of HS3 could be a sphere with an arbitrary number of
disks removed. Those interactions can involve future BTZ-type singularities and massive
particles, but also tachyons.

4.4.3. Polyhedra of compact type. The interaction corresponding to the polyhedron at
the right of Fig. 7 is even more exotic. The upper vertex corresponds to a future BTZ-type
singularity, the lower to a past BTZ-type singularity, and the three middle vertices cor-
respond to tachyons. The interaction therefore involves a future BTZ-type singularity, a
past BTZ-type singularity, and three tachyons.

4.5. From a particle interaction to a convex polyhedron. This section describes, in a
restricted setting, a converse to the construction of an interaction from a convex poly-
hedron in HS3. We show below that, under an additional condition which seems to be
physically relevant, an interaction can always be obtained from a convex polyhedron in
HS3. Using the relation described in Sect. 2 between interactions and positive causal
HS-structures, we will relate convex polyhedra to those HS-structures rather than directly
to interactions.

This converse relation is described here only for simple interactions involving mas-
sive particles and tachyons.

4.5.1. A positive mass condition. The additional condition appearing in the converse
relation is natural in view of the following remark.

Remark 4.1. Let M be a singular AdS manifold, c be a cone singularity along a time-like
curve, with positive mass (angle less than 2π ). Let x ∈ c and let Lx be the link of M at
x , and let γ be a simple closed space-like geodesic in the de Sitter part of Lx . Then the
length of γ is less than 2π .
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Proof. An explicit description of Lx follows from the construction of the AdS metric in
the neighborhood of a time-like singularity, as seen in Sect. 2. The de Sitter part of this
link contains a unique simple closed geodesic, and its length is equal to the angle at the
singularity. So it is less than 2π .

In the sequel we consider a singular HS-structure σ on S2, which is the link of an
interaction involving massive particles and tachyons. This means that σ is positive and
causal, and moreover:

• it has two hyperbolic components, D− and D+, on which σ restricts to a complete
hyperbolic metric with cone singularities,

• any future-oriented inextendible time-like line in the de Sitter region of σ connects
the closure of D− to the closure of D+.

Definition 4.2. σ has positive mass if any simple closed space-like geodesic in the de
Sitter part of (S2, σ ) has length less than 2π .

This notion of positivity of mass for an interaction generalizes the natural notion of
positivity for time-like singularities.

4.5.2. A convex polyhedron from simpler interactions.

Theorem 4.3. Let σ be a positive causal HS-structure on S2, such that

• it has two hyperbolic components, D− and D+, on which σ restricts to a complete
hyperbolic metric with cone singularities,

• any future-oriented inextendible time-like line in the de Sitter region of σ connects
the closure of D− to the closure of D+.

Then σ is induced on a convex polyhedron in HS3 if and only if it has positive mass. If
so, this polyhedron is unique, and it is of bi-hyperbolic type.

Proof. This is a direct translation of [Sch01, Thm. 1.3] (see in particular case D.2). ��
The previous theorem is strongly related to classical statements on the induced met-

rics on convex polyhedra in the hyperbolic space, see [Ale05].

4.5.3. More general interactions/polyhedra. As mentioned above we believe that
Theorem 4.3 might be extended to wider situations. This could be based on the state-
ments on the induced geometric structures on the boundaries of convex polyhedra in
HS3, as studied in [Sch98,Sch01].

5. Classification of Positive Causal HS-Surfaces

In all this section � denotes a closed (compact without boundary) connected positive
causal HS-surface. It decomposes in three regions:

• Photons: a photon is a point corresponding in every HS-chart to points in ∂H
2±.

Observe that a photon might be singular, i.e. corresponds to a light-like singularity
(a lightlike singularity of degree one, a cuspidal singularity, or an extreme BTZ-like
singularity). The set of photons, denoted P(�), or simply P in the non-ambiguous
situations, is the disjoint union of a finite number of isolated points (extreme BTZ-like
singularities or cuspidal singularities) and of a compact embedded one dimensional
manifold, i.e. a finite union of circles.
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• Hyperbolic regions: They are the connected components of the open subset H
2(�)

of � corresponding to the time-like regions H
2± of HS2. They are naturally hyper-

bolic surfaces with cone singularities. There are two types of hyperbolic regions: the
future and the past ones. The boundary of every hyperbolic region is a finite union
of circles of photons and of cuspidal (parabolic) singularities.

• De Sitter regions: They are the connected components of the open subset dS2(�)

of � corresponding to the time-like regions dS2 of HS2. Alternatively, they are the
connected components of � \ P that are not hyperbolic regions. Every de Sitter
region is a singular dS surface, whose closure is compact and with boundary made
of circles of photons and of a finite number of extreme parabolic singularities.

5.1. Photons. Let C be a circle of photons. It admits two natural RP
1-structures, which

may not coincide if C contains light-like singularities.
Consider a closed annulus A in � containing C so that all HS-singularities in A lie

in C . Consider first the hyperbolic side, i.e. the component AH of A \ C comprising
time-like elements. Reducing A if necessary we can assume that AH is contained in
one hyperbolic region. Then every path starting from a point in C has infinite length in
AH , and conversely every complete geodesic ray in AH accumulates on an unique point
in C . In other words, C is the conformal boundary at ∞ of AH . Since the conformal
boundary of H

2 is naturally RP
1 and that hyperbolic isometries are restrictions of real

projective transformations, C inherits, as a conformal boundary of AH , a RP
1-structure

that we call RP
1-structure on C from the hyperbolic side.

Consider now the component AS in the de Sitter region adjacent to C . It is is foliated
by the light-like lines. Actually, there are two such foliations (for more details, see 5.3
below). An adequate selection of this annulus ensures that the leaf space of each of
these foliations is homeomorphic to the circle - actually, there is a natural identification
between this leaf space and C : the map associating to a leaf its extremity. These foliations
are transversely projective: hence they induce a RP

1-structure on C .
This structure is the same for both foliations, we call it RP

1-structure on C from the
de Sitter side. In order to sustain this claim, we refer to [Mes07, § 6]: first observe that
C can be slightly pushed inside AS onto a space-like simple closed curve (take a loop
around C following alternatively past oriented light-like segments in leaves of one of
the foliations, and future oriented segments in the other foliation; and smooth it). Then
apply [Mes07, Prop. 17].

If C contains no light-like singularity, the RP
1-structures from the hyperbolic and de

Sitter sides coincide. But it is not necessarily true if C contains light-like singularities.
Actually, the holonomy from one side is obtained by composing the holonomy from the
other side by parabolic elements, one for each light-like singularity in C . Observe that
in general even the degrees may not coincide.

5.2. Hyperbolic regions. Every component of the hyperbolic region has a compact clo-
sure in �. It follows easily that every hyperbolic region is a complete hyperbolic surface
with cone singularities (corresponding to massive particles) and cusps (corresponding to
cuspidal singularities) and that is of finite type, i.e. homeomorphic to a compact surface
without boundary with a finite set of points removed.

Proposition 5.1. Let C be a circle of photons in �, and H the hyperbolic region adja-
cent to C. Let H̄ be the open domain in � comprising H and all cuspidal singularities
contained in the closure of H. Assume that H̄ is not homeomorphic to the disk. Then,
as a RP

1-circle defined by the hyperbolic side, the circle C is hyperbolic of degree 0.
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Proof. The proposition will be proved if we find an annulus in H containing no singu-
larity and bounded by C and a simple closed geodesic in H . Indeed, the holonomy of
the RP

1-structure of C coincides then with the holonomy of the RP
1-structure of the

closed geodesic, and it is well-known that closed geodesics in hyperbolic surfaces are
hyperbolic. Further details are left to the reader.

Since we assume that H̄ is not a disk, C represents a non-trivial free homotopy class
in H . Consider absolutely continuous simple loops in H freely homotopic to C in H ∪C .
Let L be the length of one of them. There are two compact subsets K ⊂ K ′ ⊂ H̄ such
that every loop of length ≤ 2L containing a point in the complement of K ′ stays outside
K and is homotopically trivial. It follows that every loop freely homotopic to C of length
≤ L lies in K ′: by Ascoli and semi-continuity of the length, one of them has minimal
length l0 (we also use the fact that C is not freely homotopic to a small closed loop
around a cusp of H , details are left to the reader). It is obviously simple, and it contains
no singular point, since every path containing a singularity can be shortened (observe
that since � is positive, cone angles of hyperbolic singular points are less than 2π ).
Hence it is a closed geodesic.

