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Abstract: In this paper it is shown that unique solutions to the relativistic Boltzmann
equation exist for all time and decay with any polynomial rate towards their steady state
relativistic Maxwellian provided that the initial data starts out sufficiently close in Lj°.
If the initial data are continuous then so is the corresponding solution. We work in the
case of a spatially periodic box. Conditions on the collision kernel are generic in the
sense of Dudynski and Ekiel-Jezewska (Commun Math Phys 115(4):607-629, 1985);
this resolves the open question of global existence for the soft potentials.
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1. Introduction

The relativistic Boltzmann equation is a fundamental model for fast moving particles; it
can be written with appropriate initial conditions as

p"9,F =C(F, F).

* The authors research was partially supported by the NSF grant DMS-0901463.
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The collision operator [4,9] is given by

Cifh) = / / /—W(p alp L PR — F(PIh(@)].
R3 40 JR3 q() R3

Po

The transition rate, W(p, ¢|p’, ¢’), can be expressed as

W(p.qlp'.q') = so(g, 08D (p* +q" — p"' — g™,

where o (g, 0) is the differential cross-section or scattering kernel; it measures the inter-
actions between particles. The speed of light is the physical constant denoted c. Standard
references in relativistic Kinetic theory include [8,9,21,48,54]. The rest of the notation
is defined in the sequel.

1.1. A brief history of relativistic kinetic theory. Early results include those on deriva-
tions [40], local existence [3], and linearized solutions [14,18].

DiPerna-Lions renormalized weak solutions [13] were shown to exist in 1992 by
Dudynski and Ekiel-Jezewska [19] globally in time for large data, using the causality of
the relativistic Boltzmann equation [16,17]. See also [1,57] and [37,38]. In particular
[1] proves the strong L' convergence to a relativistic Maxwellian, after taking a sub-
sequence, for weak solutions with large initial data that is not necessarily close to an
equilibrium solution. There are also results in the context of local [7] and global [49]
Newtonian limits, and near vacuum results [22,35,49] and blow-up [2] for the gain term
only. We also mention a study of the collision map and the pre-post collisional change
of variables in [23]. For more discussion of historical results, we refer to [49].

We review in more detail the results most closely related to those in this paper. In
1993, Glassey and Strauss [24] proved for the first time global existence and unique-
ness of smooth solutions which are initially close to a relativistic Maxwellian and in a
periodic box. They also established exponential convergence to the Maxwellian. Their
assumptions on the differential cross-section, o, fell into the regime of “hard potentials”
as discussed below. In 1995, they extended that result to the whole space case [20] where
the convergence rate is polynomial. More recent results with reduced restrictions on the
cross-section were proven in [36], using the energy method from [29-32]; these results
also apply to the hard potentials.

For relativistic interactions—when particles are fast moving—an important physical
regime is the “soft potentials”; see [15] for a physical discussion. Despite their impor-
tance, prior to the results in this paper there were no existence results for the soft poten-
tials in the context of strong nearby relativistic Maxwellian global solutions. In 1988
a general physical assumption was given in [18]; see (2.7) and (2.8). In this paper we
will prove global existence of unique L°° near equilibrium solutions to the relativistic
Boltzmann equation and rapid time decay under the full physical assumption on the
cross-section from [18]. Our main focus is of course the soft potentials; and we do not
require any angular cut-off (although the angular singularity will not be worse than just
barely integrable).

1.2. Notation. Prior to discussing our main results, we will now define the notation of
the problem carefully. In special relativity the momentum of a particle is denoted by p*,
n=0,1,2,3. Let the signature of the metric be (—+++). Without loss of generality, we
set the rest mass for each particle m = 1. The momentum for each particle is restricted
to the mass shell p*p,, = —c? with py > 0.
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Further with p € R?,we may write p* = (p°, p)and similarly ¢* = (¢, ¢). Then
the energy of a relativistic particle with momentum p is pg = +/c2 + |p|2. We are

raising and lowering indices with the Minkowski metric p,, = g, p", where (g,.) =

diag(—1 1 1 1). We use the Einstein convention of implicit summation over repeated
indices. The Lorentz inner product is then given by

3
P qu = —pogo+ D, pidi-
i=1

Then also go = /c% + |g|? > 0. Note our convention for raising and lowering indices;
we only use it in this paragraph and in the Appendix. Now the streaming term of the
relativistic Boltzmann equation is given by

p" 8, = pod; + p - Vy.
We thus write the relativistic Boltzmann equation as
F+p-V,F=Q(F,F). (1.1

Here Q(F, F) = C(F, F)/po, with C defined at the top of this paper.
Above we consider F = F (¢, x, p) to be a function of time ¢ € [0, 00), space x € I
and momentum p € R3. The normalized velocity of a particle is denoted

A 14 p
p:c—:

po 1+ [pl2/c2

Steady states of this model are the well known Jiittner solutions, also known as the
relativistic Maxwellian. They are given by

(1.2)

w  exp(—cpo/(kpT))
" 4wckpT Ko(c2/(kgT))’

J(p)

where K> (-) is the Bessel function K5(z) & % floo e~ (2 — 1)3/2ds, T is the temper-
ature and kg is Boltzmann’s constant.

In the rest of this paper, without loss of generality but for the sake of simplicity, we
will now normalize all physical constants to one, including the speed of light to ¢ = 1.
So that in particular we denote the relativistic Maxwellian by

e Po

J(p) = i

(1.3)

Henceforth we let C, and sometimes ¢ denote generic positive inessential constants
whose value may change from line to line.

We will now define the quantity s, which is the square of the energy in the “center of
momentum” system, p +¢g = 0, as

def

s =s(p". q") = —(p" + 4" (pu+q,) =2 (—p"qu+1) = 0. (1.4)

The relative momentum is denoted

g=2g(p", q") = J/(p" — ") (pu — qu) = 2(=plq, — 1). (1.5)
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Notice that s = g2 + 4. We warn the reader that this notation, which is used in [9], may
differ from other author’s notation by a constant factor.
Conservation of momentum and energy for elastic collisions is expressed as

pl+q" = p"+q". (1.6)
The angle 6 is defined by

cos6 = (p* —q")(p), —q;)/8". (1.7)

This angle is well defined under (1.6), see [21, Lemma 3.15.3].

‘We now consider the center of momentum expression for the collision operator below.
An alternate expression for the collision operator was derived in [24]; see [49] for an
explanation of the connection between the expression from [24] and the one we give
just now. One may use Lorentz transformations as described in [9] and [50] to reduce
the delta functions and obtain

Q(f. h) = /R3 dq /SZ do vy 0(g.0) [f(pHh(g") — f(P)h(@)]. (1.8)

where vy = v4(p, q) is the Mgller velocity given by

2
5 pr g EVS
vy = vy(p, q)“/’——— < 9|8V (1.9)
q0 po 4o Poqo
The post-collisional momentum in the expression (1.8) can be written:
p+q 8 (p+q) o
P = (a)+()/—l)(p+q)—2),
2 T2 lp+4| (1.10)
,_Ptgq g( (p+q) o '
g =—F"—F\e+ly-D+9)——75-].
2 2 lp+ql?
where y = (po + qo)/+/s. The energies are then
pPo +610
po = =0 (P+q).
2 2\/_ (1.11)
Do+ qo ’

q0 = 3 2[ w-(p+q).

These clearly satisfy (1.6). The angle further satisfies cos = k - w with k = k(p, q)
and |k| = 1. This is the expression for the collision operator that we will use.
For a smooth function 4 (p) the collision operator satisfies

1

/3d17 p | Q, h)(p) =0.
R Po

By integrating the relativistic Boltzmann equation (1.1) and using this identity we obtain
the conservation of mass, momentum and energy for solutions as

d 1
d_/ dx / dp | p | F(t) =0.
tJr3 R3 Po
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Furthermore the entropy of the relativistic Boltzmann equation is defined as

def

H(t) = —/ dx / dp F(t,x, p)In F(t, x, p).
I R3
The celebrated Boltzmann H-Theorem is then formally
d
—H(t) =0,
i (1) =

which says that the entropy of solutions is increasing as time passes. Notice that the
steady state relativistic Maxwellians (1.3) maximize the entropy which formally implies
convergence to (1.3) in large time. It is this formal reasoning that our main results make
mathematically rigorous in the context of perturbations of the relativistic Maxwellian
for a general class of cross-sections.

2. Statement of the Main Results

We are now ready to discuss in detail our main results. We define the standard perturba-
tion f (¢, x, p) to the relativistic Maxwellian (1.3) as

FEJ+If.
With (1.6) we observe that the quadratic collision operator (1.8) satisfies
oW, J)=0.

Then the relativistic Boltzmann equation (1.1) for the perturbation f = f(¢, x, p) takes
the form

Wf+p-Vuf +L(f) =T(f. ). fO.x,p) = folx,p). 2.1)

The linear operator L( f), as defined in (2.2), and the non-linear operator I'( f, ), defined
in (2.5), are derived from an expansion of the relativistic Boltzmann collision operator
(1.8). In particular, the linearized collision operator is given by

L)L —g=1290J,VTh) — I YV2Q/Th, J)
=v(p)h — K(h). (2.2)

Above the multiplication operator takes the form
v(p) =/ dq/ do vy 0(g.0) J(q). (2.3)
R3 S?
The remaining integral operator is
K(h) 2 /]R d‘f/gz do> vy 02,00/ T(@) {VI@) h(p) + /T hiah)
—/R3 dq /S2 dw vy 0(g.0) v J(q)J (p) h(g)

= Ky(h) — K (h). (2.4)
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The non-linear part of the collision operator is defined as
C(hi,ho) £ J72QW/Thi, N Thy)
:/R3 dq /SZ dw vy 0(g,0) VI (@h1(pHha(g) —hi (pha(]. (2.5)

Without loss of generality we can assume that the mass, momentum, and energy con-
servation laws for the perturbation, f (¢, x, p), hold for all # > 0 as

1
/dx/ dp | p |VJ(p) f(t,x,p)=0. (2.6)
T3 R3 Do

We now state our conditions on the collisional cross-section.

Hypothesis on the collision kernel. For soft potentials we assume the collision kernel
in (1.8) satisfies the following growth/decay estimates:

b

o(g,w) S g7 oo(w),

o(g, ® 2 (%) g " op(w).

We also consider angular factors such that og(w) < sin? 6 with y > —2. Additionally
oo(w) > 0 and oo(w) should be non-zero on a set of positive measure. We suppose
further that 0 < b < min(4,4 + y).

For hard potentials we make the assumption

2.7)

o(g, ) S (g“ +g_b) oo(w),
2.8)

o8 ®) 2 (%) g% ().

In addition to the previous parameter ranges we consider 0 < a < 2+ y and also
0 < b <min(4, 4 + y) (in this case we allow the possibility of b = 0).

This hypothesis includes the full range of conditions which were introduced in [18]
as a general physical assumption on the kernel (of course we add the corresponding
necessary lower bound in each case); see also [15] for further discussions.

Prior to stating our main theorem, we will need to introduce the following mostly
standard notation. The notation A < B will imply that a positive constant C exists such
that A < CB holds uniformly over the range of parameters which are present in the
inequality and moreover that the precise magnitude of the constant is unimportant. The
notation B 2 A isequivalentto A < B,and A & B means thatboth A < Band B < A.
We work with the L norm

def
[hlloo = ess supyems, pegrslh(x, p)l.

If we only wish to take the supremum in the momentum variables we write

|h]oo = ess sup s |h(p)].
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We will additionally use the following standard L? spaces:

|h||zﬂ\// ar [ apinepr w2 [ o,

Similarly in the sequel any norm represented by one set of lines instead of two only
takes into account the momentum variables. Next we define the norm which measures
the (very weak) “dissipation” of the linear operator

||h||v“=“\// dx/ dp v(p)Ih(x, ).
T3 R3

The L*(R") inner product is denoted (-, -). We use (-, -) to denote the L>(T” x R") inner
product. Now, for £ € R, we define the following weight function:

— wi(p) & det péb/ 2, for the soft potentials: (2.7) (2.9)
pg, for the hard potentials: (2.8).

For the soft potentials wi(p) =~ 1/v(p) (Lemma 3.1). We consider weighted spaces

det det

def
17lloo.e = llwehlloos IRl = llwehll2,  NAllv.e = llwehlly.

Here as usual L;‘”(TI‘3 x R3) is the Banach space with norm || - loo.e, etc. We will also
use the momentum only counterparts of these spaces

def def def
|hloo,e = lwehloo, |20 = lwehla,  |hlve = [wehly.

We further need the following time decay norm:

def

ke = sup L+ 1 £ () looye- (2.10)

We are now ready to state our main results. We will first state our theorem for the soft
potentials which is the main focus of this paper:

Theorem 2.1 (Soft Potential). Fix £ > 3/b. Given fy = fo(x,p) € LP(T? x R?)
which satisfies (2.6) initially, there is an n > 0 such that if || follco.e < 1, then there
exists a unique global mild solution, f = f(t,x, p), to Eq. (2.1) with soft potential
kernel (2.7). For any k > 0, there is a k' = k' (k) > 0 such that

I £ lloo.e (@) < Cox(1+1) 75| follco.esr-

These solutions are continuous if it is so initially. We further have positivity, i.e. F =

J+NITf=>0ifFo=J+~Jfo=0.

We point out that k’(0) = 0 in the above theorem, and k’(k) > k can in general be
computed explicitly from our proof. Our approach also applies to the hard potentials
and in that case we state the following theorem which can be proven using the same
methods.
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Theorem 2.2 (Hard Potential). Fix £ > 3/2. Given fo = fo(x, p) € L¥(T> x R?)
which satisfies (2.6) initially, there is an n > 0 such that if || follco.¢ < 1, then there
exists a unique global mild solution, f = f(t, x, p), to Eq. (2.1) with hard potential
kernel (2.8) which further satisfies for some ) > 0 that

I £ lloo,e () < Cee™ |l folloo.e-

These solutions are continuous if it is so initially. We further have positivity, i.e. F =

J+NITf>0ifFo=J+~Jfo=>0.

Previous results for the hard potentials are as follows. In 1993 Glassey and Strauss
[24] proved asymptotic stability such as Theorem 2.2 in Ly° with £ > 3/2. They con-
sider collisional cross-sections which satisfy (2.8) for the parameters b € [0, 1/2),
a € [0,2 — 2b) and either y > 0 or

1 2—2b—a
2 3 ’

|y|<min[2—a,——b,

which in particular implies y > —% if b = 0 say. They further assume a related

growth bound on the derivative of the cross-section

g—‘; ‘ . In [36] this growth bound was
removed while the rest of the assumptions on the cross-section from [24] remained the
same. These results also sometimes work in smoother function spaces, and we note that
we could also include space-time regularity to our solutions spaces.

However for the relativistic Boltzmann equation in (1.1) the issue of adding momen-
tum derivatives is more challenging. In recent years many new tools have been developed
to solve these problems. A method was developed in non-relativistic kinetic theory to
study the soft potential Boltzmann equation with angular cut-off by Guo in [30]. This
approach makes crucial use of the momentum derivatives, and Sobolev embeddings to
control the singular kernel of the collision operator. Yet in the context of relativistic inter-
actions, high derivatives of the post-collisional variables (1.10) create additional high
singularities which are hard to control. Worse in the more common relativistic variables
from [24], derivatives of the post-collisional momentum exhibit enough momentum
growth to preclude hope of applying the method from [30]; these growth estimates on
the derivatives were known much earlier in [23].

Notice also that the methods for proving time decay, such as [10,52,53], require
working in the context of smooth solutions. We would also like to mention recent devel-
opments on Landau Damping [44] proving exponential decay with analytic regularity.
Furthermore we point out very recent results proving rapid time decay of smooth pertur-
bative solutions to the Newtonian Boltzmann equation without the Grad angular cut-off
assumption as in [25-27]. In this paper however we avoid smooth function spaces in par-
ticular because of the aforementioned problem created by the relativistic post-collisional
momentum. Other recent work [33] developed a framework to study near Maxwellian
boundary value problems for the hard potential Newtonian Boltzmann equation in Lj°.
In particular a key component of this analysis was to consider solutions to the Boltzmann
equation (2.1) after linearization as

(@+p-Vi+L) f=0, f(O.x,p)= folx,p) (2.11)

with L defined in (2.2). The semi-group for this equation (relativistic or not) will sat-
isfy a certain ‘A-Smoothing property’ which was pioneered by Vidav [56] about 40



Asymptotic Stability for Soft Potentials 537

years ago. This A-Smoothing property which appears at the level of the second iterate
of the semi-group, as seen below in (4.4), has been employed effectively for instance
in [21,24,33,34]. Related to this a new compactness connected to a similar iteration
has been observed in the ‘mixing lemma’ of [41-43]. The key new step in [33] was to
estimate the second iterate in L rather than L and then use a linear decay theory in
L? which does not require regularity and is exponential for the hard potentials case that
paper considered. Note further that a method was developed in [52,53] to prove rapid
polynomial decay for the soft potential Newtonian Boltzmann and Landau equations;
this is related to the articles [5,6,10,55], all of which make use of smooth function
spaces.

In the present work we adapt the method from [53] to prove rapid L? polynomial
decay of solutions to the linear equation (2.11) without regularity, and we further adapt
the L? estimate from [33] to control the second iterate. This approach, for the soft
potentials in particular, yields global bounds and slow decay, O(1/¢), of solutions to
(2.11) in L°. The details and complexity of this program are however intricate in the
relativistic setting. And fortunately, this slow decay is sufficient to just barely con-
trol the nonlinearity and prove global existence to the full non-linear problem as in
Theorem 2.1.

It is not clear how to apply the above methods to establish the rapid “almost expo-
nential” polynomial decay from Theorem 2.1 in this low regularity L7° framework. To
prove the rapid decay in Theorem 2.1 our key contribution is to perform a new high
order expansion of the remainder term, R1(f), from (4.15). This is contained in Prop-
osition 6.1 and its proof. This term, R (f), is the crucial problematic term which only
appears to exhibit first order decay.

