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Abstract: We describe how †-Frobenius monoids give the correct categorical descrip-
tion of certain kinds of finite-dimensional ‘quantum algebras’. We develop the concept
of an involution monoid, and use it to construct a correspondence between finite-dimen-
sional C*-algebras and certain types of †-Frobenius monoids in the category of Hilbert
spaces. Using this technology, we recast the spectral theorems for commutative
C*-algebras and for normal operators into an explicitly categorical language, and we
examine the case that the results of measurements do not form finite sets, but rather
objects in a finite Boolean topos. We describe the relevance of these results for topolog-
ical quantum field theory.

1. Introduction

The main purpose of this paper is to describe how †-Frobenius monoids are the cor-
rect tool for formulating various kinds of finite-dimensional ‘quantum algebras’. Since
†-Frobenius monoids have entirely geometrical axioms, this gives a new way to look at
these traditionally algebraic objects.

This difference in perspective can be thought of as moving from an ‘internal’ to an
‘external’ viewpoint. Traditionally, we formulate a C*-algebra as the set of elements of
a vector space, along with extra structure that specifies how to multiply elements, find a
unit element, apply an involution and take norms. This is an ‘internal’ view, since we are
dealing directly with the elements of the set. The ‘external’ alternative is to ‘zoom out’ in
perspective: we can no longer discern the individual elements of the C*-algebra, but we
can see more clearly how it relates to other vector spaces, and these relationships give an
alternative way to completely define the C*-algebra. This metaphor is made completely
precise by category theory, and the passage between these two types of viewpoint is
familiar in categorical approaches to algebra.

We proceed in Sect. 2 by introducing our categorical setting, monoidal †-catego-
ries with duals, and defining an involution monoid, a categorical axiomatization of an
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involutive algebra. Section 3 introduces †-Frobenius monoids, and explores some useful
properties of them. We specialize to the category of Hilbert spaces in Sect. 4, and make the
connection between †-Frobenius monoids and finite-dimensional C*-algebras precise.

An important aspect of the conventional study of C*-algebras is the spectral theorems,
for commutative C*-algebras and for normal operators. The †-Frobenius perspective on
C*-algebras allows these theorems to be presented categorically in the finite-dimensional
case, and we explore this in Sect. 5. We also use the †-Frobenius monoid formalism to
explore the construction of alternative quantum theories.

This work is relevant to the study of two-dimensional open-closed topological
quantum field theories (TQFTs), which model the quantum dynamics of string-like
topological structures which can merge together and split apart. It was shown by Lauda
and Pfeiffer [22] that such a theory is defined by a symmetric Frobenius monoid equipped
with extra structure. If we also add the physical requirement that the theory should be uni-
tary [7] then these become symmetric †-Frobenius monoids, and thus finite-dimensional
C*-algebras by Lemma 3.11 and the results of Sect. 4. These are precisely the cor-
rect kinds of algebras with which to construct a state-sum triangulation model for the
TQFT [16,21], and so we can deduce the following: the two-dimensional open-closed
TQFTs which arise from a state sum on a triangulation are precisely the unitary such
TQFTs, up to multiplication by a scalar factor.

The results presented here are closely tied to finite-dimensional algebras. The
author is aware of some work in progress on infinite-dimensional generalizations [5],
which requires significant changes to the underlying algebraic structures. However, the
importance of the finite-dimensional case should not be underestimated. In the study
of topological quantum field theory, in particular, it is often necessary to restrict to
finite-dimensional algebras for the constructions to be well-defined, as a consequence
of compactness of the topological category.

The construction described here can be generalized far beyond the scope of the cur-
rent paper. In future work, we will describe how higher-dimensional ‘quantum algebras’
can be described as †-Frobenius pseudoalgebras, ‘weakened’ forms of Frobenius alge-
bras which live in a monoidal 2-category. This extends results of Day, McCrudden and
Street [13,31]. These higher-dimensional quantum algebras include the fusion C*-cate-
gories of considerable importance in the representation theory of quantum groups [19]
and in topological quantum field theory [8].

Why †-Frobenius monoids? The key property of †-Frobenius monoids which makes
them so useful is contained in the following observation, due to Coecke, Pavlovic and
the author [12]. Let (V,m, u) be an associative, unital algebra on a complex vector space
V , with multiplication map m : V ⊗ V � V and unit map u : C � V . We can map
any element α ∈ V into the algebra of operators on V by constructing its right action, a
linear map Rα := m ◦ (idA ⊗ α) : V � V . We draw this right action in the following
way:

α
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The diagram is read from bottom to top. This is a direct representation of our definition
of Rα: vertical lines represent the vector space V , the dot represents preparation of
the state α, and the merging of the two lines represents the multiplication operation
m : V ⊗ V � V . If V is in fact a Hilbert space we can then construct the adjoint map
Rα† : V � V . Will this adjoint also be the right action of some element of V ?

In the case that (V,m, u) is in fact a †-Frobenius monoid, the answer is yes. We
draw the adjoint Rα† by flipping the diagram on a horizonal axis, but keeping the arrows
pointing in their original direction:

α†

The splitting of the line into two represents the adjoint to the multiplication, and the dot
represents the linear map α† : V � C. The multiplication and unit morphisms of the
†-Frobenius monoid, along with their adjoints, must obey the following equations (see
Definition 3.3):

= = = =

On the left are the Frobenius equations, and on the right are the unit equations. The short
horizontal bar in the unit equations represents the unit for the monoid, and the straight
vertical line represents the identity homomorphism on the monoid. In fact, we also have
two extra equations, since we can take the adjoint of the unit equations. We can use a
unit equation and a Frobenius equation to redraw the graphical representation of Rα† in
the following way:

α†

=

α†

=

α†

= α†

We therefore see that the adjoint of Rα is indeed a right-action of some element:
Rα† = Rα′ , for α′ = (idA ⊗ α†) ◦ m† ◦ u.
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To better understand this transformation α � α′ we apply it twice to evaluate (α′)′,
using the Frobenius and unit equations and the fact that the †-functor is an involution:

(α′)′

=

(α′)†

=

(α†)†

=

α

=

α

We see that (α′)′ = α, and so the operation α � α′ is an involution. Since taking
the adjoint Rα � R†

α is also clearly an involution, the mapping of elements of the
monoid into the ring of operators on V is therefore involution-preserving, as it maps one
involution into another. We shall see that the mapping is injective and preserves the mul-
tiplication and unit of (V,m, u), so in fact we have a fully-fledged involution-preserving
monoid embedding as described by Lemmas 3.19 and 3.20.

This observation is one reason why †-Frobenius monoids are such powerful tools. In
fact, given that the algebra of operators on V is a C*-algebra with ∗-involution given by
operator adjoint, and since any involution-closed subalgebra of a C*-algebra is also a
C*-algebra, we have already shown that every †-Frobenius monoid in Hilb can be given
a C*-algebra norm.

Overview of paper. We begin with a description of the categorical structure that we will
use to express our results. The categories we will be working with are monoidal †-catego-
ries with duals, with nontrivial coherence requirements between the monoidal structure,
†-structure and duality structure. These can be seen as not-necessarily-symmetric ver-
sions of the strongly compact-closed categories of Abramsky and Coecke [2,3].

We then describe the concept of an involution monoid, a categorical version of the
traditional concept of a ∗-algebra, which replaces the antilinear involution with a lin-
ear ‘involution’ from an object to its dual. We prove some general results on involution
monoids, †-Frobenius monoids and the relationships between them, and give a definition
of a unitary †-Frobenius monoid. In Hilb, the category of finite-dimensional complex
Hilbert spaces and continuous linear maps, these monoids have particularly good proper-
ties, which we explore. We then use these properties to demonstrate in Theorem 4.6 that
unitary †-Frobenius monoids in Hilb are the same as finite-dimensional C*-algebras.

The spectral theorem for finite-dimensional commutative C*-algebras is an important
classical result, and we develop a way to express it using the †-Frobenius toolkit. We first
summarize a result from [12], that the category of commutative †-Frobenius monoids
in Hilb is equivalent to the opposite of FinSet, the category of finite sets and functions.
We generalize this by defining a monoidal †-category to be spectral if its category of
commutative †-Frobenius monoids is a finitary topos. We also consider the spectral the-
orem for normal operators, and give a way to phrase it in an abstract categorical way
using the concept of internal diagonalization.

Nontrivial examples of spectral categories are provided by categories of unitary rep-
resentations of finite groupoids HilbG, where G a finite groupoid. In such a category,
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the spectrum of a commutative generalized C*-algebra — that is, the spectrum of a
commutative †-Frobenius monoid internal to the category — is not a set, but an object
in a finitary Boolean topos FinSetG. Categories of the form HilbG can therefore be
thought of as providing alternative settings for quantum theory, in which the logic of
measurement outcomes — while still Boolean — has a richer structure. On a technical
level, we also note that this gives a new way to extract a finite groupoid from its repre-
sentation category, as it is well-known that the groupoid G can be identified in FinSetG

as the smallest full generating subcategory.

