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Abstract: The problem of perturbative breakdown of conformal symmetry can be
avoided, if a conformally covariant quantum field ϕ on d-dimensional Minkowski space-
time is viewed as the boundary limit of a quantum field φ on d + 1-dimensional Anti-
deSitter spacetime (AdS). We study the boundary limit in renormalized perturbation
theory with polynomial interactions in AdS, and point out the differences as compared
to renormalization directly on the boundary. In particular, provided the limit exists, there
is no conformal anomaly. We compute explicitly the one-loop “fish diagram” on AdS4
by differential renormalization, and calculate the anomalous dimension of the composite
boundary field ϕ2 with bulk interaction κφ4.
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1. Introduction

When a scale invariant free field is perturbed by an interaction, the scaling symmetry is in
general broken. In the case of the free massless scalar field in 4-dimensional Minkowski
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space, this “conformal anomaly” is well known: the renormalization of loop diagrams
requires the introduction of a scale parameter which breaks scale invariance. Using the
non-uniqueness of renormalization, the best one can reach is “almost homogeneous scal-
ing”, i.e. the breaking terms for the scaling x �→ λx are proportional to some power of
log λ. (For a systematic treatment in the framework of causal perturbation theory see
[9,17,18].)

In this paper, we want to address the analogous issue for scale invariant generalized
free fields (free fields with non-canonical scaling dimension, see (2.9) below). Such
fields naturally arise as boundary limits of Klein-Gordon fields on AdS [3,4,29]. The
basic question is:

– Is it possible to construct scale invariant interacting fields (admitting for anomalous
dimensions)

(ϕl)κL(x) = : ϕl(x) : + O(κ) (1.1)

as perturbative expansions around Wick powers : ϕl(x) : of scale invariant general-
ized free fields ϕ [11]?

(L denotes the interaction density and κ the coupling constant.)
Perturbation theory around a generalized free field (in Minkowski space) suffers

from a huge arbitrariness which is due to renormalization, as we point out in Sect. 2. On
the other hand, the requirement of scale invariance is very restrictive. In important cases
(which we do not want to exclude) it cannot be fulfilled even for tree diagrams (Sect. 3.4).
Namely, the propagator needs a nontrivial renormalization if the scaling dimension �

is ≥ 2 in four dimensions ( d
2 in d dimensions), and for integer � a breaking of scale

invariance cannot be avoided.
We propose here a method to circumvent these difficulties and construct pertur-

batively interacting fields with unbroken conformal symmetry, by taking advantage of
the AdS-CFT correspondence. Viewing a conformally covariant field on Minkowski
space-time as a boundary limit of an AdS covariant field on Anti-deSitter space-time
[3,4,10,29], an AdS invariant renormalization in the bulk guarantees an anomaly free
conformal symmetry of the boundary field, provided the boundary limit exists. In this
way, the AdS-CFT correspondence turns out to be a useful tool also when one is only
interested in CFT in Minkowski spacetime.

In [3,4] and [11] it was shown that the boundary limit z ↘ 01 of the scalar Klein-
Gordon field φ(z, x) of mass M on (d + 1)-dimensional AdS is a generalized free field
ϕ(x) with scaling dimension

� = �+ = d

2
+ ν ,

(
ν =

√
d2

4
+ M2

)
, (1.2)

see Sect. 2. The corresponding boundary limit of the free Wick powers W (z, x) =
: φl(z, x) : yields fields w(x) = : ϕl(x) : which have scaling dimensions l�. Notice
that in the Witten model [29] of Maldacena’s conjectured AdS-CFT correspondence
[22], one studies instead the “dual” field with boundary conditions corresponding to
�− = d

2 − ν, which is coupled to the sources in a “dual” way. However, it was shown

1 We use Poincaré coordinates X ≡ (z, xμ) ∈ R+ ×R
d of AdSd+1 such that ξ = z−1(

xμ, 1
2 (z2 −x2 −1),

1
2 (z2 − x2 + 1)

)
lies on the hyperboloid ξ · ξ = 1 w.r.t. to the metric of signature (+, − . . . −, +) in the ambient

space R
d+2. The AdS metric is the induced one: ds2 = z−2(dxμdxμ − dz2), see e.g. [3,4].
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in [10] that the dual coupling modifies the relevant bulk propagator by a correction term
in such a way, that the full propagator becomes that of the above Klein-Gordon field,
and the unrenormalized perturbative expansion of the dually coupled boundary field is
formally equivalent to the boundary limit of the bulk field φ(z, x) with the same inter-
action. (The same nontrivial features, that are of representation theoretic nature, were
established for the propagators of symmetric tensor fields of any rank [26].)

Regarding the generalized free field as a limit of a canonical free field on AdS, the task
is to extend this relation to the renormalized interacting fields. Hence, we first construct
the interacting AdS fields

WκL(z, x) = : φl(z, x) : + O(κ) (1.3)

for polynomial interactions L = φk in Sect. 3 and Sect. 4, using standard renormaliza-
tion methods of causal perturbation theory (reviewed in Sect. 2.2 and 2.3). At this stage,
the non-uniqueness of the renormalization can be classified by the usual short distance
power counting [6,17,18], and the propagator is unique and AdS-invariant, hence the
AdS symmetry is fully preserved.

Then, the essential step is to investigate the existence of a boundary limit

wκL(x) = lim
z↘0

z−�W
κL · WκL(X) (1.4)

in the renormalized theory. Here, we admit for anomalous dimensions, i.e., �W
κL =

l� + O(κ). If this limit exists, we prove that it inherits the AdS symmetry of the bulk as
an exact (unbroken) conformal symmetry (Sect. 2.4).

Our main result is that the boundary limit does exist, for typical polynomial interac-
tions, for the interacting field (Sect. 3) and for composite fields (Sect. 4), due to nontrivial
cancellations within the renormalized one-loop distributions taking place in the limit.
Although the actual computations are “hidden” in Apps. C and D, these cancellations
constitute the essential mechanism to allow the passage to the boundary.

In order to establish this result, along the way we develop a “universal” formula
(Lemma B.1 in App. B) that controls the asymptotic behaviour near the boundary of a
large class of typical interactions and diagrams.

Thus, the above posed question gets an affirmative answer for those interactions
L[ϕ(x)] of the conformal field which are “induced” by the corresponding polynomial
AdS interaction L[φ(X)] (as indicated by retaining the subscript κL in (1.4) also for the
boundary field). This means [11] that

κ

∫
dd x L[ϕ(x)] = κ

∫
dz dd x

√−g L[φ(z, x)] , (1.5)

hence the CFT interaction density

L[ϕ(x)] =
∫

dz
√−g L[φ(z, x)] =

∫
dz

zd+1 L[ϕhz (x)] (1.6)

arises as the z-integral over L[ϕhz (x)], where ϕhz (x) is the AdS field φ(z, x) re-expressed
as a family of boundary generalized free fields belonging to the Borchers class of ϕ ([11],
see Sect. 2.1). We point out that, due to the integration in (1.6), the interaction vertices
“remain in the bulk”. In this sense, the situation is converse to Rühl’s reconstruction
[27] of an AdS field from an interacting conformal field where the AdS interaction is
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restricted to the boundary (namely, the AdS field in [27] satisfies the free field equation
in the bulk).

It is an essential aspect of our approach that, while the general principles of renormal-
ization are the same, the detailed implementation of the rules differ in the bulk and on the
boundary. In order to exhibit the methodic difference which allows the renormalization
in the bulk to preserve the symmetry that is necessarily broken by renormalization on the
boundary, we compare both approaches in Sect. 2.5 with a flat space toy model, where
this difference is much more transparent.

2. The General Strategy

2.1. Free fields. Let us recall [11] how the Klein-Gordon field on (d + 1)-dimensional
Anti-deSitter space and generalized free fields on d-dimensional Minkowski space can
be represented in terms of the same creation and annihilation operators, and hence as
field operators on the same Hilbert space.

The free Klein-Gordon field φ of mass M on AdS can be expressed as

φ(z, x) = 1√
2

z
d
2

∫ ∞

0
dm2 Jν(mz)ϕm(x) , (2.1)

where ϕm is a massive free boundary field given by

ϕm(x) ≡
∫

k0≥0
ddk δ(k2 − m2)

[
a(k)e−ikx + a+(k)eikx]. (2.2)

The parameter ν > −1 is related to the mass by M2 = ν2 − d2

4 . The functions

zd/2 Jν(
√

k2z) exp ±ikx are the plane-wave solutions to the Klein-Gordon equation on
AdS, where the Laplacian is

�X = −z1+d∂z z1−d∂z + z2�x , (2.3)

and a(k), a+(k) (k ∈ R
d ) are creation and annihilation operators normalized as

[a(k), a+(k′)] = (2π)−(d−1)δd(k − k′) , [a, a] = 0 = [a+, a+] , (2.4)

in the Fock space H over the continuous mass 1-particle space H1 = L2(V+, ddk).
In this Hilbert space, the fields

ϕh(x) ≡
∫

V+

ddk h(k2)
[
a(k)e−ikx + a+(k)eikx ] (2.5)

(with h any sufficiently smooth polynomially bounded real function on R+) are local
and Poincaré covariant generalized free scalar fields in d-dimensional Minkowski space
with Källen-Lehmann measure dμ(m2) = h(m2)2dm2. Thus, φ may be written as

φ(z, x) = ϕhz (x) with hz(m
2) ≡ 1√

2
z

d
2 Jν(zm). (2.6)

Taking the boundary limit, we get [3,4,11]:

lim
z↘0

z−�φ(z, x) = ϕ(x) (2.7)
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with2

ϕ(x) = Cν

∫

V+

ddk (k2)
ν
2 [a(k)e−ikx + a+(k)eikx ] , � ≡ ν +

d

2
, (2.8)

i.e., ϕ = ϕh with h(m2) = Cν mν , Cν ≡ 2−ν− 1
2

(ν+1)
. Its Källen-Lehmann measure being a

homogeneous function of the mass:

dμ(m2) = C2
ν m2ν dm2 , (2.9)

the boundary field ϕ is scale invariant:

U (λ) ϕ(x) U (λ)∗ = λ�ϕ(λx) , (2.10)

and in fact transforms like a conformal scalar field under the representation of the AdS
symmetry group on the Fock space of the AdS Klein-Gordon field φ.

The boundary limit (2.7) can obviously be generalized to arbitrary Wick polynomials
W = : ∏l

j=1 ∂
a j
x φ : ,

w(x) = lim
z↘0

z−l� W (z, x) = :
l∏

j=1

∂a j ϕ(x) : , (2.11)

which have scaling dimension DW = l�+
∑

j |a j | (where a j ∈ (N0)
d is a multi-index).

2.2. Causal perturbation theory. The aim of this paper is to investigate causal perturba-
tion theory [13] around the generalized free field (2.8) (and its Wick polynomials (2.11)).
Causal perturbation theory proceeds [6,9,13] by defining, for each Wick polynomial W
of free fields φ, the interacting field WgL as formal expansion in Wick products of the
free field φ with distributional coefficients. This expansion is obtained as the exponential
series of retarded products of W with the interaction gL, where the retarded products are
operator-valued distributions. They are determined recursively (by the postulated causal
properties of the interacting fields) at non-coinciding points only; the renormalization of
the perturbative expansion consists in the extension of these distributions to coinciding
points. “Renormalization conditions” (covariance, Ward identities, …) serve to reduce
the arbitrariness in the extension, and the main problem is to decide whether all desirable
renormalization conditions can be fulfilled at the same time, with a finite number of free
parameters remaining.

This program is performed with the interaction being cut off in space and time by
means of a space-time dependent coupling constant g(x). It then remains to control
the adiabatic limit of removing the cutoff, g(x) → κ . This limit is in general plagued
by infrared problems; it is, however, possible to define the algebraic adiabatic limit
[6], i.e., the local field algebras FκL(K ) in arbitrary bounded space-time regions K ,
without infrared problems as long as the construction of the interacting vacuum state is
postponed.

Causal perturbation theory around a generalized free field is, however, problematic
for the following reason. To construct the general solution for the perturbative S-matrix

2 It should not lead to confusion that the present field ϕ was denoted ϕ(�) in [11], whereas ϕh with
h(m2) = 1 was denoted ϕ.
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one has to use the Wick expansion formula for time-ordered or retarded products (also
called the “causal Wick expansion”) [6,9,13]. For simplicity, let us discuss here the
ordinary Wick expansion formula, which for mass shell free fields is

: ϕk1
m (x1) : . . . : ϕkn

m (xn) :

=
∑

r1,...,rn

n∏
i=1

(ki
ri

)
(�, : ϕk1−r1

m (x1) : . . . : ϕkn−rn
m (xn) : �) · : ϕr1

m (x1) . . . ϕrn
m (xn) : .

