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Abstract: We solve a class of boundary value problems for the stationary axisymmetric
Einstein equations involving a disk rotating around a central black hole. The solutions
are given explicitly in terms of theta functions on a family of hyperelliptic Riemann
surfaces of genus 4. In the absence of a disk, they reduce to the Kerr black hole. In the
absence of a black hole, they reduce to the Neugebauer-Meinel disk.
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1. Introduction

Two of the most famous solutions of the stationary axisymmetric Einstein equations
are the Kerr black hole and the Neugebauer-Meinel disk. The former was discovered
by Kerr in 1963 [13] and the latter by Neugebauer and Meinel in the 1990s [21–23].
In this paper, we construct analytic solutions of a class of boundary value problems
(BVPs) for the stationary axisymmetric Einstein equations which combine the Kerr and
Neugebauer-Meinel spacetimes. Thus, the BVPs considered involve a finite disk of dust
rotating uniformly around a central black hole. In the limit of a vanishing disk, the
solutions tend to the Kerr black hole. In the absence of a black hole, they reduce to the
Neugebauer-Meinel disk. The constructed disk/black-hole systems are given explicitly
in terms of theta functions on a family of hyperelliptic Riemann surfaces of genus 4.
Given the importance of the Kerr and Neugebauer-Meinel solutions, we believe that the
class of solutions presented here could also be of interest. We emphasize, however, that
the new solutions involve a disk whose inner rim starts right at the event horizon of
the black hole, whereas a physically correct BVP would allow for a small gap between
the disk and the horizon. Thus, we expect the presented solutions to involve some dust
particles traveling at superluminal speeds near the horizon.

The general analysis of rotating relativistic bodies is exceedingly complicated because
it involves the study of free BVPs for the Einstein equations, which are nonlinear partial
differential equations in four dimensions. However, in cases where the surface of the
body is known and the motion is stationary and axisymmetric (a reasonable assumption
in many astrophysical situations), the physical problem gives rise to a BVP for a single
integrable equation in two dimensions—the celebrated Ernst equation. The integrability
of the Ernst equation implies that powerful solution-generating techniques are at hand.
Thus, through the application of suitable nonlinear transformations, new stationary axi-
symmetric spacetimes can be generated from already known ones. Furthermore, a large
class of solutions of the Ernst equation can be given explicitly in terms of theta functions
on Riemann surfaces [18]. In this way, it is possible to write down a large number of
exact analytic solutions to the stationary axisymmetric Einstein equations and to study
them using the methods of algebraic geometry cf. [17].

Nevertheless, for the solution of a concrete BVP, the power of this approach is often
limited. Indeed, although a large class of exact solutions can be produced, the problem
of determining the particular solution within this class that satisfies the given BVP is
in general a highly nonlinear problem. It is therefore remarkable that Neugebauer and
Meinel in the 1990s were able to solve explicitly, using constructive methods, the BVP
corresponding to the physically relevant situation of a rotating dust disk. The structure of
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an infinitesimally thin, relativistic disk of dust particles which rotate uniformly around
a common center was first explored numerically by Bardeen and Wagoner 40 years ago
[3], who also pointed out that “there may be some hope of finding an analytic solution”
[2]. Bičák notes in the comprehensive review [4] that the subsequent construction of such
an analytic solution by Neugebauer and Meinel represents “the first example of solving
the BVP for a rotating object in Einstein’s theory by analytic methods.” Let us point
out that since the Neugebauer-Meinel solution can be written in terms of theta functions
on Riemann surfaces of genus 2, it belongs to the general class of solutions introduced
in [18] and can therefore be analyzed by means of algebro-geometric methods. On the
other hand, the Kerr black hole is the most famous example of a stationary axisymmetric
spacetime and has had an immense impact on the development of general relativity and
astrophysics (see e.g. [5]).

The approach in this paper is primarily inspired by the work of Neugebauer, Me-
inel, and collaborators [24], but also by a novel method for the analysis of BVPs for
integrable PDEs which has been developed by Fokas and his collaborators within the
past 15 years. A central development in the theory of nonlinear PDEs in the second
half of the 20th century, and continuing to the present, has been the introduction of the
Inverse Scattering Transform (IST). This technique was put forward in the famous 1967
paper [11] in connection with the Korteweg-de Vries (KdV) equation and the range of its
applicability began to unfold with the investigation of the nonlinear Schrödinger (NLS)
equation [ZS]. One of the most important later developments in this area has been the
generalization of the IST formalism from initial-value to initial-boundary value prob-
lems introduced by Fokas [8,9] and subsequently developed further by several authors
cf. [10]. The Fokas method consists of two steps: (a) Construct an integral representation
of the solution characterized via a matrix Riemann-Hilbert (RH) problem formulated
in the complex k-plane, where k denotes the spectral parameter of the associated Lax
pair. Since this representation involves, in general, some unknown boundary values, the
solution formula is not yet effective. (b) Characterize the unknown boundary values by
analyzing a certain equation called the global relation. In general, this characterization
involves the solution of a nonlinear problem; however, for certain so-called linearizable
boundary conditions, step (b) can be solved in closed form.

In a recent work [20] steps (a) and (b) were implemented for the class of BVPs of the
Ernst equation corresponding to a thin rotating disk of finite radius. In particular, it was
found that the boundary conditions of the particular BVP corresponding to the uniformly
rotating Neugebauer-Meinel disk are linearizable. The present paper is to some extent
a continuation of [20]: The main novel observation is that the BVP which combines
the Kerr black hole boundary conditions with those of a uniformly rotating disk is also
linearizable.

Physically, disk/black-hole systems are important as models for black hole accretion
disks in the context of active galactic nuclei and X-ray binaries [1]. Accretion disks are
flattened astronomical objects made of rapidly rotating gas which slowly spirals onto
a central gravitating body. Accretion onto a black hole is generally assumed to be thin
and axisymmetric (see e.g. [25]) and many of the most energetic phenomena in the
universe have been attributed to the accretion of matter onto black holes. In particular,
active galactic nuclei and quasars are believed to be the accretion disks of supermassive
black holes. We refer to [1] and references therein for more information on the physical
aspects of black hole accretion disks. Our approach here is mathematical and we do not
investigate any possible physical relevance of the presented solutions. In particular, we
will refer to the disk as a ‘disk of dust’ although the assumption that the disk stretches
all the way to the horizon presumably forces some of the dust particles to travel at
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superluminal velocities. We mention in this regard that the BVP corresponding to a dust
ring with finite inner radius (i.e. the BVP obtained by inserting a small gap between
the horizon and the innermost dust particles) is believed to not be exactly solvable. In
fact, the calculations in [14] suggest that it is impossible, even in the Newtonian limit,
to obtain explicit solutions describing a self-gravitating dust ring around a central point
mass.

The manuscript is organized as follows. In Sect. 2, we formulate our disk/black-hole
BVP and write down its full solution in terms of theta functions. In Sect. 3, we consider
a particular example. In Sects. 4–7, the derivation of the solution is presented in several
steps. In Sect. 8, we consider the singularity structure of the solution and its depen-
dence on various parameters. In the Appendix, we consider the relationship between the
solution derived here and the general class of solutions of the Ernst equation studied in
[19,15].

2. Disk/Black-Hole Systems

In this section we introduce the Ernst equation, formulate the BVP corresponding to a
dust disk rotating uniformly around a central black hole, and present its solution in terms
of theta functions.

2.1. The Ernst equation. The metric of a stationary axisymmetric vacuum spacetime
can be written in the Weyl-Lewis-Papapetrou form

ds2 = e−2U
[
e2κ(dρ2 + dζ 2) + ρ2dϕ2

]
− e2U (dt + adϕ)2, (2.1)

where ρ ≥ 0 and ζ ∈ R are Weyl’s canonical coordinates and t, ϕ are chosen so that
∂t and ∂ϕ are the two commuting asymptotically timelike and spacelike Killing vectors,
respectively, cf. [26]. The metric functions e2U , a, and e2κ are functions of ρ and ζ
alone. Following standard practice, we introduce a real-valued potential b by

aρ = ρe−4U bζ , aζ = −ρe−4U bρ. (2.2)

It can be shown that the Einstein field equations for the metric (2.1) reduce to the fol-
lowing single nonlinear PDE in two dimensions for the complex-valued Ernst potential
f = e2U + ib:

f + f̄

2

(
fρρ + fζ ζ +

1

ρ
fρ

)
= f 2

ρ + f 2
ζ , ρ > 0, ζ ∈ R. (2.3)

The real part of f will be denoted by e2U despite the fact that it may take on negative
values.

We also need the concept of a corotating frame. Given � ∈ R, we define the coordi-
nates (ρ′, ζ ′, ϕ′, t ′) corotating with the angular velocity � by

ρ′ = ρ, ζ ′ = ζ, ϕ′ = ϕ −�t, t ′ = t.

In these new coordinates, the metric (2.1) retains its form and the corotating metric
functions U�, a�, κ� are related to U, a, κ via

e2U� = e2U
[
(1 +�a)2 −�2ρ2e−4U

]
, (2.4a)

(1 −�a�)e
2U� = (1 +�a)e2U , κ� − U� = κ − U. (2.4b)
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Fig. 1. The exterior domain D of a disk of radius ρ0 with the black hole horizon stretching along the imaginary
axis from −ir1 to ir1

The Ernst equation retains its form in the corotating system and we denote the corotating
Ernst potential by f� := e2U� + ib�.

2.2. The boundary value problem. We now formulate the BVP for the Ernst equation
(2.3) which corresponds to a finite dust disk rotating uniformly around a central black
hole. The formulation involves five parameters: the radius ρ0 > 0 and angular velocity
� ∈ R of the disk; the ‘radius’ r1 > 0 and angular velocity �h ∈ R of the black hole
horizon; and the (necessarily constant) value of the corotating metric function e2U� on
the disk. We will henceforth work with a complex variable z = ρ + iζ and write f (z)
for f (ρ, ζ ).1

Let D denote the exterior of a finite disk of radius ρ0 > 0, i.e. D consists of all z ∈ C

with strictly positive real part which do not belong to the interval [0, ρ0], see Fig. 1. The
horizon of the black hole stretches in the z-plane along the imaginary axis from −ir1 to
ir1. We consider the problem of finding a function f such that:

• f satisfies (2.3) in D. (2.6a)

• f (z) = f (z̄) (equatorial symmetry). (2.6b)

• f (z) → 1 as |z|2 → ∞ (asymptotic flatness). (2.6c)

• ∂ f
∂ρ
(iζ ) = 0 for all|ζ | > r1 (regularity on the rotation axis).

• f�(ρ ± i0) = e2U�(+i0) for 0 < ρ < ρ0 (boundary condition on the disk). (2.6d)

• e2U�h (iζ ) = 0 for 0 < |ζ | < r1(boundary condition on the horizon). (2.6e)

The boundary conditions (2.6d) and (2.6e) are the boundary conditions correspond-
ing physically to a uniformly rotating dust disk and a rotating black hole, respectively,
cf. [24]. If one sets r1 = 0 in (2.6) (i.e. one removes the black hole), then the solution
of the obtained BVP is the Neugebauer-Meinel disk rotating with angular velocity �.
If one sets ρ0 = 0 in (2.6) (i.e. one removes the disk), then the solution of the obtained
BVP is the Kerr black hole rotating with angular velocity �h .

1 In general, given a function h(ρ, ζ ), we will suppress the dependence on z̄ and write h(z) for h(ρ, ζ )
even when h is not analytic.
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Fig. 2. The Riemann surface �z presented as a two-sheeted cover of the complex k-plane with five branch
cuts when Re k4 < ζ . The contours γ and 
+ are also shown

2.3. The solution. The formulation of the BVP (2.6) involves the five independent
parameters ρ0, �, r1, �h , and the constant value of e2U� on the disk. However, it turns
out that the condition that the solution be nonsingular at the rim of the disk imposes
one relation among these parameters, so that the class of solutions is parametrized by
only four parameters. It is convenient to adopt a parametrization in terms of the four
parameters ρ0, r1, w2, and w4, where w2 and w4 are two real quantities related to the
other parameters via Eqs. (5.9) below. For a given choice of these parameters, the cor-
responding solution f of the BVP (2.6) can be written in terms of theta functions on
the family of Riemann surfaces {�z}z∈D defined as follows: Let k1, k̄1, . . . , k4, k̄4 ∈ C

denote the eight zeros of w2(k) + 1, where

w(k) = w4k4 + w2k2 + ρ2
0 (w2 − w4ρ

2
0 )

(k2 − r2
1 )

, (2.7)

ordered so that k j , j = 1, . . . , 4, have negative imaginary parts and so that

Re k1 ≤ Re k2 ≤ Re k3 ≤ Re k4.

Since these eight zeros are symmetrically distributed with respect to the origin, we have
−k1 = k̄4 and −k2 = k̄3. For each z = ρ+iζ ,�z is defined as the hyperelliptic Riemann
surface of genus 4 consisting of all points (k, y) ∈ C

2 such that

y2 = (k + i z)(k − i z̄)
4∏

j=1

(k − k j )(k − k̄ j ), (2.8)

together with two points at infinity required to make the surface compact. We introduce
branch cuts in the complex k-plane from k j to k̄ j , j = 1, . . . , 4, and from −i z to i z̄, see
Fig. 2. For k ∈ Ĉ = C ∪ {∞}, we let k+ and k− denote the points which project onto k
and which lie in the upper and lower sheet of �z , respectively. By definition, the upper
(lower) sheet is characterized by y/k5 → 1 (y/k5 → −1) as k → ∞.

In view of the assumption of equatorial symmetry (2.6b), we will in the sequel always
assume that ζ ≥ 0. We will also, for the sake of definiteness, assume that

0 < Re k3 < r1 < Re k4. (2.9)
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Moreover, we assume that ζ 	= Re k3 and ζ 	= Re k4, so that no branch cuts overlap (the
solution for ζ = Re k j , j = 3, 4, can be obtained by continuity).

For n complex numbers {a j }n
1, we let [a1, . . . , an] denote the directed contour

∪n−1
j=1[a j , a j+1]. We let γ denote the contour on �z which projects to the contour

[r1,Re k3 + ε, k3 + ε] ∪ [k̄3 − ε,Re k3 − ε,Re k2+ε, k2 + ε] ∪ [k̄2−ε,Re k2−ε,−r1]
(2.10)

in the complex k-plane, where ε > 0 is an infinitesimally small positive number, and
which lies in the upper sheet for Re k < ζ and in the lower sheet for Re k > ζ . We define

+ as the contour in the upper sheet of�z which lies above the segment
 = [−iρ0, iρ0].
The contours 
+ and γ are shown in Fig. 2 in the case when Re k4 < ζ .

In order to define theta functions associated with�z , we need to introduce a basis of
the first homology group H1(�z,Z) of�z . Since the Riemann surface�z depends on z,
there are three qualitatively different cases to consider:

(1) The cut [−i z, i z̄] lies to the right of [k4, k̄4] (i.e. Re k4 < ζ ).
(2) The cut [−i z, i z̄] lies between [k3, k̄3] and [k4, k̄4] (i.e. Re k3 < ζ < Re k4).
(3) The cut [−i z, i z̄] lies to the left of [k3, k̄3] (i.e. 0 ≤ ζ < Re k3).

For these three cases, we let {a j , b j }4
j=1 be the canonical basis of H1(�z,Z) shown in

(1), (2), and (3) of Figs. 3, 4 respectively. Thus, for j = 1, . . . , 4, a j surrounds the cut
[k j , k̄ j ], whereas b j enters the upper sheet on the right side of [−i z, i z̄] and exits again
on the right side of [k j , k̄ j ].