2. Structures in †-categories

The †-functor. Of all the categorical structures that we will make use of, the most fun-
damental is the †-functor. It is an axiomatization of the operation of taking the adjoint
of a linear map between two Hilbert spaces, and since knowing the adjoints of all maps
C � H is equivalent to knowing the inner product on H , it also serves as an axiomat-
ization of the inner product.

Definition 2.1. A †-functor on a category C is a contravariant endofunctor † : C � C,
which is the identity on objects and which satisfies † ◦ † = idC.

Definition 2.2. A †-category is a category equipped with a particular choice of
†-functor.

These †-categories have a long history, sometimes going by the name ∗-categories. In
particular, they have been well-used in representation theory, especially by Roberts and
collaborators [14,23] under the framework of C*-categories, and by others in the study
of invariants of topological manifolds [32]. They have also been used to study the prop-
erties of generalizations of quantum mechanics [10,33], where it is not assumed that
the underlying categories are C-linear. A useful physical intuition is that the †-functor
models the time-reversal of processes, and considering it as a fundamental structure
gives an interesting new perspective on the development of physical theories [7].

Given a †-category, we denote the action of a †-functor on a morphism f : A � B
as f † : B � A, and by convention we refer to the morphism f † as the adjoint of f .
We can now make the following straightforward definitions:

Definition 2.3. In a †-category, a morphism f : A � B is an isometry if f † ◦ f = idA;
in other words, if f † is a retraction of f .

Definition 2.4. In a †-category, a morphism f : A � B is unitary if f † ◦ f = idA and
f ◦ f † = idB; in other words, if f is an isomorphism and f −1 = f †.

Definition 2.5. In a †-category, a morphism f : A � A is self-adjoint if f = f †.

Definition 2.6. In a †-category, a morphism f : A � A is normal if f ◦ f † = f † ◦ f .

Monoidal categories with duals. We will work in monoidal categories throughout this
paper, and we will require that each object in our monoidal categories has a left and a
right dual. In the presence of a †-functor there are then some compatibility equations
which we can impose, which we will describe in this section.

There is an important graphical notation for the objects and morphisms in these
categories [18] which we will rely on heavily. We have already made use of it in the
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Introduction. Objects in a monoidal category are drawn as wires, and the tensor product
of two objects is drawn as those objects side-by-side; for consistency with the equation
A ⊗ I � A � I ⊗ A, we therefore ‘represent’ the tensor unit object I as a blank space.
Morphisms are represented by ‘junction-boxes’ with input wires coming in underneath
and output wires coming out at the top, and composition of morphisms is represented
by the joining-up of input and output wires. For visual consistency, the identity mor-
phism on an object is also not drawn. These principles are demonstrated by the following
pictures:

A

A

f

A A

B

g

A A

B

C

g

h

Object A or Morphism Morphism Morphism
morphism idA f : I � A idA ⊗ g h ◦ (idA ⊗ g)

We will often omit the labels on the wires when it is obvious from the context which
object they represent.

We now give the definition of duals, and describe their graphical representation.

Definition 2.7. An object A in a monoidal category has a left dual if there exists an
object A∗L and left-duality morphisms εL

A : I � A∗L ⊗ A and ηL
A : A ⊗ A∗L � I

satisfying the triangle equations:

A

A ⊗ A∗ ⊗ A

idA⊗εL
A

�

ηL
A⊗idA

� A

idA

�

A∗

A∗ ⊗ A ⊗ A∗

εL
A⊗idA∗

�

idA∗⊗ηL
A

� A∗

idA∗

�
(1)

Analogously, an object A has a right dual if there exists an object A∗R and right-duality
morphisms εR

A : I � A ⊗ A∗R and ηR
A : A∗R ⊗ A � I satisfying similar equations to

those given above.

It follows that any two left (or right) duals for an object are canonically isomorphic. To
distinguish between the objects A and A∗L , we add arrows to our wires, usually drawing
an object A with an upward-pointing arrow and drawing A∗L with a downward-pointing
one. We use the same notation for A∗R , which will not lead to confusion since we will
soon choose our duals such that A∗L = A∗R for all objects A. We represent the duality
morphisms by a ‘cup’ and a ‘cap’ in the following way:

AA∗L

A A∗L

εL
A : I � A∗L ⊗ A ηL

A : A ⊗ A∗L � I
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The reason for this is made clear by the representation it leads to for the duality equations:

A

A

A∗L = A

A∗L

A

A∗L

= A∗L

We can therefore ‘pull kinks straight’ in the wires whenever we find them. This is one
reason that the graphical representation is so powerful: the eye can easily spot these
simplifications, which would be much harder to find in an algebraic representation.

Definition 2.8. A monoidal category has left duals (or has right duals) if every object
A has an assigned left dual A∗L (or a right dual A∗R ), along with assigned duality
morphisms, such that I ∗L = I and (A ⊗ B)∗L = B∗L ⊗ A∗L (or the equivalent with L
replaced with R.)

The order-reversing property of the (−)∗L and (−)∗R operations for the monoidal tensor
product is important: it allows us to choose a dual for A ⊗ B given duals of A and B
independently. In the presence of a braiding isomorphism A ⊗ B � B ⊗ A we can
suppress this distinction, but this will not be available to us in general.

Definition 2.9. In a monoidal category with left or right duals, with an assigned left dual
for each object or a chosen right dual for each object, the left duality functor (−)∗L

and right duality functor (−)∗R are contravariant endofunctors that take objects to
their assigned duals, and act on morphisms f : A � B in the following way:

f ∗L := (idA∗ ⊗ ηL
B) ◦ (idA∗ ⊗ f ⊗ idB∗) ◦ (εL

A ⊗ idB∗), (2)

f ∗R := (ηR
B∗ ⊗ idA) ◦ (idB∗ ⊗ f ⊗ idA∗) ◦ (idA∗ ⊗ εR

A∗). (3)

These definitions can be understood more easily by their pictorial representation:

f ∗L := f f ∗R := f (4)

Monoidal †-categories with duals. We now investigate appropriate compatibility con-
ditions in the case that our monoidal category has both duals and a †-functor.

Definition 2.10. A monoidal †-category is a monoidal category equipped with a
†-functor, such that the associativity and unit natural isomorphisms are unitary. If the
monoidal category is equipped with natural braiding isomorphisms, then these must
also be unitary.

We will not assume that our monoidal categories are strict. A good reference for the
essentials of monoidal category theory is [24].

In a monoidal †-category we can give abstract definitions of some important termi-
nology normally associated with Hilbert spaces.
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Definition 2.11. In a monoidal category, the scalars are the monoid Hom(I, I ). In a
monoidal †-category, the scalars form a monoid with involution.

Definition 2.12. In a monoidal †-category, a state of an object A is a morphism
φ : I � A.

Definition 2.13. In a monoidal †-category, the squared norm of a state φ : I � A is
the scalar φ† ◦ φ : I � I .

If our †-category also has a zero object, we note that it is quite possible for the squared
norm of a non-zero state to be zero. For this reason, as it stands, Definition 2.13 seems a
poor abstraction of the notion of the squared norm on a vector space. In [33] we describe
a way to overcome this problem, but it will not affect us here.

Monoidal †-categories have a simpler duality structure than many monoidal catego-
ries, as the following lemma shows.

Lemma 2.14. In a monoidal †-category, left-dual objects are also right-dual objects.

Proof. Given an object A with a left dual A∗L witnessed by left-duality morphisms
εL

A : I � A∗L ⊗ A and ηL
A : A ⊗ A∗L � I , we can define εR

A := ηL
A

† and ηL
A := εL

A
†

which witness that A∗L is a right dual for A. �	
Since left or right duals are always unique up to isomorphism, left duals must be iso-
morphic to right duals in a monoidal †-category. We will exploit this isomorphism to
write A∗ instead of A∗L or A∗R , and it follows that A∗∗ � A. However, this is not
enough to imply that the functors (−)∗L and (−)∗R given in Definition 2.9 are naturally
isomorphic; for this we will require extra compatibility conditions.

Definition 2.15. A monoidal †-category with duals is a monoidal †-category such that
each object A has an assigned dual object A∗ (either left or right by Lemma 2.14) with
this assignment satisfying (A∗)∗ = A, and assigned left and right duality morphisms
for each object, such that these assignments are compatible with the †-functor in the
following way:

εL
A = ηR

A
† = ηL

A∗† = εR
A∗ , ηL

A = εR
A

† = εL
A∗† = ηR

A∗ , ((−)∗L)† = ((−)†)∗L . (5)

Since the left and right duality morphisms can be obtained from each other using the
†-functor, from now on we will only refer directly to the left-duality morphisms, defining
εA := εL

A and ηA := ηL
A.