(2.12)

For generalized free fields, the Lagrangian can be any field relatively local w.r.t. the
generalized free field, i.e., any element of its Borchers class. The Borchers class con-
tains at least the “generalized Wick polynomials” [11]

( : ϕl : )h(x)

=
∫

V+

ddk1 . . .

∫

V+

ddkl h(k2
1, . . . , k2

l ) · : [a(k1)e
−ik1x + h.c.] . . . [a(kl)e

−ikl x +h.c.] : ,
(2.13)

where h : (R+)l → C is any symmetric and sufficiently regular function. Let us choose
a Lagrangian L(y) = ( : ϕ4 : )H (y) with an arbitrary function H(k2

1, . . . , k2
4). It is then

easy to see, that the Wick expansion of, say, ϕh(x) with L(y) does not factorize as in
(2.12), but rather contains terms of the form

∫

V+

ddk1 . . . ddk3 h(x − y; k2
1, k2

2, k2
3)

×: [a(k1)e
−ik1 y + h.c.] . . . [a(k3)e

−ik3 y + h.c.] : , (2.14)

where

h(x − y; k2
1, k2

2, k2
3) =

∫

V+

dq e−iq(x−y) h(q2) H(q2, k2
1, k2

2, k2
3). (2.15)

Because the dependence of this function on x − y and on k2
i is entangled in a non-

trivial manner, the numerical distribution cannot be separated from the operator-valued
distribution as in (2.12) (unless H happens to be a factorizing function). Interpreting
(2.14) as an operator product expansion, reveals a characteristic feature of the theory of
generalized free fields: performing first the k-integrations, the subsequent q-integration
may be interpreted as a “continuous sum” over generalized Wick products. More impor-
tantly, however, the failure of separation as in (2.12) would require more refined methods
to establish the existence of a renormalization, than the standard methods of causal per-
turbation theory, which proceeds by renormalizing only the numerical distributions (see
below).

Let us contrast the general case to the case when the interaction is induced by a
local interaction on AdS [11] as described in the introduction, i.e., when the conformal
field ϕ arises as the boundary limit of a canonical AdS field φ with interaction κL. The
Lagrangian L given by (1.6) with, say, L = φ4 on AdS is L = ( : ϕ4 : )H with

H(k2
1, . . . , k2

4) =
∫

dz z−d−1
∏

hz(k
2
i ), (2.16)
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i.e., H is a z-integral over factorizing functions; one can therefore reorganize the con-
tinuous OPE as a z-integral over Wick products of the distinguished fields ϕhz (x) as
in (2.6), rather than generalized Wick products as in (2.13). This fact seems to reduce
the renormalization ambiguity drastically, since the freedom is only in the choice of
suitable weight functions in z. Whether a conformally covariant renormalization of the
OPE of perturbed boundary fields is possible, would require a nontrivial analysis.

This is the reason why we propose to work instead with the “bulk approach” men-
tioned before, using the correspondence (2.7) and (2.11); i.e., we first construct the
perturbative interacting fields on (d + 1)-dimensional Anti-deSitter space [6,17,18], and
then study their boundary limit. We shall see that conformal covariance can be main-
tained on the boundary because AdS covariance can be maintained in the bulk. The issue
therefore has been shifted to the existence of the limit. It will be illustrated in Sect. 2.5,
why this indirect approach gives different results than the direct approach perturbing
generalized free fields on the boundary.

In [6] and [17,18] perturbative interacting fields have been constructed on an arbi-
trary globally hyperbolic curved spacetime M for localized interactions G(x)L(x), i.e.,
the interaction L is switched on by G ∈ D(M). The Anti-deSitter spacetime is not itself
globally hyperbolic, but its covering is conformally equivalent to a Z2 quotient of a
globally hyperbolic space-time [2]. In this way, the lack of global hyperbolicity can be
circumvented in terms of boundary conditions “at infinity” (z = 0).

If one wants to take the boundary limit, one obviously must not cut off the interaction
on the boundary of AdS, hence we must perform a “partial adiabatic limit” which puts
the switching function G(z, x) to be 1 for x ∈ K (a compact region ⊂ Md ) and z = 0.
It can be easily seen that the conclusion of [6], i.e., the independence of the algebraic
adiabatic limit on the details of the switching function outside the compact region of
interest, holds also true for the partial adiabatic limit. We may therefore assume that the
switching function factorizes as

G(z, x) = κ γ (z) g(x), where G|[0,a]×K ≡ κ = constant (2.17)

with g|K ≡ 1 and γ |[0,a] ≡ 1 for some a > 0. In addition g and γ are smooth, supp g
is compact and the support of γ (z) is bounded for z → ∞. Since the support of such
functions G is not compact in AdS, there may in principle be IR problems associated
with the partial adiabatic limit; but our explicit calculations in Sect. 3 show that these
do not appear in the relevant examples. The (partial) algebraic adiabatic limit does not
depend on the details of the functions g and γ , provided a is sufficiently large.

In practice, we proceed as follows: Given a Wick monomial w in the generalized
free field ϕ and its derivatives, we first replace ϕ(x) by the AdS field φ(z, x) (whose
boundary limit is ϕ(x)), and construct the interacting AdS field WκL(z, x) associated
with the corresponding Wick monomial W in φ and its derivatives. Then we define the
interacting field wκL(x) in Md as boundary limit of the interacting field WκL(z, x) on
AdS, provided this limit exists:

wκL(x) = lim
z↘0

z−�W
κL WκL(z, x) , (2.18)

where

�W
κL = l� +

∞∑
n=1

κn(�W
L )(n). (2.19)
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The deformation l� �→ �W
κL (i.e., the sequence of coefficients (�W

L )(n) ∈ C, n ≥ 1) is
determined by the requirement that the limit (2.18) exists.

Remark. In ordinary perturbative QFT the anomalous dimension is the deviation of
the scaling dimension of an (interacting) quantum field AκL from the scaling dimen-
sion of the corresponding (interacting) classical field. For generalized free fields there
is no obvious classical counterpart. Instead, we call “anomalous dimension of wκL”
the deformation of the scaling dimension due to the interaction. In contrast to ordinary
perturbative QFT, it does not come from the breaking of scale invariance in the renor-
malization of loop diagrams (we maintain the AdS-symmetry in the renormalization).
Instead its appearance is enforced by the existence of the boundary limit.

In causal perturbation theory on AdS, WκL is given by [6,17,18]

WκL(X) =
∞∑

n=0

κn

n!
( n∏

r=1

∫ ∞

0

dzr

zd+1
r

γ (zr )

∫
dd xr g(xr )

)

·Rn,1(L(X1), . . . ,L(Xn); W (X)), (2.20)

where X ≡ (z, x) and X j ≡ (z j , x j ). The unrenormalized retarded products Rn,1 are
determined as distributions at non-coinciding points Xi = X j = X .

The result is [8,20]

Rn,1(L(X1), . . . L(Xn); W (X))=(−i)nn!
×S

[
θ
(
x0 > x0

n > x0
n−1 > · · · > x0

1

) · [L(X1), [L(X2) . . . [L(Xn), W (X)] . . .]]
]
,

(2.21)

where S means symmetrization in X1, . . . , Xn .
Now let W = : ∏l

j=1 ∂
a j
x φ : and L = : φk : . Then, using (2.6) and (2.1), the retarded

product (2.21) may be rewritten as

Rn,1
( : ϕ k

hz1
(x1) : , . . . , : ϕ k

hzn
(xn) : ; :

l∏
j=1

∂
a j
x ϕhz (x) : )

= (−i)nn!S
[
θ
(
x0 > x0

n > x0
n−1 > · · · > x0

1

)

· (zk
1 . . . zk

nzl)d/2

2(l+nk)/2

∫ n∏
r=1

k∏
s=1

dm2
rs Jν(mrs zr )

∫ l∏
j=1

dm2
j Jν(m j z)

· [ :
∏

s

ϕm1s (x1) : , . . . [ :
∏

s

ϕmns (xn) : , :
∏

j

∂a j ϕm j (x) : ] . . .]
]
. (2.22)

We emphasize that writing (2.21) as in the left-hand side of (2.22) is misleading: It
is not a retarded product in Minkowski space, but in AdS, defined with respect to the
causal structure in AdS. In particular, the problem with the causal Wick expansion for
generalized free fields mentioned before, is absent, and its correct definition is the right-
hand side of (2.22). Moreover, renormalization is needed for coinciding AdS points
Xi = X only, and not on the whole submanifold xi = x , as will be discussed in the next
subsection.
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Fig. 1. The “fish” diagram arising in first order perturbation theory for the interacting field(
φ2)

κL(X) with interaction L = φk . The diagram symbolizes the distribution rfish(X1; X) ≡
(�, R1,1( : φ2(X1) : , :φ2(X) : )�) or the corresponding unrenormalized expression r◦

fish (given by (2.44)
or (4.2) resp., appearing in the second line of (2.24))

In the sequel, we shall be mainly concerned with special cases of the type

R1,1( : φk(X1) : ;φ(X)) = k i�(X; X1)θ(x0 − x0
1 ) · : φ(X1)

k−1 : (2.23)

and

R1,1( : φk(X1) : ; : φ2(X) : )=2k i�(X; X1)θ(x0−x0
1 ) · : φ(X1)

k−1φ(X) :
+ k(k − 1) i(�+(X; X1)

2 − �+(X1; X)2)θ(x0 − x0
1 ) · : φ(X1)

k−2 : , (2.24)

where �+(X; X1) = (�, φ(X)φ(X1)�) is the scalar 2-point function, and �(X; X1) =
(�, [φ(X), φ(X1)]�) the commutator function.

2.3. The problem of renormalization. The expressions (2.21)–(2.24) are not defined as
distributions at coinciding points, due to the time-ordering θ functions. The problem of
renormalization is thus the extension of the retarded products to distributions Rn,1(. . .)

on (R+ ×R
d)n+1. By the recursive construction principle underlying causal perturbation

theory, once this has been achieved for Rl,1 (l < n), then Rn,1 is already determined
everywhere outside the total diagonal

�n+1 ≡ {(X1, . . . , Xn; X) | X j = X ∀ j = 1, . . . , n}. (2.25)

Renormalization at nth order is thus reduced to the extension of the distributions Rn,1

from (R+ × R
d)n+1 \ �n+1 to (R+ × R

d)n+1.
Applying the recursion as indicated, gives rise to a diagrammatic expansion of Rn,1 in

terms of Wick products with propagators and numerical distributions r◦
m,1(. . .) (m ≤ n)

as coefficients, as in (2.24). The latter are the vacuum expectation values of operator-
valued distributions (with field arguments of possibly lower order). E.g., for W = : φ2 :
and L = : φk : , there arises the “fish diagram” (Fig. 1) as the coefficient of : φk−2(X1) :
to first order in κ .

Renormalization is done in terms of the numerical distributions r◦
m,1, by extending

them to distributions rm,1 on (R+ ×R
d)m+1. (For an example in flat space, see Sect. 2.5.)

We shall see, however, that the z ↘ 0 behaviour of the renormalized operator-valued
distributions Rn,1 on AdS is in general not the same as that of the numerical distributions
rm,1; thus the existence of the limit has to be studied for the operator-valued distribution
Rn,1.
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For a rigorous and complete definition of the retarded products Rn,1 we refer to the
renormalization axioms given in [9],3 with appropriate modifications due to the curva-
ture of AdS [6,17,18]. In particular, the renormalization should not increase the scaling
degree of a distribution [6], which controls the “strength of the UV singularity”: The
scaling degree is defined in flat space by

sdY ( f ( · ; X)) = inf{δ ∈ R| lim
λ↘0

λδ f (X + λY ; X) = 0} , (2.26)

where the limit is meant as a distribution in Y ∈ R
d+1; in curved spacetime, Y is taken in

the tangent space and the argument X +λY has to be replaced by the geodesic exponential
expX (λY ).

Moreover, the renormalization conditions of translation invariance and L↑
+-covari-

ance are replaced by AdS-invariance (group SO(2, d)). The expression (2.21) is obvi-
ously AdS-invariant, so the problem consists in the preservation of this symmetry upon
renormalization.

