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Abstract: This paper is devoted to the study of the thermodynamic formalism for a
class of real multimodal maps. This class contains, but it is larger than, Collet-Eckmann.
For a map in this class, we prove existence and uniqueness of equilibrium states for
the geometric potentials −t log |D f |, for the largest possible interval of parameters t .
We also study the regularity and convexity properties of the pressure function, com-
pletely characterising the first order phase transitions. Results concerning the existence
of absolutely continuous invariant measures with respect to the Lebesgue measure are
also obtained.

1. Introduction

The class of dynamical systems whose ergodic theory is best understood is the class of
hyperbolic dynamical systems, or, more generally, systems where the interesting dynam-
ics behaves in a uniformly hyperbolic way: Axiom A maps. This is due to several reasons,
one of them is the fact that these systems often have a compact symbolic model whose
dynamics is well known [Bo,Ru2]. For real one-dimensional maps, Axiom A maps are
defined to be the class of maps where all points are either uniformly expanded or map
into an attracting basin. This class is large even within families of maps with critical
points such as the quadratic family, in which case it is a dense set, see [Ly2,GS]. Note that
these maps do have a compact symbolic model (see [KH, Chap. 16]). In the example of
the quadratic family, maps which are not Axiom A are nowhere dense, but nevertheless
have positive Lebesgue measure, see [J,BC]. Due to the rich dynamics of these systems,
the expansion properties of such systems, can be very delicate.
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In recent years a great deal of attention has been paid to non-Axiom A systems which
are expanding on most of the phase space, but not in all of it. The simplest example of
these type of maps, namely non-uniformly hyperbolic dynamical systems, are interval
maps with a parabolic fixed point (e.g. the Manneville-Pomeau map [MP]). The ergodic
theory for these maps is fairly well understood [MP,PreSl,S3] and qualitatively different
from the one observed in the hyperbolic case.

We will study the ergodic theory of the class of maps for which the lack of hyperbo-
licity can be even stronger: interval maps with critical points. The techniques we develop
are different from the ones used to study hyperbolic systems and systems with a parabolic
fixed point.

In this paper we will be devoted to study a particular branch of ergodic theory, namely
thermodynamic formalism. This is a set of ideas and techniques which derive from sta-
tistical mechanics [Dobr,Si,Bo,K2,Ru2,Wa]. It can be thought of as the study of certain
procedures for the choice of invariant measures. Let us stress that the dynamical systems
we will consider have many invariant measures, hence the problem is to choose relevant
ones. The main object in the theory is the topological pressure:

Definition 1.1. Let f : X → X be a Borel function of a compact metric space X and
denote by M f the set of f -invariant Borel probability measures. Letϕ : X → [−∞,∞]
be a Borel potential. Assuming that M f �= ∅, the topological pressure ofϕ with respect
to f is defined, via the Variational Principle, by

Pf (ϕ) = P(ϕ) = sup

{
h(μ) +

∫
ϕ dμ : μ ∈ M f and −

∫
ϕ dμ < ∞

}
,

where h(μ) denotes the measure theoretic entropy of f with respect to μ. We refer to
the quantity in the curly brackets as the free energy of μ with respect to (X, f, ϕ). Note
that this is sometimes thought of as being minus the free energy; see for example [K2]
for a discussion of this terminology.

Note that we do not specify the regularity properties we require on the potential ϕ.
If it is a continuous function, then the above definition coincides with classical notions
of topological pressure (see [Wa, Chap. 9]). In this paper we will be interested in the
geometric potential x �→ −t log |D f (x)| for some parameter t ∈ R. This function is
continuous in the uniformly hyperbolic case, but is not upper/lower semicontinuous for
t positive/negative for the class of dynamical systems that we will consider.

A measure μϕ ∈ M f is called an equilibrium state for ϕ if it satisfies:

h(μϕ) +
∫
ϕ dμϕ = P(ϕ).

In such a way, the topological pressure provides a natural way to pick up measures.
Questions about existence, uniqueness and ergodic properties of equilibrium states are
at the core of the theory. For instance, if the dynamical system f is transitive, uniformly
hyperbolic and the potential ϕ is Hölder continuous then there exist a unique equilibrium
stateμϕ for ϕ and it has strong ergodic properties [Bo,Ru2]. Moreover, the hyperbolicity
of the system is reflected on the regularity of the pressure function t �→ P(tϕ). Indeed,
the function is real analytic. When the system is no longer hyperbolic, as in the case
of the Manneville-Pomeau map, then uniqueness of equilibrium states may break down
[PreSl] and the pressure function might exhibit points where it is not analytic, the so
called phase transitions [S3].
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As mentioned above, we will consider maps for which the lack of hyperbolicity is
strong: not only do the maps have critical points, but the orbit of these points can be
dense. We consider a family of real multimodal maps, that is smooth interval maps with a
finite number of critical points. More precisely, let F be the collection of C2 multimodal
interval maps f : I → I , where I = [0, 1], satisfying:

a) the critical set Cr = Cr( f ) consists of finitely many critical points c with critical
order 1 < �c < ∞, i.e., there exists a neighbourhood Uc of c and a C2 diffeomor-
phism gc : Uc → gc(Uc) with gc(c) = 0 f (x) = f (c)± |gc(x)|�c ;

b) f has negative Schwarzian derivative, i.e., 1/
√|D f | is convex;

c) f is topologically transitive on I ;
d) f n(Cr) ∩ f m(Cr) = ∅ for m �= n.

Conditions c) and d) are for ease of exposition, but not crucial. In particular, Con-
dition c) excludes that f has any attracting cycles, or homtervals (a homterval is an
interval U such that U, f (U ), f 2(U ), . . . are disjoint and the omega limit set is not
a periodic orbit). Condition d) in particular excludes that one critical point is mapped
onto another. If that happened, it would be possible to consider these critical points as
a ‘block’, but to simplify the exposition, we will not do that here. Condition d) also, in
particular, excludes that critical points are preperiodic, a case which is easier to handle
(for example by combining [KH, Chap. 16] and [Bo]) and does not require the theory
we present here, see Sect. 10.3. Together c) and d) exclude the renormalisable case.

Remark 1.1. General C2 multimodal maps satisfying a) and b) have no homtervals and
the non-wandering set � (the set of points x ∈ I such that for arbitrarily small neigh-
bourhoods U of x there exists n(U ) � 1 such that f n(U ) ∩ U �= ∅) can be broken
down into finitely many elements�k , on each of which f is topologically transitive, see
[MvS, Sect. III.4]. However, for the maps we consider, assumption c) means this fact
follows automatically without the C2 assumption. We note that in the case where there is
more than one transitive element in�, for example the renormalisable case, the analysis
presented in this paper can be applied to any one of the transitive elements consisting of
a union of intervals permuted by f .

Now let �int denote the union of all elements of � which consist of intervals per-
muted by f . If, contrary to the assumptions on F above,�int did not cover I then there
would be a (hyperbolic) Cantor set consisting of points which are always outside �int .
Dobbs [D3] showed that for renormalisable maps these hyperbolic Cantor sets can give
rise to phase transitions in the pressure function not accounted for by the behaviour of
critical points themselves.

Remark 1.2. The smoothness of our maps is important for two further reasons: to allow
us to bound distortion on iterates, and to guarantee the existence of ‘local unstable man-
ifolds’. For the first, the tool we use is the Koebe Lemma, see [MvS, Sect. IV]. The
negative Schwarzian condition we impose still allows us to use this for C2 maps. For a
detailed explanation of this issue see [C].

Given a measure μ ∈ M f , the existence of local unstable manifolds was used in
[B1,BT1] to show the existence of some natural ‘inducing schemes’ (see Sect. 3). As
shown by Ledrappier [L], and later generalised by Dobbs [D4] (see the Appendix), we
only need a C1+α condition on f to guarantee the existence of local unstable manifolds.

Note that our class F includes transitive Collet-Eckmann maps, that is maps where
|D f n( f (c))| grows exponentially fast. Therefore the set of quadratic maps in F has
positive Lebesgue measure in the parameter space of quadratic maps (see [J,BC]).
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In the Appendix we show that our theory can be extended to a slightly more general
class of maps, similar to the above, but only piecewise continuous.

As mentioned above, we will be particularly interested in the thermodynamic for-
malism for the geometric potentials x �→ −t log |D f |. The study of these potentials
has various motivations, for example the relevant equilibrium states and the pressure
function are related to the Lyapunov spectrum, see for example [T]. Moreover, impor-
tant geometric features are captured by this potential. Indeed, in several settings, the
equilibrium states for this family are associated to conformal measures on the interval.
This allows the study of the fractal geometry of dynamically relevant subsets of the
space. Moreover, by [L] any equilibrium state μ for the potential x �→ − log |D f | is an
absolutely continuous invariant probability measure (acip) provided

∫
log |D f | dμ > 0.

For μ ∈ M f , we define the Lyapunov exponent of μ as

λ(μ) :=
∫

log |D f | dμ.

We let

λM := sup{λ(μ) : μ ∈ M f }, λm := inf{λ(μ) : μ ∈ M f }.
Remark 1.3. Our assumptions on f ∈ F , particularly non-flatness of critical points and
a lack of attracting periodic cycles, means that by [Pr], λm � 0.

We let

p(t) := P(−t log |D f |)
and define

t− := inf{t : p(t) > −λM t} and t+ := sup{t : p(t) > −λmt}. (1)

Note that if t− ∈ R (resp. t+ ∈ R) then p is linear for all t � t− (resp. t � t+).
We will later prove that for maps in F , t− = −∞. We prove in Proposition 8.1 that
t+ > 0. In some cases t+ = ∞. As we will show later, for non-Collet Eckmann maps
with quadratic critical point, λm = 0 and t+ = 1. [MS] suggests that there should also be
Collet-Eckmann maps with t+ ∈ (1,∞). In Proposition 9.2 we prove that under certain
assumptions t+ � 1: we expect that to be true for any map f ∈ F .

The following is our main theorem.

Theorem A. For f ∈ F and t ∈ (−∞, t+) there exists a unique equilibrium measure
μt for the potential −t log |D f |. Moreover, the measure μt has positive entropy.

