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Abstract: We establish a limiting absorption principle for some long range perturba-
tions of the Dirac systems at threshold energies. We cover multi-center interactions with
small coupling constants. The analysis is reduced to studying a family of non-self-adjoint
operators. The technique is based on a positive commutator theory for non-self-adjoint
operators, which we develop in the Appendix. We also discuss some applications to the
dispersive Helmholtz model in the quantum regime.
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1. Introduction

We study properties of relativistic massive charged particles with spin-1/2 (e.g., elec-
tron, positron, (anti-)muon, (anti-)tauon,. . .). We follow the Dirac formalism, see [17].
Because of the spin, the configuration space of the particle is vector valued. To simplify,
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we consider finite dimensional and trivial fiber. Let ν ≥ 2 be an integer. The movement
of the free particle is given by the Dirac equation,

i�
∂ϕ

∂t
= Dmϕ, in L2(R3;C

2ν),

where m > 0 is the mass, c the speed of light, � the reduced Planck constant, and

Dm := c�α · P + mc2β = −ic�

3∑

k=1

αk∂k + mc2β. (1.1)

Here we set α := (α1, α2, α3) and β := α4. The αi , for i ∈ {1, 2, 3, 4}, are linearly
independent self-adjoint linear maps, acting in C

2ν , satisfying the anti-commutation
relations:

αiα j + α jαi = 2δi, j 1C2ν , where i, j ∈ {1, 2, 3, 4}. (1.2)

For instance, when ν = 2, one may choose the Pauli-Dirac representation:

αi =
(

0 σi
σi 0

)
and β =

(
IdCν 0

0 −IdCν

)
, (1.3)

where σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
,

for i = 1, 2, 3. We refer to [66, App. 1.A] for various equivalent representations. In this
paper we do not choose any specific basis and work intrinsically with (1.2). We refer to
[53] for a discussion of the representations of the Clifford algebra generated by (1.2). We
also renormalize and consider � = c = 1. The operator Dm is essentially self-adjoint
on C∞c (R3;C

2ν) and the domain of its closure is H 1(R3;C
2ν), the Sobolev space of

order 1 with values in C
2ν . We denote the closure with the same symbol. Easily, using

Fourier transformation and some symmetries, one deduces the spectrum of Dm is purely
absolutely continuous and given by (−∞,−m] ∪ [m,∞).

In this Introduction, we focus on the dynamical and spectral properties of the
Hamiltonian describing the movement of the particle interacting with n fixed, charged
particles. We model them by fixed points {ai }i=1,...,n ∈ R

3n with respective charges
{zi }i=1,...,n ∈ R

n . Doing so, we tacitly suppose that the particles {ai } are far enough
from one another, so as to neglect their interactions. Note we make no hypothesis on the
sign of the charges. The new Hamiltonian is given by

Hγ := Dm + γ Vc(Q), where Vc := vc ⊗ IdC2ν and vc(x) :=
∑

k=1,...,n

zi

|x − ai | ,

(1.4)

acting on C∞c (R3\{ai }i=1,...,n;C
2ν), with ai �= a j for i �= j . The γ ∈ R is the coupling

constant. The index c stands for coulombic multi-center. The notation V (Q) indicates
the operator of multiplication by V . Here, we identify L2(R3;C

2ν) � L2(R3) ⊗ C
2ν ,

canonically. Remark the perturbation Vc is not relatively compact with respect to Dm ,
then one needs to be careful to define a self-adjoint extension for Dm . Assuming

Z := |γ | max
i=1,...,n

(|zi |) <
√

3/2, (1.5)
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the theorem of Levitan-Otelbaev ensures that Hγ is essentially self-adjoint and its
domain is the Sobolev space H 1(R3;C

2ν), see [2,45,49,51,52,50] for various gen-
eralizations. This condition corresponds to the nuclear charge α−1

at Z ≤ 118, where
α−1

at = 137.035999710(96). Note that using the Hardy-inequality, the Kato-Rellich the-
orem will apply till Z < 1/2 and is optimal in the matrix-valued case, see [66, Sect. 4.3]
for instance. For Z < 1, one shows there exists only one self-adjoint extension so that
its domain is included in H 1/2(R3;C

2ν), see [58]. This covers the nuclear charges up
to Z = 137. When n = 1 and Z = 1, this property still holds true, see [23]. Surprisingly
enough, when n = 1 and Z > 1, there is no self-adjoint extension with domain included
in H 1/2(R3;C

2ν), see [74, Theorem 6.3]. We mention also the work of [68] for Z > 1.
In [58], one shows for Z < 1 that the essential spectrum is given by (−∞,−m] ∩

[m,∞) for all self-adjoint extensions. For all Z , one refers to [30, Prop. 4.8.], which
relies on [74]. In [29] one gives some criteria of stability of the essential spectrum for
some very singular cases. In [4], one proves there is no embedded eigenvalues for a
more general model until the coupling constant Z < 1. For all energies in a compact
set included in (−∞,−m) ∩ (m,∞), [30] obtains some estimates of the resolvent.
This implies some propagation estimates and that the spectrum of Hγ is purely abso-
lutely continuous. Similar results have been obtained for magnetic potential of constant
direction, see [70] and more recently [64].

In this paper we are interested in uniform estimates of the resolvent at threshold
energies. The energy m is called the electronic threshold and −m the positronic thresh-
old. In Theorem (1.2), we obtain a uniform estimation of the resolvent over [−m − δ,

−m] ∪ [m,m + δ], see (1.8) and deduce some propagation properties, see (1.9). One
difficulty is that in the case n = 1 and zi < 0, it is well known there are infinitely
many eigenvalues in the gap (−m,m) converging to the m as soon as γ �= 0 (see for
instance [66, Sect. 7.4] and references therein). This is a difficult problem and, to our
knowledge, this result is new for the multi-center case. There is a larger literature for
non-relativist models, e.g., −
 + V in L2(Rn;C). The question is intimately linked
with the presence of resonances at threshold energy, [43,25,57,63,69]. We mention also
[14] for applications to Strichartz estimates and [19,20] for applications to scattering
theory. We refer to [8,9] for perturbations in divergence form and to [36,37,67] for some
more geometrical settings. We also point out some low energy results in the context of
non-relativistic quantum electrodynamics, [26,27].

Before giving the main result, we shall discuss some commutator methods. The first
stone was set by C.R. Putnam, see [61] and for instance [62, Theorem XIII.28]. Let H
be a self-adjoint operator acting in a Hilbert space H . One supposes there is a bounded
operator A so that

C := [H, iA]◦ > 0, (1.6)

where “>” means non-negative and injective. The commutator has to be understood
in the form sense. When it extends into a bounded operator between some spaces, we
denote this extension with the symbol ◦ in the subscript, see Appendix A. The operator
A is said to be conjugate to H . One deduces some estimation on the imaginary part
of the resolvent, i.e., one finds some weight B, a closed injective operator with dense
domain, so that

sup
(z)∈R,�(z)>0

�〈 f, (H − z)−1 f 〉 ≤ ‖B f ‖2.
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This estimation is equivalent to the global propagation estimate, c.f. [46] and [62, The-
orem XIII.25]:

∫

R

‖B−1eit H f ‖2dt ≤ 2‖ f ‖2.

One infers that the spectrum of H is purely absolutely continuous with respect to the
Lebesgue measure. In particular, H has no eigenvalue. To deal with the presence of
eigenvalues, the fact that A is unbounded and with the 3-body-problem, E. Mourre had
the idea to localize the estimates in energy had the idea to localize the estimates in energy
and to allow a compact perturbation, see [56]. With further hypotheses, one shows an
estimate of the resolvent (and not only on the imaginary part). The applications of this
theory are numerous. The theory was immediately adapted to treat the N -body prob-
lem, see [60]. The theory was finally improved in many directions and optimized in
many ways, see [1] for a more thorough discussion of these matters. We mention also
[31,34,32] for recent developments. As we are concerned about thresholds, Mourre’s
method does not seem enough, as the estimate of the resolvent is given on an interval
which is strictly smaller than the one used in the commutator estimate. In [13] one gen-
eralizes the result of Putnam’s approach. Under some conditions, one allows A to be
unbounded. They obtain a global estimate of the resolvent. Note this implies the absence
of eigenvalue. In [25], in the non-relativistic context, by asking about some positivity
on the Virial of the potential, see below, one is able to conciliate the estimation of the
resolvent above the threshold energy and the accumulation of eigenvalues under it. In
[63], one presents an abstract version of the method of [25]. To give an idea, we shall
compare the theories on a non-optimal example. Take H := −
+ V in L2(R3), with V
being in the Schwartz space. Consider the generator of dilation A := (P · Q + Q · P)/2,
where P := −i∇. One looks at the quantity

[H, iA]◦ − cH = −(2 − c)
− WV (Q), where WV (Q) := Q · ∇V (Q) + cV (Q),

with c ∈ (0, 2) and seeks some positivity. The expression WV is called the Virial of
V . In [25], one uses extensively that WV (x) ≤ −c〈x〉−α for some α, c > 0 and |x |
big enough. In [63], one notices that it suffices to suppose that WV (x) ≤ 0 and to take
advantage of the positivity of the Laplacian. We take the opportunity to mention that
it is enough to suppose that WV (x) ≤ c′|x |−2, for some small positive constant c′, see
Theorem C.1. Observe also that these methods give different weights. For instance, [25]
obtains better weights in the scale of 〈Q〉α and [63] can obtain singular weights like
|Q|, see Appendix B. Finally, [25] deals only with low energy estimates and [63] works
globally on [0,∞). We also point out [39] which relies on commutator techniques and
deals with smooth homogeneous potentials.

In this article, we revisit the approach of [63] and make several improvements, see
Appendix B. Our aim is twofold: to treat the dispersive non-self-adjoint operator and to
obtain estimates of the resolvent uniformly in a parameter. At first sight, these improve-
ments are pointless from the standpoint of the Coulomb-Dirac problem we treat. In
reality, they are the key-stone of our approach.

As a direct by-product of the method, we obtain some new results for dispersive
Schrödinger operators. The following V2 term corresponds to the absorption coefficient
of the laser energy by the material medium absorption term in the Helmholtz model, see
[42] for instance.
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Theorem 1.1. Let n ≥ 3. Suppose that V1, V2 ∈ L∞(Rn;R) satisfy:
(H1) ∇Vi , Q · ∇Vi (Q), 〈Q〉(Q · ∇Vi )

2(Q) are bounded, for i ∈ {1, 2}.
(H2) There are c1 ∈ [0, 2) and c′1 ∈

[
0, 4(2 − c1)/(n − 2)2

)
such that

W1(x) := x · (∇V1)(x) + c1V1(x) ≤ c′1
|x |2 , for all x ∈ R

n,

and

V2(x) ≥ 0 and − x · (∇V2)(x) ≥ 0, for all x ∈ R
n .

On C∞c (Rn), we define H := −
 + V (Q), where V := V1 + iV2. The closure of H
defines a dispersive closed operator with domain H 2(Rn). We keep denoting it with H.
Its spectrum is included in the upper half-plane. The operator H has no eigenvalue in
[0,∞). Moreover,

sup
λ∈[0,∞), μ>0

∥∥ |Q|−1(H − λ + iμ)−1|Q|−1
∥∥ <∞. (1.7)

Note we require neither smoothness on the potentials nor that they are relatively
compact with respect to the Laplacian. We refer to Appendix C for further comments,
the case c1 = 0 and a stronger result.

