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Abstract: We define the category of B-branes in a (not necessarily affine) Landau-
Ginzburg B-model, incorporating the notion of R-charge. Our definition is a direct
generalization of the category of perfect complexes. We then consider pairs of
Landau-Ginzburg B-models that arise as different GIT quotients of a vector space by a
one-dimensional torus, and show that for each such pair the two categories of B-branes
are quasi-equivalent. In fact we produce a whole set of quasi-equivalences indexed by
the integers, and show that the resulting auto-equivalences are all spherical twists.
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1. Introduction

The starting point for this paper is the celebrated result of Orlov [13] that the derived
category of a Calabi-Yau hypersurface Y in projective space is equivalent to the tri-
angulated category of graded matrix factorizations for the homogeneous polynomial f
defining Y . In physicists’ language this is the statement that the categories of topological
B-branes are the same in the sigma model with target Y and in the Landau-Ginzburg
model with superpotential f . This is just part of a much deeper conjecture which goes
back to Witten [17] (based on earlier observations by Vafa and others) and which states
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that the conformal field theories associated to these two models are different limit points
in the same moduli space, the so-called Stringy Kähler Moduli Space (SKMS). The
B-twist of a conformal field theory is expected to be independent of your position in the
SKMS, so it follows that the B-twisted theories of each model should be equivalent and
in particular that their B-brane categories are the same.

The basics of Witten’s idea are easy to understand, even for a mathematician. A
Landau-Ginzburg model is a Kähler manifold X with a holomorphic function W called
the superpotential. From such a thing one can write down a standard supersymmet-
ric Lagrangian, analogous to the Lagrangian in classical mechanics coming from a
Riemannian manifold equipped with a real-valued potential function. We consider the
LG model,

X = C
n+1
x1,...,xn ,p, W = f (x)p,

where f is a homogeneous degree n polynomial in the xi ’s. Now we ‘gauge’ this theory,
which means we try and divide by the C

∗ symmetry under which each xi has weight 1
and p has weight−n. The resulting theory should be the same, at least in some limit, as
the theory coming from the quotient LG model. However we should take the quotient
carefully, which means take a GIT quotient, and here we have two choices. One is the
total space of the canonical bundle on P

n−1,

X+ = KPn−1 ,

and the other is the affine orbifold

X− = [Cn/Zn].
The function W descends to either of these, so they are both LG models. Physically,
there is a parameter (the complexified Fayet-Iliopoulos parameter) in the Lagrangian of
the gauged theory, and the theories on X+ and X− are expected to appear at two different
limits of this parameter.

The important thing about a LG model is the set of critical points for the function W .
On X+ this will be the hypersurface Y ⊂ P

n−1. If we assume that this is smooth, then
locally around Y the function W is just quadratic in the normal directions, physically
these directions are then ‘massive modes’ and can be ‘integrated out’ in the low-energy
theory. What this means is that we should expect the theory coming from (X+, f p) to
look essentially like a theory based just on Y , with no superpotential. We conclude that
the theory on Y is connected, in the moduli space of theories, to the theory on the orb-
ifold [Cn/Zn] with superpotential W . This is called the Calabi-Yau/Landau-Ginzburg
correspondence.

On the level of conformal field theories, this story is beyond the reach of current
mathematical technology. However, all the spaces here are Calabi-Yau, which means
the theories admit ‘B-twists’ which are topological field theories (more precisely they
are Topological Conformal Field Theories/Cohomological Field Theories) and these are
much more tractable. And as mentioned above, the B-twisted theories should be inde-
pendent of the FI parameter, and so the result to prove is that the B-model (the B-twisted
TCFT) arising from Y is the same as the B-model arising from the Landau-Ginzburg
model (X−, f p).

The open sector of a B-model is the category of B-branes, these are a type of boundary
condition for the CFT. This should be a Calabi-Yau dg-category. For a LG model with
W = 0, the category of B-branes is (a dg-enhancement of) the bounded derived category
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of coherent sheaves. When W �= 0 we need a generalization of this, the idea (due to
Kontsevich) is to use objects that are like chain-complexes of sheaves, except that we
now have d2 = W instead of d2 = 0. We define this category, denoted Br(X, W ) for a
LG model (X, W ), in Sect. 2. In particular, the homotopy category of Br(X−, f p) is the
category of matrix factorizations of f on X− = [Cn/Zn], and the homotopy category
of (Y, 0) is Db(Y ).

Orlov’s result is thus the statement that H0(Br(Y, 0)) = H0(Br(X−, f p)), i.e. the
homotopy categories of the open sectors of the two B-models are the same. In fact this
goes a long way to proving that the whole of the B-models are the same, to get the full
statement one would have to show that the open sectors are equivalent as Calabi-Yau
dg-categories, the closed sectors should then follow by Costello’s theorem [3]. However
this is not the aim of the current paper. Rather, we wanted to try to re-prove Orlov’s
result following more closely the ideas in Witten’s construction, which does not appear
in Orlov’s proof. In particular we wanted to see the equivalence as the composition of
two equivalences:

(X−, f p) ←→ (X+, f p) ←→ Y

This both clarifies the result and suggests how to generalise it. For the first equivalence,
we assume that the fundamental relationship between X− and X+ is that they are bira-
tional, being related by a change of GIT quotient is just a special case of this. Hence we
conjecture (Conjecture 2.15) that the B-models associated to any two birational Calabi-
Yau LG models are equivalent (to be more precise, we just conjecture that their open
sectors are equivalent as dg-categories). This conjecture will be obvious to experts; it is
a generalization of a theorem of Bridgeland [2] and lies in the same circle of ideas as
Ruan’s Crepant Resolution conjecture [14].

Unfortunately we do not get as far as addressing the second equivalence in this paper.
We’ll just remark that although it looks mysterious, it is just a global version of a fairly
classical result by Knörrer [9], and a closely related result is proved by Orlov [12].

What we actually manage to prove in this paper is a slight generalisation of the first
equivalence, and so a small step towards our general conjecture. We show (Theorem 3.3)
that if X+ and X− are two different GIT quotients of a vector space V by C

∗, and W is
an invariant polynomial on V , then

Br(X+, W ) � Br(X−, W )

are equivalent dg-categories. Our proof borrows heavily from the work of Hori, Herbst
and Page [5], in which they give a detailed physical argument for a generalisation of
Orlov’s result. Their key idea is a grade restriction rule. Their reasoning involves
A-branes and is mathematically rather mysterious, however the rule itself will be instantly
familiar to anyone who knows Beilinson’s Theorem [1]. Our improvement on their result,
other than making it mathematically rigourous, is that they work only with the objects
of the B-brane category whereas we include the morphisms as well (the massless open
strings).