A classical way to show the existence of equilibrium states is to use upper semi-
continuity of entropy and the potential ϕ (see [K2, Chap. 4]), and in particular the
upper semicontinuity of μ �→ ∫ ϕ dμ. However, in our setting even though, as noted in
[BK], for f ∈ F the entropy map is upper semicontinuous, the existence of equilibrium
measures in the above theorem is not guaranteed since the potential −t log |D f | is not
upper semicontinuous for t > 0. So for example, by [BK, Prop. 2.8] for unimodal maps
satisfying the Collet-Eckmann condition, μ �→ −λ(μ) is not upper semicontinuous.
Theorem A generalises [BK] which applies to unimodal Collet-Eckmann maps for a
small range of t near 1; [PS] which applies to a subset of Collet-Eckmann maps, but
for all t in a neighbourhood of [0, 1]; and [BT2, Theorem 1] which applies to a class of
non-Collet Eckmann multimodal maps with t in a left-sided neighbourhood of 1.
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In order to prove Theorem A we use the theory of inducing schemes developed in
[B1,BT1,BT2,T]. Let us note that the thermodynamic formalism is understood for cer-
tain complex rational maps. For example, Przytycki and Rivera-Letelier [PrR] proved
that if f : C → C is a rational map of degree at least two, is expanding away from the
critical points and has ‘arbitrarily small nice couples’ then the pressure function p is
real analytic in a certain interval. These conditions are met for a wide class of rational
maps including topological Collet-Eckmann rational maps, any at most finitely renor-
malisable polynomial with no indifferent periodic orbits, as well as every real quadratic
polynomial. Also see [DU], where they show the existence and uniqueness of equilib-
rium states for all rational maps with degree greater than or equal to two, for all Hölder
potentials ϕ with supϕ < P(ϕ).

Related to the above are the regularity properties of the pressure function.

Definition 1.2. Let ϕ : [0, 1] → R be a Borel potential. The pressure function has a
first order phase transition at t0 ∈ R if p is not differentiable at t = t0.

The pressure function, being the supremum of convex functions, is convex (see [Roc,
p. 35]) and when finite is continuous (see [Roy, p. 113]). This implies that the left and
right derivatives D− p(t) and D+ p(t) at each t exist. Moreover, the pressure, when
finite, can have at most a countable number of points ti where it is not differentiable
(i.e, Dp−(ti ) �= D+ p(ti )), hence of first order phase transitions. The regularity of the
pressure is related to several dynamical properties of the system. For example, it has
deep connections to large deviations [E] and to different modes of recurrence [S3,S5].
In Sect. 8 we prove that the pressure function restricted to the interval (−∞, t+) not only
does not have first order phase transitions, but it is C1.

Theorem B. For f ∈ F , the pressure function p is C1, strictly convex and strictly
decreasing in t ∈ (−∞, t+).

First order phase transitions are also related to the existence of absolutely continuous
invariant probability measures. If p(t) = 0 for all t � 1 and there is an acip, then the
pressure function is not differentiable at t = 1. This occurs for example if f ∈ F is uni-
modal and non-Collet Eckmann, but has an acip (see [NS]). The following proposition
gives the converse result.

Proposition 1.1. Let f ∈ F be such that p(1) = 0. If the pressure function has a first
order phase transition at t = 1 then the map f has an acip.

We summarise some of the other results we present here for the potential x �→
−t log |D f (x)| in the simpler case of unimodal maps with quadratic critical point in the
following proposition.

Proposition 1.2. If f ∈ F is unimodal, non-Collet Eckmann and �c = 2 then p is
C1, strictly convex and decreasing throughout (−∞, 1) and p(t) = 0 for all t � 1.
Moreover,

(a) if f has no acip then p is C1 throughout R;
(b) if f has an acip then p has a first order phase transition at t = 1.

The paper is organised as follows. In Sect. 2 we give an introduction to the theory of
thermodynamic formalism for countable Markov shifts, which was developed by Maul-
din and Urbańki and by Sarig. In Sect. 3 we give some preliminary results on inducing
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schemes, which will allow us to code any of our systems by a countable Markov shift. In
Sect. 4 we show that the inducing schemes in Sect. 3 have some of the properties which
will allow us to produce equilibrium states for our systems. In Sect. 5 we prove the most
technically complex part of our paper which gives us the existence of equilibrium states
for our systems. Section 6 gives details of the uniqueness of these equilibrium states
which then allows us to prove Theorem A in Sect. 7. In Sect. 8 we prove Theorem B and
in Sect. 9 we prove Propositions 1.1 and 1.2. In Sect. 10 we discuss statistical properties
of the measures constructed, the ergodic optimisation problem and the case in which the
critical points are preperiodic. Finally in the Appendix we show how the results of this
paper extend to a class of Lorenz-like maps, of the kind studied by Rovella [Rov] and
Keller and St Pierre [KStP].

Note that many of the results we quote in this paper are proved using the theory
of Markov extensions introduced by Hofbauer. To prove our main theorems it is not
necessary to explain this theory in any detail since it is sufficient to quote results from
elsewhere. However, for a short description of this construction, see the Appendix.

2. Preliminaries: Countable Markov Shifts

In this section we present the theory of countable Markov shifts: an extension of the
finite case, and the relevant model for many non-uniformly hyperbolic systems, includ-
ing maps in F .

Let σ : 	 → 	 be a one-sided Markov shift with a countable alphabet S. That is,
there exists a matrix (ti j )S×S of zeros and ones (with no row and no column made entirely
of zeros) such that

	 = {x ∈ SN0 : txi xi+1 = 1 for every i ∈ N0},
and the shift map is defined by σ(x0x1 · · · ) = (x1x2 · · · ). We say that (	, σ ) is a
countable Markov shift. We equip 	 with the topology generated by the cylinder sets

Ci0···in = {x ∈ 	 : x j = i j for 0 � j � n}.
Given a function ϕ : 	 → R, for each n � 1 we set

Vn(ϕ) = sup {|ϕ(x)− ϕ(y)| : x, y ∈ 	, xi = yi for 0 � i � n − 1}.
We say that ϕ has summable variations if

∑∞
n=2 Vn(ϕ) < ∞. We will sometimes refer to∑∞

n=2 Vn(ϕ) as the distortion bound for ϕ. Clearly, if ϕ has summable variations then it
is continuous. We say that ϕ is weakly Hölder continuous if Vn(ϕ) decays exponentially.
If this is the case then it has summable variations. In what follows we assume (	, σ ) to
be topologically mixing (see [S1, Sect. 2] for a precise definition).

It is a subtle matter to define a notion of topological pressure for countable Markov
shifts. Indeed, the classical definition for continuous maps on compact metric spaces is
based on the notion of (n, ε)-separated sets (see [Wa, Chap. 9]). This notion depends
upon the metric of the space. In the compact setting, since all metrics generating the
same topology are uniformly equivalent, the value of the pressure does not depend upon
the metric. However, in non-compact settings this is no longer the case. Based on work
of Gurevich [Gu1,Gu2], Sarig [S1] introduced a notion of pressure for countable Mar-
kov shifts which does not depend upon the metric of the space and which satisfies a
Variational Principle. Let (	, σ ) be a topologically mixing countable Markov shift, fix
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a symbol i0 in the alphabet S and let ϕ : 	 → R be a potential of summable variations.
We let

Zn(ϕ,Ci0) :=
∑

x :σ n x=x

exp (Snϕ(x)) χCi0
(x), (2)

where χCi0
is the characteristic function of the cylinder Ci0 ⊂ 	, and

Snϕ(x) := ϕ(x) + · · · + ϕ ◦ σ n−1(x).

Moreover, the so-called Gurevich pressure of ϕ is defined by

PG(ϕ) := lim
n→∞

1

n
log Zn(ϕ,Ci0).

Since σ is topologically mixing, one can show that PG(ϕ) does not depend on i0. We
define

Mσ (ϕ) :=
{
μ ∈ Mσ : −

∫
ϕ dμ < ∞

}
.

If (	, σ ) is the full-shift on a countable alphabet then the Gurevich pressure coincides
with the notion of pressure introduced by Mauldin and Urbański [MU1]. Furthermore,
the following property holds (see [S1, Theorem 3]):

Proposition 2.1 (Variational Principle). If ϕ : 	 → R has summable variations and
PG(ϕ) < ∞ then

PG(ϕ) = sup

{
hμ(σ ) +

∫
	

ϕ dμ : μ ∈ Mσ (ϕ)

}
.

Let us stress that the right hand side of the above inequality only depends on the
Borel structure of the space and not on the metric. Therefore, a notion of pressure which
is to satisfy the Variational Principle need not depend upon the metric of the space.

The Gurevich pressure also has the property that it can be approximated by its restric-
tion to compact sets. More precisely [S1, Cor. 1]:

Proposition 2.2 (Approximation property). If ϕ : 	 → R has summable variations
then

PG(ϕ) = sup{Pσ |K (ϕ) : K ⊂ 	 : K �= ∅ compact and σ -invariant},
where Pσ |K (ϕ) is the classical topological pressure on K .

We consider a special class of invariant measures. As in [MU2] (see also [S4]), we
say that μ ∈ Mσ is a Gibbs measure for the function ϕ : 	 → R if for some constants
P , C > 0 and every n ∈ N and x ∈ Ci0···in we have

1

C
� μ(Ci0···in )

exp (−n P + Snϕ(x))
� C.

This definition is analogous to that in the finite Markov shift case considered by Bowen
[Bo]. We refer to any such C as a distortion constant for the Gibbs measure. It was proved
by Mauldin and Urbański [MU2] that if (	, σ ) is a full-shift and the function ϕ is of
summable variations with finite Gurevich pressure PG(ϕ) then it has an invariant Gibbs
measure. Moreover P = PG(ϕ), and if − ∫ ϕ dμ < ∞ then μ is an equilibrium state
for ϕ. Furthermore, this is the unique equilibrium state for ϕ by [MU2, Theorem 3.5]
(note that this was later generalised for any topologically mixing countable Markov shift
in [BuS]).
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3. Inducing Schemes

In order to prove Theorem A we will use the machinery of inducing schemes. We will
use the fact that inducing schemes for the system (I, f ) can be coded by the full-shift
on countably many symbols.

Given f ∈ F , we say that (X, {Xi }i , F, τ ) is an inducing scheme for (I, f ) if

• X is an interval and {Xi }i is a finite or countable collection of disjoint intervals
such that F maps each Xi diffeomorphically onto X , with bounded distortion on all
iterates (i.e. there exists K > 0 so that if there exist i0, . . . , in−1 and x, y such that
F j (x), F j (y) ∈ Xi j for j = 0, 1, . . . , n − 1 then 1/K � DFn(x)/DFn(y) � K );

• τ |Xi = τi for some τi ∈ N and F |Xi = f τi . If x /∈ ∪i Xi then τ(x) = ∞.