More generally, the main difficulty with proving rapid decay for the soft potentials is
created by the high momentum values, where the time decay is diluted by the momen-
tum decay. This results in the generation of additional weights, typically one weight for
each order of time decay. At the same time the term R;( f) only allows us to absorb one
weight, wi (p), and therefore only appears to allow one order of time decay. In our proof
of Proposition 6.1 we are able to overcome this apparent obstruction by performing a
new high order expansion for k > 2 as

Ri(f) = Gi(f) + D (f) + N (f) + L (f) + Riw1 ().

(The expansion from Ry (f) to R>(f) requires a slightly different approach.) At every
level of this expansion we can peel of each of the terms Gi(f), Di(f), Nx(f), and
Ly (f) which will for distinct reasons exhibit rapid polynomial decay to any order. In
particular we use an L% estimate for L (f) which crucially makes use of the bounded
velocities that come with special relativity. On the other hand the last term Ry (f) will
be able to absorb k + 1 momentum weights, and therefore it will be able to produce time
decay up to the order k + 1. By continuing this expansion to any finite order, we are able
to prove rapid polynomial decay. We hope that this expansion will be useful in other
relativistic contexts.

The rest of this paper is organized as follows. In Sect. 3 we prove L% decay of solu-
tions to the linearized relativistic Boltzmann equation (2.11). Then in Sect. 4 we prove
global L7° bounds and slow decay of solutions to (2.11). Following that in Sect. 5 we
prove nonlinear L7° bounds using the slow linear decay, and we thereby conclude global
existence. In the remaining Sections 6 and 7 we prove linear and non-linear rapid decay
respectively. Then in the Appendix we give an exposition of a derivation of the kernel
of the compact part of the linear operator from (2.4).
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3. Linear L? Bounds and Decay

It is our purpose in this section to prove global in time L% bounds for solutions to the

linearized Boltzmann equation (2.11) with initial data in the same space L%. We will
then prove high order, almost exponential decay for these solutions. We begin by stating
a few important lemmas, and then we use them to prove the desired integral bounds (3.5)
and the decay it implies in Theorem 3.7. We will prove these lemmas at the end of the
section.

Lemma 3.1. Consider (2.3) with the soft potential collision kernel (2.7). Then

—b/2
v(p) =~ g
a —b/2
More generally, [ps dq | dw vy o(g,0) J*(q) ~ p,' for any a > 0.
We will next look at the “compact” part of the linear operator K. The most difficult
part is K» from (2.4). We will employ a splitting to cut out the singularity. The new
element of this splitting is the Lorentz invariant argument: g. Given a small € > 0,

choose a smooth cut-off function x = x(g) satisfying

1 if g>2e
x<g>=[0 if e (3.1)

Now with (3.1) and (2.4) we define
K, X (h) d=“/R3 dq /S2 do (1= x(8)) vg (g, NV I(@)VJI(q") h(p')
+/R3 dq/gz do (1= x(g) ve0(g.OVI(@VI(P)h(g). (3.2)

Define K 11 “%(h) similarly. We use the splitting K = K'=X + KX. A splitting with the
same goals has been previously used for the Newtonian Boltzmann equation in [53]. The
advantage for soft potentials, on the singular region, is that one has exponential decay
in all momentum variables. Then on the region away from the singularity we are able to
extract a modicum of extra decay which is sufficient for the rest of the estimates in this
paper, see Lemma 3.2 just below.

In the sequel we will use the Hilbert-Schmidt form for the non-singular part. The
following representation is derived in the Appendix:

Kl (h) = /R dq k' (p.q) h(g), i=1,2.

We will also record the kernel kiX (p, g) below in (3.9) and (3.10). We have
Lemma 3.2. Consider the soft potentials (2.7). The kernel enjoys the estimate

0 <k (p,q) < Cy (pogo)~™* (po+qo) "> e™1P=41 Cy e >0,

with ¢ < min {2 — lyl,4 —b,2} /4 > 0. This estimate also holds for kf(
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We remark that for certain ranges of the parameters y and b the decay in Lemma 3.2
could be improved somewhat. In particular the term kf( in (3.9) clearly yields exponential
decay. However what is written above is sufficient for our purposes.

We will use the decomposition given above and the decay of the kernels in Lemma 3.2
to establish the following lemma.

Lemma 3.3. Fix any small n > 0, we may decompose K from (2.4) as
K = K. + Kj,

where K. is a compact operator on L,z). In particular for any £ > 0, and for some
R = R(n) > O sufficiently large we have

[(wiKchi, ho)| < Cyll<phil2|1<ghala.
Above 1<p is the indicator function of the ball of radius R. Furthermore
(Wi Kshi, ha)| < nlhily g lhal, .-

This estimate will be important for proving the coercivity of the linearized collision
operator, L, away from its null space. More generally, from the H-theorem L is non-
negative and for every fixed (¢, x) the null space of L is given by the five dimensional
space [21]:

N = span {ﬁ,plﬁ, PN, p3v, po«/j}. (3.3)
We define the orthogonal projection from L?(R3) onto the null space ' by P. Further
expand P/ as a linear combination of the basis in (3.3):

3
Ph= 2a(t,x)+ D Bt x)pj+ (. x)po VI (3.4)
j=1

We can then decompose f (¢, x, p) as
f=Pf+{I-P}f.
With this decomposition we have
Lemma 3.4. L > 0. Lh = 0 if and only if h = Ph, and 38y > 0 such that
(Lh. h) = 8o[{1 — P}l

This last statement on coercivity holds as an operator inequality at the functional
level. The following lemma is a well-known statement of the linearized H-Theorem for
solutions to (2.11) which was shown in the non-relativistic case in [33].

Lemma 3.5. Given initial data fy € L% (']T3 X R3) for some £ > 0, which satisfies (2.6)
initially, consider the corresponding solution, f, to (2.11) in the sense of distributions.
Then there is a universal constant 6, > 0 such that

1 1
/0 ds [{T=P}fI3(s) = 5u/0 ds [P Il (s).
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We will give just one more operator level inequality.
Lemma 3.6. Given § € (0, 1) and £ > 0, there are constants C, R > 0 such that
(wiLh, h) = 8|hl5 , — C|1<ghl3.

Notice that Lemma 3.6 follows easily from Lemma 3.3. With these results, we can
prove the following energy inequality for any £ > O:

t
FAEMGERY: /0 ds || £115.0(5) < Cell foll3,. 38, Ce > 0, (3.5)

as long as || f0||%1 ¢ 1s finite. We will prove this first for £ = 0, and then for arbitrary
£ > 0. In the first case we multiply (2.11) with f and integrate to obtain

t
113G + /0 ds (L. ) = | foll2.

First suppose that t € {1, 2, ...}. By Lemma 3.4 we have

t—1

! t—1 1 1
[ asarn=% [ asarneen=3 [ aim-rirics
j=0 j=0

P t—1 1
X Z/O ds T =P} FI2Gs + )
i=0

s —1 1
+3 ;/O ds |(I— P} fI2(s + ).

Then by Lemma 3.5 the second term above satisfies the lower bound

—1 t—1

8o - ! . _ 008 ! .
32/0 ds [{T=PYf]3(s + j) = 2”2/0 ds [PfII5(s + j)-
j=0 Jj=0

This follows in particular because f;(s, x, v) = f(s + j, x, p) satisfies the linearized
Boltzmann equation (2.11) on the interval 0 < s < 1. Collecting the previous two
estimates yields

t S 1—1 1
| asarpn=3% [ asi-piriee
=0

5nd t—1 1
03 [ asipris
2 <o

t—1 1 t
32/ ds | f12(s + ) =S/ ds || fI5(s).
j=0"" 0

v
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with § = %min 5025”, 570 > 0. Plugging this estimate into the last one establishes

the energy inequality (3.5) for £ = O and ¢ € {1,2,...}. For an arbitrary r > 0, we
choose m € {0, 1,2, ...} such that m <t < m + 1. We then split the time integral as
[0, t] = [0, m] U [m, t]. For the time interval [m, t] we have

t
L @15+ / ds (Lf, ) = | fm)]3. (3.6)
m
Since L > 0 by Lemma 3.4, we see that ||f(t)||% < ||f(m)||%. We then have

t g m
||f||%<t>+/ ds (Lf,f)+§/0 ds 1 F12(s) < Cell foll.

Furthermore with Lemma 3.6 for Cs > 0 independent of  we obtain

t t t
/ds(Lf,f)sz/ ds ||f||3<s>—63/ ds 1 f13(s)

t
> 5 / as 1136 = Cs. sup 1£130) 3.7)

However we have already shown that sup,, ., ||f||%(s) < ||f||%(m) < C||f0||%.
Collecting the last few estimates for any ¢ > 0 we have (3.5) for £ = 0.
For ¢ > 0, we multiply Eq. (2.11) with w% f and integrate to obtain

t
0

1F12,(0) + / ds WLf. f) = I fol2,.

In this case using Lemma 3.6 we have

t t t
/0 ds wiLf, f) = 8 /0 ds 1 f12.4(s) = Cs ¢ /0 ds 1 7 12Gs).

Adding this estimate to the line above it, we obtain

t t
I£115.,(t) +38 /O ds [ £1I3,(s) < I foll3 + Csoe /O ds I f1I2(s).

Now the just proven integral inequality (3.5) in the case £ = 0 (as an upper bound for the
integral on the right-hand side) establishes the claimed energy inequality (3.5) for any
£ > 0. In fact we prove a more general time decay version of this inequality in (3.51).
These will imply the following rapid decay theorem.

Theorem 3.7. Consider a solution f(t,x, p) to the linear Boltzmann equation (2.11)
with data || fol|2,e+x < 00 for some £,k > 0. Then

| £ll2.e@) < Cea(L+0)7 ] follz.es-
This allows “almost exponential” polynomial decay of any order.

Theorem 3.7 is the main result of this section. We now proceed to prove each of
Lemma 3.1, Lemma 3.2, Lemma 3.3, Lemma 3.4, Lemma 3.5, and then Theorem 3.7 in
order. These proofs will complete this section on linear decay.
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Proof of Lemma 3.1. We will use the soft potential hypothesis for the collision kernel
(2.7) to estimate (2.3). For @ > 0 we more generally consider

T
Ve (P) “‘=“/R3 dq vy J*(q) / de o(g,0) siné.
0

Initially we record the following pointwise estimates:

lp —ql
<g=<Ip—gql, and g <2./poqo, (3.8)
+/ P0oq0

see [24, Lemma 3.1]. However notice that in [24] their “g” is actually defined to be 1/2
times our “g”. With the Mgller velocity (1.9), we thus also have

s =4+g> < pogo, vg < 1.
For b € (1, 4), these estimates including (3.8) yield

b NS s o V5 (0g0) D (poge) P
Vg & = 8 N S o
P04q0 pogo |p —ql lp —ql

‘We thus obtain
(h—2)/2 p
Ve (p) 5/ dq % J"‘(q)/ d6 sin'*” 0
RR3 lp—ql 0

_ Ja/z T
< plb=22 / dq —(‘l{)_l do sin™*" o
R3 lp—ql 0

b=2)/2 1—b . —b/2
< pdPPpat ~ pg

We note that the angular integral is finite since y > —2:
T
/ do sin'*" 9 = C, < oo.
0

In this case above and the cases below a key point is that

J%(q) _B
dg ——= =~ p,", VB <3.
/R3 p—qif 7"
For b € (0, 1), with (3.8) we alternatively have

b NS 1 (poqo)! =072

~ poqo ~ o J/Poqo

Now in a slightly easier way than for the previous case we have vy (p) < py
For the lower bound with b € (2, 4), we use (2.7), (3.8) and the estimate

. ( 8 ) b _ 87" (pog) T
’ pogo ~ Poqo

~b/2.

Vg 8 < (poqo)

b2

~b/2.

~ (poq0)

/5

Alternatively for b € (0, 2), we use (3.8) to get the estimate

2—b 2-b

8, »_8& o 1 (|P - C]l) (b—4)/2 2-b

v | —=)g " = Z ~ (poqo) lp—ql”".
(ﬁ ) Pog0 ~ pogo \ \/P0ogqo

We use these estimates to obtain v, (p) 2 py b/

2 as for the upper bound. 0O
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Now that the proof of Lemma 3.1 is complete, we develop the necessary formulation
for the proof of Lemma 3.2. It is trivial to write the Hilbert-Schmidt form for the cut-off
(3.1) part of Ky from (2.4) as

K (p,q) = VI (@I (p) x(8) /S2 dw vy o(g,0). (3.9)

Furthermore, we can write the Hilbert-Schmidt form for the cut-off (3.1) part of K>
from (2.4) in the following somewhat complicated integral form

3/2 00
K (p.q) & cr— / dy eIV (—g )
5 (P q) czgpoqox(g) A ye o S0 (v)2) 4
y(l+,/l+y2)
x— 2 I (jy). (3.10)
1+y2

Here ¢, > 0, and the modified Bessel function of index zero is defined by

1 2w
Ih(y) = E/o e’ do. 3.11)

We are also using the simplifying notation

def ﬁg

sin (¥/2) & . (3.12)
[g2 —4+ (g2 +4)/1+y?]1/2
Additionally
. lpxql
L= (ora0/2, =

This derivation for a pure kp operator appears to go back to [9,11], where it was done
in the case of the alternate linearization F = J(1 + f). The author gave a similar der-
ivation with many details explained in full in [50], including the explicit form of the
necessary Lorentz transformation; in particular Eq. (5.51) in this thesis. For the benefit
of the reader, we have provided the derivation of k% in the case of the linearization
F = J ++/J f in the Appendix to this paper.

Note that it is elementary to verify that (3.9) under (2.7) satisfies the estimate in
Lemma 3.2. In the proof below we focus on the more involved estimate for (3.10).

Proof of Lemma 3.2. We consider K> from (2.4) with Hilbert-Schmidt form represented
by the kernel (3.10). From (2.7), we have the bound

()< (=52

sin (//2)°
< g (sin W/2)

b+y
< ; ) cos” (¥/2). (3.13)

We have just used the trigonometric identity

sin Y = 2sin (Y/2) cos (¥ /2) .
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We estimate these angles in three cases. In each of the cases below we will repeatedly
use the following known [24, p.317] estimates

Y

i <cos(¥/2) < 1. (3.14)
y

The estimates above and below are proved for instance in [24, Lemma 3.1]:

1 < sin (y/2) < 1
S(L+yHIAY e Y gL+ y)lA

Notice that in general from (3.10) and (3.13) we have the bound

(3.15)

3/2 00

S _ 2 .

K (p,q) < g”x(g)/ dy eV y 1 (y)
8P0q0 0

: b+y
x (%) cos” (1/2). (3.16)

We will estimate this upper bound in three cases.

Case 1. Takey = — |y| <0Oand b+y = b — |y| < 0. Then we have
. b+y b—ly| =yl
(—Sm (1/;/2)) cos” (¥/2) < s—(b—lyl)/z( 12 1 4) Y
8 (L+yHl/ V1+y?

< s—(h—lyl)/2y—|y\(1 + yZ)—(b—3|yD/4
< s—(b—lyl)/2y—|y\(1 + yZ)—(h+3V)/4'
Above we have used (3.14) and (3.15). In this case from (3.16) we have

§32 g—b=lyD/2

oo
— 2 . —
k5 (p.g) S x(g)/ dy e VIV [0 (Gy) (14 y2) = /4
0

groqo g/

G+yl=b)/2 00

$ — )2 _ . (h

" ooqe 1@ / dy e VI Gy (14 y3) =030,
0

Note that we have just used the ¢ > 0 from (3.1). From (2.7), b € (0,4 — |y|) and
y € (—2,0). We have in this case b € (0, |y|). Hence b — 3 |y| € (-6, 0).

We evaluate the relevant integral above as

00 1 00
/ dy eIV g (y) (14 y?) G0/ =/ dy +/ dy
0 0 1

1 e’}
_ 2 _ . _ 2 . _
5/0 dy eV Iyl 'V'Io(m+/1 dy e VI y () (1 + yH =D/,

(3.17)

For the unbounded integral we have used the estimate y~7| < (1 + y?)~2I7l/4 In this
case |[y| —b € (0,2) since 0 < b < |y].
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To estimate the remaining integrals above we use the precise theory of special func-
tions, see e.g. [39,46]. We define

X o
Ko(l, j) = / dy e VI yIp(jy) (1 + y2)/,
0
Then for o € [—2, 2] from [24, Cor. 1 and Cor. 2] it is known that
Ko(l, j) < CI're/2g=clp=al, (3.18)

We also define
I, )< /O Ly eV ),
Then for n € [0, 2) from [24, Lemma 3.6] we have the asymptotic estimate:
i), j) < CemeVP=7 < cemelp=all2, (3.19)

‘We will use these estimates in each of the cases below.
Thus in this Case 1 by (3.19) and (3.18) the integral in (3.17) is

< emClP=al/2 | IRy 1I=D)/24=1p=ql/2 < 1+(1y1=D)/24=clp=q1/2

We may collect the last few estimates together to obtain

) (Glyl=b)/2 b2 —elrals
kz(PaQ)fceWX(g)(PO"'qO) vI=h)/2 g=clp=ql/2,

Note that for any £ € R we have

ste=clP=al/2 < ¢ e=clP=al/4,

This follows trivially from (3.8) and s = 4 + g> < 4+ |p — q|*. Furthermore, for any
¢ € [0, 2], we claim the following estimate

L
+
%e—dp—qlﬂ < (pogo)>~ e—cIp=al/8, (3.20)

Using (3.20) with £ = 1 + |y|/2, in this Case 1, we have the general estimate

2-1 b el
K5 (p.q) < Ce (Vpogo) "> ™" (po+qoy /2 el

This is the desired estimate in the current range of exponents for Case 1.
Before moving on to the next case, we establish the claim. Suppose that

1
— < < 2|qg].
2Iql_lpl_ lq]

In this case (3.20) is obvious. If % lg| > |pl|, then we have

1
|P—61|Z|CI|—|P|Z§|LI|- (3.21)
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Whence
¢
(Po+40)" —cip—qi/4 _ Co (poqo)~" e=c1P=al/8—clal/64
Poqo h
In the last splitting | p| > 2|q|, then we alternatively have

1
|P—6]|Z|P|—|CI|Z§|P|~ (3.22)

Similarly in this situation

4
(PO +490)" —clo=al/4 < ¢, (poge)=" e=<IP41/8¢=cIPI/64,
Pogo

These last two stronger estimates establish (3.20). We move on to the next case.