We want to explain one last aspect of the physics picture. The SKMS (the space
in which the FI parameters live) can be explicitly described for our examples: it is a
cylinder with one puncture, and the two GIT quotient LG models live at either end of
the cylinder. The category of B-branes is the same for all points in this space, however
we cannot trivialise it globally, i.e. there is monodromy. Therefore to get an equivalence
between the B-brane categories of X+ and X− we must pick a path between the two
ends of the cylinder. Up to homotopy there are Z such paths, so we should find Z such
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equivalences. This is what we, and Orlov, find. By composing equivalences we get auto-
equivalences of the B-brane category at either end; this is the monodromy around the
puncture. The puncture is the limit where the mass of a particular brane goes to zero, and
the monodromy should be a Seidel-Thomas spherical twist around this brane. There is
also monodromy around each end of the cylinder; this should just be given by tensoring
with the O(1) line-bundle.

Now we can explain the layout of the paper:
In Sect. 1.1 we give a sketch of our method for the special case that W = 0. This

means we don’t have to worry about LG models, we just deal with the more familiar
case of derived categories of coherent sheaves. We show that we can construct Z many
derived equivalences between X+ and X−, and that the resulting autoequivalences are
spherical twists.

In Sect. 2 we explain properly what a LG B-model is, and what the category of
B-branes is.

In Sect. 3 we describe the class of examples we will consider. These are pairs of
LG B-models (X+, W ) and (X−, W ) that are different GIT quotients of a vector space
by C

∗. In Sect. 3.1 we prove our main result, that there are Z many quasi-equivalences
between the categories of B-branes on (X+, W ) and (X−, W ). In Sect. 3.2 we describe
the resulting auto-quasi-equivalences of the category of B-branes on (X+, W ). We show
(more-or-less) that they are spherical twists.

The technology of LG B-models is in its infancy, so many of the arguments of the
last two sections are rather messy and ad-hoc. In particular the ‘more-or-less’ of the
previous paragraph is because we do not have a proper theory of Fourier-Mukai trans-
forms. We apologise to the reader for this unsatisfactory state-of-affairs, and hope that
later treatments will clean these results up a bit.

1.1. A sketch proof for W = 0. As we will see in Sect. 2, a special case of the cat-
egory of B-branes in a Landau-Ginzburg B-model is the category Perf(X) of perfect
complexes on a smooth space X , which is a dg-model for the derived category Db(X).
We thought it would be helpful to explain the proof of our results in this special case,
as Db(X) is probably more familiar than Br(X, W ). Also the proof in this case is quite
simple and still contains the important points for the more general case, the hard work
in generalizing is mostly technicalities.

For this sketch, we’ll use the example of the standard three-fold flop. This is of course
well understood and we will say nothing particularly original, but we will indicate after-
wards how to generalise.

Let V = C
4 with co-ordinates x1, x2, y1, y2, and let C

∗ act on V with weight 1
on each xi and weight −1 on each yi . There are two possible GIT quotients X+ and
X−, depending on whether we choose a positive or negative character of C

∗. Both are
isomorphic to the total space of the bundle O(−1)⊕2 over P

1.
Both are open substacks of the Artin quotient stack

X = [V/C
∗]

given by the semi-stable locus for either character. Let

ι± : X± ↪→ X
denote the inclusions. This stacky point of view makes it clear that there are (exact)
restriction functors

ι∗± : Db(X )→ Db(X±).
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By Db(X ) we mean the derived category of the category of C
∗-equivariant sheaves on

V . This contains the obvious equivariant line-bundles O(i) associated to the characters
of C

∗.
The unstable locus for the negative character is the set {y1 = y2 = 0} ⊂ V . Consider

the Koszul resolution of the associated sky-scraper sheaf:

K− = O(2)
(y2,−y1)−→ O(1)⊕2 (y1,y2)−→ O.

Then ι−K− is exact, it is the pull-up of the Euler sequence from P
1
y1:y2

. On the other
hand ι+ K− is a resolution of the sky scraper sheaf OP1

x1 :x2
along the zero section. Similar

comments apply for the Koszul resolution K+ of the set {x1 = x2 = 0}.
Let

Gt ⊂ Db(X )

be the triangulated subcategory generated by the line bundles O(t) and O(t + 1). This is
the grade restriction rule of [5], we are restricting to characters lying in the ‘window’
[t, t + 1].
Claim 1.1. For any t ∈ Z, both ι∗+ and ι∗− restrict to give equivalences

Db(X+)
∼←− Gt

∼−→ Db(X−).

To see that these functors are fully-faithful it suffices to check what they do to the maps
between the generating line-bundles, so we just need to check that

Ext•X (O(t + k),O(t + l)) = Ext•X±(O(t + k),O(t + l))

for k, l ∈ [0, 1], i.e.

H•X (O(i)) = H•X±(O(i))

for i ∈ [−1, 1], and this is easily verified. To see that they are essentially surjective we
need to know that the two given line bundles generate Db(X±). This is essentially a
corollary of Beilinson’s Theorem [1]. One way to see it is to first observe that the set
{O(i), i ∈ Z} generates Db(X±) because X± is quasi-projective, then use twists of the
exact sequence ι±K± repeatedly to resolve any O(i) by a complex involving only O(t)
and O(t + 1).

So for any t ∈ Z we have a derived equivalence

�t : Db(X+)
∼−→ Db(X−)

passing through Gt . Composing these, we get auto-equivalences

�−1
t+1�t : Db(X+)

∼−→ Db(X+).

To see what these do, we only need to check them on the generating set of line-bundles
{O(t),O(t + 1)}. Applying �t to this set is easy, it just sends them to the same line-
bundles on X−.1 To apply �−1

t+1 however, we first have to resolve O(t) in terms of O(t +1)

1 The easiest sign convention is to keep y1 and y2 as degree -1 on both sides, i.e. it’s the O(−1) bundle on
P

1
y1:y2

that has global sections. Otherwise �t sends O(t) to O(−t).
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and O(t + 2). We do this using the exact sequence ι−K−(t). The result is that �−1
t+1�t

sends

O(t) �→ [O(t + 2)
(−y2,y1)−→ O(t + 1)⊕2]

O(t + 1) �→ O(t + 1).

