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Abstract: We consider a finite region of a lattice of weakly interacting geodesic flows
on manifolds of negative curvature and we show that, when rescaling the interactions
and the time appropriately, the energies of the flows evolve according to a nonlinear
diffusion equation. This is a first step toward the derivation of macroscopic equations
from a Hamiltonian microscopic dynamics in the case of weakly coupled systems.

1. Introduction

One of the central problems in the study of non-equilibrium statistical physics is the
derivation of transport equations for conserved quantities, in particular energy trans-
port, from first principles, (see [6], and references therein, or [30], for a more general
discussion on the derivation of macroscopic equations from microscopic dynamics).

Lately several results have appeared trying to bring new perspective to the above
problem in a collective effort to attack the problem from different points of views. Let
us just mention, as examples, papers considering stochastic models [3–5], approaches
starting from kinetic equations or assuming extra hypotheses [2,7,26] or papers trying
to take advantage of the point of view and results developed in the field of Dynamical
Systems [8,9,13–16,29]. This paper belongs to the latter category but it is closely related
to results obtained for stochastic models (e.g., [25]).

We consider a microscopic dynamics determined by a (classical) Hamiltonian
describing a finite number of weakly interacting strongly chaotic systems and we explore
the following strategy to derive a macroscopic evolution: first one looks at times for
which we have an effective energy exchange between interacting systems, then takes
the limit for the strength of the interaction going to zero and hopes to obtain a self-con-
tained equation describing the evolution of the energies only. We call such an equation
mesoscopic since most of the degrees of freedom have been averaged out. Second, one
performs on such a mesoscopic equation a thermodynamic limit to obtain a macroscopic
evolution. In particular, one can consider a scaling limit of the diffusive type in order to
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obtain a nonlinear heat equation as in the case of the so-called hydrodynamics limit for
particle systems, see [22,31] for more details. A similar strategy has been carried out,
at a heuristic level, in [19,20].

The first step of such a program is accomplished in this paper. It is interesting to
note that the mesoscopic equation that we obtain seems to have some very natural and
universal structure since it holds also when starting from different models. Indeed, essen-
tially the same equation is obtained in [25] for a system of coupled nonlinear oscillators
in the presence of an energy preserving randomness. In addition, such an equation is
almost identical to the one studied in [31] apart from the necessary difference that the
diffusion is a degenerate one. Indeed, since it describes the evolution of energies, and
energies are positive, the diffusion coefficients must necessarily be zero when one energy
is zero.

Since, due to the weak interaction, the energies vary very slowly, once the time is
rescaled so that the energies evolve on times of order one all the other variables will
evolve extremely fast. Thus our result is an example of averaging theory for slow-fast
systems. Yet, in our case the currents have zero average which means that standard aver-
aging theory (such as, e.g. [18]) cannot suffice. It is necessary to look at longer times
when the fluctuations play a fundamental role. The study of such longer times can in
principle be accomplished thanks to the theory developed in [12].

Unfortunately, the results in [12] do not apply directly and we are forced to a round-
about in order to obtain the wanted result. Not surprisingly, the trouble takes place at
low energies. We have thus to investigate with particular care the behavior of the system
at low energies. In particular, we prove that the probability for any particle to reach zero
energy, in the relevant time scale, tends to zero.

The structure of the paper is as follows: Sect. 2 contains the precise description of
the microscopic model and the statement of the results. Sect. 3 describes the logic of
the proof at a non-technical level and points out the technical difficulties that must be
overcome to make the argument rigorous. In the following section we show how to
modify the dynamics at low energies in such a way that existing results can be applied.
Then, in Sect. 5, we investigate the modified dynamics and show that its accumulation
points satisfy a mesoscopic equation of the wanted type. In Sect. 6 we compute explicitly
the properties of the coefficients of the limit equation for the modified dynamics and in
Sect. 7 we use this knowledge to show that the equation has a unique solution, hence the
modified process converges to this solution. In Sect. 8 we discuss the limit equation for
the original dynamics under the condition that no particle reaches zero in finite time. The
fact that this condition holds in our model is proven in Sect. 9. The paper ends with two
appendices. In the first, for reader convenience, some known results from the averaging
theory for systems with hyperbolic fast motion are restated in a way suitable for our
needs. The second appendix contains some boring, but essential, computations.

2. The Model and the Result

For d ∈ N, we consider a lattice Z
d and a finite connected region � ⊂ Z

d . Associated
to each site in � we have the cotangent bundle T ∗M of a C∞ compact Riemannian
d-dimensional manifold M of strictly negative curvature and the associated geodesic
flow gt . We have then the phase space M = (T ∗M)� and we designate a point as
(qx , px ), x ∈ �. It is well known that the geodesic flows is a Hamiltonian flow. If we
define i : T ∗M → T M to be the natural isomorphism defined by w(v) = 〈i(w), v〉G ,
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G being the Riemannian metric, then the Hamiltonian reads1 H0 =∑x∈� 1
2 p2

x and the
symplectic form is given by ω = dq ∧d p.2 Thus, given x ∈ �, the equations of motion
take the form (see [27, Sect. 1] for more details)

q̇x = i(px ) ,

ṗx = F̃(qx , px ) , (2.1)

where the F̃ is homogeneous in the px of degree two. Note that, by the Hamiltonian
structure, ex := 1

2 p2
x is constant in time for each x ∈ �. It is then natural to use the

variables (qx , vx , ex ), where vx := (p2
x )

− 1
2 i(px ) belongs to the unit tangent bundle

T 1 M of M .3 We have then the equations

q̇x = √2exvx ,

v̇x = √2ex F(qx , vx ) ,

ėx = 0,

(2.2)

where F is homogeneous of second degree in vx .
Next we want to introduce a small energy exchange between particles. To describe

such an exchange we introduce a symmetric, non-constant, function (potential) V ∈
C∞(M2,R) and, for each ε > 0, consider the flow gt

ε determined by the Hamiltonian
Hε =∑x∈� 1

2 p2
x + ε

2

∑
|x−y|=1 V (qx , qy), that is by the equations

q̇x = i(px ) ,

ṗx = F̃(qx , px )− ε
∑

|y−x |=1

dqx V (qx , qy).

Or, alternatively,4

q̇x = √2exvx ,

v̇x = √2ex F(qx , vx ) +
ε√
2ex

∑

|y−x |=1

{vx Lx V −∇qx V (qx , qy)}, (2.3)

ėx = −ε√2ex

∑

|x−y|=1

Lx V,

where 〈∇V, w〉G = dV (w) and

Lx = vx∂qx + F(qx , vx )∂vx (2.4)

denotes the generator associated to the geodesic flow of the x particle on T1 M .

1 By p2
x we mean 〈i(px ), i(px )〉G(qx ) = 〈px , px 〉G̃ , where G̃ = i∗(G).

2 To be more precise, given the canonical projection π(q, p) = q, first define the one form, on T (T ∗M),
ω1
(q,p)(ξ) = p(dπ(ξ)). Then ω := −dω1. Given coordinates q on U ⊂ M and using the coordinates p for

the one form p =∑i pi dqi ∈ T ∗M , we have ω1 =∑i pi dqi and ω =∑i dqi ∧ d pi , as stated.
3 Clearly ex is the (kinetic) energy of the geodesic flow at x .
4 In the interacting case one could choose to include the interaction in the energy and define eεx := 1

2 p2
x +

ε
4
∑

|x−y|=1 V (qx , qy). This is the choice made in [25]. Yet, in the present context |ex −eεx | ≤ |V |∞ε, hence
the actual choice is irrelevant in the limit ε → 0 and ex turns out to be computationally simpler.
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We will consider random initial conditions of the following type

E( f (q(0), v(0)) =
∫

(T1 M)�
f (q, v)ρ(q, v)dm, ∀ f ∈ C0((T1 M)�,R),

(2.5)
ex (0) = Ex > 0,

where m is the Riemannian measure on (T1 M)� and ρ ∈ C1.
Since the currents Lx V have zero average with respect to the microcanonical measure,

one expects that it will take a time of order ε−2 in order to see a change of energy of order
one. It is then natural to introduce the process ex (ε

−2t) and to study the convergence of
such a process in the limit ε → 0.

Our main result is the following.

Theorem 1. Provided d ≥ 3, the process {ex (ε
−2t)} defined by (2.3) with initial condi-

tions (2.5) converges to a random process {Ex (t)} with values in R
�
+ which satisfies the

stochastic differential equation

dEx =
∑

|x−y|=1

a(Ex , Ey)dt +
∑

|x−y|=1

√
2β(Ex , Ey)d Bxy,

Ex (0) = Ex > 0,

(2.6)

where Bxy are standard Brownian motions which are independent except that

Bxy = −Byx .