We come back to the main application, namely the operator Hγ defined by (1.4).
As the Dirac operator is vector-valued, coulombic interactions are singular and as we
are interested in both thresholds, we were not able to use directly the ideas of [25,63].
Indeed, it is unclear for us if one can actually deal with the threshold energy and keep
the “positivity” of something close to the quantity [Hγ , iA]−cHγ , for some self-adjoint
operator A. We avoid this fundamental problem. First of all we cut-off the singularities
of the potential Vc and consider the operator Hbd

γ = Dm +γ V in Sect. 2. We recover the
singularities of the operator by perturbation in Proposition 4.1. In Sect. 2.1, similarly to
[21], we make explicit the resolvent of Hbd

γ − z relative to a spin-down/up decomposi-
tion. This transfers the analysis to the one of an elliptic operator of second order,
m,v,z ,
see Sect. 2.1. The drawback is that this operator is dispersive and also depends on the
spectral parameter z. We bypass the latter difficulty by studying the family {
m,v,ξ }ξ∈E
uniformly in E . In Sect. 2.2, we explain how to deduce the estimation of the resolvent
of Hbd

γ having the one of 
m,v,z . In Sect. 3, we establish some positive commutator
estimates for
m,v,z and derive the sought estimates of the resolvent, see Theorem (3.1).
For the last step, we rely on the theory developed in Appendix B. The main result of this
Introduction is the following one.

Theorem 1.2. There are κ, δ,C > 0 such that

sup
|λ|∈[m,m+δ], ε>0,|γ |≤κ

‖〈Q〉−1(Hγ − λ− iε)−1〈Q〉−1‖ ≤ C. (1.8)

In particular, Hγ has no eigenvalue in ±m. Moreover, there is C ′ so that

sup
|γ |≤κ

∫

R

‖〈Q〉−1e−it Hγ EI(Hγ ) f ‖2dt ≤ C ′‖ f ‖2, (1.9)

where I = [−m−δ,−m]∪[m,m +δ] and where EI(Hγ ) denotes the spectral measure
of Hγ .
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A more general result is given in Theorem 4.1. In Theorem 4.2 we discuss the weights
〈P〉1/2|Q| and in Remark 4.2 the weights |Q|. If one is not interested in the uniformity
in the coupling constant, using [30], one can consider all δ > 0 and deduce (1.8). The
propagation estimate (1.9) refers to Kato smoothness and it is a well-known conse-
quence of (1.8), see [46]. Using some kernel estimates, one can obtain (1.8) directly for
the free Dirac operator, i.e., γ = 0, see for instance [66, Sect. 1.E] and [48]. One may
find an alternative proof of this fact in [41] which relies on some positive commutator
techniques.

In this study, we are mainly interested in long range perturbations of Dirac operators.
Concerning limiting absorption principle for short range perturbations of Dirac operators
there are some interesting works such as [15] for small perturbations without discrete
spectrum or [10] for potentials producing discrete spectrum. These authors were mainly
interested in time decay estimates similar to (1.9). In the short range case, the limiting
absorption principle is a key ingredient to establish Strichartz estimates for perturbed
Dirac type equations see [11,16]. For free Dirac equations there are some direct proofs,
see [22,55,54]. Time decay estimates such as (1.9) or Strichartz are crucial tools to
establish well posedness results [22,55,54] and stability results [10,11] for nonlinear
Dirac equations.

The paper is organized as follows. In the second section we reduced the analysis
of the resolvent of the Dirac operator perturbed with a bounded potential to the one of
family of non-self-adjoint operators. In the third part, we analyze these operators and
obtain some estimates of the resolvent. In the fourth part, we state the main results of
the paper. For the convenience of the reader, we expose some commutator expansions
in Appendix A. In Appendix B, we develop the abstract positive commutator theory.
At last in Appendix C, we give a direct application to the theory in the context of the
Helmholtz equation.

Notation. In the following  and � denote the real and imaginary part, respectively.
The smooth function with compact support are denoted by C∞c . Given a complex-valued
function F , we denote by F(Q) the operator of multiplication by F . We mention also
the notation P = −i∇. We use the standard 〈·〉 := (1 + | · |2)1/2.

2. Reduction of the Problem

In this section, we study the resolvent of the perturbed Dirac operator

Hbd
γ := Dm + γ V, where V := v ⊗ IdC2ν and v bounded. (2.1)

In Sect. 4, we explain how to cover some singularities. Due to the method, we will
consider only small coupling constants. We will show the limiting absorption principle

sup
|λ|∈[m,m+δ], ε>0, |γ |≤κ

‖〈Q〉−1(Hbd
γ − λ− iε)−1〈Q〉−1‖ ≤ C, (2.2)

for some κ > 0. We notice this is equivalent to

sup
λ∈[m,m+δ], ε>0, |γ |≤κ

‖〈Q〉−1(Hbd
γ − λ− iε)−1〈Q〉−1‖ ≤ C. (2.3)

Indeed, by setting α5 := α1α2α3α4 and using the anti-commutation relation (1.2), we
infer

α5 (Dm + γ V ) α−1
5 = −Dm + γ V .
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Note that α5 is unitary in the Sobolev spaces H s(R3;C
2n), for s ∈ R. This gives

α5ϕ(Dm + γ V )α−1
5 = ϕ

(− (Dm − γ V )
)
, for all ϕ ∈ C(R;C). (2.4)

Finally notice that 〈Q〉 commutes to α5.

2.1. The non-self-adjoint operator. Here, we relate the resolvent of (2.1) in a point
z ∈ C\R with the one of some non-self-adjoint Laplacian type operator 
m,v,z , chosen
in (2.8). We fix a compact set I being the area of energy we are concentrating on. In the
next section, we explain how to recover a limiting absorption principle for Hbd

γ over I
given the one of 
m,γ v,z .

We consider a potential v ∈ L∞(R3;R), not necessarily smooth, satisfying

‖v‖∞ ≤ m/2 and ∇v ∈ L∞(R3;R
3). (2.5)

In particular, (v(Q)− m − z)−1 stabilizes H 1(R3;C
2ν) for all z in C\R.

Since β = α4 satisfies (1.2), we deduct that β has the eigenvalues ±1 and the eigen-
spaces have the same dimension. Let P+ be the orthogonal projection on the spin-up
part of the space, i.e., on ker(β − 1). Let P− := 1 − P+. Since α j satisfies (1.2), for
j ∈ {1, 2, 3}, we get P±α j P± = 0. We set:

α+
j := P+α j P− and α−j := P−α j P+, for j ∈ {1, 2, 3}.

They are partial isometries:
(
α+

j

)∗ = α−j , α+
j α

−
j = P+ and α−j α

+
j = P−, for j ∈ {1, 2, 3}.

The anti-commutation relation (1.2) gives:

α−i α
+
j + α−j α

+
i = 2δi, j P− and α+

i α
−
j + α+

j α
−
i = 2δi, j P+, for i, j ∈ {1, 2, 3}.

(2.6)

We set C
ν± := P±

C
2ν . In the direct sum C

ν− ⊕ C
ν
+, with a slight abuse of notation, one

can write

β =
(

IdCν 0
0 −IdCν

)
and α j =

(
0 α+

j
α−j 0

)
, for j ∈ {1, 2, 3}.

We now split the Hilbert space H = L2(R3;C
2ν) into the spin-up and down part:

H = H + ⊕ H −, where H ± := L2(R3;C
ν±) � L2(R3;C

ν). (2.7)

We define the operator:


m,v,z := α+ · P
1

m − v(Q) + z
α−· P + v(Q) (2.8)

on C∞c (R3;C
ν
+). It is well defined by (2.5). It is closable as its adjoint has a dense domain.

We consider the minimal extension its closure. We denote its domain by Dmin(
m,v,z)

and keep the same symbol for the operator. It is well known that even for symmetric
operators one needs to be careful with domains as the domain of the adjoint could be
much bigger than the one of the closure. In the next proposition, present this problem in
our non-symmetric setting.
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Proposition 2.1. Let z ∈ C\R such that (z) ≥ 0. Under the hypotheses (2.5), we have
that

Dmin(
m,v,z) = D(
∗
m,v,z) = H 2(R3;C

ν
+) and 
m,v,z = 
∗

m,v,z .

Proof. We mimic the Kato-Rellich approach and compare
m,v,z with the more conve-
nient operator 
̃z :=

(
1/(m + z)

)

1,0,0. Its domain is H 2(R3;C

ν
+) and its spectrum is

{(m + z)t | t ∈ [0,∞)}. We now show there is a ∈ [0, 1) and b ≥ 0 such that

‖B f ‖2 ≤ a
∥∥∥
̃z f

∥∥∥
2

+ b‖ f ‖2, (2.9)

holds true for all f ∈ C∞c (R3,Cν+), where

B := v

(m − v + z)

̃z − i

(α+ · ∇v)(Q)
(m − v(Q) + z)2

α− · P + v(Q).

Since ‖v‖∞ ≤ m/2, (z) ≥ 0 and �(z) > 0, we infer a0 := ‖v/(m − v + z)‖∞ < 1.
Set M := ‖(α+ · ∇v)(·)/(m − v(·) + z)2‖∞. Take ε, ε′ ∈ (0, 1),

‖B f ‖2 ≤ (1 + ε)a2
0

∥∥∥
̃z f
∥∥∥

2
+

(
1 +

1

ε

)∥∥∥∥
(α+ · ∇v)(Q)
(m − v(Q) + z)2

α− · P f + v(Q) f

∥∥∥∥
2

,

≤ (1 + ε)a2
0

∥∥∥
̃z f
∥∥∥

2
+

4M2

ε

∥∥α− · P f
∥∥2

+
4‖v‖∞
ε

‖ f ‖2,

≤
(
(1 + ε)a2

0 + ε′
) ∥∥∥
̃z f

∥∥∥
2

+

(
4‖v‖∞
ε

+
2|m + z|2 M2

εε′

)
‖ f ‖2 .

By choosing ε and ε′ so that the first constant is smaller than 1, (2.9) is fulfilled.
Now, observe that sincez > 0, ‖B(
̃z +μ)−1‖2 ≤ a +bμ−2 forμ > 0. Fixμ0 > 0

such that ‖B(
̃z + μ0)
−1‖ < 1. Then (1 + B(
̃z + μ0)

−1) is bijective. Noticing that

(
Id + B(
̃z + μ0)

−1)(
̃z + μ0) = 
m,v,z + μ0,

we infer that 
m,v,z + μ0 is bijective from H 2(R3;C
ν
+) onto L2(R3;C

ν
+). In partic-

ular Dmin(
m,v,z) = H 2(R3;C
ν
+). Directly, one has Dmin(
m,v,z) ⊂ D(
∗

m,v,z) and

m,v,z ⊂ 
∗

m,v,z (inclusion of graphs). Take now f ∈ D(
∗
m,v,z). Since 
m,v,z + μ0 is

surjective, there is g ∈ Dmin(
m,v,z) so that

(
m,v,z + μ0)g = (
∗
m,v,z + μ0) f.