There could be several such closed simple geodesics of minimal length, but they are
two-by-two disjoint, and the annulus bounded by two such minimal closed geodesics
must contain at least one singularity since there is no closed hyperbolic annulus bounded
by geodesics. Hence, there is only a finite number of such minimal geodesics, and for
one of them, c0, the annulus A0 bounded by C and c0 contains no other minimal closed
geodesic.

If A0 contains no singularity, the proposition is proved. If not, for every r > 0, let
A(r) be the set of points in A0 at distance < r from c0, and let A′(r) be the complement
of A(r) in A0. For small values of r , A(r) contains no singularity. Thus, it is isometric
to the similar annulus in the unique hyperbolic annulus containing a geodesic loop of
length l0. This remark holds as long as A(r) is regular. Denote by l(r) the length of the
boundary c(r) of A(r).

Let R be the supremum of positive real numbers r0 such that for every r < r0 every
essential loop in A′(r) has length ≥ l(r). Since A0 contains no closed geodesic of length
≤ l0, this supremum is positive. On the other hand, let r1 be the distance between c0 and
the singularity x1 in A0 nearest to c0.

We claim that r1 > R. Indeed: near x1 the surface is isometric to a hyperbolic disk D
centered at x1 with a wedge between two geodesic rays l1, l2 issued from x1 of angle 2θ

removed. Let � be the geodesic ray issued from x1 made of points at equal distance from
l1 and from l2. Assume by contradiction r1 ≤ R. Then, c(r1) is a simple loop, containing
x1 and minimizing the length of loops inside the closure of A′(r1). Singularities of cone
angle 2π − 2θ < π cannot be approached by length minimizing closed loops, hence
θ ≤ π/2. Moreover, we can assume without loss of generality that c(r) near x1 is the
projection of a C1-curve ĉ in D orthogonal to � at x1, and such that the removed wedge
between l1, l2, and the part of D projecting into A(r) are on opposite sides of this curve.
For every ε > 0, let yε

1 , yε
2 be the points at distance ε from x1 in respectively l1, l2.

Consider the geodesic �ε
i at equal distance from yε

i and x1 (i = 1, 2): it is orthogonal
to li , hence not tangent to ĉ. It follows that, for ε small enough, ĉ contains a point pi
closer to yε

i than to x1. Hence, c(r1) can be shortened by replacing the part between p1
and p2 by the union of the projections of the geodesics [pi , yε

i ]. This shorter curve is
contained in A′(r1): contradiction.

Hence R < r1. In particular, R is finite. For ε small enough, the annulus A′(R + ε)

contains an essential loop cε of minimal length < l(R + ε). Since it lies in A′(R), this
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loop has length ≥ l(R). On the other hand, there is α > 0 such that any essential loop
in A′(R + ε) contained in the α-neighborhood of c(R + ε) has length ≥ l(R + ε) > l(R).
It follows that cε is disjoint from c(R + ε), and thus, is actually a geodesic loop.

The annulus Aε bounded by cε and c(R + ε) cannot be regular: indeed, if it was,
its union with A(R + ε) would be a regular hyperbolic annulus bounded by two closed
geodesics. Therefore, Aε contains a singularity. Let A1 be the annulus bounded by C
and cε : every essential loop inside A1 has length ≥ l(R) (since it lies in A′(R)). It
contains strictly less singularities than A0. If we restart the process from this annulus,
we obtain by induction an annulus bounded by C and a closed geodesic inside T with
no singularity. ��

5.3. De Sitter regions. Let T be a de Sitter region of �. We recall that � is assumed to
be positive, i.e. that all non-time-like singularities of non-vanishing degree have degree
2 and are positive. This last feature will be essential in our study (cf. Remark 5.5).

Future oriented isotropic directions define two oriented line fields on the regular part
of T , defining two oriented foliations. Since we assume that � is causal, space-like
singularities have degree 2, and these foliations extend continuously on singularities
(but not differentially) as regular oriented foliations. Besides, in the neighborhood of
every BTZ-like singularity x , the leaves of each of these foliations spiral around x .
They thus define two singular oriented foliations F1, F2, where the singularities are
precisely the BTZ-like singularities, i.e. hyperbolic time-like ones, and have degree +1.
By Poincaré-Hopf index formula we immediately get:

Corollary 5.2. Every de Sitter region is homeomorphic to the annulus, the disk or the
sphere. Moreover, it contains at most two BTZ-like singularities. If it contains two such
singularities, it is homeomorphic to the 2-sphere, and if it contains exactly one BTZ-like
singularity, it is homeomorphic to the disk.

Let c : R → L be a parametrization of a leaf L of F i , increasing with respect to
the time orientation. Recall that the α-limit set (respectively ω-limit set) is the set of
points in T which are limits of a sequence (c(tn))(n∈N), where (tn)(n∈N) is a decreasing
(respectively an increasing) sequence of real numbers. By assumption, T contains no
CCC. Hence, according to the Poincaré-Bendixson Theorem:

Corollary 5.3. For every leaf L of F1 or F2, oriented by its time orientation, the α-limit
set (resp. ω-limit set) of L is either empty or a past (resp. future) BTZ-like singularity.
Moreover, if the α-limit set (resp. ω-limit set) is empty, the leaf accumulates in the past
(resp. future) direction to a past (resp. future) boundary component of T that is a point
in a circle of photons, or a extreme BTZ-like singularity.

Proposition 5.4. Let � be a positive, causal singular HS-surface. Let T be a de Sitter
component of � adjacent to a hyperbolic region H along a circle of photons C. If the
completion H̄ of H is not homeomorphic to the disk, then either T is a disk containing
exactly one BTZ-like singularity, or the boundary of T in � is the disjoint union of C
and one extreme BTZ-like singularity.

Proof. If T is a disk, we are done. Hence we can assume that T is homeomorphic to the
annulus. Reversing the time if necessary we also can assume that H is a past hyperbolic
component. Let C ′ be the other connected boundary component of T , i.e. its future
boundary. If C ′ is an extreme BTZ-like singularity, the proposition is proved. Hence we
are reduced to the case where C ′ is a circle of photons.
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Fig. 8. Regularization of a tachyon and a light-like singularity

According to Corollary 5.3 every leaf of F1 or F2 is a closed line joining the two
boundary components of T . For every singularity x in T , or every light-like singularity
in C , let Lx be the future oriented half-leaf of F1 emerging from x . Assume that Lx
does not contain any other singularity. Cut along Lx : we obtain a singular dS2-surface
T ∗ admitting in its boundary two copies of Lx . Since Lx accumulates to a point in C ′
it develops in dS2 into a geodesic ray touching ∂H

2. In particular, we can glue the two
copies of Lx in the boundary of T ∗ by an isometry fixing their common point x . For
the appropriate choice of this glueing map, we obtain a new dS2-spacetime where x has
been replaced by a regular point: we call this process, well defined, regularization at x
(see Fig. 8).

After a finite number of regularizations, we obtain a regular dS2-spacetime T ′ (in
particular, if a given leaf of F1 initially contains several singularities, they are elimi-
nated during the process one after the other). Moreover, all these surgeries can actually
be performed on T ∪ C ∪ H : the de Sitter annulus A′ can be glued to H ∪ C , giving
rise to a HS-surface containing the circle of photons C disconnecting the hyperbolic
region H from the regular de Sitter region T ′ (however, the other boundary component
C ′ has been modified and does not match anymore the other hyperbolic region adjacent
to T ). Moreover, the circle of photons C now contains no light-like singularity, hence its
RP

1-structure from the de Sitter side coincides with the RP
1-structure from the hyper-

bolic side. According to Proposition 5.1 this structure is hyperbolic of degree 0: it is the
quotient of an interval I of RP

1 by a hyperbolic element γ0, with no fixed point inside I .
Denote by F ′

1, F ′
2 the isotropic foliations in T ′. Since we performed the surgery

along half-leaves of F1, leaves of F ′
1 are still closed in T ′. Moreover, each of them

accumulates at a unique point in C : the space of leaves of F ′
1 is identified with C . Let

˜T ′ be the universal covering of T ′, and let ˜F ′
1 be the lifting of F1. Recall that dS2 is

naturally identified with RP
1 × RP

1 \ D, where D is the diagonal. The developing map
D : ˜T ′ → RP

1 × RP
1 \ D maps every leaf of ˜F ′

1 into a fiber {∗} × RP
1. Besides, as

affine lines, they are complete affine lines, meaning that they still develop onto the entire
geodesic {∗} × (RP

1 \ {∗}). It follows that D is a homeomorphism between ˜T ′ and the
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Fig. 9. The domain W and its quotient T ′

open domain W = I × RP
1 \ D, i.e. the region in dS2 bounded by two γ0-invariant

isotropic geodesics. Hence T ′ is isometric to the quotient of W by γ0, which is well
understood (see Fig. 9; it has been more convenient to draw the lift W in the region in
˜RP

1 × ˜RP
1

between the graph of the identity map and the translation δ, a region which
is isomorphic to the universal cover of RP

1 × RP
1 \ D).