The coefficients have the following properties: β is symmetric and a is antisymmet-
ric; β ∈ C0([0,∞)2,R+) and β(a, b)2 = abG(a, b), where G ∈ C∞((0,∞)2,R+) ∩
C1((0,∞)× [0,∞),R+) and G(a, 0) = A(2a)− 3

2 for some A > 0. Moreover,

a = (∂Ex − ∂Ey )β
2 +

d − 2

2
(E−1

x − E−1
y )β2. (2.7)

In addition, (2.6) has a unique solution and the probability for one energy to reach zero
in finite time is zero.

Remark 2.1. A direct computation shows that the measures with density hβ =
∏

x∈� E
d
2 −1

x e−βEx are invariant for the above process for each β ∈ R+. Indeed, using
(2.7), we can write the generator of the process (2.6) in the simple form

L = 1

2h0

∑

|x−y|=1

(∂Ex − ∂Ey )h0β
2(∂Ex − ∂Ey )

from which the reversibility of the generator is evident.

Remark 2.2. The case d = 2 is harder because the second term in (2.7) (which otherwise
would give the main contribution at small energies) is zero. We believe the result to be
still true,5 but a much more detailed (and messy) analysis of (2.6) is needed to establish
it. As this would considerably increase the length of Sect. 9 without adding anything
really substantial to the paper, we do not pursue such matter.

5 That is the fact that zero is unreachable.
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Remark 2.3. Note that if we could apply [31] to perform the hydrodynamics limit, then
we would obtain the heat equation. Unfortunately, (2.6) does not satisfy the hypotheses
of Varadhan’s Theorem on several accounts, the most relevant being that the domain
where the diffusion takes place is not all the space and a,β vanish on the boundary of
the domain. This is unavoidable as the energy is naturally bounded from below. Never-
theless, the results of this paper can be considered as a first step along the bumpy road
to obtaining the heat equation from a purely mechanical deterministic model.6

Remark 2.4. As a last remark, let us comment on the choice of Z
d . This is done just

to simplify notations: our arguments are of a local nature, hence the structure of Z
d

does not play any role in the proof. In particular, one can prove, with exactly the same
arguments, the following extension of our result.

Consider a loopless symmetric directed graph G determined by the collection of its
vertexes V (G) and the collection of its directed edges E(G).7 At each vertex v ∈ V (G)
we associate a mixing geodesic flow as before; consider then the Hamiltonian

Hε =
∑

v∈V (G)

1

2
p2
v +

ε

2

∑

(e1,e2)∈E(G)

V (qe1 , qe2).

We then have the exact analogues8 of Theorem 1 for the variables {Ev}v∈V (G) with the
only difference that the limiting equation now reads

dEv =
∑

(v,w)∈E(G)

a(Ev, Ew)dt +
∑

(v,w)∈E(G)

√
2β(Ev, Ew)d B(v,w)

Ev(0) = Ev > 0,

(2.8)

where again for each e ∈ E(G), the Be are independent standard Brownian motions
apart form the fact that B(v,w) = −B(w,v).

An interesting application of the above remark is the case where G is a complete
graph (i.e. E(G) = {(v1, v2) : v1, v2 ∈ V (G)}) in which case all particles interact with
each other.

The rest of the paper is devoted to proving Theorem 1. Before going into details we
explain exactly how the various results we are going to derive are collected together to
prove the theorem.

Proof of Theorem 1. Fix T > 0 and let Pε be the probability measure, on the space
C0([0, T ],R�+ ), associated to the process {ex (ε

−2t)}t∈[0,T ] defined by (2.3), Pε,δ to the
one defined by (4.1), P̃δ the one associated to the process {ez(t)} with z(t) defined by
(7.2) and P the one defined by (2.6). Also, let�δ = {τδ ≥ T },where τδ = inf{t ∈ R+ :
minx∈� Ex (t) ≤ δ}. By construction, for each F ∈ C0, EPε

(F1�δ ) = EPε,δ
(F1�δ ),

E
P̃δ
(F 1�δ ) = EP(F 1�δ ).

6 One could object that geodesic motion in negative curvature is not really mechanical. Yet, it is possible to
construct a bona fide mechanical system which motion is equivalent to a geodesic flow in negative curvature
[23]. In any case, by Maupertuis’ principle, any Hamiltonian system can be viewed as a geodesic flow, possibly
on a non-compact manifold.

7 Directed means that the edges e ∈ E(G) are ordered pairs (e1, e2), ei ∈ V (G), which is interpreted
as an edge going from e1 to e2. Symmetric means that if (e1, e2) ∈ E(G), then (e2, e1) ∈ E(G). Loopless
means that, for each a ∈ V (G), (a, a) �∈ E(G). This abstract setting reduces to the previous one if we choose
V (G) = Z

d and E(G) = {(x, y) ∈ Z
d × Z

d : |x − y| = 1}.
8 In particular the condition d ≥ 3 refers to the manifolds M , not to the lattice or graph.
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Proposition 7.4 implies that Pε,δ ⇒ P̃δ and, since �δ is a continuity set for P̃δ ,
limε→0 Pε,δ(�δ) = P̃δ(�δ) = P(�δ).

Next, Lemma 9.1, based on estimate (8.1), tells us that limδ→0 P̃δ(�
c
δ) = 0. Thus

lim
δ→0

lim
ε→0

Pε(�
c
δ) = 0.

Hence Pε ⇒ P. The information on the coefficients follows by collecting (8.3), (2.7)
(proven in Lemma 8.1), Lemmata 6.1 and 6.3. Finally, the uniqueness follows from
standard results on SDE and the unreachability of zero (Lemma 9.1). ��

3. Heuristic

Let us give a sketch of the argument where we ignore all the technical difficulties and
perform some daring formal computations.

If we could apply [12, Theorem 7] to Eq. (2.3) we would obtain a limiting process
characterized by an equation that, after some algebraic manipulations detailed in Sect. 7,
reads9

dEx =
∑

|x−y|=1

a(Ex , Ey)dt +
∑

|x−y|=1

√
2β(Ex , Ey)d Bxy, (3.1)

where β(Ex , Ey) = β(Ey, Ex ) is symmetric and Bxy = −Byx are independent standard
Brownian motions. The marginal of the Gibbs measure on the energy variables reads

dμβ =
∏

x

E
d
2 −1

x e−βEx dEx =: hβ ∧x dEx ,

for each β ∈ [0,∞). Hence we expect such a measure to be invariant for (3.1). Even
more, on physical grounds (see Lemma 7.1) one expects the process (3.1) to be reversible
with respect to these measures. A straightforward computation shows that the generator
associated to the above SDE reads

L =
∑

|x−y|=1

axy∂Ex +
1

2

∑

|x−y|=1

β2
xy(∂Ex − ∂Ey )

2,

where axy = a(Ex , Ey), βxy = β(Ex , Ey). The adjoint with respect to μ0 reads

L∗ =
∑

|x−y|=1

{

−axy +
d + 1

2
(E−1

x − E−1
y )β2

xy + (∂Ex − ∂Ey )β
2
xy

}

∂Ex

+
1

2

∑

|x−y|=1

β2
xy(∂Ex − ∂Ey )

2 − 1

h0

∑

|x−y|=1

∂Ex (h0axy)

+
1

2h0

∑

|x−y|=1

(∂Ex − ∂Ey )
2(h0βxy).

Computing what it means, L = L∗ implies (2.7).

Remark 3.1. Note that, as expected, axy = −ayx . Thus d
∑

x Ex = 0.

9 See Appendix A for a precise statement of the results in [12] relevant to our purposes.
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Going to a bit less vague level of analysis, one must notice that since Ex ≥ 0, the
diffusion equation (3.1) must be degenerate at zero, also it is not clear how regular the
coefficients a,β are. Hence, a priori, it is not even obvious that such an equation has a
solution and, if so, if such a solution is unique. To investigate such an issue it is necessary
to obtain some information on the behavior of the coefficients at low energies.

To this end one can use the explicit formula given in [12, Theorem 7] for the diffusion
coefficient. This allows to verify that the coefficients are smooth away from zero. An
explicit, but lengthy, computation yields, for Ex ≤ Ey ,

β2
xy = AEx

√
2Ey

+ O
(

E
3
2
x E−1

y

)

(3.2)

axy = Ad

2
√

2Ey
+ O

(√Ex

Ey

)

,

see Lemma 8.1 for details. Thus, in particular, axyEx = d
2 β2

xy + o(β2
xy).