Case 2. We still consider y = — |y| < Obutnow b+y = b — |y| > 0. We have

B 4
sin (v/2) b+y , b I( 1 )b Iyl y
sin (y/2) 2) < " ———+ P

( : ) cos” (/) S 8 T NS

< g—(b—ly\)y—lyl(l + y2)—(b—3|)/|)/4

<C. y—\y\(l + y2)—(b—3\y\)/4.
We have used g > € on the support of x(g) in (3.1). We also used (3.14) and (3.15).
Then again from (3.16) we have

3/2 )
s 1S - . —(b—
Hp.a) s Con | dy eIy I (i) (14 y?) 707D,
0

From (2.7), we have in this case that y € (—=2,0) and b € [|y|,4 — |y|). Hence for the
exponent above b — 3 |y| € (—4,4).

Then the relevant integral above is bounded by

oo 1 00
/0 dy e VI YW (y) (14 y?) 073D < /0 dy + /1 dy

1 [e¢)
1 ST02 1— : B 5 . -
S/O dy eV Iy! |”'Io(Jy)+/l dy eIV LGy (1 4+ D) Ir=/4,

Here we used the same estimates as in Case 1. In this case |y| — b € (—4,0). Let
¢» = max(—2, |y| — b). Then in this case by (3.19) and (3.18) the above is

< Ce~cIP=4l/2 4 cp1*02/2p=1P=41/2 < C[1+82/2 p=clP=4l/2

We may collect the last few estimates together to obtain

$3/2

1+8/2
. + .
k5 (p,q) < Ce% (po + qo) ¥52/2 —clp=al/2 < Céwe—qp—qm

Poqo

We will further estimate the quotient.
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If ¢, = |y| — b, then 1 +|y|/2 € [1,2) and (3.20) implies

Po+g0) ™07 _ppqys _ (ot g0
< (poqo)(l)/\—Z)M (Po +q0)_b/2 e—clp—al/s.
Alternatively, if & = —2 then 1 +¢2/2 = 0 and (3.20) implies

(PO + q0)1+§2/28—c|p—q|/4 — (PO + qO)b/2

P0qo Poqo
< (pogo) PV (po + qo) P12 eeIPTalB,

(po+qo) "% e=clp—al/s

(po+qo)~"/? e~clPmal/

In either situation

kX (P, q) < Ce (pogo)™* (po +qo) "% e=clP=aV/8,

with ¢ £ min {2 — |y|, 4 — b} /4 > 0.
Case 3. In this last case y = |y| > 0and b + y > 0. From (3.14) and (3.15):

sin (4/2) biy ) 1 b+|y|
(H52) oo 02 (ma)

< g—(b+|)/|)(1 + y2)—(b+|V|)/4
< C.(1 +y2)—(b+\)/\)/4_

We have again used g > € on the support of x(g) in (3.1). In this case from (3.16) we
have

§3/20l]

oo
_ 2 . _
k3 (p.q) =< Ce / dy e VIS [0y (1 + y2) T GHY DA,
poqo Jo

From (2.7),b € [0,4) and b + |y| € [0,4 + |y|). Let &3 = min(2, b + |y|) = 0.
Again using (3.18) we have

/°° dy eV Y10y (1 + y2)~ YDA < opl=a/2g=clp=alr2,
0

Hence
§3/2,l71

1-¢3/2
Yi=6a/2 g=elp=al2 < ¢, POT4O) T —eipgisa
B P0q0
If ¢3 = 2 this estimate can be handled exactly as in Case 2. If &3 = b + |y|:

K} (p,q) < Ce (po +qo

(po +qo)' 5/ o—clp—ql/s _ (PO q0)' 1"/

(po+qo) /% e=clp=al/
Poq0 Poqo
< P+ 40) (po+qo) "2 eclP—al/t
Poqo

< (pogo) "2 (po + qo) P/ e~clP=al/16

We have again used the estimate (3.20). In all of the cases we see that k%( (p, q) satisfies
the claimed bound from Lemma 3.2 with ¢ = min {2 — |y|, 4 — b, 2} /4 > 0. We could
obtain a larger ¢ in Case 3 if it was needed. O
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With the estimate for the Hilbert-Schmidt form just proven in Lemma 3.2, we will
now prove the decomposition from Lemma 3.3.

Proof of Lemma 3.3. We recall the splitting K = K'=% + KX from (3.2). For KX we
have the kernel kX = k% — kf from (3.9) and (3.10). For a given R > 1, choose another
smooth cut-off function ¢pr = ¢r(p, q) satisfying

or=1, if |p[+lq| = R/2, |¢rl =1,

3.23
supp(¢r) C {(p.q) | Ipl +1q] < R}. (3.23)

We will use this cut-off with several different R’s in the cases below. Now we split the
kernels kX (p, q) of the operator KX into

k*(p,q) = k*(p, 9)pr(p, q) + k* (1 — $r)
=kX(p.q) + kL (p.q).
We further define

def

Ky = K™%+ K},
where K (h) £ [ps dq kX (p. @) h(q). Then the compact part is given by
def

K. 2 KX,

where KX (h) = [ps dq kX (p, q) h(q). Note that the compactness of K (h) is evident
from the integrability of the kernel. In the following we will show that the operators K
and K satisfy the estimates claimed in Lemma 3.3.

First off, for K., from the Cauchy-Schwartz inequality we have

]<w§1<c(h1>,h2>)s / dgq / dp wi(p) [kX(p, @)| 1h1(@ha(p)|
R3 R3
1/2
< ( / dqdp wi(p) kX (p, )| |h1<q>|2)

1/2
x ( / dqdp wi(p) [kX(p. )| |h2<p>|2) :

From the definition of k% ( p, q) and Lemma 3.2, we see that
wi (p) [k (p, @) < Cr e~ P~ 1<g(p) 1<k (q),

where 1< is the indicator function of the ball of radius R centered at the origin as
defined in Lemma 3.3. By combining the last few estimates we clearly have the claimed
estimate for K, from Lemma 3.3.

In the remainder of this proof we estimate K; = K I=x + KX . For K} we have

ki = [ dg [ dpwio) (o] In@hal.

With the definition of kX (p, ¢) and Lemma 3.2, we obtain

wi(p)
R¢

wi(p) [kX(p, )| = wi(p) [k (p, )| (1 — ¢pr) < (po +qo)~b/? e=clPl,
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Furthermore, we claim that
wl(p)e P4l < wy(pywe(q)e=IP=a1/2, (3.24)

By combining the last few estimates including (3.24), with Lemma 3.1, we have

e—¢lp—al
(wiK Y (hy), hz / dCI/ dp we(P)we(q)( 20)78 |h1(g@)h2(p)l
< |h1|v,€|h2|v,Z

Since ¢ > 0 we conclude our estimate here by choosing R > 0 sufficiently large. Notice
that the size of this R above clearly depends upon € > 0 from (3.1).

To prove the claim i 1n (3.24), we use the same general strategy which was used to
prove (3.20). Indeed, if 1 71g] > | p| then because of (3.21) we have

w%(p)e—dp—qlﬂe—dp—q\ﬂ < w%(q)e—dq\/4e—clp—ql/2 < Cpe~clP=41/2,

which is better than (3.24). Alternatively if | p| > 2|q|, then with (3.22) we have

w%(p)efc\p*q\/zefclpfql/Z < w?(p)efclp\/4efc|p7q|/2 < Cge*dpfq'/z,

The only remaining case is %|q| < |p| < 2|q| for which the estimate (3.24) is obvious.
The last term to estimate is K' X = K217X — Kllfx. Notice that

K= [ dg k7o hio)
where from (2.4) and (3.1),
K o) = (= x @)V @) (p) /S dw vy 0(3.6).

To estimate K 11 ~* we apply Cauchy-Schwartz to obtain

W2 K| ). o) E/M dg /]R dp wi(p) K (p. @) Ihi(@ha(p)]
1 1/2
< ( / dpdq wi(p)k, * (p. q>|h1(q)|2)

1/2
1—
x ( / dpdq wi(p)k;” " (p, q)|h2<p>|2) :
We will estimate the kernel of each term above. We further split

1— 1— 1— 1— 1-
kl X(P’ q) =k1 X(P, Q)¢R(P»‘Z)+k1 X (I —¢r) = klgx +k1LX-

The value of R > 1 used here is independent of the case considered previously. The R
here will be independent of €. From (2.7) and (1.9), in general we have

T
/ dovgo(g,0) < ~— */_ g'=" [ do sin'*ve < igl_h. (3.25)
s? Pog 0 Poqo
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For g < 2¢ asin (3.1), with (3.8) we conclude that

Ip —ql < 2e/poqo. (3.26)

Furthermore, on the support of ¢ we notice that additionally |p — g| < 4€R. Then if
b € (1, 4), with the formula for k:fx (p,q), (3.25) and then (3.8), we obtain

/ dp w}(p) k5" (p.q) < CR/ dp L;gl‘bx/l(q)l(p)

[p—q|<4€R po4qo

< CR/ dp g0 7 @) 74 (p)
|[p—g|<4eR

b—1
< Cx / dp (—V”O"O) TV T (p)
|p—q|<4eR lp —ql

< CR*betb 18y,

The last inequality above follows easily from ( / poqo)b_l J'8q)J'B(p) < C and
also

1/8
/ ap P (’;)_l < CR4betb,
Ip—ql<deR lp—ql
Thus when b € (1, 4) we have

(WEK " ), )| = Cret =17 19011017/ O] (3.27)

This is much stronger than the desired estimate for € = €(R) > 0 chosen sufficiently
small. Alternatively if b € [0, 1] then with (3.25) we have

/ dpwl(p) kiy* (p.q) < C / dp IV @ T (p) < CRPETVA(g).
R3 |p—q|<4eR

Thus when b € [0, 1] we have ((ng}*X(hl),m) < Cre3|JV8n1|2|J8hy|,. This

concludes our estimate for the part containing ki;x (p, q) for any fixed R after choosing
€ = €(R) > 0 small enough (depending on the size of R).

For the term involving kllzx (p, q) the estimate is much easier. In this case

/R; dp i (p) ki;"mq)sfw dp g'=" A—pr(p. ) I @)1 (p)
S et (3.28)

The same estimates hold for the other term in the inner product above. These estimates
are independent of €. We thus obtain the desired estimate for this term in the same way
as for the last term; here we first choose R > 0 sufficiently large.

The last term to estimate is K21 X from (3.2). With (3.26) we see that

Po < |p—ql+qo <2e/pogo +qo < €po + (1 +¢€)qo.

The first inequality in this chain can be found in [18, Ineq. A.1]. We conclude py < go
and similarly go < po. For 0 < € < 1/4 say the constant in these inequalities can be
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chosen to not depend upon €. Furthermore from (1.11), if g < 2¢ and € is small (say
less than 1/8), then it is easy to show that

Pot+qo
VR

. oq0 = (3.29)

These post-collisional energies are also clearly bounded from above by pg and g, so
that all of these variables are comparable on (3.2). We thus have

Ky ). )| / dwdqdp (1= x(8)) vy 0 (g, 0)e =P
R3xR3xS§?
x (|h1(pH] + |h1(gh]) 1h2(p)] .

With Cauchy-Schwartz we obtain

1/2
< (/ dwdqdp vy o (g,0)e % |hy(p))|*
g<2e¢

1/2
X (/ dwdqgdp vy o (g, 0)e 40P Ihz(P)lz)
g=<2e
N\ 12
+ (/ dwdqdp vy o (g, 0)e P |hi(q)] )

g=<2e
1/2
X (/ dwdgdp vy o (g, 0)e C107CP0 |h2(P)|2) .
g=2e
From (3.25) and the arguments just below it, for any small > 0 we can estimate

/ dwdq vg o(g,0)e ™D < ne_0p°/2.
g=<2e¢

Above of course we have n = n(e) — 0 as € — 0, and by symmetry the same estimate
holds if the roles of p and g are reversed. Since the kernels of the integrals above are
invariant with respect to the relativistic pre-post collisional change of variables [23],
which is justified for (1.10), we may apply it as

!’
dpdq = Podo dp'dq’.
Poq0
Putting all of this together with (1.6) we have

. 12 1/2
<K2‘X<h1>,hz>\sn<e)(/dpecp°|h1<p>|2) (/dpecmmz(p)ﬁ) :

For € > 0 small enough, this is stronger than the estimate which we wanted to prove.
We have now completed the proof of this lemma. O

We will at this time use the prior lemma to prove the next lemma.
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Proof of Lemma 3.4. Most of this lemma is standard, see e.g. [21]. We only prove the
coercive lower bound for the linear operator. Assuming the converse grants a sequence
of functions h" (p) satisfying Ph" = 0, |h"|‘2) = (vh",h") =1 and

(LA™ 1") = W[} — (KK h") <

S| =

Thus {A"} is weakly compact in | - |, with limit point #°. By weak lower-semi continuity
|ho|U < 1. Furthermore,

(LW",h"™y =1 — (Kh", h").
We claim that

lim (K", h") = (Kh°, h¥).

n—oo

The claim will follow from the prior Lemma 3.3. This claim implies
0=1—(Kh n%.
Or equivalently
(LR°, 1% = |h°)2 — 1.

Since L > 0, we have |h0|12, = 1 which implies h® = PhO. On the other hand since
h" = {I — P}h" the weak convergence implies #° = {I — P}4°. This is a contradiction
to [n9)2 = 1.

We now establish the claim. For any small n > 0, we split K = K. + K as in
Lemma 3.3. Then [(K k", h")| < n. Also K. is a compact operator in le) so that

lim |K.h" — K:h°], = 0.
n— o0
We conclude by first choosing 1 small and then sending n — oco. O

We are now ready to prove Lemma 3.5. We point out that similar estimates, but with
strong Sobolev norms, have been established in recent years [28,29,31,51] via the mac-
roscopic equations for the coefficients a, b and c. We will use the approach from [33],
which exploits the hyperbolic nature of the transport operator, to prove our Lemma 3.5
in the low regularity L setting.

Proof of Lemma 3.5. We use the method of contradiction, if Lemma 3.5 is not valid then
for any £ > 1 we can find a sequence of normalized solutions to (2.11) which we denote
by fi that satisfy

1 1 1
/ ds [|{T=P}fill3(s) < %/ ds P fill3(s).
0 0

Equivalently the normalized function

def Se(t, x, p)

Z(t,x, p) = - ,
Vo ds IPfill2(s)
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satisfies
! 2
| asipzio =1
0
and
1 ) 1
| asin-rmzie < ;. (3:30)
0
Moreover, from (2.6) the following integrated conservation laws hold:
1 1
/ ds / dx / dp | p | VJ(p) Zi(s,x, p) =0. 3.31)
0 T3 R3 Do
Furthermore, since f; satisfies (2.11), so does Z. Clearly
1
sup / ds | Zi 3 (s) S 1. (3.32)
k>1J0

Hence there exists Z (¢, x, p) such that
Zi(t,x,p) — Z(t,x,p), ask — oo,

weakly with respect to the inner product fol ds (-, -), of the norm fol ds || - ||%. Further-
more, from (3.30) we know that

1
/ ds |{1 = P}Z|I>(s) — 0. (3.33)
0

We conclude that {I — P}Z; — {I — P}Z and {I — P}Z = 0O from (3.33). It is then
straightforward to verify that

1
PZ; — PZ weakly in / ds | - ||%.
0

Hence
Z(t,x, p) =PZ = {a(t,x)+ p - b(t, x) + poc(t, )V J. (3.34)

At the same time notice that LZy = L{I — P}Z; and we have (3.33). Send k — o0 in
(2.11) for Z; to obtain, in the sense of distributions, that

WZ+p-ViZ=0. (3.35)

At this point our main strategy is to show, on the one hand, Z has to be zero from
(3.33), the periodic boundary conditions, and the hyperbolic transport equation (3.35),
and (3.31). On the other hand, Z; will be shown to converge strongly to Z in fol ds]|| - ||]2)
with the help of the averaging lemma [12] in the relativistic formulation [47] and
fol ds | Z||%(s) > 0. This would be a contradiction.
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Strong convergence. We begin by proving the strong convergence, and then later we will
prove that the limit is zero. Split Z (¢, x, p) as

5
Zi(t,x, p) =PZy + (1 =P Zx = D (Zi(t,x, ), ¢j)e;(p) + {1 — P} Z,
j=1
where ¢ (p) are an orthonormal basis for (3.3)in || - ||,.
To prove the strong convergence in fol ds | - ||]2), recalling (3.33), we will show

1
> /0 ds |(Zx, ej)ej — (Z, ej)ej||>(s) — O.

1<j<5

Since e (p) are smooth with exponential decay when p — o0, it suffices to prove

1
/ds/ dx [(Zx, ej) — (Z,ej)|* — 0. (3.36)
0 T3

We will now establish (3.36) using the averaging lemma.
Choose any small n > 0 and a smooth cut off function i (¢, x, p) in (0, 1) x T3 x R3

such that x1(z, x, p) = 1in [, 1 — n] x T3 x {|p| < %} and x1 (7, x, p) = 0 outside
/2,1 = /21 x T x {1l = 2]. split
(Zk(ta-x’ ')a e]> = ((1 - Xl) Zk(ta X, ')7 e]) + (X]Zk(t,.x, ')a e]> (337)

For the first term above, notice that

1
/ ds/ dx (1 = x1) |1 Zk — Z| , ej)?
0 T3
! 2 2 2 ! 2 2 2
5/ / (1 = x1)" 1 Zk|" e +/ / (I = x)"1Z|" el
0 T3 xR3 0 T3xR3

0<s<n 1-n=<s<l Ip1=1/n

Since ej = ¢ (p) has exponential decay in | p| we have the crude bound

lej(p)l = Cn, for [p|=1/n.