We note that there does not yet exist a precise theorem governing the soundness of
the graphical calculus for this precise type of monoidal category with duals, although we
fully expect that one could be proved. The graphical calculus used in this paper should
therefore be thought of as a shorthand for the underlying morphisms in the category,
rather than a calculational method in its own right.

The compatibility condition ((−)∗L)† = ((−)†)∗L looks asymmetrical, as it does not
refer to the right-duality functor (−)∗R . We show that it is equivalent to two different
compatibility conditions.

Lemma 2.16. As a part of the definition of a monoidal †-category with duals, the
following compatibility conditions would be equivalent:

1. ((−)∗L)† = ((−)†)∗L , 2. ((−)∗R )† = ((−)†)∗R , 3. (−)∗L = (−)∗R .
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Proof. From the first two sets of equations between the duality morphisms given in
Definition 2.15, it follows directly that ((−)∗L)† = ((−)†)∗R . We combine this with
Condition 2 above to show that ((−)∗L)† = ((−)∗R )†, and since the †-functor is an invo-
lution, it then follows that (−)∗L = (−)∗R . Since this argument is reversible we have
shown that 2 ⇔ 3, and an analogous argument demonstrates that 1 ⇔ 3. �	
In a monoidal †-category the three given conditions will therefore all hold, and in partic-
ular the functors (−)∗L and (−)∗R will coincide. We denote this unique duality functor
as (−)∗. We use Condition 1 for Definition 2.15 rather than the more symmetrical Con-
dition, since it follows from a general ‘philosophy’ of †-categories: wherever sensible,
require that structures be compatible with the †-functor.

We can use this result to demonstrate a useful property of the duality functor (−)∗.

Lemma 2.17. In a monoidal †-category with duals, the duality functor (−)∗ is an invo-
lution.

Proof. The involution equation is ((−)∗)∗ = id, and we rewrite this using Lemma 2.16
as ((−)∗L)∗R = id. Writing this out in full, it is easy to demonstrate using the duality
equations and the compatibility equations of Definition 2.15. �	
Since the †-functor is also strictly involutive and commutes with the duality functor,
their composite is also an involutive functor.

Definition 2.18. In a monoidal †-category with duals, the conjugation functor (−)∗ is
defined on all morphisms f by f∗ = ( f ∗)† = ( f †)∗.

Since the †-functor is the identity on objects, we have A∗ = A∗ for all objects A. To
make this equality clear we will write A∗ exclusively, and the A∗ form will not be used.

For any morphism f : A � B we can use these functors to construct f∗ : A∗ � B∗,
f ∗ : B∗ � A∗ and f † : B � A, and it will be important to be able to easily distinguish
between these graphically. We will use an approach originally due to Selinger [30], in
the form adopted by Coecke and Pavlovic [11]. Given the graphical representation of the
duality functor (−)∗ given in (4), we could ‘pull the kink straight’ on the right-hand side
of the equation. This would result in a rotation of the junction-box for f by half a turn.
To make this rotation visible we draw our junction-boxes as wedges, rather than rectan-
gles, breaking their symmetry. The duality (−)∗ is given by composing the conjugation
functor (−)∗ and the †-functor, and since geometrically a half-turn can be built from
two successive reflections, this gives us a complete geometrical scheme for describing
the actions of our functors:

A

B

f

A

B

f †

A∗

B∗
f ∗

A∗

B∗

f∗

Our monoidal †-categories with duals are very similar to other structures consid-
ered in the literature, such as C*-categories with conjugates [14,34] and strongly-
compact-closed categories [2,3]. In these contexts the functors (−)∗ and (−)∗ also
play an important role.
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Involution monoids. An important tool in functional analysis is the ∗-algebra: a
complex, associative, unital algebra equipped with an antilinear involutive homomor-
phism from the algebra to itself which reverses the order of multiplication. Cate-
gory-theoretically, such a homomorphism is not very convenient to work with, since
morphisms in a category of vector spaces are usually chosen to be the linear maps.
However, if the vector space has an inner product, this induces a canonical antilinear
isomorphism from the vector space to its dual. Composing this with the antilinear self-
involution, we obtain a linear isomorphism from the vector space to its dual. This style
of isomorphism is much more useful from a categorical perspective, and we use it to
define the concept of an involution monoid. We will demonstrate that this is equivalent
to a conventional ∗-algebra when applied in a category of complex Hilbert spaces. The
natural setting for the study of these categorical objects is a category with a conjugation
functor, as defined above.

Definition 2.19. In a monoidal category, a monoid is an ordered triple (A,m, u) con-
sisting of an object A, a multiplication morphism m : A ⊗ A � A and a unit morphism
u : I � A, which satisfy associativity and unit equations:

= = = (6)

Definition 2.20. In a monoidal †-category with duals, an involution monoid (A,m, u; s)
is a monoid (A,m, u) equipped with a morphism s : A � A∗ called the linear involu-
tion, which is a morphism of monoids with respect to the monoid structure (A∗,m∗, u∗)
on A∗, and which satisfies the involution condition

s∗ ◦ s = idA. (7)

It follows from this definition that s and s∗ are mutually inverse morphisms, since
applying the conjugation functor to the involution condition gives s ◦ s∗ = idA∗ . We also
note that for any such involution monoid s : A � A∗ and s∗ : A � A∗ are parallel
morphisms, but they are not necessarily the same.

Definition 2.21. In a monoidal †-category with duals, given involution monoids
(A,m, u; sA) and (B, n, v; sB), a morphism f : A � B is a homomorphism of
involution monoids if it is a morphism of monoids, and if it satisfies the involution-
preservation condition

sB ◦ f = f∗ ◦ sA. (8)

If an object B is self-dual, it is possible for the involution sB : B � B to be the identity.
Let (B, n, v; idB) be such an involution monoid. In this case, it is sometimes possible
to find an embedding f : (A,m, u; sA) ⊂� (B, n, v; idB) of involution monoids even
when the linear involution sA is not trivial! We will see an example of this in the next
section.

The following lemma establishes that the traditional concept of ∗-algebra and the
categorical concept of an involution monoid are the same, in an appropriate context. We
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demonstrate the equivalence for finite-dimensional algebras, since the category of finite-
dimensional complex vector spaces forms a category with duals. However, involution
monoids are useful far more generally, and with a careful choice of conjugation functor
could be used just as well to describe infinite-dimensional algebras with an involution.

Lemma 2.22. For a unital, associative algebra on a finite-dimensional complex Hilbert
space V , there is a correspondence between the following structures:

1. antilinear maps t : V � V which are involutions, and which are order-reversing
algebra homomorphisms;

2. linear maps s : V � V ∗, where V ∗ is the dual space of V , satisfying s∗ ◦ s = idV ,
and which are algebra homomorphisms to the conjugate algebra on V ∗.

Furthermore, the natural notions of homomorphism for these structures are also equiv-
alent.

Proof. We first deal with the implication 1 ⇒ 2. We construct the linear isomorphism
s by defining s ◦ φ := (t (φ))∗ for an arbitrary morphism φ : C � V . This is linear,
because both t and (−)∗ are antilinear. It is a map V � V ∗ since t (φ) is an element
of V , and the complex conjugation functor (−)∗ takes V to V ∗. Checking the identity
s∗ ◦ s = idV , we have

s∗ ◦ s ◦ φ = s∗ ◦ (t (φ))∗ = (s ◦ t (φ))∗ = (t t (φ))∗∗ = φ.

The monoid homomorphism condition is demonstrated similarly, for arbitrary states φ
and ψ of V :

s ◦ m ◦ (φ ⊗ ψ) = (t (m ◦ (φ ⊗ ψ)))∗ definition of s

= (m ◦ (tψ ⊗ tφ))∗ t is order-reversing homomorphism

= m∗ ◦ ((tφ)∗ ⊗ (tψ)∗) order-reversing functoriality of (−)∗
= m∗ ◦ (sφ ⊗ sψ) definition of s

s ◦ u = (t (u))∗ = u∗ definition of s, t is homomorphism.

For the implication 2 ⇒ 1, we define t (φ) := (s ◦ φ)∗ for all elements φ of V . The
proof that t has the required properties is similar to the proof involved in the implication
1 ⇒ 2. The constructions of s and t in terms of each other are clearly inverse, and so
the equivalence has been demonstrated.