We will see in Sect. 9 that such a relation, provided d > 2, suffices to prove that the
set {(Ex ) : ∏x Ex = 0} is unreachable and hence to insure that Eq. (3.1) has a unique
solution.

In the rest of the paper we show how to make rigorous the above line of reasoning.

4. A Modified Dynamics

Since the geodesic flows on manifolds of strictly negative curvature enjoy exponential
decay of correlations [11,24] we are in a setting very close to the one in [12], i.e. we
have a slow-fast system in which the fast variables have strong mixing properties.

Unfortunately, the perturbation to the geodesic flows in (2.3) is not small when
ex = O(ε), so at low energies one is bound to loose control on the statistical properties
of the dynamics. The only easy way out would be to prove that the limit system spends
very little time in configurations in which one particle has low energy.10 If this were
the case, then one could first introduce a modified system in which one offsets the bad
behavior at small energies and then tries to remove the cutoff by showing that, in the limit
process, the probability to reach very small energies is small. We will pursue precisely
such a strategy.

We now define the modified process. Since our equations are Hamiltonian with
Hamiltonian H = ∑

x∈� 1
2 p2

x + ε
2

∑
|x−y|=1 V (qx , qy), the simplest approach is to

modify the kinetic part of the Hamiltonian making it homogeneous of degree one at
low velocities and decreasing correspondingly the interaction at low energies. More
precisely, given any two functions ϕ, φ ∈ C∞(R+\{0},R), consider the Hamiltonians
Hϕ,φ =∑x∈� ϕ(ex ) + ε

2

∑
|x−y|=1 φ(ex )φ(ey)V (qx , qy), which yield the equations of

motion

q̇x = ϕ′(ex )i(px ) + ε
∑

|x−y|=1

φ′(ex )φ(ey)V (qx , qy)i(px ),

ṗx = ϕ′(ex )F̃(qx , px ) + ε
∑

|x−y|=1

φ′(ex )φ(ey)V (qx , qy)F̃(qx , px )

10 To investigate low energy situations directly for the coupled geodesic flows seems extremely hard: when
the kinetic energy is comparable with the potential energy all kinds of uncharted behaviors, including coexis-
tence of positive entropy and elliptic islands, could occur!
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−ε
∑

|y−x |=1

φ(ex )φ(ey) dqx V,

ėx = −ε
∑

|y−x |=1

φ(ex )φ(ey) dqx V (i(px )),

with F̃ as in (2.1).11 Which, in the variables (qx , vx , ex ), reads

q̇x = √2exϕ
′(ex )vx + ε

∑

|x−y|=1

√
2exφ

′(ex )φ(ey)V (qx , qy)vx ,

v̇x = ϕ′(ex )
√

2ex F(qx , vx ) + ε

{ ∑

|x−y|=1

φ′(ex )φ(ey)
√

2ex V (qx , qy)F(qx , vx )

−
∑

|y−x |=1

φ(ex )φ(ey)√
2ex

∇qx V +
∑

|y−x |=1

vx
φ(ex )φ(ey)√

2ex
dqx V (vx )

}

,

ėx = −
∑

|y−x |=1

φ(ex )φ(ey)
√

2ex dqx V (vx ),

(4.1)

with F as in (2.2).
Since d

dt v
2
x = ε(v2

x − 1)
∑

|y−x |=1
φ(ex )φ(ey)√

2ex
dqx V (vx ), the manifold v2

x = 1 is an
invariant manifold for the Eqs. (4.1), thus such equations determine a flow in the variables
(ξx , ex ) = (qx , vx , ex ) ∈ T 1 M × R+.

Finally, we chose ϕ = ϕδ and φ = φδ such that, for all δ > 0,

ϕδ(s) =
{

s if s ≥ δ

2
√
δs if s ≤ δ

8
; φδ(s) = 1

ϕ′
δ(s)

=
{

1 if s ≥ δ√
s√
δ

if s ≤ δ
8 ,

(4.2)

where φδ is increasing.
We denote the solution of the above equations (4.1) with initial conditions (ξ, e) by

(ξε,δ(t), eε,δ(t)).
Our goal is to apply [12, Thm. 7] to the flow (ξε,δ(t), eε,δ(t)), see Appendix A for a

simplified statement (Thm. A.1) adapted to our needs. Before discussing the applicabil-
ity of this Theorem, there is one last issue we need to take care of: the equation for e is
clearly degenerate at low energies; this is related to the fact that the energies in (4.1) are
strictly positive for all times if they are strictly positive at time zero.12 This may create a
problem in the limiting process that is bound to have a degenerate diffusion coefficient.
To handle this problem it turns out to be much more convenient to use the variables
zx = ln ex . In these new variables we finally have the equations we are looking for

11 By dqx V we mean the differential of the function V (·, qy) for any fixed qy .
12 Indeed, the equation for the energy can be written, near zero, as ėx = −εex G(e�=x , ξ), where G is a

bounded function, hence the solution has the form ex (t) = ex (0)e
−ε ∫ t

0 G(e�=x (s),ξ(s))ds .
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q̇x = ωδ(zx )vx +
ε

2

∑

|x−y|=1

ζδ(zx )φδ(e
zy )V (qx , qy)vx ,

v̇x = ωδ(zx )F(qx , vx ) +
ε

2

∑

|x−y|=1

ζδ(zx )φδ(e
zy )V (qx , qy)F(qx , vx )

− ε√
2

∑

|y−x |=1

e−
zx
2 φδ(e

zx )φδ(e
zy )∇qx V (qx , qy)

+
ε√
2

∑

|y−x |=1

vx e−
zx
2 φδ(e

zx )φδ(e
zy )Lx V (ξx , ξy),

żx = −ε√2
∑

|y−x |=1

e−
zx
2 φδ(e

zx )φδ(e
zy )Lx V (ξx , ξy),

(4.3)

where Lx is as in Eq. (2.4) and

ωδ(z) =
√

2e
z
2 ϕ′
δ(e

z) =
{√

2e
z
2 if z ≥ ln δ√

2δ if z ≤ ln δ − ln 8
,

ζδ(z) =
√

2e
z
2 φ′
δ(e

z) =
{

0 if z ≥ ln δ
1√
2δ

if z ≤ ln δ − ln 8.

(4.4)

Remark 4.1. Note that we can chose ωδ ≥
√
δ and ζδ ≥ 0 decreasing.13 In addition, it is

possible to arrange that |ωδ|Cr (IL ,R) ≤ Cr eL , where IL = (−∞, 2L), and |ζδ|Cr (R,R) ≤
Crδ

− 1
2 , for each r ∈ N, L , δ ∈ R+. We will assume such properties in the following.

Since the total energy is conserved, we can consider Eqs. (4.3) on the set (T 1 M)�×
(−∞, L]� for some L > 0. Hence, by the above remark together with (4.2), the vector
field in (4.3) has bounded Cr norm, as a function of x, z, ε, for each r ∈ N.

Let f̃ δ(ξ, z, ε, δ) = ξε,δ(1), Fε,δ(ξ, z) = (ξε,δ(1), zε,δ(1)), and

Aδx (ξ, z, ε) = −√
2
∫ 1

0

∑

|x−y|=1

e−
zx (τ )

2 φδ(e
zx (τ ))φδ(e

zy(τ ))Lx V (ξε,δx (τ ), ξ ε,δy (τ ))dτ, (4.5)

then

Fε,δ(ξ, z) =
(

f̃ δ(ξ, z, ε), z + εAδ(ξ, z, ε)
)
. (4.6)

Lemma 4.2. Setting F̃δ(x, z, ε) = Fε,δ(x, z) we have, for each δ ∈ (0, 1), L > 0,
F̃δ ∈ C∞((T 1 M)�× (−∞, L]�×[0, 1]), and ‖Aδ(·, ·, ε)‖Cr ((T 1 M)�×(−∞,L]�) ≤ Cr,δ ,
for each r ∈ N, ε ∈ [0, 1]. In addition, for each β ∈ R+, the probability measure

dμδ,ε,β = Z̃−1
β e−β H̃δ,ε+

∑
x

d
2 zx dqdvdz,

H̃δ,ε(q, ν, z) =
∑

x∈�
ϕδ(e

zx ) +
ε

2

∑

|x−y|=1

φδ(e
zx )φ(ezy )V (qx , qy),

13 Indeed,

φδ(s) = 1 −
∫ δ

min{s,δ}
ζδ(ln x)√

2x
dx .