Thus all three integrals above can be bounded by

cn swp (1Z136) +1Z136) = € (1Zc@I3 +1ZOI3) 1 = Cn,  (338)

0<s<l

which will hold for Z; uniformly in k. These bounds follow from (2.11) and (3.35).
The second term in (3.37), (x1Zk(t, x, ), ej), is actually uniformly bounded in
H'4([0, 1] x T3). To prove this, notice that (2.11) implies that x; Z; satisfies

[0+ P - Vil (x1Zk) = = X1 LIZk] + Zie[9; + p - Vilxi- (3.39)
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The goal is to show that each term on the right-hand side of (3.39) is uniformly bounded
in L>([0, 1] x T3 x R?). This would imply the H'/4 bound by the averaging lemma. It
clearly follows from (3.32) that

Zi[: + P - Vilx1 € L2([0, 1] x T3 x R?).

Furthermore, it follows from Lemma 3.1 and Lemma 3.3 with £ = 0 that
/ dp |x1 LIZi] < / dp lx1v(p) Zi* +/ dp |x1K(Z)P* < | Zi(t, ).
R3 R3 R3

Thus the right-hand side of (3.39) is uniformly bounded in L*([0, 1] x T3 x R?). By
the averaging lemma [12,47] it follows that

(X1Zk(t,x, ), ej) = /R dp x1(t, x, p)Zi(t, x, p)e;(p) € H'*([0, 1] x T?).

This holds uniformly in k, which implies up to a subsequence that
1Zk(tx, ), ej) > (1 Z(t,x, ), ej) in L2([0, 11 x T%).
Combining this last convergence with (3.38) concludes the proof of (3.36).

As a consequence of this strong convergence we have

1
/ ds |Zx — Z|2(s) — 0,
0

which implies that

1
/ ds |PZ|%(s) = 1.
0

Now if we can show that at the same time PZ = 0, then we have a contradiction.

The limit function Z(t, x, p) = 0. By analysing the equations satisfied by Z, we will
show that Z must be trivial. We will now derive the macroscopic equations for PZ’s
coefficients a, b and c. Since {I — P}Z = 0, we see that PZ solves (3.35). We plug the
expression for PZ in (3.34) into Eq. (3.35), and expand in the basis (3.3) to obtain

[8% + 2 foia} + B2 oy Lo py {30, + 07} + po [aoc}] 72 (p) =0,
Po Po

where 3° = 9; and 3/ = 9, ;- By a comparison of coefficients, we obtain the important
relativistic macroscopic equations for a(t, x), b; (¢, x) and c(z, x):

3% =0, (3.40)

dc+3%; =0, (3.41)
(1—8)d'b; +d/b; =0, (3.42)
da =0, (3.43)

3% =0, (3.44)

which hold in the sense of distributions.
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We will show that these Eqs. (3.40)—(3.44), combined with the periodic boundary
conditions imply that any solution to (3.40)—(3.44) is a constant. Then the conservation

laws (3.31) will imply that the constant can only be zero.
We deduce from (3.44) and (3.43) that

a(t,x) =a(0,x), a.e.x,t,

a(s,x1) = a(s,xp), a.e.s,xi,Xxa.

Thus a is a constant for almost every (¢, x). From (3.40), we have c(¢, x) = c(x) for
a.e. . Then from (3.41) for some spatially dependent function b; (x) we have

bi(t, x) = 8 c(x)r + b; (x).
From (3.42) and the above
0=20"bi(t,x) =00 c(x)t + 8 b; (x),
which implies
3'9lc(x) =0, 98'bi(x)=0.
Similarly if i # j we have
0= 07bi(t, ) + b (1, x) = (797e(x) + 907 e(x)) 1 + 87 Bi (¥) + 07D, (x),
so that
3o c(x) = -89 c(x), 3/bi(x) =—3"bj(x),

which implies 8’c(x) = ¢;, and c(x) is a polynomial. By the periodic boundary condi-
tions c(x) =¢ € R.

We further observe that b; (¢, x) = b;(x) is a constant in time a.e. from (3.41) and the
above. From (3.42) again 8'b; = 0 so that trivially 8'8’b; = 0. Moreover (3.42) further
implies that 3/3/b; = 0. Thus for each i, b; (x) is a periodic polynomial, which must be
a constant: b; (x) = b; € R.

We compute from (3.34) that

/ dppiﬂ/?(p)za,x,p):bi/ dp p}J(p), i=123,
R3 R3
/dpf‘/z(p)zu,x,p)w/ dpJ(p)+c/ dp poJ (p),
R3 R3 R3
/dppoﬂ”(p)za,x,p):a/ dPPOJ(P)+C/ dp p3J(p).
R3 ]R3 R3
As in [51] we define
p1=/ J(p)dp =1, po=/ poJ (p)dp, pz=/ p3J(p)dp.
R3 ]R3 R3

’Z (]) z 2) is invertible because pg < p1p2. It then follows

from the conservation law (3.31) which is satisfied by the limit function Z(¢, x, p) that
the constants a, b;, ¢ must indeed be zero. 0O

Now the matrix given by (
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We have now completed all of the L? energy estimates for the linearized relativis-
tic Boltzmann equation (2.11). We will now use (3.5), Lemma 3.4, Lemma 3.5, and
Lemma 3.6 to prove Theorem 3.7. This will be the final proof in this section.

Proof of Theorem 3.7. For k > 0, we define the time weight function by
Pe(t) £ (1+0)k. (3.45)

For a solution f (¢, x, p) to the linear Boltzmann equation (2.11), with Py (¢) from (3.45),
Py (1) f (¢) satisfies the equation

(3 +p - Ve+ L) (P(O) f (1) = kPe1 (1) f (1) = 0. (3.46)

For the moment, suppose that t = m and m € {1, 2, 3, ...}. For the time interval [0, m],
we multiply Py (¢) f(¢) with (3.46) and take the L? energy estimate over 0 < s < m to
obtain

Po(m) | £ 13(m) + /O ds Pu(s)(Lf, f)

—k /O ds Pu— 1) FI3() = Il foll3. (3.47)

m def

We divide the time interval into Uj:_()l[j, Jj+ 1) andalso fj(s,x,p) = f(j+s,x,p)
for j €{0,1,2,...,m — 1}. We have

m—1 .
Pam)ll fmI3 + /0 ds { PG+ 9(Lfj0 1) = kP (G +9)1L£5136))
j=0

2
= [ foll2-

Clearly f;(s, x, p) satisfies the same linearized Boltzmann equation (2.11) on the inter-
val 0 < s < 1. Notice that on this time interval

Po(j+5) > Pu(j), Pu—1(j+5) < CkPu—1(j), Vk>1/2, sel0,1]. (3.48)
These estimates are uniform in j, so that

m—1

1 ~
Pa(m)ll fm)I3 + /0 ds {Pa()(LS;, 1)) = CekPucr (DI BO) |
j=0

2
= Ilfoll2-

Moreover, by Lemma 3.4, we have

) )
(Lfj, fj) = Sol{T — P} fj | = 3°||{I —P}fil%+ 3°||{I —P}fil2.

Furthermore, with Lemma 3.5 applied to each f;(s, x, p) we obtain

m—1 1 m—1 1
b) ) 308y .
—20 j§=0 sz(J)/O ds [{I - P} f;|2 > —02 ,-E=o sz(J)/O ds [Pfil2(s).  (3.49)
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We combine (3.49) with the estimate above it to conclude

m—1 1 s m—1 1
> m(j)/o ds (Lfj, [)(s) = 3" > P2k<j>/0 ds {1 =P)£;13(s)
j=0

J=0

508y " ! )
=0 2 P | ds IPFI50)
j=0

m—1 1
>5>] P2k<j>/ ds | f1I5(s),
j=0 0

where § = % min {8028 o %"} . Define Cy, = C'kk. With this lower bound

m—1 .1
Py )| F130m) + > /0 ds {SPu(DISIE = CePucr DIS 1B} ) < 1ol
j=0

Next, for A > 0 sufficiently small we introduce the following splitting:

Evy={p|pt? <rasp). B ={p|pt?z2a40}. @50

We incorporate this splitting into our energy inequality as follows:

Sm—l 1
PaowIf B +3 3 Pu) [ ds 1)
25 0
m—1 . S
+> /0 ds [5||\/sz(j>f,-1Ex,,||3(s>—ck||\/sz_1<j>f,-1Ek,./ ||%(s>]
j=0

m—1 1
<lflz+>] /O ds Cillv/ Pa—1()) filg 13(5),
j=0

where 1 Ej is the usual indicator function of the set E; ;. On E, ;, with the help of
Lemma 3.1, we have

2

1> -2+ ))py"* = —Cor(1+ j)v(p), C,>0.

Hence
gnmf,mj 12(5) = Cillv/ Pa—1 () f11E,, 13(5)
> (g —~ ckcux) IV Potc () i1 E, ; 155).
We choose A > 0 small enough such that

def g
Ci =5 = CiCud > 0.



Asymptotic Stability for Soft Potentials 559
Then we have the following useful energy inequality:

Sm—l 1
Py (m)|| £113(m) + 5 Z‘,O Pu(j) /0 ds || fi1%(s)

m—1

1
NS /0 ds I £l I2(5)
=0

m—1 .
<lfolz+>] /0 ds CellV/ Pu—1() fiLEg | I3().
j=0

The last term on the left side of the inequality is positive and we discard it from the
energy inequality. For the right side of the energy inequality, on the complementary set
Ei,j, using Lemma 3.1 again, we have

b/2 2k—1 c
. 14
Po—1(j) = (OT) < )LTV_I v(p) wak(p).

Thus we bound the time weights with velocity weights and the dissipation norm

m—1 . m—1 .
> | ascVmiGisie Bo ¢ 3 [ ds 1 140,
j=0"0 ' j=0"0

We switch back to f;(z, x, p) = f(t + j, x, p) and use (3.48) to deduce

Pac(m)|| £ 115 (m) +6k/0 ds Py f15() < [ foll3 + c/o ds || 15 ().

‘We can obtain an upper bound for the right side above using the regular energy inequality
in (3.5) to achieve

Poc(m) | £13(m) + 8 /0 ds Py FI5(s) < Cll foll34-

We have thus established our desired energy inequality from Theorem 3.7 for any m €
{0,1,2,...} and £ = 0. For an arbitrary t > 0, we choose m € {0, 1, 2, ...} such that
m <t < m+ 1. We then split the time integral as [0, 1] = [0, m] U [m, f].

For the time interval [m, t], we have the L2 energy estimate as in (3.6). Since L > 0
by Lemma 3.4, we may use (3.48) and (3.6) to see that

PuOIf(OI3 < CkPu(m) | f ()13, ¥t € [m,m +1].

Since (3.47) holds for any time ¢ (not necessarily an integer), we can use the estimate
above together with (3.47), as in (3.7), using Lemma 3.6, for any ¢ > 0 to obtain

t
Py fII5(2) + 8 /O ds Poy(9)I £15(5) < Crll foll34- (3.51)

This proves our time decay theorem for ¢ = 0. For general £ > 0 this estimate can be
proven in exactly the same way, except in this case we use Lemma 3.6 in the place of
Lemma 3.4 and Lemma 3.5 as we did in the proof of (3.5). O

This concludes our discussion of L? estimates for the linear Boltzmann equation. In
the next section we use these L estimates to prove L™ estimates.
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4. Linear L°° Bounds and Slow Decay

In this section we will prove global in time uniform bounds for solutions to the linear-
ized equation (2.11) in L°([0, 0o0) X T3 x R?), and slow polynomial decay in time. We
express solutions, f(t, x, p), to (2.11) with the semigroup U (¢) as

f @ x, p) ={U@) fo}(x, p), (4.1)
with initial data given by

{U0) fo}(x, p) = folx, p).
Our goal in this section will be to prove the following.

Theorem 4.1. Given £ > 3/b and k € [0, 1]. Suppose that fy € L?ik(T3 x R3) satisfies
(2.6) initially, then under (2.7) the semi-group satisfies

U@ follloo.e < €A+ folloo,exk-
Above the positive constant C = Cy  only depends on £ and k.

The first step towards proving Theorem 4.1 is an appropriate decomposition. Initially
we consider solutions to the linearization of (2.1) with the compact operator K removed
from (2.11). This equation is given by

(@ +p-Vetv(p) f=0, fO,x,p)= folx,p). 4.2)
Let the semigroup G (¢) fo denote the solution to this system (4.2). Explicitly

def

G(t) fo(x, p) = e P fo(x — pt, p).

For soft potentials (2.7), with Lemma 3.1, this formula does not imply exponential decay
in L* for high momentum values. However, as we will see in Lemma 4.2 below, this
formula does imply that one can trade between arbitrarily high polynomial decay rates
and additional polynomial momentum weights on the initial data.

More generally we consider solutions to the full linearized system (2.11), which are
expressed with the semi-group (4.1). By the Duhamel formula

t
U@ fo} (x. p) = G() folx, p) +/0 ds1 G(t —s)K {U(s1) fo} (x, p).

We employ the splitting K = K!=X + KX which is defined with the cut-off function
(3.1) and (3.2). We then further expand out

t
{U®) fo} (x, p) = G() fo(x, p) +/0 dsi G(t —s)K' " {U(s1) fo} (x, p)

t
+ [ dsi G- s0EX W60 ) ).
0
We further iterate the Duhamel formula of the last term, as did Vidav [56]:

s1
U(s1) = G(s1) +/0 ds) G(s;1 — s2)KU(s2). 4.3)
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This will grant the so-called A-Smoothing property. Notice below that we only iterate
on the KX term, which is different from Vidav. Plugging this Duhamel formula into the
previous expression yields a more elaborate formula

1
U fo) (5, p) = G(O) folx. p) +/0 dsy G(t — sDK" (U(s1) fo} (x. p)
t
+/0 ds) G(t — s)KXG(s1) folx. p)
t S1
+/0 dsl/o dsy Gt — s)K*Gs1 — 2K {U(52) fo) (%, p).

However this is not quite yet in the form we want. To get the final form, we once again
split the compact operator K = K= + KX in the last term to obtain

t
WO fo) (v, p) = GO folx, p) +/0 dsy G(t — s)K"™* (U(s1) fo) (x. p)
t
+/O dsy Gt — s)K*G(s1) fo(x. p)
t S
+/ ds1/ dsz Gt —s)K* G (s —s)K " {U(s2) fo) (x. p)
0 0

t 81
+/O dsl/O dss Gt — s)K¥Gs1 — s KX {U(s2) fo) (x, p)

def

= H\(t,x, p)+Ha(t, x, p)+H3(t, x, p)+Ha(t, x, p)+Hs(1, x, p),
(4.4)

where

Hi(t,x, p) = e P fy(x — pt, p),

t
Haxop) 2 [ sy ORI UG ol 1),
0
def !
Hs(t.x, p) = / dsy =" P /IR a1 KX (pq1) ™I fon = Gusi, qu)
0

Just above and below we will be using the following short-hand notation:

def A
= — r — s
yi=x—pt—s1) 45

y2=y1 —qi1(s1 —82) =x — pt —s1) — q1(s1 — 52).

We are also using the notation g9 = /1 +|q1/? and q1 = (q11. q12. q13) € R3 with
g1 = q1/q10- Furthermore the next term is

X t 51
Hy(t, x, p) = / dqi K*(p, q1) / ds / dsy e VPTG 752)
R3 0 0

x K'7X U (52) fo} (02, q1).
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Lastly, we may also expand out the fifth component as

t
Hs(t, x, p) = / dq1 KX (p, q1) / dqr KX (q1, q2) / dsy eV PU=sD)
R3 R3 0
N
« / dsy e (U(52) fol (32, 42). 4.6)
0

We will estimate each of these five terms individually. In Lemma 4.2 below we will
show that the first and third term exhibit rapid polynomial decay. Then after that, in
Lemma 4.3, we show that the second and fourth terms can be bounded by the time decay
norm (2.10) multiplied by an arbitrarily small constant. For the last term, in Lemma 4.4,

we will show that Hs can be estimated by (2.10) times a small constant plus the L% j

norm of the semi-group (for any j > 0) multiplied by a large constant. After stating each
of these lemmas, we will put these estimates together to prove our key decay estimate
on the semi-group for solutions to (2.11) in L7 as stated above in Theorem 4.1. Once
this is complete we give the proofs of the three key Lemmas 4.2, 4.3 and 4.4 at the end
of this section.

Lemma 4.2. Given £ > 0, for any k > 0 we have
lwe(p)Hi(t, x, p)| + [we(p)Ha(t, x, p)| < Coi(1+8) N folloo, e4k-
Next

Lemma 4.3. Fix ¢ > 0. For any small n > 0, which relies upon the small ¢ > 0 from
(3.1), and any k > 0 we have

lwe(p)Ha(t, x, p)| + lwe(p)Ha(t, x, p)| < n(1+ )7 1 f1llk.e-

The estimates in the lemma above will be used to obtain upper bounds for the the
L7° norm of the semi-group. The final lemma in this series is below

Lemma 4.4. Fix £ > 0, choose any (possibly large) j > 0. For any small n > 0, which
depends upon (3.1), and any k > 0 we have the estimate

t
lwe(p)Hs(t, x, p)| < n(L+ 07 1 flllk.e +C,,/0 ds e 17| flla,—j(s)
+we(p) IRI(HHD)].

By the L? decay theory from Theorem 3.7, and also Proposition 4.5, we have

t
/ ds e 1 Flla— i (s) < Cu(L+ 07X follak < Cp(1+ )75 folloo, e+
0

The above estimates hold for any k > 0 and £ > 3/b (as in (4.7) just below). On the
other hand, for the last term if we restrict k € [0, 1] then Vi > 0 we have

we(p) [R1(HI < L+ 11 £k e-

Above R is defined in (4.15) during the course of the proof.
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These estimates would imply almost exponential decay except for the problematic
term R (f)(t), which only appears to decay to first order. This will be discussed in more
detail in Sect. 6, where it is shown that this term can decay to any polynomial order by
performing a new high order expansion.