Hence the foliation F ′
2 admits two compact leaves. These leaves are CCC, but it is

not yet in contradiction with the fact that � is causal, since the regularization might
create such CCC.

The regularization procedure is invertible and T is obtained from T ′ by positive
surgeries along future oriented half-leaves of F ′

1, i.e. obeying the rules described in
Remark 3.19. We need to be more precise: pick a leaf L ′

1 of F ′
1. It corresponds to a

vertical line in W depicted in Fig. 9. We consider the first return f ′ map from L ′
1 to

L ′
1 along future oriented leaves of F ′

2: it is defined on an interval ] − ∞, x∞[ of L ′
1,

where −∞ corresponds to the end of L ′
1 accumulating on C . It admits two fixed points

x1 < x2 < x∞, corresponding to the two compact leaves of F ′
2. The former is attracting
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Fig. 10. First return maps. The identification maps along lines above time-like and light-like singularities
compose the almost horizontal broken arcs which are contained in leaves of F2

and the latter is repelling. Let L1 be a leaf of F1 corresponding, by the reverse surgery,
to L ′

1. We can assume without loss of generality that L1 contains no singularity. Let f be
the first return map from L1 into itself along future oriented leaves of F2 (see Fig. 10).
There is a natural identification between L1 and L ′

1, and since all light-like singularities
and tachyons in T ∪ C are positive, the deviation of f with respect to f ′ is in the past
direction, i.e. for every x in L1 ≈ L ′

1 we have f (x) ≤ f ′(x) (it includes the case where
x is not in the domain of definition of f , in which case, by convention, f (x) = ∞). In
particular, f (x2) ≤ x2. It follows that the future part of the oriented leaf of F2 through
x2 is trapped below its portion between x2, f (x2). Since it is closed, and not compact, it
must accumulate on C . But it is impossible since future oriented leaves near C exit from
C , intersect a space-like loop, and cannot go back because of orientation considerations.
The proposition is proved. ��

Remark 5.5. In Proposition 5.4 the positivity hypothesis is necessary. Indeed, consider a
regular HS-surface made of one annular past hyperbolic region connected to one annular
future hyperbolic region by two de Sitter regions isometric to the region T ′ = W/〈γ0〉
appearing in the proof of Proposition 5.4. Pick up a photon x in the past boundary of one
of these de Sitter components T , and let L be the leaf of F1 accumulating in the past to
x . Then L accumulates in the future to a point y in the future boundary component. Cut
along L , and glue back by a parabolic isometry fixing x and y. The main argument in
the proof above is that if this surgery is performed in the positive way, so that x and y
become positive tachyons, then the resulting spacetime still admits two CCC, leaves of
the foliation F2. But if the surgery is performed in the negative way, with a sufficiently
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big parabolic element, the closed leaves of F2 in T are destroyed, and every leaf of the
new foliation F2 in the new singular surface joins the two boundary components of the
de Sitter region, which is therefore causal.

Theorem 5.6. Let � be a singular causal positive HS-surface, homeomorphic to the
sphere. Then, it admits at most one past hyperbolic component, and at most one future
hyperbolic component. Moreover, we are in one of the following mutually exclusive
situations:

(1) Causally regular case: There is a unique de Sitter component, which is an annu-
lus connecting one past hyperbolic region homeomorphic to the disk to a future
hyperbolic region homeomorphic to the disk.

(2) Interaction of black holes or white holes: There is no past or no future hyperbolic
region, and every de Sitter region is a either a disk containing a unique BTZ-like
singularity, or a disk with an extreme BTZ-like singularity removed.

(3) Big Bang and Big Crunch: There is no de Sitter region, and only one hyperbolic
region, which is a singular hyperbolic sphere - if the time-like region is a future
one, the singularity is called a Big Bang; if the time-like region is a past one, the
singularity is a Big Crunch.

(4) Interaction of a white hole with a black hole: There is no hyperbolic region. The sur-
face � contains one past BTZ-like singularity and one future BTZ-like singularity -
these singularities may be extreme or not.

Remark 5.7. This theorem, despite the terminology inspired from cosmology, has no
serious pretention of relevance for physics. However these appelations have the advan-
tage to provide a reasonable intuition on the geometry of the interaction. For example,
in what is called a Big Bang, the spacetime is entirely contained in the future of the
singularity, and the singular lines can be seen as massive particles or “photons” emitted
by the initial singularity.

Actually, it is one of few examples suggesting that the prescription of the surface �

to be a sphere could be relaxed: whereas it seems hard to imagine that the spacetime
could fail to be a manifold at a singular point describing a collision of particles, it is
nevertheless not so hard, at least for us, to admit that the topology of the initial singularity
may be more complicated, as it is the case in the regular case (see [ABB+07]).

Proof. If the future hyperbolic region and the past hyperbolic region is not empty, there
must be a de Sitter annulus connecting one past hyperbolic component to a future hyper-
bolic component. By Proposition 5.4 these hyperbolic components are disks: we are in
the causally regular case.

If there is no future hyperbolic region, but one past hyperbolic region, and at least
one de Sitter region, then there cannot be any annular de Sitter component connecting
two hyperbolic regions. Hence, the closure of each de Sitter component is a closed disk.
It follows that there is only one past hyperbolic component: � is an interaction of black
holes. Similarly, if there is a de Sitter region, a future hyperbolic region but no past
hyperbolic region, � is an interaction of white holes.

The remaining situations are the cases where � has no de Sitter region, or no hyper-
bolic region. The former case corresponds obviously to the description (3) of Big Bang
or Big Crunch , and the latter to the description (4) of an interaction between one black
hole and one white hole. ��
Remark 5.8. It is easy to construct singular hyperbolic spheres, i.e. Big Bang or Big
Crunch: take for example the double of a hyperbolic triangle. The existence of interac-
tions of a white hole with black hole is slightly less obvious. Consider the HS-surface
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�m associated to the BTZ black hole Bm . It can be described as follows: take a point
p in dS2, let d1, d2 be the two projective circles in HS containing p, its opposite −p,
and tangent to ∂H

2±. It decomposes HS2 in four regions. One of these components, that
we denote by U , contains the past hyperbolic region H

2−. Then, �m is the quotient of
U by the group generated by a hyperbolic isometry γ0 fixing p, −p, d1 and d2. Let
x1, x2 be the points where d1, d2 are tangent to ∂H

2−, and let I1, I2 be the connected
components of ∂H

2− \ {x1, x2}. We select the index so that I1 is the boundary of the de
Sitter component T1 of U containing p. Now let q be a point in T1 so that the past of q in
T1 has a closure in U containing a fundamental domain J for the action of γ0 on I1. Then
there are two time-like geodesic rays starting from q and accumulating at points in I1
which are extremities of a subinterval containing J . These rays project in �m onto two
time-like geodesic rays l1 and l2 starting from the projection q̄ of q. These rays admit a
first intersection point q̄ ′ in the past of q̄ . Let l ′1, l ′2 be the subintervalls in respectively
l1, l2 with extremities q̄, q̄ ′: their union is a circle disconnecting the singular point p̄
from the boundary of the de Sitter component. Remove the component of � \ (l ′1 ∪ l ′2)
adjacent to this boundary. If q̄ ′ is well-chosen, l ′1 and l ′2 have the same proper time. Then
we can glue one to the other by a hyperbolic isometry. The resulting spacetime is as
required an interaction between a BTZ black hole corresponding to p̄ with a white hole
corresponding to q̄ ′ - it contains also a tachyon of positive mass corresponding to q̄ .

6. Global Hyperbolicity

In previous sections, we considered local properties of AdS manifolds with particles.
We already observed in Sect. 3.6 that the usual notions of causality (causal curves,
future, past, time functions...) available for regular Lorentzian manifolds still hold. In
this section, we consider the global character of causal properties of AdS manifolds with
particles. The main point presented here is that, as long as no interaction appears, global
hyperbolicity is still a meaningful notion for singular AdS spacetimes. This notion will
be necessary in Sect. 7, as well as in the continuation of this paper [BBS10] (see also
the final part of [BBS09]).