We now check that homomorphisms between these structures are the same. Our notion
of homomorphism between structures of type 2 is given by that in Definition 2.21,
and there is a natural notion of homomorphism between monoids equipped with an
antilinear self-involution. Consider algebras (A,m, u) and (B, n, v) equipped with anti-
linear involutive order-reversing homomorphisms tA : A � A and tB : B � B respec-
tively, and let f : A � B be any continuous linear map. It will be compatible with the
involutions if tB ◦ f = f ◦ tA. Acting on some state φ of A, and constructing lin-
ear maps sA : A � A∗ and sB : B � B∗ in the manner defined above, we obtain
tB ◦ f ◦ φ = sB∗ ◦ ( f ◦ φ)∗ = sB∗ ◦ f∗ ◦ φ∗ and f ◦ tA ◦ φ = f ◦ sA∗ ◦ φ∗. Equating
these and complex-conjugating we have sB ◦ f = f∗ ◦ sA as required. Conversely, let
(A,m, u; sA) and (B, n, v; sB) be involution monoids in Hilb, and let f : A � B
again be any linear map. If the involution-preservation condition sB ◦ f = f∗ ◦ sA
holds, then applying an arbitrary state φ we obtain sB ◦ f ◦ φ = (t ( f ◦ φ))∗ and
f∗ ◦ sA ◦φ = f∗ ◦ (tφ)∗ respectively for the left and right sides of the equation. Equating
these and complex-conjugating, we obtain t ( f ◦ φ) = f ◦ (tφ) as required. �	
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3. Results on †-Frobenius Monoids

Introducing †-Frobenius monoids. We begin with definitions of the important concepts.

Definition 3.1. In a monoidal category, a comonoid is the dual concept to a monoid;
that is, it is an ordered triple (A, n, v)× consisting of an object A, a comultiplication
n : A � A ⊗ A and a counit v : A � I , which satisfy coassociativity and counit
equations:

= = = (9)

If an object has both a chosen monoid structure and a chosen comonoid structure, then
there is an important way in which these might be compatible with each other.

Definition 3.2. In a monoidal category, a Frobenius structure is a choice of monoid
(A,m, u) and comonoid (A, n, v)× for some object A, such that the multiplication m
and the comultiplication n satisfy the following equations:

= = (10)

Reading these diagrams from bottom to top, the splitting of a line represents the comul-
tiplication n, and merging of two lines represents the multiplication m.

This geometrical definition of a Frobenius structure, although well-known, is super-
ficially quite different to the ‘classical’ definition in terms of an exact pairing. The
equivalence of these two definitions was first observed by Abrams [1], and an accessible
discussion of the different possible ways to define a Frobenius algebra is given in the
book by Kock [20]. This geometrical definition was first suggested by Lawvere, and was
subsequently popularized in the lecture notes of Quinn [29]. An important property of
a Frobenius structure is that it can be used to demonstrate that the underlying object is
self-dual.

If we are working in a †-category, from any monoid (A,m, u) we can canonically
obtain an ‘adjoint’ comonoid (A,m†, u†)×, and it is then natural to make the following
definition.

Definition 3.3. In a monoidal †-category, a monoid (A,m, u) is a †-Frobenius monoid
if it forms a Frobenius structure with its adjoint (A,m†, u†)×.

This construction is similar to an abstract Qsystems [23]. Given a †-Frobenius monoid
(A,m, u), we refer to m† as its comultiplication and to u† as its counit.
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Involutions on †-Frobenius monoids. We now look at the relationship between
†-Frobenius monoids and the involution monoids of Sect. 2. We will see that a †-Frobe-
nius monoid can be given the structure of an involution monoid in two canonical ways,
which in general will be different.

Definition 3.4. In a monoidal †-category with duals, a †-Frobenius monoid (A,m, u)
has a left involution sL : A � A∗ and right involution sR : A � A∗ defined as
follows:

= =

sL := ((u† ◦ m)⊗ idA∗) ◦ (idA ⊗ εA∗) sR := (
idA∗ ⊗ (u† ◦ m)

) ◦ (
εA ⊗ idA

)

(11)

In each case the second picture is just a convenient shorthand, which should literally
be interpreted as the first picture. These involutions interact with the conjugation and
transposition functors in interesting ways, as we explore in the next lemma.

Lemma 3.5. In a monoidal †-category with duals, the left and right involutions of a
†-Frobenius monoid satisfy the following equations:

sL
∗ = sR , sR

∗ = sL, (12)

sL∗ = s−1
L , sR∗ = s−1

R , (13)

s−1
L = sR

†, s−1
R = sL

†. (14)

Proof. Equations (12) follow from the definitions of the involutions and the graphical
representation of the functor (−)∗, which rotates a diagram half a turn about an axis per-
pendicular to the page. Equations (13) follow from the †-Frobenius and unit equations;
taking the right-involution case, we show this by establishing that sR∗ ◦ sR = idA with
the following graphical proof:

= = =

Applying the functor (−)∗ to this equation gives sR ◦ sR∗ = idA∗ , establishing that sR
and sR∗ are inverse; applying the functor (−)∗ to this argument establishes that sL and
s∗

L are inverse. Equations (14) follow from Eqs. (12) and (13) and the properties of the
functors (−)∗, (−)∗ and †. �	
We note that left and right involutions could be defined for arbitrary monoids in a
monoidal †-category with duals, but they would not satisfy Eqs. (13) and (14) above.

We now combine these results on involutions of †-Frobenius monoids with the con-
cept of an involution monoid from Sect. 2.
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Lemma 3.6. In a monoidal †-category with duals, given a †-Frobenius monoid (A,m, u)
we can canonically obtain two involution monoids (A,m, u; sL) and (A,m, u; sR),
where sL and sR are respectively the left and right involutions associated to the
monoid.

Proof. We deal with the right-involution case; the left-involution case is analogous. We
must show that sR : A � A∗ is a morphism of monoids, and that it satisfies the involu-
tion condition. We first show that it preserves multiplication, employing the Frobenius,
unit and associativity laws:

= = = = =

We omit the proof that sR preserves the unit, as it is straightforward. The involution
condition sR∗ ◦ sR = idA follows from one of Eqs. (13) in Lemma 3.5. �	

This leads us to the following definition.

Definition 3.7. In a monoidal †-category with duals, a †-Frobenius left- (or right-)
involution monoid is an involution monoid (A,m, u; s) such that the monoid (A,m, u)
is †-Frobenius, and such that the involution s is the left (or right) involution of the
†-Frobenius monoid in the manner described by Definition 3.4.

A homomorphism of †-Frobenius left- or right-involution monoids would therefore be
required to preserve the involution as well as the multiplication and unit, as per Defini-
tion 2.21.

A useful property of †-Frobenius right-involution monoids is described by the fol-
lowing lemma, which gives a necessary and sufficient algebraic condition for a monoid
homomorphism to be an isometry.

Lemma 3.8. In a monoidal †-category with duals, a homomorphism of †-Frobenius
right-involution monoids is an isometry if and only if it preserves the counit.

Proof. Let j : (A,m, u) � (B, n, v) be a homomorphism between †-Frobenius right-
involution monoids. Assuming that j preserves the counit, we show that it is an isometry
by the following graphical argument. The third step uses the fact that j preserves the
involution, the fifth that it is a homomorphism of monoids, and the sixth that it preserves
the counit.
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j

j†

=
j

j∗
=

j

j∗
=

j
j

= jj =
j

= =

Now instead assume that j is an isometry. It is a homomorphism, so we have the unit-
preservation equation j ◦ u = v, and therefore j† ◦ j ◦ u = u = j† ◦ v. Applying the
†-functor to this we obtain u† = v† ◦ j , which is the counit-preservation condition. �	

Special unitary †-Frobenius monoids. We will mostly be interested in the case when
the two involutions are the same, and we now explore under what conditions this holds.

Definition 3.9. In a monoidal †-category with duals, a †-Frobenius monoid is unitary
if the left involution, or equivalently the right involution, is unitary.

That these two conditions are equivalent follows from Lemma 3.5.

Definition 3.10. In a braided monoidal †-category with duals, a †-Frobenius monoid is
balanced-symmetric if the following equation is satisfied:

= (15)

The term symmetric is standard (for example, see [20, Sect. 2.2.9]), and describes a
similar property that lacks the ‘balancing loop’ on one of the legs of the right-hand side
of the equation. In Hilb this loop is the identity and so the concepts are the same, but
this may not be the case in other categories of interest.

Lemma 3.11. In a monoidal †-category with duals, the following properties of a
†-Frobenius monoid are equivalent:

1. it is unitary;
2. it is balanced-symmetric;
3. the left and right involutions are the same;

where Property 2 only applies if the monoidal structure has a braiding.
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Proof. We first give a graphical proof that 3 ⇒ 2, using Property 3 to transform the
second expression into the third:

= = = =

A similar argument shows that 2 ⇒ 3. From Eqs. (14) of Lemma 3.5 it follows that
1 ⇔ 3, and so all three properties are equivalent. �	
We will mostly use the term ‘unitary’ to refer to these equivalent properties, since it is
more obviously in keeping with the general philosophy of †-categories, that all struc-
tural isomorphisms should be unitary. We also note that if a †-Frobenius left- or right-
involution monoid is unitary then we can simply refer to it as a ‘†-Frobenius involution
monoid’, as the left and right involutions coincide in that case.

One particularly nice feature of unitary †-Frobenius monoids is that we can canon-
ically obtain an abstract ‘dimension’ of their underlying space from the multiplication,
unit, comultiplication and counit, as the following lemma shows. In a category of vector
spaces and linear maps, this dimension will correspond to the dimension of the vector
space.