We now show that the above lemmas grant a uniform bound and slow decay for
solutions to (2.11) in L;’O. We are using the semi-group notation f(t) = {U(t) fo}.
Lemmas 4.2, 4.3, and 4.4 together imply that for any n > 0 and k € [0, 1] we have

I £ lloo.e (@) < Cox(1+1) KNl folloo,esk + n(1+ 0K £lllke + Cp(1+ 075 follok-
Equivalently

ke < Cokll folloo,exk + Crp2ll foll2,x < Cokll folloo, 4k -

The last estimate holds when we choose ¢ > 3/b, with (2.9), as follows

||f0||2,k=\/ / dx / dp W2(Pfo(P)P < Il folloo.cak / dp w2, (p)
T3 R3 R3

S I folloo, e+k- (4.7)

With this inequality, we have the desired decay rate for the L7° norm of solutions to the
linear equation (2.11), which proves Theorem 4.1 subject to Lemmas 4.2, 4.3, and 4.4.
We now prove those lemmas.

Along this course we will repeatedly use the following basic decay estimate

Proposition 4.5. Suppose without loss of generality that A > u > 0. Then
!
/ ds _ Ci (@) ’
0o I+t —) (A +s)* ~ (1+1)P

where p = p(A, ) = min{A + u — 1, u} and

_ 1AL
Chrult)=C |10g(2+t) ifh=1.

Furthermore, we will use the following basic estimate from the Calculus:
e (1 + y)k < max{l1, e“_kkka_k}, a,y, k>0. (4.8)

We will now write an elementary proof of this basic time decay estimate in Proposi-
tion 4.5. This result is not difficult and known, however we provide a short proof for the
sake of completeness and because we have not seen a proof in the literature.

Proof of Proposition 4.5. We will consider the cases © = 0 and . = X separately. Then
the general result will then be established by interpolation.

Case 1. = 0.If A # 1 we have

! ds ' ds 1
= = 1—A+n'" 7t <CcU+1)~P*0,
/0(l+t—s))‘ /0(1+s))‘ x—1{ (1+0) ]— 1+

Note p =0if A > 1 and p = A — 1 < O otherwise. Alternatively if > = 1,

t

B oa(l+1)
— =10 .
0 1+s £

This completes our study of the first case u = 0.
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Case 2. n = ,. We split the integral as

t ds t/2 t
= + .
/o (L+t =) (L+s)* /o /z/z
For the first integral

t/2 ds - 2_)\ t/2 ds
/0 Grr—sypaanr = LH1/2 /0 +s5)

Now from Case 1, we can estimate the remaining integral as

12 gy
< C t 1+t max{O,l—A}’
/O T £ G

which conforms with the claimed decay. The second half of the integral can be estimated
in exactly the same way as the first.

Case 3. 0 < u < . By Holder’s inequality, we have

/t ds _/t ds
o A+ =9)*A+)*  Jo (1+[_s)%+3(1+s)ﬂ

- t ds 1/p t ds 1/q
B (/0 (1+t—S)*) (/o (1+t—S)k(1+S)q“) '

Above g = ﬁ and p = ﬁ with % + 37 = 1. Therefore the above is

-c (/t ds (A=) /A /t ds H/r
= 0 (1+t—s)’\) (0 (IT+1—s)"(1+ )" ‘

By the previous two cases, this is

< (Crowa+000) T (e wawneen)
— Cx,o(t)()“_“)/)“cx,k(t)“/k(l + t)—p(A,O)(l—u)/l—p(kl)M/K.
The proposition follows by adding the exponents. O
We are now ready to proceed to the
Proof of Lemma 4.2. We start with H. From Lemma 3.1 and (4.8) we have
eV < Cepy P+ 07TF < Cow(p A +07F, vk > 0. 4.9)
Here we use the notation from (2.9). This procedure grants high polynomial time decay

on the solution if we admit similar high polynomial momentum decay on the initial data.
In particular we have shown

lwe(p)Hi(t, x, p)l = |we(p) e P fo(x — pt, p)| < CA+) 75| folloo, e4ks

which is the desired estimate for Hj.
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We finish off this lemma by estimating H3. Notice that we trivially have

e VP I=s1) ,=v()s1 < e—v(max{lp\,lql})t’

where v(max{|p|, |g|}) is v evaluated at max{|p|, |¢|}. We have

t
lwe(p)Hs(t, x, p)| < wz(p)/ ds e*”(”)t/ dqi |k*(p, q1)| sup | fo(y. q1)l
0 [pI=lq1l yeT3

t
+we(p) / dsi / dqi |[k*(p,q1)| eV sup | fo(y, q1)l .
0 IpI<lq1l yeT3

We will estimate the second term, and we remark that the first term can be handled in
exactly the same way. As in the previous estimate for Hy, we use (4.9) to obtain

eV sup | fo(y, g1 < Ce(1+ 1) w1 (qr) sup 1 fo(y, qi)l.
yeT? yeT?

Next we use the estimate for kX (p, ¢) from Lemma 3.2. When using this estimate we
may suppose |g1| < 2|p|. For otherwise, if say |q1| > 2|p]|, then as in (3.21) we have
|p —q1] = |q1]/2 which leads directly to

wis1 (@) we(p)e P12 < Cwpyri(gr)e 11+ < C. (4.10)

In this case we easily obtain an estimate better than (4.11) below. In particular

t
/ dsy we(p) dqi Vg =251 |K* (P, q1)] e " sup | fo(y, q1)l
0 Ipl<lq] yeT3

S U+ M folleo—j Vk >0, j>0.

Thus in the following we assume |p| < |g1| < 2|p|. On this region we may plug in the
last few estimates including (4.9) to obtain

t
/ dsy we(p) dgr [ (p.qn)| €D sup | foly. q1)l
0 IpI<lq11=2|pl yeT3

t
< Ck—/ dq1 we(q1) wie1(q1) |K*(p.q1)| sup [fo(y. q1)l
A+ pi<igii<2ip| yeT?

< Ce(1+0)7M folloo,e+k w1 (p) dqi [k*(p, q1)|. 4.11)
IpI<lgi1=2|p|

Then from Lemma 3.2 we clearly have the following bound:
wi(p) dqi [k*(p,q)| < C.
Ipl<lg1|=2|p|

This completes the time decay estimate for H3 and our proof of the lemma. O
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Our next aim is to prove Lemma 4.3. To do this we will use the following

Lemma 4.6. Fix any £ > 0 and any j > 0. Then given any small n > 0, which depends
upon x in (3.1), the following estimate holds:

we(P) KX () (p)| < ne™ P || hlloo.— -

Above the constant ¢ > 0 is independent of n.

Proof of Lemma 4.6. We consider K'~X(h) as defined in (3.2). From (3.29), for € in
(3.1) chosen sufficiently small (e smaller than 1/4 is sufficient), we see that

VI@QI(p) +IT (@) (q') S e~ Fe > 0.

With that estimate, and additionally the conservation of energy (1.6), we have

ey )| < [

R3xS
x (|n(ph] + |n(g)])

< / dwdq (1 — x(g)) vgo e 3907370
R3xS§?

dwdq (1 — x(g)) vso(g,0)e 1070
2

X (675P6 |h(p"] +e 2% |h(q’)|)

_¢
< ne | hllco,—;-

In the last inequality we have used the following estimate for any small > 0:
/ dodg (1= x(9) vy 0(g.0) € 3073 < e i, (412)
R3 x§?

The proof of this bound uses (3.25), but also the exact strategy used in the paragraph
containing (3.25) and the paragraph just below it. The idea is to use the splitting (3.23)
inside the integral in (4.12):

1 =¢r(p,q)+ 1 —or(p.q)).

First when | p| +|q| is large, this is the term containing (1 — ¢r(p, ¢q)), we have a bound
for the integral in (4.12) which is of the form C ¢~ R where the constant C, ¢ > 0 are
independent of both R and € similar to (3.28). On the other hand, when |p| + |¢| < R,
this is the term containing ¢z (p, ¢), we have a bound which is of the form Cge”. Here
p = p(b) canbe chosentobe p =3ifb € [0,1]and p =4 — b if b € (1,4). This
second estimate is similar to (3.27). Since this strategy is already performed in detail
nearby (3.25), we will not re-write the details.

Since p > 0 we can first choose R >> 1 sufficiently large, and then choose € > 0
sufficiently small so that the constant > 0 in (4.12) can be chosen arbitrarily small.
This yields the desired estimate. We remark that the estimate for K 11 X
the same exact ways; it is in fact slightly easier. O

can be shown in
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With Lemma 4.6 and Proposition 4.5 in hand, we proceed to the

Proof of Lemma 4.3. We begin with the estimate for H. Using Lemma 4.6, for any
small ” > 0 we have

t
lwe(p)Ha(t, x, p)| = we(p) ‘ /0 dsy e "D K1 (U (s1) fo) (v1, p)

IA

t
o e / dsi e P U s) fob oo, Vi > 0
0

A

t
<o P flle.e / dsy e VP ( 4 ) *,
0

The norm is from (2.10) for k£ > 0. As in (4.9) for any A > max{1, k} we have

t
lwe(p)Ha(t, x, p)| < ' w,\(P)e_CPOIIIfIIIk,z/ ds (1+1 =) (1+5)7*
0

<0 A+ F ke

which follows from Proposition 4.5. This is the desired estimate for H>.
For Hy we once again use Lemma 4.6, for any small n” > 0, to obtain

t S1
weHsttox, ) < [ day [ pean] [ sy [ dsy e
0 0

x ey () [K' X (U Gs2) fob) (52, 1)

wep) —cqio
we(q1)

t s
X/ dst /1 dsy e PI=50) =@ 61=52) (] 4 o)k,
0 0

< 77/|||f|||k,£/R3dC]1 I (p, q1)|

We recall that gj9 = +/1 + |g1|?. For the time decay, from Proposition 4.5 with (4.8) as
in (4.9) we notice that

t s
/ ds) /1 dsy e*V(P)(t*SI)e*V(QI)(S]*SZ)(l+s2)*k
0 0

t s1
wa(mwml)/ ds, (1+r—s1>—*/ dsy (1+ 51— 5271 +52)~*
0 0

Swia(pwi (g +0)7k

Above we have taken A > max{l, k}. Combining these estimates yields

lwe(p)Hal < 1/ (L+ 07511 111k, /R3 dqi [k (p. q1)| wesr (P)w—en(ge 1.

To estimate the remaining integral and weights we split into three cases. If either 2|g1| <
|pl, or|q1| = 2|p|, then we bound all the weights and the remaining momentum integral
by a constant as in (4.10). Alternatively if %|q1 | < |pl < 2lq1], then the desired estimate
is obvious since we have strong exponential decay in both p and g;. In either of these
cases we have the estimate for Hy. 0O
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We will finish this section with a proof of the crucial Lemma 4.4.

Proof of Lemma 4.4. We now turn to the proof of our estimate for Hs. Recall the def-
inition of Hs from (4.6) with y, defined in (4.5). We will utilize rather extensively the
estimate for kX from Lemma 3.2. We now further split

Hs(t, x, p) = HY'"

and estimate each term on the right individually. For M >> 1 we define

(t, x, p) + H" (1, x, p), (4.13)

Lhigh = 1pi>alig <y + Ligy > - (4.14)

Notice 14igp +1jpj<m1ig;<m = 1. Now the first term in the expansion is
t
high ef _ _
H{'¥"(t,x, p) g/36*’!11 k*(p, q1) /%dfh k*(q1, q2) Lnign / dsy eV P=sD)
R R? 0

S1
« / dsy e (U (52) fol (32, 42).
0

We use (4.8), as in (4.9), and Lemma 3.1 to see that for any A > 0 we have

; !
/ dsy e~ (PE=sD) /“ dsy eV anG1—5)
0 0
t S
< C,\wx(l?)wx(éh)/ ds) / dsy (14 (t —s51) 7" (1+(s1 —52) 7"
0 0
When either |p| > M or |q1| > M, by Lemma 3.2, we have the bound
KX (p. q1)| = CM ™% (po +q10) "2 e cIP— a1l

If either | p| > 2|q1] or |g1]| = 2|p] then as in (4.10) we have

wess (P)wa(ge 1P~ < C.

Thus by combining the last few estimates we have

X X .
wz(P)/]RS dq1 |K*(p. q1)| /R3 dgz |kK*(q1,92)| nign (1|p\22\q1|+1‘[,|5%|q1‘)

t 51
sy e [ sy e U ) ) 0 g2
0 0
= L|||f|“k ¢ | dgyeclr—al dgy el 42|
= Mi+b/2 , R3 -

x/t d / d (1+s)7*
R) R} .
o TNy T UEa—s)(+ (51 —s))

With Proposition 4.5, for any £ > 0 and A > max{k, 1} the previous term is bounded
from above by

C.,x
< ~zem O ke

This is the desired estimate for M >> 1 chosen sufficiently large.
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. . high . . .
We now consider the remaining part of Hj '8" " As in the previous estimates and

(4.10), if either |g2| > 2|q1| or |q1] > 2|g2| then for any k£ > 0 we have
X be
we(l?)/R3 dq [k*(p, q1)| /R3 dga [k (q1, q2)| (1|q2\22|q1\+1|q2‘§%|q1|)

t 5
; —v(p)(t—s1) —v(q1)(s1—52)
Xlé\P|<|q||<2|p|1h’gh/0 dsy e /0 dsy e

C. —clp=qi| —clgi—q2|
< WU s2) o) 02 )] = 35S [ dan e [ dane

(1+s7)7K
/ ds1 / D = (1 + o1 =5

A+ F ke

<
= M2;+b/2
Above we have used exactly the same estimates as in the prior case. Both of the last two

terms have a suitably small constant in front if M is sufficiently large.

high

Thus the remaining part of Hy °" to estimate is

def
RO = /Rg dqi K (p-q1) /R3 a2 kg1, 42) 1y <101 <21p 1 g1 1<l <2001

t S
X Lpigh / ds 6_"(")('—“)/ dsy eV ETDHY (59) fo} (2, 92)-
0 0
(4.15)

It is only this term which slows down the time decay rate. In this current proof we will
only make a basic argument to show that this term can naively exhibit first order decay.
Since all the momentum variables are comparable, we have

IR (/) (D) 5/ dqi [kK*(p.q1)| /R_gdqz [k (g1, q2)|

X111 p1<igri<21pi L g1 1<iga 1 <21g0 | Lhigh

t s
x / dsi e—cv(ql)(f—m)/ dsy e~ V@ (s1—-52) {U (s2) fo} 2, q2)|.
0 0

Next using similar techniques as in the previous two estimates, including Proposition 4.5
twice, we obtain the following upper bound for any k € [0, 1]:

Ck.a B
we(p) IR = anu,z/dql ]

—b/2— dsy
X/d‘h q10 el w2+28(f]1)/ W
S1 d
x/ 2 o< DM e
o (1 —s)P (A +s)f = M%

In the last line we used the fact that we have chosen § > 0 to satisfy § < 2¢/b, where
¢ > 0is defined in the statement of Lemma 3.2. In Sect. 6 we will examine this term at
length to show that (4.15) actually decays “almost exponentially.”
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We are ready to define the second term in our splitting of Hs. It must be

H™"(t,x, p) = 1\p|sM/
lg11=M

t S1
X/ dsi e_”(”)([_“)/ dsy e "D U (59) fo} (¥2, q2)-
0 0

dq1 k*(p, q1) /112{3 dq> k*(q1, q2)

For any small ¥ > 0, we further split this term into two terms, one of which is

low, ef
Hsow’((l‘,x,p)g/

lgi|=M

S1
X1|P|SM/ dsy eSS4 Y (59) fol (v2, g2)
0

t
+/ dq kX(Pv‘]l)/ dqa kx(ql,qz)/ dsj e~V P=s1)
lq11=M R3 p

S1
x1jpj<m / dsy e "I (5) fo} (2, q2).
S

S| —K

K
dq1 k*(p, q1) / dqr k* (q1, q2) / ds e V(P (E=s1)
R3 0

The other term in this latest splitting is defined just below as Hslow’z. On this temporal
integration domain s; — s» < k. Since we are proving uniform bounds, it is safe to
assume when proving decay that ¢ > 1 for instance.

Since p and g are both bounded by M, from Lemma 3.1 we have

1pj<mligy<m e V(P E=s1)=v(g1)(s1—52) < e—C(t—sz)/M”/Z- (4.16)

Then for the first term in Hé”w"( above multiplied by w,(p) we have the bound

K
we(p) dq1 |k*(p. q1)| / dga IkX(ql,qz)\/ dsy eV P=sD)
lgi|=M R3 0

S1
x1jp<m / dsy e "D (U (52) fo) (2, g2)
0

K 51 7C(l*‘ )/Mb/2
SCM|||f|||0,z/ dsl/ dsy el
0 0

2 —Ct/MP/2 Cr/MP/? 2 —k
< Cui®|11 flllo.e e €M7 CIMY < Coppic® (1 4+ 0711 f |1 o.e.-

We have just used (4.8). We obtain the desired estimate for the above terms by first
choosing M large, and second choosing k = k(M) > 0 sufficiently small.

For the second term in Hé”w"( multiplied by wg(p) for any k > 0 we have

t
we(p) dqi |k*(p,q1)| / dga |k (q1, q2)| / dsy eV PU=s)
= R3 K

51
x1jpi<m / dsy e @S2 111 (52) fo} (v2, ¢2)
S1

—K

! o —C(t—s1)/MPI2 —C(s1—s2)/MP/? —k
<Cumlllfllke [ dsi dsy e ! e WIT (I+s2)7".
K S1—K
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Since 57 € [s1 — k, s1]and k € (0, 1/2), then (1 +5,) > (% +51) . We have

! Ol b2 _
5CMK|||f|||k,Z/ dsy e=CU—sOMPR (| | ok
K

< Curc(L+ D71 F1llke-

In the last step we have used (4.8) and Proposition 4.5. We conclude the desired estimate
for Hsl”w’K by first choosing M large, and then x > 0 sufficiently small.
The only remaining part of HSI””’ (t, x, p) to be estimated is given by

low,2 e
Hsow (t,x, p) 2/

t
dq1 kK*(p, q1) / dqr kX (g1, q2) / dsy eV (PI=s1)
lgil=M R3 P

S1—K
Xllp\sM/ dsy e " WETDHY (59) fo} (2, 92).
0
With all of the Hsh igh and Hsl”w terms defined above, we remark that (4.13) holds.