Since we construct the interacting field on AdS, Rn,1(L(X1), . . . ,L(Xn); W (X))

needs to be renormalized at Xk = X ∀ k only, while at xk = x for all k, zk = z for
some k, it is already defined by the recursion. This fact is responsible for a drastic reduc-
tion of renormalization ambiguities in the AdS approach, as compared to renormalization
of generalized free fields on Minkowski space.

The renormalization freedom is further reduced by requiring the existence of a bound-
ary limit as a renormalization condition. We shall see in some typical examples (Sect. 3
and Sect. 4) that this condition may require a “field mixing”, i.e., perturbative correc-
tions of an interacting Wick monomial by O(κ) times other Wick monomials, in order
to cancel perturbative contributions of different scaling dimensions.

We shall show in the next subsection that for W = : φl : (no derivatives), the AdS
covariant renormalization of WκL ensures conformal covariance of its boundary limit
(2.18)

wκL(x) = lim
z↘0

z−�W
κL · WκL(z, x) (2.27)

provided this limit exists, with a suitable (coupling dependent) scale dimension �W
κL =

l� + O(κ).
Then we shall illustrate the difference between renormalization on AdS and renor-

malization on the Minkowski boundary by a flat space model which avoids the technical
complications of the curvature.

In Sect. 3, we shall address the renormalizability on AdS and the existence of the
boundary limit (2.27) with some case studies.

2.4. Conformal symmetry. In this subsection we assume that for a polynomial interac-
tion L(φ), and for W = : ∏l

j=1 ∂
a j
x φ : a Wick polynomial of the free field, an AdS-

invariant renormalization of the interacting field WκL has been achieved, and that the
boundary limit (2.18) of WκL exists with a suitable deformation l� �→ �W

κL of the
power of z as in (2.19). Under these assumptions we shall prove:

3 The “off-shell” formalism in [9] is advantageous only when derivatives of fields appear as arguments of
retarded products. In the present study, the field operators may be regarded as “on-shell”, i.e., the unperturbed
field satisfies the free equation of motion. To simplify the notation, we will, however, write WκL = (φl )

κφk

when W = : φl : and L = : φk : .
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Proposition 2.1. If the boundary limit (2.18) wκL of WκL exists, then it is a scale
covariant field with scaling dimension

Dw
κL =

l∑
j=1

|a j | + �W
κL. (2.28)

If W = : φl : contains no derivatives, then wκL is a conformally covariant scalar field.

This is, of course, a variant of the central result in [3,4], that the boundary limit of a
scalar AdS field, if it exists, automatically inherits unbroken conformal symmetry. The
proof given there describes the CFT as a “theory à la Lüscher–Mack” [3,4, Sect. 3] on
the cone C2,d = {ξ ∈ R

d+2 : ξ · ξ = 0}, or a covering thereof. We want to include
here a proof that refers directly to the CFT on d-dimensional Minkowski spacetime Md ,
which is (a chart of) the projective cone PC2,d = C2,d

/{ξ ∼ λξ}, or a covering thereof.
(PC2,d is also known as the Dirac manifold CMd .)

Proof of Prop. 2.1. Let U be the unitary representation of SO(2, d) on the Fock space
of the free Klein-Gordon field φ on AdS, which implements also the conformal trans-
formation of the boundary generalized free field [11]. For the subgroup corresponding
to conformal scale transformations on the boundary, we have

Ad U (λ) φ(z, x) ≡ U (λ) φ(z, x) U (λ)∗ = φ(λz, λx) (2.29)

and hence

Ad U (λ) W (X) = λ
∑

j |a j | W (λX) (2.30)

for W = : ∏l
j=1 ∂

a j
x φ : . By means of (2.21) and (2.29) we conclude

Ad U (λ) Rn,1(L(X1), . . . ; W (X)) = λ
∑

j |a j | Rn,1(L(λX), . . . ; W (λX)) (2.31)

at non-coinciding points (using here that the interaction L contains no derivatives of
φ). Since we assume that an AdS-invariant renormalization has been achieved,4 this
identity is maintained in the extension to coinciding points. In terms of the interacting
fields (2.20), this gives

Ad U (λ) WκL(X) = λ
∑

j |a j | WκL(λX) (2.32)

in the algebraic adiabatic limit. With that and (2.18) we obtain

Ad U (λ) wκL(x) = lim
z↘0

z−�W
κLAd U (λ) WκL(z, x)

= λ
∑

j |a j |+�W
κL lim

z↘0
(λz)−�W

κL WκL(λx, λz) = λ
∑

j |a j |+�W
κL wκL(λx). (2.33)

This proves the first assertion of the proposition.
We are now going to investigate whether the conclusion (2.33) applies to arbitrary

AdS-transformations. Let t ∈ SO(2, d) : (z, x) �→ (z′, x ′) be an AdS-transformation, t̄
the conformal transformation induced by t on the boundary, i.e., limz↘0 x ′(z, x) = t̄ x .

4 Concrete AdS-invariant renormalization schemes will be presented below.
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For free Wick powers W = : φl : (without derivatives) and consequently w = : ϕl : we
obtain:

Ad U (t̄) w(x) = lim
z↘0

z−l�Ad U (t) W (z, x)

= lim
z↘0

( z′

z

)l�
(z′)−l�W (z′, x ′) = lim

z↘0

( z′

z

)l�
w(t̄ x). (2.34)

(This argument would fail if W involved derivatives.) Now, AdS-invariance of the volume
element z−d−1 dz dd x implies

z−d−1 = z′−d−1
∣∣∣∂(z′, x ′)

∂(z, x)

∣∣∣ , (2.35)

from which it is an easy exercise to conclude that in the limit z ↘0 (where limz↘0
∂z′
∂x = 0

and limz↘0
∂z′
∂z = limz↘0

z′
z ) one obtains

lim
z↘0

z′

z
=

∣∣∣∂(t̄ x)

∂x

∣∣∣
1/d

. (2.36)

Thus, the factor in (2.34) equals the conformal prefactor for a covariant field of scaling
dimension l�.

Turning to interacting fields WκL for W = : φl : , the AdS-invariance of the retarded
products,

Ad U (t) Rn,1(L(X1), . . . ; W (X)) = Rn,1(L(t X1), . . . ; W (t X)) (2.37)

for t ∈ SO(2, d), implies AdS-invariance of the interacting bulk fields in the algebraic
adiabatic limit:5

Ad U (t) WκL(X) = WκL(t X). (2.38)

With that we find as before that wκL(x) is conformally covariant with scaling dimension
�W

κL (provided it exists). Namely,

Ad U (t̄) wκL(x) = lim
z↘0

z−�W
κL · Ad U (t) WκL(z, x)

= lim
z↘0

( z′

z

)�W
κL

(z′)−�W
κL · WκL(z′, x ′) =

∣∣∣∂(t̄ x)

∂x

∣∣∣
�W

κL/d · wκL(t̄ x). (2.39)

This completes the proof of Prop. 2.1. ��
5 For a special conformal transformation t̄ the function G(t−1(z, x)) does not factorize as (2.17) if G does;

but this does not obstruct our procedure thanks to Prop. 8.1 in [6]: in the algebraic adiabatic limit only the
constancy of G in the region of interest matters, and this is preserved by the transformation t .
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2.5. Renormalization on a submanifold: A pedagogical example. We want to illustrate
by a simple model that renormalization of a field in d + 1 dimensions and subsequent
restriction to a d-dimensional submanifold is not equivalent to renormalization of the
restricted fields.

Instead of CMd as boundary of AdSd+1, we study the 4-dimensional Minkowski space
M4 (with coordinates x = (xμ)μ=0,...,3 ∈ R

4 and relative coordinates y) as a subman-
ifold of the 5-dimensional Minkowski space M5 (with coordinates X = (z ≡ x4, x) ∈
R × M4 and relative coordinates Y = (u, y)). The boundary limit (2.7) corresponds to
the restriction to M4 of the fields in M5. The two-point function of a Klein-Gordon field
of mass M ≥ 0 in Md is given by

�
+(d)
M (y)≡(�, φ(x +y)φ(x)�)= 1

(2π)d−1

∫
dd p θ(p0)δ(p2−M2)e−i py . (2.40)

Putting d = 5 and replacing y by Y = (u, y), this can be viewed as the 2-point function
of a generalized free field in M4 with u-dependent Källen-Lehmann weight [3,4]:

�
+(5)
M (Y ) = 1

2π

∫ ∞

M2
dm2 cos(

√
m2 − M2u)√

m2 − M2
�+(4)

m (y). (2.41)

For later reference, we also introduce the corresponding commutator functions

�
(d)
M (y) ≡ �

+(d)
M (y) − �

+(d)
M (−y) (2.42)

and the retarded propagators

�
ret(d)
M (y) ≡ �

(d)
M (y)θ(y0) = i

(2π)d

∫
dd p

e−i py

p2 + i p00 − M2 , (2.43)

such that �
(d)
M (y)θ(−y0) = −�

ret(d)
M (−y).

We first investigate the renormalization of the fish diagram (Fig. 1) in M5. This means
that we have to extend the distribution

r◦
fish(Y ) ≡ −i(�, [ : φ2(X + Y ) : , : φ2(X) : ]�)θ(−y0)

= −2i
(
�

+(5)
M (Y )2 − �

+(5)
M (−Y )2

)
θ(−y0) , (2.44)

which is well defined for Y ≡ (u, y) = 0 (because [ :φ2(·) : , : φ2(·) : ] vanishes for
y2 < u2), to a distribution rfish ∈ D′(M5) (i.e., to Y = 0). The extension has to be such
that it does not increase the scaling degree with respect to Y → 0.

To obtain a solution of the extension problem in M5, we work with the Källen-
Lehmann representation in M5. The square of the 2-point function is given in
App. A. Choosing for simplicity the field to be massless, this gives (using (A.1) with
d = 5 and m1 = m2 = 0)

r◦
fish(Y ) = |S3|

8(2π)4

∫ ∞

0
dm2 m i�ret(5)

m (−Y ). (2.45)

The UV divergence of the unrenormalized distribution r◦
fish shows up in the divergence

of the mass integral. The most general SO(1, 4) Lorentz invariant extension with the
required scaling degree is given by [9]

r (μ)
fish (Y ) ∝ (−�Y + μ2)

∫
dm2 m

m2 + μ2 i�ret(5)
m (−Y ) (μ2 ≥ 0) (2.46)
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depending on a renormalization parameter μ. (The symbol ∝ stands for suppressed
numerical factors).

We have obtained r (μ)
fish by renormalizing in M5. We now consider how this distribution

would appear when regarded as a distribution on the hypersurface M4 with the transverse
difference coordinate u as a parameter. Writing Y = (u, y) and the five-momentum as
(v, p), we arrive at

r (μ)
fish (u, y) ∝ (−�Y + μ2)

∫
dm2 m

m2 + μ2

∫
d4 p eipy

∫
dv

e−ivu

m2 + v2 − p2 − i p00

∝ (−�y + ∂2
u + μ2)

∫
d4 p eipy

∫
dm2 m

m2 + μ2

e−|u|
√

m2−p2−i p00
√

m2 − p2 − i p00
.

(2.47)

The appearance of the derivative ∂2
u (outside of the integrals) is characteristic for the

5-dimensional renormalization. One cannot get rid of this operator, because it cannot be
shifted under the integral. (The integrand is not differentiable with respect to u at u = 0).
It is the reason why 5-dimensional renormalization “as seen from the hypersurface” goes
beyond standard 4-dimensional renormalization. One way to understand this fact is that
on the hypersurface, the fields ∂n

z φ(z, x)|z=0 are independent fields which “mix” with
φ|z=0 upon 5-dimensional renormalization.

In order to exhibit this more clearly, we compare the result of renormalization in the
bulk with the alternative procedure of renormalization on the hypersurface, where we
have a z-dependent family of fields in four dimensions, similar as in (2.6). The label z just
distinguishes different generalized free fields ϕz(x) ≡ φ(x, z) on the same hypersurface,
see [11]. That is, we write the 5-dimensional 2-point functions in the unrenormalized
distribution r◦

fish (2.44) as a u = z1 − z2-dependent integral over 4-dimensional 2-point
functions as in (2.41) (with M = 0), and apply the Källen-Lehmann representation for
the resulting products of 2-point functions as in (A.1) with d = 4. This gives

r◦
fish(Y ) = − 2i

(2π)2

∫ ∞

0
dm2

1

∫ ∞

0
dm2

2
cos m1u

m1

cos m2u

m2

·
(
�+(4)

m1
(y)�+(4)

m2
(y) − �+(4)

m1
(−y)�+(4)

m2
(−y)

)
θ(−y0)

=
∫ ∞

0
dm2 F(m2, u) i�ret(4)

m (−y) , (2.48)

with

F(m2, u) ≡ 2m−2

(2π)4

∫ ∞

0
dm1

∫ ∞

0
dm2 θ(m − m1 − m2)

· cos(m1u) cos(m2u)

√
(m2 − m2

1 − m2
2)

2 − 4m2
1m2

2. (2.49)

The unrenormalized distribution r◦
fish exists in D′(M5\{0}), but for Y = 0, the mass inte-

gral on the right hand side of (2.48) diverges in the region m2 → ∞. Renormalization
on M4 means regarding (2.48) as a u-dependent Källen-Lehmann representation in M4
and extending it to the diagonal of M4 in an SO(1, 3) Lorentz invariant way.