The function τ : ∪i Xi → N is called the inducing time. It may happen that τ(x) is
the first return time of x to X , but that is certainly not the general case. For ease of
notation, we will write (X, F, τ ) = (X, {Xi }i , F, τ ) and moreover, frequently write
(X, F) = (X, F, τ ). We denote the set of points x ∈ I for which there exists k ∈ N

such that τ(Fn( f k(x))) < ∞ for all n ∈ N by (X, F)∞.
Given an inducing scheme (X, F, τ ), we say that a probability measure μF is a lift

of μ if for any μ-measurable subset A ⊂ I ,

μ(A) = 1∫
X τ dμF

∑
i

τi −1∑
k=0

μF (Xi ∩ f −k(A)). (3)

Conversely, given a measure μF for (X, F), we say that μF projects to μ if (3) holds.
Note that if (3) holds then μF is F-invariant if and only if μ is f -invariant. We call a
measure μ compatible with the inducing scheme (X, F, τ ) if

• μ(X) > 0 and μ (X\(X, F)∞) = 0; and
• there exists a measure μF which projects to μ by (3): in particular

∫
X τ dμF < ∞

(equivalently μF ∈ MF (−τ)).
Remark 3.1. Given f ∈ F and an ergodic measure μ ∈ M f with positive Lyapunov
exponent, there exists an inducing scheme (X, F, τ ) with a corresponding F−invariant
measure μF , see for example [BT2, Theorem 3].

Definition 3.1. Let (X, F, τ ) be an inducing scheme for the map f . Then for a potential
ϕ : I → R, the induced potential  for (X, F, τ ) is given by

(x) = F (x) := Sτ(x)ϕ(x).

Note that in particular for the potential log |D f |, the induced potential for a scheme
(X, F) is log |DF |. Moreover, the map x �→ log |DF(x)| has summable variations (see
for example [BT2, Lemma 8]).

Note that if (X, F, τ ) is some inducing scheme for the map f ∈ F and if ∂X /∈
(X, F)∞, then the system F : (X, F)∞ → (X, F)∞ is topologically conjugated to the
full-shift on a countable alphabet.

For an inducing scheme (X, F, τ ) and a potential ϕ : X → [−∞,∞] with summable
variations, we can define the Gurevich pressure as in Sect. 2, and denote it by

PG
F (ϕ),

where we drop the subscript if the dynamics is clear.
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In fact the domains for the inducing schemes used above come from the natural
cylinder structure of the map f ∈ F . More precisely, the domains X are n-cylinders
coming from the so-called branch partition: the set P f

1 consisting of maximal intervals

on which f is monotone. So if two domains Ci
1,C j

1 ∈ P f
1 intersect, they do so only at

elements of Cr . The set of corresponding n-cylinders is denoted P f
n := ∨n

k=1 f −kP1.

We let P f
0 := {I }. For an inducing scheme (X, F) we use the same notation for the

corresponding n-cylinders P F
n . Note the transitivity assumption on our maps f implies

that P f
1 is a generating partition for any Borel probability measure.

4. Zero Pressure Schemes

For t ∈ R, we let

ψt := −t log |D f | − p(t).

Similarly, for an inducing scheme (X, F) the induced potential is �t . As in [PS,BT1,
BT2] in order to apply the theory developed by Mauldin and Urbański and later by Sarig,
we need to find an inducing scheme (X, F, τ ) so that PG(�t ) = 0. Then [MU2, Cor.
2.10] gives a Gibbs measure for (X, F, �t ), which if it projects to a measure in M f
by (3), must be an equilibrium state by the Abramov formula. The main purpose of this
section is to show that there are inducing schemes with PG(�t ) = 0.

We note that a major difficulty when working with inducing schemes is that, in gen-
eral, no single inducing scheme is compatible with all measures of positive Lyapunov
exponent. As a direct consequence of work by Bruin and Todd [BT2, Remark 6] we
obtain in Lemma 4.3 that for each ε > 0, there exists η > 0 and a finite number of
inducing schemes for which any measure of entropy greater than η is compatible with
one of them. This will allow us to prove that for each t ∈ (t−, t+) there exists an inducing
scheme for which P(�t ) = 0 and such that the pressure, p(t), can be approximated
with f -invariant measures of positive entropy compatible with the inducing scheme.

Proposition 4.1. For each t ∈ (t−, t+), there exist an inducing scheme (X, F) and a
sequence (μn)n ⊂ M f all compatible with (X, F) and such that

h(μn)− tλ(μn) → p(t) and inf
n

h(μn) > 0.

Moreover, PG(�t ) = 0.

We need some lemmas and a definition for the proof.

Lemma 4.1. For each t ∈ R and any inducing scheme (X, F), we have PG(�t ) � 0.

Proof. We let (X N , FN , τN ) denote the subsystem of (X, F, τ ) where X N = ∪N
n=1 Xn

and FN , τN are the restrictions of F, τ to X N . Similarly, PG
FN
(�t ) is defined in the obvi-

ous way. By Proposition 2.2, PG
F (�t ) > 0 implies that for large enough N , PG

FN
(�t ) > 0.

Hence there is an equilibrium state μFN for this system so that
∫
τN dμFN < ∞ and

h(μFN )− t
∫

log |DF | dμFN − p(t)
∫
τN dμFN > 0.
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Similarly to the use of the Abramov formula above, the corresponding projected measure
μ fN as in (3) has

h(μ fN )− t
∫

log |D f | dμ fN > p(t).

This contradiction to the Variational Principle proves the lemma. ��
Remark 4.1. By [BT2, Lemma 8], the potentials�t we consider for the inducing schemes
(X, F) in Lemma 4.3 are weakly Hölder continuous.

Definition 4.1. Given a function g : [a, b] → R, for x0 ∈ R, as in [Roy, p115], we refer
to s : [a, b] → R as a supporting line for g at x0 if s(x) = g(x0) + b(x − x0) for some
b ∈ R, and g(x) � s(x) for all x ∈ R.

Lemma 4.2. For each t ∈ (t−, t+), there exists η > 0 such that any measure μ with free
energy with respect to ψt close enough to 0 has h(μ) > η.

Proof. Let us first consider the case in which t0 > 0. Suppose that there exists a sequence
of invariant measures (μn)n such that limn→∞ h(μn) = 0 and p(t0) = −t0a, where
a := limn→∞ λ(μn). We will show that t0 � t+.

Let L(t) := −at . Since all measures have non-negative Lyapunov exponent, we have
a � 0. Since we also know that t0 > 0, this implies that p(t0) = −at0 < 0.

Claim. p(t) = −at for all t � t0.

Proof of the claim. Suppose the opposite, i.e. p(t) > −at for some t � t0. Then since
the pressure function p(t) can be found via a limit of supporting lines h(μ)− tλ(μ) for
μ ∈ M, we must have some t1 > t0 and μ ∈ M such that

h(μ)− t1λ(μ) > −at1. (4)

We will show that this leads to a contradiction. Let L̃(t) := h(μ) − tλ(μ). We may
assume L �= L̃ .

By definition, the pressure always satisfies

p(t) � L(t) and p(t) � L̃(t). (5)

Since L̃ is affine and L is linear, both with negative slope, and both lines distinct, either
these lines cross at a unique t∗ ∈ (0, t0) or there is no such t∗. In the first case, L̃ must
start above L and then go below it after t∗: since L̃(0) � L(0), for all t � t∗ we must
have L̃(t) < L(t). This means that L(t1) > L̃(t1), contradicting (4). In the second case,
L̃ must be above the pressure function at t0: we must have L̃(t0) > L(t0), so by (5),
L(t0) cannot have been the pressure at t0, a contradiction. ��

If there is a measure μ ∈ M such that λ(μ) < a then for some, possibly very large,
t > 0 we must have p(t) � h(μ) − tλ(μ) > L(t) by the same arguments as in the
claim. But this then contradicts the claim. Hence a = λm , the infimum of the Lyapunov
exponents. Therefore, by definition of t+ we have t0 � t+.

If t0 < 0 an analogous argument proves that we must have t0 � t−. So in either case,
t0 /∈ (t−, t+), as required. ��
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Lemma 4.3. For each ε > 0 there exists θ > 0 and a finite number of inducing schemes
{(Xn, Fn, τn)}N

n=1 such that any ergodic measure with h(μ) > ε is compatible with one
of these schemes (Xn, Fn, τn) and

∫
τn dμFn < θ .

Proof. This follows from [BT2, Remark 6]. We give a brief sketch of the ideas there.
That remark gives, for ε > 0, a set {(Xn, Fn, τn)}N

n=1 such that for each μ ∈ M f with
h(μ) > ε,μmust be compatible with some (Xn, Fn, τn). These schemes are constructed
from sets X̂n on the so-called Hofbauer extension (see the Appendix for details). The
map F is derived from a first return map F̂ in this tower. Measures μ ∈ M f with
h(μ) > 0 can be lifted to the tower, and if they have h(μ) > ε they must give one of the
sets X̂n mass greater than some η = η(ε) > 0. Since F̂ is a first return map with return
time τ̂n , we use Kac’s lemma to get

∫
τn dμ =

∫
τ̂n dμ̂ = μ̂(X̂n)

−1 < η−1,

as required. ��
As in [BT2, Remark 6], we denote this set of inducing schemes by Cover(ε).

Proof of Proposition 4.1. By Lemmas 4.3 and 4.2, we can take a sequence of ergodic
measures μp such that

h(μp) +
∫
ψt dμp = εp where εp → 0 as p → ∞,

h(μp) > η (some η > 0), allμp are compatible with some inducing scheme (X, F, τ ) ∈
Cover(ε) and

∫
τ dμp < θ for all p ∈ N. This implies that PG(�t ) � 0 since we have

a sequence of measures μF,p such that

h(μF,p) +
∫
�t dμF,p =

(∫
τ dμF,p

)(
h(μp) +

∫
ψt dμp

)
� θεp.

On the other hand PG(�t ) � 0 by Lemma 4.1. So the proposition is proved. ��
Since the inducing scheme (X, F) can be coded by the full-shift on countably many

symbols we have, as explained in Sect. 2, a Gibbs measure μ�t for�t . We need to show
that this measure has integrable inducing time and thus that it projects to a measure
in M f .

5. The Gibbs Measure has Integrable Inducing Times

This section is devoted to proving that the inducing time is integrable with respect to
the Gibbs measure constructed in Sect. 4. In particular, this implies that the measure has
finite entropy and that it is an equilibrium state for the induced potential. It also implies
that it can be projected to a measure in M f .