We now estimate Hslow’z. Since p and g are both bounded by M, from Lemma 3.1
we still have (4.16). For any j > 0, Lemma 3.2 implies the following bound:

/ dqi / dq» \wj(fh)kx(l?,CI1)/<X(611,42)|2 <Cu.
lg11<M R3

Indeed if |g2| > 2|q1] then as in (4.10) we can prove this bound. Alternatively if |g2| <
2|g1] then wj(g2) < Cwj(q1) < CM7?/2 and the bound above also holds.
We use the above and Cauchy-Schwartz to estimate the momentum integrals:

‘/ dq\ k*(p, q1) / dq> k*(q1, q2) {U(s2) fo} (32, 92)
lg11<M R3
2\ 2
S (/ dq: / dga |wj(g)k* (p. q)k* (q1. q2)| )
lg1l=M R3

12
X(/ d‘]l/ dq> ’w—j(%){U(Sz)fo}(yz,cn)\z)
lq11=M R3

1/2
<Cy (/ dql/ dg> }w_j(qz){U(sz)fo}(yz,qz)F) :
lg11<M R3

That step was significant to yield rapid polynomial momentum decay. We change vari-
ables g1 — y» on the dg integration with y, given by (4.5). Then

@ = —(s1 — ) 5mn‘112()_q1mq1n 4.17)
P = 1=29)\ — 35— )- .
91 /) mn dio
This is a 3 x 3 matrix with two eigenvalues equal to —(1=9) “and a third eigenvalue
2 2
given by —(s1 — s) 410 glq” = =U1=9) Thuys the Jacobian is
910 4io
dys| _ ls1 =) - CK—3
dqi a, M
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This lower bound holds on the set |g1| < M, s> € [0,s1 — k] and 51 € [k, t] so that
s1 — s2 > k. After application of this change of variables we have

12
(/ d%/ dg> |w—j(qz){U(Sz)fo}(yz,én)’z)
lq1 =M R3

M 172 N
5(—3) (/ dy, / dgy |w_j(q2) {U(s2) fo} (2. q2)| )
« [y2—x|=C(t—s2) R3

M5 172 A2
5(K—3) {1+(1—s2)*?) (/T3 dy, /R3 dgy |w-;(g2) {U(s2) fo} (v2, 42)| )

= C(M, {1+t =)} IH{U (52) fo} 2.
Putting together all of these estimates, in particular using (4.16), we have shown
low,2 ' e Clt—s)/MP? —C(s Mb/2
‘we(P)Hs ’ )S CK,M/ dsi / dsy e~ CUTSDIMIT g=Clsi=s2)/
K 0
3/2 .
x{L+ (@ = 52)" HH{U (52) fo} ll2,—
t t
<Cem / dsy e~ Tu=sn/M? / dsy e~ SU=s0/M? (=S (51-52)/M""
0 0

{1+ (t — )2} {U (s2) fo} ll2.— -

Notice that the first exponential controls the s; time integral, and the second and third
exponential control the remaining time integral as follows:

! _C( b/2
umm@mﬂsqm/cMez“mW {1+ =50 2 fo) 2.
0
! _C b2
sqm/cme4“mm U2 fol lla-
0

That was the last case. Adding up the individual estimates for Hsh igh and Hsl”w in (4.13)
completes our proof after first choosing M large enough and then second choosing «
sufficiently small. O

5. Nonlinear L°° Bounds and Slow Decay

Suppose f = f (¢, x, p) solves (2.1) with initial condition f (0, x, p) = fo(x, p). We
may express mild solutions to this problem (2.1) in the form

f@ x, p) ={U@) fo}(x, p) + NLf, f1(t, x, p), (5.1
where we have used the notation

t
NLf1, f21(z, x, p) g/o ds {U(t —9)T[f1(s), 2()}(x, p).

Here as usual U(¢) is the semi-group (4.1) which represents solutions to the linear
problem (2.11). The main result of this section is to prove the following
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Theorem 5.1. Choose £ > 3/b, k € (1/2, 1]. Consider the following initial data fy =
folx, p) € Lﬁk(T3 x R3) which satisfies (2.6) initially. There is an n > 0 such
that if || folleo.e+k < n, then there exists a unique global in time mild solution (5.1),
f = f(t, x, p), to Eq. (2.1) which satisfies

I flloo.e(®) < Cex(L+07 | folloo,esk-

These solutions are continuous if it is so initially. We further have positivity, i.e. F =

w+Jif =0, if Fo=pn+./ufo=0.

In Theorem 7.1, which is proven in Sect. 7, we will show that these solutions exhibit
rapid polynomial decay to any order. Notice that our main Theorem 2.1 will follow
directly from Theorem 5.1 and Theorem 7.1. To prove this current Theorem 5.1 we will
use the following non-linear estimate.

Lemma 5.2. Considering the non-linear operator defined in (2.5) with (2.7), we have
the following pointwise estimates:

lwe ()T (h1, h2) (P S v(P) i llso,ellh2lloo, -
These hold for any £ > 0. Furthermore, | (h1, h2)|lso.0+1 S 171 lloo,e /2]l o e-

The lemma above combined with Proposition 4.5 will be important tools in our proof
of Theorem 5.1. We now give a simple proof.

Proof of Lemma 5.2. We recall (2.3), (2.5), and (2.9). For £ > 0, it follows from (1.6)
that

th/2
we(p) S pe* < () (gh) ™ < we(phwe(q)).

A proof of this estimate above was given in [24, Lemma 2.2]. Thus

we(p) [T (h1, ho)l 5/3

R3x

@ dwodq vy 0(g,0) \/Tq) we(pHwe(g) |h1(p/)h2(q’)}
+/w _, d0dq v50(8.0) /T (@) we(p) lhn (Ph2(o)]

< ||h1||oo,z||h2||oo,z/3

R3xS

dwdq vs 0(g,0) Jl/z(q)
2
SvP i lleo.ellh2lco.e-

The last inequality above follows directly from Lemma 3.1 since both the integral
and v(p) have the same asymptotic behavior at infinity. That yields the first estimate.
For the second estimate we notice from the first estimate that w1 (p) [T (A1, ho)| S
w1 (P)v(P) I lloo.ellh2lloo.e- But wi(p)v(p) < 1 from Lemma 3.1 and (2.9). This
completes the proof. O

We now proceed to the

Proof of Theorem 5.1. We will prove Theorem 5.1 in three steps. The first step gives
existence, uniqueness and slow decay via the contraction mapping argument. The second
step will establish continuity, and the last step shows positivity.
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Step 1. Existence and uniqueness. When proving existence of mild solutions to (5.1) it
is natural to consider the mapping

det

MLf1={U@) fo}(x, p) + NLf, f1(z, x, p).

With the norm (2.10), we will show that this is a contraction mapping on the space
def

ME, = {f € L%([0,00) x T> x R?) : ||| flll.e <R}, R>0.

We first estimate the non-linear term N[ f, f] defined in the equation display below
(5.1). We apply Theorem 4.1, with £ > 3/b, and k € (1/2, 1] to obtain

t
we(p) INLf1, f21(2, x, p)] S/O ds we(p) {U (1t — $)TLf1(5), f2()]}x, p)

- ! ds
< /0 e A A UIONCO) e

Next Lemma 5.2 allows us to bound the above by

¢ ds
ﬁ/o Tk 1Ol st 120l esk1-

From Proposition 4.5 and the decay norm (2.10) we see that the last line is

S Ak el 21 /t s
~ TR EHRIRE [0 T — )k (1 + 9)%F

S A+ ANk 21k e-

‘We have shown

HINLf f20llke S N el 21 ke

To handle the linear semigroup, U (¢), we again use Theorem 4.1 to obtain

MLk = Cek (follse.eoic* A1)

We conclude that M [ ] maps M, R 1.¢ into itself for 0 < R chosen sufficiently small and
e.g |l folloo 4k < 2C . To obtain a contraction, we consider the difference

M[fil =M f2) = NLfi — f2. i1+ NLf2, fi = f2l.
Then as in the previous estimates we have
M1 = MLUIke < CF g (N ke + 21 ke) 1A — falllk.e-

With these estimates, the existence and uniqueness of solutions to (2.1) follows from
the contraction mapping principle on M kR , when R > 0 is suitably small.

Step 2. Continuity. We perform the estimates from Step 1 on the space

MED £ (f € 010, 00) x T x BY) < [lIflllke < R), R >0.
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As in Step 1, we have a uniform in time contraction mapping on M ,f’zo for suitable R.

Furthermore M| f] is continuous if f € M ) 0 and fo is continuous. Since the conver-
gence is uniform, the limit will be continuous globally in time. This argument is standard
and we refer for instance to [21,24,33] for full details.

Step 3. Positivity. We use the standard alternative approximating formula
(8 +p - Vi) F"™" + ROFHF™! = Qu(F", F"),

with the same initial conditions F' ”+1| =Fy=J +J J fo, forn > 1 and for instance

£ J ++/7 f. Here we have used the standard decomposition of Q@ = Q. — Q_ into
galn and loss terms with

Q_(Fn+], Fn) — R(Fn)Fn-H,

def

and R(F") = Q_(1, F™). If we consider F"™*' (¢, x, p) = J +/J f"*(¢, x, p), then
related to Step 1 we may show that f"*1(z, x, p) is convergent in L{° on a local time
interval [0, T'], where T will generally depend upon the size of the initial data. In par-

. n+l _ . .
ticular f”*l(t, X,p)= % satisfies the equation

B+ p - Ve +0(p) [ = KM+ T f1) = T (" ™).
We rewrite this equation using the solution formula to the system (4.2) as
[ =G fo+ LU M.

This solution formula G (¢) is defined just below (4.2). Furthermore
e [ asGa- oK
+/0t ds G(t —)To(f", ") = Gt — )T (f", .
For given T > 0 and R > 0 we consider the space M, ,f ([0, T1]) defined by
{f € L®([0, T1 x T x R?) s esssupy—y -7 (1 + D | f (D) lloc,e < R} )

Now given " € M,fz([O, T]) and || folloo, p+r =< 2C with R > 0 chosen sufficiently

small, as in Step 1, we can prove the existence of f’“rl € M,fe([O, T).
With the estimates established in this paper, it is now not hard to show that

sup |f™ — flloo,e () < CT sup If" — f" looe(0).

0<t<T 0<t<T

Here T > 0 is sufficiently small, and the constant C > 0 can be chosen independent of
any small T'. Therefore there exists a 7* > 0 such that f" — f uniformly in L}° on
[0, T*]. This will be sufficient to prove the positivity globally in time.
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Indeed if F" > 0, then sois Q,(F", F"") > 0. With the representation formula
Fn+1(t, x,p)=e" fé dsR(F")(s,x—p(t—s),p) Fo(x — ﬁf, »)

! [ n A ~
+/ ds e_fs dTR(F")(t,x—p(t—1),p) Q. (F", F")(s, x — Pt —s), p).
0

Induction shows F™*1(¢, x, p) = 0 for all n > 0 if Fy > 0, which implies in the limit
n — oothat F(t,x, p)=J+ ﬁf(t, x, p) > 0. Using our L?o uniqueness, this is the
same F as the one from Step 1 on the time interval [0, 7*]. We extend this positivity for
all time intervals [0, T*] + T*k for any k > 1 by repeating this procedure and using the
global uniform bound in L7° from Step 1. O

6. Linear L°° Rapid Decay

In this section we prove that the linear semi-group (4.1) exhibits rapid polynomial decay
in L{°. For any k > 1 we will discover a k" = k’(k) > k such that

U (@) folllooe < Coa(1+0) 75l follo.es'- (6.1)

The main obstruction to proving such rapid decay in this low regularity L7° framework
was the term (4.15) which came up during the course of the proof of Lemma 4.4. In this
section we perform a new high-order expansion of this remainder which allows one to
prove rapid decay as follows.

Proposition 6.1. Consider R (f)(t) defined in (4.15). Choose £ > 3/b. For any small
n > 0, and any k > 1, there exists a k' = k' (k) > k such that

we(p) IRUADO = 0L+ D7 N lllke + Corn 1+ DTN folloo, e
The power k' can be explicitly computed from the proof.

The crucial difficulty with proving rapid decay for the soft potentials is caused by the
high momentum values, for which the time decay is diluted by the momentum decay.
This causes the generation of weights on the initial data, typically one weight for each
order of time decay. In the proof below we are able to overcome this apparent obstruction
by performing a new high order expansion for Ry (f) which is explained in detail at the
beginning of the proof.

We will first show that Proposition 6.1 implies (6.1). We use the expansion (4.4) and
the semi-group notation f(t) = {U(¢) fo}. We now see that Lemmas 4.2, 4.3, and 4.4
together imply that for any n > 0 and k > 1/2 we have

I flloo.e(®) < Cox(1+0) 7| follco,esk + ga + 07K F ke + we(p) IRI(F (@] .

Here we use (2.10). Then Proposition 6.1 further implies for some k&’ > k that

_ n _
we(p) IRL(F)(O] < Copy(1+1) "||fo||oo,Z+k/+5<1 +07 1 £ ke
Equivalently

1 ke = Cerrll folloo, ek -

This is the desired decay rate for the L7° norm of mild solutions to the linear equa-
tion (2.11), which proves (6.1) subject to Proposition 6.1. In the rest of this section we
prove this crucial new proposition.
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Proof of Proposition 6.1. We will prove this proposition with a new high order expan-
sion of (4.15) by iterating the semi-group (4.3). For ease of exposition we write

def
KX(psq1) = K (P gLy <y <o

Recall thatl%\p|§\q1|52|[’|

elsewhere. We will use similar expressions for k£ with different arguments. Then we
may split (4.15) as

is the function which is one when %|p| < |q1] < 2|p| and zero

Ri(f) = S1(f) + L1(f) + R2(f).

For any small « > 0 we choose «1 = « and k» = k1/2 so that

K1 S1
S [ ds P gy g B [ dsy a0
0 R3 0
X/R3 dg> KX(q1, q2) {U(s2) fo} (2, 42),

t S|—K2
Li(f) d=f/ dsi e_"(")(t_“)/R3 dqy K (p, q1) Thigh / dsy e~ AD01752)
K 0

1

X/R3 dg> kKX(q1, q2) {U(s2) fo} (02, q2).

Then we may define the remainder term as

S1

t
Ro(f) = / dsy e~V P /R3 dq1 KX (p, q1) Lnign / dsy e A01752)
K N

1 1—K2

></R3 dg> k2(q1, q2) {U(s2) fo} (02, q2).

Our notation above is from the proof of Lemma 4.4, in particular (4.14). We will show
that the first term Sy (f) exhibits rapid decay in Ly°. The last term Ly (f) is bounded in
L? which further has rapid decay as in Theorem 3.7.

We will notice first of all that the term R, ( f) naively exhibits second order polyno-
mial decay. However if we continue the expansion then we can obtain higher and higher
order decay rates as follows. We may expand

Ro(f) = Ga(f) + Da(f) + N2(f) + La(f) + R3(f).

Now each of the terms G2(f), D2(f), Na(f), and Lo(f)- to be defined below—will
exhibit (for different reasons) high order polynomial decay right away again at a cost of
momentum weights on the initial data. The term R3(f) will clearly exhibit third order
polynomial decay, however we may continue this expansion at each level so that at level
k we can again expand

Ri(f) = Gi(f) + Di(f) + Ni(f) + Li(f) + Rie1 (f)-

As in the initial case each of the terms G (f), Dix(f), Nk (f), and Li(f)-which are
defined recursively—will exhibit high order polynomial decay. The last term Ry ( f) will
have k + 1 order polynomial decay. This expansion is well defined and can be continued
to any order, which yields rapid decay.
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We define the 2™ order terms by plugging the iteration (4.3) into R»(f), using the
expansion of K = K '~ + KX with (3.1), and splitting the remaining time and momen-
tum integrals in the following useful way. For k3 = k2/2 = k1 /2%, we define

. t S1
Ga(f) & [y v /R A K g Y [ dsy e
ke s

1 1—K2

X/R3 dqs KX(q1, q2) {G(s2) fo} (72, q2),

S1

X t
Da(f) g/ dsi 67”(‘”(’7“)/1[{{3 dq1 KZ(p, q1) Lnigh / dsy eV @G1=52)
K R

1 S1—K2

2
X/ dq> ki(é]l,@)/ dsy e "2 KX U (53) fo) (v3, g2).
R3 0

Furthermore

51

_ t
Na(f) = / dsy eV /R3 dqy k<(p, q1) lhigh/ dsy e~ D 1752)
K S

1 S1—K2

52
X/ dqr ké(quqz)/ dsz e V@) 62753)
R3 0
X/R% dqs k2i(q2, 3) (U (53) fo} (v3. 43),

1 S1
Lah 2 [ s P [ g kg0 g [ s e
K = s

1 1—K2

$2—13

x/ dgs ké(éh, q2) / ds3 e V(q2)(s2—53)
R3 0

></]R3 dgs kZ(q2, q3) (U (s3) fo} (33, q3)-

And the remainder is given by

o[t s1
Ry(f) = / dsy e7V(PI=s /R3 dq1 K< (p, q1) Lhigh / dsy e”Va)G1=52)
K

1 S1—k2
52

x/ dg> ki(m,qz) ds3 e V(@) (s253)
R3

$2—K3

X/R‘ dqs kX(q2, ¢3) {U (s3) fo} (3, q3),

where above y; and y, are defined in (4.5), and more generally

def A A
Yiel = Y1 — q1(s1 —82) — -+ — qi (5; — Si+1)
=x—p(t—s1) —qi(s1 —2) — -+ — Gi(si — Sit1). (6.2)

So that in general for i > 1 we have

Visl = Yi — Gi(Si — Six1)-
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Furthermore kX (p, q) = kZ.(p, q) + kX(p, q) with the notation

KE(poa) = K (p. @) (Lpiz21q1 + Ligiz21p1) -

Now we will develop a collection of notations in order to put this expansion into a gen-
eral framework and appropriately define the high order terms. We consider the sequence
{x}, where for i > 1 we define «;4+] = «;/2 with a small k1 = « > 0 as above so that
ki = /2!~ Fori > 1 we can now define

t
APt x, py () & / dsy e VP /R i K(p, ) Vuigh £ 51, v1,40),

K1

Bini (f)(s1, 31, q1, {k}) = /11&3 dq ké(m,@)'“/R} dgiv1 kKX(gi. gis1)

N
X/1 dsy e~V @E1=5)
N

1—K2

si
X/ dsis1 eSS (51, Viets Givl)-

Si —Ki+1

To finish off our expansion we further define
G()(s.y.9) = G(6s) foly. 9,
Si+l1
D(f)(sis1, Yie1, Gis1) g/ dsiyg eV DG =5182)
0

x K17 {U (s142) fo} Gis2, gise1).-
Above we recall that G (s) is defined just below (4.2). Additionally

Si+1
N(f)(Sis1, Yiel Gis1) d=f/ dsivy e Vi) i1 5ie2)
0

x /R3 dqis2 k(qist, gix2) {U (s5i42) fo)} (iv2, Gisa),

~ . Si+1 —Ki+2 _ ) N
L(f)(Sl‘+1, Vi+ls Gi+1, {K}) dzf / dSi+2 e V(Gi+1)(Sit1—58i42)
0
X/R3 dqiv2 kX (gi+1, giv2) {U(six2) fo} Gisas Gis2)-

Then we may use this notation to write
Ga2(f) = AB2 (G, x, p, {k)), Da(f) = ABaD(f))(t, x, p, {Kk}),

def

Na(f) = ABo(N((t, x, p, {k)),  La(f) = ABaL(ON(, x, p, {«}),

def

R3(f) = A(B3(f)(t, x, p, {«}).