Remark that once ζδ is chosen all the functions are fixed.
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is invariant for Fε,δ . Moreover, for each z̄ ∈ R
d and sub-manifold�z̄ := {zx = z̄x }, the

Dynamical System (�z̄, F0,δ) has a unique SRB measure μz̄ .

Proof. The first part of the statement follows from Remark 4.1 and subsequent com-
ments together with standard results of existence of solutions and smooth dependence
on the initial data from O.D.E.. The bound on Aδ is then immediate from formula (4.5).

By the Hamiltonian nature of Eqs. (4.1) the measures

dμδ,β = Z−1
β e−βHϕδ ,φδ dqdp ,

are invariant for the associated dynamics for each β > 0. By changing variables we
obtain the statement of the Lemma.

Finally, calling μ̃ the Riemannian measure on T 1 M we have that μz̄ = ⊗|�|μ̃ is a
SRB measure for the map ξ �→ f̃ δ(ξ, z, 0), which turns out to be the product of the
time ωδ(zx )maps of the geodesic flow on T 1 M . The uniqueness of the SRB follows by
the mixing of the geodesic flows [1] and the fact that the product of mixing systems is
mixing. ��

5. Existence of the Limit: δ > 0

We are finally ready to consider the limit ε → 0, for the modified dynamics.

Proposition 5.1. For each δ ∈ (0, 1) there exists εδ > 0 such that the Dynamical System
defined by (4.6) satisfies the hypotheses of Theorem A.1 for ε ∈ [0, εδ].

Hence, the family zε,δ(ε−2t) is tight and its weak accumulation points are a solution
of the Martingale problem associated to the stochastic differential equation

dzδx = aδx (z
δ)dt +

∑

y

σ δxy(z
δ)d By,

zδx (0) = z̄x ,

(5.1)

where

(σ δ)2xy(z) =
∑

n∈Z

∫

(T 1 M)�
Aδx (( f̃ δ)n(ξ, z, 0)Aδy(ξ, z, 0)dμz

= 2
∫ +∞

−∞
dt

∑

|x−w|=1
|y−w′|=1

φδ(ezx )φδ(ezw)φδ(ezy )φδ(ezw′ )

e
zx +zy

2

×E

(
Lx V (ξ0,δ

x (t), ξ0,δ
w (t)) · L y V (ξy, ξw′)

)
. (5.2)

Here E is the expectation with respect to μz and ‖aδ‖C0 + ‖(σ δ)2‖C1 <∞.

Proof. First of all notice that the hypotheses on the smoothness of Fε,δ and the bound-
edness of Aδ are insured by Lemma 4.2. Next, notice that F0,δ(ξ, z) = ( f δz (ξ), z) with
f δz (ξ)x = gωδ(zx )(ξx ), where gt is the geodesic flow on the unit tangent bundle T 1 M ,
thus the f δz are FAE.14

14 FAEs are defined in Appendix A. In our case, the abelian action is the one determined by the geodesic
flows themselves, ×i∈�gti .
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Also we have that μz(Aδ(·, z, 0)) = 0. This follows by considering the transforma-
tion �(q, v) = (q,−v). Indeed �∗μz = μz while, the flow � t

δ,ε associated to (4.3)

satisfies � t
δ,ε ◦� = � ◦�−t

δ,ε. On the other hand, using the antisymmetry of Lx V with
respect to vx ,

Aδx (�(ξ), z, 0) = −√
2
∫ 1

0

∑

|x−y|=1

e−
zx
2 φδ(e

zx )φδ(e
zy )Lx V ◦�τδ,0 ◦�(ξ)dτ

= √
2
∫ 1

0

∑

|x−y|=1

e−
zx
2 φδ(e

zx )φδ(e
zy )Lx V ◦�−τ

δ,0 (ξ)dτ

= −Aδx (�
−1
δ,0(ξ), z, 0).

Thus μz(Aδ(·, z, 0)) = μz(Aδ(�(·), z, 0)) = −μz(Aδ(�
−1
δ,0(·), z, 0)) = −μz(Aδ(·, z,

0)), by the invariance of the measure.
The last thing to check is the uniform decay of correlation. Sinceωδ ≥

√
δ, the results

in [11,24] imply15 that the fz are FAE with uniform exponential decay of correlation.
In fact, in Theorem A.1 the decay of correlations is meant in a very precise technical
sense. To see that the results in [24] imply the wanted decay we must translate them
into the language of standard pairs in which Theorem A.1 is formulated. Let us start
by stating the result in [24]: let ga be the time a map of the geodesic flow on the unit
tangent bundle. For each smooth function A let ‖A‖s = ‖A‖∞ + ‖∂s A‖∞, where ∂s

is the derivative in the weak stable direction. Then there exists C, c > 0 such that, for
each z and ρ, A ∈ C1, holds true

∣
∣E(ρ · A ◦ g̃an)− E(A)E(ρ)

∣
∣ ≤ C‖ρ‖C1‖A‖se−can . (5.3)

Since, setting f δz (ξ) = f̃ δ(ξ, z, 0), f δz = ×x gωδ(zx ), and ωδ is uniformly bounded from
below, for E(A) = 0, it follows (suppressing, to ease notation, the superscript δ)16

∣
∣E(ρ · A ◦ f n

z )
∣
∣ ≤ C |�| ‖ρ‖C1‖A‖se−can . (5.4)

To see that this is stronger than needed, consider a standard pair � = (D, ρ).17 One can
smoothly foliate a ε neighborhood of D and define a probability density ρε supported
in it such that ‖ρε‖C1 ≤ Cε−2, while ‖ρε‖C1 ≤ C when ρε is restricted to a leaf of
the foliation. Thanks to the α-Hölder regularity and the absolute continuity of the weak
stable foliation, one can take ρε so that

|E�(A)− E(ρεA)| ≤ Cεα‖A‖s .

Accordingly,
∣
∣E�(A ◦ f n

z )
∣
∣ ≤ ∣∣E(ρε · A ◦ f n

z )
∣
∣ + Cεα‖A ◦ f n

z ‖s ≤ C
{
ε−2e−can + εα

}
‖A‖s

≤ Ce−
αcan
2+α ‖A‖C1 ,

15 [11] proves the exponential decay of correlations for geodesic flows on negatively curved surfaces, [24]
extends the results to any negatively curved manifold.

16 Just note that one can write E(ρ · A ◦ f n
z ) = E(E(ρ · A ◦ f n

z | ξy �=x )) and that the relevant norms of
ρξy �=x (ξx ) = ρ(ξx , ξy �=x ) and Aξy �=x (ξx ) = A(ξx , f n

z (ξy �=x )) are bounded by the full norms of ρ and A.

One can then apply (5.3) to E(ρ · A ◦ f n
z | ξy �=x ) = E(ρξy �=x Aξy �=x ◦ f̃ n

ωδ(zx )
). Proceeding in such a way one

variable at a time yields the result.
17 Recall that D is a manifold of fixed size close to the strong unstable one and ρ a smooth density on it.
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where, in the last equality, we have chosen ε = e− can
2+α . Thus, all the hypotheses of

Theorem A.1 are satisfied and (5.2) follows by a direct computation. ��
By Theorem A.1(b), in order to prove that zε,δ(ε−2t) has a limit it suffices to prove

that (5.1) has a unique solution. This would follow by standard results if we knew that
aδ is locally Lipschitz. In fact, [12] provides also an explicit formula for aδ. Unfortu-
nately this formula is much more complex than the formula for the variance and is quite
difficult to investigate. We will avoid a direct computation of aδ and we will instead
use the knowledge of the invariant measure to determine it. Before doing that a deeper
understanding of the variance is required.

6. Computing the Variance

Let gt be the geodesic flow on the unit cotangent bundle of M . As already noted, for
each function h, h(ξ0,δ

x (t)) = h ◦ gωδ(zx )t (ξx ) for all x ∈ �. For convenience let us set
�x := ωδ(zx ). Also, it turns out to be useful to define two functions of two variables:
consider two geodesic flows on T 1 M , let (ξ, η) be the variables of the two flows respec-
tively, E the expectation with respect to the Riemannian volume on (T 1 M)2 and L1, L2
the generators associated to the geodesic flow of ξ and η respectively, then we define
ρ, ρ̃ : R

2 → R by

ρ(a, b) :=
∫ ∞

−∞
dt E

(
L1V (gat (ξ), gbt (η)) · L1V (ξ, η)

)
,

ρ̃(a, b) :=
∫ ∞

−∞
dt E

(
L1V (gat (ξ), gbt (η)) · L2V (ξ, η)

)
.