Proposition 5.1. Let t ∈ (t−, t+) andψ = ψt . Suppose that we have an inducing scheme
(X, F̃). Then there exists k ∈ N such that replacing (X, F̃) by (X, F), where F = F̃k ,
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the following holds. There exist γ0 ∈ (0, 1) and, for any cylinder C j
n ∈ P F

n any n ∈ N,

a constant δ j
n < 0 such that any measure μF ∈ MF with

μF (C
j
n) � (1 − γ0)m�(C

j
n) or μF (C

j
n) � m�(C

j
n)

1 − γ0
,

where m� denotes the conformal measure for the system (X, F, �), must have h(μF )+∫
� dμF � δ

j
n .

Note that δ j
n → 0 as m�(C

j
n) → 0. Also note that if K = exp

(∑∞
k=1 Vk(�̃)

)
is a

distortion constant for the potential �̃ for the inducing scheme (X, F̃) then it is also a
distortion constant for the potential � on (X, F).

The following lemma will allow us to choose k in the proof of Proposition 5.1. It is
true for � = �t , but also for more general potentials of summable variation.

Lemma 5.1. Suppose that we have an inducing scheme (X, F) and potential � = �t
with distortion constant K = exp

(∑∞
k=1 Vk(�)

)
and PG(�) = 0. We let m� denote

the conformal measure for the system (X, F, �). Then for any Cn ∈ P F
n and n ∈ N,

m�(Cn) � e−λn,

where λ := − log
(

K supC1∈P F
1

m�(C1)
)

.

Proof. Since m� is a conformal measure, for Ci
n ∈ P F

n we have

1 = m�(F
n(Ci

n)) =
∫

Ci
n

e−Sn� dm�.

So by the Intermediate Value Theorem we can choose x ∈ Ci
n so that eSn�(x) = m�(Ci

n).
For future use we will write Si

n� := Sn�(x). Therefore,

m�(C
i
n) = eSi

n� � en sup�.

By the Gibbs property,

esup� � K sup
C1∈P F

1

m�(C1).

Therefore

sup� � log

⎛
⎝K sup

C1∈P F
1

m�(C1)

⎞
⎠ .

We can choose this as our value for −λ. ��
In the following proof we use the notation A = θ±C to mean θ−C � A � θC .
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Proof of Proposition 5.1. Suppose that the distortion of the potential �̃ for the scheme
(X, F̃) is bounded by K � 1. We first prove that measures giving cylinders very small
mass compared to m� must have low free energy. Note that for any k ∈ N, the potential
� for the scheme (X, F), where F = F̃k also has distortion bounded by K . We will
choose k later so that λ = λ(K , supi m�(Xi )) for (X, F), as defined in Lemma 5.1,
is large enough to satisfy the conditions associated to (7), (8) and (10). Note that as in
[S3, Lemma 3] we also have PG(�) = 0.

In Lemma 5.3 below, we will use the Variational Principle to bound the free energy
of measures for the scheme which, for some γ , have μ(Ci

n) � K m�(Ci
n)(1 − γ )/

(1 − m�(Ci
n))

n in terms of the Gurevich pressure. However, instead of using�, which,
in the computation of Gurevich pressure weights points x ∈ Ci

n by e�(x), we use a
potential which weights points in Ci

n by (1 −γ )e�(x). That is, we consider (X, F, ��),
where

��(x) =
{
�(x) + log(1 − γ ) if x ∈ Ci

n,

�(x) if x ∈ C j
n, for j �= i.

Firstly we will compute PG(��).

Lemma 5.2. PG(��) = log
(
1 − γm�(Ci

n)
)
.

Proof. We prove the lemma assuming that n = 1 since the general case follows sim-
ilarly. We will estimate Z j (�

�,Ci
1), where Z j is defined in (2). The ideas we use are

similar to those in the proof of Claim 2 in the proof of [BT2, Prop. 2]. As can be seen
from the definition,

Z j (�
�,Ci

1) = e±∑ j−1
k=0 Vk (�)

∑
C j ∈P F

j ∩Ci
1

∑
any x∈C j

eS j�
�(x).

As in the proof of Lemma 5.1, the conformality of m� and the Intermediate Value The-

orem imply that for each k there exists xCk
1

∈ Ck
1 such that m�(Ck

1) = e
�(x

Ck
1
)
. For the

duration of this proof we write �k := �(xCk
1
). As above, we have e�

�
i := (1 − γ )e�i .

Therefore,

∑
i

e�
�
i = 1 − γ e�i .

For each C j ∈ P F
j and for any k ∈ N, there exists a unique C j+1 ⊂ C j such that

F j (C j+1) = Ck
1. Moreover, there exists xC j+1 ∈ C j+1 such that F j (xC j+1) = xCk

1
. Then

for C j ⊂ Ci
1,

∑
C j+1⊂C j

eS j+1�
�(xC j+1) = e±Vj+1(�)eS j�

�(xC j)

(∑
i

e�
�
i

)

= e±Vj+1(�)eS j�
�(xC j)(1 − γ e�i ).
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Therefore,

Z j+1(�
�,Ci

1) = (1 − γ e�i )e
±
(

Vj+1(�)+
∑ j−1

k=0 Vk (�)
)

Z j (�
�,Ci

1),

hence

Z j+1(�
�,Ci

1) = (1 − γ e�i ) j e±∑ j
k=0(k+1)Vk (�).

As in Remark 4.1,� is weakly Hölder, so
∑ j

k=0(k + 1)Vk(�) < ∞. Therefore we have
PG(��) = log(1 − γ e�i ) = log(1 − γm�(Ci

1)), proving the lemma. ��
For the next step in the proof of the upper bound on the free energy of measures

giving Ci
n small mass, we relate properties of (X, F, �) and (X, F, ��).

Lemma 5.3. MF (�) = MF (�
�) and for any Ci

n ∈ P F
n we have

sup

{
hF (μ) +

∫
� dμ : μ ∈ MF (�), μ(C

i
n) <

K (1 − γ )

(1 − m�(Ci
n))

n
m�(C

i
n)

}

� sup

{
hF (μ) +

∫
�� dμ : μ ∈ MF (�

�), μ(Ci
n) <

K (1 − γ )

(1 − m�(Ci
n))

n
m�(C

i
n)

}

−
[

K (1 − γ ) log(1 − γ )

(1 − m�(Ci
n))

n

]
m�(C

i
n)

� PG(��)−
[

K (1 − γ ) log(1 − γ )

(1 − m�(Ci
n))

n

]
m�(C

i
n).

Note that we can prove that the final inequality is actually an equality, but since we
don’t require this here we will not prove it.

Proof. The fact that MF (�) = MF (�
�) is clear from the definition.

Suppose that μ ∈ MF (�) and μ(Ci
n) � m�(Ci

n)K (1 − γ )/(1 − m�(Ci
n))

n . Then
(

hF (μ) +
∫
� dμ

)
−
(

hF (μ) +
∫
�� dμ

)
=
∫
� −�� dμ

= μ(Ci
n)(− log(1 − γ )) � −

[
K (1 − γ ) log(1 − γ )

(1 − m�(Ci
n))

n

]
m�(C

i
n),

proving the first inequality in the lemma. The final inequality follows from the definition
of pressure. ��

Lemmas 5.2 and 5.3 imply that any measure μF with μF (Ci
n) < K (1 −γ )m�(Ci

n)/

(1 − m�(Ci
n))

n must have

h(μF ) +
∫
� dμF � PG(��)−

[
K (1 − γ ) log(1 − γ )

(1 − m�(Ci
n))

n

]
m�(C

i
n) (6)

� log
(

1 − γm�(C
i
n)
)

−
[

K (1 − γ ) log(1 − γ )

(1 − m�(Ci
n))

n

]
m�(C

i
n). (7)

If m�(Ci
n) is very small then log

(
1 − γm�(Ci

n)
) ≈ −γm�(Ci

n) and so choosing γ ∈
(0, 1) close enough to 1 the above is strictly negative. By Lemma 5.1, m�(Ci

n) < e−λn



Natural Equilibrium States for Multimodal Maps 79

so Ci
n is small if λ large. Hence if λ is sufficiently large then we can set γ = γ̃ � ∈ (0, 1)

so that

log
(
1 − γ̃ �e−λn)−

[
K (1 − γ̃ �) log(1 − γ̃ �)

(1 − e−λn)n

]
e−λn

is strictly negative for all n ∈ N. This implies that (7) with γ = γ̃ � is strictly negative
for any Ci

n ∈ P F
n and any n, so we set (7) to be the value δi,�

n .
For the upper bound on the free energy of measures giving Ci

n relatively large mass,
we follow a similar proof, but with

��(x) =
{
�(x)− log(1 − γ ) if x ∈ Ci

n,

�(x) if x ∈ C j
n, for j �= i.

Similarly to above, one can show that MF (�) = MF (�
�) and

sup

⎧⎪⎨
⎪⎩hF (μ) +

∫
� dμ : μ ∈ MF (�), μ(C

i
n) >

m�(Ci
n)

K (1 − γ )
[
1 + m�(Ci

n)
(

γ
1−γ
)]n
⎫⎪⎬
⎪⎭

� sup

⎧⎪⎨
⎪⎩hF (μ)+

∫
�� dμ : μ∈MF (�

�), μ(Ci
n)>

m�(Ci
n)

K (1−γ )
[
1+m�(Ci

n)
(
γ

1−γ
)]n
⎫⎪⎬
⎪⎭

+
log(1 − γ )m�(Ci

n)

K (1 − γ )
[
1 + m�(Ci

n)
(

γ
1−γ
)]n

� PG(��) +
log(1 − γ )m�(Ci

n)

K (1 − γ )
[
1 + m�(Ci

n)
(

γ
1−γ
)]n .

Moreover, we can show that

PG(��) = log

(
1 + m�(C

i
n)

(
γ

1 − γ

))
� m�(C

i
n)

(
γ

1 − γ

)
.