Claim 1.2. �−1
t+1�t is an inverse spherical twist around OP1

x1 :x2
(t).

A spherical twist is an autoequivalence discovered by [15] associated to any spherical
object in the derived category, i.e. an object S such that

Ext(S, S) = C⊕ C[−n]
for some n (i.e. the homology of the n-sphere). It sends any object E to the cone on the
evaluation map

[RHom(S, E)⊗ S −→ E].
The inverse twist sends E to the cone on the dual evaluation map

[E −→ RHom(E, S)∨ ⊗ S].
The object OP1

x1 :x2
(t) � ι+ K−(t) is spherical, and the inverse twist around it sends

O(t + 1) to itself and O(t) to the cone

[O(t) −→ ι+ K−(t)] � [O(t + 2)
(−y2,y1)−→ O(t + 1)⊕2],

which agrees with �−1
t+1�t . To complete the proof of the claim we would just need to

check that the two functors also agree on the Hom-sets between O(t) and O(t + 1).
Now instead let V = C

p+q with co-ordinates x1, ..., x p, y1, ..., yq . Let C
∗ act line-

arly on V with positive weights on each xi and negative weights on each yi . The two
GIT quotients X+ and X− are both the total spaces of orbi-vector bundles over weighted
projective spaces.

We must assume the Calabi-Yau condition that C
∗ acts through SL(V ). Let d be

the sum of the positive weights, so the sum of the negative weights is −d. The above
argument goes through word-for-word, where now

Gt = 〈O(t), . . . ,O(t + d − 1)〉 .

2. Landau-Ginzburg B-Models

A Landau-Ginzburg model is a Kähler manifold X equipped with a holomorphic func-
tion W . We are only interested in the B-model on (X, W ), and this doesn’t need the
metric, just the complex structure. Also we want to work in the algebraic world, so for
us X will be a smooth scheme (or stack) over C.

When W = 0, it is a standard slogan that the category of B-branes is the derived cat-
egory Db(X) of coherent sheaves on X . However the category of B-branes should really
be a dg-category, whose homotopy category is Db(X) (for background on dg-categories,
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we recommend [16]). A good model is given by Perf(X), the category of perfect com-
plexes. The objects of Perf(X) are bounded complexes of finite-rank vector bundles, and
the morphisms are given by

Hom(E•, F•) = �(Hom(E•, F•)⊗A0,•)
(this is what we might call the ‘Dolbeaut’ version of Perf(X), other versions are possible
as we will discuss below). The differential here is a sum of the Dolbeaut differential ∂̄ and
the differential on Hom(E•, F•), which itself is the commutator with the differentials
on E• and F•. The homology of this complex is

Ext•(E•, F•) = HomDb(X)(E•, F•).

Futhermore since X is smooth every object in Db(X) is quasi-isomorphic to a complex
in Perf(X), so H0(Perf(X) = Db(X)) as required.

We need to generalise this for W �= 0. Kontsevich’s idea was to modify the defini-
tion of a chain-complex, replacing d2 = 0 with d2 = W . This doesn’t make sense on a
Z-graded complex, so the usual procedure (at least in the mathematics literature) is to
work instead with Z2-graded complexes. However there is another possibility, standard
in the physics literature, which is to replace the ‘homological’ grading with the notion
of R-charge (strictly speaking, vector R-charge). This is a geometric action of C

∗ on
X , under which W must have weight 2. Then we can define a B-brane to be a C

∗-
equivariant vector bundle E , with an endormorphism d of R-charge 1, and the condition
d2 = W 1E makes sense. If the C

∗ action is trivial then we are forced to take W = 0,
and we recover the definition of a perfect complex. Also, the definition of the morphism
chain-complexes in Perf(X) adapts easily, as we shall see.

Definition 2.1. A Landau-Ginzburg B-model is the following data:

• A smooth n-dimensional scheme (or stack) X over C,
• A choice of function W ∈ OX (the ‘superpotential’),
• An action of C

∗ on X (the ‘vector R-charge’),

such that

1. W has weight (‘R-charge’) equal to 2.
2. −1 ∈ C

∗ acts trivially.

From now on we’ll call the C
∗ acting in this definition C

∗
R to distinguish it from other

C
∗ actions that will appear later.

Remark 2.2. In physics terms, Axiom 2 follows from the fact that the axial R-charge
symmetry is acting trivially. It implies that the sheaf of functions OX is supercommuta-
tive under the C

∗
R grading. We could relax it, but keep supercommutativity, by allowing

X to be a superspace.

Definition 2.3. A B-brane on a Landau-Ginzburg B-model (X, W ) is a finite-rank
vector bundle E, equivariant with respect to C

∗
R, equipped with an endomorphism dE

of R-charge 1 such that d2
E = W · 1E .

If we wanted to be more pretentious we could say that X is a space endowed with a
sheaf of curved algebras (W is the curvature) and that a B-brane is a locally free sheaf
of curved dg-modules over X .

We can shift the R-charge on a B-brane E by tensoring with a line bundle associated
to a character of C

∗
R . We denote these shifts by E[n] for n ∈ Z. This agrees with the

homological shift functor in the following special case:
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Example 2.4. Let W = 0 and C
∗
R act trivally. Then a B-brane is just a bounded complex

of vector bundles.

Note that since −1 ∈ C
∗
R acts trivially every B-brane splits as a direct sum

E = Eev ⊕ Eod

of its Z2-eigen-bundles, and dE exchanges these sub-bundles. There is a weaker defini-
tion of Landau-Ginzburg B-model where we keep only the trivial action of Z2 ⊂ C

∗
R ,

thus only this Z2-grading remains. We shall make no use of this weaker definition, except
for the following example.

Example 2.5. Let X = C
n and W be any polynomial. This defines a LG B-model in the

weak (Z2-graded) sense. Then for a B-brane (E, dE ) both Eev and Eod must be trivial
bundles, so dE is given by a matrix

dE =
(

0 d0
E

d1
E 0

)

whose square is W 1. This is a called a matrix factorization of W .

We can’t in general add R-charge to this example. But we can if we orbifold it, as
follows.

Example 2.6. Let X = [Cn
x1,...,xn

× C
∗
p/C
∗
G ], where C

∗
G (the gauge group) acts with

weight 1 on each xi and weight −k on p. This is equivalent as a stack to [Cn/Zk].
Let C

∗
R act with weight 0 on each xi and weight 2 on p. If we pick a superpotential

W = f (x)p, where f (x) is a homogeneous degree k polynomial in the xi ’s, then this
defines a LG B-model (for k = n it is the orbifold phase of the Witten construction
described in the Introduction). Every C

∗
R-equivariant vector bundle on X is the direct

sum of C
∗
R-equivariant line-bundles; these are given by the lattice

Z
2/(−k, 2).