The content of this section is presented in the AdS setting. We believe that most
results could be extended to Minkowski or de Sitter singular manifolds.

In all this section M denotes a singular AdS manifold admitting as singularities only
massive particles and no interaction. The regular part of M is denoted by M∗. Since we
will consider other Lorentzian metrics on M , we need a denomination for the singular
AdS metric : we denote it g0.

6.1. Local coordinates near a singular line. Causality notions only depend on the con-
formal class of the metric, and AdS is conformally flat. Hence, AdS spacetimes and flat
spacetimes share the same local causal properties. Every regular AdS spacetime admits
an atlas for which local coordinates have the form (z, t), where z describes the unit disk
D in the complex plane, t the interval ]−1, 1[ and such that the AdS metric is conformal
to:

−dt2 + |dz|2 .

For the singular case considered here, any point x lying on a singular line l (a mas-
sive particle of mass m), the same expression holds, but we have to remove a wedge
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{2απ < Arg(z) < 2π} where α = 1 − m is positive, and to glue the two sides of this
wedge. Consider the map z → ζ = z1/α: it sends the disk D with a wedge removed onto
the entire disk, and is compatible with the glueing of the sides of the wedge. Hence, a
convenient local coordinate system near x is (ζ, t) where (ζ, t) still lies in D×] − 1, 1[.
The singular AdS metric is then, in these coordinates, conformal to

(1 − m)2 |dζ |2
|ζ |2m − dt2 .

In these coordinates, future oriented causal curves can be parametrized by the time
coordinate t , and satisfies

∣

∣ζ ′(t)
∣

∣

|ζ |m ≤ 1

1 − m
.

Observe that all these local coordinates define a differentiable atlas on the topological
manifold M for which the AdS metric on the regular part is smooth.

6.2. Achronal surfaces. Usual definitions in regular Lorentzian manifolds still apply to
the singular AdS spacetime M :

Definition 6.1. A subset S of M is achronal (resp. acausal) if there is no non-trivial
time-like (resp. causal) curve joining two points in S. It is only locally achronal (resp.
locally acausal) if every point in S admits a neighborhood U such that the intersection
U ∩ S is achronal (resp. acausal) inside U.

Typical examples of locally acausal subsets are space-like surfaces, but the defini-
tion above also includes non-differentiable “space-like” surfaces, with only Lipschitz
regularity. Lipschitz space-like surfaces provide actually the general case if one adds the
edgeless assumption :

Definition 6.2. A locally achronal subset S is edgeless if every point x in S admits a
neighborhood U such that every causal curve in U joining one point of the past of x
(inside U) to a point in the future (in U) of x intersects S.

In the regular case, closed edgeless locally achronal subsets are embedded locally
Lipschitz surfaces. More precisely, in the coordinates (z, t) defined in Sect. 6.1, they are
graphs of 1-Lipschitz maps defined on D.

This property still holds in M , except the locally Lipschitz property which is not valid
anymore at singular points, but only a weaker weighted version holds: closed edgeless
acausal subsets containing x corresponds to Hölder functions f : D →] − 1, 1[ differ-
entiable almost everywhere and satisfying:

‖dζ f ‖ <
|ζ |−m

1 − m
.

Go back to the coordinate system (z, t). The acausal subset is then the graph of a 1-Lips-
chitz map ϕ over the disk minus the wedge. Moreover, the values of ϕ on the boundary
of the wedge must coincide since they have to be sent one to the other by the rotation
performing the glueing. Hence, for every r < 1:

ϕ(r) = ϕ(rei2απ ) .
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We can extend ϕ over the wedge by defining ϕ(reiθ ) = ϕ(r) for 2απ ≤ θ ≤ 2π . This
extension over the entire D \ {0} is then clearly 1-Lipschitz. It therefore extends at 0.
We have just proved:

Lemma 6.3. The closure of any closed edgeless achronal subset of M∗ is a closed edge-
less achronal subset of M.

Definition 6.4. A space-like surface S in M is a closed edgeless locally acausal subset
whose intersection with the regular part M∗ is a smooth embedded space-like surface.

6.3. Time functions. As in the regular case, we can define time functions as maps T :
M → R which are strictly increasing along any future oriented causal curve. For non-
singular spacetimes the existence is related to stable causality :

Definition 6.5. Let g, g′ be two Lorentzian metrics on the same manifold X. Then, g′
dominates g if every causal tangent vector for g is time-like for g′. We denote this relation
by g ≺ g′.
Definition 6.6. A Lorentzian metric g is stably causal if there is a metric g′ such that
g ≺ g′, and such that (X, g′) is chronological, i.e. admits no periodic time-like curve.

Theorem 6.7 (See [BEE96]). A Lorentzian manifold (M, g) admits a time function if
and only if it is stably causal. Moreover, when a time function exists, then there is a
smooth time function.

Remark 6.8. In Sect. 6.1 we defined some differentiable atlas on the manifold M . For this
differentiable structure, the null cones of g0 degenerate along singular lines to half-lines
tangent to the “singular” line (which is perfectly smooth for the selected differentiable
atlas). Obviously, we can extend the definition of domination to the more general case
g0 ≺ g, where g0 is our singular metric and g a smooth regular metric. Therefore, we
can define the stable causality in this context: g0 is stably causal if there is a smooth
Lorentzian metric g′ which is chronological and such that g0 ≺ g′. Theorem 6.7 is still
valid in this more general context. Indeed, there is a smooth Lorentzian metric g such
that g0 ≺ g ≺ g′, which is stably causal since g is dominated by the achronal metric g′.
Hence there is a time function T for the metric g, which is still a time function for g0
since g0 ≺ g: causal curves for g0 are causal curves for g.

Lemma 6.9. The singular metric g0 is stably causal if and only if its restriction to the
regular part M∗ is stably causal. Therefore, (M, g0) admits a smooth time function if
and only if (M∗, g0) admits a time function.

Proof. The fact that (M∗, g0) is stably causal as soon as (M, g0) is stably causal is
obvious. Let us assume that (M∗, g0) is stably causal: let g′ be a smooth chronological
Lorentzian metric on M∗ dominating g0. On the other hand, using the local models
around singular lines, it is easy to construct a chronological Lorentzian metric g′′ on
a tubular neighborhood U of the singular locus of g0 (the fact that g′ is chronological
implies that the singular lines are not periodic). Actually, by reducing the tubular neigh-
borhood U and modyfing g′′ therein, one can assume that g′ dominates g′′ on U . Let
U ′ be a smaller tubular neighborhood of the singular locus such that U

′ ⊂ U , and let
a, b be a partition of unity subordinate to U , M \ U ′. Then g1 = ag′′ + bg′ is a smooth
Lorentzian metric dominating g0. Moreover, we also have g1 ≺ g′ on M∗. Hence any
time-like curve for g1 can be slightly perturbed to a time-like curve for g′ avoiding the
singular lines. It follows that (M, g0) is stably causal. ��
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6.4. Cauchy surfaces.

Definition 6.10. A space-like surface S is a Cauchy surface if it is acausal and intersects
every inextendible causal curve in M.

Since a Cauchy surface is acausal, its future I +(S) and its past I −(S) are disjoint.

Remark 6.11. The regular part of a Cauchy surface in M is not a Cauchy surface in
the regular part M∗, since causal curves can exit the regular region through a time-like
singularity.

Definition 6.12. A singular AdS spacetime is globally hyperbolic if it admits a Cauchy
surface.

Remark 6.13. We defined Cauchy surfaces as smooth objects for further requirements in
this paper, but this definition can be generalized for non-smooth locally achronal closed
subsets. This more general definition leads to the same notion of globally hyperbolic
spacetimes, i.e. singular spacetimes admitting a non-smooth Cauchy surface also admits
a smooth one.

Proposition 6.14. Let M be a singular AdS spacetime without interaction and with sin-
gular set reduced to massive particles. Assume that M is globally hyperbolic. Then M
admits a time function T : M → R such that every level T −1(t) is a Cauchy surface.

Proof. This is a well-known theorem by Geroch in the regular case, even for general
globally hyperbolic spacetimes without compact Cauchy surfaces ([Ger70]). But, the
singular version does not follow immediately by applying this regular version to M∗
(see Remark 6.11).

Let l be an inextendible causal curve in M . It intersects the Cauchy surface S, and
since S is achronal, l cannot be periodic. Therefore, M admits no periodic causal curve,
i.e. is acausal.