Therefore, if μ(Ci
n) >

m�(Ci
n)

K (1−γ )
[
1+m�(Ci

n)
(

γ
1−γ
)]n , we have

hF (μ) +
∫
� dμ � m�(C

i
n)

(
γ

1 − γ

)
+

log(1 − γ )m�(Ci
n)

K (1 − γ )
[
1 + m�(Ci

n)
(

γ
1−γ
)]n . (8)

If λ is sufficiently large then we can choose γ = γ̃ � ∈ (0, 1) so that this is strictly
negative and can be fixed to be our value δi,�

n . This can be seen as follows: let and
γ = p/(p + 1) for some p to be chosen later. Then the right hand side of (8) becomes

m�(C
i
n) (p + 1)

[
p

p + 1
− log(p + 1)

K (1 + pe−λn)n

]
. (9)
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If λ is sufficiently large, then there exists some large λ′ ∈ (0, λ) such that (1+ pe−λn)n �
1 + pe−λ′n for all n ∈ N. Hence with this suitable choice of λ we can choose p so that
the quantity in the square brackets in (9) is negative for all n. So we can choose δi,�

n < 0
to be (8) with γ = γ̃ �.

We let

γ � = 1 − (1 − γ̃ �)

(
1 + e−λn

(
γ̃ �

1 − γ̃ �

))n

. (10)

For appropriately chosen λ this is in (0, 1).
We set γ ′

0 := max{γ �, γ �} and for each Ci
n ∈ P F

n we let δi
n := max{δi,�

n , δ
i,�
n }. The

proof of the proposition is completed by setting γ0 := 1 − K (1 − γ ′
0), which we may

assume is in (0, 1). ��
Proposition 5.2. There exists an inducing scheme (X, F) such that for t ∈ (t−, t+) and
ψ = ψt , any sequence of measures (μn)n with h(μn)− ∫ ψ dμn → 0 as n → ∞ has
a limit measure μψ which is an equilibrium state for ψ .

Note that (X, F) and (μn)n can be chosen as in Proposition 4.1.

Proof. By Proposition 4.1, we can find θ > 0, an inducing scheme (X, F̃) and a sequence
of measures (μn)n with h(μn) +

∫
ψ dμn → 0 each compatible with (X, F̃) and with∫

τ̃ dμF̃,n < θ . Proposition 4.1 also implies PG(�̃t ) = 0. Taking F = F̃k for k as in
Proposition 5.1, that proposition then implies that there exists K ′ > 0 such that for any
Ck ∈ P F

k , for all large enough n,

1

K ′ � μF,n(Ck)

eSk�(x)
� K ′

for all x ∈ Ck (note that as in Proposition 5.1, we can actually take K ′ = K/(1 − γ0),

where K is the distortion bound for �̃t ). Note that (μF,n)n is tight (see [Bi, Sect. 25]
for a discussion of this notion) and that any limit of the sequence μF,∞ must satisfy
the Gibbs property with distortion constant K ′. By the uniqueness of Gibbs measures
([MU2, Theorem 3.5]), μF,∞ = μ� . We now show that

∫
τ dμ� < θk. First note that∫

τ dμF,n = ∫ τ̃ k dμF̃,n < θk. For the purposes of this proof we let τN := min{τ, N }.
By the Monotone Convergence Theorem,∫

τ dμ� = lim
N→∞

∫
τN dμ� � lim

N→∞ lim sup
n→∞

∫
τN dμF,n � θk.

Thus we can project μ� to μψ by (3).
The fact that μψ is a weak∗ limit of (μn)n follows as in, for example [FT, Sect. 6].

The fact that we have a uniform bound μF,n {τ � j} � θk/j for all n ∈ N is again
crucial in proving this.

The Abramov formula implies that∫
� dμ� =

(∫
τ dμ�

)(∫
ψ dμψ

)
=
(∫

τ dμ�

)
(λ(μψ)− p(t)).

Since λ(μ) ∈ [λm, λM ] and both p(t) and
∫
τ dμ� are finite, this implies that

− ∫ � dμ� < ∞ and hence μ� is an equilibrium state for �. Using the Abramov
formula again we have that μψ is an equilibrium state for ψ . ��
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Remark 5.1. Here we give an example of a way our setting can be changed so that the
arguments in Proposition 5.1 and 5.2 fail. In the case where f is the (appropriately
scaled) quadratic Chebyshev polynomial, t− ∈ (−∞, 0). In this case there is a periodic
point p such that the Dirac measure δp on the orbit of p has λ(δp) = λM . The point p
is the image of the critical point which means that our class of inducing schemes can
not be compatible with δ0 (indeed the only inducing scheme for δ0 has only one domain
and the only measure compatible to it is δ0).

However, any measureμ ∈ M f orthogonal to δ0 must have h(μ)−tλ(μ) � h(μ1)−
tλ(μ1) for all t ∈ R,whereμ1 is the acip. In particular, h(μ)− tλ(μ) < p(t) for t < t−.
If PG(�t ) = 0, then arguments similar to those in the proofs of Lemma 4.1 and Prop-
osition 4.1 imply that there are measures with free energy w.r.t. ψt is arbitrarily close
to zero and positive entropy. This contradiction implies that for t < t−, PG(�t ) < 0,
so we cannot begin to apply the arguments above to that case. So it is important that
t ∈ (t−, t+).

6. Uniqueness of Equilibrium States

The result in Proposition 5.2 gives the existence of equilibrium states for −t log |D f | for
each t ∈ (t−, t+). In this section we obtain uniqueness. To do this we will use more prop-
erties of the inducing schemes described in [BT2]. They were produced in as first return
maps to an interval in the so-called Hofbauer tower. This theory was further developed
in [BT1] and [T]. The following theorem gives some of their properties.

Theorem 6.1. There exists a countable collection {(Xn, Fn)}n of inducing schemes with
∂Xn /∈ (Xn, Fn)

∞ such that:

a) any ergodic invariant probability measure μ with λ(μ) > 0 is compatible with one
of the inducing schemes (Xn, Fn). In particular there exists an ergodic Fn-invariant
probability measure μFn which projects to μ as in (3);

b) any ergodic equilibrium state for −t log |D f |, where t ∈ R with λ(μ) > 0 is com-
patible with all inducing schemes (Xn, Fn).

Remark 6.1. Note that it is crucial in our applications of Theorem 6.1, for example in
the proofs of Proposition 6.1 and Proposition 7.1, that in b) we are able to weaken the
condition h(μ) > 0 to λ(μ) > 0 when we wish to lift measures. This is why we need
to use a countable number of inducing schemes in Theorem 6.1 rather than the finite
number in [BT2, Remark 6].

Before proving Theorem 6.1, we prove the following easy lemma.

Lemma 6.1. If t ∈ (t−, t+) and an equilibrium state μt from Proposition 5.2 is compat-
ible with an inducing scheme (X, F), then PG(�t ) = 0. Moreover the lifted measure
μt,F is a Gibbs measure and an equilibrium state for �t .

Proof. First note that by Lemma 4.1, PG(�t ) � 0.
Denote byμt an equilibrium measure for the potential −t log |D f | of positive Lyapu-

nov exponent and let μt,F be the lifted measure. Note that by Proposition 2.1 and by the
Abramov formula, see for example [PS, Theorem 2.3], we have

PG (�t ) � h(μt,F ) +
∫
�t dμt,F =h(μt,F )− t

∫
log |DF | dμt,F − p(t)

∫
τ dμt,F
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=
(∫

τ dμt,F

)(
h(μt,F )∫
τ dμt,F

− t

(∫
log |DF | dμt,F∫

τ dμt,F

)
− p(t)

)

=
(∫

τ dμt,F

)(
h(μt )− t

∫
log |D f | dμt − p(t)

)
.

But recall that μt is an equilibrium measure:

p(t) = h(μt )− t
∫

log |D f | dμt .

Therefore PG(�t ) � 0.
Since PG(�t ) = 0 there exists a unique Gibbs measure μF corresponding to

(X, F, �t ). By the Abramov formula,

h(μt,F ) +
∫
�t dμt,F = 0,

so μt,F is an equilibrium state for (X, F, �t ). Since, in this setting, equilibrium states
are unique (see [MU2, Theorem 3.5]) we have that μt,F = μF . ��
Proof of Theorem 6.1. Part (a) of the theorem follows from the proof of [BT2, Theorem
3]. Part (b) is proved similarly to [BT2, Prop. 2], but with added information from our
Proposition 5.1. We sketch some details. Suppose thatμ is compatible to (Xn, Fn). Then
Lemma 6.1 implies that PG(�n) = 0. Claim 1 of the proof of [BT2, Prop. 2] implies
that for any other inducing scheme (Xn′

, Fn′) is ‘topologically connected’ to (Xn, Fn).
Proposition 5.1, which is an improved version of Claim 2 in the proof of [BT2, Prop.
2], then can be used as in that proof to give a ‘metric connection’ which means that an
equilibrium state compatible with (Xn, Fn) must be compatible with (Xn′

, Fn′). ��
Proposition 6.1. For any t ∈ (−∞, t+) there is at most one equilibrium state for
−t log |D f |. Moreover, if t+ > 1 then for any t ∈ R there is at most one equilibrium
state for −t log |D f |.

Clearly the equilibrium states, when unique, must be ergodic.

Proof. The idea here is first to show that any equilibrium state can be decomposed into
a sum of countably many measures, each of which is an equilibrium state and is com-
patible with an inducing scheme as in Theorem 6.1. [MU2, Theorem 3.5] implies that
there is only one equilibrium state per inducing scheme. Lemma 6.1 then implies that
this equilibrium state must be unique.

We suppose that μ is an equilibrium state for −t log |D f | for t ∈ (−∞, t+). We first
note that μ may be expressed in terms of its ergodic decomposition, see for example
[K2, Sect. 2.3], μ(·) = ∫ μy(·) dμ(y), where y ∈ I is a generic point of the ergodic
measure μy ∈ M f . Clearly, for any set A ⊂ I such that μ(A) > 0, the measure
μA(·) := 1

μ(A)

∫
A μy(·) dμ(y) must have

h(μA)− tλ(μA) = p(t),

i.e. it must be an equilibrium state itself (otherwise, removing μA from the integral for
μ would increase hμ − tλ(μ)). As in the proof of Lemma 4.2, λ(μA) > 0.

Theorem 6.1(a) implies that any suchμA must decompose into a sumμ =∑n αnμn,

whereμn is a probability measure compatible with the scheme (Xn, Fn) and αn ∈ (0, 1].
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Then there are Fn-invariant probability measures μFn , each of which projects to μn
by (3).

By Lemma 6.1 and [BuS], μFn must be the unique equilibrium state for the scheme
(Xn, Fn, τn)with potential −t log |DFn|− p(t)τn . Therefore,μn is the only equilibrium
state for −t log |D f | which is compatible with (Xn, Fn).