In particular, (
∗
m,v,z + μ0)( f − g) = 0. As 
m,v,z + μ0 is surjective, we derive that

ker(
∗
m,v,z +μ0) = {0}. In particular f = g, Dmin(
m,v,z) = D(
∗

m,v,z) and
m,v,z =

∗

m,v,z . ��
As a corollary, we derive:

Lemma 2.1. The spectrum of 
m,v,z is contained in the lower/upper half-plane which
does not contain z. In particular, c + z is always in the resolvent set of 
m,v,z for any
c ∈ R.
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Proof. Take now f ∈ H 2(R3;C
ν
+). Since

�〈 f,
m,v,z f 〉 = 〈α−· P f,
−�(z)

(
m − v(Q) + (z))2 + �(z)2

α−· P f 〉, (2.10)

is of the sign of −�(z). Since
m,v,z is a closed operator having the same domain of its
adjoint, the spectrum of 
m,v,z is contained in the closure of its numerical range, see
Lemma B.1. ��

We give a kind of Schur’s Lemma, so as to compute the inverse of the Dirac operator,
see also [21,43].

Lemma 2.2. Suppose (2.5). Take z ∈ C\R such that (z) ≥ 0. In the spin-up/down
decomposition H = H + ⊕ H −, we have (Hbd

1 − z)−1 =
⎛

⎜⎝
(
m,v,z + m − z)−1

1

m − v(Q) + z
α−· P(
m,v,z + m − z)−1

(
m,v,z + m − z)−1α+ · P
1

m − v(Q) + z

1

m − v(Q) + z
α−· P(
m,v,z + m − z)−1α+ · P

1

m − v(Q) + z
− 1

m − v(Q) + z

⎞

⎟⎟⎟⎠ .

Remark 2.1. The operator (Hbd
1 −z)−1 is bounded from L2(R3;C

2ν) into H 1(R3;C
2ν).

However, this improvement in the Sobolev scale does not hold if one looks at the matri-
cial terms separately. There is a real compensation coming from the off-diagonal terms.
First note that α− · P(
m,v,z + m − z)−1α+ · P is a bounded operator in L2(R3;C

ν−)
and a priori not into H s(R3;C

ν−), with s > 0. Indeed, α+ · P sends L2(R3;C
ν−) into

H −1(R3;C
ν
+), then (
m,v,z + m − z)−1 to H 1(R3;C

ν
+) and the left α− · P sends it

again into L2(R3;C
ν−). On the other hand, the term (
m,v,z + m− z)−1 is bounded from

L2(R3;C
ν
+) into H 2(R3;C

ν
+), which is much better than expected.

Proof. Let f ∈ L2(R3;C
2ν). By self-adjointness of Hbd

1 , there is a unique ψ ∈
H 1(R3;C

2ν) such that (Hbd
1 − z)ψ = f . We separate the upper and lower spin com-

ponents and denote f = ( f+, f−) and ψ = (ψ+, ψ−) in H = H + ⊕H −. We rewrite
the equation (Dm + V (Q)− z)ψ = f to get:

{
α+ · Pψ− + mψ+ + v(Q)ψ+ − zψ+ = f+,

α−· Pψ+ − mψ− + v(Q)ψ− − zψ− = f−.
(2.11)

From the second line, we get (v(Q) − m − z)ψ− = f− − α− · Pψ+. Since z is not
real, we can take the inverse and infer ψ− = (v(Q)−m − z)−1( f− − α−· Pψ+). Since
ψ− ∈ H 1, we can apply it toα+·P and obtain a vector of L2(R3;C

ν
+). Now, since f− is in

L2(R3;C
ν−) and since (v(Q)−m−z)−1 is bounded, we haveα+·P(v(Q)−m−z)−1 f− ∈

H −1(R3;C
ν
+) and since (v(Q)−m − z)−1α− · Pψ+ is in L2(R3;C

ν−), we rewrite the
system:
⎧
⎪⎨

⎪⎩

(
α+ · P

1

m − v(Q) + z
α−· P + v(Q) + m − z

)
ψ+ = f+ + α+ · P

1

m − v(Q) + z
f−,

ψ− = 1

m − v(Q) + z

(
α−· Pψ+ − f−

)
.
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To conclude it remains to show that
m,v,z + m − z is invertible in B(H 1,H −1), so as
to invert it in the system. Using (2.10), we have |�〈u, (
m,v,z − z)u〉| ≥ c‖u‖2

H 1 . Then
‖(
m,v,z + m − z)u‖H −1 ≥ c‖u‖H 1 and ‖(
m,v,z + m − z)∗u‖H −1 ≥ c‖u‖H 1 hold.
Thus, 
m,v,z − z is bijective from H 1 onto H −1. ��

2.2. From one limiting absorption principle to another. The main motivation for the
operator 
m,v,z is to deduce a limiting absorption principle for Hbd

γ starting with one
for
m,γ v,z . Consider the upper right term in Lemma 2.2; the basic idea would be to put
by force the weight 〈Q〉−1 and to say that all terms are bounded. However, we have that

〈Q〉−1(
m,v,z + m − z)−1〈Q〉−1

︸ ︷︷ ︸
bounded from LAP for
m,v,z

〈Q〉α+ · P〈Q〉−1
︸ ︷︷ ︸

unbounded

1

m − v(Q) + z
.

One needs to take advantage to seek an estimate on a bounded interval of the spectrum.
Therefore, we start with a lemma of localization in the momentum space and elicit a
solution in Lemma 2.4. Note also that one may consider �z < 0 by taking the adjoints
in the next two lemmata. We shall also use estimates which are uniform in the coupling
constant, due to Proposition 4.1.

Lemma 2.3. Set I ⊂ R a compact interval. Let V be a bounded potential and κ > 0.
There is an even function ϕ ∈ C∞c (R;R) such that the following estimations of the
resolvent are equivalent:

sup
z∈I,�z>0,|γ |≤κ

∥∥∥〈Q〉−1ϕ(α · P)(Dm + γ V (Q)− z)−1ϕ(α · P)〈Q〉−1
∥∥∥ <∞,

(2.12)

sup
z∈I,�z>0,|γ |≤κ

∥∥∥〈Q〉−1(Dm + γ V (Q)− z)−1ϕ(α · P)〈Q〉−1
∥∥∥ <∞, (2.13)

sup
z∈I,�z>0,|γ |≤κ

∥∥∥〈Q〉−1(Dm + γ V (Q)− z)−1〈Q〉−1
∥∥∥ <∞. (2.14)

Proof. It is enough to consider �z ∈ (0, 1]. Set J := I × (0, 1]× [−κ, κ], H◦ := α · P
and Hγ := Dm +γ V . We choose ϕ1 ∈ C∞c (R)with value in [0, 1], being even and equal
to 1 in a neighborhood of 0. We define ϕR(·) := ϕ1(·/R) and ϕ̃R := 1 − ϕR .

We first notice that 〈Q〉 ∈ C1(H◦), see Appendix A. There is a constant C > 0 so
that

|〈〈Q〉 f, α · P f 〉 − 〈α · P f, 〈Q〉 f 〉| = |〈 f, (α · ∇〈·〉)(Q) f 〉| ≤ C‖ f ‖2 (2.15)

holds true for all f ∈ C∞c (R3;C
2ν). This is usually not enough to deduce the C1 prop-

erty, see [28]. We use [35, Lemma A.2] with the notations A := H◦, H := 〈Q〉,
χn(x) := ϕ(x/n) and with D := C∞c (R3;C

2ν). The hypotheses are fulfilled and we
deduce that 〈Q〉 ∈ C1(H◦).

By the resolvent equality, we have:

(Hγ − z)−1ϕ̃R(H◦)
(
Id + W (H◦ − z)−1ϕ̃R(H◦)

)

= (H◦ − z)−1ϕ̃R(H◦)− (Hγ − z)−1ϕR(H◦)W (H◦ − z)−1ϕ̃R(H◦), (2.16)
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where W := γ V + mβ. Note that the support of ϕ̃R vanishes as R goes to infinity. We
have

‖〈Q〉(H◦ − z)−1ϕ̃R(H◦)〈Q〉−1‖ ≤ O(1/R), uniformly in (z, γ ) ∈ J .
Indeed, if we commute with 〈Q〉, the part in (H◦ − z)−1ϕ̃R(H◦) is a O(1/R) by func-
tional calculus. For the other part, Lemma A.2 gives

‖[〈Q〉, (H◦ − z)−1ϕ̃R(H◦)]〈Q〉−1‖ ≤ O(1/R2), uniformly in (z, γ ) ∈ J .
Remembering V is bounded and choosing R big enough, we infer there is a constant
c ∈ (0, 1), so that

‖W 〈Q〉(H◦ − z)−1ϕ̃R(H◦)〈Q〉−1‖ ≤ c, uniformly in (z, γ ) ∈ J . (2.17)

We fix R and choose ϕ := ϕR . We now prove the equivalence. Observe that 〈Q〉−1ϕ(H◦)
〈Q〉 is bounded, since 〈Q〉 ∈ C1(H◦). One infers directly that (2.14) ⇒ (2.13)⇒ (2.12).
It remains to prove (2.12) ⇒ (2.14). Thanks to (2.17), we deduce from (2.16) that:

〈Q〉−1(Hγ − z)−1ϕ̃(H◦)〈Q〉−1

= (〈Q〉−1(H◦ − z)−1ϕ̃(H◦)〈Q〉−1

−〈Q〉−1(Hγ − z)−1ϕ(H◦)〈Q〉−1 W 〈Q〉(H◦ − z)−1ϕ̃(H◦)〈Q〉−1)

×(
Id + W 〈Q〉(H◦ − z)−1ϕ̃(H◦)〈Q〉−1)−1

. (2.18)

Note that the last line and the right part of the second line of the r.h.s. are uniformly
bounded in (z, γ ) ∈ J by (2.17). We multiply on the left by the bounded operator
〈Q〉−1ϕ(H◦)〈Q〉. The first term of the r.h.s. is bounded uniformly by functional calcu-
lus. For the second one, we use (2.12). We infer:

sup
(z,γ )∈J

∥∥∥〈Q〉−1ϕ(H◦)(Hγ − z)−1ϕ̃(H◦)〈Q〉−1
∥∥∥ <∞.

Doing like in (2.18), on the left-hand side, we get

sup
(z,γ )∈J

∥∥∥〈Q〉−1ϕ̃(H◦)(Hγ − z)−1ϕ(H◦)〈Q〉−1
∥∥∥ <∞. (2.19)

Finally, to control 〈Q〉−1ϕ̃(H◦)(Hγ − z)−1ϕ̃(H◦)〈Q〉−1, we multiply (2.18) on the left
by the bounded operator 〈Q〉−1ϕ̃(H◦)〈Q〉 and deduce the boundedness using (2.19).

��
Lemma 2.4. Take κ ∈ (0, 1] and a compact interval I ⊂ [0,∞). Suppose (2.5) and
that

sup
z∈I,�z∈(0,1],|γ |≤κ

∥∥∥〈Q〉−1(
m,γ v,z + m − z)−1〈Q〉−1
∥∥∥ <∞ (2.20)

hold true. Then, we have

sup
z∈I,�z>0,|γ |≤κ

∥∥∥〈Q〉−1(Dm + γ v(Q)⊗ IdC2ν − z)−1〈Q〉−1
∥∥∥ <∞. (2.21)
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Proof. Set H◦ := α · P and J := I × (0, 1] × [−κ, κ]. By Lemma 2.3, it is enough
to show (2.12) for a chosen ϕ. Since ϕ is even and constant in a neighborhood of 0,
by setting ψ(·) := ϕ(

√| · |), we have ψ ∈ C∞c (R) and that ϕ(H◦) = ψ
(
(α · P)2

)
. In

particular, we obtain ϕ(H◦) stabilizes H ± and have the right to let it appear in spin
decomposition of the resolvent of H of Lemma 2.2. We treat only the upper right corner
of the expression as the others are managed in the same way. We need to bound the term:

〈Q〉−1ϕ(H◦)(
m,γ v,z + m − z)−1α+ · P
1

m − γ v(Q) + z
ϕ(H◦)〈Q〉−1

= 〈Q〉−1ϕ(H◦)〈Q〉 〈Q〉−1(
m,γ v,z + m − z)−1〈Q〉−1

〈Q〉α+ · P
1

m − γ v(Q) + z
ϕ(H◦)〈Q〉−1.