Definition 3.12. In a monoidal †-category with duals, the dimension of an object A is
given by the scalar εA

† ◦ εA : I � I , and is denoted dim(A).

Lemma 3.13. In a monoidal †-category with duals, given a unitary †-Frobenius monoid
(A,m, u), dim(A) = u† ◦ m ◦ m† ◦ u; that is, the dimension of A is equal to the squared
norm of m† ◦ u. Also, dim(A) = dim(A)∗.

Proof. We demonstrate this with the following series of pictures:

dim(A) = = = = = = = = dim(A)∗.

The central diagram is u† ◦ m ◦ m† ◦ u, so this proves the lemma. �	
The notion of the dimension of an object is a crucial one in the theory of monoidal
categories with duals, and is studied in depth throughout the literature [9,14,23]. How-
ever, we do not rely on it heavily in this paper, and more axioms would be required for
our category than those assumed here for the dimension to have good properties, such
as being independent of the choice of duality morphisms, or being an element of the
integers.

We now introduce one final property of a †-Frobenius monoid.
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Definition 3.14. In a monoidal †-category, a †-Frobenius monoid (A,m, u) is special
if m ◦ m† = idA; that is, if the comultiplication is an isometry.

The term special goes back to Quinn [29]. A special †-Frobenius monoid is the same
as an abstract Q-system [23], and a useful lemma proved in that reference is that if a
monoid (A,m, u) satisfies m ◦ m† = idA, then it is necessarily a special †-Frobenius
monoid.

It simplifies the expression for the dimension of the underlying space, as demonstrated
by this Lemma.

Lemma 3.15. In a monoidal †-category with duals, a special unitary †-Frobenius mo-
noid (A,m, u) has dim(A) = u† ◦ u; that is, the dimension of A is equal to the squared
norm of u.

Proof. Straightforward from Lemma 3.13. �	

Endomorphism monoids. Given any Hilbert space H , it is often useful to consider the
algebra of bounded linear operators on H . These give the prototypical examples of
C*-algebras, with the ∗-involution given by taking the operator adjoint. In a monoidal
category with duals we can construct endomorphism monoids, which are categorical
analogues of these algebras of bounded linear operators. These well-known construc-
tions, which go back at least to Müger [27], form an important class of †-Frobenius
monoids, and that they have particularly nice properties.

Definition 3.16. In a monoidal category, for an object A with a left dual A∗L , the endo-
morphism monoid End(A) is defined by

End(A) := (
A∗L ⊗ A, idA∗L ⊗ ηL

A ⊗ idA, ε
L
A

)
. (16)

The following lemma describes a well-known connection between categorical duality
and Frobenius structures.

Lemma 3.17. In a monoidal †-category with duals, an endomorphism monoid is a
†-Frobenius monoid.

Proof. That the †-Frobenius property holds for an endomorphism monoid End(A) is
clear from its graphical representation, which we give here:

= =

�	
They are examples of the unitary monoids discussed in the previous section.

Lemma 3.18. In a monoidal †-category with duals, endomorphism monoids are unitary.
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Proof. Following Eq. (11) for the left involution associated to a †-Frobenius monoid,
we obtain the following:

This is clearly the identity on A∗ ⊗ A. The right involution is also the identity, by
the conjugate of this picture. By Lemma 3.11 the †-Frobenius monoid must therefore
unitary. �	
We note that the order-reversing property of the duality functor (−)∗ is crucial here,
as the only canonical choice of ‘identity’ morphism A∗ ⊗ A � A ⊗ A∗ would be the
braiding isomorphism, but such a braiding is not necessarily present. Also, although the
linear involution associated with an endomorphism monoid is the identity, the induced
order-reversing antilinear involution on A∗ ⊗ A is certainly not the identity: it is given
by taking the name of an operator to the name of the adjoint to that operator, as can be
checked by going through the correspondence described in Lemma 2.22.

The following lemma is a formal description of the intuitive notion that an algebra
should have a homomorphism into the algebra of operators on the underlying space,
given by taking the right action of each element.

Lemma 3.19. Let (A,m, u) be a monoid in a monoidal category in which the object
A has a left dual. Then (A,m, u) has a monic homomorphism into the endomorphism
monoid of A.

Proof. The embedding morphism h : (A,m, u) ⊂� End(A) is defined by

h := (idA∗ ⊗ m) ◦ (εL
A ⊗ idA), (17)

which has the following graphical representation:

A∗ ⊗ A

A

h

�

=

We show that it is monic by postcomposing with u∗ ⊗ idA, which acts as a retraction:

= =
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Next we show that h preserves the multiplication operation, employing a duality equation
and the associative law:

= =

Finally, we show that the embedding preserves the unit, employing the unit law:

=

�	
However, as we saw in the Introduction, for the case of †-Frobenius monoids this

embedding has a special property: it preserves an involution. We establish this formally
in the following lemma.

Lemma 3.20. Let (A,m, u; sR) be a †-Frobenius right-involution monoid. Then the
canonical embedding of (A,m, u; sR) into the †-Frobenius involution monoid End(A)
is a morphism of involution monoids.

Proof. By Lemma 3.19 the embedding must be a morphism of monoids. Note that we
do not need to specify whether we are using the left or right involution of End(A), since
by Lemma 3.18 they are both the identity. We must show that this embedding morphism
k : A ⊂� A∗ ⊗ A satisfies the involution condition k = k∗ ◦ sR given in Definition 2.21.
The proof uses the Frobenius law and the unit law.

= = =

�	
It is worth noting that a symmetry has been broken; this lemma would not hold with
‘right-involution’ replaced with ‘left-involution’. This is a consequence of defining the
underlying object of our endomorphism monoid to be A∗ ⊗ A rather than A ⊗ A∗. In a
braided monoidal category there would be no essential difference, but we are working
at a higher level of generality.
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An embedding lemma. We finish this section by demonstrating another general property
of †-Frobenius involution algebras. Just as every involution-closed subalgebra of a finite-
dimensional C*-algebra is also a C*-algebra, we will show that every involution-closed
submonoid of a †-Frobenius involution monoid is also †-Frobenius. The next section
makes this analogy with C*-algebras precise, but we can prove it here as a general result
about †-Frobenius algebras.

Lemma 3.21. In a monoidal †-category with duals, let (A,m, u; s) be an involution
monoid with an involution-preserving †-embedding into a †-Frobenius left- (or right-)
involution monoid. Then (A,m, u; s) is itself a †-Frobenius left- (or right-) involution
monoid.

Proof. We will deal with the left-involution case; the right-involution case is analogous.
Let p : (A,m, u; s) ⊂� (B, n, v; t) be a †-embedding of an involution monoid into a
†-Frobenius left-involution monoid. The †-embedding property means that p†◦ p = idA.
In our graphical representation we will use a thin line for A and a thick line for B, and
a transition between these types of line for the embedding morphism p. The involution-
preservation condition t ◦ p = p∗ ◦ s is then represented by the following picture:

=
s

Applying complex conjugation to p† ◦ p = idA we obtain p∗ ◦ p∗ = idA∗ , and applying
this to the equation pictured above we obtain s = p∗ ◦ t ◦ p. Also, from the monoid
homomorphism equation p ◦ u = v we obtain u = p† ◦ v, and therefore u† = v† ◦ p
by applying the †-functor. Using these equations, along with the multiplication compat-
ibility equation p ◦ m = n ◦ (p ⊗ p), we obtain the following:

s = = = = =

The involution is therefore the left involution associated to the monoid.
We now show that the monoid is in fact a †-Frobenius monoid. To start with we use

the fact that p is an isometry and that it preserves multiplication, along with the unit law
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of the monoid and the Frobenius law:

= = = = =

We now employ the fact that p preserves the involution, and then essentially perform
the previous few steps in reverse order:

= = = =

The proof for the other Frobenius law is exactly analogous. We have demonstrated that
the monoid (A,m, u) is †-Frobenius, and since we have shown that the involution s is
the left involution associated to the monoid, it follows that (A,m, u; s) is a †-Frobenius
left-involution monoid. �	

4. Special Unitary †-Frobenius Monoids in Hilb

From now on we will mainly work in Hilb, the category of finite-dimensional complex
Hilbert spaces and linear maps, which is a symmetric monoidal †-category with duals.
Special unitary †-Frobenius monoids have particularly good properties in this setting.

The following lemma contains the important insight due to Coecke, Pavlovic and the
author, as described in the Introduction and in [12].

Lemma 4.1. In Hilb, a †-Frobenius right-involution monoid admits a norm making it
into a C*-algebra.