We define {ω j }4
1 as the canonical basis of the space of holomorphic one-forms on�z

dual to {a j , b j }. Then

∫

a j

ωi = δi j ,

∫

b j

ωi = Bi j , i, j = 1, . . . , 4,

where B is the period matrix associated with the cut system {a j , b j }. We let ω =
(ω1, ω2, ω3, ω4)

T . The 4 × 4 matrix B is symmetric and has a positively definite imag-
inary part. The associated theta function �(v|B) is defined by

�(v|B) =
∑

N∈Z4

e
2π i
(

1
2 N T B N+N T v

)
, v ∈ C

4. (2.11)

We letωP Q denote the Abelian differential of the third kind on�z , which has two simple
poles at the points P and Q with residues +1 and −1, respectively, and whose a-periods
vanish, i.e.

∫
a j
ωP Q = 0 for j = 1, . . . , 4.

We can now state our main result.

Theorem 2.1. Solution of the disk/black-hole BVP Let ρ0, r1, w2, w4 be strictly positive
numbers such that (2.9) holds. [The requirement that the solution be singularity-free
imposes further restrictions on these parameters, see Sect. 8.] Let the function h(k) be
defined by

h(k) = 1

π i
ln
(√
w(k)2 + 1 − w(k)

)
, k ∈ 
 = [−iρ0, iρ0]. (2.12)
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Fig. 3. The homology basis {a j , b j }4
1 on the hyperelliptic Riemann surface �z of genus g = 4 in the case of

(1) Re k4 < ζ , (2) Re k3 < ζ < Re k4, and (3) 0 ≤ ζ < Re k3

Fig. 4. Three-dimensional picture of the hyperelliptic Riemann surface �z in the case when Re k4 < ζ
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Define the z-dependent quantities u ∈ C
4 and I ∈ R by

u =
∫


+
hω +

∫

γ

ω, I =
∫


+
hω∞+∞− +

∫

γ

ω∞+∞− . (2.13)

Then the function

f (z) =
�
(

u − ∫∞−
−i z ω|B

)

�
(

u +
∫∞−
−i z ω|B

) eI , (2.14)

satisfies the BVP (2.6) with the prescribed values of ρ0 and r1, and with the values of
�h, �, and e2U�(+i0) given by

�h = − 1

ahor
, � =

w4�he2U0 +
√

−2w4�
4
he2U0

w4e2U0 + 2�2
h

, e2U�(+i0) = e2U0

(
1 − �

�h

)2

,

(2.15)

where ahor ∈ R denotes the (necessarily constant) value of the metric function a on
the horizon and e2U0 ∈ R denotes the real part of f (+i0). Explicit expressions for the
constants ahor and f (+i0) are presented in Propositions 2.4 and 2.5 below.

Moreover, define the z-dependent quantity L by

L = −1

2

∫




dκ1
dh

dk
(κ1)

∫ ′




h(κ2)ωκ+
1 κ

−
1
(κ+

2 )+
∫


+
hω−r+

1 ,−r−
1

−sgn(ζ−r1)

∫


+
hωr+

1 r−
1

+
1

2
lim
ε→0

(∫

γ1(ε)

ω−r+
1 ,−r−

1
− sgn(ζ − r1)

∫

γ2(ε)

ωr+
1 r−

1
− 2 ln ε

)
, (2.16)

where γ1(ε) denotes the contour γ with the segment covering [−r1,−r1 + ε] removed,
γ2(ε) denotes the contour γ with the segment covering [r1 − ε, r1] removed, and the
prime on the integral along 
 indicates that the integration contour should be deformed
slightly before evaluation so that the pole at κ2 = κ1 is avoided.2 Then the metric func-
tions e2U , a, e2κ of the line element (2.1) corresponding to the Ernst potential (2.14) are
given for z ∈ D by

e2U (z) = Q(0)

Q(u)
eI , a(z)= a0 − ρ

Q(0)

⎛
⎝�(u +

∫∞−
−i z ω +

∫∞−
i z̄ ω|B)

Q(0)�(u +
∫ i z̄
−i z ω|B)

− Q(u)

⎞
⎠ e−I ,

(2.17a)

e2κ(z) = K0
�(u|B)�(u +

∫ i z̄
−i z ω|B)

�(0|B)�(∫ i z̄
−i z ω|B)

eL , (2.17b)

where Q(v) is defined by

Q(v) = �(v +
∫∞−
−i z ω|B)�(v +

∫∞−
i z̄ ω|B)

�(v|B)�(v +
∫ i z̄
−i z ω|B)

, v ∈ C
4, (2.18)

and the two constants a0, K0 ∈ R are given explicitly by Eqs. (2.26) and (2.27) below.

2 The result is indepedent of whether the contour is deformed to the right or to the left of the pole.
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Remark 2.2. 1. The function h(k), k ∈ 
, is well-defined by the right-hand side of
(2.12), because w2 + 1 ≥ 0 and

√
w2 + 1 − w > 0 for k ∈ 
.

2. Unless stated otherwise, all integrals in this paper along paths on Riemann surfaces
for which only the endpoints are specified are assumed to lie within the fundamental
polygon obtained by cutting the Riemann surface along the given cut basis. This
implies that some integrals will depend on the particular choice of the a j ’s and b j ’s
within their respective homology classes. It is convenient to fix the a j ’s and b j ’s
so that they are invariant under the involution k± → k∓. For ζ > Re k4, this is
accomplished by fixing3

b4 = [i z̄, k4]+ ∪ [k4, i z̄]−; b j = b j+1 ∪ [k̄ j+1, k j ]+ ∪ [k j , k̄ j+1]−, j = 1, 2, 3,

and by letting a j , j = 1, . . . , 4, be the path in the homology class specified by Fig. 3
which as a point set consists of the points of �z lying directly above [k j , k̄ j ]. This
implies the important symmetry ω(k+) = −ω(k−). For �z with 0 ≤ ζ < Re k4 and
for other Riemann surfaces below, we will assume that an analogous fixing of the
cut basis which assures ω(k+) = −ω(k−) has been made.

3. The limit as ε → 0 of the expression within brackets on the right-hand side of (2.16)
always exists and is finite because of the pole structure of ω−r+

1 ,−r−
1

and ωr+
1 r−

1
.

4. The assumption that r1 satisfies (2.9) is made for simplicity and is not essential. The
relevant formulas in the case when (2.9) does not hold can be obtained from those
presented here by analytic continuation.

2.4. Axis and horizon values. Of particular interest are the values of the Ernst potential
and of the metric functions on the regular axis {iζ | ζ > r1} and on the black hole horizon
{iζ | 0 < ζ < r1}. In the limit ρ → 0, the Riemann surface �z degenerates since the
branch cut [−i z, i z̄] shrinks to a point. Thus, the values of f on the ζ -axis are given in
terms of quantities defined on the Riemann surface �′ defined by the equation

y′2 =
4∏

j=1

(k − k j )(k − k̄ j ), (2.19)

i.e., �′ is the Riemann surface �z with the cut [−i z, i z̄] removed.
We introduce a canonical cut basis {a′

j , b′
j }3

1 on �′ according to Fig. 5 and let ω′ =
(ω′

1, ω
′
2, ω

′
3)

T denote the dual basis of holomorphic one-forms. We let B ′ denote the asso-
ciated period matrix and introduce the short-hand notation �′(v) := �(v|B ′), v ∈ C

3,
for the associated theta function.

Let γ ′ denote the ζ -dependent contour on �′ which projects to the contour (2.10) in
the complex k-plane and which lies in the upper sheet for Re k < ζ and in the lower
sheet for Re k > ζ . Define the ζ -dependent quantities u′ ∈ C

3, I ′ ∈ R, and K ′ ∈ C by

u′ =
∫


+
hω′ +

∫

γ ′
ω′, I ′ =

∫


+
hω′

∞+∞− +
∫

γ ′
ω′

∞+∞− , K ′ =
∫ ∞−

k4

ω′
ζ+ζ− .

(2.20)

3 For two complex numbers z1 and z2, [z1, z2]+ and [z1, z2]− denote the covers of [z1, z2] in the upper
and lower sheets of �z , respectively.
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Fig. 5. The cut system {a′
j , b′

j }3
j=1 on the degenerated Riemann surface �′ of genus g = 3

Let γ + denote the contour on �′ with the same projection onto the complex k-plane as
γ ′, but which lies entirely in the upper sheet, and define J ′ ∈ R by

J ′ =
⎧⎨
⎩

∫

+ hω′

ζ+ζ− +
∫
γ ′ ω′

ζ+ζ− , ζ > r1,

∫

+ hω′

ζ+ζ− +

(∫ r+
1

r−
1

+
∫ ′
γ +

)
ω′
ζ+ζ− , 0 < ζ < r1.

(2.21)

The prime on the integral along γ + indicates that the path should be deformed slightly
before evaluation, so that it avoids the pole of the integrand at k = ζ +. It is irrelevant for
the formulas below if this deformation is performed so that the pole lies to the right or to
the left of γ +, since these two choices yield values of J ′ which differ by a multiple of 2π i
and J ′ only appears exponentiated. In the same way, the value of J ′ changes by irrelevant
multiples of 2π i if loops surrounding ζ± are added to the contour from r−

1 to r+
1 .

Proposition 2.3 (Solution on the regular axis). The behavior of the solution (2.14) near
the regular axis {iζ | ζ > r1} is given by

f (ρ + iζ ) = f (iζ ) + O(ρ2), ρ → 0, ζ > r1, (2.22)

where

f (iζ ) = �′(u′ − ∫∞−
ζ− ω′)−�′(u′ − ∫∞−

ζ+ ω′)eJ ′−K ′

�′(u′ +
∫∞−
ζ− ω′)−�′(u′ +

∫∞−
ζ+ ω′)e−J ′−K ′ eI ′−J ′

, ζ > r1. (2.23)

The behavior of the metric functions e2U , a, and e2κ in (2.17) near the regular axis is
given by

e2U (ρ+iζ ) = e2U (iζ ) + O(ρ2), a(ρ + iζ ) = O(ρ2),

e2κ(ρ+iζ ) = 1 + O(ρ2), ρ → 0, ζ > r1,

where

e2U (iζ ) =
�′(u′)2

[
�′(
∫∞−
ζ− ω′)2−�′(

∫∞−
ζ+ ω′)2e−2K ′]

�′(0)2
[
�′(u′+

∫∞−
ζ− ω′)2−�′(u′+

∫∞−
ζ+ ω′)2e−2J ′−2K ′

]eI ′−J ′
, ζ > r1.

(2.24)
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Define the constant L0 by

L0 = −1

2

∫




dκ1
dh

dk
(κ1)

∫ ′




h(κ2)ω
′
κ+

1 κ
−
1
(κ+

2 ) +
∫


+
hω′

−r+
1 ,−r−

1
−
∫


+
hω′

r+
1 r−

1

+
1

2
lim
ε→0

(∫

γ +
1 (ε)

ω′
−r+

1 ,−r−
1

−
∫

γ +
2 (ε)

ω′
r+

1 r−
1

− 2 ln ε

)
, (2.25)

where γ +
1 (ε) denotes the contour γ + with the segment covering [−r1,−r1 +ε] removed,

and γ +
2 (ε) denotes the contour γ + with the segment covering [r1−ε, r1] removed. Define

the constants a0, K0 ∈ R by

a0 = −2i
�′(u′ + 2

∫∞−
k4

ω′)
�′(u′)

e−I ′
lim

R→∞

(
Re
∫ R+

k4
ω′

∞+∞−
)
, (2.26)

K0 = �′(0)2

�′(u′)2
e−L0 , (2.27)

where the right-hand sides are understood to be evaluated at some ζ > r1.4 Define the
ζ -dependent quantities L ′ and M ′ by

L ′ = −1

2

∫


+
dκ1

dh

dk
(κ1)

∫


+
h(κ2)ω

′
κ+

1 κ
−
1
(κ+

2 ) +
∫


+
hω′

−r+
1 ,−r−

1
+
∫


+
hω′

r+
1 r−

1

+
1

2
lim
ε→0

(∫

γ ′
1(ε)

ω′
−r+

1 ,−r−
1

+
∫

γ ′
2(ε)

ω′
r+

1 r−
1

−2 ln ε

)
−
∫


+
hω′

ζ+ζ− , 0 < ζ < r1,

(2.28)

and

M ′ = 1

2
lim
ε→0

(∫ (ζ−ε)+

(ζ−ε)−
ω′
ζ+ζ− − 2 ln ε − ln 4 − π i

)
, 0 < ζ < r1, (2.29)

where γ ′
1(ε) denotes the contour γ ′ with the segment covering [−r1,−r1 + ε] removed,

and γ ′
2(ε) denotes the contour γ ′ with the segment covering [r1 − ε, r1] removed.

Proposition 2.4 (Solution on the horizon). The behavior of the solution (2.14) near the
black hole horizon {iζ | 0 < ζ < r1} is given by

f (ρ + iζ ) = f (iζ ) + O(ρ2), ρ → 0, 0 < ζ < r1, (2.30)

where

f (iζ ) = −
�′(u′−∫∞−

ζ+ ω′)−�′(u′−∫∞−
ζ+ ω′ +

∫ ζ+

ζ− ω′)eJ ′−K ′

�′(u′ +
∫∞−
ζ− ω′)−�′(u′ +

∫∞−
ζ− ω′+

∫ ζ+

ζ− ω′)eJ ′+K ′ eI ′−K ′
, 0 < ζ < r1.

(2.31)

The behavior of the metric functions e2U , a, and e2κ in (2.17) near the black hole
horizon is given by

4 Their values are independent of the choice of ζ > r1.
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e2U (ρ+iζ ) = e2U (iζ ) + O(ρ2), a(ρ + iζ ) = ahor + O(ρ2),

e2κ(ρ+iζ ) = e2κhor + O(ρ2), ρ → 0, 0 < ζ < r1,
(2.32)

where

e2U (iζ ) = −
�′(u′ +

∫ ζ+

ζ− ω′)2

�′(0)2

× �′(
∫∞−
ζ− ω′)2 −�′(

∫∞−
ζ+ ω′)2e−2K ′

�′(u′ +
∫∞−
ζ− ω′)2 −�′(u′ +

∫∞−
ζ− ω′ +

∫ ζ+

ζ− ω′)2e2J ′+2K ′ eI ′+J ′
, (2.33)

ahor = a0 +
�′(u′ + 2

∫∞−
ζ− ω′)�′(0)4

�′(u′ +
∫ ζ+

ζ− ω′)
(
�′(
∫∞−
ζ− ω′)2 −�′(

∫∞−
ζ+ ω′)2e−2K ′

)2 e−I ′−M ′
,

(2.34)

e2κhor = −K0

�′(u′ +
∫ ζ+

ζ− ω′)2

�′(0)2
eJ ′+L ′

. (2.35)

Moreover, ahor and e2κhor are constants independent of 0 < ζ < r1.

By taking limits in the above formulas we can find the values of f at the origin
z = +i0 and at the point z = ir1, where the regular axis meets the horizon.