(6.1)

Also, it is convenient to define

ρxy := ρ(ωδ(zx ), ωδ(zy)), ρ̃xy := ρ̃(ωδ(zx ), ωδ(zy)). (6.2)

Indeed, the understanding of the variance will be reduced shortly to understanding
the properties of ρxy . Here is a list of relevant properties whose proof can be found in
Appendix B.

Lemma 6.1. The function ρ̃ is non-positive and C∞ for a, b > 0. In addition, for
each a, b, λ > 0 we have ρ̃(a, b) = ρ̃(b, a) and ρ(λa, λb) = λ−1ρ(a, b). Finally,
ρ̃(a, b) = − a

bρ(a, b).

Remark 6.2. Note that the previous lemma implies a2ρ(a, b) = b2ρ(b, a).

Lemma 6.3. There exists A, B > 0 such that, for all a, b > 0,
∣
∣
∣
∣ρ(a, b)− A b2

a3 + b3

∣
∣
∣
∣ ≤

B ab3

a5 + b5
.

Finally, for all a, b > 0,

|∂aρ(a, b)| ≤ B ab2

a5 + b5
; a∂aρ(a, b) + b∂bρ(a, b) = −ρ(a, b).

We are now in the position to derive a helpful formula for the variance.
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Lemma 6.4. The following formula holds true

(σ δ)2xy(z) =

⎧
⎪⎪⎨

⎪⎪⎩

2e−zx
∑

|x−w|=1{φδ(ezx )φδ(ezw)}2ρxw if x = y

−2e−zyφδ(ezx )φδ(ezy )3ρxy if |x − y| = 1

0 if |x − y| > 1.

Proof. Remembering (5.2), given any two couples of neighboring sites x, w, y, w′ we
want to compute

∫ ∞

−∞
dt E

(
Lx V (g�x t (ξx ), g�w t (ξw)) · L y V (ξy, ξw′)

)
.

In fact, remembering the properties of the transformation� in the proof of Lemma 5.1,
it suffices to compute the integral on [0,∞).

Since E(vx | q �=x , v�=x ) = 0, it follows that the above integral is different from zero
only if x = y or x = w′ and w = y. On the other hand if x = y, since gat × gbt is a
mixing flow for each a, b > 0, we can write

∫ ∞

0
dt E

({

�−1
x

d

dt
V (g�x t (ξx ), g�w t (ξw))

−�w
�x

LwV (g�x t (ξx ), g�w t (ξw))

}

· Lx V (ξx , ξw′)

)

= �−1
x E (V (qx , qw))E (Lx V (ξx , ξw′))−�−1

x E (V (qx , qw) · Lx V (ξx , ξw′))

−�w
�x

∫ ∞

0
dt E

(
LwV (g�x t (ξx ), g�w t (ξw)) · Lx V (ξx , ξw′)

)

= −δw,w′
�w

�x

∫ ∞

0
dt E

(
LwV (g�x t (ξx ), g�w t (ξw)) · Lx V (ξx , ξw)

)

= δw,w′
∫ ∞

0
dt E

(
Lx V (g�x t (ξx ), g�w t (ξw)) · Lx V (ξx , ξw)

)
.

Thus, remembering (4.2), (4.4) and that �x = ωδ(zx ),

σ 2
xx = 2e−zx

∑

|x−w|=1

φδ(e
zx )2φδ(e

zw)2ρxw,

and σ 2
xy = 0 if |x − y| > 1. If |x − y| = 1, then (remembering the symmetry of the

potential and using Lemma 6.1)

σ 2
xy = 2φδ(e

zx )2φδ(e
zy )2e−

zx +zy
2 ρ̃xy = −2e−zyφδ(e

zx )φδ(e
zy )3ρxy .

��
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7. The Limit Equation (δ > 0): Structure

Having gained a good knowledge on the variance we are ready to write the limit equation
in a more explicit and convenient form.

We introduce standard Brownian motions Bxy indexed by oriented edges, so that the
motions associated to different non-oriented edges are independent and Bxy = −Byx .

Considering the Gaussian processes Wx :=∑|x−y|=1 βxy(z)Bxy we have

E(Wx (t)Wy(t) | z) =

⎧
⎪⎨

⎪⎩

∑
|x−w|=1 βxw(z)2 t for x = y

−βxy(z)βyx (z) t for |x − y| = 1
0 for |x − y| > 1.

We set18

βxy(z) =
√

2e−
zx
2 φδ(e

zx )φδ(e
zy )

√
ρxy , (7.1)

hence, remembering Lemmata 6.4, 6.1 and Eqs. (6.2), (4.4), (4.2),

(σ δ)2xy(z) =

⎧
⎪⎨

⎪⎩

∑
|x−w|=1 β

2
xw if x = y

−βxyβyx if |x − y| = 1
0 if |x − y| > 1.

Then, we can write (5.1) as

dzδx = aδx (z
δ)dt +

∑

|x−y|=1

βxy(z
δ) d Bxy . (7.2)

Let L be the operator in the Martingale problem associated to the diffusion defined
by (5.1).

Lemma 7.1. If the manifold M is d dimensional, then for each β > 0,

e
∑

x
d
2 zx−βϕδ(ezx )dz

is an invariant measure for the process defined by (7.2). In addition, the process (7.2)
is reversible. That is, calling Eβ the expectation with respect to the above invariant
measure,

Eβ(ϕLh) = Eβ(hLϕ)
for each smooth real function ϕ, h.

Proof. Recall that Lemma 4.2 gives the invariant measures of the original Dynamical
System. In particular , for each ψ ∈ C0(R|�|,R),

|μδ,ε,β(ψ(zε,δ(ε−2t)))− μδ,0,β(ψ(z
ε,δ(ε−2t)))| ≤ Cε|ψ |∞.

Thus

|μδ,0,β(ψ(zε,δ(ε−2t)))− μδ,0,β(ψ(z
ε,δ(0)))| ≤ 2Cε|ψ |∞.

18 This is well defined since ρx,y ≥ 0 by Lemma 6.1.
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Taking the limit ε → 0 along any subsequence leading to an accumulation point we see
that μδ,0,β is an invariant measure for the process (5.1). The claim of the lemma now
follows by taking the marginal of μδ,0,β in the variables z.

In the same manner, using the same notation as in the proof of Lemma 5.1, for each
continuous function ψ, g and converging sequence zεk ,δ(ε

−2
k t) we have

Eβ(ψ(z(t))g(z)) = lim
k→∞μδ,εk ,β(g · ψ ◦�ε

−2
k t
εk ,δ

) = lim
k→∞μδ,εk ,β(ψ · g ◦�−ε−2

k t
εk ,δ

)

= lim
k→∞μδ,εk ,β(ψ ◦� · g ◦� ◦�ε

−2
k t
εk ,δ

) = Eβ(g ◦�(z(t))ψ ◦�(z)).

Since g, ψ are functions of the z only, it follows that g ◦� = g, ψ ◦� = ψ and

Eβ(ψ(z(t))g(z)) = Eβ(g(z(t))ψ(z)).

Differentiating with respect to t at t = 0 yields the lemma. ��
Lemma 7.2. The drift aδx has the form

aδx =
∑

|x−y|=1

{
∂zx

[
e−zxφδ(e

zx )2φδ(e
zy )2ρxy

]
− ∂zy

[
e−zyφδ(e

zx )φδ(e
zy )3ρxy

]}

+
d

2

∑

|x−y|=1

[
e−zxφδ(e

zx )2φδ(e
zy )2 − e−zyφδ(e

zx )φδ(e
zy )3
]
ρxy .

Proof. The idea to compute the aδx is very simple: first compute L and L∗ and then check
what the reversibility condition implies. The operator associated to the diffusion (5.1)
is given by

L =
∑

x

aδx∂zx +
1

2

∑

x,y

(σ δ)2xy∂zx ∂zy .

The adjoint L∗ with respect to the invariant measures in Lemma 7.1 can then be computed
by integrating by parts. Setting �x (z) := d

2 − βφδ(ezx )−1 we have

L∗ψ = −
∑

x

{∂zx aδx + aδx�x }ψ −
∑

x

aδx∂zxψ

+
1

2

∑

xy

[
∂zx ∂zy (σ

δ)2xy + 2�x∂zy (σ
δ)2xy + �x�y(σ

δ)2xy + δxy∂zx�x (σ
δ)2xy

]
ψ

+
∑

xy

[
∂zy (σ

δ)2xy + �y(σ
δ)2xy

]
∂zxψ +

1

2

∑

xy

(σ δ)2xy∂zx ∂zyψ.