The middle term is controlled by the hypothesis. Thanks to (2.15), one has that [ϕ(H◦),
〈Q〉] is bounded; hence the first term is bounded. For the last one, we commute:

〈Q〉α+ · P
1

m − γ v(Q) + z
ϕ(H◦)〈Q〉−1

= 〈Q〉
[
α+ · P,

1

m − γ v(Q) + z

]
〈Q〉−1 〈Q〉ϕ(H◦)〈Q〉−1

+〈Q〉 1

m − γ v(Q) + z
〈Q〉−1 〈Q〉α+ · Pϕ(H◦)〈Q〉−1.

We estimate uniformly in (z, γ ) ∈ J . By (2.5) , we get ‖〈Q〉(m−γ v(Q)+ z)−1〈Q〉−1‖
is bounded as 〈Q〉 commute with v. By (2.5), we also obtain that ‖〈Q〉[α+ · P, (m −
γ v+z)−1]〈Q〉−1‖ is also controlled. At last, it is enough to consider 〈Q〉∂ jϕ(H◦)〈Q〉−1,
which is easily bounded by Lemma A.2 for instance. ��

We come to other types of weights. Motivated by the non-relativistic case, see Theo-
rem C.1, we are interested in singular weights like |Q|. But, as noticed in Remark 4.2, the
operator |Q|−1(Hbd − z)−1|Q|−1 is even not bounded. Therefore, we enlarge the space
in momentum and try the first reasonable weight, namely 〈P〉1/2|Q|. Given z ∈ C\R
and using the Hardy inequality, one reaches

‖〈P〉−1|Q|−1(Hbd
γ − v − z)−1|Q|−1‖

≤ ‖〈P〉−1|P| ‖ · ‖ |P|−1|Q|−1‖2 · ‖(Hbd
γ − v − z)−1|P| ‖

≤ C(κ)〈z〉/|�(z)|.
By interpolation, one infers

‖〈P〉−1/2|Q|−1(Hbd
γ − v − z)−1|Q|−1〈P〉−1/2‖ ≤ C(κ)〈z〉/|�(z)| <∞.

The upper bound seems relatively sharp in z. However, under the same hypotheses as
before, we obtain:

Lemma 2.5. Take κ ∈ (0, 1] and a compact interval I ⊂ [0,∞). Suppose (2.5) and
that (2.20) hold true. Then, there is C > 0 so that

sup
z∈I,�z>0,|γ |≤κ

∥∥∥〈P〉−1/2|Q|−1(Dm + γ v(Q)⊗ IdC2ν − z)−1|Q|−1〈P〉−1/2
∥∥∥ ≤ C.

(2.22)
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Proof. It is enough to consider �z ∈ (0, 1]. Set Hγ := Dm + γ v(Q) ⊗ IdC2ν and
J := I× (0, 1]× [−κ, κ]. Let f = ( f+, f−), with f± ∈ C∞c (R3\{0};C

ν±). Lemma 2.2
and (2.5) give a constant C > 0, uniform in (z, γ ) ∈ J , so that:

∣∣∣
〈

f, (Hγ − z)−1 f
〉∣∣∣ ≤ 4/m2‖ f−‖2 + 2

∥∥∥|Q|−1(
m,γ v,z + m − z)−1|Q|−1
∥∥∥

×
(∥∥|Q| f+

∥∥2 +
∥∥|Q|α+ · P(m − v(Q) + z)−1 f−

∥∥2

+
∥∥|Q|α+ · P(m − v(Q) + z)−1 f−

∥∥2
)

≤ C
(∥∥|Q| f+

∥∥2 +
∥∥|Q|α+ · P f−

∥∥2 + ‖ f−‖2
)
.

Note that the Hardy inequality gives that ‖ f−‖ ≤ 2
∥∥|Q|α+ · P f−

∥∥. Then, by commuting
|Q| with α+ · P over C∞c (R3\{0};C

ν), we find C ′ > 0, so that:

sup
(z,γ )∈J

∣∣∣
〈

f, |Q|−1(Hγ − z)−1|Q|−1 f
〉∣∣∣ ≤ C ′

(∥∥Id ⊗ P+ f
∥∥2 +

∥∥〈P〉 ⊗ P− f
∥∥2

)
,

for all f ∈ H 1(R3;C
2ν), since C∞c (R3\{0};C

2ν) is dense in H 1(R3;C
2ν). Here we

identify, L2(R3;C
2ν) � L2(R3) ⊗ C

2ν . We now exchange the role of P+ and P−.
Considering the operator

α−· P
1

m + v(Q) + z
α+ · P − v(Q) in L2(R3;C

ν−),

which leads to the same arguments as for
m,−v,z if one identifies C
ν− � C

ν
+, one obtains

also that
∣∣∣
〈

f, |Q|−1(Hγ − z)−1|Q|−1 f
〉∣∣∣ ≤ C ′

(∥∥Id ⊗ P− f
∥∥2 +

∥∥〈P〉 ⊗ P+ f
∥∥2

)
,

for all f ∈ H 1(R3;C
2ν). By interpolation, e.g., [7, Theorem 4.4.1 and Theorem

6.4.5.(7)], we infer:
∣∣∣
〈

f, |Q|−1(Hγ − z)−1|Q|−1 f
〉∣∣∣ ≤ C ′′∥∥〈P〉1/2 f

∥∥2
,

for all f ∈ H 1/2(R3;C
2ν). ��

3. Positive Commutator Estimates

In the previous section, we saw how to deduce some estimate of the resolvent for Dm +
V (Q) starting with some of 
m,v,z , namely (2.20). First, one technical problem is that
these operators depend on the spectral parameter; hence we will study a family of oper-
ators uniformly in the spectral parameter. Secondly, we are concerned about the interval
[m,m + δ] and we know that there is no such estimate above (m − ε,m) as eigen-
values usually accumulate to m from below. Since the theory developed in Appendix B
gives some estimates for z ∈ [0,∞), we will perform a shift. Therefore, we study the
operator


2m,γ v,ξ , uniformly in (γ, ξ) ∈ E = E(κ, δ) := [−κ, κ] × [0, δ] × (0, 1]. (3.1)
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Here we use a slight abuse of notation identifying C � R
2. One should read ξ ∈

[0, δ],�ξ ∈ (0, 1] and |γ | ≤ κ . Note the uniformity in the coupling constant is used in
Proposition 4.1.

To show (2.20), and therefore (2.14) with the help of Lemma 2.3, it is enough to
prove the following fact. Note we strengthen the hypothesis (2.5).

Theorem 3.1. Suppose that v ∈ L∞(R3;R) satisfies the hypotheses (H1) and (H2) from
Theorem 4.1. Then there are δ, κ,CLAP > 0 such that

sup
z≥0,�z>0,(γ,ξ)∈E

∥∥∥|Q|−1(
2m,γ v,ξ − z)−1|Q|−1
∥∥∥ ≤ CLAP. (3.2)

We will show the theorem in the end of the section. We proceed by checking the
hypothesis of Appendix B. We recall (2.6) and fix some notation:

S := 
1,0,0 = α+ · P α− · P = −
R3 ⊗ IdCν+
in H 2(R3;C

ν
+) � H 2(R3)⊗ C

ν
+,

and set S := Ḣ 1(R3;C
ν
+), the homogeneous Sobolev space of order 1, i.e., the com-

pletion of H 1(R3;C
ν
+) under the norm ‖ f ‖S := ‖S1/2 f ‖2. Consider the strongly

continuous one-parameter unitary group {Wt }t∈R acting by:

(Wt f )(x) = e3t/2 f (et x), for all f ∈ L2(R3;C
ν
+).

This is the C0-group of dilatation. Easily, by interpolation and duality, one gets

WtS ⊂ S and WtH
s(R3;C

ν
+) ⊂ H s(R3;C

ν
+), for all s ∈ R. (3.3)

Consider now its generator A in L2(R3;C
ν
+). It acts as follows:

A = 1

2
(P · Q + Q · P)⊗ IdCν+

on C∞c (R3;C
ν
+) � C∞c (R3)⊗ C

ν
+.

By the Nelson Lemma, it is essentially self-adjoint on C∞c (R3;C
ν
+).

In the next proposition, we will choose the upper bound κ of the coupling constant
and state the commutator estimates.

Proposition 3.1. Let δ ∈ (0, 2m). Suppose that the hypotheses (H1) and (H2) are ful-
filled. Then there are c1, κ > 0 such that

D(
2m,γ v,ξ ) = H 2(R3;C
ν
+), (
2m,γ v,ξ )

∗ = 
2m,γ v,ξ , (3.4)

[(
2m,γ v,ξ ), iA]◦ − cv(
2m,γ v,ξ ) ≥ c1S > 0, (3.5)

∓�(
2m,γ v,(ξ)±i�(ξ)) ≥ 0, ∓[�(
2m,γ v,(ξ)±i�(ξ)), iA]◦ ≥ 0, (3.6)

hold true in the sense of forms on H 1(R3;C
ν
+), for all (γ, ξ) ∈ E .

Proof. The first part of (3.6) follows from (2.10). We start with a first restriction on κ .
We impose κ ≤ (2m − δ)/‖v‖∞. Hence,

δ ≤ 2m − γ v(·) + (ξ) ≤ 4m, for all (γ, ξ) ∈ E . (3.7)

In particular, 0 is not in the essential image of 2m − γ v + (ξ); Proposition 2.1 gives
(3.4).
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We turn to the commutator estimates. It is enough to compute the commutators in
the sense of the form on C∞c (R3;C

ν), since it is a core for 
2m,v,ξ and A,

[

2m,γ v,ξ , iA

] =
[
α+ · P

1

2m − γ v + ξ
α− · P, iA

]
+ γ [v, iA]

= 2 α+ · P
1

2m − γ v + ξ
α− · P

−γ α+ · P
Q · ∇v(Q)

(2m − γ v + ξ)2
α− · P − γ Q · ∇v(Q). (3.8)

Then, we have [(
2m,γ v,ξ ), iA] − cv(
2m,γ v,ξ ) =

= (2 − cv) α
+ · P

2m − γ v + (ξ)
(
2m − γ v + (ξ))2 + �(ξ)2

α− · P

−γ α+ · P

(
Q · ∇v(Q)((2m − γ v + (ξ))2 − �(ξ)2)

((
2m − γ v + (ξ))2 + �(ξ)2)2

)
α− · P

−γ Q · ∇v(Q)− cvγ v(Q).

≥ (2 − cv)
δ

16m2 + 1
S − κ ‖Q · ∇v(Q)‖ 16m2 + 1

δ4 S − κ c′v
|Q|2 ≥ c1S,

where c1 := δ(2−cv)
32m2+2

and by assuming that κ ≤ c1
(4c′v+‖Q·∇v(Q)‖(16m2+1)/δ4)

. Note the “4”

comes from the Hardy inequality. This gives (3.5).
At last, we have:

[�
2m,γ v,ξ , iA] = −2�(ξ) α+

·P
(
2m − γ v + (ξ))2 + �(ξ)2 − γ Q · ∇v(Q)(2m − γ v + (ξ))

((
2m − γ v + (ξ))2 + �(ξ)2)2 α− · P.