Proposition 2.5. Solution at z = +i0 and z = ir1 The value of the solution (2.14) at
z = ir1 is given by

f (ir1) = −
�′(u′ − ∫∞−

r+
1

ω′)

�′(u′ +
∫∞−

r−
1

ω′)
eI ′−K ′ ∣∣

ζ=r1 . (2.36)

Define the value of J ′ at ζ = 0 by

J ′|ζ=0 =
∫ ′


+
hω′

0+0− +

(∫ r+
1

r−
1

+
∫ ′

γ +

)
ω′

0+0− ,

where the primes on the integrals indicate that the contours should be deformed slightly
before evaluation so that they pass to the left of the pole at k = 0+. Then the value f (+i0)
of the solution (2.14) at z = +i0 is given by the right-hand side of (2.31) evaluated at
ζ = 0.

3. Example

Before presenting the derivation of the solution presented in the previous section, we wish
to consider a concrete example. In this regard we note that all the quantities appearing in
Sect. 2 can easily be computed explicitly using standard results for Riemann surfaces.
In order to find the canonical basis {ωi }4

1 and the period matrix B, we start with the
holomorphic one-forms {ηi }4

1 defined by

ηi = ki−1dk

y
, i = 1, . . . , 4. (3.1)
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The ηi ’s form a noncanonical basis of holomorphic differentials (see e.g. [6]). Defining
the two 4 × 4 matrices A and Z by

(A−1)i j =
∫

a j

ηi , Zi j =
∫

b j

ηi , i, j = 1, . . . , 4, (3.2)

we find

ω = Aη, B = AZ . (3.3)

The one-form ω∞+∞− on �z is given explicitly by

ω∞+∞− = −k4dk

y
+

4∑
j=1

(∫

a j

k4dk

y

)
ω j , (3.4)

whereas the one-form ω′
ζ+ζ− on �′ is given by

ω′
ζ+ζ− = y′(ζ +)dk

(k − ζ )y′(k)
−

3∑
j=1

(∫

a′
j

y′(ζ +)dk

(k − ζ )y′(k)

)
ω′

j . (3.5)

For k’s which lie some distance away from the branch cuts, the value of y in (2.8) can
be evaluated according to

y(z, k+) = (k + i z)

√
k − i z̄

k + i z

4∏
j=1

(k − k j )

√
k − k̄ j

k − k j
, k ∈ Ĉ,

where the branches with strictly positive real part are chosen for the square roots. For
k ∈ [−i z, i z̄] and ε > 0 infinitesimally small, we have

y(z, (k + ε)+) = (k + i z)

(
−i

√∣∣∣∣
k − i z̄

k + i z

∣∣∣∣
)

4∏
j=1

(k − k j )

√
k − k̄ j

k − k j
, k ∈ Ĉ;

similar expressions are valid when k ∈ [k j , k̄ j ]. Using formulas of this type, it is straight-
forward to numerically evaluate all the expressions presented in Sect. 2. In fact, the theta
functions are particularly suitable for numerical evaluation, because the strictly positive
imaginary part of B implies that only a small number of terms in the sum (2.11) have to
be included. In this way, we have verified for several examples all formulas of Sect. 2
to high precision.

3.1. Numerical data. Here we consider the particular example for which

ρ0 = 1, r1 = 1

2
, w2 = 3, w4 = 1

10
. (3.6)

Numerically, we find

k1 ≈ −0.95 − 5.48i, k2 ≈ −0.21 − 0.95i.
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Fig. 6. The real and imaginary parts of the solution (2.14) for the choice of parameters specified in (3.6)

Fig. 7. The values of f in the equatorial plane ζ = 0+ for the choice of parameters specified in (3.6)

Fig. 8. The axis and horizon values of f for the choice of parameters specified in (3.6)

Thus, (2.9) is satisfied and we compute

� ≈ 0.055, �h ≈ 0.14, f (+i0) ≈ −0.17, f (ir1) ≈ −0.94i,

and

a0 ≈ −18.17, K0 ≈ 9.43, e2κhor ≈ −93.46.

The real and imaginary parts of f are shown in Fig. 6. Note that the real part of f is
continuous but not smooth at the endpoints ±ir1 of the horizon. Moreover, as expected,
the imaginary part of f has a jump across the disk. The values of f in the equatorial
plane ζ = 0+ are shown in Figs. 7, 8.

The metric functions ae2U and e2κ are shown in Fig. 9. Note that ae2U = 0 on
the regular part of the axis. Moreover, e2κ = 1 on the regular axis and e2κ = e2κhor

on the horizon. Figure 10 shows the real parts of the corotating potentials f� and f�h in
the equatorial plane and along the ζ -axis, respectively. In accordance with the boundary
conditions (2.6d) and (2.6e), e2U� is constant along the disk and e2U�h vanishes along
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Fig. 9. The metric functions ae2U and e2κ for the choice of parameters specified in (3.6)

Fig. 10. The real parts of the corotating potentials f� and f�h in the equatorial plane and along the ζ -axis,
respectively

the horizon. It can also be verified to high accuracy that the metric functions a and κ
defined by (2.17) satisfy the appropriate equations, i.e. (cf. [17])

az = iρ

e4U
bz and κz = ρ

2e4U
fz f̄z, (3.7)

and that

da�
dζ

∣∣z=ρ+i0 = 0, 0 < ρ < ρ0 . (3.8)

Equation (3.8) implies that the imaginary part of f� is constant along the disk in accor-
dance with (2.6d).

4. Spectral Theory

We now turn to the proof of the results of Sect. 2. The proof will proceed through four
main steps, presented in Sects. 4, 5, 6, and 7, respectively. The first step consists of
analyzing the Lax pair for Eq. (2.3) and formulating two matrix Riemann-Hilbert (RH)
problems: one main RH problem (which can be formulated for any choice of boundary
conditions) and one auxiliary RH problem (which can be formulated because the bound-
ary conditions of the BVP (2.6) are linearizable). In the second step, we show that these
two matrix RH problems can be combined into a single scalar RH problem. The third
step consists of solving this scalar RH problem explicitly in terms of theta functions.
In the final fourth step, we prove Propositions 2.3–2.5 concerning the behavior of the
solution near the ζ -axis; this step will follow from a study of the theta function formulas
of Theorem 2.1 in the limit ρ → 0.



Boundary Value Problems for the Einstein Equations 601

4.1. A bounded and analytic eigenfunction. The elliptic Ernst equation (2.3) admits the
Lax pair

{
�z(z, k) = U (z, k)�(z, k),
�z̄(z, k) = V (z, k)�(z, k), (4.1)

where the 2 × 2-matrix valued function �(z, k) is an eigenfunction, k is a spectral
parameter, and the 2 × 2-matrix valued functions U and V are defined by

U = 1

f + f̄

(
f̄z λ f̄z

λ fz fz

)
, V = 1

f + f̄

(
f̄ z̄

1
λ

f̄ z̄
1
λ

fz̄ fz̄

)
, λ(z, k) =

√
k − i z̄

k + i z
.

We write the Lax pair (4.1) in the form

d� = W� where W := Udz + V dz̄. (4.2)

Let

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Suppose f is a solution of the BVP (2.6). Following the same procedure as in [20], we
define a solution �(z, k) of (4.2) with the following properties:

• For each z, �(z, ·) is a map from the Riemann surface Sz to the space of 2 × 2
matrices, where Sz is defined by the equation

λ2 = k − i z̄

k + i z
.

We view Sz as a two-sheeted covering of the Riemann k-sphere endowed with a
branch cut from −i z to i z̄; the upper (lower) sheet is characterized by λ → 1
(λ → −1) as k → ∞.

• � satisfies the initial conditions

lim
z→i∞[�(z, k−)]1 =

(
1
1

)
, lim

z→i∞[�(z, k+)]2 =
(

1
−1

)
, k ∈ Ĉ, (4.3)

where, for a 2 × 2-matrix A, [A]1 and [A]2 denote the first and second columns of
A, respectively.

• � obeys the symmetries

�(z, k+) = σ3�(z, k−)σ1, �(z, k+) = σ1�(z, k̄+)σ3, k ∈ Ĉ. (4.4)

• � is analytic for k ∈ Sz away from the set 
+ ∪ 
− ∪ {−r±
1 , r

±
1 }, where 
+ and


− denote the coverings of 
 = [−iρ0, iρ0] in the upper and lower sheets of Sz ,
respectively.

We emphasize that �, in general, has singularities (simple poles) at the points k± for
k = −r1 and k = r1. These poles arise since the Lax pair (4.1) is singular at points
where e2U = 0. Physically, the points at which e2U vanishes make up the boundary of
the ergospheres of the spacetime (within these surfaces there can be no static observer
with respect to infinity). To see that e2U = 0 at z = ir1 and z = −ir1, we note that
the metric function a vanishes identically on the regular axis (cf. [26]). Thus, evaluating



602 J. Lenells

(2.4a) at ρ = 0, we find U�(iζ ) = U (iζ ) for ζ > r1. The boundary condition (2.6e)
together with the continuity of f� imply that e2U (iζ ) → 0 as ζ ↓ r1.

In addition to the eigenfunction �(z, k), we will also need its corotating analog
��(z, k). This eigenfunction satisfies the Lax pair equations (4.1) with f replaced by
f� and the initial conditions (4.3) with � replaced by ��. The eigenfunctions � and
�� are related by [24]

��(z, k) = ��(z, k)�(z, k), k ∈ Sz, (4.5)

where

��(z, k) = (1 +�a)I −�ρe−2Uσ3 + i(k + i z)�e−2U (λ(z, k)σ1 − I)σ3 (4.6)

and I denotes the 2×2 identity matrix. The corotating eigenfunction��h (z, k) is defined
analogously.

4.2. The main Riemann-Hilbert problem. Evaluation at ρ = 0 of Eq. (2.4a) with �
replaced by �h yields

e2U�h (iζ ) = e2U (iζ )(1 +�ha(iζ ))2, 0 < ζ < r1. (4.7)

Note that e2U < 0 along the horizon, which lies inside the ergosphere. Thus, in view of
the boundary condition (2.6e), we find that a ≡ ahor on the black hole horizon, where
ahor is a constant given by

ahor = −1/�h . (4.8)

The next proposition expresses the values of� on the ζ -axis in terms of two spectral
functions F(k) and G(k). We let f1 denote the value of f at z = ir1.

Proposition 4.1. The values of� on the ζ -axis can be expressed in terms of two spectral
functions F(k) and G(k) as

�(iζ, k+) =
(

f (iζ )1
f (iζ )− 1

)
A(k), ζ > r1, k ∈ Ĉ, (4.9a)

�(iζ, k+) =
(

f (iζ )1
f (iζ )− 1

)
T1(k)A(k), 0 < ζ < r1, k ∈ Ĉ, (4.9b)

�(iζ, k+) =
(

f (iζ )1
f (iζ )− 1

)
T2(k)σ1 A(k)σ1, −r1 < ζ < 0, k ∈ Ĉ, (4.9c)

�(iζ, k+) =
(

f (iζ )1
f (iζ )− 1

)
σ1 A(k)σ1, ζ < −r1, k ∈ Ĉ, (4.9d)

where the 2 × 2-matrix valued functions A(k), T1(k), and T2(k) are defined by

A(k) =
(

F(k) 0
G(k) 1

)
, k ∈ Ĉ, (4.10)

T1(k) = 1

2(k − r1)�h

(
2(k − r1)�h − i f1 i

−i f 2
1 2(k − r1)�h + i f1

)
, k ∈ Ĉ, (4.11)

T2(k) = T1(−k̄), k ∈ Ĉ.
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The functions F(k) and G(k) have the following properties:

• F and G are unique functions of k ∈ Ĉ, i.e. viewed as functions on Sz they satisfy

F(k+) = F(k−), G(k+) = G(k−), k ∈ Ĉ. (4.12)

• F(k) and G(k) are analytic for k ∈ Ĉ\(
 ∪ {r1,−r1}).
• Under the conjugation k �→ k̄, F and G obey the symmetries

F(k) = F(k̄), G(k) = −G(k̄), k ∈ Ĉ. (4.13)

• In the limit k → ∞,

F(k) = 1 + O(1/k), G(k) = O(1/k), k → ∞. (4.14)

Proof. For z = iζ , λ = 1 for all k on the upper sheet of Sz . The axis values of � are
thus determined by integration of the equation

d� = W (iζ, k+)�, (4.15)

where

W (iζ, k+) = 1

f + f̄

(
d f̄ d f̄
d f d f

)
. (4.16)

Since the real part of f vanishes at z = ±ir1, Eq. (4.15) breaks down at ζ = ±r1.
Integration of (4.15) for ζ in each of the four intervals (−∞,−r1), (−r1, 0), (0, r1), and
(r1,∞) yields

�(iζ, k+) =
(

f (iζ ) 1
f (iζ ) −1

)
U1(k), ζ > r1, k ∈ Ĉ,

�(iζ, k+) =
(

f (iζ ) 1
f (iζ ) −1

)
U2(k), 0 < ζ < r1, k ∈ Ĉ,

�(iζ, k+) =
(

f (iζ ) 1
f (iζ ) −1

)
U3(k), −r1 < ζ < 0, k ∈ Ĉ,

�(iζ, k+) =
(

f (iζ ) 1
f (iζ ) −1

)
U4(k), ζ < −r1, k ∈ Ĉ,

where the matrices U j (k), j = 1, . . . , 4, are independent of ζ . The initial conditions
(4.3) imply that U1 = A for some functions F(k) and G(k). This establishes (4.9a). The
value of� at z = −i∞ is obtained from the value at z = i∞ by integrating W� along a
large semicircle at infinity. During this integration k changes sheets. Thus, using (4.9a)
and the fact that W� vanishes for large z, we compute

lim
z→−i∞�(z, k+) = lim

z→i∞�(z, k−) = lim
z→i∞ σ3�(z, k+)σ1 =

(
1 1
1 −1

)(
1 G(k)
0 F(k)

)
.

(4.17)

This shows that U4 = σ1 A(k)σ1 and proves (4.9d).
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We now use continuity of the matrices � and ��h at the points z = ±ir1 to find
U2 and U3. Let f2 denote the value of f at z = −ir1. The conditions that �(iζ, k+) be
continuous at ζ = r1 and ζ = −r1 are
(

f̄1 1
f1 −1

)
(A(k)− U2(k)) = 0 and

(
f̄2 1
f2 −1

)
(σ1 A(k)σ1 − U3(k)) = 0,

(4.18a)

respectively. In view of Eqs. (4.5), (4.6), and (4.8), the conditions that ��h (iζ, k+) be
continuous at ζ = r1 and ζ = −r1 are
[(

f̄1 1
f1 −1

)
+ 2i�h(k − r1)

(−1 0
1 0

)]
A(k) = 2i�h(k − r1)

(−1 0
1 0

)
U2(k),

(4.18b)

and[(
f̄2 1
f2 −1

)
+ 2i�h(k + r1)

(−1 0
1 0

)]
σ1 A(k)σ1 = 2i�h(k + r1)

(−1 0
1 0

)
U3(k),

(4.18c)

respectively. The top and bottom rows of each of the four matrix equations in (4.18) are
linearly dependent since f1 and f2 are purely imaginary. Combining the four bottom
rows into two matrix equations, we find

(
f1 −1

f1 + 2i�h(k − r1) −1

)
A(k) =

(
f1 −1

2i�(k − r1) 0

)
U2(k),

(
f2 −1

f2 + 2i�h(k + r1) −1

)
σ1 A(k)σ1 =

(
f2 −1

2i�h(k + r1) 0

)
U3(k).

Using that f1 = − f2 in view of the equatorial symmetry, we deduce from these equa-
tions that U2(k) = T1(k)A(k) and U3(k) = T2(k)σ1 A(k)σ1, where T1 and T2 are given
by (4.11). This proves (4.9b) and (4.9c).