At u = 0, an extension to y = 0 is in fact trivial because (2.48) is already defined
there, but the extension is non-unique (δ-functions in y). In order to extend also to u = 0
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(u = 0 corresponds to two fields on the same hypersurface), one has to consider the
most general SO(1, 3) Lorentz invariant 4-dimensional renormalization

r̃ (μ)
fish (Y ) := (−�y + μ2)

∫
dm2 F(m2, u)

m2 + μ2 · i�ret(4)
m (−y) (μ2 ≥ 0). (2.50)

These distributions exist even in D′(M5), have scaling degree sd (r̃ (μ)
fish ) = 6 = sd (r◦

fish)

and agree with r◦
fish for y = 0. So, r̃ (μ)

fish (u, y) solves the renormalization (i.e. extension)
problem in M4. But it is not a renormalization in M5 because it does not agree with r◦

fish
at y = 0 ∧ u = 0. To see this, we evaluate both (2.48) and (2.50) on a test function
G(Y ) = γ (u)g(y) with 0 ∈ supp γ . Suppressing irrelevant constants, the difference is

r̃ (μ)
fish (G) − r◦

fish(G) ∝
∫

dm2
∫

du γ (u)F(m2, u)

×
∫

d4k ĝ(k)
( k2 + μ2

(m2 + μ2)(k2 − m2)
− 1

k2 − m2

)

∝
∫

dm2
∫

du γ (u)
F(m2, u)

m2 + μ2

∫
d4k ĝ(k)

∝ g(0)

∫
dm2

m2 + μ2

∫
du γ (u)F(m2, u). (2.51)

One can actually compute F(m2, u) = m2 f (mu) by using variables m1u + m2u = mx
and m1u − m2u = my in (2.49), giving f (t) ∝ J0(t) + J2(t) = 2t−1 J1(t). Thus, since

0 ∈ supp γ , the u-integral in (2.51) decays ∼ m− 1
2 due to the oscillatory behaviour

of J1, so that the m2-integral is finite as required for a 4-dimensional renormalization.
But it obviously does not vanish for generic γ , as would be required by a 5-dimensional
renormalization. This proves the claim. Note that the scale-invariant choice μ2 = 0 does
not alter the conclusion (the mass integral in (2.51) in this case is ∝ ∫ ∞

0 J1(t)dt = 1).
An analogous but more refined argument shows that also when one admits a function
μ(u), the resulting distribution cannot coincide with r◦

fish for all (y = 0, u = 0).
The fact that renormalization performed on a submanifold (Eq. (2.50)) does not coin-

cide with proper renormalization in the bulk (Eqs. (2.46), (2.47)), is the main message of
this subsection. The breakdown of the bulk symmetry in the hypersurface renormaliza-
tion is the counterpart of conformal symmetry breaking in AdS-CFT. It can be avoided
by bulk renormalization, and subsequent restriction (boundary limit).

3. Case Studies I: The Interacting Boundary Field ϕκφk

We proceed with some case studies concerning the compatibility of an AdS-invariant
renormalization with the existence of the boundary limit. We shall not endeavour the
greatest possible generality; e.g., we shall always assume the AdS mass parameter M2

to be sufficiently large to avoid the Breitenlohner-Freedman critical behaviour in the
range ν2 ≡ d2

4 + M2 < 1 (see, e.g., [3,4]).
We start with the perturbative construction of the interacting field ϕκL with inter-

action L = : φk : as a deformation of ϕ. The renormalization of R1,1(L(X1), φ(X))

in this case is unproblematic, but it serves to illustrate the difference between various
approaches. In order to work out the boundary limit of the renormalized bulk field φκL,
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κ
k−1

X

X1

Fig. 2. Factorization of φ
(n)
κL

we introduce a general technique of computation (Sect. 3.2) to be used in more general
cases as well. In the subsequent section, we shall choose to study the renormalization
and boundary limit of the field (φ2)κL because in this case, the perturbative expansion
involves a loop diagram (the fish diagram, Fig. 1) already at first order.

Our strategy is to construct the interacting AdS field φκφk (X), and then take its
boundary limit. In the diagrammatic expansion of φκφk (X), each diagram has a single
propagator line extending from X to the first interaction vertex X1 (Fig. 2). Therefore, the
z ↘ 0 behaviour of each diagram is dictated by the same function (apart from potential
IR problems), so that the analysis of the limit can be essentially done in the first order.
Nontrivial renormalization, in contrast, becomes relevant only at higher order.

To first order perturbation theory n = 1 we obtain

φ
(1)

κφk (X) = k
∫ ∞

0

dz1

zd+1
1

γ (z1)

∫
dd x1 g(x1) · i�ret

AdS(X, X1) :φk−1(X1) : , (3.1)

where �ret
AdS(X, X1) = (�+

AdS(X, X1) − �+
AdS(X1, X))θ(x0 − x0

1 ) is the retarded prop-
agator on d + 1-dimensional AdS, according to (2.1) given by

�ret
AdS(X, X1) = 1

2
(zz1)

d/2
∫

dm2 Jν(mz)Jν(mz1)�ret(d)
m (x − x1). (3.2)

At this point, one might be tempted to read off the z ↘ 0 behaviour directly from (3.2)
and the well-known behaviour of the Bessel functions near zero. We shall see, however,
that this attempt is too naive, and that the subsequent z1-integration in (3.1) changes the
limit behaviour substantially.

3.1. Interaction L = κφ (field shift). For the trivial case k = 1 (i.e., the “interaction”
amounts just to a shift of the field by a constant), the adiabatic limit γ (z1) = 1, g(x1) = 1
can be taken directly in (3.1) and yields the expected result

φ
(1)
κφ (X) =

∫
dz1

z1
d+1

∫
dd x1 · i�ret

AdS(X, X1) = 1

M2 , (3.3)

which follows from (�X + M2)i�ret
AdS(X, X1) = zd+1δ(z − z1)δ

d(x − x1) upon inte-
gration over X1, using AdS-invariance so that the integral does not depend on X . One
may also perform the integrations explicitly in the representation (3.2) where the x1-
integration is obvious from (2.43), and the subsequent z1- and m-integrations are carried
out using formula (13.24(1)) in [28],

∫ ∞

0
du uμ Jν(u) = 2μ

( 1
2 (1 + ν + μ))

( 1
2 (1 + ν − μ))

( − ν − 1 < μ <
1

2

)
. (3.4)

Clearly, the shift by a multiple of the “constant field” 1 destroys the existence of the
boundary limit with z−�. After the subtraction of the vacuum expectation value (i.e.,
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undoing the shift), the boundary limit can be taken and reproduces the original boundary
field. This trivial example shows that in general, interacting fields of different scaling
dimensions may “mix”, and the appropriate boundary limits have to be taken after their
separation.

3.2. Interaction L = κφ2 (mass shift). In the case k = 2, the interaction just amounts
to a change of the AdS mass by δM2 = −2κ , so that the perturbed field is just a free
field with a different mass. This is an instance of the “Principle of Perturbative Agree-
ment” [19]. Consequently, we expect an anomalous dimension according to �

ϕ

κφ2 =
d/2 +

√
(d/2)2 + M2 − 2κ = � − κ/ν + O(κ2) to arise. Thus, we are led to study the

boundary limit of

φκφ2(z, x)

z�
κφ2

= φ(z, x)

z�
+ κ

(φ
(1)

κφ2(z, x)

z�
+

1

ν
· φ(z, x)

z�
log z

)
+ O(κ2) , (3.5)

where the first order term (3.1) is

φ
(1)

κφ2(X) = 2
∫

dz1

z1
d+1 γ (z1)

∫
dd x1 g(x1) · i�ret

AdS(X, X1)φ(X1) . (3.6)

Indeed, in the partial adiabatic limit φ
(1)

κφ2 exhibits a logarithmic z-dependence which is
precisely cancelled by the combination occurring in (3.5). Namely, (3.6) implies

(�X + M2)φ
(1)

κφ2(X) = 2γ (z)g(x) · φ(X), (3.7)

and consequently, using (2.3),

(�X + M2)
(
φ

(1)

κφ2(X) +
log z

ν
· φ(X)

)
= 2

ν
(� − z∂z)φ(X) (3.8)

in the region where γ (z) = 1, g(x) = 1. The right-hand side vanishes in the limit
z ↘ 0 faster than z� because the leading z� behaviour of the unperturbed field is anni-
hilated by the differential operator � − z∂z . Since the Klein-Gordon operator preserves
homogeneity in z (except for the z2�x term which is suppressed at small z), the combi-
nation of fields on the left-hand side also vanishes faster than z�, up to a solution of the
homogeneous equation. The homogeneous solution can behave ∼ z� or ∼ zd−�.

If we can exclude the latter (dominant) contribution, then it follows that the limit (3.5)
at first order in κ exists. Unfortunately, the previous argument based on the Klein-Gordon
operator cannot discriminate between ∼ z� and ∼ zd−�. We shall therefore develop a
more refined analytical method of computation which is “universal” (see Lemma B.1 in
App. B) in the sense that it can also be applied when dealing with interactions of higher
polynomial degree (Sect. 3.3) and with diagrams with loops (Sect. 4). This method at
the same time shows the emergence of the z� log z terms. The argument is lengthy,
with essential parts contained in App. B, but it is crucial for the understanding of the
boundary limit.

For the sake of transparency and computational simplicity, we present only the case

d = 3 and M = 0. (3.9)
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The AdS 2-point functions are explicitly known in terms of hypergeometric func-
tions or associated Legendre functions of the second kind [3,4,15]: Let X = (z, x),
X1 = (z1, x + y) (z, z1 ∈ R+; x, y ∈ M

3), and

v = z2 + z2
1 − y2

2zz1
. (3.10)

v is AdS-invariant. Namely, viewing AdSd+1 as the hypersurface ξ · ξ = 1 in a
d + 2-dimensional ambient space R

d+2 of signature (+,− . . . −, +), we have

v = ξ · ξ1 , (3.11)

hence v is related to the “chordal distance” by d(ξ, ξ1) = (ξ − ξ1)
2 = 2(1 − v). We

expect singularities at d(ξ, ξ1) = 0 (⇔ v = 1) and, due to the identification of −ξ1 with
ξ1, also at d(ξ,−ξ1) = 0 (⇔ v = −1). Note also that timelike separation between X
and X1 corresponds to v ∈ [−1, 1]. Then for d = 3,

�+
AdS(X1, X) = − 1

4π2 Q′
ν− 1

2
(v + iy00). (3.12)

Here Q�(u) is a solution of Legendre’s differential equation

(1 − u2) f ′′ − 2u f ′ + �(� + 1) f = 0 , (3.13)

which is analytic outside a cut along the real interval [−1, 1]. For M = 0, hence ν = 3
2 ,

� = 3, it is the elementary function

Q1(u) = u

2
log

u + 1

u − 1
− 1 ⇒ Q′

1(u) = 1

2
(1 + u∂u) log

u + 1

u − 1
. (3.14)

The retarded propagator �ret
AdS(X, X1) = (

�+
AdS(X, X1) − �+

AdS(X1, X)
)
θ(−y0) is

given by the discontinuity across the cut:

4π i �ret
AdS(X, X1) = 1

2π
(1 + u∂u) log

u + 1

u − 1

∣∣∣
u=v+i0

u=v−i0
· θ(−y0)

= −(1 + v∂v)θ(1 − |v|) · θ(−y0). (3.15)

This discontinuity is to be understood as a distribution by partial integration w.r.t. v:

H [ f ] := −
∫

dv f (v)(1 + v∂v)θ(1 − |v|) =
∫ +1

−1
dv v∂v f (v). (3.16)