This is of the sign of −�(ξ), when we further impose κ ≤ δ2/(8m‖Q · ∇v(Q)‖). ��
We now bound some commutators.

Proposition 3.2. Let δ ∈ (0, 2m). Suppose that the hypotheses (H1) and (H2) are ful-
filled. Consider the c1, κ > 0 from Proposition 3.1. There is c and C depending on
cv, δ, κ and v, such that

|〈
2m,γ v,ξ f, Ag〉 − 〈A f,
2m,γ v,ξ g〉| ≤ c‖ f ‖ · ‖(
2m,γ v,ξ ± i)g‖, (3.9)

holds true, for all f, g ∈ H 2(R3;C
+
ν ) ∩ D(A) and

|〈 f, [[
2m,γ v,ξ , iA]◦, iA]◦ f 〉| ≤ C〈 f, S f 〉 (3.10)

holds true for all f ∈ H 1(R3;C
ν
+).
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Proof. As the domain of A and S are explicit, one easily sees that C∞c (R3;C
ν
+) is dense

in D(A)∩D(S) endowed with the norm ‖ · ‖ + ‖A · ‖ + ‖S · ‖. More generally, this also
follows from the fact that S ∈ C1(A), see Theorem 6.2.10 of [1]. Therefore, it is enough
to prove (3.9) on this core. We take κ as in the proof of Proposition 3.1. We first find
c > 0, uniform in (γ, ξ) ∈ E , so that

|〈 f, [
2m,γ v,ξ , iA]◦g〉| ≤ c
(‖ f ‖ · ‖g‖ + ‖ f ‖ · ‖Sg‖), for all f, g ∈ C∞c (R3;C

ν
+).

(3.11)

Taking into account (3.8), observe that
∣∣∣∣

2

2m − γ v + ξ
− γ Q · ∇v(Q)

(2m − γ v + ξ)2

∣∣∣∣ ≤
2

δ
+ κ

‖Q · ∇v(Q)‖
δ2 .

It remains to find a, b > 0, which are uniform in (γ, ξ) ∈ E , such that the following
estimation holds:

‖
2m,γ v,ξ f ‖ ≥ a‖S f ‖ − b‖ f ‖, for all f ∈ C∞c (R3,Cν+).

This follows from ‖
2m,γ v,ξ f ‖2 ≥ a2‖S f ‖2 − b2‖ f ‖2. Take ε, ε′ ∈ (0, 1),

‖
2m,v,z f ‖2 ≥ (1 − ε)
∥∥∥∥

1

2m − γ v(Q) + ξ
S f

∥∥∥∥
2

+

(
1 − 1

ε

)∥∥∥∥
γ (α+ · ∇v)(Q)

(2m − γ v(Q) + ξ)2
α− · P f

∥∥∥∥
2
.

≥ (1 − ε) 1

1 + 16m2
‖S f ‖2 +

(
1 − 1

ε

)
κ‖α+ · ∇v(Q)‖

δ4

∥∥α− · P f
∥∥2
,

≥
(
(1 − ε) 1

1 + 16m2 + ε′(ε − 1)
κ‖α+ · ∇v(Q)‖

2εδ4

)
‖S f ‖2 + (ε − 1)

κ‖α+ · ∇v(Q)‖
2εε′δ4

‖ f ‖2 .

Choosing ε′ small enough, we infer (3.9).
We turn to (3.10). Again, it is enough to compute in the form sense on C∞c (R3;C

ν),

[[
2m,v,z, iA], iA] = 4α+ · P
1

2m − v + z
α− · P + 4α+ · P

Q · ∇v(Q)
(2m − v + z)2

α− · P

−α+ · P
Q · ∇(

Q · ∇v(Q))
(2m − v + z)2

α− · P + 2 α+ · P
(Q · ∇v(Q))2
(2m − v + z)3

α− · P + (Q · ∇)2v(Q).
Note that (H1) ensures that ‖(Q · ∇)2v(Q) f ‖2 ≤ 4‖ |Q|(Q · ∇)2v(Q)‖2‖S f ‖2 is con-
trolled by S. Relying again on (3.7), the bound (3.10) follows. ��

We finally turn to the proof of the main result of this section.

Proof of Theorem 3.1. We check the hypotheses of Theorem B.1 for H−(p) := 
2m,γ v,ξ

and p := (γ, ξ), and where E is defined in (3.1). Clearly, S ∈ C1(A) and (B.4) is given
by (3.3). Now, observe that

〈 f, (Wt H−(p)− H−(p)Wt )g〉 =
∫ t

0

d

ds
〈W ∗

t−s f, H−(p)Ws g〉ds

=
∫ t

0
〈W ∗

t−s f, [H−(p), iA]Ws g〉ds,
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for all f, g ∈ C∞c (R3;C
ν
+). Using (3.11) and by density, we derive

(
Wt H−(p)− H−(p)Wt

)
g =

∫ t

0
Wt−s[H−(p), iA]◦Ws g ds, for all g ∈ H 2,

(3.12)

and where the integral exists in the strong sense. By dividing by t , letting t go to 0 and
using the fact that {Wt } is a C0-group in H and in H 2, we derive that 
2m,γ v,ξ ∈
C1(A,H 2,H ), for all (γ, ξ) ∈ E . Note that (3.12) ensures that the strong limit
of (it)−1[H−(p),Wt ] is [H−(p), A]◦. By interpolation, we deduce that 
2m,γ v,ξ ∈
C1(A,H 1,H −1). Now taking in account (3.10), we infer in the same way that

2m,γ v,ξ ∈ C2(A,H 1,H −1), for all (γ, ξ) ∈ E .

Using Propositions 3.1 and 3.2, we can apply Theorem B.1. We derive there a finite
C ′ so that

sup
z≥0,�z>0,(γ,ξ)∈E

|〈 f, (
2m,γ v,ξ − z)−1 f 〉| ≤ C ′ (‖S−1/2 f ‖2 + ‖S−1/2 A f ‖2
)
.

The Hardy inequality concludes. ��

4. Main Result

In this section, we will prove the main result of this paper and deduce Theorem 1.2.

Theorem 4.1. Let γ ∈ R. Suppose that v ∈ L∞(R3;R) satisfies the hypothesis:
(H1) ‖v‖∞ ≤ m/2 and ∇v, Q · ∇v(Q), 〈Q〉(Q · ∇v)2(Q) are bounded.
(H2) There are cv ∈ [0, 2) and c′v ≥ 0 such that

x · (∇v)(x) + cvv(x) ≤ c′v
|x |2 , for all x ∈ R

3\{0}.

Set V1(Q) := v(Q)⊗ IdC2n , where L2(R3;C
2ν) � L2(R3)⊗ C

2ν .
(H3) Consider V2 ∈ L1

loc(R
3;R

2ν) satisfying:
〈Q〉2V2(Q) ∈ B(

H 1(R3;C
2ν), L2(R3;C

2ν)
)
.

Then, there are κ, δ,C > 0, such that Hγ := Dm + γ V (Q), where V := V1 + V2, is
self-adjoint with domain H 1(R3;C

2ν). Moreover,

sup
|λ|∈[m,m+δ], ε>0,|γ |≤κ

‖〈Q〉−1(Hγ − λ− iε)−1〈Q〉−1‖ ≤ C. (4.1)

In particular, Hγ has no eigenvalue in ±m. Moreover, there is C ′ so that

sup
|γ |≤κ

∫

R

‖〈Q〉−1e−it Hγ EI(Hγ ) f ‖2dt ≤ C ′‖ f ‖2, for all f ∈ L2(R3,C4), (4.2)

where I = [−m−δ,−m]∪[m,m +δ], and where EI(Hγ ) denotes the spectral measure
of Hγ .
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Remark 4.1. In [25] and in [63], one takes advantage that the Virial of the potential
is negative, in order to prove the limiting absorption principle for some self-adjoint
Schrödinger operators, see Remark C.1. Here, we cannot allow this hypothesis as we are
also interested in the positronic threshold, i.e., we seek a result for v and −v, see (2.4).
We recover the positivity using some Hardy inequality and small coupling constants.

Proof of Theorem 4.1. First note that (4.2) is a consequence of (4.1), see [46]. Consider
the case V2 = 0. Note that, in Sect. 2, the operator Hγ is denoted by Hbd

γ .
The self-adjointness is clear. We first apply Theorem 3.1 and obtain (3.2). We now

choose ξ = z. As ‖|Q| f ‖ ≤ ‖〈Q〉 f ‖, we infer (2.20). In turn, it implies (2.14). Finally,
using the unitary transformation α5, (4.1) follows from (2.4). For a general V2, we use
Proposition 4.1. ��

It remains to explain how to add the singular part V2 of the potential by perturbing
the limiting absorption principal. This is somehow standard. Note that unlike [43], for
instance, we do not distinguish the nature of the singularity at the threshold energy, as
we work with small coupling constants.

Proposition 4.1. Assume that Theorem 4.1 holds true for V2 = 0. Take now V2 satisfying
(H3). Then there is κ ′ ∈ (0, κ], so that

Hγ := Dm + γ (V + V2)(Q)

is self-adjoint with domain H 1(R3;C
2ν), for all |γ | ≤ κ . Moreover,

sup
z∈[m,m+δ],�z>0,|γ |≤κ ′

∥∥∥〈Q〉−1(Hγ − z)−1〈Q〉−1
∥∥∥ <∞.

Proof. Up to a smaller κ , Kato-Rellich ensures the self-adjointness. We turn to the esti-
mate of the resolvent. Easily, one reduces to the case |�(z)| ≤ 1. From the resolvent
identity, we have:

〈Q〉−1(Hγ − z)−1〈Q〉−1 〈Q〉
{

Id + γ V2(H
bd
γ − z)−1

}
〈Q〉−1

= 〈Q〉−1(Hbd
γ − z)−1〈Q〉−1.

Considering Lemma 2.4 and Theorem 3.1, the result follows if we can invert the second
term of the l.h.s. uniformly in the parameters. Therefore, we show there is κ ′ ∈ (0, κ]
so that

sup
(z)∈[m,m+δ],�(z)∈(0,1],|γ |≤κ ′

‖〈Q〉γ V2(H
bd
γ − z)−1〈Q〉−1‖ < 1.

Using the identity of the resolvent, we get

〈Q〉V2(H
bd
γ − z)−1〈Q〉−1

= 〈Q〉V2(H
bd
0 − i)−1 〈Q〉−1

−〈Q〉V2(H
bd
0 − i)−1〈Q〉 (γ V − z + i) 〈Q〉−1(Hbd

γ − z)−1〈Q〉−1.

The first term of the r.h.s. is bounded using (H3). To control the last term, remember that
z is bounded and use again Lemma 2.4 and Theorem 3.1. It remains to notice that

〈Q〉V2(H
bd
0 − i)−1〈Q〉

= 〈Q〉2V2(H
bd
0 − i)−1 − 〈Q〉V2(H

bd
0 − i)−1 [Hbd

0 , 〈Q〉]◦(Hbd
0 − i)−1
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is bounded. Indeed, the assumption (H3) controls the terms in V2 and 〈Q〉 ∈ C1(H0)

and [Hbd
0 , 〈Q〉]◦ is bounded, see the proof of Lemma 2.3. ��

At last, Theorem 1.2 is an immediate corollary of Theorem 4.1. Indeed, one has:

Example 4.1 (Multi-center). For i = 1, . . . , n, we choose ai ∈ R
3 the site of the poles

and Zi ∈ R its charge. We set:

vc :=
n∑

i=1

zi

| · −ai | .