The properties of F and G are proved as in [20]. ��
The functions F(k) and G(k) jump across 
 = [−iρ0, iρ0]. Let F+,G+ and F−,G−

denote the values of F and G for k to the right and left of 
, respectively. It follows as
in [24] (see also [20]) that

�−(z, k) = �+(z, k)D(k), k ∈ 
+; �−(z, k) = �+(z, k)σ1 D(k)σ1, k ∈ 
−,
(4.19)

where the jump matrix D is given in terms of F± and G± by

D(k) =
(

F+(k) 0
G+(k) 1

)−1 (
F−(k) 0
G−(k) 1

)
. (4.20)

For a given z, Eq. (4.19) provides the jump condition for a matrix RH problem on
the Riemann surface Sz satisfied by �(z, k). We will refer to this as the main RH prob-
lem.5 In general, given both the Dirichlet and Neumann boundary values for a BVP for

5 A complete formulation of this problem also involves specifying residue conditions at the four points
±r±

1 as well as a normalization condition.
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the Ernst equation, it is possible to determine the spectral functions F and G, compute
the jump matrix D, and then obtain the Ernst potential f from the asymptotics of the
solution of the main RH problem. However, for a well-posed problem only one of these
boundary values is specified. In our analysis of (2.6) we will therefore instead use the
global relation and the symmetry of the boundary conditions to formulate an auxiliary
RH problem from which F and G can be determined.

4.3. The global relation. The equatorial symmetry of the solution f of (2.6) implies that
the spectral functions F(k) and G(k) satisfy an important relation. Recalling the axis
values (4.9) of �, the following proposition is proved in the same way as Proposition
4.3 in [20].

Proposition 4.2. The spectral functions F(k) and G(k) defined in Proposition 4.1 satisfy

T1 A+(k)σ1 A−1
+ (k)T −1

1 = T2σ1 A−(k)σ1 A−1− (k)σ1T −1
2 , k ∈ 
, (4.21)

where A(k) is defined in terms of F(k) and G(k) by Eq. (4.10) and A± denote the values
of A to the right and left of 
, respectively.

Equation (4.21) is referred to as the global relation.

4.4. Linearizable boundary conditions. In general, the global relation alone is not suf-
ficient for determining F and G. However, for boundary conditions satisfying sufficient
symmetry, so-called linearizable boundary conditions, there exist another algebraic rela-
tion satisfied by F and G. The boundary conditions specified in (2.6) turn out to be
linearizable. Indeed, recalling the axis values (4.9) of �, the following proposition is
proved in the same way as Proposition 5.3 in [20].

Proposition 4.3. The spectral functions F(k) and G(k) satisfy the relation

(B−1�−1σ1σ3�B)(T1 A+σ1 A−1
+ T −1

1 )

= −(T1 A+σ1 A−1
+ T −1

1 )(B−1�−1σ1σ3�B), k ∈ 
, (4.22)

where we use the short-hand notation B and � for

B :=
(

f (+i0) 1
f (+i0) −1

)
, � := ��(+i0, k+) =

(
1 − �

�h

)
I + ik�e−2U0(σ1 − I)σ3.

(4.23)

4.5. The auxiliary Riemann-Hilbert problem. Combining the relations (4.21) and
(4.22), we can formulate a RH problem for the 2 × 2-matrix valued function M(k)
defined by

M(k) = A(k)σ1 A−1(k) =
( −G(k) F(k)

1−G(k)2

F(k) G(k)

)
, k ∈ Ĉ. (4.24)
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Proposition 4.4. Suppose f is a solution of the BVP (2.6). Let f1 := f (ir1) ∈ iR
denote the value of f at z = ir1. Then the spectral functions F(k) and G(k) are given
by

F(k) = M12(k), G(k) = M22(k), k ∈ Ĉ,

where M is the unique solution of the following RH problem:

• M(k) is analytic for k ∈ Ĉ\(
 ∪ {−r1, r1}).
• Across 
, M(k) satisfies the jump condition

S(k)M−(k) = −M+(k)S(k), k ∈ 
, (4.25)

where M+ and M− denote the values of M to the right and left of 
, respectively,
and S(k) is defined by

S(k) = T −1
1 B−1�−1σ1σ3�BT2σ1, k ∈ 
. (4.26)

• M has the asymptotic behavior

M(k) = σ1 + O(1/k), k → ∞. (4.27)

• The entries of M have simple poles at k = r1 and k = −r1. The associated residues
are given by

Res
r1

M(k) = 1

α

(− f1 1
− f 2

1 f1

)
, Res−r1

M(k) = 1

α

(
f1 −| f1|2

f1/ f̄1 − f1

)
, (4.28)

where

α = d+

dζ

∣∣∣ζ=r1 e2U (iζ ) (4.29)

and d+/dζ denotes the right-sided derivative.

Proof. We deduce from (4.21) and (4.22) that the function M defined in (4.24) satisfies
the jump condition (4.25). The asymptotic behavior (4.27) follows from the properties
of F and G.

By evaluating the first symmetry in (4.4) at the branch point i z̄ and taking the limit
as z approaches the regular axis, we find (cf. Eqs. (2.63)–(2.64) in [24])

F(ζ ) = 1

Re f (iζ )
, G(ζ ) = iIm f (iζ )

Re f (iζ )
, ζ > r1, (4.30a)

F(ζ ) = | f (iζ )|2
Re f (iζ )

, G(ζ ) = −iIm f (iζ )

Re f (iζ )
, ζ < −r1. (4.30b)

The poles of F and G arise since Re f (iζ ) = 0 at ζ = ±r1. Equations (4.30) together
with the equatorial symmetry of f yield

Res
r1

F(k) = 1

α
, Res

r1
G(k) = f1

α
, Res−r1

F(k) = −| f1|2
α

, Res−r1
G(k) = − f1

α
,

where α is given by (4.29). The residue conditions (4.28) follow immediately from these
relations.
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In the last step of the proof, we show that M21(k) does not have poles at the possible
zeros of F , despite the form of (4.24). We first extend the definition (4.26) of S(k) to
all k ∈ Ĉ by

S(k) = T −1
1 B−1��(+i0, k+)−1σ1σ3��(−i0, k+)B̄T2σ1. (4.31)

This definition is consistent with (4.26). Indeed, since f is equatorially symmetric,

��(z̄, k+) = ��(z,−k̄+), (4.32)

so that �̄ = ��(+i0, k+) = ��(−i0, k+) for k ∈ 
. We claim that the matrices S and
M satisfy

tr(SM) = 0, k ∈ Ĉ. (4.33)

Indeed, the same type of argument used to prove Proposition 4.3 shows that the function

R = �−1
� (ρ + i0, k)σ1σ3��(ρ − i0, k)

is independent of ρ. Evaluation at ρ = 0 using the axis values yields

R(k+) = A−1T −1
1 B−1�−1

� (+i0, k+)σ1σ3��(−i0, k+)B̄T2σ1 Aσ1.

Evaluation at ρ = ρ0 yields

Tr R = 0.

The preceding two equations imply (4.33). It follows from (4.33) that G2−1 must vanish
whenever F has a zero. ��

The auxiliary RH problem presented in Proposition 4.4 can be used to determine the
spectral functions F and G. These spectral functions can then be used to compute the
jump matrix and to set up the main RH problem. However, in analogy with linearizable
BVPs for other integrable PDEs, we expect that the jump condition of the auxiliary RH
problem can also be substituted directly into the main RH problem with the result that
the unknown quantities in the main RH problem disappear. In fact, an example of this
mechanism was observed by Neugebauer and Meinel in the case of a rigidly rotating
disk. They discovered that the analogs of the main and auxiliary RH problems can be
combined into a single scalar RH problem from which the Ernst potential f can be
directly recovered, see [24]. It turns out that a similar approach can be adopted in the
present case—in the next section, we will combine the main and auxiliary RH prob-
lems with respective jump conditions (4.19) and (4.25) into a scalar RH problem on the
Riemann surface �z introduced in Sect. 2.
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5. A Scalar Riemann-Hilbert Problem

We let the scalar-valued function w(k) be defined by

w(k) = −1

2
tr(S(k)), k ∈ Ĉ, (5.1)

and define two 2 × 2-matrix valued functions L and Q by

L(z, k) = �(z, k)σ1�
−1(z, k), k ∈ Sz, (5.2)

and

Q(z, k) = −�(z, k)A(k)−1S(k)A(k)�(z, k)−1 − w(k)I, k ∈ Sz . (5.3)

Lemma 5.1. The functions L, Q, and w have the following properties:

• The traces and determinants of Q and L satisfy

tr Q = 0, tr L = 0, det L = −1, det Q = −1 − w2. (5.4)

• Q can be alternatively written as

Q(z, k) = �(z, k)σ1 A(k)−1S(k)A(k)σ1�(z, k)−1 + w(k)I. (5.5)

• Q and L admit the symmetries

Q(z, k−) = −σ3Q(z, k+)σ3, L(z, k−) = σ3L(z, k+)σ3. (5.6)

• Q has no jump across 
±, whereas L satisfies the following jump conditions across

±:

(Q + wI)L− = −L+(Q + wI), k ∈ 
+,
(5.7)

(Q − wI)L− = −L+(Q − wI), k ∈ 
−.
• QL = −LQ; in particular, tr(QL) = 0.
• Let L̂22 = L21Q11 + L22Q21. Then

L̂2
22 − L2

21(1 + w2) = Q2
21. (5.8)

• w has the form

w(k) = w4k4 + w2k2 + w0

k2 − r2
1

,

where w4, w2, w0 are real coefficients explicitly given by

w4 = − 2�2�2
h

e2U0(�−�h)2
, (5.9a)

w2 = | f0|2(�−�h)
2 + f 2

1 �(�− 2�h) + 4i f1r1�
2�h +�2

h

(
4r2

1�
2 − 1

)

2e2U0(�−�h)2
,

(5.9b)

w0 = − 1

8e2U0�2
h

(
−2ib0

(
f 3
1 − 2i f 2

1 r1�h + f1 + 2ir1�h

)

−| f0|2
(

f 2
1 − 4i f1r1�h − 4r2

1�
2
h + 1
)

+ f 4
1 + f 2

1 + 4i f1r1�h − 4r2
1�

2
h

)
,

(5.9c)

where f0 and f1 denote the values of f at z = +i0 and z = ir1, respectively.
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Proof. The first three properties in (5.4) are immediate from Eqs. (5.1)–(5.3). The fourth
property follows since

det(S) = −1

and

det Q = det(−�A−1(S + wI)A�−1) = det(S + wI) = det S − w2.

Using (4.33) and the definitions of A and M, a computation shows that

A−1(S + wI)A = −σ1 A−1(S + wI)Aσ1.

Using this identity in the definition (5.3) of Q, we find (5.5).
The symmetries (5.6) follow from (5.2), (5.3), and (5.5) together with the first sym-

metry in (4.4).
By (4.19) and (4.20), �A−1 and �σ1 A−1 do not jump across 
+ and 
−, respec-

tively. It follows from the expressions (5.3) and (5.5) that Q does not jump across 
±.
For k ∈ 
+, the definitions (5.2) and (5.3) of L and Q show that

(Q− + wI)L− = −�− A−1− S A−σ1�
−1− = −�− A−1− SM− A−�−1− (5.10)

and

− L+(Q+ + wI) = �+σ1 A−1
+ S A+�

−1
+ = �+ A−1

+ M+S A+�
−1
+ . (5.11)

Using that �A−1 does not jump across 
+ together with the jump condition (4.25), we
see that the right-hand sides of (5.10) and (5.11) are equal. Similarly, using (5.5), the
fact that�σ1 A−1 has no jump across 
−, and (4.25), we find the jump across 
−. This
proves (5.7).

Since M is tracefree and tr(SM) = 0, we deduce that M S + SM + 2wM = 0. In
view of the definitions of Q and L, this implies QL = −LQ.

Equation (5.8) follows by direct computation using the identity tr(QL) = 0 and the
four properties in (5.4).

The last statement concerning the form of w follows from (4.31) and (5.1) by direct
computation. ��

The condition that M does not jump at the endpoints of
 implies that tr S(±iρ0) = 0,
i.e.

w0 = ρ2
0 (w2 − w4ρ

2
0 ). (5.12)

In particular, the function h(k) defined in (2.12) vanishes at the endpoints of 
.

Lemma 5.2. There exist points {m j }4
1 ⊂ C such that

Q21(k) = 8 f�2�2
h

( f + f̄ )( f0 + f̄0)(�−�h)2

∏4
j=1(k − m j )

(k2 − r2
1 )

. (5.13)
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Proof. By (5.6), Q21 is a unique function of k, i.e. Q21(k+) = Q21(k−). Thus (k2 −
r2

1 )Q21 is an entire function of k ∈ C. The existence of {m j }4
1 satisfying (5.13) therefore

follows if we can show that

(k2 − r2
1 )Q21(k) = 8 f�2�2

h

( f + f̄ )( f0 + f̄0)(�−�h)2
k4 + O(k3), k → ∞. (5.14)

As k → ∞, we have

�(z, k+) =
(

f (z) 1
f (z) −1

)
+ O(1/k), A(k) = I + O(1/k), k → ∞. (5.15)

Thus, by (5.3) and (4.31),

(k2 − r2
1 )Q(z, k+) = −

(
f̄ 1
f −1

)(0 0

0
8k4�2�2

h
( f0+ f̄0)(�−�h)

2

)(
f̄ 1
f −1

)−1
− w4k4

I + O(k3)

= 4�2�2
h

( f + f̄ )( f0 + f̄0)(�−�h)
2

(
f̄ − f 2 f̄
2 f f − f̄

)
k4 + O(k3), k → ∞.

(5.16)

The (21)-entry of this equation yields (5.14). ��
Define four points {k j }4

j=1 ⊂ Ĉ by

w2 + 1 = w2
4

∏4
j=1(k − k j )(k − k̄ j )

(k2 − r2
1 )

2
.

We assume that the k j ’s are ordered as in Subsect. 2.3. Let Ŝz denote the double cover
of the Riemann surface Sz defined by adding cuts [k j , k̄ j ], j = 1, . . . , 4, both on the
upper and lower sheets of Sz . Thus a point (k,±λ,±μ) of Ŝz is specified by giving a
point k ∈ Ĉ together with a choice of sign of λ and of

μ =
√√√√

4∏
j=1

(k − k j )(k − k̄ j ).

We specify the sheets so that λ → 1 (λ → −1) as k → ∞ on sheets 1 and 2 (sheets
3 and 4), and μ ∼ k4 (μ ∼ −k4) as k → ∞ on sheets 1 and 3 (sheets 2 and 4). As k
crosses the cut [−i z, i z̄], λ changes sign whereas the sign ofμ remains unchanged. As k
crosses any of the other cuts, μ changes sign whereas the sign of λ remains unchanged.

Consider the function H defined by

H(z, k) = L̂22 − L21
√
w2 + 1

L̂22 + L21
√
w2 + 1

, k ∈ Ŝz, (5.17)

where L̂22 = L21Q11 + L22Q21. We fix the sign of the root
√
w2 + 1 in (5.17) by

requiring that
√
w2 + 1 = −w4k2 + O(k) as k → ∞+. Since w4 > 0, this implies

that
√
w2 + 1 ≥ 0 for k ∈ 
+. The eigenfunction � of the Lax pair (4.1) satisfies

det� = −2e2U F(k) (see Eq. (2.65) in [24]), so that the entries of L may have poles at
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the points which project to the zeros of F(k) in the Riemann k-sphere. However, H has
no singularities at these points. Therefore, in view of (5.8), the possible zeros and poles
of H belong to the set in Ŝz which projects to {±r1}∪ {m j }4

1, and if H has a double pole
at (m j , λ, μ), then it has a double zero at (m j , λ,−μ), j = 1, . . . , 4.