Because we have represented the retarded propagator as a distribution w.r.t. the vari-
able v, we have to perform all other integrations (at fixed value of v) first. We therefore
change the integration variables: in spatial polar coordinates, let y = (−t, r eϕ), and
w := y2 ≡ t2 − r2. Then the new variables are

v ≡ z2 + z2
1 − w

2zz1
, z1 , t ≡ −y0 , ϕ. (3.17)

The measure becomes

d3 y θ(−y0)
dz1

z4
1

θ(z1) = z · dv · dz1

z3
1

θ(z1) · dt θ(t) θ(t2 − w) · dϕ , (3.18)
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where

w = wv,z(z1) = z2 + z2
1 − 2v · zz1 ≡ (z1v − z)2 + (1 − v2)z2

1. (3.19)

There is a dense domain of vectors for which matrix elements (�1, φ(X1)�2) of the
distributional field become a smooth function. We then extract the leading z1 behaviour
and write

(z1, x0 − t, x + r eϕ) := γ (z1)g(x1) · z−3
1 (�1, φ(z1, x1)�2). (3.20)

This is a smooth function with compact support, because of the cutoff functions g
and γ . At z1 = t = r = 0, it equals the corresponding matrix element of ϕ(x), because
g(x1) = 1 and γ (z1) = 1 in the region of interest (partial adiabatic limit). Finally we
average over the spatial directions and put

x (z1, t, r2) := 1

2π

∮
dϕ (z1, x0 − t, x + r eϕ). (3.21)

Then x is smooth6 in all three arguments ≥ 0, and

x (0, 0, 0) = (�1, ϕ(x)�2). (3.22)

With these preparations, (the matrix element of) the first-order correction (3.6) to the
renormalized field becomes

(�1, φ
(1)

κφ2(X)�2)

= z · H
[ ∫ ∞

0
dz1

∫ ∞

0
dt θ(t2 − w) · x (z1, t, t2 − w)

∣∣
w=wv,z(z1)

]
, (3.23)

with the functional H [·] as defined in (3.16). We claim that this equals

(�1, φ
(1)

κφ2(X),�2) = −2

3
z3

(
log z · x (0, 0, 0) + (regular)

)
, (3.24)

where (regular) stands for a contribution that is regular in z at z = 0.
The argument goes as follows. For a smooth function f on R

3 with compact support,
we denote by I0(v, z)( f ) the integral

I0(v, z)( f ) :=
∫ ∞

0
dz1

∫ ∞

0
dt θ(t2 − w) f (z1, t, t2 − w)

∣∣
w=wv,z(z1)

. (3.25)

Thus, to compute (3.23), we have to apply the functional H to I0(v, z)( f ) when f equals
x on R

3
+.

In App. B, we prove that I0(v, z)( f ) is continuous w.r.t. v and differentiable in the
range v2 < 1. Thus, the definition (3.16) of H by partial integration is unambiguous,
and it is sufficient to know this function at v2 < 1, where w ≥ (1 − v2)z2 > 0. In
physical terms, this remark means that there are no singular contributions from lightlike
y (w = 0): the integration (3.6) can be properly computed by exhausting the backward
lightcone “from the inside”.

6 It will be important later (App. B) that x is regular in the quadratic variable r2. This is obvious at r > 0
because the square root is smooth. At r = 0, the smoothness can be seen by a Taylor expansion with remainder
of (z1, x0 − t, x + r eϕ), because the angular averaging annihilates all odd terms.
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In App. B, we also prove that in the range v2 < 1, I0(v, z)( f ) is of the form

I0(v, z)( f )

=
∑

0≤k≤�≤2

Ak�( f ) vk z� + z2 · 1 − v2

2
log

(
(1 − v)z

) · f (0, 0, 0) + Rv,z( f ),

(3.26)

where Ak� are certain distributions that do not depend on v and z, while the remainder
Rv,z is a family of distributions that is differentiable w.r.t. v in the range v2 < 1, and
vanishes ∼ z3 at z = 0.

Noting that H [v0] = H [v1] = 0, the leading terms are annihilated:

H
[
I0(v, z)( f )

] = − H [v2]
2

z2 log z · f (0, 0, 0)

+z2
(

A22( f ) + H
[1 − v2

2
log(1 − v)

]
· f (0, 0, 0)

)
+ H [Rv,z( f )]. (3.27)

Thus, with H [v2] = 4
3 , we have

Proposition 3.1. For any test function f on R
3, the limit

lim
z↘0

z−2
{

H
[
I0(v, z)( f )

]
+

2

3
z2 log z · f (0, 0, 0)

}
(3.28)

is finite.

For f = x on R
3
+, this is our claim (3.24). This ensures that φ

(1)

κφ2(X) decays at least

like z3 log z, and because of (3.22), it also ensures that φ
(1)

κφ2(X) + log z
ν

· φ(X) (recall

ν = 3
2 in (3.5)) decays at least like z� = z3. In other words, the boundary limit exists

(in first order perturbation theory, and in the obvious weak sense), and is exactly given
by the expected correction of the scaling dimension of the boundary field.

Apart from establishing the existence of the (expected) boundary limit, the main
message to be drawn from the nontrivial computations in App. B, however, is that

– the origin of the logarithmic term (corresponding to the anomalous dimension) is the
range z1 = 0 of the integral (3.6), and not the power law behaviour of the retarded
propagator at z = 0.

3.3. Interactions L = φk (k > 2). We now turn to the non-trivial interactions k > 2. In
these cases (3.1) yields

(�X + M2)φ
(1)

κφk (X) = γ (z)g(x) · k : φk−1(X) : , (3.29)

where the right-hand side ∼ z(k−1)� vanishes faster than z�. By the same argument
as used after (3.8), φ

(1)

κφk (X) behaves either like z� or like zd−�. In the special case

d = 3, M = 0, we can explicitly see the absence of the “wrong” contribution ∼ zd−�,
by repeating the explicit computation as in the previous section. Replacing φ(X1) by
: φ(X1)

k−1 : , one gets an additional factor z3(k−2)
1 in (3.25). Because the logarithmic
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term in this case appears at order O(z3+3(k−2)) (Lemma B.1), it is manifest that the
first-order term is of order O(z3), as desired, and the logarithmic term is suppressed in
the limit. Thus, the boundary limit exists without an anomalous dimension.

Although a complete analysis of renormalization at higher-order is beyond the scope
of this paper, let us anticipate what happens in the case at hand. First, we observe (see
Fig. 2 above) that φ

(n)

κφk can be written as

φ
(n)

κφk = k
∫ ∞

0

dz1

zd+1
1

γ (z1)

∫
dd x1 g(x1) · i�ret

AdS(X, X1)
(
φk−1)(n−1)

κφk (X1). (3.30)

Thus, in order to renormalize φκφk at order n, one previously has to renormalize(
φk−1

)
κφk at order n−1. In principle, one has to renormalize “all fields simultaneously”,

but in practice, for any finite order of any given field it is sufficient to renormalize only
a finite number of fields to lower orders.

Thus, assuming recursively that
(
φk−1

)
κφk has been defined up to (n−1)st order, and

anticipating that its boundary limit exists with an anomalous dimension of order O(κ),

then
(
φk−1

)(n−1)

κφk behaves like z(k−1)� times a polynomial in log z, as z ↘ 0. Because
the canonical dimension (k − 1)� is larger than �, the same argument as before applies
to ensure that the partial adiabatic limit for φκφk is unproblematic, and for z sufficiently
small (such that γ (z) = 1), the equation

(�X + M2)φ
(n)

κφk (X) = k · g(x)
(
φk−1)(n−1)

κφk (X) (3.31)

implies the z� behaviour of φ
(n)

κφk (X) as z ↘ 0. Again, this equation does not yet exclude

a term ∼ zd−�, but an explicit computation as in Lemma B.1 in the special case d = 3,
M = 0 again shows its absence. We conclude that anomalous dimensions do not arise
also in higher orders of perturbation theory.

Actually, one can go beyond this statement: even if the logarithms could be summed
(borrowing suitable higher order terms, i.e., violating the proper perturbative system-

atics) to give rise to an anomalous dimension �
φk−1

κφk up to order n − 1 (see Sect. 4),

then the argument would still hold true as long as �
φk−1

κφk > � (cf. Lemma B.1 with

n = �
φk−1

κφk − �).

In the next section, we shall discuss the behaviour of “composite fields”
(
φ2

)
κL.

Depending on the interaction, these fields will exhibit finite anomalous dimensions.

3.4. Comparison of bulk vs boundary renormalization schemes. We conclude this sec-
tion with a comparison of the competing renormalization prescriptions in the case at
hand. Concerning the renormalization, we find here significant differences between (a)
our procedure, as just outlined, and (b) perturbation theory around the generalized free
field ϕ in Minkowski space Md , requiring Poincaré invariance (b1), or in conformal
Minkowski space CMd , requiring conformal invariance (b2):

(a) (Renormalization in the bulk) The numerical distribution r◦(X1; X) = (�,

R1,1( φ(X1);φ(X))�) coincides with the retarded propagator i�ret
AdS(X, X1) in

AdS. Its extension to the diagonal is uniquely given by (3.2), and there is no free-
dom of renormalization, because its scaling degree in the relative coordinates equals
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d − 1 (for z > 0), which is smaller than the dimension of the relative coordinates
(= d + 1) [6]. The boundary behaviour of the resulting fields is dominated by the
z1-integration near z1 = 0, which depends sensitively on the operator valued dis-
tribution with which r is multiplied. It is important to keep in mind that we have
renormalized (extended r◦ to the diagonal) first, and then taken the limit z ↘ 0 (in
the partial adiabatic limit at the boundary).

(b) (Renormalization on the boundary) Doing perturbation theory on the boundary,
instead, we have to take the limit z ↘ 0 first. This yields the unrenormalized
distribution r◦

ϕ(x − x1) = (�, R1,1(ϕ(x1);ϕ(x))�):

r◦
ϕ(x − x1) = i[ϕ(x), ϕ(x1)]θ(x0−x0

1 ) =
∫

dm2 m2ν i�ret
m (x−x1). (3.32)

This product of distributions exists on D(Md) only in the range −1 < ν < 0.7

For ν ≥ 0 the integral
∫

dm2 m2ν

m2−p2−i p00
diverges, nevertheless [ϕ(x), ϕ(x1)]·

θ(x0 − x0
1 ) is well defined for x = x1, and one is faced with the problem to extend

r◦
ϕ from D(Md \ {0}) to D(Md). One has two options:
– Case (b1). One only requires that the Lorentz invariant extension does not

increase the scaling degree (with respect to 0) of r◦
ϕ [6,13], which has the value

sd(r◦
ϕ) = 2� = d + 2ν. In this case, the retarded propagator is non-unique for

ν ≥ 0: the general solution reads

rϕ(y)=(μ2−�y)
[ν]+1

∫
dm2 m2ν i�ret

m (y)

(μ2 + m2)[ν]+1 +
∑
n≤ν

Cn�nδ(y), (3.33)

where μ > 0 and the Cn’s are arbitrary constants (cf. [9, App. C]). Clearly, the
renormalization mass μ and the local terms break the scale invariance (unless
n = ν).

– Case (b2). Requiring conformal covariance of the extension, a necessary con-
dition is that the homogeneous scaling behaviour of ro

ϕ is maintained: this is
an intensification of the requirement in (b1). From (3.33) we see that there is
a unique solution for −1 < ν ∈ N0 which is obtained by choosing μ = 0 and
Cn = 0 ∀n. But if ν ∈ N0, the mass integral is IR-divergent for μ = 0, and a
scaling covariant retarded propagator does not exist.

4. Case Studies II: The Interacting Composite Field (ϕ2)κφk

4.1. General considerations. We turn to the field (φ2)κL with interaction L = : φk :
(k ≥ 2). In this case, there exist three types of diagrams which a priori behave differently
as z ↘ 0: those diagrams in which the two interaction vertices connected to the field
vertex are distinct and do not belong to a common loop, those in which they are distinct
and belong to a common loop, and those in which they coincide (Fig. 3).

Diagrams of the first type factorize into two diagrams as for the field φκL and con-
sequently can be treated as in Sect. 3.3. The second type does not arise in first order.