Note that

Q · ∇vc(Q) + vc :=
n∑

i=1

ai · ∇v(Q).

Choose now ϕ ∈ C∞c (R3) radial with values in [0, 1]. Moreover, we ask that ϕ restricted
to the ball B(0, 2 max(|ai |)) is 1. Consider the support large enough, so that ‖ϕ̃v‖∞ ≤
m/2, where ϕ̃ : 1 − ϕ. Set v := ϕ̃vc. Straightforwardly, the Hypothesis (H1) and (H2)
are satisfied. Note that (H3) follows from the Hardy inequality.

Example 4.2 (Smooth homogeneous potentials). In [39], one considers a smooth poten-
tial independent of |x | of the form v(x) := ṽ(|x |/x), with v ∈ C∞(S2), see also
Remark C.2. Here, by taking cv = 0 in Theorems 4.1 and 4.2, one obtains a relativistic
equivalent of this result. We point out that this perturbation is not relatively compact
with respect to the Dirac operator.

We now discuss singular weights in |Q|.
Remark 4.2. It is important to note that unlike in the non-relativistic case, see Theo-
rem C.1, one cannot replace the weights 〈Q〉 in (2.2) by |Q|. Indeed, with the notation
of Theorem 4.1, V2 = 0 and z ∈ C, consider a function f in C∞c (R3\{0};C

2ν) and notice
the expression R−3/2

∥∥ |Q|(Hγ − z)|Q| f (·/R)
∥∥

2 tends to 0, as R goes to 0. Therefore,
there is no z ∈ C such that the operator |Q|(Hγ − z)|Q| has a bounded inverse.

We finally give a second result with a weight allowing some singularity in |Q|. Using
Lemma 2.5 instead of Lemma 2.4 in the proof of Theorem 4.1, we infer straightfor-
wardly:

Theorem 4.2. Let γ ∈ R and take v ∈ L∞(R3;R) satisfying (H1) and (H2). Then,
there are κ, δ,C > 0, such that Hγ := Dm + γ v(Q)⊗ IdC2ν satisfies

sup
|λ|∈[m,m+δ], ε>0,|γ |≤κ

‖〈P〉−1/2|Q|−1(Hγ − λ− iε)−1|Q|−1〈P〉−1/2‖ ≤ C. (4.3)

Moreover, there is C ′ so that

sup
|γ |≤κ

∫

R

‖〈P〉−1/2|Q|−1e−it Hγ EI(Hγ ) f ‖2dt ≤ C ′‖ f ‖2, (4.4)

where I = [−m−δ,−m]∪[m,m +δ] and where EI(Hγ ) denotes the spectral measure
of Hγ .
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Keeping in mind Proposition 4.1, one sees that one can only add trivial potentials in
the perturbation theory of the limiting absorption principle. Hence, it is an open question
whether one can cover Example 4.1 with the weights 〈P〉1/2|Q|.
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Jacon, Thierry Jecko, Hubert Kalf, Andreas Knauf, Michael Levitin, François Nicoleau, Heinz Siedentop and
Xue Ping Wang for useful discussions. The first author was partially supported by ESPRC grant EP/D054621.

Appendix A. Commutator Expansions

This section is a small improvement of [34, App. B], see also [18,40]. We start with
some generalities. Given a bounded operator B and a self-adjoint operator A acting in
a Hilbert space H , one says that B ∈ Ck(A) if t �→ e−it A Beit A is strongly Ck . Given a
closed and densely defined operator B, one says that B ∈ Ck(A) if for some (hence any)
z /∈ σ(B), t �→ e−it A(B − z)−1eit A is strongly Ck . The two definitions coincide in the
case of a bounded self-adjoint operator. We recall a result following from Lemma 6.2.9
and Theorem 6.2.10 of [1].

Theorem A.1. Let A and B be two self-adjoint operators in the Hilbert space H . For
z /∈ σ(A), set R(z) := (B − z)−1. The following points are equivalent to B ∈ C1(A):
(1) For one (then for all) z /∈ σ(B), there is a finite c such that

|〈A f, R(z) f 〉 − 〈R(z) f, A f 〉| ≤ c‖ f ‖2, for all f ∈ D(A). (A.1)

(2) a. There is a finite c such that for all f ∈ D(A) ∩D(B):
|〈A f, B f 〉 − 〈B f, A f 〉| ≤ c

(‖B f ‖2 + ‖ f ‖2). (A.2)

b. For some (then for all) z /∈ σ(B), the set { f ∈ D(A) | R(z) f ∈ D(A) and
R(z) f ∈ D(A)} is a core for A.

Note that the condition (2.b) could be uneasy to check, see [28]. We mention
[35, Lemma A.2] and [33, Lemma 3.2.2] to overcome this subtlety. As (B + i)−1 is a
homeomorphism between H onto D(B), (B + i)−1D(A) is dense in D(B),
endowed with the graph norm. Moreover, (A.1) gives (B +i)−1D(A) ⊂ D(A). Therefore
(B + i)−1D(A) ⊂ D(B) ∩ D(A) are dense in D(B) for the graph norm. Remark that
D(B) ∩ D(A) is usually not dense in D(A), see [31].

Note that (A.1) yields the commutator [A, R(z)] extends to a bounded operator, in
the form sense. We shall denote the extension by [A, R(z)]◦. In the same way, since
D(B) ∩D(A) is dense in D(B), (A.2) ensures that the commutator [B, A] extends to a
unique element of B(D(B),D(B)∗) denoted by [B, A]◦. Moreover, when B ∈ C1(A),
one has:

[
A, (B − z)−1]

◦ = (B − z)−1
︸ ︷︷ ︸
H ←D(B)∗

[B, A]◦︸ ︷︷ ︸
D(B)∗←D(B)

(B − z)−1
︸ ︷︷ ︸
D(B)←H

.

Here we use the Riesz lemma to identify H with its anti-dual H ∗.
We now recall some well known facts on symbolic calculus and almost analytic

extensions. For ρ ∈ R, let Sρ be the class of function ϕ ∈ C∞(R;C) such that

∀k ∈ N, Ck(ϕ) := sup
t∈R

〈t〉−ρ+k |ϕ(k)(t)| <∞. (A.3)
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Equipped with the semi-norms defined by (A.3), Sρ is a Fréchet space. Leibniz’ formula
implies the continuous embedding: Sρ ·Sρ′ ⊂ Sρ+ρ′ . We shall use the following result,
e.g., [18].

Lemma A.1. Let ϕ ∈ Sρ with ρ ∈ R. For all l ∈ N, there is a smooth function
ϕC : C → C, such that:

ϕC|R = ϕ,

∣∣∣∣∣
∂ϕC

∂z
(z)

∣∣∣∣∣ ≤ c1〈(z)〉ρ−1−l |�(z)|l , (A.4)

suppϕC ⊂ {x + iy | |y| ≤ c2〈x〉}, (A.5)

ϕC(x + iy) = 0, if x �∈ suppϕ, (A.6)

for some constants c1, c2 depending on the semi-norms (A.3) of ϕ in Sρ and not on ϕ.

One calls ϕC an almost analytic extension of ϕ. Let A be a self-adjoint operator, ρ < 0
and ϕ ∈ Sρ . By functional calculus, one has ϕ(A) bounded. The Helffer-Sjöstrand For-
mula, see [38] and [18] for instance, gives that for all almost analytic extensions of ϕ,
one has:

ϕ(A) = i

2π

∫

C

∂ϕC

∂z
(z − A)−1dz ∧ dz. (A.7)

Note the integral exists in the norm topology, by (A.4) with l = 1. Next we come to a
commutator expansion. Here B is not necessarily bounded while in [34], one considers
the case B bounded. We denote by ad j

A(B) the extension of the j th commutator of A

with B defined inductively by adp
A(B) := [adp−1

A (B), A]◦, when it exists.

Proposition A.1. Let k ∈ N
∗ and B ∈ Ck(A) be self-adjoint. Suppose ad j

A(B) are
bounded operators, for j = 1, . . . , k. Let ρ < k and ϕ ∈ Sρ . Suppose that D(B) ∩
D(〈A〉ρ) is dense in D(〈A〉ρ) for the graph norm. Then, the commutator [ϕ(A), B]◦
belongs to B(D(〈A〉ρ−1)),H

)
and satisfies

[ϕ(A), B]◦ =
k−1∑

j=1

1

j !ϕ
( j)(A)ad j

A(B)

+
i

2π

∫

C

∂ϕC

∂z
(z − A)−kadk

A(B)(z − A)−1dz ∧ dz, (A.8)

where the integral exists for the topology of B(H ).

Proof. We cannot use (A.7) directly with ϕ as the integral does not seem to exist. We
proceed as in [34]. Take χ1 ∈ C∞c (R;R) with values in [0, 1] and being 1 on [−1, 1].
Set χ R := χ(·/R). As R goes to infinity, χ R converges pointwise to 1. Moreover,
{χ R}R∈[1,∞] is bounded in S0. We infer ϕR := ϕχ R tends pointwise to ϕ and that
{ϕR}R∈[1,∞] is bounded in Sρ . Now, note that

[ϕR(A), B] =
k−1∑

j=1

i

2π

∫

C

∂ϕC
R

∂z
(z − A)− j−1ad j

A(B)dz ∧ dz

+
i

2π

∫

C

∂ϕC
R

∂z
(z − A)−kadk

A(B)(z − A)−1dz ∧ dz (A.9)
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in the form sense on D(B). Using (A.4), the integral converges in norm. We write
[ϕR(A), B]◦ on the l.h.s. The first term of the r.h.s. is

∑k−1
j=1 ϕ

( j)
R (A)ad j

A(B)/j ! Now we
let R go to infinity. For the l.h.s. and the first term of the r.h.s., we expand the com-
mutator in (A.9) in the form sense on D(〈A〉ρ) ∩ D(B), take the limit by functional
calculus and finish by density in D(〈A〉ρ). For the remainder term of the r.h.s., we use
the Lebesgue convergence theorem. It remains to note that the operator of the r.h.s. is in
B(〈A〉ρ−1,H ) since ϕ ∈ Sρ . ��

The hypothesis on the density of D(B) ∩ D(〈A〉ρ) in D(〈A〉ρ) could be delicate
to check. It follows by the Nelson Lemma from the fact that the C0-group {eit Ak }t∈R

stabilizes D(B). We mention that for k = 1, since [B, iA]◦ is bounded, [28, Lemma 2]
ensures this invariance of the domain.

The rest of the previous expansion is estimated as in [34]. We rely on the following
important bound. Let c > 0 and s ∈ [0, 1], there exists some C > 0 so that, for all
z = x + iy ∈ {a + ib | 0 < |b| ≤ c〈a〉}:

∥∥〈A〉s(A − z)−1
∥∥ ≤ C〈x〉s · |y|−1. (A.10)

Lemma A.2. Let B ∈ Ck(A) be self-adjoint. Suppose ad j
A(B) are bounded operators,

for j = 1, . . . , k. Let ϕ ∈ Sρ , with ρ < k. Let Ik(ϕ) be the rest of the develop-
ment of order k of [ϕ(A), B] in (A.8). Let s, s′ ∈ [0, 1] such that ρ + s + s′ < k. Then
〈A〉s Ik(ϕ)〈A〉s′ is bounded and it is uniformly bounded when ϕ stays in a bounded subset
of Sρ . Let R > 0. If ϕ stays in a bounded subset of {ψ ∈ Sρ | [−R; R] ∩ supp(ϕ) = ∅}
then 〈R〉k−ρ−s−s′ ‖〈A〉s Ik(ϕ)〈A〉s′ ‖ is uniformly bounded.