Let U be a small tubular neighborhood of S in M , such that the boundary ∂U is the
union of two space-like hypersurfaces S−, S+ with S− ⊂ I −(S), S+ ⊂ I +(S), and such
that every inextendible future oriented causal curve in U starts from S−, intersects S
and then hits S+. Any causal curve starting from S− leaves immediately S−, crosses S
at some point x ′, and then cannot cross S anymore. In particular, it cannot go back in
the past of S since S is acausal, and thus, does not reach S− anymore. Therefore, S− is
acausal. Similarly, S+ is acausal. It follows that S± are both Cauchy surfaces for (M, g0).

For every x in I +(S−) and every past oriented g0-causal tangent vector v, the past
oriented geodesic tangent to (x, v) intersects S. The same property holds for tangent
vector (x, v′) nearby. It follows that there exists on I +(S−) a smooth Lorentzian metric
g′

1 such that g0 ≺ g′
1 and such that every inextendible past oriented g′

1-causal curve
attains S. Furthermore, we can select g′

1 such that S is g′
1-space-like, and such that every

future oriented g′
1-causal vector tangent at a point of S points in the g0-future of S. It

follows that future oriented g′
1-causal curves crossing S cannot come back to S: S is

acausal, not only for g0, but also for g′
1.

We can also define g′
2 in the past of S+ so that g0 ≺ g′

2, every inextendible future
oriented g′

2-causal curve attains S, and such that S is g′
2-acausal. We can now interpolate

in the common region I +(S−) ∩ I −(S+), getting a Lorentzian metric g′ on the entire M
such that g0 ≺ g′ ≺ g′

1 on I +(S−), and g0 ≺ g′ ≺ g′
2 on I −(S+). Observe that even if

it is not totally obvious that the metrics g′
i can be selected continuous, we have enough

room to pick such a metric g′ in a continuous way.
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Let l be a future oriented g′-causal curve starting from a point in S. Since g′ ≺ g′
1,

this curve is also g′
1-causal as long as it remains inside I +(S−). But since S is acausal

for g′
1, it implies that l cannot cross S anymore: hence l lies entirely in I +(S). It follows

that S is acausal for g′.
By construction of g′

1, every past-oriented g′
1-causal curve starting from a point

inside I +(S) must intersect S. Since g′ ≺ g′
1 the same property holds for g′-causal

curves. Using g′
2 for points in I +(S−), we get that every inextendible g′-causal curve

intersects S. Hence, (M, g′) is globally hyperbolic. According to Geroch’s Theorem in
the regular case, there is a time function T : M → R whose levels are Cauchy sur-
faces. The proposition follows, since g0-causal curves are g′-causal curves, implying
that g′-Cauchy surfaces are g0-Cauchy surfaces and that g′-time functions are g0-time
functions. ��
Corollary 6.15. If (M, g0) is globally hyperbolic, there is a decomposition M ≈ S ×R,

where every level S×{∗} is a Cauchy surface, and very vertical line {∗}×R is a singular
line or a time-like line.

Proof. Let T : M → R be the time function provided by Proposition 6.14. Let X be
minus the gradient (for g0) of T : it is a future oriented time-like vector field on M∗.
Consider also a future oriented time-like vector field Y on a tubular neighborhood U of
the singular locus: using a partition of unity as in the proof of Lemma 6.9, we can con-
struct a smooth time-like vector field Z = aY + bX on M tangent to the singular lines.
The orbits of the flow generated by Z are time-like curves. The global hyperbolicity of
(M, g0) ensures that each of these orbits intersect every Cauchy surface, in particular,
the level sets of T . In other words, for every x in M the Z -orbit of x intersects S at a
point p(x). Then the map F : M → S × R defined by F(x) = (p(x), T (x)) is the
desired diffeomorphism between M and S × R. ��

6.5. Maximal globally hyperbolic extensions. From now we assume that M is globally
hyperbolic, admitting a compact Cauchy surface S. In this section, we prove the follow-
ing facts, well-known in the case of regular globally hyperbolic solutions to the Einstein
equation ([Ger70]): there exists a maximal extension, which is unique up to isometry.

Definition 6.16. An isometric embedding i : (M, S) → (M ′, S′) is a Cauchy embedding
if S′ = i(S) is a Cauchy surface of M ′.

Remark 6.17. If i : M → M ′ is a Cauchy embedding then the image i(S′) of any Cauchy
surface S′ of M is also a Cauchy surface in M ′. Indeed, for every inextendible causal
curve l in M ′, every connected component of the preimage i−1(l) is an inextendible
causal curve in M , and thus intersects S. Since l intersects i(S) in exactly one point,
i−1(l) is connected. It follows that the intersection l ∩ i(S′) is non-empty and reduced
to a single point: i(S′) is a Cauchy surface.

Therefore, we can define Cauchy embeddings without reference to the selected
Cauchy surface S. However, the natural category is the category of marked globally
hyperbolic spacetimes, i.e. pairs (M, S).

Lemma 6.18. Let i1 : (M, S) → (M ′, S′), i2 : (M, S) → (M ′, S′) be two Cauchy
embeddings into the same marked globally hyperbolic singular AdS spacetime (M ′, S′).
Assume that i1 and i2 coincide on S. Then, they coincide on the entire M.
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Proof. If x ′, y′ are points in M ′ sufficiently near to S′, say, in the future of S′, then they
are equal if and only if the intersections I −(x ′)∩ S′ and I −(y′)∩ S′ are equal. Apply this
observation to i1(x), i2(x) for x near S: we obtain that i1, i2 coincide in a neighborhood
of S.

Let now x be any point in M . Since there is only a finite number of singular lines in
M , there is a time-like geodesic segment [y, x], where y lies in S, and such that [y, x[
is contained in M∗ (x may be singular). Then x is the image by the exponential map of
some ξ in Ty M . Then i1(x), i2(x) are the image by the exponential map of respectively
dyi1(ξ), dyi2(ξ). But these tangent vectors are equal, since i1 = i2 near S. ��
Lemma 6.19. Let i : M → M ′ be a Cauchy embedding into a singular AdS spacetime.
Then, the image of i is causally convex, i.e. any causal curve in M ′ admitting extremities
in i(M) lies inside i(M).

Proof. Let l be a causal segment in M ′ with extremities in i(M). We extend it as an
inextendible causal curve l̂. Let l ′ be a connected component of l̂ ∩ i(M): it is an in-
extendible causal curve inside i(M). Thus, its intersection with i(S) is non-empty. But
l̂ ∩ i(S) contains at most one point: it follows that l̂ ∩ i(M) admits only one connected
component, which contains l. ��
Corollary 6.20. The boundary of the image of a Cauchy embedding i : M → M ′ is the
union of two closed edgeless achronal subsets S+, S− of M ′, and i(M) is the intersection
between the past of S+ and the future of S−.

Each of S+, S− might be empty, and is not necessarily connected.

Proof. This is a general property of causally convex open subsets: S+ (resp. S−) is the
set of elements in the boundary of i(M) whose past (resp. future) intersects i(M). The
proof is straightforward and left to the reader. ��
Definition 6.21. (M, S) is maximal if every Cauchy embedding i : M → M ′ into a
singular AdS spacetime is onto, i.e. an isometric homeomorphism.

Proposition 6.22. (M, S) admits a maximal singular AdS extension, i.e. a Cauchy
embedding into a maximal globally hyperbolic singular AdS spacetime ( ̂M, Ŝ) with-
out interaction.

Proof. Let M be the set of Cauchy embeddings i : (M, S) → (M ′, S′). We define
on M the relation (i1, M1, S1) � (i2, M2, S2) if there is a Cauchy embedding i :
(M1, S1) → (M2, S2) such that i2 = i ◦ i1. It defines a preorder on M. Let M be the
space of Cauchy embeddings up to isometry, i.e. the quotient space of the equivalence
relation identifying (i1, M1, S1) and (i2, M2, S2) if there is an isometric homeomor-
phism i : (M1, S1) → (M2, S2) such that i2 = i ◦ i1. Then � induces on M a preorder
relation, that we still denote by �. Lemma 6.18 ensures that � is a partial order (if
(i1, M1, S1) � (i2, M2, S2) and (i2, M2, S2) � (i1, M1, S1), then M1 and M2 are iso-
metric and represent the same element of M). Now, any totally ordered subset A of M
admits an upper bound in A: the inverse limit of (representants of) the elements of A.
By the Zorn Lemma, we obtain that M contains a maximal element. Any representant
in M) of this maximal element is a maximal extension of (M, S). ��
Remark 6.23. The proof above is sketchy: for example, we did not justify the fact that
the inverse limit is naturally a singular AdS spacetime. This is however a straightforward
verification, the same as in the classical situation, and is left to the reader.
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Proposition 6.24. The maximal extension of (M, S) is unique up to isometry.