7 The expression on the right side results from the definition of ϕ (2.8). Alternatively, it can be obtained
by taking the boundary limit limz,z1↘0(zz1)−� . . . (2.7) of (3.2). This limit may be done before the mass
integration in (3.2) iff −1 < ν < 0.
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Fig. 3. Three types of diagrams arising in perturbation theory for the interacting field
(
φ2)

κL(X) with

interaction L = : φk :

Diagrams of the last type contain the fish diagram (Fig. 1) as a subdiagram, which
determines their z-dependence. This diagram gives the contribution to (φ2)κφk ,

k(k − 1)

2

∫ ∞

0

dz1

zd+1
1

γ (z1)

∫
dx1 g(x1) rfish(X1; X) : φk−2(X1) : . (4.1)

In order to define this contribution, the unrenormalized distribution r◦
fish(X1; X) ≡

(�, R◦
1,1(φ

2(X1);φ2(X))�), given by

r◦
fish(X1; X) ≡ −2i

(
�+

AdS(X1, X)2 − �+
AdS(X, X1)

2
)

θ(x0 − x0
1 ) (4.2)

at X1 = X (cf. (2.24)), has to be extended to the diagonal X1 = X . Then we have to
study the boundary behaviour z ↘ 0 of the renormalized integral (4.1) in the partial
adiabatic limit. Our task is to understand the influence of the UV renormalization on the
boundary limit.

The unrenormalized distribution (4.2) is real-valued and AdS-invariant. We require
that the extension rfish(X1; X) has the same properties:

(I) rfish is real-valued (i.e., rfish( f )∗ = rfish( f ∗)) and the scaling degree in the relative
coordinates Y = (y, u) is not increased by the extension:

sdY (rfish( · ; X)) = sdY (r◦
fish( · ; X)) = 2d − 2 ∀X. (4.3)

(II) rfish is AdS-invariant

rfish(t X1; t X) = rfish(X1; X) ∀t ∈ SO(2, d). (4.4)

In addition, we want to impose the existence of the boundary limit of the interact-
ing field (φ2)κφk = : φ2 : + κ(φ2)

(1)

κφk + O(κ2) as a condition on the renormalization,

admitting for an anomalous dimension 2� + κδ + O(κ2).
Thus, up to first order of perturbation theory,

: φ2(z, x) :
z2�

+ κ
( (φ2)

(1)

κφk (z, x)

z2�
− δ

: φ2(z, x) :
z2�

log z
)

(4.5)

should converge with z ↘ 0. We have already seen that the contributions from the first
type of diagrams (Fig. 3) to (φ2)

(1)

κφk behave ∼ z2� if k > 2, and with a logarithmic
correction if k = 2, so that their limit exists separately because � > 0. Because the only
possibly divergent contribution comes from the fish diagram integrated with : φk−2 : , a
cancellation against the contribution from an anomalous dimension can occur in (4.5)
only if k = 4 and only if the divergence of z−2�rfish(X1, X) integrated with : φ2 : is
logarithmic. Thus, we are led to require
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(III) The renormalized expression (4.1) taken in the partial adiabatic limit and mul-
tiplied by z−2� converges at z ↘ 0 if k = 4, while for k = 4 it may diverge

∼ log z :φ2(X) :
z2� .

Due to general theorems [6,17,18] there exist extensions which fulfill (I) and (II).
For d ≤ 4, these two requirements reduce the freedom of normalization to

rfish(X1; X) + Czd+1δ(x1 − x)δ(z1 − z). (4.6)

So there is only one normalization constant C at disposal to fulfill (III). For this reason,
we concentrate on d = 3 and d = 4 from now on.

Changing the value of C just adds a multiple of : φk−2 : to (φ2)
(1)

κφk . If k = 2 or k = 3,

this term ∼ z0 or ∼ z� must not be present in the boundary limit taken with z−2�, so
Condition (III) – if it can be fulfilled – fixes the value of C , and thus determines a “field
mixing”. If k = 4, the addition just amounts to a multiplicative renormalization of the
zero order term. If k > 4, the addition is ineffective in the boundary limit. In both cases
k ≥ 4, the renormalization parameter C is unconstrained by Condition (III). These a
priori conclusions are in perfect agreement with the corresponding conclusions drawn
from the analysis of Witten diagrams for correlation functions in the dual approach to
the AdS-CFT correspondence [29].

4.2. d = 3, M = 0. Renormalization of the fish diagram on AdS4. The standard strategy
[17–19] to renormalize (extend) a distribution like the fish diagram r◦

fish in curved space-
time is to pass to the scaling limit r̄◦

fish which gives a distribution in the tangent space at
the point X . The latter carries the leading UV singularity and can be renormalized as in
flat space (with the constant metric gX ), while the less singular “reduced” distribution
r◦red

fish = r◦
fish − r̄◦

fish is (in d = 3 or d = 4) uniquely extended “by continuity”. The prob-
lem with this strategy in our situation is that r red

fish and r̄fish (the latter being independent
of � because the scaling limit loses the information about the AdS mass M2) behave
differently at the boundary, and do not allow us to deduce the boundary behaviour of
the integral (4.1).

Let us look more closely at the distribution (4.2). Unfortunately, the AdS Källen-
Lehmann expansion of (�+

AdS)2 is not known explicitly [5], with which one could per-
form the renormalization in the spirit of (2.46). Instead, we shall use again the explicit
form (3.12) of �+

AdS(X1, X) ∝ Q′
ν− 1

2
in d + 1 = 4 bulk dimensions, and its elementary

expression (3.14) if M = 0, hence ν = 3
2 and � = 3.

In order to renormalize (4.2) (i.e., to define the retarded product as a distribution on
AdS×2

4 ), we adopt the method of differential renormalization [14]: As a distribution on
AdS×2

4 \ {(X, X)|X ∈ AdS4}, (4.2) is of the form

r◦
fish(X1, X) = j (X1, X)θ(x0 − x0

1 ) (4.7)

with j (X1, X) ∝ Q′
ν− 1

2
(v − iy00)2 − Q′

ν− 1
2
(v + iy00)2. One writes

j (X1, X) = �X1 J (X1, X), (4.8)
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where J is an AdS-invariant distribution which vanishes if X1 is spacelike separated from
X , and sd(J ) < sd( j), so that J (X1, X)θ(x0 − x0

1 ) is well-defined as a distribution on
AdS×2

4 . One then defines

rfish(X1, X) := �X1

(
J (X1, X)θ(x0 − x0

1 )
)
. (4.9)

At X = X1, this differs from the unrenormalized distribution θ(x0 − x0
1 ) ·�X1 J (X1, X)

by a term

∝ ∂0
(
J (X1, X)δ(x0 − x0

1 )
)

+ δ(x0 − x0
1 )∂0 J (X1, X). (4.10)

The support property of J ensures that this vanishes at X = X1, hence rfish(X1, X) is
indeed an extension of r◦

fish. Obviously, rfish satisfies the requirements (I) and (II) above.
We follow this strategy in the case M = 0, where by (3.12), �+

AdS(X1, X) ∼ Q′
1 is

given explicitly in terms of the elementary function (3.14). We thus obtain

(�+
AdS(X1, X))2

= 1

64π4

((
log

u + 1

u − 1

)2 + u∂u
(

log
u + 1

u − 1

)2 +
( u

u + 1
− u

u − 1

)2
)∣∣

u=v+iy00 (4.11)

Here, the first term is a logarithmically bounded function, hence well-defined as a dis-
tribution, and consequently also the second. The last term is defined as a distribution by

( 1

v ± 1 + iy00

)2 = −∂v

( 1

v ± 1 + iy00

)
. (4.12)

We now look for a function F such that

�X1 F(u) ≡ (1 − u2)F ′′(u) − 4uF ′(u) = Q′
1(u)2 (4.13)

and

J (X1, X) = i

8π4

(
F(v − iy00) − F(v + iy00)

) = 0 if |v| > 1. (4.14)

Next, we determine the discontinuity along the cut

δF(v) = F(v + i0) − F(v − i0) (4.15)

as a distribution. Then, we can define the renormalized fish diagram as

rfish(X1, X) = i

8π4 · �X1

(
δF(v)θ(−y0)

)
. (4.16)

Proposition 4.1. Equation (4.13) is solved by

F(u) = 1

2

(
Li3

2

1 − u
+ Li3

2

1 + u

)
+

1

6

d

du

(
Li3

2

1 − u
− Li3

2

1 + u

)

+
1

6
log

u + 1

u − 1
·

(
Li2

2

1 + u
− Li2

2

1 − u

)
− 1

16

(
log

u + 1

u − 1

)2

+
1

144
(u2 + 3)

d

du

(
log

u + 1

u − 1

)3
+

u

16

d

du

(
log

u + 1

u − 1

)2
+

6 − u2

12(u2 − 1)

(4.17)

plus the general solution C1 Q′
1(u) + C2 of the homogeneous equation.
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We point out that F(u) is analytic for u ∈ C \ [−1, 1] (see App. C), and that
the particular solution given by the proposition is symmetric (F(−u) = F(u)), but
Q′

1(−u) = −Q′
1(u). By writing some terms as derivatives, the boundary values F(v±iε)

are defined as distributions.

Proof. By insertion into (4.13). In App. C we sketch the derivation of (4.17). ��
Proposition 4.2. The discontinuity δF(v) = F(v + i0) − F(v − i0) is given by

δF(v) = iπ
(
θ(1 − |v|) h0(v) + ∂v

(
θ(1 − |v|) h1(v)

))
, (4.18)

where

h0(v) = 1

3

(
Li2

1 + v

2
− Li2

1 − v

2

)
+

2

3
log

1 + v

1 − v
,

h1(v) = 1

3
log

1 + v

2
log

1 − v

2
− v

4
log

1 + v

1 − v
+

(π2

18
+

5

12

)
.

(4.19)

Notice that the derivative of θ(1 − |v|) cannot be taken separately, because h1 is
logarithmically divergent at v = ±1. Instead, δF is understood as a distribution in v,
where the derivative is defined by partial integration, see below.

Proof. See App. C. ��
Adding the homogeneous solutions, the second of the integration constants, C2,

does not contribute to the discontinuity. Thus, the (expected) renormalization freedom
consists in adding to (4.16) the term

i

8π4 C1 �X1

((
Q′

1(v − iy00) − Q′
1(v + iy00)

)
θ(−y0)

)

= −i

2π2 C1 �X1 �ret
AdS(X, X1) = − C1

2π2 z4 δ(z1 − z) δ(3)(x1 − x). (4.20)

Remark. (I) In contrast to the renormalization of the massless fish diagram in 4-
dimensional Minkowski space, the present renormalization on AdS does not
require the introduction of a mass scale. This is because there is already a mass
scale in the formalism, namely 1/R2, where R is the radius of AdS. (In our
conventions: R2 ≡ (ξ0)2 − ∑

k=1,2,3(ξ
k)2 + (ξ4)2 = 1.)

(II) δF in Prop. 4.1 is antisymmetric inv; however the renormalization freedom (4.20)
is symmetric in v. Hence, there is a distinguished renormalization: C1 = 0.

The term (4.20) contributes a multiple of : φk−2(X) : to the first order term of (φ2)κφ4 .
As discussed in Sect. 4.1, for k > 4 this terms does not contribute to the boundary limit,
while for k = 4 its boundary limit : ϕ2(x) : exists trivially and amounts to a multipli-
cative renormalization of (ϕ2)κφ4 . For k = 3, it produces a “mixing” of the field : φ2 :
with φ(X), and the boundary limit has to be taken of the appropriate mixed field (cf. the
end of Sect. 4.3). We shall therefore disregard this term in the sequel.

Thus, (4.16) with δF specified by Prop. 4.2 is the starting point for the subsequent
analysis of the boundary limit. In that analysis, δF is understood as a distribution on the
differentiable functions on the interval (−1, 1), i.e.,

Hfish[ f ] ≡ 1

iπ
δF[ f ] :=

∫ +1

−1
dv

[
h0(v) − h1(v)∂v

]
f (v). (4.21)

The crucial property will be



AdS Renormalization of Perturbative Conformal QFT 341

Proposition 4.3. The linear functional Hfish vanishes on even powers f (v) = v2m, and

Hfish[v2m+1] = 2

3

2m + 1

2m + 2

2m+1∑
ν=0

Jν +
6m + 7

6
J2m+1 − 5

6
, (4.22)

where Jn are given in (D.6). In particular, Hfish[v p] = 0 for p = 0, 1, 2, 3, 4, and
Hfish[v5] = 4

81 .