Proof. We will follow ideas from [18, Lemma C.3.1]. In this proof, all the constants are
denoted by C , independently of their value. Given a complex number z, x and y will
denote its real and imaginary part, respectively. Since B ∈ Ck(A), adk

A(B) is bounded.
We start with the second assertion. Let ϕ ∈ Sρ , R > 0 such that [−R; R]∩supp(ϕ) = ∅.
Notice that, by (A.6), ϕC(x + iy) = 0 for |x | ≤ R. By (A.10),

‖〈A〉s Ik(ϕ)〈A〉s′ ‖ ≤ 1

π

∫ ∣∣∂ϕ
C

∂z

∣∣ · 〈x〉
s

|y|k · ‖adk
A(B)‖ ·

〈x〉s′
|y| dx ∧ dy

≤ C(ϕ)
∫

|x |≥R

∫

|y|≤c2〈x〉
〈x〉ρ+s+s′−1−l |y|l |y|−k−1dx ∧ dy,

for any l, by (A.4). Recall that dz ∧ dz = −2idx ∧ dy. We choose l = k + 1. We have,

‖〈A〉s Ik(ϕ)〈A〉s′ ‖ ≤ C(ϕ)
∫

|x |≥R
〈x〉ρ+s+s′−k−1dx ≤ C(ϕ)〈R〉ρ+s+s′−k .

Since C(ϕ) is bounded when ϕ stays in a bounded subset of Sρ , this yields the second
assertion. For the first one, we can follow the same lines, replacing R by 0 in the integrals,
and arrive at the result. ��

Appendix B. A Non-selfadjoint Weak Mourre Theory

In this section, we adapt ideas coming from [25] and [63] in order to obtain a limiting
absorption principle for a family of closed operators {H±(p)}p∈E . We ask that they have
a common domain

D := D(
H+(p)

) = D(
H−(p)

)
, for all p ∈ E . (B.1)
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We choose p0 ∈ E and endow D with the graph norm of H+(p0). We also ask that

(
H+(p)

)∗ = H−(p), for all p ∈ E . (B.2)

In particular, we have that D(
(H±(p))∗

) = D . In the sequel, we forgo p, when no
confusion can arise.

Since H± are densely defined, share the same domain and are adjoint of the other,
we have that (H±) and �(H±) are closable operators on D , indeed their adjoints are
densely defined. We denote by (H±) and by �(H±) the closure of these operators. It
is possible that they are not self-adjoint, albeit they are symmetric. However, D is a core
for them. Their domain is possibly bigger than D . We suppose that H+ is dissipative,
i.e.,

〈 f,�(H+) f 〉 ≥ 0, for all f ∈ D .

This gives also that �(H−) ≤ 0. By the numerical range theorem (see Lemma B.1), we
infer thatσ(H±) is included in the half-plan containing±i. Take now a non-negative self-
adjoint operator S, independent of p ∈ E , with form domain G := D(S1/2) ⊃ D . We
assume that S is injective. We have 〈 f, S f 〉 > 0 for all f ∈ G \{0} and simply write S >
0. One defines S as the completion of G under the norm ‖ f ‖2

S := 〈 f, S f 〉. We obtain
G ⊂ S with dense and continuous embedding. Moreover, since G = 〈S1/2〉−1H , S is
also the completion of H under the norm given by ‖S1/2〈S1/2〉−1 · ‖. We use the Riesz
Lemma to identify H with H ∗, its anti-dual. The adjoint space S ∗ of S is exactly
the domain of 〈S1/2〉S−1/2 in H � H ∗. Note that S−1 is an isomorphism between S
and S ∗. We get the following scale with continuous and dense embeddings:

S ∗
↓ ↘

D −→ G −→ H � H ∗ −→ G ∗ −→ D∗.
↘ ↓

S

(B.3)

To perform this analysis, we consider an external operator, the conjugate operator. Let A
be a self-adjoint operator in H . We assume S ∈ C1(A). Let Wt := eit A be the C0-group
associated to A in H . We ask:

WtG ⊂ G and WtS ⊂ S , for all t ∈ R. (B.4)

By duality, we have Wt stabilizes G ∗ and also S ∗ (but may be not D or D∗). The
restricted group to these spaces is also a C0-group. We denote the generator by A with
the subspace in subscript. Given Hi ⊂ H j are two of those spaces, one easily shows
that A|Hi ⊂ A|H j and that A|H j is the closure of A|Hi in H j . Moreover, one has

D(A|Hi ) =
{

f ∈ D(
A|H j

) ∩Hi such that A|H j f ∈ Hi

}
. (B.5)

We now explain how to check the second hypothesis of (B.4), see also [63]. We mention
this result is due to [24] when D(S) ⊂ D(A).
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Remark B.1. The second invariance of the domains of (B.4) follows from the first one
and from

|〈S f, A f 〉 − 〈A f, S f 〉| ≤ c‖S1/2 f ‖2, for all f ∈ D(S) ∩ D(A). (B.6)

As (S + i)−1 is a homeomorphism between H onto D(S), (S + i)−1D(A) is dense in
D(S), endowed with the graph norm. Moreover, since S ∈ C1(A), one has
(S + i)−1D(A) ⊂ D(A). Therefore (S + i)−1D(A) ⊂ D(S) ∩ D(A) are dense in D(S),
hence in G and in S . The commutator [S, A] has a unique extension to an element of
B(S ,S ∗), in the form sense. We denote it by [S, A]◦. Take now f ∈ G ∩D(A), which
is a dense set in G . On one hand we have τ �→ ‖Wτ f ‖2

S is bounded when τ is in a
compact set (since G ↪→ S . On the other hand, the Gronwall Lemma concludes by
noticing:

‖Wt f ‖2
S = 〈 f, S f 〉 +

∫ t

0
〈Wτ f, [S, iA]◦Wτ f 〉 dτ ≤ ‖S1/2 f ‖2 + c

∫ |t |

0
‖Wτ f ‖2

S dτ.

Let K ⊂ H be a space which is stabilized by Wt . Consider L ∈ B(K ,K ∗). We
say that L ∈ Ck(A;K ,K ∗), when t → W−t LWt is strongly Ck from K into K ∗.
When K = H , using the resolvent equality, one observes that this class is the same as
Ck(A), see for instance [1][Theorem 6.3.4 a.].

Theorem B.1. Let H± = H±(p), with p ∈ E as above. Let A be self-adjoint such
that (B.4) holds true. Suppose that H± ∈ C2(A;G ,G ∗) and that there is a constant c,
independent of p, such that

|〈H∓ f, Ag〉 − 〈A f, H±g〉| ≤ c‖ f ‖ · ‖(H± ± i)g‖, for all f, g ∈ D ∩ D(A).
(B.7)

Take c1 ≥ 0 independent of p and assume that

[(H±), iA]◦ − c1(H±) ≥ S > 0, (B.8)

±c1[�(H±), iA]◦ ≥ 0, ±�(H±) ≥ 0, (B.9)

in the sense of forms on G . Suppose also there exists C > 0 independent of p ∈ E such
that

∣∣〈 f,
[[

H±, A
]
◦, A

]
◦ f 〉∣∣ ≤ C‖S1/2 f ‖2, for all f ∈ G . (B.10)

Then, there are c and μ0 > 0, both independent of p, such that

|〈 f, (H± − λ± iμ)−1 f 〉| ≤ c
(
‖S−1/2 f ‖2 + ‖S−1/2 A f ‖2

)
≤ c‖ f ‖D(A|S ∗ ), (B.11)

for all p ∈ E , μ ∈ (0, μ0) and λ ≥ 0, in the case c1 > 0 and λ ∈ R if c1 = 0.

In the self-adjoint setting, the case c1 = 0 is treated in [12,13]. Comparing with
[63], which deals with the case of one self-adjoint operator and for c1 > 0, we give
some few improvements. First, we do not ask D to be the domain of S. Moreover, we
drop the hypothesis that the first commutator [H, iA]◦ is bounded from below. For the
latter, we use more carefully the numerical range theorem in our proof. Finally, unlike
[63], we shall not go into interpolation theory so as to improve the norm in the limiting
absorption principle. Indeed, in the context of the model we are considering here, we
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reach the weights we are interested in without it. We stick to an intermediate and explicit
result, which is closer to [41]. Therefore, for the sake of clarity, we present then the
easiest proof possible and pay important care about domains.

We also mention that there exists another Mourre-like theory for non-self-adjoint
operators, [3,65].

Proof. We focus on the case c1 > 0; as for the case c1 = 0, one replaces “λ ≥ 0” by
“λ ∈ R”. Since H± ∈ C1(A,G ,G ∗), by the resolvent equality, we obtain

[
(H± ± i)−1,Wt

] = − (H± ± i)−1
︸ ︷︷ ︸

H ←−G ∗

[
H±,Wt

]
︸ ︷︷ ︸

G ∗←−G

(H± ± i)−1
︸ ︷︷ ︸

G←−H

.

We take the derivative with respect to t . It exists strongly in H , then H± ∈ C1(A).
In particular, as in Remark B.1, one has D ∩ D(A) dense in D for the graph norm.
Thus, (B.7) gives [H±, iA]◦ ∈ B(D,H ). We define H±

ε := H± ± iε[H±, iA]◦ with
the common domain D for ε ≥ 0. Since H± ± i is bijective, by writing H±

ε ± i =(
1 ± iε[H±, iA]◦(H± ± i)−1

)
(H± ± i) and using (B.7), we get there is ε0 such that

H±
ε (p)± i is bijective and closed for all |ε| ≤ ε0 and all p ∈ E . Therefore (H±

ε ± i)∗ is
also bijective from D(

(H±
ε )

∗) onto H . Now since (H±
ε ± i)∗ is an extension of H∓

ε ∓ i
which is also bijective, we infer the equality of the domains and that (H±

ε )
∗ = H∓

ε for
ε ≤ ε0.

Since H± ∈ C1(A;G ,G ∗), we obtain that (H±) and �(H±) are in C1(A;G ,G ∗).
In this space we have [H±, A]◦ = [(H±), A]◦ + i[�(H±), A]◦. Now, take f ∈ G .
Take ε, λ, μ ≥ 0. We get:

−c1ε
〈
f,(H±

ε − λ± iμ) f
〉± 〈

f,�(H±
ε − λ± iμ) f

〉

=−c1ε
〈
f,

((H±)∓ε[�(H±), iA]◦−λ
)

f
〉±〈

f,
(�(H±)±μ± ε[(H±), iA]◦

)
f
〉

= ε
〈
f,

([(H±), iA]◦ − c1(H±)
)

f
〉
+ (c1λε + μ) ‖ f ‖2

±〈
f,

(
c1ε

2[�(H±), iA]◦ + �(H±)
)

f
〉

≥ (c1λε + μ) ‖ f ‖2 + ε‖S1/2 f ‖2. (B.12)

We start with a crude bound. For ε, μ > 0, we get:

(c1ε + 1) ‖(H±
ε − λ± iμ) f ‖G ∗ ≥ min(c1λε + μ, ε)‖ f ‖G .

Since H±
ε − λ ± iμ ∈ B(G ,G ∗) and since they are adjoint of the other, we infer the

injectivity and that the ranges are closed. They are bijective and the inverse is bounded
by the open mapping theorem.