This implies

aδx = 1

2

∑

y

[
∂zy (σ

δ)2xy + �y(σ
δ)2xy

]

and the lemma follows by direct algebraic computations using Lemma 6.4. ��
The next result is an obvious fact that is nevertheless of great importance.
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Lemma 7.3. The function H :=∑x ϕδ(e
zx ) is constant in time.

Proof. It is useful to notice that, setting ψx := ezx

φδ(ezx )
and κxy = ψxβxy , κxy = κyx .

By Ito’s formula we have

dH =
∑

x

ψx ax dt +
∑

|x−y|=1

κxyd Bxy +
1

2

∑

x

∂zψx

∑

|x−y|=1

β2
xydt.

The second term is zero by the antisymmetry of Bxy , thus (using Lemma 7.2 and the
symmetry of κxy again)

dH = 1

2

∑

|x−y|=1

[
ψx∂zxβ

2
xy − ψy∂zxβxyβyx

]
dt

+
d

2

∑

|x−y|=1

[
ψ−1

x − ψ−1
y

]
κ2

xydt +
1

2

∑

|x−y|=1

β2
xy∂zψx dt = 0.

��
We conclude with the main result of this section.

Proposition 7.4. For each δ > 0 the family zε,δ(ε−2t) converges weakly, for ε → 0, to
the process z(t) determined by the SDE (7.2).

Proof. From Lemma 7.2 and Lemma 6.1 it follows that aδ ∈ C∞; this, together with the
boundedness and convergence results established in Lemma 5.1 and the standard results
on the uniqueness of the solution of the SDE, imply that all the accumulation points of
zε,δ(ε−2t) must coincide, hence the proposition. ��

8. The Limit Equation (δ = 0): Properties and Stopping Times

It is natural to consider the stopping time τδ := inf{t ∈ R+ : minx∈� zx ≤ ln δ}.
In addition, Lemma 7.3 suggests the convenience of going back to the more physical
process Ex (t) = ϕδ(ezx (t∧τδ)) = ezx (t∧τδ).

Lemma 8.1. For each t ≤ τδ , the process Ex satisfies the SDE,

dEx =
∑

y

a(Ex , Ey)dt +
√

2β(Ex , Ey)d Bxy,

where a,β ∈ C∞((0,∞)2,R) are respectively anti-symmetric and symmetric functions
that satisfy (2.7), (3.2). In addition, if d ≥ 3, then for each constant

M ≥ max

{

1,
d − 1 + 8B

A

d − 2

}

,

if Ey > MEx , then

a(Ex , Ey)Ex ≥ β(Ex , Ey)
2. (8.1)
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Proof. By Ito’s formula and (7.2) we have19

dEx =
⎡

⎣ezx ax +
1

2
ezx

∑

|x−y|=1

β2
xy

⎤

⎦ dt +
∑

|x−y|=1

ezxβxyd Bxy . (8.2)

Using (7.1), (6.2), (4.4) and Lemma 6.1 we can write

ezxβxy =
√

2Exρ(
√

2Ex ,
√

2Ey) =: √2β(Ex , Ey). (8.3)

Lemma 7.2, Eqs. (4.2), (6.2) and (4.4) yield

ax =
∑

|x−y|=1

[
∂Exρ − ∂Eyρ

]
+

d − 2

2

∑

|x−y|=1

[
E−1

x − E−1
y

]
ρ.

Using Eq. (8.2) we finally obtain (2.7) and from Lemma 6.3 follows (3.2).
Moreover, by Lemma 6.3,

∂Exρxy = 1√
2Ex

∂aρ(
√

2Ex ,
√

2Ey),

∂Eyρxy = − 1

2Ey

{
ρ(
√

2Ex ,
√

2Ey) +
√

2Ex∂aρ(
√

2Ex ,
√

2Ey)
}

= −β(Ex , Ey)
2

2ExEy
− Ex

Ey
∂Exρxy .

Hence

Ex a(Ex , Ey) = β2 + E2
x ∂Exρxy − E2

x ∂Eyρxy +
d − 2

2
β2 − d − 2

2
ExE−1

y β2

=
{

d

2
− d − 1

2

Ex

Ey

}

β(Ex , Ey)
2 + E2

x

{

1 +
Ex

Ey

}

∂Exρxy .

The regularity of the coefficients follows from the previous results and some algebraic
computations. At last, for Ey > MEx ,

Ex a(Ex , Ey) ≥
{

d

2
− d − 1

2M

}

β(Ex , Ey)
2 − B(1 + M−1)

2M

Ex

(2Ey)
1
2

.

On the other hand

β(Ex , Ey)
2 = Exρ(

√
2Ex ,

√
2Ey) ≥ Ex

[
A

√
2Ey

− B
√

2Ex

2Ey

]

≥ AEx

4
√

2Ey
, (8.4)

from which the lemma follows. ��
19 Here we suppress the δ-dependence since we stop the motion before seeing the region in which the

dynamics has been modified.
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9. The Limit Equation (δ = 0): Unreachability of Zero Energy

Our last task it to prove that the stopping time τδ tends to infinity when δ tends to zero
or, in other words, energy zero is unreachable for the limit equation.

Fix any T > 0.
For each subset � ⊂ � let us define the energy of the cluster E� :=∑x∈� Ex . Also,

for each δ > 0, n ∈ {1, . . . , |�|}, let us define the stopping times

τ n
δ := inf{t ∈ [0,∞) : ∃ � ⊂ �, |�| = n, E�(t) ≤ δ} ∧ T .

Note that τ 1
δ = τδ ∧ T , where τδ is defined at the beginning of Sect. 8.

Lemma 9.1. Let P be the measure associated to the process (2.6), then

lim
δ→0

P

({
τ 1
δ < T

})
= 0.

Proof. We will prove that for each η > 0 and n ∈ {1, . . . |�|} there exists δn = δn(η),
such that

P
({
τ n
δn
< T

}) ≤ 2−nη.

The proof is by (backward) induction. The case n = |�| follows by the energy conser-
vation by choosing δ|�| < E�

2 .
Next, suppose the statement true for n + 1 ≤ |�|. It is convenient to define, for each

� ⊂ � the stopped process Ê�(t) = E�(t ∧ τ n+1
δn+1
) and the set � = {τ n+1

δn+1
≥ T }. Then,

for each 0 < δ < δn+1, we have

P
({
τ n
δ < T

}) ≤ P
({
τ n
δ < T

} ∩�) + 2−(n+1)η

≤ P

⎛

⎜
⎜
⎝

⋃

�⊂�|�|=n

{

inf
t∈[0,T ] Ê�(t) ≤ δ

}
⎞

⎟
⎟
⎠ + 2−(n+1)η.

It thus suffices to show that there exists δn ≤ δn+1 such that, for each� ⊂ �, |�| = n,
we have

P

({

inf
t∈[0,T ] Ê�(t) ≤ δn

})

≤ 2−(|�|+n+1)η ≤
(|�|

n

)−1

2−(n+1)η.

Let us fix � ⊂ �, |�| = n.
Observe that if � holds but E�(t) ≤ δn+1

M+1 then Ey ≥ Mδn+1
M+1 ≥ ME� ≥ MEx for all

y �∈ � and x ∈ �. In the following we will choose M as in the statement of Lemma 8.1.
Next, we define the process Y = ln E� which satisfies

dY =
∑

(x,y)∈B(�)

{
a(Ex , Ey)E� − β(Ex , Ey)

2

2E2
�

dt +
√

2β(Ex , Ey)E−1
� d Bxy

}

, (9.1)

where B(�) = {(x, y) ∈ �2 : x ∈ �, y �∈ �, |x − y| = 1}.
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Observe that by Corollary 8.1 the drift is positive, indeed

∑

(x,y)∈B(�)

(
a(Ex , Ey)E� − β(Ex , Ey)

2
)

2E2
�

≥
∑

(x,y)∈B(�)

(
a(Ex , Ey)Ex − β(Ex , Ey)

2
)

2E2
�

≥ 0.