This bijects with the subset Z × [0, 1] ⊂ Z
2. This means that we can consider a

B-brane on (X, W ) to be given by a pair (E0, E1) of graded free modules over the
ring C[x1, ..., xn], where each xi has degree 1, and graded maps

d0
E : E0 → E1, d1

E : E1 → E0

with d0
E d1

E = d1
E d0

E = f . This is called a graded matrix factorization.

Now we want to define the morphisms between two B-branes. We will precisely
mimic the construction of Perf, by first defining a homomorphism bundle and then tak-
ing derived global sections of it.

Recall that a B-brane on the LG B-model (X, 0) is a C
∗
R-equivariant bundle E on X

equipped with an endomorphism dE of R-charge 1 whose square is zero. Let dgRVect(X)

be the category whose objects are B-branes on (X, 0) and whose morphisms are all mor-
phisms of vector bundles. This is a dg-category, and when the C

∗
R action on X is trivial it

is just the category dgVect(X) of complexes of vector bundles on X . It is also a monoidal
category, since we can tensor equivariant bundles and their endomorphisms in the usual
way.
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Now let (X, W ) be any LG B-model, and let (E, dE ), (F, dF ) be two B-branes on
(X, W ). We have a C

∗
R-equivariant vector bundle

Hom(E, F) = E∨ ⊗ F,

and this carries an endomorphism

dE,F = 1∨E ⊗ dF − d∨E ⊗ 1F

of R-charge 1. One can check that

d2
E,F = 0

(the two copies of W that appear cancel each other). This means that the pair
(Hom(E, F), dE,F ) is an object of dgRVect(X). Furthermore, given a third B-brane
(G, dG), we have composition maps

Hom(E, F)⊗Hom(F, G)→ Hom(E, G)

and these are closed and of degree zero.

Definition 2.7. Given an LG-model (X, W ) we define a category Br(X, W ) enriched
over the category dgRVect(X). The objects of Br(X, W ) are the B-branes on (X, W ),
and the morphisms between two branes E and F are given by

(Hom(E, F), dE,F ).

We need to fix a monoidal functor R� : Vect(X)C
∗
R → dgVectC

∗
R that sends a C

∗
R-

equivariant vector bundle to a bounded C
∗
R-equivariant chain-complex of vector spaces

that computes its derived global sections. Since we are working with smooth spaces over
C we will use Dolbeaut resolutions, i.e. we define

R�(E) = (�(E ⊗A0,•
X ), ∂̄),

but we could also use other models such as Čech resolutions with respect to some
C
∗
R-invariant open cover.
Now Hom(E, F) is an object in dgRVect(X). This means that

R�(Hom(E, F)) = �(Hom(E, F)⊗A0,•
X )

is a bi-complex, graded by R-charge and by Dolbeaut degree, with differential

dE,F + ∂̄ .

As usual we may collapse this bi-complex to a complex. If we apply this to all pairs of
branes simultaneously we get the following:

Definition 2.8. Given an LG-model (X, W ) we define the dg-category of B-branes to be

Br(X, W ) := R�(Br(X, W )).

The monoidalness of R� ensures that this is indeed a category.
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Example 2.9. Let W = 0 and C
∗
R act trivially on X . Then Br(X, 0) = Perf(X), the

category of perfect complexes. Since X is smooth the homotopy category of this is

H0(Br(X, 0)) = Db(X).

Example 2.10. Let X = [Cn/Zn] as in Example 2.6. Then the functor � means ‘take
Zn-invariants’, and this is exact, so we may let R�X = �X . The homotopy category of
Br(X, W ) is the category of graded B-branes DGr B(W ) defined by Orlov [13].

Remark 2.11. Br(X, W ) should only depend on a (Zariski) neighbourhood of the criti-
cal locus of W . This has been proved (without R-charge and on the level of homotopy
categories) by Orlov [11].

Remark 2.12. As far as we are aware this definition is new in the mathematics literature,
but it is almost classical in the physics literature, see e.g. [6].

Remark 2.13. We could make the definition of a B-brane more general by allowing the
endomorphism dE to be derived, i.e.

dE ∈ �(End(E)⊗A0,•
X )

with R-charge plus Dolbeaut degree equal to 2. Similarly we could generalize the defini-
tion of the LG B-model by allowing W to be a closed element of A0,•

X . The advantage of
this more general definition of B-brane is that the resulting category contains mapping
cones, i.e. it is pre-triangulated. However notice that in Example 2.9 above Perf(X) is
already pre-triangulated, this leads us to suspect that at least when W ∈ OX our more
restricted category of B-branes is in fact pre-triangulated as well. When X is affine this
is obvious.

Remark 2.14. Since the Hom sets are actually bi-complexes, and the Dolbeaut grading is
bounded, we have a spectral sequence converging to the homology of R�(Hom(E, F))

whose first page is

(H•(Hom(E, F)), dE,F ).

A map f : (X, W ) → (X ′, W ′) of LG B-models is just a map from X to X ′ com-
muting with the R-charges and such that f ∗W ′ = W . Assuming that the derived global
sections functors R�X and R�X ′ are chosen compatibly we get a dg-functor

f ∗ : Br(X ′, W ′)→ Br(X, W ).

Similarly a birational map between (X, W ) and (X ′, W ′) is a birational map from X to
X ′ that commutes with R-charge and sends W ′ to W .

Conjecture 2.15. Let (X, W ) and (X ′, W ′) be birational LG B-models, and assume that
X and X ′ are Calabi-Yau. Then there is a quasi-equivalence

Br(X, W ) � Br(X ′, W ′).

In the next section we prove a special case of this conjecture.
As was explained in the Introduction, this is a conservative version of the real con-

jecture, which is that the B-models associated to (X, W ) and (X ′, W ′) are equivalent.
We state this version since it is not yet proved that the B-model exists.
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3. Quotients of a Vector Space by C
∗

Take a vector space V , and equip it with a linear action of C
∗, which we’ll denote by C

∗
G

(the ‘gauge group’). We require that C
∗
G acts through SL(V ). We have a stack quotient

X = [V/C
∗
G ].