Proof. The even powers of v are automatically annihilated by Hfish by symmetry under
v ↔ −v. For the nontrivial case of the odd powers, see App. D. ��

4.3. d = 3, M = 0. The boundary limit. Let us first consider the most interesting case
of the interaction : φ4 : , i.e., k = 4. The fish diagram contribution to the first order
correction to (φ2)κφ4 is given by

6
∫

d3x1 g(x1)

∫ ∞

0

dz1

zd+1
1

γ (z1) rfish(X1, X) : φ2(X1) :

= 6i

8π4

∫
d3 y

∫ ∞

0

dz1

zd+1
1

δF(v) θ(−y0) · �X1

(
γ (z1) g(x +y) : φ2(z1, x +y) : ),

(4.23)

where X1 = (z1, x1), y = x1 − x , and v = z2+z2
1−y2

2zz1
as before. To study the boundary

limit, we proceed exactly as in Sect. 3.2, when evaluating (3.6). We choose again d = 3
and M = 0. Making the same change of variables, we put

(z1, x0 − t, x + r eϕ) := z−6
1 �X1

(
γ (z1) g(x1) (�1, : φ2(X1) :�2)

)
(4.24)

and

x (z1, t, r2) := 1

2π

∮
dϕ (z1, x0 − t, x + r eϕ). (4.25)

Again, x is regular at 0, and

x (0, 0, 0) = −18 (�1, : ϕ2(x) : �2). (4.26)

The factor −18 is produced by the Laplace operator (2.3) when acting on :φ(z1, x1)
2 : ∼

z6
1 at small z1. Then we arrive at the matrix element of (4.23),

= − 6z

4π2 · Hfish

[ ∫ ∞

0
z3

1 dz1

∫ ∞

0
dt θ(t2 − w) · x (z1, t,

√
t2 − w)

∣∣
w=wv,z(z1)

]
,

(4.27)

which is of the same form as (3.23), except for the additional power z3
1 (due to the factor

: φ2 : in (4.23) as compared to φ in (3.5)), and with the functional H replaced by Hfish
given in (4.21).

The argument in square brackets is of the form I3(v, z)( f ) with f = x on R
3
+, as

computed in Lemma B.1 of App. B. By the same arguments as before, it is sufficient
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to know it in the range v2 < 1, where it is given by (B.3): there are polynomial terms∑
0≤k≤�≤5 Ak�( f ) vk z�, a logarithmic contribution

z5 ·B3(v)·log
(
(1 − v)z

)· f (0, 0, 0) with B3(v) = 1

8
·v(1 − v2)(7v2 − 3), (4.28)

and a remainder Rv,z( f ) = O(z6) that vanishes in the boundary limit z ↘ 0.
By Prop. 4.3, the leading polynomial terms with k ≤ 4 are annihilated by Hfish[·],

so that only the term Hfish[v5] A55( f ) z5 survives. The log(1 − v) term in (4.28) pro-
duces another constant8 times z5 f (0, 0, 0), and the log z-term produces the contribution
− 7

8 Hfish[v5] · z5 log z · f (0, 0, 0). Since Hfish[v5] = 4
81 (Prop. 4.3), we have thus found

the following analog of Prop. 3.1:

Proposition 4.4. For any test function f on R
3, the limit

lim
z↘0

z−5
{

Hfish
[
I3(v, z)( f )

]
+

7

162
z5 log z · f (0, 0, 0)

}
(4.29)

is finite.

Inserting this result with f = x and (4.26) into (4.27), we find the first order
contribution

(4.23) = − 7z6

6π2 · (
log z · : ϕ(x)2 : + O(z)

)
. (4.30)

The absence of all lower order terms establishes the existence of the boundary limit, and
the presence of the logarithmic term signals the anomalous dimension of the composite
boundary field

�
φ2

κφ2 = 6 − 7

6π2 · κ + O(κ2) (4.31)

at first order of perturbation theory.
This establishes the existence of the boundary limit of (ϕ2)κφ4 in first order pertur-

bation theory, when M = 0. The result requires the nontrivial cancellations Hfish[v] =
Hfish[v3] = 0 of Prop. 4.3, involving the precise functions h0 and h1 of Prop. 4.2
appearing in the renormalized fish diagram. It remains to investigate whether similar
cancellations persist for M = 0, d = 3, and at higher orders.

It is now easy to repeat the analysis for the interaction : φ3 : , i.e., :φ2(X1) : ∼ z6
1

on the r.h.s. of (4.23) has to be replaced by φ(X1) ∼ z3
1. In this case, the power z3

1
in the z1-integral is absent (n = 0 in Lemma B.1), hence the logarithmic term log z
arises at order z2 with a coefficient ∼ (1 − v2). Because Hfish annihilates the quadratic
polynomial B0(v) = 1

2 (1−v2), but not B0(v) log(1−v), the first-order diagram will not
contain log z terms, but finite terms ∼ z3 ϕ(x). This reflects the expected perturbative
mixing of the fields φ2 and φ under the cubic interaction. Accordingly, the boundary
limit z ↘ 0 should be taken of a suitable combination like z−6

(
φ2 + O(κ) φ

)
κφ3 .

8 The factor (1 − v2) in Bn in Lemma B.1 ensures the finiteness of Hfish[B3(v) log(1 − v)].
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5. Conclusion

We have pursued the strategy of perturbative construction of interacting conformal fields
in d dimensions, which proceeds by the perturbative construction of interacting AdS
fields in d + 1 dimensions and subsequently performing a boundary limit. The unper-
turbed conformal field is a generalized free field (or a Wick product thereof).

This procedure resolves the problematic issues associated with the perturbation the-
ory around generalized free fields, and at the same time drastically reduces the expected
infinite arbitrariness involved in its renormalization. The most important benefit is the
fact that the boundary fields, if renormalized by this method, do not suffer from the
conformal anomaly, i.e., the conformal symmetry is perturbatively preserved.

We find, however, that the existence of the boundary limit is not automatically guar-
anteed. Requiring its existence may be viewed as another renormalization condition for
the AdS field which cannot always be fulfilled. We have pursued a number of case stud-
ies involving polynomial interactions of scalar fields. In relevant cases, the boundary
limit exists, and the renormalized boundary fields have anomalous dimensions that can
be computed. (An anomalous dimension does not mean a conformal anomaly!) Because
the exact analytical expressions are quite involved, we have considered only very special
cases; but in view of the highly systematic emergence of the cancellations, we believe
that the promising results found in these cases pertain also to more general cases.

The method is applicable only when the Lagrangian interaction density of the con-
formal boundary field is induced by a polynomial interaction on AdS. Such densities are
rather special elements of the Borchers class of the generalized free field, which carry a
reminiscence of its AdS origin. But in view of the fact that a general perturbation theory
for generalized free fields has not yet been formulated, it is encouraging that a successful
renormalization can be achieved at least for a limited class of interactions.

There arises an interesting question, concerning the “continuous operator product
expansion” for generalized free fields, as discussed in Sect. 2.3. The OPE in the bulk
is certainly a discrete sum. Taking the boundary limit, when it exists, should not alter
this feature. Recalling that the continuous OPE is caused by the failure of factorization
of the weight functions h(k2

1, . . . , k2
l ) in (2.13), we are tempted to conjecture the per-

turbative stability of a discrete OPE for “factorizing” Wick products whenever only the
Lagrangian is a non-factorizing generalized Wick product. To establish such a result,
one would have to reorganize the OPE of the perturbed limit fields, whose subleading
terms are continuous in terms of the unperturbed fields, into a discrete OPE in terms of
the perturbed fields.
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A. Källen-Lehmann Representation of �+
m1

( y)�+
m2

( y)

Let �+
m(y) denote the 2-point function of a massive scalar free field in d-dimensional

Minkowski space. We are going to prove
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�+
m1

(y)�+
m2

(y) =
∫ ∞

0
dm2 ρm1,m2(m

2) �+
m(y) (A.1)

with

ρm1,m2(m
2) = |Sd−2|

4 · 2d−3 · (2π)d−1

×θ(m − m1 − m2) · m2−d
((

m2 − m2
1 − m2

2

)2 − 4m2
1m2

2

) d−3
2

(A.2)

with |Sd | the surface of the unit sphere Sd in d + 1 dimensions,

|Sd | = 2π
d+1

2

( d+1
2 )

. (A.3)

From the definitions, and using Lorentz invariance, it is easily seen that the Källen-
Lehmann weight is given by

ρm1,m2(m
2) = 1

(2π)d−1

∫

V+

dd p1

∫

V+

dd p2 δ(p2
1 − m2

1) δ(p2
2 − m2

2) δ(p1 + p2 − p),

(A.4)

where p ∈ V+ is any four-momentum such that p2 = m2. It is convenient to choose
p = (m, 0) and perform the integrations over the energies p0

i first, and evaluate the
momentum conservation p2 = − p1. The resulting integral over p ≡ p1 reads in polar
coordinates p = | p|,

ρm1,m2(m
2) = |Sd−2|

4(2π)d−1

∫ ∞

0

dp pd−2
√

p2 + m2
1

√
p2 + m2

2

δ
(√

p2 + m2
1 +

√
p2 + m2

2 − m
)
.

(A.5)

The argument of the δ-function vanishes at

p0 = 1

2m

√(
m2 − m2

1 − m2
2

)2 − 4m2
1m2

2 , (A.6)

provided (m2 −m2
1 −m2

2)
2 −4m2

1m2
2 > 0 and m − (m1 +m2) > 0, where the first bound

is redundant. From this, we obtain (A.2).

B. The Origin of the Logarithmic Boundary Terms

We use notations as introduced in Sect. 3.2, with u ≡ z1. For a test function f on R
3,

we denote by I (u, v, z) the integral

I (u, v, z) := I (w)
∣∣
w=wv,z(u)

, where I (w) :=
∫ ∞

0
dt θ(t2−w) · f (u, t, t2−w), (B.1)

and by In(v, z)( f ) the integral

In(v, z)( f ) :=
∫ ∞

0
un du I (u, v, z) (n ≥ 0). (B.2)

We want to prove:
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Lemma B.1. Let z > 0. Then In(v, z)( f ) is continuous w.r.t. v. In the range v2 < 1, it
is of the form

In(v, z)( f ) =
∑

0≤k≤�≤n+2

Ak�( f ) vk z�

+Bn(v) · zn+2 log
(
(1 − v)z

) · f (0, 0, 0) + Rv,z( f ) , (B.3)

if n ≥ 0 is an integer. Here, Ak� are distributions, Bn(v) = 1
2 (1 − v2) 2 F1(−n, n +

3; 2; 1−v
2 ) is a polynomial of degree n + 2, and the remainder Rv,z is a family of dis-

tributions that is differentiable in v in the range v2 < 1, and that vanishes at least
∼ zn+3 log z as z ↘ 0. If n = [n] + ε is not an integer, then the first (polynomial) sum
extends until [n]+ 2, the logarithmic term is replaced by Cn(v) · z[n]+2+ε · f (0, 0, 0) with
a possibly non-polynomial function Cn, and the remainder is O(z[n]+3).

Remark. The emphasis is here on the various subleading terms after the polynomial
terms, because they become the leading ones in different instances of our case studies
of the boundary limit, and we expect that this happens also in more general cases. The
log z-term is essential for Prop. 3.1 and Prop. 4.4. The log(1 − v)-term is used in the
last paragraph of Sect. 4.3, and the z[n]+2+ε-term in the non-integer case is relevant in
Sect. 3.3.