In addition, arguing as in (8.4), if E�(t) ≤ δn+1
M+1 we have, for some constant C > 0,

E−2
� β(Ex , Ey)

2 ≤ 2
Ex

E2
�

[
A

√
2Ey

+
B
√

2Ex

2Ey

]

≤ C

E
3
2
�

. (9.2)

Therefore

Y (t ∧ τ n+1
δn+1
) ≥ Y (0) +

∫ t∧τ n+1
δn+1

0

∑

(x,y)∈B(�)

√
2β(Ex , Ey)E−1

� d Bxy =: M(t).

Note that M is a Martingale. Let τ∗ = inf{t : M(t) ≤ ln δn+1} ∧ T . Consider the new
martingale M̃(t) = M(t)− M(t ∧ τ∗) and the stopping time

τ̂ = inf{t : M̃(t) ≤ ln δn − ln δn+1 or M̃(t) ≥ −1

2
ln δn+1} ∧ T .

Setting p = P({M(τ̂ ) = ln δn}) we obtain

0 ≤ p(ln δn − ln δn+1)− (1 − p)
1

2
ln δn+1,

which implies

P({M(τ̂ ) = ln δn}) ≤ ln δn+1

2 ln δn − ln δn+1
.

Set δn = δαn+1, α > 1 to be chosen later. The probability that M, starting from ln δn+1

reaches ln δn before reaching 1
2 ln δn+1 is smaller than (2α − 1)−1. Accordingly, the

probability that the martingale reaches ln δn before downcrossing L times the interval
[ln δn+1,

1
2 ln δn+1] is smaller than 1 − (1 − (2α − 1)−1)L ≤ α−1L . On the other hand

by Doob’s inequality the expectation of the number of downcrossing is bounded by
2

ln δ−1
n+1

E((M − 1
2 ln δn+1)

+). Since M − 1
2 ln δn+1 ≥ 0 implies E� ≥ √

δn+1, by (9.2),

E((M − 1

2
ln δn+1)

+) ≤ Cδ
− 3

4
n+1 follows,

for some constant C independent on ε. From this it immediately follows that the proba-
bility to have more than L downcrossing is less than L−1δ−1

n+1. In conclusion,

P

({

inf
t∈[0,T ] Ê�(t) ≤ δn

})

≤ C(α−1L + L−1δ−1
n+1),

which yields the wanted estimate by first choosing L2 = αδ−1
n+1 and then setting α =

C2δ−1
n+122|�|+2n+4η−2.20 ��

20 Note that δn ∼ δ
Cδ−1

n+1
n+1 for some constant C . So, for large �, δ1 is absurdly small. Yet, this suffices for

our purposes.
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Corollary 9.2. The set {∃x : Ex = 0} is inaccessible for the limiting equation.
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Appendix A. An Averaging Theorem

In this appendix, for reader convenience, we recall [12, Thm. 7] stating it in reduced
generality but in a form directly applicable to our setting.

Let M be a C∞ Riemannian manifold, z ∈ R
d and fz ∈ Diff∞(M,M) a family of

partially hyperbolic diffeomorphisms.21

We say that { fz} is a family of Anosov elements (FAE) if there exists Abelian actions
gz,t , t ∈ R

dc , where dc = dim Ec, such that fz ◦ gz,t = gz,t ◦ fz and span{∂ti gz,t } = Ec.
Next, we need to discuss decay of correlations that in [12] is meant in a very pre-

cise technical sense. The basic concept is the one of standard pairs. For the present
purposes a standard pair can be taken to be a probability measure determined by the
couple � = (D, ρ), where D is a C2 dim(Eu)-dimensional manifold D close to the
strong unstable manifold and a smooth function ρ ∈ C1(D,R+) such that

∫
D ρ = 1.22

We set E�(A) =
∫

D Aρ. The point is that it is possible to choose a set � of manifolds
D of uniform bounded diameter and curvature such that, for each D ∈ �, fz D can
be covered by a fixed number of elements of �. For each C > 0 we consider the set
E1 = {(D, ρ) : D ∈ �, ‖ρ‖C1(D,R) ≤ C} and let E2 be the convex hull of E1 in the
space of probability measures.

It is easy to check that one can choose � and C such that for all � ∈ E1 there exists
a family {�i } ⊂ E1 such that E�(A ◦ fz) =∑nz

i=1 cz
i E�i (A). In addition one can insure

that any measure with C1 density with respect to the Riemannian volume belongs to the
weak closure of E2 (see [12] for more details).

We say that the family { fz} has uniform exponential decay of correlations if there
exists C1,C2 > 0 such that, for each z ∈ R

d there exists probability measures μz such
that for each n ∈ N, standard pair � ∈ E1 and functions A ∈ C1(M,R),

∣
∣E�(A ◦ f n

z )− μz(A)
∣
∣ ≤ C1e−C2n|A|C1 holds.

Consider now the function F ∈ C∞(M × R
d × R+,M × R

d),

F(x, z, ε) = ( f̃ (x, z, ε), z + εA(x, z, ε)), (A.1)

and the associated dynamical systems Fε(x, z) = F(x, z, ε), such that f̃ (x, z, 0) =
fz(x). Let (xεn(x, z), zεn(x, z)) := Fn

ε (x, z). Then for each g ∈ Cr (M,R+), μ(g) = 1
we can define the measure μg(h) := μ(g · h) and consider the Dynamical Systems
(Fε,M ×R

d) with initial conditions z = z0 and x distributed according to the measure

21 By this we mean that, for each fixed z, at each point x ∈ M the tangent space of Tx M can be written
as Eu(x) ⊕ Ec(x) ⊕ Es (x), where the splitting is invariant with respect to the dynamics, i.e. dx f E∗(x) =
E∗( f (x)) for ∗ ∈ {u, c, s}. In addition, there exists constants λ1 ≤ λ2 < λ3 ≤ λ4 < λ5 ≤ λ6, with
λ2, λ

−1
5 < 1, such that λ1 ≤ α(d f |Es ) ≤ ‖d f |Es ‖ ≤ λ2, λ3 ≤ α(d f |Ec ) ≤ ‖d f |Ec‖ ≤ λ4 and λ5 ≤

α(d f |Eu ) ≤ ‖d f |Eu ‖ ≤ λ6, where α(A) = ‖A−1‖−1.
22 The integral is with respect to the volume form on D induced by the Riemannian metric.



Energy Transfer in a Fast-Slow Hamiltonian System 221

μg . We can then view zεn as a random variable, clearly E(ψ(zεn)) = μg(ψ̃ ◦ Fn
ε ), where

ψ̃(x, z) = ψ(z).

Theorem A.1 ([12]). Let F, Fε, fz be defined as in (A.1) and subsequent lines. Let fz be
FAE with uniform exponential decay of correlation. Suppose that there exists ε0,Cr ∈ R+
such that supε≤ε0

‖A(·, ·, ε)‖Cr ≤ Cr and μz(A(·, z, 0)) = 0 for all z. Also assume that
zε0 = z∗ and xε0 has a smooth distribution on M as described above, then

a) The family {zε�tε−2 } is tight.

b) There exist functions σ 2 ∈ C1(Rd , SL(d,Rd)), σ 2 > 0, a ∈ C0(Rd ,Rd) such that
the accumulation points of {zε�tε−2 } are a solution of the Martingale problem asso-
ciated to the diffusion

dz = adt + σd B,

z(0) = z∗,

where {Bi }d
i=1 are independent standard Brownian motions and

σ 2(z) =
∞∑

n=−∞

∫

M
A(x, z, 0)⊗ A( f n

z x, z, 0)μz(dx).

Moreover ‖a‖C0 + ‖σ 2‖C1 <∞.

Appendix B. The Properties of ρx y

Here we collect, a bit boring, proofs of the Lemmata concerning ρxy .

Proof of Lemma 6.1. The non-negativity follows from the fact that the quantity is an
autocorrelation, see footnote 24 for details. By definition

∂n
a ∂

m
b ρ̃(a, b) =

∫ ∞

−∞
dt tn+m

E

(
(Ln+1

1 Lm
2 V ) ◦ gat ⊗ gbt · L2V

)

= (−1)n+m
∫ ∞

−∞
dt tn+m

E

(
(Ln+1

1 Lm
2 V ) · L2V ◦ gat ⊗ gbt

)
.

Applying (5.3) to the above formula yields

|∂n
a ∂

m
b ρ̃(a, b)| ≤ Cn,m

∫ ∞

0
dt tn+me−c min{a,b}t ≤ Cn,m min{a, b}−n−m−1.