By the symmetries (5.6), we have

L̂22(k, λ, μ) = L̂22(k,−λ,μ), L21(k, λ, μ) = −L21(k,−λ,μ).
Therefore

H(k, λ, μ) = 1

H(k,−λ,μ) .

Similarly, we have H(k, λ, μ) = 1/H(k, λ,−μ). Consequently, H → 1/H whenever
k crosses one of the cuts of the two-sheeted Riemann surface �z defined by (2.8). We
can therefore view H as a single-valued function on �z with the values on the upper
sheet given by the values of H on sheet 1 of Ŝz , and the values on the lower sheet given
by the inverses of these values.

5.1. Formulation of the scalar RH problem. We want to formulate a scalar RH problem
in terms of the complex-valued function ψ(z, k) defined by

ψ(z, k) = log H(z, k)

y
, k ∈ �z . (5.18)

However, since log H is a multi-valued function on �z , this definition of ψ needs to
be supplemented by a choice of branches for the logarithm. We will fix a single-valued
representative of ψ on �z by introducing cuts which connect the zeros and poles of H .
Across these cuts ψ will jump by multiples of 2π i/y. The problem is that even though
(5.8) implies that all zeros and poles of H lie in the cover of the set {±r1} ∪ {m j }4

1, the
exact distribution of these zeros and poles is not known. It is therefore not clear at this
stage how to make a consistent choice of branches.

We address this problem by considering the limit in which the solution f approaches
the Kerr solution. For a solution near the Kerr solution, we can utilize the Kerr expres-
sions for F and G to compute H explicitly to first order. This will give us the correct
choice of branches in the Kerr limit and by continuity this choice extends also to more
general solutions.

The Ernst potential for the Kerr black hole rotating with angular velocity �h and
with a horizon stretching from−ir1 to ir1 is given by

f kerr = R+e−iδ + R−eiδ − 2r1

R+e−iδ + R−eiδ + 2r1
,

where R± are defined by

R± =
√
(±r1 − ζ )2 + ρ2,

and the parameter δ ∈ (−π/2, 0) is related to �h by

�h = i f kerr
1 (1 + ( f kerr

1 )2)

2r1(1 − ( f kerr
1 )2)

, f kerr
1 = i tan(δ/2).
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Table 1. The change � arg H in arg H as k traverses each of the cycles in the cut basis {a j , b j }4
j=1

Cycle � arg H Cycle � arg H
a1 −4π b1 −8π
a2 −4π b2 −8π
a3 4π b3 −12π
a4 4π b4 −4π

The value at the origin is given by

f kerr
0 = cos(δ)− 1

cos(δ) + 1
.

We consider adding a slowly rotating disk to the Kerr solution. Using the Kerr values for
f0 and f1, we compute w4, w2, w0 according to (5.9) with � � 1. The branch points
{k j }4

1 are found by solving the equationw2 +1 = 0. As� → 0, k1 and k4 tend to infinity,
whereas k2 and k3 approach finite values. The spectral functions Fkerr (k) and Gkerr (k)
are given explicitly by (cf. Sect. 2.4 in [24])

Fkerr (k) = 2�2
h(k

2 − r2
1 ) + 2i�h f kerr

1 k − ( f kerr
1 )2

2�2
h(k

2 − r2
1 )

,

Gkerr (k) = (2i�hr1 − f kerr
1 )( f kerr

1 )2

2�2
h(k

2 − r2
1 )

.

For definiteness, we consider the example of r1 = 1/2 and δ = −1/2. Assuming that
z = ρ + iζ with ρ � 1 and ζ � 1, we compute Q and L to first order by substituting the
axis values (4.9a) for� together with the values of the Kerr solution into the right-hand
sides of (5.2) and (5.3). We find that H has double poles and double zeros at the points
in the sets

{m−
1 ,m−

2 ,−r−
1 ,m+

3,m+
4 , r

+
1 } and {m+

1,m+
2,−r+

1 ,m−
3 ,m−

4 , r
−
1 },

respectively. As � → 0, m1 → k1 and m4 → k4, whereas m2 and m3 converge to
values close (but not equal) to k2 and k3, respectively. Let {a j , b j }4

1 be the particular
cycles on �z specified in Remark 2.2. As k traverses each of these cycles, the argument
of H changes by the amount � arg H according to Table 1.

A choice of branches for log H consistent with the above properties is obtained by
introducing cuts on �z according to Fig. 11. The introduced cuts run from the poles of
H to the zeros of H . Letting (log H)+ and (log H)− denote the values of log H for z just
to the right and to the left of a cut, respectively, we have (log H)+ + 4π i = (log H)−.
An overall choice of branch is made by requiring that log H → 2 log f as k → ∞+,
where an appropriate branch is chosen for log f , see Eq. (5.20) below.

For this choice of branches, we have log H(k+) = − log H(k−), k ∈ Ĉ. Conse-
quently, ψ(z, k) is a unique function of k, i.e.

ψ(z, k+) = ψ(z, k−), k ∈ Ĉ.

We therefore view ψ(z, ·) as a function Ĉ → Ĉ.

Proposition 5.3. Let ψ be defined by (5.18) with the choice of branches for log H spec-
ified above. Then the function ψ(z, ·) : Ĉ → Ĉ has the following properties:
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Fig. 11. The additional cuts introduced on �z in order to make log H a single-valued function

• ψ(z, k) is analytic for k ∈ Ĉ\
[

 ∪
(
∪4

j=1[m j , k j ]
)

∪ {±r1}
]
.

• Across 
, ψ(z, k) satisfies the jump condition

ψ−(z, k) = ψ+(z, k) +
2

y(z, k+)
ln

(√
1 + w2 − w√
1 + w2 + w

)
, k ∈ 
, (5.19)

where ψ+ and ψ− denote the values of ψ to the right and left of the cut, respectively.
• Across the directed intervals [k j ,m j ], j = 1, 2; [m j , k j ], j = 3, 4; [r1, k3], [k̄3, k2],

and [k̄2,−r1], ψ(z, k) satisfies the jump condition

ψ−(z, k) = ψ+(z, k) +
4π i

y(z, k+)
.

• As k → m j , j = 1, 2, ψ(z, k) satisfies

ψ(z, k) = 2

y(z,m+
j )

log(k − m j ), k → m j , j = 1, 2.

• As k → m j , j = 3, 4, ψ(z, k) satisfies

ψ(z, k) = −2

y(z,m+
j )

log(k − m j ), k → m j , j = 3, 4.

• As k → −r1, ψ(z, k) satisfies

ψ(z, k) = 2

y(z,−r+
1 )

log(k + r1), k → −r1.

• As k → r1, ψ(z, k) satisfies

ψ(z, k) = −2

y(z, r+
1 )

log(k − r1), k → r1.
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• As k → k j , j = 1, . . . , 4, ψ(z, k) satisfies

ψ(z, k) = 2π i

y
, k → k j , j = 1, . . . , 4,

where y = y(z, k+) for k just to the left of the cut [k j ,m j ] for j = 1, 2, and just
to the left of the cut [m j , k j ] for j = 3, 4 and is analytically continued around the
endpoint k j so that y = y(z, k−) to the right of the cut.

• As k → ∞,

ψ → 2 log( f )

k5
+ O(1/k6), k → ∞. (5.20)

Proof. We first show that ψ satisfies the jump condition (5.19). Algebraic manipulation
of (5.7) using the identity tr(QL) = 0 and the properties in (5.4) shows that the functions
L21 and L̂22 = L21Q11 + L22Q21 satisfy

{L21+ = −2wL̂22− + (1 + 2w2)L21−,
L̂22+ = (1 + 2w2)L̂22− − 2w(1 + w2)L21−,

k ∈ 
+, (5.21)

{L21+ = 2wL̂22− + (1 + 2w2)L21−,
L̂22+ = (1 + 2w2)L̂22− + 2w(1 + w2)L21−,

k ∈ 
−. (5.22)

Thus

H−(k) =
(√

1 + w2 − w√
1 + w2 + w

)±2

H+(k), k ∈ 
±.

Equation (5.19) follows from here since 1 + w2 ≥ 0 and
√

1 + w2 ± w > 0 for k ∈ 
.
The behavior as k → ±r1 and k → m j follows since H has double zeros at −r1,

m+
j , j = 1, 2, and double poles at r1, m+

j , j = 3, 4.
In order to find the behavior of ψ as k → ∞, we note that, by (5.15),

L(z, k+) =
(

f̄ 1
f −1

)
σ1

(
f̄ 1
f −1

)−1

+ O(1/k), k → ∞.

Thus, by (5.16),

L̂22(z, k+) = − 4
(
1 + f 2

)
�2�2

h

( f + f̄ )( f0 + f̄0)(�−�h)2
k2 + O(k), k → ∞.

Since
√
w2 + 1 = −w4k2 + O(k) as k → ∞+, we find

H(z, k+) = f (z)2 + O(1/k), k → ∞.

Therefore

log H

y
→ 2 log f

k5
+ O(1/k6), k → ∞.

��
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5.2. Solution of the scalar RH problem. The solution of the scalar RH problem presented
in Proposition 5.3 is

ψ(z, k) = 2

π i

∫




dk′

y(z, k′+)(k′ − k)
ln
(√

1 + w(k′)2 − w(k′)
)

+2
2∑

j=1

∫

[k j ,m j ]
dk′

y(z, k′+)(k′ − k)
− 2

4∑
j=3

∫

[k j ,m j ]
dk′

y(z, k′+)(k′ − k)

+2

(∫

[r1,k3]
+
∫

[k̄3,k2]
+
∫

[k̄2,−r1]

)
dk′

y(z, k′+)(k′ − k)
, k ∈ �z,

(5.23)

where we used that

ln
(√

1 + w2 + w
)

= − ln
(√

1 + w2 − w
)
, k ∈ 
.

By deforming contours, we can replace the last three integrals on the right-hand side of
(5.23) with an integral along γ , where γ is the contour on �z defined in Sect. 2. We
define two divisors K and M on �z . K is defined by

K =
4∑

j=1

k j , (5.24)

whereas M is defined as the sum of the points in �z which lie above the set {m j }4
1 and

which are double poles of H , i.e.

M = m−
1 + m−

2 + m+
3 + m+

3 . (5.25)

We can then write (5.23) as

ψ(z, k) = 2

π i

∫


+

dk′

y(z, k′)(k′ − k)
ln
(√

1 + w(k′)2 − w(k′)
)

−2
∫ ′M

K

dk′

y(z, k′)(k′ − k)
+ 2
∫

γ

dk′

y(z, k′)(k′ − k)
,

where the integrals are contour integrals on �z and the prime on the integral from K to
M indicates that the paths of integration do not necessarily lie in the complement of the
cut basis {a j , b j }. In view of (5.20), this leads to

log f =
∫ ′M

K

k4dk

y
−
∫


+
h(k)

k4dk

y
−
∫

γ

k4dk

y
, (5.26a)

∫ ′M

K

kn−1dk

y
=
∫


+
h(k)

kn−1dk

y
+
∫

γ

kn−1dk

y
, n = 1, . . . , 4, (5.26b)

where h(k) is defined by (2.12).

Remark 5.4. Although Eqs. (5.26) were derived under the assumption that the solution
is a small perturbation of the Kerr solution, they are valid more generally. Indeed, the
crucial facts used in the derivation are that H has a double pole at r+

1 and a double zero at
−r+

1 , and these properties are preserved under a continuous deformation. It is conceivable
that the double poles of H that make up M will change sheets under such a deformation
so that (5.25) has to be modified, but the resulting Eqs. (5.26) remain unchanged.
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6. Theta Functions

In this section we derive explicit expressions for the Ernst potential f and the metric
functions e2U and a in terms of theta functions.

6.1. Explicit expression for the Ernst potential. We will show that the right-hand side of
(5.26a) can be expressed in terms of the theta function on �z . We will first assume that
the integration paths from K to M in (5.26) lie in the fundamental polygon determined
by the cut basis; later we will see that the result is the same also when this is not the
case.

Let {η j }4
j=1 denote the noncanonical basis of holomorphic one-forms on �z defined

in (3.1) and let A be the matrix defined in (3.2). Then the canonical basis is ω = Aη.
Let u, I ∈ C

4 be defined by (2.13). Applying A to (5.26b), we find

u =
∫ M

K
ω. (6.1)

Using that

ω∞+∞− = −k4dk

y
+ γ T η,

for some vector γ ∈ C
4, Eq. (5.26a) yields

f = e− ∫M
K ω∞+∞− +I , (6.2)

where the terms involving γ cancelled because of (5.26b). Formula (2.14) for f will
follow if we can prove that

e− ∫M
K ω∞+∞− =

�
(

u − ∫∞−
−i z ω

)

�
(

u +
∫∞−
−i z ω

) , (6.3)

where �(v) := �(v|B). Let e( j) and π( j) denote the j th columns of the 4 × 4 identity
matrix I and the period matrix B, respectively. Then

�(v + e( j)|B) = �(v|B), �(v + π( j)|B) = e−2π i(v j + 1
2 B j j )�(v|B), v ∈ C

4.

(6.4)

The Jacobian Jac(�z) of �z is defined as the complex torus C
4/L, where L is the

discrete lattice generated by the e( j)’s and the π( j)’s. We define the map ϕ : �z → C
4

by

ϕ(k) =
∫ k

−i z
ω, k ∈ �z,

with the contour fixed to lie within the fundamental polygon. Then ϕ composed with
the projection C

4 → Jac(�z) is the Abel map with base point −i z. We write M =∑4
j=1 M j , where, for j = 1, . . . , 4, M j = m+

j or M j = m−
j . Let K = ϕ(K) ∈ C

4. An
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argument following pp. 322–325 in [6] shows that K projects to the vector of Riemann
constants in Jac(�z). Thus the functions

�(ϕ(P)− ϕ(K) + K)
�(ϕ(P)− ϕ(M) + K) , P ∈ �z, (6.5)

and

e−∑4
j=1
∫ P
∞− ωM j k j , P ∈ �z, (6.6)

both have simple poles at the points of M and simple zeros at the points of K. Moreover,
the general identity ([6], p. 67)

∫

b j

ωRS = 2π i
∫ R

S
ω j , j = 1, . . . , 4, R, S ∈ �z, (6.7)

implies that as a j is traversed the functions (6.5) and (6.6) both get multiplied by 1

and as b j is traversed they both get multiplied by e−2π i
∫M
K ω j . Hence their quotient is a

constant and we deduce that

e−∑4
j=1
∫ P
∞− ωM j k j = �(ϕ(P)− ϕ(K) + K)�(ϕ(∞−)− ϕ(M) + K)

�(ϕ(P)− ϕ(M) + K)�(ϕ(∞−)− ϕ(K) + K) . (6.8)

Using the identity
∫ R

S
ω∞+∞− =

∫ ∞+

∞−
ωRS, R, S ∈ �z, (6.9)

and the fact that K = ϕ(K), evaluation of (6.8) at P = ∞+ yields

e− ∫M
K ω∞+∞− =

�(ϕ(∞+))�
(
ϕ(∞−)− ∫M

K ω
)

�
(
ϕ(∞+)− ∫M

K ω
)
�(ϕ(∞−))

. (6.10)

Our choice of the cut basis {a j , b j } implies that

ϕ(∞+) = −ϕ(∞−) modulo a-periods. (6.11)

Thus, since �(v) is an even function, we arrive at (6.3).
Now suppose the integration paths from K to M in (5.26) do not lie within the fun-

damental polygon. Then there exist integer vectors p, q ∈ Z
4 such that equations (6.1)

and (6.2) get replaced by

u =
∫ M

K
ω + Bp + q and f = e

− ∫M
K ω∞+∞−−∑4

j=1 p j
∫

b j
ω∞+∞− +I

,

respectively. However, a computation using (6.4), (6.7), and (6.10) shows that the terms
involving p and q cancel, so that f is still given by (2.14).