We iteratively define the higher order terms of this expansion fori > 2 as

Gi(f) = ABi(G((E,x, p, («)), Di(f) = AB: (D, x, p, {K}),
Ni(f) Z AB; (NN, x, p, {x)),  Li(f) = AB:i(L(F))(E, x, p, {ik}),
Riv1(f) = ABiv1 (), x, p, {k}).

def



580 R. M. Strain

This expansion works to high order using (4.3) which implies
Bi = BiG+B;D+B;N + B;L +Bj,, i>2.

This completes our general discussion of the expansion formula, and our strategy for
obtaining the desired decay. In the following we prove the claimed time decay estimates
for each term in a general framework.

We initially estimate the main term, Ry, with k > 1. We claim that

we(q1) | Br+1(f) (51, y1, g1, {k})]

1

S wka+s) (@) L Nk+1,e / dsy e @G (o)1 (6.3)

S1—K2
Here we have chosen § > O to satisfy § < 2¢/b, for ¢ from Lemma 3.2. This claim
(6.3) would imply with Lemma 3.2 that

we(p) |Ris1 (), x, p, kDI = we(p) [ABi1 (S, x, p, {k})]

t
< / dsy eV P)=sD) /R gy (P, an)| Dnign wkcres) (@) 11 llks e
K1

s
X/1 dsy e=VaDEI=5D) (] 4 g )—k—1
N

1—K2
W (k+1)(1+8) (P) ! —ev(p)(t— ke
S%Hmllkn,e/ dsy e~ VP (LT
0

We have used that s; & s, for « sufficiently small, and also e~¢V(@1)(s1-52) < 1 since
s1 — 52 > 0. We have additionally used the fact that the momentum variables are com-
parable because of the support condition for k. The large M comes from the support
of 145 in (4.14) and Lemma 3.2. Furthermore

1 ! p1_ 77
S g Ml [ ds e =170 sy
1 ke
S 277 T+ e e
We have additionally used (4.8) and then Proposition 4.5. For M >> 1 chosen sufficiently
large, this is the desired estimate for Ry.

We now prove the claim from (6.3). Since all of the momentum variables are com-
parable in this operator we have the following iterated estimate:

e—V(ql)(Sl—SZ) . ,e—V(l]k)(Sk—SkH) < e—Cv(ql)(Sl—Sk+1)_ (6.4)

This uses in particular Lemma 3.1. We use (6.4) to obtain

we(g1) |Be+1 (F)(s1, 1, g1, (kD]
N |||f|||k+1,e/ dqs |k£(q1,q2)|~~/ dgier |kZ(qk, )|
R3 R3

N Y
X / 1 dsy e V@G1752) / ' dsgyy e "G (] 4 g ) 7k1
s ,

1—K2 Sk —Kk+1

S |||f|||k+1,£/ dg> |ki(6]1,€12)|---/ daie1 |kZ(qx, qre)|
R3 R?

s1 Sk
X/ dSZ .. / dsk+l efcv(QI)(SI*»YkH)(l +Sk+1)7k71,
N S

1—K2 k—Kk+1
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We sub-claim that Lemma 3.2 can be used to control the momentum integrals as

/]R3 dq> !ki(fh,tn)ﬁ'/ﬂv dgie1 [kE @Gk, qre)| S w_ka1+5)(q1). (6.5)

The trick used in this estimate is Lemma 3.2 combined with g — g2 — ¢ to obtain

/ dgy |KE(q1, q2)| < w7(1+5)(q1)/ dgr e~ 192!,
R3 o

We can do that k times starting with the dgy integral and iterating backwards (using the
essential point that all the momentum variables are comparable) to obtain the sub-claim.
Now by the definition of the sequence {«} we can say that sg4+1 < s2 for k > 1 and more
generally (on the integration region of Bj41)

Sk+1 = Sk — Kk+1 = 82 — K3 — +++ — Kk+1
1 1 - K 1
=5 —k|-+ -+ )=Z0—=>85n—-—.
4 2k 2 4

Thus for k < 1/2 we use these estimates above to obtain

S1 Sk
/ ds» / dsi+1 e—ﬁ'v(f{l)(»“l—skﬂ)(l +sk+l)_k_1

S1—K2 Sk—Kk+1
S1 1 —k—1
< Kyt - .K3/ ds> e~ V(@ (s1—-52) (_ +s2) )
S1—k2 2

Collecting the estimates above proves the claim (6.3).
To estimate the first term above, S, we obtain

we(p) 1S1(H O] S we(p) /R3 dqi |k£(p,611)|/R3 day |kX(q1, q2)| Lhigh
K1 K1
x [asy e [Ty 6 ) o) 02 g
0

0

Now we use (4.8), and Lemma 3.1, to observe that
e < ()1 + )7k, (6.6)

Furthermore [ ds; "1 [ dsy e7"(@61752) <42 We thus have

we(P)1SICNO1 S 1A+ 07N f Nlo.ese /]R dg [KE(p. qv)]

Wi (P)high

X / dgy [KL(q1. )] ———%
R3 wi(q2)

- ki(1+1)7F

We have used the uniform bound from Theorem 4.1 with no decay and the bound for

|k*| from Lemma 3.2 and (4.14). This is the desired estimate for Sj.
We continue with an estimate for L; (f) with i > 1. For all of the terms below we
switch from the notation of k to the notation of i to indicate that the decay of each of

||f0||oo,£+k-



582 R. M. Strain

these terms will not depend upon the index of the term, which is contrary to the decay
of the R; terms above. We estimate from above

we(p) ILi ()] S we(p) /R3 dgi KX(p.q1) - '/N dgiv1 kX (qi. gis1)

t N Si—
> / dsle—u(p)(t—sl) (/ : dS2e—U(QI)(S1—S2) . / ! dsie—v(q[_l)(s[_l—xi))
K1 S1—K2 Si—1—kKi

Si —Ki+l
S / dsisr e @ESD (U (sia1) fo) e qisn)]
0

The term in parenthesis above would be simply unity in the case of L. Since all the
momentum variables are comparable, we control the time integrals as

4 s Si—
/ dslefv(P)(tfﬂ) / ! ds» efv(q1)(s1fs2) . / ! ds; efv(qi,l)(si,lfsi)
K1 S1—k2 Sim1—K;

Si —Ki+l1
X/ dsis e V@) (si=siv1)
0

t I—Ki+1
< (k2o ki) / ds) / dsipy € VP,
K1 0

We have used v(g;) > qu—ob/2 from Lemma 3.1, v(p) ~ po—b/2’ and qj—Ob/Z > CPO_b/z;
these estimates hold for any j € {1, ..., i}. We have then used an estimate analogous

to (6.4). Furthermore
t I—Kit1
(,Q...,Ci)/ dsl/ dsiuy €= CYPsis1)
K1 0
. I—Ki+1
< Kl—l (1 +[)/ dsi+l e—CV(P)(t_SHl)
0

. T—Kit1 .
Sk 1+ wj(P)/O dsizi (1+1—si01)77 .

These estimates follow from the definition of the sequence {«} as well as Lemma 3.1
together with (4.8) in the form (6.6) for any j > 0.
Next we use Cauchy-Schwartz to estimate the following two integrals:

we+j(qz>1)/]Rg dgi |kX(qi-1. 9i)|
X /R3 dqi [KX(qi, givD| U (si+1) fo} Giet, Gis1)]
12
S (/ d%’/ dgivt |w2(qisDKE(Gi-1, 4)KE(qi, giv1)| )
R3 R3
N\ 12
X (/R% dqz’/ dgisi |werj—2(qis1) {U (siv1) fo} Gis1. gis) | ) . (6.7)
3 Zl

Above Z; & {gi+1 : %|q,~| < lgi+1] < 2lqi|}. Also in the case i = 1 we consider
gi—1 = p. For now we focus on the second set of integrals involving the semi-group.
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We apply the change of variables g; — y;+1 on the dg; integration with y;;; given by
(6.2). Notice that similar to (4.17) the 3 x 3 matrix Jacobian is

2
(in+l ) — (5 — Sia1) (Smnql‘() : qimqin .
dqi ) yun 4o

Werecall g; = (gi1, gi2, gi3) Withqi;o = /1 + |g;|2. This Jacobian matrix has two eigen-

2 2
g . . . o—lail
(A’—_SO‘”), and a third eigenvalue which is given by —(s; —s;+1) % =
! i0

values equal to —

—(s; — sit 1)(1%. Therefore the Jacobian determinant is

i0

'inH _Gsi —siv)? - K3, _ i3
T 5 = n5,.5 T ~543i 5 :
dqi ) 290 290400

This lower bound holds on the region g;o < 2qg(i+1)0, Si+1 € [0, s; — ki4+1]. Furthermore
we have used that s; —s;41 > k;41; this temporal estimate holds on the integration region
of L;. These estimates explain the lower bound for the Jacobian. Notice while the old
variable g; occupies the whole space, the new variable y;| satisfies the estimate

lyier — x| < |p(t — s1) +G1(s1 — 52) + - -+ + G (5 — siv1)|
SCE—s)+(s1—82)+--+(5i —5i+1)) < C(f —5i41) .

We remark that this procedure would not hold in the non-relativistic situation, since
in that case we do not have bounded velocities. In particular, because of relativity, the
mapping g; — i+ sends R3 into a bounded domain (for any finite 7). After application
of this change of variables, denoting y;+; = y, we have

/R3 dgi /Z dqi+1 }wz+j—2(61i+1){U(Si+1)f0}(yi+1,qz‘+1)|2

< / dy |99
ly—x|<C—sis) | dY

(L+1—s5i41)° 5
S—— - dy - dgiv1 waer2j—4+10/6(qi+1) U (si+1) fo} (3 Gi+1)]

/Z dgis1 | wesj—2(qis1) {U (six1) fo) (0, 61i+1)|2

~

K3
= C() (1+1 = si31)” U (si21) fo} 13,4/ 2455

We have used that q(si 110 = W10/b (gi+1)- This estimate above is the main one for the
L;(f) terms which allows us to deduce high order decay.

Since we have used (6.7), for the momentum integrals in L;, we are left to control
the iteration of kernels. We claim the following estimate:

(/ dqi |k§(P,Q1)|-~-/ dqgi— |ké(qz'—2,61i—1)|)
R3 R3

12
2 1
X (/ dqz'/ dgist |w2(qis)kE(gi-1, )KL (i, givD)| lhigh) S —.
R3 R3 M¢

Note that if i = 1 then the first term in parenthesis above is simply unity. Firstly, from
Lemma 3.2 we have

L o ol g —o
w(qi+1kE(Gi—1, g)kE (i, qis) nigh S ueé clai-1=ailg=clai=grl,
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This also uses (4.14) and the fact that all the momentum variables are comparable. They
key point is then to employ the following series of changes of variables which begins
with g; — gi+1 — gi+1 ondgiy1, gi—1 — gi — g; ondg;, and ends with p — g1 — ¢
on dqi. The end result, with Lemma 3.2, is that

(/ dqi [K(p,q1)|-- / dgi—1 |kKE(gi-2. gi- 1)|)
172
(/ d‘]t/ dgis1 |e )
1/2
/dm e—c|¢11|._./ dgi—1 e Cldi-1l /dC]i/ dqi+le—2c'|qi|e—2c\qi+1|
R3 R3 R3
1.

Collecting the estimates in this paragraph establishes the claim.
We gather all of the estimates for L; ( f) to obtain

—clgi—1—qil _qul —qi+1]

A

t B
we(p) ILi(H) < (1 +1) / dsivr (141 — sip) 32
0
XU (si+1) fo} 12,64 j—2+5/p

t
Sfoll2,ej—245/64k (1 +t)/ dsist (141 —si41) 2 (Lsi) F7L
0

Above we have used the decay of the linear solutions to (2.11) from Theorem 3.7; these
solutions are represented by (4.1). Then for j > k+1+4+3/2andk’ = j —2+5/b+k+{'
(for any ¢ > 3/b) we use Proposition 4.5 to show that

we(p) ILi (N S I follz.erw—er A +D 7 Sl folloo,ernr (1+0 75

The last inequality above follows as in (4.7). This is the desired estimate for L;(f)(f)
which holds for any i > 1 and k > 0.
It remains to estimate G;1+1(f), Di+1(f), and Nj;1(f) fori > 1. First

t
we(p) G (O S /]R dan kX (p. q1)| Lhigh / dsy e”"P=sD)

K1

X/ dq> |k§(611,612)|"'/ dgiv1 |K2(qi. giv) |
R3 R3

s Si
X/' ds» e—V(QI)(Sl—SZ)_,,/ dsiay eV @0 G—sim)
N N

1—Kk2 i —Ki+l

xwe(giv1)e” DS fo (yis1 — Giv1Sivt, Giv1)-

We have used that all the momentum variables are comparable and the trick from (6.4)
to conclude that the upper bound above is further bounded as

S/ dqi Iké(p,ql)llmgh/ dqn |ki(ql,qz)|--~/R3 dqis1 [k2(qi, giv1)|

,Cv(p)t ||f0||oo L+k / /Sl dsy -- ./Si dsisi
i+l
Wi (gis1) S1—K2 Si —Kitl
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Notice that using the definition of x; = «/2/~! we have

t 51 Si . . t
/ dsy / dss / dsis1 = K’2_l(’+1)/2/ dsi
K1 S1—K2 Si —Ki+l K1

S +0).

Furthermore, as in (6.5) and Lemma 3.2 with (4.14) we have
/ dqi [kZ(p. q1)| Lhign
R3

X/ dé]2|ki(611,612)|~-/ dgi1 |K2(qi, giv1)|
R3 R3
< 1 1 5 1 .
M Wisiv1 (p) ™ wirsa(p)
Moreover, for any k > 0, by (4.8) as in (6.6) we have

wr(gi+1)

P < u o (p) A +1) R 2

Collecting the last few estimates we obtain

we(P)1Gis1 (A S A+ folloo, k-

This is the desired estimate for G;+1(f).
We will now study D;41(f), which satisfies the following general estimate:

wip DS [ dar gl [ dain K gion)
t S1 Si

X/ dst e—v(p)(z—sl)/ dsy e—V(ql)(Sl—Sz),_,/ dsiay eV Gi—sir)
K R

1 S1—K2 Si —Ki+1

K" (U si42) fo}) (s, q,-+1>] .