Proof. Let ( ̂M1, S1), ( ̂M2, S2) be two maximal extensions of (M, S). Consider the set of
globally hyperbolic singular AdS spacetimes (M ′, S′) for which there is a commutative
diagram as below, where arrows are Cauchy embeddings.

Reasoning as in the previous proposition, we get that this set admits a maximal ele-
ment: there is a marked extension (M ′, S′) of (M, S), and Cauchy embeddings ϕi :
M ′ → ̂Mi which cannot be simultaneously extended.

Define ̂M as the union of ( ̂M1, S1) and ( ̂M2, S2), identified along their respective
embedded copies of (M ′, S′), through ϕ := ϕ2 ◦ ϕ−1

1 , equipped with the quotient topol-
ogy. The key point is to prove that ̂M is Hausdorff. Assume not: there is a point x1 in
̂M1, a point x2 in ̂M2, and a sequence yn in M ′ such that ϕi (yn) converges to xi , but
such that x1 and x2 do not represent the same element of ̂M . It means that yn does not
converge in M ′, and that xi is not in the image of ϕi . Let Ui be small neighborhoods in
̂Mi of xi .

Denote by S+
i , S−

i the upper and lower boundaries ofϕi (M ′) in ̂Mi (cf. Corollary 6.20).
Up to time reversal, we can assume that x1 lies in S+

1 : it implies that all the ϕ1(yn) lies
in I −(S+

1 ), and that, if U1 is small enough, U1 ∩ I −(x1) is contained in ϕ1(M ′). It is an
open subset, hence ϕ extends to some AdS isometry ϕ between U1 and U2 (reducing the
Ui if necessary). Therefore, every ϕi can be extended to isometric embeddings ϕi of a
spacetime M ′′ containing M ′, so that

ϕ2 = ϕ ◦ ϕ1.

We intend to prove that xi and Ui can be chosen such that Si is a Cauchy surface
in ϕi (M ′′) = ϕi (M ′) ∪ Ui . Consider past oriented causal curves, starting from x1, and
contained in S+

1 . They are partially ordered by the inclusion. According to the Zorn
Lemma, there is a maximal causal curve l1 satisfying all these properties. Since S+

1 is
disjoint from S1, and since every inextendible causal curve crosses S, the curve l1 is not
inextendible: it has a final endpoint y1 belonging to S+

1 (since S+
1 is closed). Therefore,

any past oriented causal curve starting from y1 is disjoint from S+
1 (except at the starting

point y1).
We have seen that ϕ can be extended over in a neighborhood of x1: this extension

maps the initial part of l1 onto a causal curve in ̂M2 starting from x2 and contained in
S+

2 . By compactness of l1, this extension can be performed along the entire l1, and the
image is a causal curve admitting a final point y2 in S+

2 . The points y1 and y2 are not
separated one from the other by the topology of ̂M . Replacing xi by yi , we can thus
assume that every past oriented causal curve starting from xi is contained in I −(S+

i ).
It follows that, once more reducing Ui if necessary, inextendible past oriented causal
curves starting from points in Ui and in the future of S+

i intersects S+
i before escaping
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from Ui . In other words, inextendible past oriented causal curves in Ui ∪ I −(S+
i ) are

also inextendible causal curves in ̂Mi , and therefore, intersect Si . As required, Si is a
Cauchy surface in Ui ∪ ϕi (M ′).

Hence, there is a Cauchy embedding of (M, S) into some globally hyperbolic space-
time (M ′′, S′′), and Cauchy embeddings ϕi : (M ′′, S′′) → ϕi (M ′) ∪ Ui , which are
related by some isometry ϕ : ϕ1(M ′) ∪ U1 → ϕ2(M ′) ∪ U2:

ϕ2 = ϕ ◦ ϕ1.

It is a contradiction with the maximality of (M ′, S′). Hence, we have proved that ̂M
is Hausdorff. It is a manifold, and the singular AdS metrics on ̂M1, ̂M2 induce a singular
AdS metric on ̂M . Observe that S1 and S2 projects in ̂M onto the same space-like surface
̂S. Let l be any inextendible curve in ̂M . Without loss of generality, we can assume that
l intersects the projection W1 of ̂M1 in ̂M . Then every connected component of l ∩ W1
is an inextendible causal curve in W1 ≈ ̂M1. It follows that l intersects ̂S. Finally, if
some causal curve links two points in ̂S, then it must be contained in W1 since globally
hyperbolic open subsets are causally convex. It would contradict the acausality of S1
inside ̂M1.

The conclusion is that ̂M is globally hyperbolic, and that ̂S is a Cauchy surface in
̂M . In other words, the projection of ̂Mi into ̂M is a Cauchy embedding. Since ̂Mi is a
maximal extension, these projections are onto. Hence ̂M1 and ̂M2 are isometric. ��
Remark 6.25. The uniqueness of the maximal globally hyperbolic AdS extension is no
longer true if we allow interactions. Indeed, in the next section we will see how, given
some singular AdS spacetime without interaction, to define a surgery near a point in a
singular line, introducing some collision or interaction at this point. The place where
such a surgery can be performed is arbitrary.

However, the uniqueness of the maximal globally hyperbolic extension holds in the
case of interactions, if one stipulates that no new interactions can be introduced. The
point is to consider the maximal extension in the future of a Cauchy surface in the future
of all interactions, and the maximal extension in the past of a Cauchy surface contained
in the past of all interactions. This point, along with other aspects of the global geom-
etry of moduli spaces of AdS manifolds with interacting particles, is further studied in
[BBS10].

7. Global Examples

The main goal of this section is to construct examples of globally hyperbolic singular
AdS manifolds with interacting particles, so we go beyond the local examples con-
structed in Sect. 2. In a similar way examples of globally hyperbolic flat or de Sitter
space-times with interacting particles can be also constructed.

Sections 7.1 and 7.2 are presented in the AdS setting, but can presumably largely be
extended to the Minkowski or de Sitter setting. The next two parts, however, are more
specifically AdS and an extension to the Minkowski or de Sitter context is less clear.

7.1. An explicit example. Let S be a hyperbolic surface with one cone point p of angle
θ . Denote by μ the corresponding singular hyperbolic metric on S.

Let us consider the Lorentzian metric on S × (−π/2, π/2) given by

h = −dt2 + cos2 t μ, (2)

where t is the real parameter of the interval (−π/2, π/2).
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We denote by M(S) the singular spacetime (S × (−π/2, π/2), h).

Lemma 7.1. M(S) is an Ad S spacetime with a particle corresponding to the singular
line {p} × (−π/2, π/2). The corresponding cone angle is θ . Level surfaces S × {t} are
orthogonal to the singular locus.

Proof. First we show that h is an Ad S metric. The computation is local, so we can
assume S = H

2. Thus we can identify S to a geodesic plane in Ad S3. We consider Ad S3
as embedded in R

2,2, as mentioned in the Introduction. Let n be the normal direction to
S, then we can consider the normal evolution

F : S × (−π/2, π/2) � (x, t) �→ cos t x + sin tn ∈ Ad S3.

The map F is a diffeomorphism onto an open domain of Ad S3 and the pull-back of the
Ad S3-metric takes the form (2).

To prove that {p} × (−π/2, π/2) is a conical singularity of angle θ , take a geodesic
plane P in Pθ orthogonal to the singular locus. Notice that P has exactly one cone point
p0 corresponding to the intersection of P with the singular line of Pθ (here Pθ is the
singular model space defined in Subsect. 3.7). Since the statement is local, it is sufficient
to prove it for P . Notice that the normal evolution of P \ {p0} is well-defined for any
t ∈ (−π/2, π/2). Moreover, such evolution can be extended to a map on the whole
P × (−π/2, π/2) sending {p0} × (−π/2, π/2) onto the singular line. This map is a
diffeomorphism of P × (−π/2, π/2) with an open domain of Pθ . Since the pull-back
of the Ad S-metric of Pθ on (P \ {p0}) × (−π/2, π/2) takes the form (2) the statement
follows. ��

Let T be a triangle in H S2, with one vertex in the future hyperbolic region and
two vertices in the past hyperbolic region. Doubling T , we obtain a causally regular
HS-sphere � with an elliptic future singularity at p and two elliptic past singularities,
q1, q2.