There are also two possible GIT quotients of V by C
∗
G associated to the characters ±1

of C
∗
G . From the stacky point of view these are open sub-stacks

ι± : X± = [V ss± /C
∗
G ] ↪→ X

consisting of the semi-stable loci given by either character. All of these spaces are
Calabi-Yau.

Now choose an action of C
∗
R on V that commutes with the gauge-group action. Note

that both GIT quotients are then preserved by C
∗
R . Let W be a function on V that is

invariant with respect to C
∗
G and has R-charge 2. Then we have three Landau-Ginzburg

B-models

(X+, ι∗+W )
ι+
↪→ (X , W )

ι−←↩ (X−, ι∗−W ). (3.1)

From now on we’ll abuse notation and call both ι∗+W and ι∗−W just W .
Both GIT quotients are the total space of orbi-vector bundles over weighted projective

space. To see this, let

V = Vx ⊕ Vy ⊕ Vz

be the decomposition of V into eigenspaces with positive, negative and zero C
∗
G weights.

Then X+ projects down to PVx , and it is the total space of the vector bundle associated
to the graded vector space Vy⊕Vz . Similarly X− is the total space of Vx ⊕Vz over PVy .

For our sign conventions, it is simplest if we agree that PVy is Proj of a negatively
graded ring, so that the O(−1) line bundle on PVy is the one that has global sections.
If we don’t adopt this then whenever we restrict to X− we have to flip the signs of all
line-bundles.

Let d be the sum of the positive eigenvalues of C
∗
G on V , since C

∗
G acts through

SL(V ) the sum of the negative eigenvalues is −d.
We’ll make repeated use of the following fairly classical fact:

Lemma 3.1 [4].

H p
PVx

(O(k)) =
⎧⎨
⎩

(OVx )k p = 0, k ≥ 0
(OVx )d−k p = dimPVx , k ≤ −d

0 otherwise,

where (OVx )k is the polynomial on Vx with C
∗
G-degree k.

Corollary 3.2.

H0
X+

(O(k)) = (OV )k

for all k, and

H p
X+

(O(k)) = 0

for p > 0 and k > −d.

Proof. By adjunction and affineness of the projection X+ → PVx , we have

H p
X+

(O(k)) = H p
PVx

(S•(Vy ⊕ Vz)
∨ ⊗O(k)).
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3.1. Quasi-equivalences. In this section we will prove

Theorem 3.3. There is a natural set of quasi-equivalences

Br(X+, W ) ∼= Br(X−, W )

parametrised by Z.

The key idea of the proof of this theorem comes from [5]. Using restriction functors
shown in 3.1, we will identify both Br(X+, W ) and Br(X−, W ) with one of a set of full
subcategories Gt ⊂ Br(X , W ) parameterized by t ∈ Z.

Note that every vector bundle on X is a direct sum of the obvious line bundles O(k),

k ∈ Z. Let

Gt ⊂ Br(X , W )

be the full subcategory consisting of B-branes (E, dE ) where all the summands of E
come from the set

O(t), . . . ,O(t + d − 1).

We will show that the functors

ι∗± : Br(X , W )→ Br(X±, W )

become quasi-equivalences when restricted to any of the subcategories Gt , thus proving
Theorem 3.3.

Recall that a dg-functor between dg-categories is a quasi-equivalence if the induced
map on homotopy categories is an equivalence. This means that it must be a quasi-
isomorphism on Hom sets (quasi-fully-faithful) and surjective on homotopy-equiva-
lence classes of objects (quasi-essentially-surjective).

Lemma 3.4. For any t ∈ Z, both functors

ι∗± : Gt → Br(X±, W )

are quasi-fully-faithful.

Proof. Obviously we need only show the proof for ι∗+. Let (E, dE ) and (F, dF ) be any
two B-branes in Gt . We get corresponding B-branes ι∗+(E, dE ) and ι∗+(F, dF ) on X+.
Then

HomBr(X ,W )((E, dE ), (F, dF )) = R�X (Hom(E, F))

and

HomBr(X+,W )(ι
∗
+(E, dE ), ι∗+(F, dF )) = R�X+(ι

∗
+Hom(E, F)).

We wish to show that the map ι∗+ is a quasi-isomorphism between these two complexes.
Recall (Remark 2.14) that the homology of both complexes can be computed by spectral
sequences whose first pages are

(H•X (Hom(E, F)), dE,F ) and (H•X+
(ι∗+Hom(E, F)), ι∗+dE,F ).
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On X , taking global sections just means taking C
∗
G -invariants, which is exact, so for any

line-bundle O(k),

H•X (O(k)) = H0
X (O(k)) = (OV )k,

and by Corollary 3.2 this is also true on X+ when k > −d. Since Hom(E, F) is a direct
sum of line-bundles from the set

O(1− d), . . . ,O(d − 1)

the induced map

ι∗+ : H•X (Hom(E, F))→ H•X+
(ι∗+Hom(E, F))

is an isomorphism between the first pages of the two spectral sequences. Hence ι∗+ is a
quasi-isomorphism. ��

We will deduce quasi-essential-surjectivity from the following lemma, which is essen-
tially Beilinson’s Theorem [1].

Lemma 3.5. For any t ∈ Z, any C
∗
R-equivariant vector bundle E on X+ has a finite

C
∗
R-equivariant resolution by direct sums of shifts of line-bundles from the set

O(t), . . . ,O(t + d − 1).

Proof. Recall that all vector bundles on X are direct sums of the character line bundles.
Since X+ is quasi-projective, E is a quotient of ι∗+V for some vector bundle V on X , and
we can choose this quotient to be C

∗
R-equivariant. Then we have a map V → ι+∗E which

is surjective on X+. Since X is smooth, the kernel of this map has a finite resolution
by vector bundles, which we again may choose to be C

∗
R-equivariant. The restriction of

this resolution to X+, together with V , give a finite C
∗
R-equivariant resolution of E by

direct sums of character line-bundles. Thus it is sufficient to prove the lemma for the
line-bundles O(k).

On PVx we have the Euler exact sequence

(∧•V∨x ,¬x) = [0→ O(−d)→ · · · → O→ 0]
which resolves O(−d) in terms of O(−d + 1), . . . ,O, and the C

∗
R-action on Vx means

that it is C
∗
R-equivariant. Pull this up to X+. By repeatedly using twists of this exact

sequence we see that any line-bundle O(k) has a C
∗
R-equivariant resolution by shifts of

line bundles from the set O(t), . . . ,O(t + d − 1). ��
Lemma 3.6. For any t, both functors

ι∗± : Gt → Br(X±, W )

are quasi-essentially-surjective.