Proof. By Lemma 3.20 a †-Frobenius right-involution monoid (A,m, u) has an
involution-preserving embedding into End(A), which is a C*-algebra when equipped
with the operator norm. The involution monoid (A,m, u) therefore admits a C*-algebra
norm, taken from the norm on End(A) under the embedding. Since the algebra is finite-
dimensional, the completeness requirement is trivial. �	

We will also require the following important result, which demonstrates a crucial
abstract property of the category Hilb.

Lemma 4.2. In Hilb, isomorphisms of special unitary †-Frobenius involution monoids
preserve the counit.



786 J. Vicary

Proof. Any special unitary †-Frobenius involution monoid is in particular a †-Frobenius
right-involution monoid, and so admits a norm with which it becomes a C*-algebra by
Lemma 4.1. Finite-dimensional C*-algebras are semisimple, and are therefore isomor-
phic to finite direct sums of matrix algebras in a canonical way; an isomorphism between
two finite-dimensional C*-algebras is then given by a direct sum of pairwise isomor-
phisms of matrix algebras. We therefore need only show that the lemma is true for special
unitary †-Frobenius involution monoids which are matrix algebras, with involution given
by matrix adjoint.

Let (A,m, u; s) and (B, n, v; t) be special unitary †-Frobenius involution monoids
which are both isomorphic to some matrix algebra End(Cn). Any isomorphism between
them must have some decomposition into isomorphisms f : (A,m, u; s) � End(Cn)

and g : End(Cn) � (B, n, v; t). The statement that g ◦ f preserves the counit is equiv-
alent to the statement that the outside diamond of the following diagram commutes:

C

(A,m, u; s)

u† �

(B, n, v; t)

v†
�

End(Cn)

Tr

�

�
g

��
f �

(18)

We will show that each triangle separately commutes, and therefore that the entire
diagram commutes. We focus on the triangle involving the isomorphism g; the treatment
of the other triangle is analogous. Our strategy is to show that ρg := 1

n · v† ◦g is a tracial
state of End(Cn). It takes the unit to 1, since 1

n · v† ◦g ◦εL
B = 1

n · v† ◦v = 1
n · dim(B) =

1
n · n = 1, where we used the fact that g is a homomorphism and Lemma 3.15; this is
the reason that we require the †-Frobenius monoid to be special. We can simplify the
action of ρg on positive elements in the following way, where φ : I � C

n∗ ⊗ C
n is an

arbitrary nonzero state of End(Cn), and φ′ is the result of applying the involution to this
state:

nρg

φ φ′

=
g

φ φ′

=

φ φ′

gg =

φ

g

φ†

g† =

φ

g

φ†

g†

=

φ

g

φ†

g†

The expression on the right-hand side is the squared norm of g ◦ φ, which is positive
because the inner product in Hilb is nondegenerate and φ is nonzero; this shows that ρg
takes positive elements to nonnegative real numbers, and so is a state of End(Cn). By
Lemma 3.11 the involution monoid End(A) is balanced-symmetric, and since we are in
Hilb, the balancing loop can be neglected; this means that ρg ◦(a ⊗b) = ρg ◦(b⊗a) for
all a, b ∈ End(A), and so ρg is tracial. Altogether ρg is a tracial state of a matrix algebra.
However, it is a standard result that the matrix algebra on a complex n-dimensional vec-
tor space has a unique tracial state given by 1

n Tr (for example, see [28, Example 6.2.1]).
It follows that ρg = 1

n Tr, and so the triangle commutes as required. �	
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We can combine this with an earlier Lemma to obtain a very useful result.

Lemma 4.3. In Hilb, isomorphisms of special unitary †-Frobenius involution monoids
are unitary.

Proof. Straightforward from Lemmas 3.8 and 4.2. �	
Given a †-Frobenius monoid in Hilb, we will show that scaling the inner product on

the underlying complex vector space produces a family of new †-Frobenius monoids.
We first note the following relationship between scaling inner products and adjoints to
linear maps.

Lemma 4.4. Let V be a complex vector space with inner product (−,−)V and let
f : V ⊗n � V ⊗m be a linear map, with the adjoint f † under this inner product. If the
inner product is scaled to α · (−,−)V for α a positive real number, the adjoint to f
becomes αm−n f †.

Proof. Writing the scaled inner product as ((−,−))V and denoting the adjoint to f under
this scaled inner product as f ‡, we must have (( f ◦ x, y))V ⊗m = ((x, f ‡ ◦ y))V ⊗n . Using
((−,−))V ⊗n = αn · (−,−)V ⊗n and making the substitution f ‡ = αm−n f †, we obtain
( f ◦ x, y)V ⊗m = (x, f † ◦ y)V ⊗n which holds by the definition of f †, and so f ‡ is a
valid adjoint to f under the new inner product. �	
Lemma 4.5. For a †-Frobenius monoid (A,m, u), scaling the inner product on A by
any positive real number gives rise to a new †-Frobenius monoid. Moreover, this scaling
preserves unitarity.

Proof. This is easy to show using the previous lemma. The †-Frobenius equations will
all be scaled by the same factor since they are all composed from a single m and m†,
so they will still hold. The unitarity property is an equation involving an m and a u† on
each side, and so both sides of this equation will also scale by the same factor. �	

We are now ready to prove our main correspondence theorem between finite-
dimensional C*-algebras and symmetric unitary †-Frobenius monoids.

Theorem 4.6. In Hilb, the following properties of an involution monoid are equivalent:

1. it admits a norm making it a C*-algebra;
2. it admits an inner product making it a special unitary †-Frobenius involution monoid;
3. it admits an inner product making it a †-Frobenius right-involution monoid.
Furthermore, if these properties hold, then the structures in 1 and 2 are admitted uniquely.

Proof. First, we point out that the norm of Property 1 is not directly related to the inner
products of Properties 2 or 3, in the usual way by which a norm can be obtained from
an inner product, and sometimes vice-versa. In fact, the norm of a C*-algebra will usu-
ally not satisfy the parallelogram identity, and so cannot arise directly from any inner
product.

We begin by showing 1 ⇒ 2. We first decompose our finite-dimensional C*-algebra
into a finite direct sum of matrix algebras. For any such matrix algebra, an inner product
is given by (a, b) := Tr(a†b), which is normalized such that Tr(id) = n for a matrix
algebra acting on C

n . This gives an endomorphism monoid End(Cn) in Hilb for each n,
which is a unitary †-Frobenius monoid as described by Lemmas 3.17 and 3.18. Such a
monoid is not special unless it is one-dimensional; we have m ◦ m† = n · idA∗⊗A, where
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m is the multiplication for the endomorphism monoid. We rescale the inner product,
replacing it with ((a, b)) := n Tr(a†b). As described by Lemma 4.4, writing the adjoint
of m under this new inner product as m‡, we will have m‡ = 1

n m†, and m◦m‡ = idA∗⊗A.
By Lemma 4.5 this preserves the involution and the unitarity of the monoid, and so we
obtain a special unitary †-Frobenius monoid with the same underlying algebra and invo-
lution as the original matrix algebra. Taking the direct sum of these for each matrix
algebra in the decomposition gives a special unitary †-Frobenius involution monoid,
with the same underlying algebra and involution as the original C*-algebra.

The implication 2 ⇒ 3 is trivial, and the implication 3 ⇒ 1 is contained in
Lemma 4.1, so the three properties are therefore equivalent.

We now show that, if these properties hold, the norm and inner product in Proper-
ties 1 and 2 are admitted uniquely. It is well-known that a C*-algebra admits a unique
norm. Now assume that a finite-dimensional complex ∗-algebra has two distinct inner
products, which give rise to two special unitary †-Frobenius involution monoids. Since
these monoids have the same underlying set of elements and the same involution, there
is an obvious involution-preserving isomorphism between them given by the identity on
the set of elements. But by Lemma 4.3 any isomorphism of special unitary †-Frobenius
involution monoids in Hilb is necessarily an isometry, and therefore unitary, and so the
inner products on the two monoids are in fact the same. �	

As a result, we can demonstrate some equalities and equivalences of categories.

Theorem 4.7. The category of finite-dimensional C*-algebras is

1. equal to the category of special unitary †-Frobenius involution monoids in Hilb;
2. equivalent to the category of unitary †-Frobenius involution monoids in Hilb; and
3. equivalent to the category of †-Frobenius right-involution monoids in Hilb;
where all of these categories have involution-preserving monoid homomorphisms as
morphisms.

Proof. We prove 1 by noting that the objects of the category of finite-dimensional
C*-algebras are the same as the objects in the category of special unitary †-Frobenius
involution monoids in Hilb, since in both cases they are involution monoids satisfying
one of the first two equivalent properties of Theorem 4.6, which can only be satisfied
uniquely. The morphisms are also the same, and so the categories are equal.