Proof. The integrals I (u, v, z) and In(v, z)( f ) are continuous w.r.t. v by definition,
because the integrand and the range of integration vary continuously. For the differen-
tiability w.r.t. v when v2 < 1, we note that the dependence on v is only through w, and
w = wv,z(u) ≥ (1 − v2)u2 > 0. Thus ∂v I (u, v, z) = −2uz∂w I (w), and

− ∂w I (w) = 1

2
√

w
f (u,

√
w, 0) +

∫ ∞
√

w

dt · ∂3 f (u, t, t2 − w). (B.4)

We now compute the leading derivatives w.r.t. z in the range v2 < 1. Again, the
dependence is only through w = wv,z(u) > 0, and ∂z I (u, v, z) = −2(uv − z)∂w I (w),
hence

∂�
z I (u, v, z) =

�∑

k=[ �+1
2 ]

C�
k · (uv − z)2k−�(−∂w)k I (w)

∣∣
w=wv,z(u)

(B.5)

with certain combinatorial coefficients C�
k . Computing (−∂w)k I (w), the derivatives can

either all go on the integrand, giving

∫ ∞
√

w

dt ∂k
3 f (u, t, t2 − w), (B.6)

or after q < k derivatives on the integrand, the next derivative goes on the lower bound-
ary, producing (2

√
w)−1 ∂

q
3 f (u,

√
w, 0), and the remaining k−q−1 derivatives produce

a sum of terms (neglecting numerical coefficients for the moment)

w−k+q+ p
2 + 1

2 · ∂
p
2 ∂

q
3 f (u,

√
w, 0) with p + q ≤ k − 1. (B.7)



346 M. Dütsch, K.-H. Rehren

Now, at z = 0, we have w = u2, hence the terms (B.6), (B.7) inserted into (B.5)
become, respectively,

(uv)2k−�

∫ ∞

u
dt ∂k

3 f (u, t, t2 − u2), (uv)2k−�u−2k+2q+p+1∂
p
2 ∂

q
3 f (u, u, 0). (B.8)

To obtain ∂�
z In(v, z)( f ), these remain to be integrated with

∫ ∞
0 un du . . .. The

u-integrals are unproblematic at large u by the falloff of the test function, but they
may become singular at u = 0. The most singular terms are the latter ones in (B.8) when
p = q = 0, i.e., v2k−� u−�+1 f (u, u, 0). It is then obvious that the u-integrals over (B.8)
are finite multiples of v2k−�, as long as � < n + 2. Thus, for � < n + 2, ∂�

z In(v, z)( f )|z=0

is finite, and is in fact a polynomial in v of degree �, because
[

�+1
2

] ≤ k ≤ �.
If n is an integer and � = n + 2, the most singular terms p = q = 0 are

∫ ∞

0
du un (uv − z)2k−n−2 w−k+ 1

2 · f (u,
√

w, 0)
∣∣
w=wv,z(u)

, (B.9)

with
[ n+3

2

] ≤ k ≤ n + 2. While all other terms are finite multiples of v2k−n−2 at
z = 0, these terms are logarithmically divergent at z = 0. To isolate the divergence, we
split the integration range into the intervals (0, U ) and (U,∞), for any fixed U > 0.
The latter integral is a finite multiple of v2k−n−2 at z = 0. In the former, we write
f (u,

√
w, 0) = f (0, 0, 0)+

(
f (u,

√
w, 0)− f (0, 0, 0)

)
, so that the second contribution

is also a finite multiple of v2k−n−2 at z = 0.
The remaining terms, that diverge at u = 0 when z = 0, are

f (0, 0, 0) ·
∫ U

0
du un (uv − z)2k−n−2 wv,z(u)−k+ 1

2 =: I div
n,k (v, z). (B.10)

Restoring the suppressed numerical coefficients, these terms sum up to

n+2∑

k=[ n+3
2 ]

Cn+2
k

1

2

(1

2

)
k−1

· I div
n,k (v, z) = − f (0, 0, 0) · ∂n+2

z

∫ U

0
du un

√
wv,z(u). (B.11)

Equation (B.11) comprises all contributions to ∂n+2
z In(v, z)( f ) that are divergent at

z = 0, while all other contributions are polynomials in v of degree n + 2.
The u-integral in (B.11) can be performed explicitly: Introducing the integration var-

iable s = u −vz and the constant a2 := (1−v2)z2, the integrand is a linear combination
of terms sm

√
s2 + a2. If m is odd, the primitive function is a polynomial in s, a2, and√

s2 + a2. Evaluated at the upper and lower values s = U − vz and s = −vz, these are
regular functions in v and z, that possess convergent power series expansions in vz and
z in the range v2 < 1, 0 ≤ z < U . In particular, they contribute further finite values at
z = 0 to (B.11), that are polynomials in v of degree n + 2.

If m = 2μ is even, in addition to terms of the previous algebraic type, the primitive
functions contain terms of the form

a2μ+2 log
(
s +

√
s2 + a2

)∣∣∣
U−vz

s=−vz
= (z2 − v2z2)μ+1 log

U − vz +
√

wv,z(U )

−vz +
√

wv,z(0)
. (B.12)
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The logarithm of the numerator is again a convergent power series as above, and
contributes further finite values at z = 0 to (B.11), that are polynomials in v of degree
n + 2.

But the denominator yields the logarithmic term log
(
(1 − v)z

)
. Collecting all pre-

factors, we find the total logarithmic contribution to (B.11) to be given by

(n + 2)! · Bn(v) · log
(
(1 − v)z

) · f (0, 0, 0) (B.13)

with Bn(v) = 1
2 (1−v2) ·vn

2 F1
(− n

2 ,− n−1
2 ; 2;− 1−v2

v2

)
. With [1, Eqs. 15.3.19, 15.3.5],

this can be brought into the manifestly polynomial form of Bn as given in the lemma.
Knowing (the form of) the first n + 2 derivatives of In(v, z)( f ) at z = 0, we obtain

the claim of the lemma, for n integer.
If n = [n] + ε is not an integer, then all terms (B.8) give rise to finite integrals∫

un . . . as long as � ≤ [n] + 2, i.e., ∂�
z In(v, z)( f )|z=0 are polynomials in v of degree �

up to � ≤ [n] + 2. However, a scaling argument shows that ∂
[n]+2
z In(v, z)( f )|z=0 has a

subleading term of order O(zε): Namely, the integrands

gk(u, v, z) = un (uv − z)2k−[n]−2 wv,z(u)−k+ 1
2 (B.14)

of the leading terms are homogeneous of order ε − 1 in u and z. Using Euler’s equation
in the form (z∂z − ε)gk(u, v, z) = (−1 − u∂u)gk(u, v, z) = −∂u(u gk(u, v, z)), this
implies

(z∂z − ε)

∫ U

0
du gk(u, v, z) = −Ugk(U, v, z) , (B.15)

where Ugk(U, v, 0) = v2k−[n]−2U ε. This differential equation for
∫ U

0 du gk(u, v, z)
admits contributions ck(v) · zε with undetermined integration constants ck(v), that sum
up to Cn(v) in the statement of the lemma.

This proves the lemma for non-integer n. ��
The proof of the lemma clearly exhibits the origin of the logarithmic divergence to

be the range z1 ≈ 0 of the integration over z1 ≡ u. Notice also in (B.3) the logarithmic
singularity at v = 1, where

√
w = |z1 − z|. It arises upon integration over z1 in the

vicinity of z, corresponding to the point X1 = X . This singularity does not lead to
divergences, because it is always tamed by the factor 1 − v2 in Bn(v).

C. Details of the Renormalization of the Massless Fish Diagram on AdS

We work with the convention that the cut of log z (z ∈ C) is along (−∞, 0]. As usual
we define for z ∈ C \ [1,∞),

Li2(z) := −
∫

Cz

dz′ log(1 − z′)
z′ , Li3(z) :=

∫

Cz

dz′ Li2(z′)
z′ , (C.1)

where Cz is any smooth curve from 0 to z which does not intersect [1,∞). With that
Li2(z) and Li3(z) are analytic on C \ [1,∞). Since

u + 1

u − 1
∈ (−∞, 0] ⇔ u ∈ [−1, 1] ,

2

1 ± u
∈ [1,∞) ⇔ u ∈ [−1, 1] , (C.2)

the expression (4.17) for F(u) is manifestly analytic for u ∈ [−1, 1].
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The formula (4.17) for F(u) can be derived by first computing the integral

F ′(x) = 1

(1 − x2)2

∫ x

dt (1 − t2)(Q′
1(t))

2 for x ∈ R , |x | > 1 , (C.3)

which gives (after analytic continuation to z ∈ C \ [−1, 1])

F ′(z) = 1

(1 − z2)2

(2 + 3z − z3

12

(
log

z + 1

z − 1

)2 − z

3

+
(1

6
+

z2

3

)
log

z + 1

z − 1
+

2

3
Li2

2

1 − z
+ 2 C1

)
, (C.4)

where C1 is an undetermined constant. A second integration yields F(u) for u ∈ [−1, 1].
Here we use well-known identities for Li2 and Li3 (see, e.g., [21]) and

1

z2 − 1

(
log

z + 1

z − 1

)n−1 = −1

2n

d

dz

(
log

z + 1

z − 1

)n
(n = 2, 3) , (C.5)

1

1 ± z
Li2

2

1 ± z
= ∓ d

dz
Li3

2

1 ± z
. (C.6)

The expressions on the l.h.s. are problematic, since they have poles at u = ±1, which
overlap with the cut along [−1, 1] of the pertinent function in the numerator. But the
boundary values at u = v ± i0 along both sides of the cut of the expressions on the r.h.s.
are well defined distributions.

To compute δF(v) = F(v + i0) − F(v − i0) we use that the complex derivative
is given by the infinitesimal differential quotient in any direction, in particular we may
choose the direction of the real axis:

d

dz
f (z)

∣∣
z=v+iw = d

dv
f (v + iw) if f is holomorphic at z = v + iw , (C.7)

and hence

d

dz
f (z)

∣∣∣
z=v+i0

z=v−i0
= d

dv

(
f (v + i0) − f (v − i0)

)
. (C.8)

In addition we give the following formulas:

1

u2 − 1

∣∣∣
u=v+i0

u=v−i0
= iπ(δ(v + 1) − δ(v − 1)) = iπ

d

dv
θ(1 − |v|) , v ∈ R , (C.9)

log
v + i0 + 1

v + i0 − 1
= log

∣∣∣ v + 1

v − 1

∣∣∣ − iπ θ(1 − |v|) , v ∈ R , (C.10)

Im Li2(x ± i0) = −
∫ x

0
dt

Im log(1 − (t ± i0))

t
= ±θ(x − 1) iπ log x, x ∈ R,

(C.11)

Re Li2(x ± i0) = Li2
x − 1

x
+

1

2
(log x)2 +

π2

6
− log x · log(x − 1) , x > 1, (C.12)

Im Li3(x ± i0) =
∫ x

0
dt

Im Li2(t ± i0)

t
= ±θ(x − 1)

iπ

2
(log x)2 , x ∈ R. (C.13)

With that the result (4.18) is obtained by a straightforward calculation (dropping
terms involving (1 − v2) · ∂vθ(1 − |v|) ≡ 0).
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D. Integrals for the Boundary Limit

Applying the functional Hfish[ f ] = ∫ +1
−1 dv

[
h0(v) − h1(v)∂v

]
f (v) (with h0 and h1 as

in Prop. 4.2) to odd power functions f (v) = v2m+1, all integrals are of the types

Jn =
∫ +1

−1
dv vn log

1 + v

2
= (−1)n

∫ +1

−1
dv vn log

1 − v

2
, (D.1)

Kn =
∫ +1

−1
dv vn log

1 + v

2
log

1 − v

2
, (D.2)

Ln =
∫ +1

−1
dv vn Li2

1 + v

2
= (−1)n

∫ +1

−1
dv vn Li2

1 − v

2
, (D.3)

so that

Hfish[v2m+1] = 2

3
L2m+1 +

4

3
J2m+1−(2m + 1)

(1

3
K2m − 1

2
J2m+1

)
− π2

9
− 5

6
. (D.4)

Since we could not find these integrals in the literature, we sketch their computation
here.

In Jn , we partially integrate log 1+v
2 with primitive (1 + v)(log 1+v

2 − 1). This gives
J0 = −2 and the recursion

Jn = −1 + (−1)n

(n + 1)2 − n

n + 1
Jn−1, (D.5)

which is solved by

Jn = 2
(−1)n+1

n + 1

[ n
2 ]∑

ν=0

1

2ν + 1
. (D.6)

Summing the geometric series in the integrand of Jn , we also get
∞∑

n=0

Jn =
∫ +1

−1

dv

1 − v
log

1 + v

2
= Li2

1 − v

2

∣∣∣
v=+1

v=−1
= −π2

6
. (D.7)

Kn vanish if n is odd. Partially integrating v2m in K2m , expanding (1 − v)−1 as a
geometric series, and using (D.7), we get

K2m = 2

2m + 1

∞∑
n=2m+1

Jn = −2

2m + 1

(π2

6
+

2m∑
n=0

Jn

)
. (D.8)

The integrals Ln can be obtained by partial integration of the factor Li2 1+v
2 with

primitive (1 − v)
(
1 − log 1−v

2

)
+ (1 + v)Li2 1+v

2 , which yields L0 = π2

3 − 2 and the
recursion

(n + 1)Ln = π2

3
− (−1)n n(Jn + Jn−1) − 1 + (−1)n

n + 1
− nLn−1 (D.9)

with solution

(n + 1)Ln = π2

6
− (−1)n

∞∑
ν=n+1

Jν = (1 + (−1)n)
π2

6
+ (−1)n

n∑
ν=0

Jν . (D.10)

Inserting (D.6), (D.8), (D.10) into (D.4) proves Prop. 4.3.
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