We can now complete most of the proof of Theorem 2.1; the derivation of the formula
for e2κ will be postponed to the Appendix. We first establish the formulas in (2.15): The
expression for �h follows from (4.8); the expression for � follows by solving (5.9a)
for � recalling that e2U0 < 0 and w4 > 0; and the expression for e2U�(+i0) follows by
evaluating (2.4a) at z = +i0.
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6.2. The metric functions e2U and a. Using formula (2.14), which was established in the
previous subsection, the expression for the metric function e2U in (2.17) can be derived
as follows cf. [15]. Since the entries of u are purely imaginary, I ∈ R, and�(v̄) = �(v)

for v ∈ C
4 ([17], p. 203), Eq. (2.14) yields

f + f̄ =
⎛
⎝�(u − ∫∞−

−i z ω)

�(u +
∫∞−
−i z ω)

+
�(u − ∫∞−

i z̄ ω)

�(u +
∫∞−

i z̄ ω)

⎞
⎠ eI . (6.12)

Let E(P, Q) denote the prime form on �z . Applying Fay’s identity ([17], p. 205)

E(P3, P1)E(P2, P4)

E(P3, P4)E(P2, P1)
�

(
v +
∫ P3

P2

ω

)
�

(
v +
∫ P4

P1

ω

)

+
E(P3, P2)E(P1, P4)

E(P3, P4)E(P1, P2)
�

(
v +
∫ P3

P1

ω

)
�

(
v +
∫ P4

P2

ω

)

= �(v)�

(
v +
∫ P3

P2

ω +
∫ P4

P1

ω

)
, v ∈ C

4,

with (P1, P2, P3, P4) = (i z̄,∞+,−i z,∞−) to (6.12), we find

2Q(0)�

(
v +
∫ −i z

∞+
ω

)
�

(
v +
∫ ∞−

i z̄
ω

)
−�

(
v +
∫ −i z

i z̄
ω

)
�

(
v +
∫ ∞−

∞+
ω

)

= �(v)�

(
v +
∫ −i z

∞+
ω +
∫ ∞−

i z̄
ω

)
, (6.13)

where

Q(0) = 1

2

E(−i z, i z̄)E(∞+,∞−)
E(−i z,∞−)E(∞+, i z̄)

,

and we used that (Lemma 3.12 in [17])

E(−i z,∞+)E(i z̄,∞−)
E(−i z,∞−)E(i z̄,∞+)

= −1.

By Proposition 3.11 in [17], Q(0) can be written as in (2.18). Letting v = u +
∫∞+

−i z ω =
u − ∫∞−

−i z ω and dividing by �(u +
∫∞−
−i z )�(u +

∫∞−
i z̄ ω), Eq. (6.13) yields

2Q(0)
�(u)�(u +

∫ −i z
i z̄ ω)

�(u +
∫∞−
−i z ω)�(u +

∫∞−
i z̄ ω)

− �(u +
∫∞+

i z̄ ω)

�(u +
∫∞−

i z̄ ω)
= �(u +

∫∞+

−i z ω)

�(u +
∫∞−
−i z ω)

. (6.14)

Equations (6.12) and (6.14) lead to the expression for e2U in (2.17).
By (5.7) in [16], we have

(a − a0)e
2U = −ρ

⎛
⎝�(u +

∫∞−
−i z ω +

∫∞−
i z̄ ω)

Q(0)Q(u)�(u +
∫ i z̄
−i z ω)

− 1

⎞
⎠ , (6.15)

where a0 ∈ R is a constant determined by the condition that a = 0 on the regular axis.
In view of the expression for e2U , this yields the expression for the metric function a
given in (2.17a). An alternative derivation of Eq. (6.15) is presented in the Appendix.
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Fig. 12. The axis-adapted homology basis {ã j , b̃ j }4
j=1 on �z

7. Axis and Horizon Values

In this section we consider the limits of the formulas in Theorem 2.1 as z approaches a
point on the ζ -axis. As ρ ↓ 0, the Riemann surface �z degenerates since the branch cut
[−i z, i z̄] shrinks to a point. This type of degeneration of a Riemann surface is analyzed
in Chap. III of [7]. In order to utilize the results of [7], we introduce an axis-adapted cut
basis {ã j , b̃ j }4

j=1 on �z by

(
ã
b̃

)
=
(AT 0

0 A
)(

a
b

)
where A =

⎛
⎜⎝

1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 −1

⎞
⎟⎠ .

The axis-adapted cut basis is displayed in Fig. 12 in the case when ζ > Re k4. Note that
ã4 surrounds the collapsing cut [−i z, i z̄].

According to the transformation formula for theta functions (Eq. (12) in [7]), there
exists a constant c0 independent of v and B such that

�(ṽ|B̃) = c0�(v|B) (7.1)

whenever ṽ = A−1v = Av. We define ũ and Ĩ as the analogs of u and I in the
axis-adapted basis, i.e.

ũ =
∫


+
hω̃ +

∫

γ

ω̃, Ĩ =
∫


+
hω̃∞+∞− +

∫

γ

ω̃∞+∞− .

Since ω̃ = Aω, we have ũ = Au. Since

ω∞+∞− = ω̃∞+∞− − 2π iω̃4,

we have I = Ĩ − 2π i ũ4. Thus, introducing the shorthand notation �̃(v) := �(v|B̃),
the Ernst potential (2.14) can be expressed in terms of the axis-adapted basis as

f (z) = �̃(ũ − ∫∞−
−i z ω̃)

�̃(ũ +
∫∞−
−i z ω̃)

e−2π i ũ4+ Ĩ . (7.2)
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Let �′ denote the degenerated Riemann surface defined in (2.19). According to [7], we
have the following expansions as ρ ↓ 0:

ω̃ j = ω′
j + O(ρ2), j = 1, 2, 3; ω̃4 → 1

2π i
ω′
ζ+ζ− + O(ρ2), (7.3a)

B̃i j → B ′
i j + O(ρ2), i, j = 1, 2, 3; B̃i4 →

∫ ζ+

ζ−
ω′

i + O(ρ2), i = 1, 2, 3,

(7.3b)

B̃44 = 1

π i
ln ρ +

M ′

π i
+ O(ρ2), (7.3c)

where M ′ ∈ C is a constant. The path of integration from ζ− to ζ + in (7.3b) must be
chosen as the limit of the cycle b̃4. For example, for Re k3 < ζ < Re k4, this path is
[ζ, k̄4]−∪[k̄4, ζ ]+. Whether this path lies within the fundamental polygon on�′ depends
on the particular representatives of the homology cycles a′

j and b′
j .

7.1. Values near the regular axis. We first consider the case when z approaches a point
on the regular axis. We define c ∈ C

4 and c′ ∈ C
3 by

c =
∫ ∞−

k4

ω̃, c′ =
∫ ∞−

k4

ω′. (7.4)

Lemma 7.1. The following limits hold as z approaches a point on the regular axis (i.e.
as ρ → 0 with r1 < ζ ):

ũ =
(

u′
J ′

2π i

)
+ O(ρ2), c =

(
c′
K ′

2π i

)
+ O(ρ2), (7.5a)

�̃

(
ũ −
∫ ∞−

−i z
ω̃

)
= �′

(
u′ −

∫ ∞−

ζ−
ω′
)

−�′
(

u′ −
∫ ∞−

ζ+
ω′
)

eJ ′−K ′
+ O(ρ2),

(7.5b)

�̃

(
ũ +
∫ ∞−

−i z
ω̃

)
= �′

(
u′ +
∫ ∞−

ζ−
ω′
)

−�′
(

u′ +
∫ ∞−

ζ+
ω′
)

e−J ′−K ′
+ O(ρ2),

(7.5c)

�̃

(
ũ +
∫ ∞−

i z̄
ω̃

)
= �′

(
u′ +
∫ ∞−

ζ−
ω′
)

+�′
(

u +
∫ ∞−

ζ+
ω′
)

e−J ′−K ′
+ O(ρ2),

(7.5d)

�̃

(
ũ +
∫ i z̄

−i z
ω̃

)
= �′(u′) + βρ + O(ρ2), �̃(ũ) = �′(u′)− βρ + O(ρ2),

(7.5e)

�̃

(
ũ +
∫ ∞−

−i z
ω̃ +
∫ ∞−

i z̄
ω̃

)
= − 1

ρ
�′(u′ + 2c′)e−J ′−2K ′−M ′

+ O(1), (7.5f)

where β ∈ C is a constant and u′, K ′, J ′, and M ′ are defined in (2.20), (2.21), and
(2.29). The equations obtained from (7.5) by replacing ũ, u′, and J ′ by 0 everywhere
are also valid.
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Proof. The expansions in (7.5a) follow immediately from (7.3a). We will also show
(7.5b); the proofs of the other expansions are similar. We first assume that ζ > Re k4. In
order for the argument of the theta function to have a finite limit, we shift the integration
limit from −i z to k4. Our choice of the cut system {ã j , b̃ j } implies that

∫ ∞−

−i z
ω̃ = c + B̃r + s, (7.6)

where r, s ∈ R
4 are defined by

r = (0, 0, 0, 1/2)T , s = (0, 0, 0,−1/2)T . (7.7)

Therefore,

�̃

(
ũ −
∫ ∞−

−i z
ω̃

)
= �̃(ũ − c − B̃r − s) =

∑

N∈Z4

e2π i( 1
2 N T B̃ N+N T (ũ−c−B̃r−s)). (7.8)

Using (7.7), we can write the right-hand side of (7.8) as

∑

N∈Z4

e
2π i
(

1
2

∑3
i, j=1 Ni B̃i j N j +

1
2 B̃44 N4(N4−1)+

∑3
i=1 B̃i4 Ni (N4− 1

2 )+
∑3

i=1 Ni (ũi −ci )+N4(ũ4−c4)+
1
2 N4

)
.

In view of (7.3c), only the terms with N4 = 0 and N4 = 1 give nonzero contributions in
the limit ρ → 0. Equations (7.3) and (7.5a) imply that the subleading terms, which also
receive contributions from the terms with N4 = −1 and N4 = 2, are of O(ρ2). We find

�̃

(
ũ −
∫ ∞−

−i z
ω̃

)
=
∑

N ′∈Z3

e
2π i
(

1
2 N ′T B′ N ′− 1

2 N ′T ∫ ζ+

ζ− ω
′+N ′T (u′−c′)

)

+
∑

N ′∈Z3

e
2π i
(

1
2 N ′T B′ N ′+ 1

2 N ′T ∫ ζ+

ζ− ω
′+N ′T (u′−c′)

)
+J ′−K ′+π i

+O(ρ2)

= �′
(

u′ − c′ − 1

2

∫ ζ+

ζ−

)
−�′

(
u′ − c′+ 1

2

∫ ζ+

ζ−

)
eJ ′−K ′

+ O(ρ2).

(7.9)

Since

c′ +
1

2

∫ ζ+

ζ−
ω′ =

∫ ∞−

ζ−
ω′, c′ − 1

2

∫ ζ+

ζ−
ω′ =

∫ ∞−

ζ+
ω′, (7.10)

this proves (7.5b) in the case when ζ > Re k4.
Similar arguments apply when ζ < Re k3 or Re k3 < ζ < Re k4. For example, if

Re k3 < ζ < Re k4, then Eq. (7.6) gets replaced by
∫ ∞−

−i z
ω̃ = c + B̃r + t,

where

r = (0, 0, 0, 1/2)T , t =
(

−1

2
,−1

2
,−1

2
,−1

2

)T

. (7.11)
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Letting t ′ = (−1/2,−1/2,−1/2), this leads to the following analog of Eq. (7.9):

�̃

(
ũ −
∫ ∞−

−i z
ω̃

)
= �′

(
u′ − c′ − 1

2

∫ ζ+

ζ−
ω′ − t ′

)

−�′
(

u′ − c′ +
1

2

∫ ζ+

ζ−
ω′ − t ′

)
eJ ′−K ′

+ O(ρ2). (7.12)

Taking into account that, for Re k3 < ζ < Re k4,

c′ +
1

2

∫ ζ+

ζ−
ω′ + t ′ =

∫ ∞−

ζ−
ω′, c′ − 1

2

∫ ζ+

ζ−
ω′ + t ′ =

∫ ∞−

ζ+
ω′, (7.13)

we again arrive at (7.5b).

Lemma 7.2. Let Q be given by (2.18). As ρ → 0 with r1 < ζ ,

Q(u) = 1

�′(u′)2

⎡
⎣�′
(

u′ +
∫ ∞−

ζ−
ω′
)2

−�′
(

u′ +
∫ ∞−

ζ+
ω′
)2

e−2J ′−2K ′
⎤
⎦ + O(ρ2).

(7.14)

The behavior of Q(0) as ρ → 0 is given by the expression obtained by replacing u′ and
J ′ with zero in the right-hand side of (7.14).

Proof. In view of (7.1), the expression for Q(u) is invariant under the change of cut
basis from{a j , b j } to {ã j , b̃ j }, i.e.

Q(u) = �̃(ũ +
∫∞−
−i z ω̃)�̃(ũ +

∫∞−
i z̄ ω̃)

�̃(ũ)�̃(ũ +
∫ i z̄
−i z ω̃)

. (7.15)

Utilizing the limits of Lemma 7.1, we find (7.14). ��
By applying the results of Lemma 7.1 to formula (7.2) and using that eI = eĨ−2π i ũ4 =

eI ′−J ′
+ O(ρ2) as ρ → 0, we find that f is given by (2.22) near the regular axis. The

expression (2.24) for e2U on the regular axis follows by applying the results of Lemma 7.2
to the equation e2U = Q(0)

Q(u)e
I . The limiting behavior a = O(ρ2) follows from (6.15);

the fact that the terms of O(ρ) vanish in the expansion of a is most easily seen from
(2.2). The behavior e2κ = 1 + O(ρ2) near the regular axis follows from (2.17b) and
the condition that κ = 0 on the regular axis; the fact that the terms of O(ρ) vanish
in the expansion of e2κ is most easily seen from (3.7). This completes the proof of
Proposition 2.3.

7.2. Values of a0 and K0. The constant a0 is determined by (6.15) and the condition
that a = 0 on the regular axis. We find

a0 = lim
ρ→0

ρe−2U

Q(0)

�(u +
∫∞−
−i z ω +

∫∞−
i z̄ ω)

Q(u)�(u +
∫ i z̄
−i z ω)

, ζ > r1.
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Substituting into this equation the expression (2.17a) for e2U and passing to the axis-
adapted basis, we find

a0 = lim
ρ→0

ρ

Q(0)2
�̃(ũ +

∫∞−
−i z ω̃ +

∫∞−
i z̄ ω̃)

�̃(ũ +
∫ i z̄
−i z ω̃)

e2π i ũ4− Ĩ .