We finish the proof by using Theorem 6.1 b) which implies that any of these equilib-
rium states compatible with an inducing scheme (Xn, Fn) as above must be compatible
with each of the other inducing schemes (X j , Fj ). Hence μi = μ j for every i, j ∈ N.
Since μ was an arbitrary equilibrium state, this argument implies that μ is ergodic and
is the unique equilibrium state for −t log |D f |, as required.

Suppose that t+ > 1. Since λm � 0 this means that t �→ p(t) must be strictly
decreasing in the interval (1, t+). Since Bowen’s formula implies that p(t) � 0, this
means that p(t) < 0. Ruelle’s formula [Ru1] then implies that we must have λm > 0.
Therefore, if t+ > 1 then λ(μ) > 0 for all μ ∈ M f and so we can apply Theorem 6.1
to the case t � t+ also. ��

7. Proof of Theorem A

The previous sections give most of the information we need to prove Theorem A. In this
section we prove the remaining part: that the critical parameter t−, defined in Eq. (1), is
not finite. We then put the proof of Theorem A together.

Lemma 7.1. There exists a measure μM such that λ(μM ) = λM .

Proof. This follows from the compactness of M f and the upper semicontinuity of
x �→ log |D f (x)|. ��
Proposition 7.1. t− = −∞.

Proof. Suppose, for a contradiction, that t− > −∞. This implies that for t � t−, the
measure μM in Lemma 7.1 also maximises h(μ)− tλ(μ) for μ ∈ M f , and must have
h(μM ) = 0.

By Theorem 6.1, we can choose an inducing scheme (X, F) compatible with μM .

Claim 1. PG(�t ) = 0 for all t � t−.

Proof. PG(�t ) � 0 follows by Lemma 4.1. PG(�t ) � 0 follows since μM is compat-
ible with our scheme. ��

Since by construction, μM is compatible with (X, F), the induced measure being
denoted by μF,M , and since h(μM ) +

∫
ψt dμM = 0, we have

h(μF,M ) +
∫
�t μF,M = 0,

and so μF,M is an equilibrium state for�t . However, by Theorems 1.1 and 1.2 of [BuS]
any equilibrium state of �t must have positive entropy, a contradiction. ��
Proof of Theorem A. The existence of the equilibrium state for −t log |D f | and t ∈
(t−, t+) follows from Proposition 5.2. Uniqueness follows from Proposition 6.1. Posi-
tivity of the entropy ofμt comes from Lemma 4.2. Finally the fact that t− = −∞ comes
from Proposition 7.1. ��
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8. The Pressure is of Class C1 and Strictly Convex in (−∞, t+)

As discussed in the Introduction, for general systems the pressure function t �→ p(t)
is convex, therefore it can have at most a countable number of first order phase transi-
tions. In [S2] an example is constructed with the property that the set of parameters at
which the pressure function is not analytic has positive measure (in this case, there also
exist higher order phase transitions, see [S5]). Nevertheless, for multimodal maps it
has been shown that in certain intervals the pressure function is indeed real analytic, see
[BT1,BT2]. Dobbs [D3, Prop. 9] proved that in the quadratic family x �→ γ x(1 − x),
γ ∈ (3, 4) there exists uncountably many parameters for which the pressure function
admits infinitely many phase transitions. However, these transitions are caused by the
existence of an infinite sequence renormalisations of the map, so for these parameters
the corresponding quadratic maps do not have a representative in the class F . He also
notes [D3, Prop. 4] that in the quadratic family there is a always a phase transition for
negative t caused by the repelling fixed point at 0. Since this fixed point is not in the
transitive part of the system (which actually must be contained in [ f 2(c), f (c)]), from
our perspective this point is not dynamically relevant, so any representative of such a
map in F would miss this part of the dynamics, and hence not exhibit this transition.

Proposition 8.1. For f ∈ F , the pressure function p is C1 in the interval (−∞, t+).

Proof. We first show that p is differentiable. By Theorem 6.1, we can choose an induc-
ing scheme (X, F, τ )which is compatible withμt for each t ∈ (−∞, t+). Then we have
the limits

lim
t ′→t

∫
log |DF | dμ�t ′ =

∫
log |DF | dμ�t and lim

t ′→t

∫
τ dμ�t ′ =

∫
τ dμ�t .

We emphasise that these limits are the same if t ′ are taken to the left or to the right
of t . Hence λ(μψt ) is continuous in (t−, t+). Since the derivative of p is −λ(μψt ), the
derivative is continuous, proving the lemma. This standard fact can be seen as follows
(see also, for example, [K2, Theorem 4.3.5]): given ε > 0, by the definition of pressure
the free energy of μt with respect to ψt+ε is no more than p(t + ε). Similarly the free
energy of μt+ε with respect to ψt is no more than p(t). Hence

(−(t + ε) + t)λ(μt+ε)

ε
� p(t + ε)− p(t)

ε
� (−(t + ε) + t)λ(μt )

ε
.

So whenever t �→ λ(μt ) is continuous, Dp(t) = −λ(μt ). ��
Proposition 8.2. For f ∈ F , t+ > 0 and the pressure function p is strictly convex in
(−∞, t+).

Before proving this proposition, we need two lemmas: the first guarantees that t+ > 0,
while the second will be used to obtain strict convexity of the pressure function (both
these facts are in contrast with the quadratic Chebyshev case).

Lemma 8.1. For f ∈ F , λ(μ0) > λm, where μ0 is the measure of maximal entropy
for f .

Proof. The existence of a (unique) measure of maximal entropy μ0 is guaranteed by
[H]. Suppose for a contradiction that the lemma is false and hence λ(μ0) = λm . Since
when the derivative of p exists at a point t , it is equal to −λ(μt ) (see [Ru2] as well as
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the computation in the proof of Proposition 8.1) and by convexity, the pressure function
must be affine with constant slope −λm . i.e. p(t) = htop( f ) − tλm for t ∈ [0,∞).
This implies that μ0 must be an equilibrium state for the potential −t log |D f | for every
t ∈ R. In particular this applies when t = 1. Moreover, by Ruelle’s inequality [Ru1],
we have λ(μ0) > 0, so μ0 must be an acip by [L]. By [D2, Prop. 3.1], this implies that
f has finite postcritical set, which is a contradiction. ��
Lemma 8.2. For any ε > 0 there exists an inducing scheme (X, F) and a sequence
ik → ∞ such that the domains Xik have

|Xik | � e−(λm +ε)τik .

Proof. It is standard to show that for any ε > 0, there exists a periodic point p with
Lyapunov exponent � λm +ε/3, see for example [D3, Lemma 19]. We can choose (X, F)
as in Theorem 6.1 so that the orbit of p is disjoint from X . We may further assume that
(X, F) has distortion bounded by eδ for some δ > 0, i.e.

|DF(x)|
|DF(y)| � eδ

for all x, y ∈ Xi for any i ∈ N. In this case, by the transitivity of (I, f ), which is
reflected in our inducing scheme, there must exist an infinite sequence of domains Xnk

of (X, F) which shadow the orbit of p for longer and longer. One can use standard
distortion arguments to prove that for all large k, |Xi | � |X |e−δe−(λm +ε/2)τi . Choosing
δ > 0 appropriately completes the proof of the lemma. ��
Proof of Proposition 8.2. For the first part of the proposition, t+ > 0 is guaranteed by
Lemma 8.1.

For the second part of the proposition, since p is convex, we only have to rule out
p being affine in some interval. Suppose first that p is affine in an interval [t1, t2] ⊂
(−∞, t∗),where t∗ := inf{t : Dp(t) = −λm}. I.e. for some β > λm , t ∈ [t1, t2] implies
p(t) = p(−t1)− (t − t1)β. We let ε > 0 be such that β > λm + ε. By Lemma 8.2, there
exists ik → ∞ such that

|Xik | � e−(λm +ε)τik .

The fact that the pressure function is affine in [t1, t2] implies that the equilibrium
state is the same μ for every t ∈ [t1, t2]. Denote the induced version of μ by μF . By
the Gibbs property of our inducing schemes, μF (Xi ) � |Xi |t e−τi p(t) for all t ∈ [t1, t2].
Therefore,

|Xi |t1e−τi p(t1)

|Xi |t e−τi (p(t1)−(t−t1)β)
� 1,

which implies that

|Xi | � e−τiβ

for all i . Since

|Xik | � e−(λm +ε)τik

for an infinite sequence of domains Xik , and β > λm + ε, this yields a contradiction.
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We next want to prove that t+ = t∗. We suppose not in order to get a contradiction.
In the first case suppose that λm = 0. Then p(t) � 0 for all t ∈ R. Coupled with
Bowen’s formula this implies that p(1) = 0. So the convexity of p implies t+ = t∗, as
required. Now suppose that λm > 0. Since we assumed t+ the graph of p(t) must be
above, and parallel to t �→ −tλm on [t∗,∞). This implies that t+ = ∞ and so Theo-
rem A gives equilibrium states for all t ∈ R. Hence we can mimic the argument above,
with the inducing scheme as in Theorem 6.1 compatible with μt∗ , but instead taking
[t1, t2] ⊂ [t∗,∞) and β = λm . Noting that the argument of Lemma 8.2 ensures that we
chose the scheme (X, F) so that there is a sequence of domains |Xik | � e−(λM −ε)τik , we
can complete the argument. ��
Proof of Theorem B. The convexity of p follows from Proposition 8.2, the smoothness
from 8.1 and the fact that the pressure is decreasing from [Pr]. ��

9. Phase Transitions in the Positive Spectrum

In this section we study the relation between the existence of first order phase transi-
tions at the point t = 1 and the existence of an acip. The following proposition has
Proposition 1.1 as a corollary.

Proposition 9.1. Suppose that f ∈ F has λm = 0. Then f has an acip if and only if p
has a first order phase transition at t = 1.

Remark 9.1. Note that if λm > 0 then the situation is quite different. For example if
f ∈ F satisfies the Collet-Eckmann condition (which by [BS] implies λm > 0), in
which case the map also has an acip, then by [BT2, Theorem 3], p is real analytic in a
neighbourhood of t = 1.

The following lemma will be used to prove Proposition 9.1.

Lemma 9.1. Suppose that t+ ∈ (0,∞) and there is a first order phase transition at t+.
Then there exists an inducing scheme (X, F), an equilibrium state μ� for � = �t+ ,
and an equilibrium state μψ for ψ = ψt+ with h(μψ) > 0.