Let r be the future singular ray in e(�). For a given ε > 0 let pε be the point at
distance ε from the interaction point. Consider the geodesic disk Dε in e(�) centered at
pε , orthogonal to r and with radius ε.

The past normal evolution nt : Dε → e(�) is well-defined for t ≤ ε. In fact, if we
restrict to the annulus Aε = Dε \ Dε/2, the evolution can be extended for t ≤ ε′ for
some ε′ > ε (Fig. 11).

Let us set

Uε = {nt (p) | p ∈ Dε, t ∈ (0, ε)},
�ε = {nt (p) | p ∈ Dε \ Dε/2, t ∈ (0, ε′)}.

Notice that the interaction point is in the closure of Uε . It is possible to contruct a
neighborhood �ε of the interaction point p0 such that

• Uε ∪ �ε ⊂ �ε ⊂ Uε ∪ �ε ∪ B(p0) where B(p0) is a small ball around p0;
• �ε admits a foliation in achronal disks (D(t))t∈(0,ε′) such that

(1) D(t) = nt (Dε) for t ≤ ε,

(2) D(t) ∩ �t = nt (Dε \ Dε/2) for t ∈ (0, ε′),
(3) D(t) is orthogonal to the singular locus.

Consider now the space M(S) as in the previous lemma. For small ε the disk Dε

embeds in M(S), sending pε to (p, 0).
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Fig. 11. Construction of a singular tube with an interaction of two particles

Let us identify Dε with its image in M(S). The normal evolution on Dε in M(S) is
well-defined for 0 < t < π/2 and in fact coincides with the map

nt (x, 0) = (x, t).

It follows that the map

F : (Dε \ Dε/2) × (0, ε′) → �ε,

defined by F(x, t) = nt (x) is an isometry (Fig. 11).
Thus if we glue (S \ Dε/2) × (0, ε′) to �ε by identifying Dε \ Dε/2 to �ε via F we

get a spacetime with particles

M̂ = (S \ Dε/2) × (0, ε′) ∪F �ε

that easily verifies the following statement.

Proposition 7.2. There exists a locally Ad S3 manifold with particles M̂ such that

(1) topologically, M̂ is homeomorphic to S × R,
(2) in M̂, two particles collide producing one particle only,
(3) M̂ admits a foliation by spacelike surfaces orthogonal to the singular locus.

We say that M̂ is obtained by a surgery on M ′ = S × (0, ε′).

7.2. Surgery. In this section we get a generalization of the construction explained in
the previous section. In particular we show how to do a surgery on a spacetime with
conical singularity in order to obtain a spacetime with collision more complicated than
that described in the previous section.

Lemma 7.3. Let � be a causally regular HS-sphere containing only elliptic singular-
ities. Suppose that the circle of photons C+ bounding the future hyperbolic part of �

carries an elliptic structure of angle θ . Then e(�) \ (I +(p0) ∪ I −(p0)) embeds in Pθ

(p0 denotes the interaction point of e(�)).
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Proof. Let D be the de Sitter part of �, Notice that

e(D) = e(�) \ (I +(p0) ∪ I −(p0)).

To prove that e(D) embeds in Pθ it is sufficient to prove that D is isometric to the de
Sitter part of the HS sphere �θ that is the link of a singular point of Pθ . Such de Sitter
surface is the quotient of d̃ S2 under an elliptic transformation of ˜SO(2, 1) of angle θ .

So the statement is equivalent to proving that the developing map

d : D̃ → ˜d S2

is a diffeomorphism. Since ˜d S2 is simply connected and d is a local diffeomorphism, it
is sufficient to prove that d is proper.

As in Sect. 5, d̃ S2 can be completed by two lines of photons, say R+, R− that are
projectively isomorphic to ˜RP1.

Consider the left isotropic foliation of d̃ S2. Each leaf has an α-limit in R− and an
ω-limit on R+. Moreover every point of R− (resp. R+) is an α-limit (resp. ω-limit) of
exactly one leaf of each foliation. Thus we have a continuous projection ιL : ˜d S2 ∪ R− ∪
R+ → R+, obtained by sending a point x to the ω-limit of the leaf of the left foliation
through it. The map ιL is a proper submersion. Since D does not contain singularities,
we have an analogous proper submersion,

ι′L : D̃ ∪ C̃− ∪ C̃+ → C̃+,

where C̃+, C̃− are the universal covering of the circle of photons of �.
By the naturality of the construction, the following diagram commutes

D̃ ∪ C̃− ∪ C̃
d−−−−→ ˜d S2 ∪ R− ∪ R+

ι′L
⏐

⏐

�

ιL

⏐

⏐

�

C̃+
d−−−−→ R̃+.

The map d|C̃+
is the developing map for the projective structure of C+. By the hypothesis,

we have that d|C̃+
is a homeomorphism, so it is proper.

Since the diagram is commutative and the fact that ιL and ι′L are both proper, one
easily proves that d is proper. ��
Remark 7.4. If � is a causally regular HS-sphere containing only elliptic singularities,
the map ι′L : C̃− → C̃+ induces a projective isomorphism ῑ : C− → C+.

Definition 7.5. Let M be a singular spacetime homeomorphic to S × R and let p ∈ M.
A neighborhood U of p is said to be cylindrical if

• U is topologically a ball;
• ∂±C := ∂U ∩ I ±(p) is a spacelike disk;
• there are two disjoint closed spacelike slices S−, S+ homeomorphic to S such that

S− ⊂ I −(S+) and I ±(p) ∩ S± = ∂±C.

Remark 7.6.

• If a spacelike slice through p exists then cylindrical neighborhoods form a funda-
mental family of neighborhoods.

• There is an open retract M ′ of M whose boundary is S− ∪ S+.
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Corollary 7.7. Let � be a HS-sphere as in Lemma 7.3. Given an Ad S spacetime M
homeomorphic to S × R containing a particle of angle θ , let us fix a point p on it and
suppose that a spacelike slice through p exists. There is a cylindrical neighborhood C
of p and a cylindrical neighborhood C0 of the interaction point p0 in e(�) such that
C \ (I +(p) ∪ I −(p)) is isometric to C0 \ (I +(p0) ∪ I −(p0)).

Take an open deformation retract M ′ ⊂ M with spacelike boundary such that ∂±C ⊂
∂ M ′. Thus let us glue M ′ \(I +(p)∪ I −(p)) and C0 by identifying C \(I +(p)∪ I −(p)) to
C0 ∩e(D). In this way we get a spacetime M̂ homeomorphic to S×R with an interaction
point modelled on e(�). We say that M̂ is obtained by a surgery on M ′.

The following proposition is a kind of converse to the previous construction.

Proposition 7.8. Let M̂ be a spacetime with conical singularities homeomorphic to
S × R containing only one interaction between particles. Suppose moreover that a
neighborhood of the interaction point is isometric to an open subset in e(�), where �

is a HS-surface as in Lemma 7.3. Then a subset of M̂ is obtained by a surgery on a
spacetime without interaction.

Proof. Let p0 be the interaction point. There is an HS-sphere � as in Lemma 7.3 such
that a neighborhood of p0 is isometric to a neighborhood of the vertex of e(�). In partic-
ular there is a small cylindrical neighborhood C0 around p0. According to Lemma 7.3,
for a suitable cylindrical neighborhood C of a singular point p in Pθ we have

C \ (I +(p) ∪ I −(p)) ∼= C0 \ (I +(p0) ∪ I −(p0)).

Taking the retract M ′ of M̂ such that ∂±C0 is in the boundary of M ′, the space-
time M ′ \ (I +(p0) ∪ I −(p0)) can be glued to C via the above identification. We
get a spacetime M with only one singular line. Clearly the surgery on M of C0
produces M ′. ��

7.3. Spacetimes containing BTZ-type singularities. In this section we describe a class
of spacetimes containing BTZ-type singularities.

We use the projective model of Ad S geometry, that is the Ad S3,+. From Subsect. 2.2,
Ad S3,+ is a domain in RP

3 bounded by the double ruled quadric Q. Using the dou-
ble family of lines Ll ,Lr we identify Q to RP

1 × RP
1 so that the isometric action

of Isom0,+ = P SL(2, R) × P SL(2, R) on Ad S3 extends to the product action on the
boundary.