By Lemmas 7.1 and 7.2, this yields

a0 = − �′(0)4(
�′(
∫∞−
ζ− ω′)2 −�′(

∫∞−
ζ+ ω′)2e−2K ′

)2

�′(u′ + 2c′)
�′(u′)

e−M ′−I ′−2K ′
. (7.16)

Expression (2.26) for a0 is obtained by letting ζ → ∞ in (7.16). Indeed, since

lim
ζ→∞

�′(0)4(
�′(
∫∞−
ζ− ω′)2 −�′(

∫∞−
ζ+ ω′)2e−2K ′

)2 = 1

and u′, c′, I ′ are independent of ζ > r1, we find

a0 = −�
′(u′ + 2c′)
�′(u′)

e−I ′
(

lim
ζ→∞ e−M ′−2K ′

)
. (7.17)

The constant M ′ is given by6

M ′ = 1

2
lim
x→0

(∫ (ζ−x)+

(ζ−x)−
ω′
ζ+ζ− − 2 ln x − ln 4 − π i

)
.

The combination M ′ + 2K ′ remains finite in the limit ζ → ∞ and we find

lim
ζ→∞(M

′ + 2K ′) = 1

2
lim

R→∞

[
−
∫ R+

R−
ω′

∞+∞− − 2 ln R − ln 4 − π i

]
. (7.18)

Equations (7.17) and (7.18) imply (2.26).
The constant K0 in (2.17b) is determined by the condition that e2κ = 1 on the reg-

ular part of the axis. In order to compute K0 we first rewrite (2.17b) in terms of the
axis-adapted cut system. Note that

ω−r+
1 ,−r−

1
= ω̃−r+

1 ,−r−
1

− 2π iω̃4, ωr+
1 r−

1
= ω̃r+

1 r−
1

−2π iω̃4, ωκ+
1 κ

−
1

= ω̃κ+
1 κ

−
1

− 2π iω̃4.

(7.19)

Since
∫

+ dκ1

dh
dk (κ1) = 0, we find

e2κ = K0
�̃(ũ)�̃(ũ +

∫ i z̄
−i z ω̃)

�̃(0)�̃(
∫ ξ̄
ξ
ω̃)

e
− 1

2

∫

+ dκ1

dh
dk (κ1)

∫

+ h(κ2)ω̃κ+

1 κ
−
1
(κ+

2 )+
∫

+ hω̃−r+

1 ,−r−
1

−∫
+ hω̃
r+
1 r−

1

×e
1
2 limε→0

(∫
γ1(ε)

ω̃−r+
1 ,−r−

1
−∫γ2(ε)

ω̃
r+
1 r−

1
−2 ln ε

)

, ζ > r1.

Taking the limit as ρ → 0 of this expression, we find (2.27).

6 Expressions of this type are considered in [28].
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7.3. Values near the black hole horizon. The limits as z approaches the black hole hori-
zon have a slightly different flavor than those considered in the previous subsection,
because ũ4 diverges as ρ ↓ 0 with 0 < ζ < r1. In fact,

ũ4 = − 1

π i
ln ρ +

P ′

π i
+ O(ρ2), ρ ↓ 0, 0 < ζ < r1, (7.20)

where

P ′ = 1

2

∫


+
hω′

ζ+ζ− +
1

2
lim
ε→0

(∫

γ ′(ε)
ω′
ζ+ζ− + 2 ln ε + ln 4

)
,

and γ ′(ε) denotes the contour γ ′ with the segments which lie above the interval
[ζ − ε, ζ + ε] removed.7 Note that

e2P ′+2M ′ = eJ ′
, 0 < ζ < r1. (7.21)

Lemma 7.3. The following limits hold as z approaches a point on the black hole horizon
(i.e. as ρ → 0 with 0 < ζ < r1):

�̃

(
ũ −
∫ ∞−

−i z
ω̃

)
= 1

ρ2

[
−�′

(
u′ −

∫ ∞−

ζ+
ω′
)

eJ ′−2M ′−K ′

+�′
(

u′ −
∫ ∞−

ζ+
ω′ +
∫ ζ+

ζ−
ω′
)

e2J ′−2M ′−2K ′
]

+ O(1), (7.22)

�̃

(
ũ +
∫ ∞−

−i z
ω̃

)
= �′

(
u′ +
∫ ∞−

ζ−
ω′
)

−�′
(

u′ +
∫ ∞−

ζ−
ω′ +
∫ ζ+

ζ−
ω′
)

eJ ′+K ′
+ O(ρ2),

�̃

(
ũ +
∫ ∞−

i z̄
ω̃

)
= �′

(
u′ +
∫ ∞−

ζ−
ω′
)

+�′
(

u′ +
∫ ∞−

ζ−
ω′ +
∫ ζ+

ζ−
ω′
)

eJ ′+K ′
+ O(ρ2),

�̃

(
ũ +
∫ i z̄

−i z
ω̃

)
= − 1

ρ
�′
(

u′ +
∫ ζ+

ζ−
ω′
)

eJ ′−M ′
+ δ + O(ρ),

�̃(ũ) = 1

ρ
�′
(

u′ +
∫ ζ+

ζ−
ω′
)

eJ ′−M ′
+ δ + O(ρ), (7.23)

�̃

(
ũ +
∫ ∞−

−i z
ω̃ +
∫ ∞−

i z̄
ω̃

)
= �′

(
u′ + 2

∫ ∞−

ζ−
ω′
)

+ O(ρ),

where δ is a constant.

Proof. We prove (7.22) in the case when Re k3 < ζ < r1; the proofs of the other
identities are similar. For Re k3 < ζ < r1,

�̃

(
ũ −
∫ ∞−

−i z
ω̃

)
= �̃(ũ − c − B̃r − t),

7 For 0 < ζ < r1, the contour γ ′ contains the covering in the upper sheet of [ζ − ε, ζ ] and the covering in
the lower sheet of [ζ, ζ + ε].
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where r and t are defined in (7.11). We can write the right-hand side as

∑

N∈Z4

e
2π i
(∑3

i, j=1 Ni B̃i j N j + 1
2 B̃44 N4(N4−1)

)

×e
2π i
(∑3

i=1 B̃i4 Ni (N4− 1
2 )+
∑3

i=1 Ni (ũi −ci )+N4(ũ4−c4)−∑3
i=1 Ni ti + 1

2 N4

)
.

The factor involving the divergent quantities B̃44 and ũ4 is

e
2π i
(

1
2 B̃44 N4(N4−1)+N4ũ4

)
= ρN4(N4−3)eN4(N4−1)M ′+2N4 P ′

(1 + O(ρ2)).

Thus the diverging terms are of O(ρ−2) and arise when N4 = 1, 2. We find

�̃

(
ũ −
∫ ∞−

−i z
ω̃

)
= − 1

ρ2 e2P ′−K ′ ∑

N ′∈Z3

e
2π i
(

1
2 N ′T B′ N ′+ 1

2 N ′T ∫ ζ+

ζ− ω
′+N ′T (u′−c′−t ′)

)

+
1

ρ2 e2M ′+4P ′−2K ′ ∑

N ′∈Z3

e
2π i
(

1
2 N ′T B′ N ′+ 3

2 N ′T ∫ ζ+

ζ− ω
′+N ′T (u′−c′−t ′)

)
+ O(1).

Using (7.13) and (7.21), we find (7.22). ��
Lemma 7.4. Let Q be given by (2.18). As ρ → 0 with 0 < ζ < r1,

Q(u) = −ρ2
�′(u′ +

∫∞−
ζ− ω′)2 −�′(u′ +

∫∞−
ζ− ω′ +

∫ ζ+

ζ− ω′)2e2J ′+2K ′

�′(u′ +
∫ ζ+

ζ− ω′)2e2J ′−2M ′ + O(ρ4),

(7.24)

Q(0) = �′(
∫∞−
ζ− ω′)2 −�′(

∫∞−
ζ+ ω′)2e−2K ′

�′(0)2
+ O(ρ2). (7.25)

Proof. By applying the limits in Lemma 7.3 to (7.15), we find the statement for Q(u).
The limit of Q(0) is obtained as in the case of the regular axis, since the diverging factors
involving ũ4 are not present.

By applying the limits of Lemma 7.3 to Eq. (7.2), we find that f is given by (2.30)
near the horizon. Similarly, the behavior of e2U near the horizon follows by apply-
ing Lemma 7.4 and the expansion (7.20) to the equation e2U = Q(0)

Q(u)e
−2π i ũ4+ Ĩ . The

expression for ahor is established by applying the results of Lemmas 7.3 and 7.4 to the
axis-adapted version of (6.15).

We next show formula (2.32) for the behavior of e2κ near the horizon. Equation
(3.7) implies that the terms of O(ρ) in the expansion of e2κ vanish, so we only have
to determine the leading term. Suppose 0 < ζ < r1. Then, recalling (7.19) and using
that
∫

+ dκ1

dh
dk (κ1) = 0, we can write L as defined in (2.16) in terms of axis-adapted

quantities as

L = −1

2

∫




dκ1
dh

dk
(κ1)

∫ ′




h(κ2)ω̃κ+
1 κ

−
1
(κ+

2 ) +
∫


+
hω̃−r+

1 ,−r−
1

+
∫


+
hω̃r+

1 r−
1

+
1

2
lim
ε→0

(∫

γ1(ε)

ω̃−r+
1 ,−r−

1
+
∫

γ2(ε)

ω̃r+
1 r−

1
− 2 ln ε

)
− 2π i

∫


+
hω̃4 − 2π i ũ4.
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In view of (7.20) and (7.21), we find

eL = ρ2eL ′+2M ′−J ′
+ O(ρ), ρ → 0, 0 < ζ < r1,

where L ′ is defined by (2.28). Applying this expansion together with Lemma 7.3 to
the expression for e2κ in Theorem 2.1, we arrive at (2.32). This completes the proof of
Proposition 2.4.

We conclude this section by proving Proposition 2.5. As ζ ↓ r1, we have e−J ′ → 0
whereas eK ′

tends to a bounded constant. The expression (2.36) for f1 := f (ir1) there-
fore follows immediately from (2.23). Similarly, the statement in Proposition 2.5 regard-
ing f0 := f (+i0) follows by taking the limit ρ ↓ 0 in (2.31).

8. Parameter Ranges

In this section we consider the singularity structure of the solution (2.14) and its depen-
dence on the four parameters ρ0, r1, w2, and w4.

8.1. Singularity structure. The solution f presented in (2.14) is continuous but not
smooth at the point z = ±ir1, where the regular axis meets the horizon. Moreover,
Im f has a jump across the disk. Away from these points f is smooth except possibly at
points in the set where the denominator of (2.14) vanishes. Physically, we are interested
in solutions which are singularity-free away from the disk and the horizon. A complete
characterization of the singularity-free solutions involves determining for which choices

of ρ0, r1, w2, w4 the set
{

z ∈ D |�(u +
∫∞−
−i z ω) = 0

}
is empty. We will not complete

this analysis here, but we will indicate how a large class of singularity-free solutions can
be constructed starting with parameters corresponding to a Kerr background.

In Subsec. 5.1, the Kerr solutions were parametrized in terms of the parameters r1 > 0
and −π/2<δ< 0. However, since the map

δ �→ w2 = 2

tan δ sin δ
:
(
−π

2
, 0
)

→ R>0 (8.1)

is one-to-one, we may also adopt a parametrization in terms of r1 > 0 and w2 =
2/(tan δ sin δ) > 0. Let f kerr

r1w2
denote the unique Kerr solution corresponding to the

parameters r1 > 0 and w2 > 0. Moreover, let f denote the solution in (2.14) corre-
sponding to some strictly positive parameters ρ0, r1, w2, w4. Then f → f kerr

r1w2
as ρ0 ↓ 0

and w4 ↓ 0 with r1, w2 held fixed. Indeed, consider perturbing a Kerr background solu-
tion f kerr by adding a small disk of radius ρ0 rotating with angular velocity �. In the
limit ρ0 ↓ 0 and � ↓ 0, the jump contour 
+ in the RH problem disappears and ��
reduces to the identity matrix. Thus, the BVP (2.6) reduces to the Kerr black hole BVP
and the perturbed solution f approaches f kerr in this limit. Substituting the Kerr values
of f0 and f1 and letting � ↓ 0 in (5.9), we find that

w0 → 0, w2 → ( f kerr
0 )2 − 1

2 f kerr
0

= 2

tan δ sin δ
, and w4 → 0, (8.2)

as the Kerr background is approached. This leads to the relation (8.1) between δ andw2.
In view of (5.12), the vanishing limiting value of w0 is achieved by letting ρ0 ↓ 0.

Thus, for small values of w4 > 0 and ρ0 > 0, the solution f corresponding to
{ρ0, r1, w2, w4} is a small perturbation of the Kerr background solution f kerr

r1w2
. In par-

ticular, f is singularity-free for sufficiently small perturbations. By increasing w4 and
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Fig. 13. The dependence on w4 of the parameters �h , �, e2U0 = Re f (+i0), and e2U�0 = Re f�(+i0) for
the example specified by (8.3)

ρ0, larger perturbations of the background are obtained until the construction eventually
breaks down and the solutions become singular. In this way, a large class of singular-
ity-free solutions can be constructed. Numerical data suggest that given strictly positive
values of the parameters ρ0, r1, and w2, there exists an interval [0, wmax

4 ], wmax
4 > 0,

such that all solutions f corresponding to {ρ0, r1, w2, w4} with w4 ∈ (0, wmax
4 ) are

free of singularities. In the following subsection, we illustrate the general situation by
considering a typical example.

8.2. Dependence on w4. We let

ρ0 = 1, r1 = 1

2
, w2 = 3, (8.3)

and consider the solution f given in (2.14) corresponding to {ρ0, r1, w2, w4} asw4 > 0
varies. We find that the solution is free of singularities for 0 < w4 < wmax

4 ,
where wmax

4 ≈ 0.27051. The example presented in Sect. 3 corresponds to taking
w4 = 1/10. The dependence on w4 of several parameters is displayed in Figs. 13
and 14. The parameter w4 is analogous to the variable μ used in [24] to parametrize the
Neugebauer-Meinel solutions and Figs. 13 and 14 are the analogs of Fig. 2.9 in [24]. To
see how the solution f becomes singular as w4 increases beyond wmax

4 , we note that as
w4 < wmax

4 increases, the ergosphere of the solution f grows larger and larger until it
eventually, in the limit w4 ↑ wmax

4 , envelops all of spacetime. As w4 increases beyond
wmax

4 a singularity of f enters the domain D at z = +∞ and moves inward along the
positive real axis. The graph of the singular function Re f for w4 = 1/2 > wmax

4 is
shown in Fig. 15.
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Fig. 14. The dependence onw4 of the parameters b0 = Im f (+i0) and f1 = f (ir1) for the example specified
by (8.3)

Fig. 15. The graph of Re f for w4 = 1/2 > wmax
4 . The disk and the black hole are too small to be visible

Acknowledgement. The author is grateful to M. Ehrnström and A. S. Fokas for helpful remarks on a first
version of the manuscript and to the two referees for several valuable suggestions.

Appendix A. Condensation of Branch Points

In this Appendix we show that the Ernst potential (2.14) is related via a certain limiting
procedure to the class of solutions of the Ernst equation studied in [19,15]. By applying
this limiting procedure to the formula for the metric function e2κ given in [15], we will
also establish the expression (2.17b) for e2κ and so complete the proof of Theorem 2.1.
The limiting operation involves partially degenerating a Riemann surface by letting
branch points coalesce along the curve 
+ and at the points ±r1. The construction of
new solutions of the Ernst equation through this type of ‘condensation’ of branch points
along curves was first described in [19].