Proof. The fact that there is a first order phase transition implies that the left derivative
of p at t+ has Dp−(t+) < −λm . The convexity of the pressure function implies that
the graph of the pressure lies above the line t �→ D− p(t+)t − t+(λm + D− p(t+)). This
means that we can take a sequence of equilibrium states μψt for t arbitrarily close to,
and less than, t+ with free energy converging to p(t+) with

h(μψt ) � −t+(Dp−(t+) + λm) > 0.

Hence the arguments used to prove Proposition 5.2 give us an equilibrium state for μt+

with positive entropy. ��
Proof of Proposition 9.1. If there exists an acip μ then Dp−(1) = −λ(μ) < 0. Since
λm = 0 implies p(t) = 0 for all t � 1, the existence of an acip implies that there is a
first order phase transition at t = 1.

On the other hand, if there exists a first order phase transition at t = 1 then Lemma 9.1
implies that there is an equilibrium state μ1 for − log |D f |, with h(μ1) > 0. By [L] this
must be an acip. ��
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Remark 9.2. If λm > 0 and there is a measure μm such that λ(μm) = λm , then by
Lemma 9.1 and the arguments in the proof of Proposition 7.1, we have that t+ = ∞.

Remark 9.3. There are examples of maps in F with {μ ∈ M f : λ(μ) = λm} = ∅, for
example [BK, Lemma 5.5], a quadratic map in F is defined so that λm = 0, but there
are no measures with zero Lyapunov exponent. There are also examples of maps f ∈ F
with {μ ∈ M f : λ(μ) = λm} �= ∅, for example in [B2] examples of quadratic maps
in F are given for which the omega-limit set of the critical point supports (multiple)
ergodic measures with zero Lyapunov exponent. Moreover, Cortez and Rivera-Letelier
[CRL] proved that given E a non-empty, compact, metrisable and totally disconnected
topological space then there exists a parameter γ ∈ (0, 4] such that the set of invariant
probability measures of x �→ γ x(1− x), supported on the omega-limit set of the critical
point is homeomorphic to E .

It is plausible that there are maps f ∈ F for which

inf {t ∈ R : p(t) � 0} < 1.

However, the following argument shows that this is not true for unimodal maps with
quadratic critical point in F .

Given an interval map f : I → I , we say that A ⊂ I is a metric attractor if
B(A) := {ω(x) ⊂ A} has positive Lebesgue measure and there is no proper subset of
A with this property. On the other hand A is a topological attractor if B(A) is residual
and there is no proper subset of A with this property. We say that f has a wild attractor
if there is a set A which is a metric attractor, but not a topological one.

Proposition 9.2. If f ∈ F is a unimodal map with no wild attractor then for t < 1,
p(t) > 0.

Remark 9.4. It was shown in [BKNS] that there are unimodal maps with wild attractors
in F . However, if �c = 2 then this is not possible by [Ly1].

Lemma 9.2. If f ∈ F is a unimodal map with no wild attractor then for each ε > 0
there exists a measure μ ∈ M f so that

h(μ)

λ(μ)
> 1 − ε.

Proof. By [MvS, Theorem V.1.4], originally proved by Martens, there must be an induc-
ing scheme (X, F) such that Leb(X\∪i Xi ) = 0. For any δ > 0 we can truncate (X, F)
to a finite scheme (X N , FN ), where X N = ∪N

i=1 Xi so that Leb(∪N
i=1 Xi ) > (1 − δ)|X |.

We therefore have

dimH {x : τ k(x) < ∞ for all k ∈ N} > 1 − δ′ ,

where δ′ depends on δ and the distortion of F (in particular → 0 as δ → 0). It follows
from the Variational Principle and the Bowen formula (see [P, Chap. 7]) that there is an
F-invariant measure, μF , for this system with

h(μF )

λ(μF )
> 1 − δ′.
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By the Abramov formula, for μ the projection of μF ,

h(μ)

λ(μ)
> 1 − δ′

also. Choosing δ > 0 so small that δ′ � ε completes the proof. ��
Proof of Proposition 9.2. Let t < 1 and choose ε = 1 − t > 0. Then the measure μ in
Lemma 9.2 has h(μ)− tλ(μ) > 0. Hence by the definition of pressure, p(t) > 0. ��
Proof of Proposition 1.2. By Proposition 9.2 and Remark 9.4 we can take t+ = 1. Hence
we can conclude that p is C1 strictly convex decreasing in (−∞, t+) by Theorem B.
The fact that p(t) = 0 for all t � 1 follows from [NS].

Part (a) follows from Proposition 9.1 since this implies that both left and right deriv-
atives of p(t) at t = 1 are zero. Part (b) is the converse of this since the left derivative
is strictly negative and the right derivative is zero. ��

10. Remarks on Statistical Properties and Chebyshev Polynomials

In this section we collect some further comments on our results.

10.1. Statistical properties. Given f ∈ F and an equilibrium state μ as in Theorem A,
one can ask about the statistical properties of the system (I, f, μ). For an equilibrium
state μt from Theorem A, we expect that as described in [BT2, Sect. 6], it should be
possible to prove exponential decay of correlations (as in [Y]) and large deviations (see
[MN,RY]), along with many other statistical laws. These laws can be proved when an
inducing scheme (X, F, τ ) compatible withμt has exponential decay in n of the induced
measure of {τ > n}. However, we do not have sufficient information on this quantity
here. Nevertheless, we can use [BT3] to show that the system (I, f, μ) has ‘exponential
return time statistics’. We give a sketch of this theory here, but for more definitions see
for example [BT3].

Given f ∈ F and A ⊂ I , we let

rA(x) := min{ j ∈ N ∪ {+∞} : f j (x) ∈ A}.

Forμ ∈ M f , lettingμA be the conditional measure on A, by Kac’s Lemma, the expected
value of rA with respect to μA is

∫
A rA dμA = 1/μ(A). Given a sequence of sets (Un)n

so that μ(Un) → 0, the system has exponential return time statistics for (Un)n if for all
τ � 0,

μUn

(
rUn ≥ τ

μ(Un)

)
→ e−τ as n → ∞. (11)

Let t ∈ (−∞, t+) and μt be the equilibrium state for −t log |D f | given by Theorem A.
By [BT3, Theorem 3], for μt -a.e. x0 ∈ I , and any set of open intervals (Un)n such that
Un → x0 as n → ∞, the system has exponential return time statistics for (Un)n .
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10.2. Ergodic Optimisation. Let f ∈ F and ϕ : [0, 1] → R a function. The study
of invariant probability measures whose ergodic ϕ−average is as large (or as small) as
possible is known as ergodic optimisation. A measure μ ∈ M f is called ϕ−minimis-
ing/maximising if
∫
ϕ dμ = inf

{∫
ϕ dν : ν ∈ M f

}
or
∫
ϕ dμ = sup

{∫
ϕ dν : ν ∈ M f

}

respectively. For a survey on the subject see [Je]. Let t ∈ (−∞, t+) and denote by μt
the unique equilibrium state corresponding to the potential −t log |D f |. A consequence
of the results in this paper is that: any accumulation point μ of a sequence of measures
μtn , given by Theorem A, where tn → −∞ is a log |D f |-maximising measure. This
is because log |D f | is upper semicontinuous; Dp(t) = −λ(μt ); and this derivative is
asymptotic to −λM . Hence there is a subsequence of these measures (μtnk

)k so that

lim
k→∞ λ(μtnk

) = λ(μ) = λM .

Note that Lemma 7.1 guarantees the existence of a log |D f |−maximising measure. (We
do not assert anything about the uniqueness of this measure.) Actually, any measure μ,
which is an accumulation point of μtn as tn → −∞, is a measure maximising entropy
among all measures which maximise log |D f |. Then in fact p(t) is asymptotic to the
line h(μ)− tλM as t → −∞.

10.3. The preperiodic critical point case. For our class of maps F we assumed that the
orbit of points in Cr are infinite. Here we comment on an alternative case. In the case
of the quadratic Chebychev polynomial x �→ 4x(1 − x) on I , it is well known that the
two relevant measures are the acip μ1, which has λ(μ1) = log 2 = λm , and the Dirac
measure δ0 on the fixed point at 0, which has λ(δ0) = log 4 = λM . So t− = −1 and

p(t) =
{
(1 − t) log 2 if t � −1,
−t log 4 if t � −1.

Note that the above piecewise affine form for the pressure function does not conflict
with Theorem B, which might be expected to apply in the interval (t−, t+), since t+ =
t∗ = −1, where t∗ is defined in the proof of Proposition 8.2.
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Appendix A. Cusp Maps

In this section we outline how to extend the above results to some maps which are not
smooth. This class includes the class of contracting Lorenz-like maps, see for example
[Rov].

Definition A.1. f : ∪ j I j → I is a cusp map if there exist constants C, α > 1 and a
set {I j } j is a finite collection of disjoint open subintervals of I such that
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(1) f j := f |I j is C1+α on each I j =: (a j , b j ) and |D f j | ∈ (0,∞).
(2) D+ f (a j ), D− f (b j ) exist and are equal to 0 or ±∞.
(3) For all x, y ∈ I j such that 0 < |D f j (x)|, |D f j (y)| � 2 we have |D f j (x) −

D f j (y)| < C |x − y|α .
(4) For all x, y ∈ I j such that |D f j (x)|, |D f j (y)| � 2, we have |D f −1

j (x)−D f −1
j (y)|<

C |x − y|α .

We denote the set of points a j , b j by Cr .

Remark A.1. Notice that if for some j , b j = a j+1, i.e. I j ∩ I j+1 intersect, then f may not
continuously extend to a well defined function at the intersection point b j , since the defi-
nition above would then allow f to take either one or two values there. So in the definition
above, the value of f j (a j ) is taken to be limx↘a j f j (x) and f j (b j ) = limx↗b j f j (x),
so for each j , f j is well defined on I j .

Remark A.2. In contrast to the class of smooth maps F considered previously in this
paper, for cusp maps we can have λM = ∞ and/or λm = −∞. The first possibility
follows since we allow singularities (points where the one-sided derivative is ∞). The
second possibility follows from the presence of critical points (although it is avoided
for smooth multimodal maps with non-flat critical points by [Pr]). Examples of both of
these possibilities can be found in [D1, Sect. 3.4].

We will ultimately be interested in cusp maps without singular points with negative
Schwarzian derivative (in fact the latter rules out the former). Note that since we are
only interested in the transitive parts the system, transitive multimodal maps as in the
rest of the paper can be considered to fit into this class.

We show below that we can build a Hofbauer extension ( Î , f̂ ). We note that the pos-
sible issue of f not being well defined at the boundaries of I j , discussed in Remark A.1,
does not change anything in the definition of the Hofbauer tower.