Si+1

thighwé(P)/ dsin eV @i+1) (Siv1—5i+2)
0

Since all the momentum variables are comparable, with Lemma 4.6, we have
< / dqi [kZ(p, q))| Lnign / dqa [kX(q1, q2)| - / dgis1 [K(qi, gi+1)|
R3 R3 R3

t s Si
X/ dsy e*V(P)(t*Sl)/ : dsy e*V(QI)(SI*SZ) . / dsi+ e*”(‘]z’)(&i*»"iﬂ)
K S1—k2

1 Si —Ki+1
5
e~ €Po s ds: —v(gi+1)(Si+1=Si42) (] ok
e PN ke Siv2 € (I +si42) "
0

For this term Lemma 4.6 would allow a better estimate for the momentum weight on
[l f11lk.e. As in the estimate for G, above, with (4.14), we have

[
we(p) IDiv1 (OIS 7€ PONNS e

t K Si
X/ dsle—Cv(p)(z—sl)/' dsze—Cu(p)(n—sz),._/ dsiaye—CYPGi—sis)
K S1—K2

1 Si —Ki+l

Si+l
X/ dsiso e—CV(P)(Si+1—Sf+2)(1 +Si+2)_k-
0
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We have again used the crucial fact that all the momentum variables are comparable.
Since we have exponential decay, we can iterate the estimates from (4.8) and Proposi-
tion 4.5 as in (6.6) to obtain

t s Si
/ dsy e—Cv(p)(z—m/1 ds» e—Cv(p)(sl—sz),_,/ dsiay €= CPPGi—si)
K1 S1—K2 s,

i —Ki+]

Si+1
X/ dsi+a e~ CV(P)Giv1—sis2) a +Si+2)_k
0

t Ky i
5/ ds) e_c"(p)(’_s‘)/ 1 dsy e~ CVP1=52) / dsiy e~ CVP)si=siv)
0 0 0

Si+1
X/ dsisn e~ CV(P)Giv1—si+2) a +Si+2)7k
0

t i S
5/0 dsi (1+(;_s1>)*k*1]‘[/0 dsjs (14 (sj —sj21)) !
j=1

Si+1

XW(ke1)(+2) (P) / dsizy (14 (sis1 = 5:42)) 7 (L4 s042) ™5 (6.8)
0
After iteratively applying Proposition 4.5 we obtain an upper bound of

S wasni (P A+ 7K

Plugging this into the previous estimate we have

C _ _
we(p) IDis1 ()] < e W1 i+2) (P)e PO+ 0751 Flllk.e
c —k
Sm(lﬂ) £ ke

This is the desired estimate for D;;1(f) when M is chosen sufficiently large.
The final term to estimate is N;+1(f). In this case we have the upper bound

t
we(p) INi1 ()] S we(p) /R LA [P, )| Lign / dsy =" P
= K

1

X/ dq> |k§(6]1#12)|~-~/ dgis1 |K2(gi. i) |
R? R3

s 5
X/ l dsy e~ V@172 / ds;y e V@Di=sisn)
s

1—k2 8 —Ki+l

Si+l
« dsi+2efv(qi+1)(si+|fs,'+z) dgi ‘ki(%‘ﬂv 6]i+2)‘
0 R3

x {U (si+2) fo} (iz2, gi+2)| -

We first estimate the time integrals above. Since the relevant momentum variables are
all comparable, as in (6.8) and (6.6) we have

t s1 Si
/ ds, e—u(p)(t—sn/ dss e—V(QI)(Sl—SZ),_,/ dsiey €@ G—sis1)
K N

1 1—K2 Si —Ki+l

Si+1
X/ dsiso e—U(4i+1)(Si+|—S1+2)(1 +Si+2)_k
0

S wasnie (P A+ 75
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Now for the momentum integrals, from Lemma 3.2 and (4.14) we have

we(P)Wk+1)(i+2) (P) '/ déhki(l?,%)/ dqzké(quqz)~-~/ dqi1kZ(qi, qiv1)
R3 R3 R3

thigh/ dgiv2
R}

C
- - —clp—qil 1,. —clgi—q2l | ., . —clgi—qgi+1l
YT /R3 dqi e Lhigh /}R3 dqs e - dgisi e

. —clgi+1—qi+2| . .
X/R3 dgiva e N2 (11 o 1010001 + Lgint 1221gisa]) Werk(i+2)(Giv1)

C
< —.
- M+

ki(%’ﬂs Qi+2)‘

In the last step we have used the following estimate:

C
—51gi+1—gi+2| . .
(Ligia=2igin| + Vgia1=2lginat) € 2 D792 w42 (giv1) < C.

Indeed in either of the regions |g;+1] > 2|gi+2| or |gi+2] > 2|gi+1| We can use estimates
such as those in (3.21) or (3.22) to directly establish this bound.
Now by collecting the estimates in this paragraph, we have shown

C
we(p) INit (N = 2z A+07 ko

Since k > 0 is arbitrary, we conclude our estimate and our proposition after choosing
M sufficiently large in this last upper bound. O

This concludes our proof of rapid linear decay.

7. Nonlinear L°° Rapid Decay

In Sect. 5, we have proven the existence of mild solutions (5.1) to the non-linear rela-
tivistic Boltzmann equation (2.1) with the soft potentials. For £ > 3/b and k € (1/2, 1]
we have shown in Theorem 5.1 that these solutions, f = f(t, x, p), satisfy

I flloo.e(®) < Cex(1+ 07 folloo.esk-

Then in Sect. 6 we prove high order “almost exponential” decay for the linear semi-
group as in (6.1). From these estimates and the solution formula, (5.1), we can prove the
following non-linear almost exponential decay.

Theorem 7.1. Given any £ > 3/b and k > 0, there is a k' = k'(k) > 0 such that the
solutions which were proven to exist in Thereom 5.1 further satisfy

1/ lloo.e(®) < Cox (1 + )7 | folloo, ek

Proof of Theorem 7.1. We use an induction which allows one to continually improve
the decay. The main point is to bound the non-linear term, since we already know this
kind of rapid decay for the linear part of (5.1) from (6.1) which follows from the crucial
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Proposition 6.1. In the first step we note that by Thereom 5.1, Theorem 7.1 is true for
k € (1/2, 1]. Then given any j > 0, from (6.1) we have

1
we(p) INLS, f1(. x, p)l 5/0 ds we(p) {U(t — )T (s), f()}(x, p)

t ,
< /0 ds (1+1 =) ITLF), £l e -

Above j' > j is the number corresponding to j in (6.1). From Lemma 5.2 we have

t
5/0 ds L+t =) N FOllooe ot 1F O llsore o

Next we use the non-linear decay from Theorem 5.1 to see

t
Ui [ ds et =910

- 2
5 (l +t) r ”f0||oo,€+j/+i71 .

The last estimate follows from Proposition 4.5 with p = min{j + 2i — 1, min{j, 2i}}.
In the above estimates we can choose j € (1, 2] and then i € (1/2, 1] such that j =
2i > 1. Then we have shown Theorem 7.1 for k € (1, 2] by choosing p = j = k and
k' =max{j, j/+i—1}=j.

Next suppose the theorem is correct for some £ > 2; we will show that we may go
beyond this k. Indeed similar to the initial case we have

we(p) INLE, f1,x, )l < CA+0 7P 1 foll 2o oy -

with p = min{j +2i — 1, min{j, 2i}} = min{j, 2i}. Above j’ corresponds to the power
of the weight coming from decay level j in (6.1) and i’ corresponds to the power of the
weight generated by decay level i € (0, k] in this Theorem 7.1.

Choose i € (k/2,k] and j = 2i e (k, 2k]. This is always possible. Then we have
p = j so that we have proven Theorem 7.1 for any k € (k,2k] and the corresponding
k' = max{j’, j’ +i’ — 1}. We conclude by induction. 0O
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Appendix: Derivation of the Compact Operator

In this section, we give a complete exposition of the derivation of the Hilbert-Schmidt
form (3.10) for the compact operator from (2.4). The linearized collision operator takes
the form (2.2). In that formulation we have the multiplication operator as in (2.3). The
remaining “‘compact” part of the linearized operator is given by (2.4) with K = K> — K
and in particular

ka2 - [ 2] S Sy 1T (VTG
R3 610 R3 610 R3 p()
1
a0 / —W(p al'. aWI@ {VIma@)}
R g0 JR3 4}
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We are using the original notation from the top of this paper, which includes the delta
functions. We will outline in detail a procedure which is sketched in [9, p. 277] (see
also [11]), that allows a nice reduction of the term K as in (3.10). In particular we give
the exact form of the Lorentz transformation. This reduction for the K| term can be
reduced to the form (3.9) using much simpler methods than the ones we use below, see
e.g. [9,49,50].

We recall the definition of the transition rate, W, from the top of this paper. We plug
the definition of W into K, above to obtain

Ka(h) = / / / —so(g 08" +q" — " —q")
po Jr3 q0 Jr® 4
<T@ VI )h(p)+w(p>h(q)}.

We will first reduce this to a Hilbert-Schmidt form and second carry out the delta function
integrations in the kernel.

Recall the discussion at the beginning of Sect. 1.2 regarding our convention for rais-
ing and lowering indices and the Lorentz inner product. In preparation, we write down
some invariant quantities. By (1.6) and (1.4) we obtain

P = a"Ypu —a) = 20" pu +29" g — (P + 4" (P + )
=2p"pu+29"qu +s.

Further notice that (1.6) implies
(P" = p")pu = py) = @ — ") g, — qu)-
Expanding this we have
-2 - ZpMpL =-2-29"q,.

We thus have another invariant p* p; = q"gq,,. Define g = g(p*, p’) as in (1.5). We
will always use g without the bar to exclusively denote g = g(p*, g*).
From (1.4) and (1.5) we know s = g2 + 4. We may re-express 0 from (1.7) as

_\ 2
8
cos = (p" —q")(p|, — q,)/8" =1-2 (;) :

This follows from the invariant calculations in the previous paragraph and
(P" = q")(p), — q),) = g> +4+4ptp, = g* — 23
We further claim that
2 =2 1 I w ’ ’
8 =8 —5(17 +P") G+ 9, — P — P)- (7.1)
Let 5§ = s(p*, p') = g% +4. Then (7.1) is equivalent to

11
B VAR R IC R

g2

8

g-2- —(p"+p“)(qu +q,,)

1
2
1

S8+t +2p g, — z(p“ + ") qu +4q),)-
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We thus prove (7.1) by showing that

1 1
S8+ 20" qu — S (0" + P g+ q;) = 0.

Expanding this expression we obtain

1
I V2
r"a,.

1 1 1
=P Pl = 142p 4 = 3P 4 = 30 4 = 54 — 5

2 2 2

Notice further that p*g, = p"'q,, and p*p;, = q"q;, as aresult of (1.6) and (1.4). We
thus obtain

1 1 1 1
Plgy —1— Ep“p; - Eq"q,l - Ep"q,Q - Ep’“qﬂ,

which by (1.6) is
H ! I HY( 1! / M !
Pran =1 =T +q") (P +q,) = prgu—1+55=0.

This establishes the claim (7.1).
Now we establish the Hilbert-Schmidt form. First consider

B3 40 /]R? / —sa(g,9)5(4)(pu+q w_‘lw)\/TCI)\/Tq/)h(p’).

Exchanging ¢ with p’ the integral above is equal to

1

o —h )[ / / —so(g )W (p" + p"' — g" — g" I (P I (@)

where 0 is now defined by

2
cosf—1-2 (5) , (72)
8

and from (7.1), with the new argument in the delta function above, we have
=2 2 1 w w 1 l
8 =8 +5(17 +q")(Pu+qu — Py — 4, (7.3)

and further 5 is defined by § = g + 4. We do a similar calculation for the second term
in Kh, e.g. exchange ¢ with ¢’ and then swap the ¢’ and p’ notation. The result is that
we can define

def d - ! L/ / !
g 8 / D 5o (3,008 (p"+p* —g" —g" )T (PO T (@),
(7.4)

We now write the Hilbert-Schmidt form K, (h) = f ka(p, ¢)h(q)dq. We will carry out
the delta function integrations in k> (p, ¢) using a special Lorentz matrix.
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We first translate (7.4) into an expression involving the total and relative momentum
variables, p*’ + g*' and p* — g* respectively. Define u by u(r) = 0if r < 0 and
u(r) = lifr > 0.Let g = g(p"', ") and s = s(p"', ¢"'). We claim that

1
/ / G(p q" p". q")= —/ de (", ¢"G(p". q", p"'. q"),
R3 RS P 16 Jraxrs

(7.5)
where we are now integrating over the eight vector (p*/, g*’) and
dO(p". gy = dp"'dg" u(py +gpu(s — H8(s — g — HS(p" + ") (p], — q),))-
To establish the claim, first notice that

—(p" +4") (P, —q) = —p" P +q"q,

(P0)* = 1P/ = () +14'I* = Ap = Aq,

where now p” and ¢ are integration variables and we have defined

Ay =) =P 1P+ 1), Ay =) — (g 1P+ 1).

Integrating first over dp?’, we see that alternatively

—(p" +g") (P, —q)) = (pp)* — (PP + 1+ Ay)
= [p(’)—,/|p’|2+1+Aq] [p6+‘/|p’|2+l+Aq].

Furthermore, by (1.4) and (1.5) we have
s—g —4=—p"+q")Vp), +4q)) — (P" — 4" P, —q,) — 4
!’/ /77
= —2p"'p, —2q"q, — 4
=2A,+24,.
Then similarly
s—g>—4=20g)* —20lg'P+1— A4,]

=2[q6— Iq/|2+1—A,,] [q6+ |c1’|2+1—Apl.

Further note that p, + ¢, > 0 and s — 4 > 0 together imply p;, > 0 and g/, > 0. With
these expressions and standard calculations we establish (7.5).
We thus conclude that

11

ka(p,q)=——< / dO(p", ¢")50 (8, 0)8W (p"+p" —g" —q"")V/ T (g) T (p).
P0q0 8 JRr4xR4

Now apply the change of variables

w

pr=p"+q", ¢ =p" —q
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This transformation has Jacobian = 16 and inverse tranformation as
1 1 1 1

P”/=§I3“+§é“, Q’L/:Eﬁ”—iéﬂ-

With this change of variable, for some ¢’ > 0, the integral becomes

/

ka(p.q) = /R L A 350 @080 (" g + )T (D).

Poq0
with /J(p) = e~P0/2 (ignoring constants). Above the measure is now
dop", ¢") = dp" dg" u(po)u(—p" pp —H3(=p" pp — 4" qu — H3(P" ).

Also g > 0 from (7.3) is now given by

_ 1 _
g =g"+ (" + 9" P+ — P,
and 6 and 5 can be defined through the new g with (7.2).
We next carry out the delta function argument for §® (p* — g* + @) to obtain

/

C
kao(p,q) =
P0q0

/d@(ﬁ“)fa(g,e)e—ﬁo/z, 3 >0,
R4

where the measure is
dO(p") = dp" u(po) u(—p"pu —4) 8(—p* pu — g* — H(P*(qu — pu))-
Since s = g% + 4 we have
u(po)8(—p* pu — 8% —4) = u(po)8(—p" pu — s)
= u(p0)8((po)* — 1pI> — 5)
_ 8o — VPP +5)
2\/|[3|2 + 5

We then carry out one integration using the delta function to get

< dp - _ o
ka(p, q) = / —u(=p" pu — D3P (G — pu))5o (g, 0)e 72,
pPoqo JR3 Po

with po = /|p|2 +s. Using s = g2 + 4 we have
PPy —d=5—-4=4g>>0.

So always u(—p* p,, —4) = 1 and the integral reduces to

c dp  _ o aur
ka(p. q) = / P 5 (5 (g — pu))io (3. 0)e P Onl?,
poqo JR3 Po

where U* = (1,0,0,0), U, = (—1,0,0,0) and ¢=70/2 = ¢=7"Un/2,
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We finish off our reduction by moving to a new Lorentz frame. We consider a Lorentz
transformation A which maps into the center-of-momentum system as

Ay = A (py+q) = (15,0,0,0), BY = =AM (p, —gq,) = (0,00, 8).
We recall our notation for raising and lowering indices from the beginning of Sect. 1.2
as py, = guvp’, where (g,w) = diag(—1111). Alsorecall p* = (p°, p) with py > 0.

3 AM p,,. From this

Then we use the Einstein summation conventionas A"’ p, = >V _,

information, we have derived in [50] and exposited in [49] that

potqo  _ pitql  _ paHqr  _ p3tg3

s NG s NG

AOI All A21 A31

A= (A") = ,

0 (PXq)1 (Pxq)2 (pXxq)3

[pxql [pxql [pxql
Po—q0 __P1—q1 __ P2—92 __ P3—43

g g g g

with the second row given by
A0l — 2|p x q|
g/s

and

2 (pi {po+qop"qu} +4i {90 + Pop" 4, })
g/slp x q|

We have a complete description of this Lorentz transformation in terms of p, g.
Define U,, = A""*U,, notice that

Al —

i=1,23).

UM:(PO+QO 2lp > ql Po—CIo)

Vsooess T g

Then
AP < (5 9y P25 (5t dpo o LU (0
%sa(gﬁ)e 8(p"(qp — pu) = %SAU(8A99A)3 27705 (p" By)

where ga, sp > 0 are now given by

S =4+23, (7.6)

2
cosfp =1 —2(#) .
8A

The equality of the two integrals holds because d p/ po is a Lorentz invariant.
We work with the integral on the right-hand side above. Now

l;'uBu = p3g.
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We switch to polar coordinates in the form

dp = |ﬁ|2d|ﬁ| sinydyrdep, p = |p|(siny cos g, sin Y sin @, cos ¥r).

Then we can write k2(p, ¢g) as

o . *|pldipl. _PRULJ2 2y =
de | sinydy ————35r0(ga.0n) e "= 8(|plg cosy).
Poqo0 0 0 Po
We evaluate the last delta function at ¢ = /2 to write k2(p, q) as
2 o oy = - PO+q lpxql | =
/ d(p/ |p|fi|p|§Ao—(gA, o)e P e tlplcose. 7.7
8P0q0 Po

This is already a useful reduced form for k2 (p, g).
We recall, for Iy (% | ﬁ|) , the modified Bessel function of index zero given in
(3.11). We further re-label the integration as |p| = y. Notice that (7.6) implies

_ |1 —cosfp _ . O
= _— sin —,
8 = 8A ) 8A >

br & _ g B V2g
2 & \/gz—s/2+§\/y2+s \/g2—4+s,/y2/s+1
We may rewrite (7.7) as

C/ [ee] d ) 2 x
ka(p,q) = Y Sao g op )e 2 V2 +v10(|p qu).
8040 Jo m sin & NG

From (7.6) we have

1 1 1
fa =g VAL es - VB = Lo Le e

We apply the change of variables y — y/./s to obtain that k> (p, g) is given by

5302 ooy(1+ y2+1)dy g p0q0F pxql
I )]
8P0q0 y2+1 sin ‘/2’ 8
where sin % is given by (3.12). This is the expression from (3.10) once we incorporate
the cut-off function (3.1) which is insignificant for the purposes of this calculation.
Significant simplifications can be performed in the case of the “hard ball” cross
section where o = constant. The relevant integral is then a Laplace transform and a
known integral, which can be calculated exactly via a taylor expansion [39, p. 134]. For
instance, it is well known that for any R > r > 0,

ylo(ry)d e VR
y = .
0 V1+y2 v R?2 — 72

o 1 iy
—R/1+y? _ —/R%2—r2
e vilp(ry)dy = {l + } e .

/0 R? —r? R?2 — 2

See for instance [46,45, p. 383, or 24, p. 322].

with

1+y?2
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Using these formulas we can express the integral as

c/s3/2
ka(p,q) =
gp

Ui(p, q)exp (—Uz(p, q)) ,
090

where U>(p, ¢) = /{(po +q0)/2}2 — (Ip x q1/g)* and

Ot = (14 252 (Gapn)) '+ P2 (Gp) ) (O20000)

Further,

g2+4

- NS
Ux(p,q) = 2—|p —ql=1|p—ql
g

Therefore, Us(p, q) > %| p — q| + 1. This completes our discussion of the Hilbert-
Schmidt form for the linearized collision operator.
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