For 2 and 3, we note that both of these types of structure admit C*-algebra norms
by Lemma 4.1. This gives rise to functors from the categories of 2 and 3 to the cate-
gory of finite-dimensional C*-algebras. These functors are full and faithful on hom-sets,
since the hom-sets have precisely the same definition in both categories, consisting of
all involution-preserving algebra homomorphisms. These functors are also surjective on
objects, since given a finite-dimensional C*-algebra, by Theorem 4.6 we can find an
inner product on the underlying vector space such that the ∗-algebra is in fact a spe-
cial unitary †-Frobenius involution monoid. Recall that the latter are the objects in the
categories of 2 and 3. Since the two functors are full, faithful and surjective, they are
therefore equivalences. �	
Our use of the adjective ‘equal’ here perhaps deserves some explanation. It is only appro-
priate given the way that we have defined the categories of C*-algebras and of special
unitary †-Frobenius monoids, with objects being ∗-algebras that have the property of
admitting an appropriate norm or inner product. Had we instead defined the objects as
being ∗-algebras equipped with their norm or inner product, then the categories would
not be equal but isomorphic.
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Having demonstrated the equivalence between finite-dimensional C*-algebras and
†-Frobenius monoids, it becomes clear that Lemmas 3.19 and 3.20 are precisely the
finite-dimensional noncommutative Gelfand-Naimark theorem, that any abstract finite-
dimensional C*-algebra has an involution-preserving embedding into the algebra of
bounded linear operators on a Hilbert space. It is striking that these lemmas are quite
easy to prove from the †-Frobenius monoid point of view, compared to the traditional
C*-algebra perspective. However, to prove Theorem 4.6 we used the decomposition
theorem for finite-dimensional C*-algebras from which the finite-dimensional noncom-
mutative Gelfand-Naimark theorem trivially follows, so this does not constitute a new
proof; for this, we would need a more direct way to establish the link between finite-
dimensional C*-algebras and †-Frobenius monoids.

In contrast, some properties of C*-algebras are harder to demonstrate from the per-
spective of †-Frobenius monoids, as demonstrated by Lemma 3.20. The proof of that
lemma required 14 applications of identities, while the corresponding property of finite-
dimensional C*-algebras, that any involution-closed subalgebra is also a C*-algebra, is
trivial.

5. Generalizing the Spectral Theorem

Classical structures and spectral categories. As a consequence of being able to define
finite-dimensional C*-algebras internally to a category, we are also able to state the
finite-dimensional spectral theorem categorically. As an introduction to this, we first
give a brief summary of some of the main ideas of [12].

We start by introducing an important connection between commutative †-Frobenius
monoids and finite sets.

Definition 5.1. In a braided monoidal category, a monoid is commutative if the braid-
ing and the multiplication satisfy the commutativity equation:

= (19)

Theorem 5.2. The category of commutative †-Frobenius monoids in Hilb with
involution-preserving1 monoid homomorphisms as morphisms is equivalent to the oppo-
site of FinSet, the category of finite sets.

Proof. A commutative †-Frobenius monoid in Hilb is balanced-symmetric, since the
balancing is the identity in that category, and is therefore unitary by Lemma 3.11. By
Theorem 4.6, the category being constructed is therefore isomorphic to the category
of finite-dimensional commutative C*-algebras with algebra homomorphisms as mor-
phisms. We apply the spectral theorem for commutative C*-algebras to obtain the desired
result. �	

1 In fact, this involution-preservation condition is not required: as demonstrated in [12], every homomor-
phism of finite-dimensional commutative C*-algebras is involution-preserving.
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Put more straightforwardly, a choice of commutative †-Frobenius monoid on a Hilbert
space defines a basis for that Hilbert space. In fact, the bases for each space are in precise
correspondence to the special commutative †-Frobenius monoids, as might be expected
from our Theorem 4.6; the same basis will be determined by many different †-Frobenius
monoids.

Theorem 5.2 motivates the following definition:

Definition 5.3. In a braided monoidal †-category, a classical structure is a commuta-
tive †-Frobenius monoid. If the underlying object is A, then we say that it is a classical
structure on A.

Classical structures were first described by Coecke and Pavlovic in [11], and the phi-
losophy of that paper — that a classical structure represents the possible outcomes of
a measurement — is embraced here.

Definition 5.4. Given a braided monoidal †-category Q, its category of classical struc-
tures C(Q) is the category with classical structures in Q for objects, and involution-
preserving monoid homomorphisms as morphisms.

Using this notation, the result in Theorem 5.2 can be written as

C(Hilb) � FinSetop. (20)

These results give a new perspective on the relationship between finite-
dimensional Hilbert spaces and finite sets. We can construct a covariant forgetful func-
tor Forget : C(Hilb) � Hilb which takes a classical structure to its underlying Hilbert
space. We can also construct a covariant functor Free : FinSetop � Hilb, which takes
a set to a Hilbert space freely generated by taking that set as an orthonormal basis, and
a function between sets to the adjoint of the linear map that has the same action on
the chosen basis. Using the equivalence C(Hilb) � FinSetop implied by Theorem 5.2,
we see that the functors Forget and Free are naturally isomorphic. We have two quite
different points of view, which are both equally valid: a set is a Hilbert space with the
extra structure of a special commutative †-Frobenius monoid, and a Hilbert space is a
set with the extra structure of a complex vector space.

One possible point of view is that a classical structure represents a measurement
performed on the underlying Hilbert space, or rather, on the physical system which has
that Hilbert space as its space of states. To say ‘the possible results of a measurement
form a finite set’ can then be directly interpreted by the formalism: if we are doing
our quantum theory in a braided monoidal †-category Q, it is simply the statement that
C(Q) � FinSet. The emergent ‘classical logic’ with which we reason about these mea-
surement results is then more ‘powerful’ when the category C(Q) has more interesting
properties; for example, it could be a fully-fledged elementary topos, as for the case of
Hilb. With this in mind, we make the following definition:

Definition 5.5. A braided monoidal †-category Q is spectral if C(Q) is an elementary
topos.

Spectral categories can be thought of as generalized settings for quantum theory which
admit a particularly good ‘generalized spectral theorem’, or in which measurement out-
comes admit a particularly good logic. We describe a class of spectral categories in
Theorem 5.11, which have finite Boolean topoi as their categories of classical objects.

We briefly mention a connection to other work. Döring and Isham [15] have devel-
oped a topos-theoretic approach to analyzing the logical structure of theories of physics,
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in which a quantum system is explored through the presheaves on the partially-ordered
set of commutative subalgebras of a von Neumann algebra. In finite dimensions von
Neumann algebras coincide with C*-algebras, and therefore also with special unitary
†-Frobenius monoids in Hilb by Theorem 4.6. Given a †-Frobenius monoid of this type,
the partially-ordered set of special commutative sub-†-Frobenius monoids can be con-
structed categorically, and so Döring-Isham toposes can be constructed directly from
any special unitary †-Frobenius monoid in any braided monoidal †-category. The tech-
niques of that research program can then be employed; in particular, we can test whether
a generalized Kochen-Specker theorem holds. In fact, we suggest that this approach
could be used quite generally to connect the ideas of Döring and Isham to other work on
monoidal categories in the foundations of quantum physics, such as that of Abramsky,
Coecke and others [4,10].

The spectral theorem for normal operators. We now turn to the spectral theorem for
normal operators, which says that a normal operator on a complex Hilbert space can be
diagonalized. For complex Hilbert spaces this follows from the spectral theorem for com-
mutative C*-algebras, since any normal operator generates a commutative C*-algebra
and the spectrum of this algebra performs the diagonalization. This will not necessarily
be the case in an arbitrary monoidal †-category, with C*-algebras replaced by special
unitary †-Frobenius monoids. However, we can nonetheless give a direct categorical
description of diagonalization.

We proceed by introducing two different categorical properties which capture the
geometrical essence of the spectral theorem for normal operators, and then showing that
they are equivalent.

Definition 5.6. In a monoidal category, an endomorphism f : A � A is compatible
with a monoid (A,m, u) if the following equations hold:

f
=

f

=
f

m ◦ ( f ⊗ idA) = f ◦ m = m ◦ (idA ⊗ f )

(21)

Definition 5.7. In a braided monoidal †-category, an endomorphism f : A � A is
internally diagonalizable if it can be written as an action of an element of a commuta-
tive †-Frobenius algebra on A; that is, if it can be written as

f =
φ f

f = m ◦ (φ f ⊗ idA),

(22)

where m : A ⊗ A � A is the multiplication of a commutative †-Frobenius algebra and
φ f : I � A is a state of A.
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Lemma 5.8. An endomorphism f : A � A is internally diagonalizable if and only if it
is compatible with a commutative †-Frobenius monoid.