We have seen in Sect. 2.2 that gedesics of Ad S3,+ are projective segments whereas
geodesics planes are the intersection of Ad S3,+ with projective planes. The scalar product
of R

2,2 induces a duality between points and projective planes and between projective
lines. In particular points in Ad S3 are dual to spacelike planes and the dual of a spacelike
geodesic is still a spacelike geodesic. Geometrically, every timelike geodesic starting
from a point p ∈ Ad S3 orthogonally meets the dual plane at time π/2, and points on
the dual plane can be characterized by the property to be connected to p be a timelike
geodesic of length π/2. Analogously, the dual line of a line l is the set of points that be
can be connected to every point of l by a timelike geodesic of length π/2.

Now, consider two hyperbolic transformations γ1, γ2 ∈ P SL(2, R) with the same
translation length. There are exactly 2 spacelike geodesics l1, l2 in Ad S3 that are invari-
ant under the action of (γ1, γ2) ∈ P SL(2, R)× P SL(2, R) = Isom0,+. Namely, if x+(c)
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denotes the attractive fixed point of a hyperbolic transformation c ∈ P SL(2, R), l2 is
the line in Ad S3 joining the boundary points (x+(γ1), x+(γ2)) and (x+(γ −1

1 ), x+(γ −1
2 )).

On the other hand l1 is the geodesic dual to l2, the endpoints of l1 are (x+(γ1), x+(γ −1
2 ))

and (x+(γ −1
1 ), x+(γ2)).

Points of l1 are fixed by (γ1, γ2) whereas it acts by pure translation on l2. The union
of the timelike segments with the past end-point on l2 and the future end-point on l1 is a
domain �0 in Ad S3,+ invariant under (γ1, γ2). The action of (γ1, γ2) on �0 is proper and
free and the quotient M0(γ1, γ2) = �0/(γ1, γ2) is a spacetime homeomorphic to S1×R

2.
There exists a spacetime with singularities M̂0(γ1, γ2) such that M0(γ1, γ2) is iso-

metric to the regular part of M̂0(γ1, γ2) and it contains a future BTZ-type singularity.
Define

M̂0(γ1, γ2) = (�0 ∪ l1)/(γ1, γ2).

To show that l1 is a future BTZ-type singularity, let us consider an alternative descrip-
tion of M̂0(γ1, γ2). Notice that a fundamental domain in �0 ∪l1 for the action of (γ1, γ2)

can be constructed as follows. Take on l2 a point z0 and put z1 = (γ1, γ2)z0. Then con-
sider the domain P that is the union of a timelike geodesic joining a point on the segment
[z0, z1] ⊂ l2 to a point on l1. P is clearly a fundamental domain for the action with two
timelike faces. M̂0(γ1, γ2) is obtained by gluing the faces of P .

We now generalize the above constructions as follows. Let us fix a surface S with
some boundary component and negative Euler characteristic. Consider on S two hyper-
bolic metrics μl and μr with geodesic boundary such that each boundary component
has the same length with respect to those metrics.

Let hl , hr : π1(S) → P SL(2, R) be the corresponding holonomy representations.
The pair (hl , hr ) : π1(S) → P SL(2, R) × P SL(2, R) induces an isometric action of
π1(S) on Ad S3.

In [Bar08a,Bar08b,BKS06] it is proved that there exists a convex domain � in AdS3,+
invariant under the action of π1(S) and the quotient M = �/π1(�) is a strongly causal
manifold homeomorphic to S × R. For the convenience of the reader we sketch the
construction of � referring to [Bar08a,Bar08b] for details.

The domain � can be defined as follows. First consider the limit set � defined as the
closure of the set of pairs (x+(hl(γ )), x+(hr (γ ))) for γ ∈ π1(S). � is a π1(S)-invariant
subset of ∂ Ad S3,+ and it turns out that there exists a spacelike plane P disjoint from �.
So we can consider the convex hull K of � in the affine chart RP

3 \ P .
K is a convex subset contained in Ad S3,+. For any peripheral loop γ , the spacelike

geodesic cγ joining (x+(hl(γ
−1)), x+(hr (γ

−1))) to (x+(hl(γ )), x+(hr (γ ))) is contained
in ∂K and � ∪ ⋃

cγ disconnects ∂K into components called the future boundary, ∂+ K ,
and the past boundary, ∂−K .

One then defines � as the set of points whose dual plane is disjoint from K . We have

(1) the interior of K is contained in �.
(2) ∂� is the set of points whose dual plane is a support plane for K .
(3) ∂� has two components: the past and the future boundary. Points dual to support

planes of ∂−K are contained in the future boundary of �, whereas points dual to
support planes of ∂+ K are contained in the past boundary of �.

(4) Let A be the set of triples (x, v, t), where t ∈ [0, π/2], x ∈ ∂−K and v ∈ ∂+� is a
point dual to some support plane of K at x . We consider the normal evolution map
� : A → Ad S3,+, where�(x, v, t) is the point on the geodesic segment joining x to
v at distance t from x . In [BB09b] the map � is shown to be injective (Figs. 12, 13).
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Fig. 12. The region P is bounded by the dotted triangles, whereas M0(γ1, γ2) is obtained by gluing the faces
of P

Proposition 7.9. There exists a manifold with singularities M̂ such that

(1) The regular part of M̂ is M.
(2) There is a future BTZ-type singularity and a past BTZ-type singularity for each

boundary component of M.
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Fig. 13. The segment r(c) projects to a BTZ-type singularity for M

Proof. Let c ∈ π1(S) be a loop representing a boundary component of S and let γ1 =
hl(c), γ2 = hr (c).

By hypothesis, the translation lengths of γ1 and γ2 are equal, so, as in the previous
example, there are two invariant geodesics l1 and l2. Moreover the geodesic l2 is con-
tained in � and is in the boundary of the convex core K of �. By [BKS06,BB09a], there
exists a face F of the past boundary of K that contains l2. The dual point of such a face,
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say p, lies in l1. Moreover a component of l1 \ {p} contains points dual to some support
planes of the convex core containing l2. Thus there is a ray r = r(c) in l1 with vertex at
p contained in ∂+� (and similarly there is a ray r− = r−(c) contained in l1 ∩ ∂−�).

Now let U (c) be the union of timelike segments in � with past end-point in l2 and
future end-point in r(c). Clearly U (c) ⊂ �(γ1, γ2). The stabilizer of U (c) in π1(S) is
the group generated by (γ1, γ2). Moreover we have
• for some a ∈ π1(S) we have a · U (c) = U (aca−1),
• if d is another peripheral loop, U (c) ∩ U (d) = ∅.
(The last property is a consequence of the fact that the normal evolution of ∂−K is
injective – see property (4) before Proposition 7.9.)

So if we put

M̂ = (� ∪
⋃

r(c) ∪
⋃

r−(c))/π1(S),

then a neighborhood of r(c) in M̂ is isometric to a neighborhood of l1 in M(γ1, γ2), and
is thus a BTZ-type singularity (and analogously r−(c) is a white hole singularity). ��

7.4. Surgery on spacetimes containing BTZ-type singularities. Now we illustrate how
to get spacetimes ∼= S × R containing two particles that collide producing a BTZ-type
singularity. Such examples are obtained by a surgery operation similar to that imple-
mented in Sect. 7.2. The main difference with that case is that the boundary of these
spacetimes is not spacelike.

Let M be a spacetime ∼= S × R containing a BTZ-type singularity l of mass m and
fix a point p ∈ l. Let us consider a HS-surface � containing a BTZ-type singularity p0
of mass m and two elliptic singularities q1, q2. A small disk �0 around p0 is isomorphic
to a small disk � in the link of the point p ∈ l. (As in the previous section, one can
construct such a surface by doubling a triangle in H S2 with one vertex in the de Sitter
region and two vertices in the past hyperbolic region.)

Let B be a ball around p and B� be the intersection of B with the union of segments
starting from p with velocity in �. Clearly B� embeds in e(�), moreover there exists a
small disk �0 around the vertex of e(�) such that e(�0) ∩ B0 is isometric to the image
of B� in B0.

Now �′ = ∂ B \ B� is a disk in M . So there exists a topological surface S0 in M
such that
• S0 contains �′;
• S0 ∩ B = ∅;
• M \ S0 is the union of two copies of S × R.
Notice that we do not require S0 to be spacelike.

Let M1 be the component of M \ S0 that contains B. Consider the spacetime M̂
obtained by gluing M1 \ (B \ B�) to B0, identifying B� to its image in B0. Clearly M̂
contains two particles that collide giving a BH singularity and topologically M̂ ∼= S×R.
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