Proof. Again we only show the proof for ι∗+. Let (E, dE ) be a B-brane on (X+, W ). By
Lemma 3.5 we can C

∗
R-equivariantly resolve E by a complex

E−s ∂E→ · · · ∂E→ E−1 ∂E→ E0 q
� E,
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where every term is a direct sum of shifts of line bundles O(k) with t ≤ k ≤ t + d − 1.
If we let

E =
⊕

p

E−p[p],

then ∂E is an endomorphism of E with R-charge 1. We’re going to show that we can
perturb ∂E to an endomorphism dE whose square is W 1E , and that the resulting B-brane
(E, dE ) is homotopic to (E, dE ). To see that this proves the lemma, let Ê be the vector
bundle on X given by the same direct sum of line-bundles as E . Then

H0
X+

(End(E)) = H0
X (End(Ê))

(see Corollary 3.2), so dE is the restriction of an endomorphism dÊ of Ê , so we have a

B-brane (Ê, dÊ ) ∈ Gt that restricts to give (E, dE ). So every B-brane is homotopic to
a B-brane lying in ι∗+Gt , which is the statement of the lemma.

As well as the R-charge, we will need to keep track of the grading on E that comes
from it being a complex, let’s call this the homological grading. Of course ∂E also has
homological grade 1.

Now consider the complex E and the bundle E as objects in the usual derived cate-
gory of sheaves on X+, which are quasi-isomorphic under the map q. The line bundles
making up E have no higher Ext groups between them (Cor. 3.2 again), so we have
quasi-isomorphisms

H0(End(E)) ∼= RHom X+(E, E) ∼= RHom X+(E, E). (3.2)

Here we are using the homological grading on the LHS and the Dolbeaut grading on
the RHS, but the quasi-isomorphims are also equivariant with respect to R-charge. This
means we can find an element D0 ∈ H0(End(E)) which is closed with respect to ∂E ,
has R-charge 1, and maps to the endomorphism dE of E , i.e.

dE q = q D0.

We can use D0 to perturb the endomorphism ∂E of E . Unfortunately this does not yet
make it a B-brane for (X+, W ), rather we have

(∂E + D0)
2 = D2

0 = W 1E − [∂E , D−1]
for some element D−1 ∈ H0(End(E)) which has homological grade -1 and R-charge
1. Here we write [∂E ,−] to denote the supercommutator with respect to the R-charge
grading; strictly speaking this is the differential on H0(End(E)) that comes from con-
sidering (E, 0) as a B-brane on (X+, 0) rather than as a complex of sheaves in Db(X+),
but the difference is irrelevant and the signs are more convenient this way.

If we perturb further by D−1 we get

(∂E + D0 + D−1)
2 = W 1E + [D0, D−1] + D2−1,

and notice that now all the unwanted terms have homological degree at most −1. We
claim we can iterate this process, and since the homological degree is bounded it will
terminate. Indeed, we wish to solve

(∂E + D)2 = W 1E ,
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where

D = D0 + D−1 + D−2 + · · ·
is a series of terms of decreasing homological grade and R-charge 1. The piece of this
equation in homological grade −k < 0 is

[∂E , D−k−1] + (D2)−k = 0.

Assume that we have found D0, .., D−k such that this equation holds in homological
grades > −k. By (3.2), H0(End(E)) has no homology in negative degrees, so we can
find D−k−1 if (D2)−k is closed. But

[∂E , (D2)−k] = [∂E , D2]−k+1

=
−k+1∑
i=0

[[∂E , Di−1], D−k−i+1]

=
−k+1∑
i=0

[(D2)i , D−k−i+1]

= [D2, D]−k+1

= 0,

so inducting on k our solution D exists. We let

dE = ∂E + D

so (E, dE ) is a B-brane on (X+, W ). It remains to show that it is homotopic to the brane
(E, dE ). To see this we consider the dga

EndBr(X+,W )((E, dE )⊕ (E, dE )) = �(End(E ⊕ E)⊗A0,•).
This carries its usual grading (the sum of R-charge and Dolbeaut grade) and also the
homological grading from E . Its differential is a sum of terms induced from dE , ∂̄, ∂E
and the D−k , these have homological grading 0, 0, 1 and −k respectively. Thus we can
filter this dga by defining

F pEndBr(X+,W )((E, dE )⊕ (E, dE ))

to be the sum of the bi-graded pieces that have

(usual grade)− (homological grade) ≥ p,

then this filtration is compatible with the differential and the algbra structure. Also the
filtration is bounded, in the sense that the induced filtration on any (usual) graded sub-
space is bounded. This is a sufficient condition for the associated spectral sequence of
dgas to converge [10]. To get page 1 of this spectral sequence we take the homology of
the term of the differential which has bi-degree (1, 1), this is the term induced from ∂E .
The diffential on page 1 is induced from dE , ∂̄ and D0, and D0 was chosen so that it
induced dE on ∂E -homology. So page 1 is

�(End(E ⊕ E)⊗A0,•) = EndBr(X+,W )((E, dE )⊕ (E, dE )).

This is concentrated in homological grade zero, so the spectral sequence collapses at
page 2. We deduce that in the homotopy category the objects (E, dE ) and (E, dE ) are
isomorphic. ��
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3.2. Spherical B-branes. We use the same set-up as in the previous subsection, but from
now on we assume that C

∗
G has no zero eigenvalues in V , so

V = Vx ⊕ Vy

are the positive and negative C
∗
G -eigenspaces.

The zero section gives an inclusion

PVx ↪→ X+,

and there is an associated sky-scraper sheaf OPVx . This is a spherical object in the derived
category Db(X+). We are going to modify it so as to produce a spherical object in the
category of B-branes Br(X+, W ).

Under our definition a B-brane is a vector bundle, so it is supported over the whole
of X+ (it is ‘space-filling’). However a better definition should allow arbitrary coherent
sheaves, which in particular can be supported just on subschemes. Then no modification
of OPVx would be necessary, we could just equip it with the zero endomorphism, which
does indeed square to W because W ≡ 0 along the zero section.

We have not attempted to develop such a definition because the presence of local Ext
groups makes defining the morphisms between such objects significantly more difficult.
Instead we shall resolve OPVx by vector bundles, and deform the resolution. Never-
theless the resulting object does behave as if it was supported just on the zero section
(Prop. 3.8).