We next define the Hofbauer extension. The setup we present here can be applied to
general dynamical systems, since it only uses the structure of dynamically defined cylin-
ders. An alternative way of thinking of the Hofbauer extension specifically for the case
of multimodal interval maps, which explicitly makes use of the critical set, is presented
in [BB].

We let Cn[x] denote the member of Pn , defined as above, containing x . If x ∈
∪n�0 f −n(Cr) there may be more than one such interval, but this ambiguity will not
cause us any problems here.

The Hofbauer extension is defined as

Î :=
⊔
k�0

⊔
Ck∈Pk

f k(Ck)/ ∼ ,

where f k(Ck) ∼ f k′
(Ck′) as components of the disjoint union Î if f k(Ck) = f k′

(Ck′)
as subsets in I . Let D be the collection of domains of Î and π : Î → I be the natural
inclusion map. A point x̂ ∈ Î can be represented by (x, D), where x̂ ∈ D for D ∈ D
and x = π(x̂). Given x̂ ∈ Î , we can denote the domain D ∈ D it belongs to by Dx̂ .

The map f̂ : Î → Î is defined by

f̂ (x̂) = f̂ (x, D) = ( f (x), D′)
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if there are cylinder sets Ck ⊃ Ck+1 such that x ∈ f k(Ck+1) ⊂ f k(Ck) = D and
D′ = f k+1(Ck+1). In this case, we write D → D′, giving (D,→) the structure of a
directed graph. Therefore, the map π acts as a semiconjugacy between f̂ and f :

π ◦ f̂ = f ◦ π.
We denote the ‘base’ of Î , the copy of I in Î , by D0. For D ∈ D, we define lev(D) to be
the length of the shortest path D0 → · · · → D starting at the base D0. For each R ∈ N,
let ÎR be the compact part of the Hofbauer tower defined by

ÎR := �{D ∈ D : lev(D) � R}.
For maps in F , we can say more about the graph structure of (D,→) since Lemma 1

of [BT2] implies that if f ∈ F then there is a closed primitive subgraph DT of D. That
is, for any D, D′ ∈ DT there is a path D → · · · → D′; and for any D ∈ DT , if there is
a path D → D′ then D′ ∈ DT too. We can denote the disjoint union of these domains
by ÎT . The same lemma says that if f ∈ F then π( ÎT ) = �, the non-wandering set and
f̂ is transitive on ÎT . Theorem A.1 gives these properties for transitive cusp maps.

Given an ergodic measure μ ∈ M f , we say that μ lifts to Î if there exists an ergodic
f̂ -invariant probability measure μ̂ on Î such that μ̂ ◦ π−1 = μ. For f ∈ F , if μ ∈ M f

is ergodic and λ(μ) > 0, then μ lifts to Î , see [K1,BK].
Property (∗) is that for any x̂, ŷ /∈ ∂ Î with π(x) = π(y) there exists n such that

f̂ n(x̂) = f̂ n(ŷ). This follows for cusp maps by the construction of Î using the branch
partition.

We will only use the following result in the context of equilibrium states for cusp maps
with no singularities. However, for interest we state the theorem in greater generality.

Theorem A.1. Suppose that f : I → I is a transitive cusp map with htop( f ) > 0.
Then:
(1) there is a transitive part ÎT of the tower such that π( ÎT ) = I ;
(2) any measure μ ∈ M f with 0 < λ(μ) < ∞ lifts to μ̂ with μ = μ̂ ◦ π−1;
(3) for each ε > 0 there exists η > 0 and a compact set K̂ ⊂ ÎT \∂ Î such that any

measure μ ∈ M f with h(μ) > ε and 0 < λ(μ) < ∞ has μ̂(K̂ ) > η.

Proof. Part (1): The first part can be shown as in [BT2, Lemma 2], but we argue as in [H]
(see also [KStP, Theorem 6]). Theorem 11 of that paper gives a decomposition of Î into
a countable union � of irreducible (maximal with these properties) closed (if there is a
path D → D′ for D ∈ E then D′ ∈ E) primitive (there is a path between any D, D′ ∈ E)
subgraphs E along with some sets which carry no entropy. Since htop( f̂ ) = htop( f )
and we have positive topological entropy, this means that � �= ∅. Let E ∈ �. Clearly
π(E) is open, so by the transitivity of f , there must be a point x ∈ π(E) which has a
dense orbit in I . By definition, ω(x) ⊂ π(E). By property (∗), π(E) ∩ π(E ′) = ∅ for
any E, E ′ ∈ � which implies that #� = 1. That there is a dense orbit in (E, f̂ ) follows
from the Markov property of this subgraph, so we let ÎT = �D∈E D.

Part (2): Ledrappier, in [L, Prop. 3.2] proved the existence of non-trivial local unsta-
ble manifolds for a more general class of maps (so-called PC-maps) with an ergodic
measure μ ∈ M f with λ(μ) > 0. However, he also required a non-degeneracy con-
dition. For cusp maps, Dobbs [D4, Theorem 13] was able to do this but without the
non-degeneracy requirement.
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Keller showed in [K1, Theorem 6] that the existence of such unstable manifolds
means that any non-atomic ergodic measure μ ∈ M f with λ(μ) > 0 lifts to μ̂ on
( Î , f̂ ) and that μ = μ̂ ◦ π−1. Using Dobbs and assuming that μ is not supported on
∪n�0 f n(Cr) we can drop the non-atomic assumption (see also [BK, Theorem 3.6]).

Part (3): The third part follows exactly as in [BT2, Lemma 4]. ��
Suppose now that f is a cusp map without singularities (i.e. |D f | is bounded above),

with negative Schwarzian and such that the non-wandering set � is an interval. We
consider f : � → �. For each t ∈ (t−, t+), we can find a finite number of inducing
schemes as in Proposition 6.1 with which all measures with large enough free energy
w.r.t.ψt will be compatible. It is important here that we assume the negative Schwarzian
derivative since we need bounded distortion for our inducing schemes. This then allows
us to prove Theorem A for this class of maps, but we may have t− > −∞. If we exclude
maps with preperiodic critical points then we again have t− = −∞. Similarly we can
prove Theorem B for this class of maps, although again we only get t− = −∞ if we
exclude maps with preperiodic critical points. Note also that the fact that λm can be
negative, and may even be −∞, implies that t+, which for the class F had to lie in
[1,∞], could be any value in the range [0,∞] for cusp maps.

Note that for the maps considered by Rovella in [Rov], the critical values are periodic
and so the measure supported on them is not seen by our inducing schemes. This is like
the Chebyshev case, so as in that situation, the pressure function could be piecewise
affine.

References

[BC] Benedicks, M., Carleson, L.: On iterations of 1 − ax2 on (−1, 1). Ann. of Math. 122, 1–25 (1985)
[Bi] Billingsley, P.: Probability and measure. Second edition. New York: John Wiley and Sons, 1986
[Bo] Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Springer Lect.

Notes in Math. 470, Berlin-Heidelberg-New York: Springer, 1975
[BB] Brucks, K.M., Bruin, H.: Topics from one-dimensional dynamics. London Mathematical Society

Student Texts 62. Cambridge: Cambridge University Press, 2004
[B1] Bruin, H.: Induced maps, markov extensions and invariant measures in one–dimensional dynamics.

Commun. Math. Phys. 168, 571–580 (1995)
[B2] Bruin, H.: Minimal cantor systems and unimodal maps. J. Difference Eq. Appl. 9, 305–318 (2003)
[BK] Bruin, H., Keller, G.: Equilibrium states for s-unimodal maps. Erg. Th. Dynam. Syst. 18, 765–789

(1998)
[BKNS] Bruin, H., Keller, G., Nowicki, T., van Strien, S.: Wild cantor attractors exist. Ann. of

Math. 143(2), 97–130 (1996)
[BS] Bruin, H., van Strien, S.: Expansion of derivatives in one–dimensional dynamics. Israel. J.

Math. 137, 223–263 (2003)
[BT1] Bruin, H., Todd, M.: Equilibrium states for potentials with sup ϕ − inf ϕ < htop( f ). Commun.

Math. Phys. 283, 579–611 (2008)
[BT2] Bruin, H., Todd, M.: Equilibrium states for interval maps: the potential −t log |d f |. Ann. Sci. École

Norm. Sup. 42(4), 559–600 (2009)
[BT3] Bruin, H., Todd, M.: Return time statistics for invariant measures for interval maps with positive

lyapunov exponent. Stoch. Dyn. 9, 81–100 (2009)
[BuS] Buzzi, J., Sarig, O.: Uniqueness of equilibrium measures for countable markov shifts and multidi-

mensional piecewise expanding maps. Erg. Th. Dynam. Systs. 23, 1383–1400 (2003)
[C] Cederval, S.: Invariant measures and correlation decay for S-multimodal interval maps. PhD thesis,

Imperial College, 2006
[CRL] Cortez, M.I., Rivera-Letelier, J.: Invariant measures of minimal post-critical sets of logistic

maps. Israel J. Math. 176, 157–193 (2010)
[DU] Denker, M., Urbanski, M.: Ergodic theory of equilibrium states for rational maps. Nonlinearity 4,

103–134 (1991)
[D1] Dobbs, N.: Critical points, cusps and induced expansion in dimension one. Thesis, Université Paris-

Sud, Orsay, 2006



Natural Equilibrium States for Multimodal Maps 93

[D2] Dobbs, N.: Visible measures of maximal entropy in dimension one. Bull. Lond. Math. Soc. 39,
366–376 (2007)

[D3] Dobbs, N.: Renormalisation induced phase transitions for unimodal maps. Commun. Math. Phys.
286, 377–387 (2009)

[D4] Dobbs, N.: On cusps and flat tops. http://arXiv.org/abs/0801.3815v1[math.DS], 2008
[Dobr] Dobrušhin, R.L.: Description of a random field by means of conditional probabilities and conditions

for its regularity. Teor. Verojatnost. i Primenen 13, 201–229 (1968)
[E] Ellis, R.S.: Entropy, large deviations, and statistical mechanics. Classics in Mathematics, Berlin:

Springer-Verlag, 2006
[FT] Frietas, J., Todd, M.: Statistical stability of equilibrium states for interval maps. Nonlinearity 22,

259–281 (2009)
[GS] Graczyk, J., Swia̧tek, G.: Generic hyperbolicity in the logistic family. Ann. Math. 146, 1–52 (1997)
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