Proof. Assume that f is internally diagonalizable by the action of an element
φ f : I � A of a commutative †-Frobenius monoid (A,m, u), so that f =m◦(φ f ⊗idA).
The following pictures must be equal by the associativity and commutativity laws, where
the multiplication is the morphism m:

φ f
=

φ f

=

φ f

=

φ f

The first picture is f ◦m, the second is m ◦ ( f ⊗ idA) and the fourth is m ◦ (idA ⊗ f ), and
so f is compatible with the commutative †-Frobenius monoid (A,m, u). Conversely,
assuming compatibility of f with a commutative †-Frobenius monoid (A,m, u) and
defining φ f = f ◦ u, we have

m ◦ (φ f ⊗ idA) = m ◦ (( f ◦ u)⊗ idA) = f ◦ m ◦ (u ⊗ idA) = f,

and so f is internally diagonalizable. �	
We now show that any internally-diagonalizable endomorphism must be normal, by

the properties of commutative †-Frobenius monoids.

Lemma 5.9. If an endomorphism f : A � A is internally diagonalizable, then it is
normal.

Proof. The statement that f is internally diagonalizable is equivalent to the statement
that f can be written as the left-action of a commutative †-Frobenius monoid. By com-
mutativity this is the same as a right action, and using the notation of the Introduction
we write this as Rα for an element α ∈ A. We then have f ◦ f † = Rα ◦ Rα† = Rα ◦ Rα′ ,
whereα′ is defined as in the Introduction. By commutativity we have Rα◦Rα′ = Rα′ ◦Rα ,
and so f ◦ f † = f † ◦ f . �	
Every internally diagonalizable endomorphism is normal, but is every normal endo-
morphism internally diagonalizable? This is precisely the content of the conventional
spectral theorem for normal operators, and so in Hilb the answer is yes.

Lemma 5.10. In Hilb, every normal endomorphism f : A � A is internally diagonal-
izable.

Proof. This follows from the conventional spectral theorem for normal operators. We
choose an orthonormal basis set ai : C � A, for 1 ≤ i ≤ dim(A), such that each vector
ai is an eigenvector for f . The orthonormal property can be expressed as a†

i ◦ a j =δi j idC.
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This basis set is uniquely determined if and only if f is nondegenerate. We use the
morphisms ai to construct a monoid (A,m, u) on A as follows:

m :=
dim(A)∑

i=1

ai ◦ (a†
i ⊗ a†

i ),

u :=
dim(A)∑

i=1

ai .

It is straightforward to show that this monoid is in fact a †-Frobenius monoid, which
copies the chosen basis for A. Since this monoid only copies eigenvectors of f it follows
that it is compatible with f in the sense of Definition 5.6, and so by Lemma 5.8, the
morphism f is internally diagonalizable. �	

Classical structures in categories of unitary finite-group representations. An important
class of ‘generalizations’ of FinSet is given by the finitary toposes. A topos [26] is
a category where the operations familiar from traditional constructive logic can all be
defined; in particular, unions, products, function sets and powersets are all available.
Technically, a topos2 is a category with all finite limits, in which every object has a
power object; the other constructions just mentioned can then be derived. An example
is the category of finite G-sets, for a finite group G: objects are finite sets equipped
with a G-action, and morphisms are functions between the underlying sets which are
compatible with the group actions. That such a category is in fact a topos is far from
obvious, and relies on powerful general theorems [25].

Given the explicit connection between FinSet and Hilb established by the equiv-
alence FinSetop � C(Hilb), it is natural to ask whether there exist generalizations of
Hilb which have other finitary topoi as their categories of classical structures. A topos
obtained in this way could be interpreted as giving the classical counterpart to a quantum
theory, in contrast to the Döring-Isham toposes discussed after Definition 5.5 which give
a direct topos-theoretical view of the quantum structure itself.

A heuristic argument puts a stumbling block in front of any such attempt.3 A striking
feature of many toposes is that the law of excluded middle can fail, and as a consequence,
given a subobject of an object in the topos, the union of the subobject and its complement
can fail to give the original object. For a given Hilbert space, a good way to characterize
its subobjects is by the projectors on the space. Two projectors P and Q on a Hilbert
space represent disjoint subobjects if P Q = 0, and in that case their union as subobjects
is represented by the projector P + Q.

We now work in a category intended as a generalization of Hilb, assuming only that it
is a †-category with hom-sets which are complex vector spaces. Projectors can be defined
in this setting as endomorphisms P satisfying P† = P2 = P , and we can describe dis-
jointness and union using our categorical structure in the manner just described. Given
any projector P we will be able to use the complex vector space structure of the hom-sets
to construct a new projector (1 − P), where 1 is the identity on the space. This new
projector is disjoint with P , and gives the identity under union with P , using the general
definitions of these terms given above. In a sense, it therefore seems that the law of
excluded middle holds. To avoid this conclusion either the †-functor must go so that

2 Experts will notice that this is the definition of an elementary topos, the most basic type of topos.
3 I am grateful to Christopher Isham for this argument.
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projectors cannot be straightforwardly defined, or the complex numbers must go so that
we cannot ask that the hom-sets be vector spaces over them, but both are core parts of
the mathematical formalism of quantum mechanics which cannot be lightly abandoned.

We will skirt around this argument by focusing on those toposes for which the
excluded middle does hold: the Boolean toposes, or at least a finitary subclass of these.
We will focus on the following types of category:

Definition 5.11. A finite quantum Boolean topos is a symmetric monoidal †-cate-
gory which has a strong symmetric monoidal †-equivalence to a category HilbG of
finite-dimensional unitary representations of some finite groupoid G, where Hilb is the
category of finite-dimensional complex Hilbert spaces and continuous linear maps.

Definition 5.12. A finite Boolean topos is a category equivalent to a topos of the form
FinSetG for some finite groupoid G, where FinSet is the topos of finite sets and functions.

Theorem 5.13. The category of classical structures in a finite quantum Boolean topos
is equivalent to a finite Boolean topos, and every finite Boolean topos arises in this way.

Proof. Let Q be a finite quantum Boolean topos, for which by definition there exists
a strong symmetric monoidal †-equivalence Q � HilbG for a finite groupoid G. There
is a canonical forgetful †-preserving functor F : HilbG � Hilb that takes a unitary
Grepresentation to the Hilbert space on which G is acting. By abuse of notation we
will also write F : Q � Hilb, suppressing the equivalence Q � HilbG. A commu-
tative †-Frobenius monoid (A,m, u) in Q gives a commutative †-Frobenius monoid
(F(A), F(m), F(u)) in Hilb, and therefore defines a basis for the Hilbert space F(A)
by Theorem 5.2. Each object A of Q, via the equivalence with HilbG, is actually a
†-functor A : G � Hilb, and for each g ∈ G the morphism A(g) : F(A) � F(A) is a
unitary linear map in Hilb. The morphisms F(m) and F(u) are intertwiners, which can
be expressed by the following commuting diagram that holds for all g ∈ G:

F(A)⊗ F(A)
A(g)⊗ A(g) � F(A)⊗ F(A)

F(A)

F(m)
� A(g) � F(A)

F(m)
�

F(I )

F(u)
�

====================== F(I )

F(u)
�

Read differently, this diagram is also precisely the condition for A(g) to be a monoid
homomorphism for the commutative †-Frobenius monoid (F(A), F(m), F(u)) in Hilb.
Since the morphism A(g) is invertible, it must act as a permutation of the basis of F(A)
defined by the monoid, and the commutative †-Frobenius monoid (A,m, u) therefore
corresponds to an action of the groupoid G on this basis. Every finite G-action must arise
in this way, since any G-action on a finite set gives rise to a linear G-representation on the
complex Hilbert space with basis given by elements of the set. Morphisms between com-
mutative †-Frobenius monoids have adjoints which act as set-functions for the induced
bases, and these adjoints are compatible with the induced G-actions on the basis ele-
ments. It follows that the category of commutative †-Frobenius monoids in Q � HilbG

is equivalent to the opposite of the category FinSetG. �	
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Another way to phrase this result is that the process of taking G-presheaves — either
of sets, or of Hilbert spaces — commutes with the process of forming the category of
classical objects:

C(HilbG) � C(Hilb)G � FinSetG. (23)

For the functor category HilbG we take only unitary representations, or equivalently
†-preserving functors where the †-functor on G takes a morphism to its inverse. It is this
result which motivates the term ‘finite quantum Boolean topos’. We also note that we can
use this to recover the finite groupoid G from its unitary representation category HilbG,
since FinSetG yields G as its smallest full generating subcategory (see [25, Chap. 6]).

Given the similarity between the presheaf-style Definitions 5.11 and 5.12, the lemma
perhaps seems artificial. In fact, it is known that finite quantum Boolean toposes can
be described axiomatically; it follows from the Doplicher-Roberts theorem [14] that,
using the terminology of Baez [6], they are precisely the finite-dimensional even sym-
metric 2-H*-algebras. We also expect that finite Boolean toposes would admit a direct
axiomatization, although we do not attempt to give one here.

Given the result described here it is interesting to consider a generalization to
arbitrary finite-dimensional symmetric 2-H*-algebras. By a generalization of the
Doplicher-Roberts theorem [6,17] these are known to be the representation categories
of finite supergroupoids. However, we are not aware of any extensions of our results that
can be proved along these lines.
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