Let
{
∂yi

}
,
{
dyi

}
be dual bases of Vy and V∨y , and yi the corresponding co-ordinates.

Consider the Koszul resolution of OPVx :

(∧•V∨y ,¬�i yi∂yi )
∼−→ OPVx .

We will deform the differential to make it a B-brane on (X+, W ), and show that it is still
spherical.

Write W as

W =
∑

i

yi fi . (3.3)

This is possible since W is gauge invariant, and has R-charge 2 so has no constant term.
We define a B-brane on (X+, W ) by the C

∗
R-equivariant vector bundle

S := ∧•(V∨y [1])
and the endomorphism

dS :=
∑

i

¬yi∂yi + ∧ fi dyi .

It is easy to check that d2
S = W 1S .

Proposition 3.7. The B-brane (S, dS) is independent, up to isomorphism, of the choice
of splitting (3.3)
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Proof. Let W = ∑
i yi f̂i be another choice of splitting, and d̂S the correspondingto

prove the lemma in the case that fi = f̂i for i > 2. In that case we have

f̂1 = f1 + y2g,

f̂2 = f2 − y1g,

for some g. We have inverse isomorphisms

1S + ∧(gdy1 ∧ dy2) : (S, dS)→ (S, d̂S),

1S − ∧(gdy1 ∧ dy2) : (S, d̂S)→ (S, dS),

and it is easy to check that these are closed.

Let ζ : PVx ↪→ X+ denote the zero section.

Proposition 3.8. For any B-brane (E, dE ) on (X+, W ), the homology of

HomBr(X+,W )((E, dE ), (S, dS))

can be computed from a spectral sequence whose first page is

H•
PVx

(ζ ∗E∨)

with the differential induced from dE .

Note that since W = 0 on the zero section, dE does indeed induce a differential on
H•

PVx
(ζ ∗E∨).

Proof. The bundle S, as well as being C
∗
R-equivariant, is graded by the powers in the

exterior algebra. Let’s call this the exterior grading, and write

dS = ∂S + DS

for the terms of exterior grade -1 and +1 (∂S is the usual Koszul differential). Consider

HomBr(X+,W )((E, dE ), (S, dS)) = �(Hom(E, S)⊗A0,•).
This carries its usual grading which is the sum of R-charge and the Dolbeaut grading,
and also an exterior grading induced from the grading on S. The differential has terms
induced from ∂S , DS , dE and ∂̄ having bi-degrees (1,−1), (1, 1), (1, 0) and (1, 0) respec-
tively. We now proceed by a similar argument to the one used at the end of Lemma 3.6.
Define a filtration by letting

F pHomBr(X+,W )((E, dE ), (S, dS)) ⊂ HomBr(X+,W )((E, dE ), (S, dS))

be the direct sum of the bi-graded pieces whose total degree is≥ p, then the differential
preserves this filtration, and is bounded for any fixed total of the Dolbeaut grade and
R-charge. Page 1 of the associated spectral sequence is given by taking the homology
of the term induced from ∂S only, so it is

�(Hom(E,OPVx )⊗A0,•) ∼= R�PVx (ζ
∗E∨)

with differential induced from dE and ∂̄ . This is concentrated in exterior grade zero, so
this spectral sequence collapses after this page.

To compute page 2, we can use a second spectral sequence (essentially the one from
Remark 2.14) by remembering that the complex on page 1 is actually a bi-complex under
the Dolbeaut grading and R-charge. ��
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Corollary 3.9. (S, dS) is either a spherical object or zero in H0(Br(X+, W )).

Proof. By Corollary 3.2,

H•
PVx

(ζ ∗S∨) = H•
PVx

(O)⊕ H•
PVx

(O(−d))

= C⊕ C,

where the second copy of C has some bi-degree depending on the dimensions and
R-charges of Vx and Vy . Either the spectral sequence collapses at this point (which it
usually will for degree reasons) and (S, dS) is spherical, or it converges to 0 and (S, dS)

is contractible. ��
Example 3.10 (Flop with superpotential). Let V = C

4 with C
∗
G weights 1, 1, −1, −1,

so both GIT quotients are isomorphic to O(−1)⊕2
P1 . Let W = x1 y1 + x2 y2 (and pick any

compatible C
∗
R action). We can take (S, dS) to be

O(2)

(y2,−y1) �� O(1)⊕2
(x2,−x1)
��

(y1,y2) �� O
(x1,x2)

��

so

HomBr(X+,W )((S, dS), (S, dS)) ∼= R�P1(ζ ∗S∨) ∼= 0

and so (S, dS) is contractible. In fact one would expect the whole category Br(X+, W )

in this example to be zero by Knörrer periodicity.

3.3. Spherical twists. We continue with the same class of examples as in the previ-
ous subsection. We have shown in Theorem 3.3 that for each t ∈ Z we have quasi-
equivalences

Br(X+, W )
ι∗+←− Gt

ι∗−−→ Br(X−, W ).

On the homotopy categories these can be inverted, so we have Z-many equivalences

�t : H0(Br(X+, W ))
∼−→ H0(Br(X−, W ))

passing through the categories H0(Gt ), and hence we have autoequivalences �−1
t+1�t of

Br(X+, W ). The statement that we would like to be able to make is that �−1
t+1�t is an

inverse spherical twist around the spherical object (S(t), dS), in the sense of [15]. Unfor-
tunately such a statement would require a proper theory of Fourier-Mukai transforms
for Landau-Ginzburg B-models, and we have not developed such a theory. Instead we’re
going to settle for a less clean statement, which we prove below (Theorem 3.13).

Recall that an inverse spherical twist on a space X is an auto-equivalence of the
derived category Db(X) that sends an object E to the cone on the natural map

[E −→ RHomX (E, S)∨ ⊗ S],
where S is a fixed spherical object in Db(X). We have shown (Cor. 3.9) that we have
an object (S, dS) ∈ Br(X+, W ) that is either spherical or zero, we can twist it by O(t)
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to get other B-branes S(t) that are either spherical or zero. What we’re going to do is
construct, for any B-brane (E, dE ) ∈ Br(X+, W ), a suitable map

εE : E → H∨ ⊗ S(t),

where H is a complex such that

H � HomBr(X+,W )(E, S(t))

and then show that �−1
t+1�t sends E to the cone on εE . If S(t) is spherical, this is a good

approximation to showing that �−1
t+1�t is a spherical twist (at least on objects). If S(t)

is zero, it shows that �−1
t+1�t is the identity (at least on objects).

We begin with another Corollary of Proposition 3.8.