Let �̂z be a Riemann surface of genus g > 4 obtained by adding g − 4 branch cuts
{[E j , Fj ]}g−4

j=1 to �z . Let ξ = −i z. Then �̂z is defined by the equation

ŷ2 = (k − ξ)(k − ξ̄ )

4∏
i=1

(k − ki )(k − k̄i )

g−4∏
i=1

(k − Ei )(k − Fi ).
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Let {â j , b̂ j }g
j=1 be the cut basis on �̂z which is the natural generalization of the basis

{a j , b j }4
1 on �z , i.e. for j = 1, . . . , 4, â j surrounds the cut [k j , k̄ j ]; for j = 5, . . . g, â j

surrounds the cut [E j−4, Fj−4]; the cycle b̂ j enters the upper sheet on the right side of
[−i z, i z̄] and exits again on the right side of [k j , k̄ j ] for j = 1, . . . , 4 and on the right
side of [E j−4, Fj−4] for j = 5, . . . , g. For simplicity, we will assume that ζ > Re k4.
Let ω̂ = (ω̂1, . . . , ω̂g)

T denote the canonical dual basis and let �̂(ŵ) := �(ŵ|B̂) be
the associated theta function. Let p, q ∈ C

g be vectors which are indepedent of z and
which satisfy the reality condition B̂ p + q ∈ R

g . The theta function with characteristics
p, q ∈ R

g is defined by

�

[
p
q

]
(v̂|B̂) = �(v̂ + B̂ p + q|B̂)e2π i

(
1
2 pT B̂ p+pT (v̂+q)

)
, v̂ ∈ C

g.

Then

f̂ =
�̂

[
p
q

]
(
∫∞+

ξ
ω̂)

�̂

[
p
q

]
(
∫∞−
ξ

ω̂)

, (A.1)

is a solution of the Ernst equation (2.3) and the corresponding metric function e2κ̂ is
given by

e2κ̂ = K̂0

�̂

[
p
q

]
(0)�̂

[
p
q

]
(
∫ ξ̄
ξ
ω̂)

�̂(0)�̂(
∫ ξ̄
ξ
ω̂)

, (A.2)

where K̂0 ∈ C is a constant determined by the condition that e2κ̂ = 1 on the regular
axis [19,15].

We choose

E1 = −r1 − iε, F1 = Ē1, E2 = r1 − iε, F2 = Ē2,

where ε > 0 is a small number, and define the Riemann surface �̌z of genus 6 by

y̌2 = (k − ξ)(k − ξ̄ )

4∏
i=1

(k − ki )(k − k̄i )

2∏
i=1

(k − Ei )(k − Fi ).

In other words, �̌z is obtained from�z by adding two short vertical cuts centered at −r1

and r1, respectively. The cut basis {ǎ j , b̌ j }6
j=1 is shown in Fig. 16.

The condensation of branch points will now proceed in two steps: In the first step, we
let the branch points E j+2, Fj+2, j = 1, . . . , g −6 condense along the curve 
. In doing
this, the Riemann surface �̂z degenerates to �̌z and the Ernst potential f̂ approaches
a solution f̌ defined in terms of theta functions on �̌z . Intuitively f̌ has a disk, but no
black hole. In the second step, we let ε → 0. Then �̌z degenerates to �z and we will
find that f̌ approaches the solution f in (2.14).
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Fig. 16. The homology basis {ǎ j , b̌ j }6
j=1 on the Riemann surface �̌z

A. 1. The first degeneration. Let

p = ( p̌,m) ∈ C
6 × R

g−6, q = 0,

where the components of the vector m ∈ R
g−6 satisfy 0 < m j < 1/2, j = 1, . . . , g −6.

We consider the limit E j+2, Fj+2 → κ j , j = 1, . . . , g − 6, in which the branch cut
[E j+2, Fj+2] shrinks to a point κ j ∈ 
. In this limit, (cf. Eq. (7.3))

(
ω̂1, . . . ω̂g

)→
(
ω̌1, . . . ω̌6,

1

2π i
ω̌κ+

1 κ
−
1
, . . . ,

1

2π i
ω̌κ+

g−6κ
−
g−6

)
;

B̂i j → B̌i j , i, j = 1, . . . , 6; B̂i, j+6 →
∫ κ+

j

κ−
j

ω̌i , i = 1, . . . , 6, j = 1, . . . , g − 6;

B̂i+6, j+6 → 1

2π i

∫ κ+
j

κ−
j

ω̌κ+
i κ

−
i
, i, j = 1, . . . , g − 6, i 	= j;

B̂ j+6, j+6 = 1

π i
ln |E j+2 − Fj+2| + O(1), j = 1, . . . , g − 6.

For two points P, Q ∈ �̂z , we have

�̂

[
p
0

](∫ Q

P
ω̂

)
=
(∑

N∈Zg

e
2π i
(

1
2 N T B̂ N+N T (

∫ Q
P ω̂+Bp)

))
e

2π i
(

1
2 pT B̂ p+pT

∫ Q
P ω̂
)
. (A.4)

Letting N = (Ň , n) ∈ Z
6×Z

g−6 and using that p = ( p̌,m), we find that the factor in the
sum on the right-hand side involving the diverging quantities B̂ j+6, j+6, j = 1, . . . , g−6,
is

eπ i
∑g−6

j=1 n j (n j +2m j )B̂ j+6, j+6 .

Consequently, since 0 < m j < 1/2 by assumption, all terms in the sum in (A.4) approach
zero except the ones with n ≡ 0. We infer that the sum on the right-hand side of (A.4)
converges to

�̌

⎛
⎝
∫ Q

P
ω̌ +

g−6∑
j=1

m j

∫ κ+
j

κ−
j

ω̌ + B̌ p̌

⎞
⎠ . (A.5)
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We let the κ j ’s condense onto the curve 
 with a density determined by the measure
dm(κ) defined by

dm(κ) = −1

2

dh

dκ
(κ)dκ, κ ∈ 
,

where h is the function defined in (2.12). Then, integrating by parts and using that h
vanishes at the endpoints of 
, we find

g−6∑
j=1

m j

∫ κ+
j

κ−
j

ω̌ →
∫




dm(κ)
∫ κ+

κ−
ω̌ = ǔ, (A.6)

where ǔ ∈ C
6 is defined by

ǔ =
∫


+
hω̌.

Combining (A.4)-(A.6), we find

�̂

[
p
0

](∫ Q

P
ω̂

)
→ �̌

[
p̌
0

](
ǔ +
∫ Q

P
ω̌

)
eĽ/2+

∫

 dm(κ)

∫ Q
P ω̌κ+κ− , (A.7)

where Ľ is defined by

Ľ = −1

2

∫




dκ1
dh

dk
(κ1)

∫ ′




h(κ2)ωκ+
1 κ

−
1
(κ+

2 ),

and the prime on the integral along 
 indicates that the integration contour should be
deformed slightly before evaluation so that the pole at κ2 = κ1 is avoided.8

Applying this formula to (A.1), we arrive at the following limit of f̂ :

f̂ → f̌ =
�̌

[
p̌
0

]
(ǔ +
∫∞+

ξ
ω̌)

�̌

[
p̌
0

]
(ǔ +
∫∞−
ξ

ω̌)

eǏ , (A.8)

where Ǐ ∈ R is defined by

Ǐ =
∫




dm(κ)
∫ ∞+

∞−
ω̌κ+κ− =

∫


+
hω̌∞+∞− .

Moreover, applying Eq. (A.7) to the expression for e2κ̂ in (A.2), we find

e2κ̂ → e2κ̌ = Ǩ0
�̌(ǔ)�̌(ǔ +

∫ ξ̄
ξ
ω̌)

�̌(0)�̌(
∫ ξ̄
ξ
ω̌)

eĽ e
∫

 dm(κ)

∫ ξ̄
ξ ω̌κ+κ− , (A.9)

8 The result is indepedent of whether the contour is deformed to the right or to the left of the pole.
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where Ǩ0 is a constant independent of z. For some constant C , we have

e
− ∫ P

P0
ωξξ̄ = C

√
P − ξ̄

P − ξ
, P ∈ �̌z,

because both sides have simple poles at ξ , simple zeros at ξ̄ , and are analytic elsewhere
on �̌z . Hence,

∫ ξ̄

ξ

ω̌κ+κ− = −
∫ κ+

κ−
ωξξ̄ = log

√
P − ξ̄

P − ξ

∣∣∣κ+

P=κ− ∈ π i + 2π iZ .

It follows that the last exponential factor in (A.9) is independent of z and can be absorbed
into Ǩ0. Thus,

e2κ̌ = Ǩ0
�̌(ǔ)�̌(ǔ +

∫ ξ̄
ξ
ω̌)

�̌(0)�̌(
∫ ξ̄
ξ
ω̌)

eĽ . (A.10)

A. 2. The second degeneration. We now consider the degeneration of �̌z as the cuts
centered at ±r1 collapse. In the limit ε → 0,

(
ω̌1, . . . ω̌6

)→
(
ω1, . . . ω4,

1

2π i
ω−r+

1 ,−r−
1
,

1

2π i
ωr+

1 r−
1

)
;

B̌ =
(

B B1

BT
1 B2

)
+ O(ε2),

where B is the period matrix on �z , the 4 × 2 matrix B1 is defined by

B1 =
(∫ −r+

1

−r−
1

ω

∫ r+
1

r−
1

ω

)
,

and the 2 × 2 matrix B2 is given by

B2 =
⎛
⎝

1
π i (ln ε + c−) 1

2π i

∫ r+
1

r−
1
ω−r+

1 ,−r−
1

1
2π i

∫ −r+
1

−r−
1
ωr+

1 r−
1

1
π i (ln ε + c+)

⎞
⎠ ,

where c+, c− ∈ C are constants. Moreover,

ǔ →

⎛
⎜⎜⎝

∫

+ hω

1
2π i

∫

+ hω−r+

1 ,−r−
1

1
2π i

∫

+ hωr+

1 r−
1

⎞
⎟⎟⎠ .

We have

�̌

[
p
0

](
ǔ+
∫ Q

P
ω̂

)
=
⎛
⎝∑

Ň∈Z6

e
2π i
(

1
2 Ň T B̌ Ň+Ň T (ǔ+

∫ Q
P ω̌ +B̌ p̌)

)⎞
⎠ e

2π i
(

1
2 p̌T B̌ p̌ + p̌T (ǔ+

∫ Q
P ω̌)

)
.

(A.11)
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Letting Ň = (N , n) ∈ Z
4 × Z

2 and choosing, for some 0 < α < 1/2,

p̌ = (0, 0, 0, 0, α,−α),
the same type of argument that led to (A.5) shows that all terms in the sum approach 0
as ε → 0 except those with n ≡ 0.

It follows that the sum in (A.11) converges to

�

(
u +
∫ Q

P
ω

)
where u =

∫


+
hω + α

(∫ −r+
1

−r−
1

−
∫ r+

1

r−
1

)
ω.

On the other hand, the rightmost exponential factor in (A.11) can be written as

e
2π i
(

1
2 p̌T B̌ p̌+ p̌T (ǔ+

∫ Q
P ω̌)

)
= eπ iα2(B̌55−2B̌56+B̌66)

×e
α
∫

+ hω−r+

1 ,−r−
1

−α ∫
+ hω
r+
1 r−

1
+α
∫ Q

P ω−r+
1 ,−r−

1
−α ∫ Q

P ω
r+
1 r−

1 .

Applying these formulas to (A.8), we find

f̌ → f = �(u +
∫∞+

ξ
ω)

�(u +
∫∞−
ξ

ω)
eI , (A.12)

where

I =
∫


+
hω∞+∞− + α

(∫ −r+
1

−r−
1

−
∫ r+

1

r−
1

)
ω∞+∞− .

The contours in the integrals
∫ −r+

1

−r−
1

and
∫ r+

1

r−
1

are the limits of the cycles b̌5 and b̌6, respec-

tively. By deforming these contours, we find that
(∫ −r+

1

−r−
1

−
∫ r+

1

r−
1

)
ω∞+∞− =

∫

γ

ω∞+∞− ,

(∫ −r+
1

−r−
1

ω −
∫ r+

1

r−
1

)
ω =

∫

γ

ω,

where γ is the contour on �z defined in Sect. 2. Therefore, in the limit α → 1/2, u and
I become exactly the u and I of Theorem 2.1 and the solution f in (A.12) becomes the
Ernst potential in (2.14). This provides the promised link between the solutions in [19]
and the solution presented in this paper.

By applying the same limiting procedure to Eq. (A.10) we will determine the corre-
sponding metric function e2κ . We have

eπ iα2(B̌55−2B̌56+B̌66) = ε2α2
e
α2
(

c++c−−∫−r+
1

−r−
1
ω

r+
1 r−

1

)

(1 + O(ε)), ε → 0.

Hence, for the quotient in (A.10) we find

Ǩ0
�̌(ǔ)�̌(ǔ +

∫ ξ̄
ξ
ω̌)

�̌(0)�̌(
∫ ξ̄
ξ
ω̌)

= �(u)�(u +
∫ ξ̄
ξ
ω)

�(0)�(
∫ ξ̄
ξ
ω)

ε4α2
e

2α2(c++c−)−2α2
∫−r+

1
−r−

1
ω

r+
1 r−

1

×e
∫

+ hω−r+

1 ,−r−
1
−∫
+ hω

r+
1 r−

1 e
1
2

∫ ξ̄
ξ ω−r+

1 ,−r−
1
−1

2

∫ ξ̄
ξ ωr+

1 r−
1 (1 + O(ε)).

(A.13)



634 J. Lenells

This expression vanishes in the limit ε → 0. However, this behavior is compensated
by the fact that the constant Ǩ0 diverges as ε → 0, so that the limit of e2κ̌ is finite and
non-zero. The last exponential factor on the right-hand side of (A.13) can be absorbed
into K0. Indeed, the same type of argument that we used to find (A.10) shows that
this factor is independent of z. The constants c+ and c− are given by the expressions
obtained by replacing ζ in the right-hand side of (2.29) with r1 and −r1, respectively.
Letting α → 1/2 and using that

lim
δ→0

(∫ (−r1−δ)+

(−r1−δ)−
ω−r+

1 ,−r−
1

+
∫ (r1−δ)+

(r1−δ)−
ωr+

1 r−
1

− 4 ln δ

)
− 2
∫ r+

1

r−
1

ω−r+
1 ,−r−

1

= 2 lim
δ→0

(∫

γ1(δ)

ω−r+
1 ,−r−

1
−
∫

γ2(δ)

ωr+
1 r−

1
− 2 ln δ

)
,

we infer that the limit of e2κ̌ is given by (2.17b).
We finally point out that formula (6.15) for the metric function a can be derived in

a similar way. Indeed, the metric function â corresponding to the solution f̂ in (A.1) is
given by [15]

(â − â0)e
2Û = −ρ

⎛
⎜⎜⎝
�̂

[
p
q

]
(0)�̂

[
p
q

]
(
∫∞−
ξ

ω̂ +
∫∞−
ξ̄

ω̂)

Q̂(0)�̂

[
p
q

]
(
∫∞−
ξ

ω̂)�̂

[
p
q

]
(
∫∞−
ξ̄

ω̂)

− 1

⎞
⎟⎟⎠ ,

where

Q̂(0) = �̂(
∫∞−
ξ

ω̂)�̂(
∫∞−
ξ̄

ω̂)

�̂(0)�̂(
∫ ξ̄
ξ
ω̂)

.

An application of the above limiting procedure to this expression yields (6.15).
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