This proves the smoothness of ρ̃. To continue, consider

ρ̃(λa, λb) =
∫ ∞

−∞
dt E

(
(L1V ) ◦ gaλt ⊗ gbλt · L2V

)
= λ−1ρ̃(a, b)
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by the change of variables t → λt . The symmetry follows by a change of variables as
well. Finally,

ρ̃(a, b) =
∫ ∞

−∞
dt E

(
(L1V ) ◦ gat ⊗ gbt · L2V

)

=
∫ ∞

−∞
dt E

(
L1V · (L2V ) ◦ gat ⊗ gbt

)

= b−1
∫ ∞

−∞
dt

d

dt
E

(
L1V · V ◦ gat ⊗ gbt

)

−a

b

∫ ∞

−∞
dt E

(
L1V · (L1V ) ◦ gat ⊗ gbt

)
.

The lemma follows then by the mixing of gat ⊗ gbt (being the product of two mixing
flows) and the definition of ρ. ��

To continue it is useful to define and study the function �(τ) := ρ(τ, 1).

Lemma B.1. There exists A, B > 0 and D ∈ R such that
∣
∣
∣
∣�(τ)−

A

1 + τ 3

∣
∣
∣
∣ ≤

Bτ

1 + τ 5
, ∀τ > 0,

|�′(τ )− Dτ | ≤ Bτ 2, ∀τ ∈ (0, 1],
|�′(τ ) + 3Aτ−4| ≤ Bτ−5, ∀τ ≥ 1.

Proof. Let us start by assuming τ ≤ 1. By setting V (q1) = E(V | q1, v1), and taking
care of adding and subtracting that is needed to write convergent integrals,

�(τ) = 2
∫ ∞

0
dt E

(
L1V · L1V ◦ gτ t ⊗ gt )

)

= 2
∫ ∞

0
dt
[
E
(
L1V · L1V ◦ id ⊗ gt)− E((L1V )2)

]

+2
∫ ∞

0
dt
∫ τ t

0
ds
[
E

(
L1V · L2

1V ◦ gs ⊗ gt
)
− E(L1V · L2

1V ◦ gs)
]

+2
∫ ∞

0
dt E(L1V · L1V ◦ gτ t ).

The third term here vanishes since it is the variance of a coboundary. That is,
∫ ∞

0
dt E(L1V · L1V ◦ gτ t ) = τ−1

∫ ∞

0
dt

d

dt
E(L1V · V ◦ gt ) = 0.

Also, setting Ṽ = V − V ,

∫ ∞

0
dt
∫ τ t

0
ds
[
E

(
L1V · L2

1V ◦ gs ⊗ gt
)
− E(L1V · L2

1V ◦ gs)
]

=
∫ ∞

0
ds
∫ ∞

τ−1s
dt E

(
L1Ṽ · L2

1Ṽ ◦ gs ⊗ gt
)
= O

(∫ ∞

0
ds
∫ ∞

τ−1s
e−ct dt

)

= O(τ ),
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where we have used (5.3) after conditioning with respect to q1, v1. Thus23

�(τ) = 2
∫ ∞

0
dt
[
E
(
∂q1 V · ∂q1 V ◦ id ⊗ gt)− E((∂q1 V )2)

]

+O(τ ) = A + O(τ ). (B.1)

The fact that A > 0 follows from general theory of mixing flows combined with
cocycle rigidity of geodesic flows [10,21].24

Next, consider the case τ ≥ 1. By Lemma 6.1 we have

�(τ) = ρ(τ, 1) = τ−1ρ(1, τ−1) = −τ−2ρ̃(τ−1, 1) = τ−3�(τ−1). (B.2)

Thus �(τ) = A
1+τ 3 + O(τ−4). This readily implies the first part of the lemma.

Let us compute the derivative

�′(τ )
2

=
∫ ∞

0
dt t E

(
L1V · L2

1V ◦ gτ t ⊗ gt
)

=
∫ ∞

0
dt t

∫ τ t

0
ds
{
E

(
L1V · L3

1V ◦ gs ⊗ gt
)
− E

(
L1V · L3

1V ◦ gs
)}

+
∫ ∞

0
dt t

∫ τ t

0
ds E

(
L1V · L3

1V ◦ gs
)

=
∫ ∞

0
ds
∫ ∞

τ−1s
dt t E

(
L1Ṽ · L3

1Ṽ ◦ gs ⊗ gt
)

+
∫ ∞

0
dt

t

τ 2 E

(
L1V · L2

1V ◦ gt
)

=
∫ ∞

0
ds
∫ ∞

τ−1s
dt t E

(
L1Ṽ · L3

1Ṽ ◦ id ⊗ gt
)
−
∫ ∞

0
dt

E
(
L1V · L1V ◦ gt

)

τ 2

+
∫ ∞

0
ds
∫ ∞

τ−1s
dt t

∫ s

0
drE

(
L1Ṽ · L4

1Ṽ ◦ gr ⊗ gt
)

23 Here we use the fact that E(v1 ⊗ v1 | q1, η) = 1.
24 Indeed, for each T > 0 and f ∈ C∞, E( f ) = 0,

0 ≤ E

⎛

⎝

∣
∣
∣
∣
∣

∫ T

0
f ◦ gt dt

∣
∣
∣
∣
∣

2
⎞

⎠ = 2
∫ T

0
dt (T − t)E( f ◦ gt · f ) = 2T

∫ T

0
dt E( f ◦ gt · f ) + O(1).

Thus the autocorrelation must be non negative. If it is zero then
∫ T

0 f ◦ gt dt has uniformly bounded L2

norm. This implies that there exists a weakly converging subsequence to some L2 function h such that
E(h) = 0. It is easy to check that such a function is smooth in the stable direction (just compare with
the average on stable manifolds) and, for each smooth function ϕ, E(hLϕ) = −E( f ϕ). Thus E(hLnϕ) =
−E( f Ln−1ϕ) = (−1)nE(Ln−1 f ϕ), which implies Lnh ∈ L2, i.e. h is smooth along weak-stable leaves.
Next, letting �(q, ν) = (q,−ν), we have E( f ϕ) = E(h ◦ � · Lϕ), that is E((h + h ◦ �)Lϕ) = 0 for each
smooth ϕ. In turns, this implies h = −h ◦� a.s.. Indeed, given ρ ∈ L2, if E(ρ) = 0 and E(ρLϕ) = 0 for all
smooth ϕ, then one can choose smooth ρn that converges to ρ in L2, thus Lρn converges weakly to zero, but
then there exist convex combinations ρ̃n of the {ρm }m≤n such that Lρ̃n converges to zero strongly (since the
weak closure of a convex set agrees with its strong closure) and, since L is a closed operator on L2, it follows
that ρ is in the domain of L and Lρ = 0. In addition, the ergodicity of the flow implies that the only L2, zero
average, solution of Lρ = 0 is ρ = 0. Finally, since h is smooth along the weak-stable foliation and h ◦� is
smooth along the unstable foliation, then h has a continuos version by the absolute continuity of the foliations
and is smooth by [17], hence Lh = f . That is, if the autocorrelation is zero, then f is a smooth coboundary.
At last, the claim follows since a smooth function of the coordinates only which is a coboundary must be iden-
tically zero, [10, Corollary 1.4]. Accordingly,

∫∞
−∞ dt E

(
∂q1 V (q1, q2)∂q1 V (q1, gt (q2, v2)) | q1, v1

)
must

be strictly positive for positive measure set of q1 otherwise, by the symmetry of the potential, the potential
would be constant.
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= −
∫ ∞

0
ds
∫ ∞

τ−1s
dt t E

(
L2

1Ṽ · L2
1Ṽ ◦ id ⊗ gt

)
− E

(
L1V )E(V

)− E(
L1(V

2
)

2 )

τ 2

+O
(∫ ∞

0
ds τ−1s2e−csτ−1

)

= −τ
∫ ∞

0
dt t2

E

(
L2

1Ṽ · L2
1Ṽ ◦ id ⊗ gt

)
+ O(τ 2) =: Dτ + O(τ 2).

On the other hand, differentiating (B.2) yields, for τ large,

�′(τ ) = −3τ−4�(τ−1)− τ−5�′(τ−1) = −3Aτ−4 + O(τ−5),

which completes the proof of the lemma. ��
Remark B.2. Note that �(0) is not defined as the corresponding integral diverges. Nev-
ertheless, we can set �(0) = A by continuity.

Proof of Lemma 6.3. Note that, by Lemma 6.1,

ρ(a, b) = b−1ρ(ab−1, 1) = b−1�(ab−1).

Hence the lemma follows from Lemma B.1. ��
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