Lemma 3.11. Let (E, dE ) ∈ ι∗+Gt . Then

HomBr(X+,W )((E, dE ), (S(t), dS)) ∼= (H0
PVx

(ζ ∗E∨(t), d∨E ).

Proof.

HomBr(X+,W )(E, S(t)) = HomBr(X+,W )(E(−t), S)

which by Prop. 3.8 can be computed from H•
PVx

(ζ ∗E∨(t)). But E is a direct sum of line
bundles O(k) with t ≤ k < t + d, so by Lemma 3.1,

H•
PVx

(ζ ∗E∨(t)) = H0
PVx

(ζ ∗E∨(t)) = C
⊕m E ,

where m E is the number of copies of O(t) appearing in E , and the spectral sequence
collapses. ��

Pick an (E, dE ) ∈ ι∗+Gt . For notational convenience let us define

H := (H0
PVx

(ζ ∗E∨(t)), d∨E ).

If we were in the special case when W = 0 and we had chosen dE = 0 then there would
be a canonical map (the unit of the adjunction)

ε0 : E → H∨ ⊗ S(t).

This map just projects E onto its O(t)⊕m E summand and then includes this as the final
term of H∨ ⊗ S(t).

When dE �= 0 the map ε0 is not closed, so we cannot take its mapping cone. We can
fudge this using the following:

Lemma 3.12. There is a closed map of R-charge 0,

εE = ε0 + ε1 + ... : E → H∨ ⊗ S(t),

where εi has exterior grade i .

Recall that the ‘exterior grade’ refers to the grading on S that comes from its underlying
vector bundle being an exterior algebra.
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Proof. We use the iterative technique from Lemma 3.6. Consider the complex

HomX+(E,H∨ ⊗ S(t)).

This is bigraded by R-charge and exterior grade, and carries a differential d composed
of terms

d = d−1 + d0 + d1

of exterior grade−1, 0, and 1. The term d−1 just comes from the Koszul differential ∂S
on S. If we just take d−1 homology, the complex is acyclic except in exterior grade 0,
where it is

HomPVx (O(t)⊕m E ,O(t)⊕m E ).

We want to solve dεE = 0, which in exterior grade k is

d−1εk+1 = −d0εk − d1εk−1.

Suppose we have solved this for all exterior grades ≤ k. Then

d−1(−d0εk − d1εk−1) = d0d−1εk + d1d−1εk−1 + d2
0εk−1

= −d0(d0εk−1 + d1εk−2)− d1(d0εk−2 + d1εk−3) + d2
0εk−1

= 0.

If k ≥ 1 then by acyclicity an εk+1 exists. To check that an ε1 exists we need to check
that d0ε0 is zero in d−1-homology, which means calculating the component of it that
maps O(t)⊕m E ⊂ E to O(t)⊕m E ⊂ H∨⊗ S(t). But this is zero, because the differential
on H∨ cancels the component of dE that maps O(t)⊕m E to itself. ��

Write (CE , dC ) for the mapping cone of εE .

Theorem 3.13. For any (E, dE ) ∈ ι∗+Gt ,

�−1
t+1 ◦�t ([(E, dE )]) � [(CE , dC )]

in the homotopy category of Br(X+, W ).

Proof. Calculating �t ([(E, dE )] is easy since (E, dE ) ∈ ι∗+Gt , it is given by exactly the
same data as (E, dE ) but considered as a brane on X−. To apply �−1

t+1 to it we have to
replace it with a homotopy equivalent brane that lies in ι∗−Gt+1, which we know we can
do by Lemma 3.6. In fact we can do this fairly explicitly: split E into its factors

E = O(t)⊕m E ⊕ E ′,

where E ′ is a direct sum of line bundles from {O(t + 1), . . . ,O(t + d − 1)}, then we
can resolve E (recall Lemma 3.5) by the complex

(E, ∂E ) := S̄(t)⊕m E ⊕ E ′ ∼−→ E,

where S̄ is the complex

(S̄, ∂S̄) := (∧≥1(V∨y [1]),¬�i yi∂yi )
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given by truncating (S, ∂S). Now we run the algorithm of Lemma 3.6 to get a brane
(E, dE ) ∈ ι∗−Gt+1, which we can then transport back to X+. This brane is graded by the
powers of the exterior algebra; as before we call this the exterior grading.

Define an exterior grading on CE by putting E in grade zero and shifting the exterior
grading on H∨ ⊗ S(t) by 1 (as one usually would for a mapping cone). The differential
on CE is then a sum of terms of exterior grade ≥ −1, and the term of exterior grade −1
is just the term induced from the Koszul differential ∂S on S. Denote this term by ∂C .
Then (E, ∂E ) and (CE , ∂C ) are branes on the LG model (X+, 0), and they are clearly
homotopy equivalent. Indeed, (CE , ∂C ) is

[O(t)⊕m E ⊕ E ′ ( j⊕m E ,0)−→ (S(t)⊕m E , ∂S)],
where j : O → S is the inclusion of O = ∧0V∨y ↪→ S, and the cone on j is clearly

homotopy equivalent to (S̄, ∂S̄). This means we have maps

CEh1 ��

f0
�� E

g0

�� ĥ1

��

forming a homotopy equivalence (with respect to ∂C and ∂E ), where f0 and g0 have
both R-charge and exterior grade 0 and h1 and ĥ1 have R-charge −1 and exterior grade
1. We claim we can use our iterative trick once again to perturb these maps by terms of
increasing exterior grade until we get a homotopy equivalence between (CE , dC ) and
(E, dE ). The argument is much the same as before: firstly observe that

RHom X+((CE ⊕ E, ∂C ⊕ ∂E ), (CE ⊕ E, ∂C ⊕ ∂E ))

has homology only in exterior grade zero, because ∂C and ∂E have homology only in
exterior grade zero. Secondly, let

F0 =
(

0 f0
g0 0

)
H1 =

(
h1 0
0 ĥ1

)

be the elements of this dga that we want to perturb, and let d = dC⊕dE and ∂ = ∂C⊕∂E .
The equations we want to solve are

[d, F] = 0,

F2 = 1 + [d, H ],
which are equivalent to

[∂, F] = −[(d − ∂), F],
[∂, H ] = F2 − 1− [(d − ∂), H ],

and it is easy to check that if these equations hold in exterior grade ≤ k, then the right-
hand-sides are closed with respect to [∂,−] so by acyclicity they can be solved in exterior
grade k + 1. ��
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