G±
ε := G±

ε (λ, μ) = (H±
ε − λ± iμ)−1 exists in B(G ∗,G ), for λ ≥ 0 and ε, μ > 0.

Here we lighten the notation but keep in mind the dependency in λ and μ. Moreover,

‖G±
ε ‖B(G ∗,G ) ≤ (c1ε + 1)/min(c1λε + μ, ε), for λ ≥ 0 and ε, μ > 0. (B.13)

This bound seems not enough to lead the whole analysis. Then, we first restrict the
domain of G±

ε to H and improve it. Since this inequality (B.12) holds also true on the
common domain of H±

ε (and of its adjoint), we can apply the numerical range theorem,
Lemma B.1. Since S ≥ 0, we get the spectrum of H+

ε − λ + iμ is contained in the lower
half-plane delimited by the equation y ≤ −c1εx −μ. Hence, for ε ∈ (0, ε0] and μ > 0,
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H±
ε − λ ± iμ is bijective and by taking ε0 smaller, one has the distance from 0 to the

boundary of the cone bigger than μ/2. Then,

‖G±
ε ‖B(H ) ≤ 2/μ, for μ > 0 and ε ∈ [0, ε0]. (B.14)

Note also that (G±
ε )

∗ = G∓
ε . Take ε, μ > 0. We fix f ∈ H and set:

F±
ε := 〈

f,G±
ε f

〉
.

Since G±
ε H ⊂ D ⊂ S and using (B.12), we infer

∥∥∥S1/2G±
ε f

∥∥∥
2 ≤ c1

∣∣ 〈
G±
ε f, (H±

ε − λ± iμ)G±
ε f

〉∣∣ +
1

ε

∣∣� 〈
G±
ε f, (H±

ε − λ± iμ)G±
ε f

〉∣∣

≤ max

(
c1,

1

ε

) ∣∣F±
ε

∣∣ . (B.15)

Hence up to a smaller ε0 > 0, we obtain
∥∥S1/2G±

ε f
∥∥2 ≤ ∣∣F±

ε

∣∣ /ε for all ε ∈ (0, ε0].
Moreover, if f ∈ D(S−1/2), we obtain

∣∣F±
ε

∣∣ ≤
∥∥∥S−1/2 f

∥∥∥
∥∥∥S1/2G±

ε f
∥∥∥ ≤

∥∥∥S−1/2 f
∥∥∥

√∣∣F±
ε

∣∣
√
ε

and deduce

∣∣F±
ε

∣∣ ≤ 1

ε

∥∥∥S−1/2 f
∥∥∥

2
, for all ε ∈ (0, ε0]. (B.16)

We now show that G±
ε ∈ C1(A). First note that G±

ε is a bijection from H onto D . Then
by taking the adjoint, it is also a bijection from D∗ onto H. Remember now that Wt
stabilizes G and G ∗. By the resolvent equality in B(H ), we have:

[G±
ε ,Wt ] = − G±

ε︸︷︷︸
H ←−G ∗

[
H± ± iε[H±, iA],Wt

]
︸ ︷︷ ︸

G ∗←−G

G±
ε︸︷︷︸

G←−H

.

Let us now take the derivative in 0. Since H± and [H±, iA] are in C1(A;G ,G ∗) (the
former being in C2(A;G ,G ∗)), the right hand side has a strong limit for all elements in
H . Hence, H±

ε ∈ C1(A). As in Remark B.1, it follows that G±
ε D(A) ⊂ D(A)∩D and

one can safely expand the commutator in the next computation. Take f ∈ D(A).
d

dε
F±
ε =

〈
f,

d

dε
G±
ε f

〉
= ±i

〈
G∓
ε f, [H±, iA]◦G±

ε f
〉

= ± 〈
G∓
ε f, A f

〉∓ 〈
A f,G∓

ε f
〉− ε 〈

G∓
ε f,

[[H, iA]◦, iA
]
G±
ε f

〉
.

Here the last commutator in taken in the form sense. Now use three times (B.15) and
the bound (B.10), which is uniform in p ∈ E , then integrate to obtain

∣∣F±
ε − F±

ε′
∣∣ ≤

∫ ε′

ε

{
2

√
|F±

s |√
s

∥∥∥S−1/2 A f
∥∥∥ + C

∣∣F±
s

∣∣
}

ds, for 0 < ε ≤ ε′ ≤ ε0,

(B.17)

and for all f ∈ D(S−1/2 A) ∩ D(A).
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We give a first estimation. Using (B.16) and the Gronwall Lemma, see [1, Lemma
7.A.1] with θ = 1/2 or [59, Lemma 2.6] with p = 1/2, we infer there are some constants
C,C ′,C ′′,C ′′′, independent of ε ∈ (0, ε0], λ ≥ 0, μ > 0 and of p ∈ E , so that

∣∣F±
ε

∣∣ ≤ eC(ε−ε0)

(∣∣F±
ε0

∣∣1/2
+

∫ ε0

ε

{
1√
η

e−
1
2 C(η−ε0)

}
dη

∥∥∥S−1/2 A f
∥∥∥
)2

≤ C ′′
(∣∣F±

ε0

∣∣ +
(√
ε −√

ε0
)2

∥∥∥S−1/2 A f
∥∥∥

2
)

≤ C ′′
(

1

ε0

∥∥∥S−1/2 f
∥∥∥

2
+

(√
ε −√

ε0
)2

∥∥∥S−1/2 A f
∥∥∥

2
)
≤ C ′′′‖ f ‖2

S̃ ∗ (B.18)

for f ∈ D(S−1/2)∩D(S−1/2 A)∩D(A), and where S̃ ∗ is the completion of D(A|S ∗)

under the norm ‖ f ‖2
S̃ ∗ :=

∥∥S−1/2 f
∥∥2

+
∥∥S−1/2 A f

∥∥2
. Here one notices that the norm

is well defined for elements of D(A|S ∗) by taking into account (B.5). We now plug this
back in (B.17). Since the inverse of the square root is integrable around 0, we find C ′′′′
with the same independence so that

∣∣F±
ε − F±

ε′
∣∣ ≤

∫ ε′

ε

{
2

√
C ′′′
√

s
+ CC ′′′

}
ds ‖ f ‖2

S̃ ∗ = C ′′′′(√ε′ − √
ε
)‖ f ‖2

S̃ ∗ .

Then, {F±
ε }ε∈(0,ε0] is a Cauchy sequence. We denote by F±

0+ the limit, as ε goes to 0. It
remains to notice that F±

0+ = F±
0 . Indeed, using (B.14) and (B.7), one has the stronger

fact that

‖G±
0 − G±

ε ‖B(H ) ≤ ε‖G±
ε ‖B(H ) · ‖[H±(p), iA](H±(p)− λ± iμ)−1‖B(H ) ≤ cε

μ2 .

This gives us (B.11). ��

For the convenience of the reader, we give a proof of the following well known fact:

Lemma B.1 (Numerical Range Theorem). Let H be a closed operator. Suppose that
D := D(H) = D(H∗). The numerical range of H is defined by N := {〈 f, H f 〉 with
f ∈ D and ‖ f ‖ = 1}. We have that σ(H) ⊂ N , the closure of N . Moreover, if
λ /∈ σ(H), then ‖(H − λ)−1‖ ≤ 1/d(λ,N ).

Proof. Let λ /∈ N . There is c := d(λ,N ) > 0, such that |〈 f, H f 〉 − λ| ≥ c. Then,

‖(H − λ) f ‖ ≥ c‖ f ‖, ‖(H∗ − λ) f ‖ ≥ c‖ f ‖,

for all f ∈ D and ‖ f ‖ = 1. From the second part, we get the range of (H − λ) is
dense. Then, since H is closed, the first part gives that the range of (H − λ) is closed.
Hence, using again the first inequality, H − λ is bijective. The open mapping theorem
concludes. ��
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Appendix C. Application to Non-relativistic Dispersive Hamiltonians

In this section, we give an immediate application to the theory exposed in Appendix
B. We do not discuss the uniformity with respect to the external parameter. The latter
would be used in the heart of our approach, see Sect. 3. We discuss shortly the Helmholtz
equation, see [5,6,72,73]. In [65], one studies the size of the resolvent of

Hh := −h2
 + V1(Q)− ihV2(Q), as h → 0.

This operator models accurately the propagation of the electromagnetic field of a laser
in material medium. The important improvement between [65] and the previous ones,
is that he allows V2 to be a smooth function tending to 0 without any assumption on the
size of ‖V2‖∞. Note he supposes the coefficients are smooth as some pseudo-differential
calculus is used to apply the non self-adjoint Mourre theory he develops. Then, he dis-
cusses trapping conditions in the spirit of [72]. Here, we will stick to the quantum case
and choose h = −1. To simplify the presentation and expose some key ideas of Sect. 3,
we focus on L2(Rn;C), with n ≥ 3. For dimensions 1 and 2, one needs to adapt the first
part of (H2) and the weights in (C.1).

Theorem C.1. Suppose that V1, V2 ∈ L1
loc(R

n;R) satisfy:
(H0) Vi are 
-operator bounded with a relative bound a < 1, for i ∈ {1, 2}.
(H1) ∇Vi , Q ·∇Vi (Q) are in B(H 2(Rn); L2(Rn)) and 〈Q〉(Q ·∇Vi )

2(Q) is bounded,
for i ∈ {1, 2}.

(H2) There are c1 ∈ [0, 2) and c′1 ∈
[
0, 4(2 − c1)/(n − 2)2

)
such that

WV1(x) := x · (∇V1)(x) + c1V1(x) ≤ c′1
|x |2 , for all x ∈ R

n,

and

V2(x) ≥ 0 and − c1x · (∇V2)(x) ≥ 0, for all x ∈ R
n .

On C∞c (Rn), we define H := −
 + V (Q), where V := V1 + iV2. The closure of H
defines a dispersive closed operator with domain H 2(Rn). We keep denoting it with
H. Its spectrum is included in the upper half-plane. Moreover, H has no eigenvalue in
[0,∞) and

sup
λ∈[0,∞), μ>0

∥∥ |Q|−1(H − λ + iμ)−1|Q|−1
∥∥ <∞. (C.1)

If c1 = 0, H has no eigenvalue in R and (C.1) holds true for λ ∈ R.

The quantity WV1 is called the virial of V1. For h fixed and for a compact I included
in (0,∞), [65] shows some estimates of the resolvent above I. Here we deal with the
threshold 0 and with high energy estimates. On the other hand, as he avoids the threshold,
he reaches some very sharp weights. As mentioned above, one can improve the weights
|Q| to some extent by the use of Besov spaces, see [63]. In [65] one makes an hypothesis
on the sign of V2 but not on the one of x ·(∇V2)(x). Note that if one supposes c1 = 0, we
are also in this situation. We take the opportunity to point out [71], where one discusses
the presence of possible eigenvalues in 0 for non self-adjoint problems.
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Remark C.1. Taking V2 = 0, we can compare the results with [25,63]. In [25], one uses
in a crucial way that WV1(x) ≤ −c〈x〉α in a neighborhood of infinity, for some α, c > 0.
In [63], one remarks that the condition WV1(x) ≤ 0 is enough to obtain the estimate.
Here we mention that the condition (H2) is sufficient. Note this example is not explicitly
discussed in [63] but is covered by his abstract approach. In [12], for the special case
c1 = 0, one uses extensively the condition (H2). This implies (C.1) for λ ∈ R.

Remark C.2. Unlike in [65], we stress that V is not supposed to be a relatively compact
perturbation of H and that the essential spectrum of H can be different from [0,∞).
In [39], see also [12], one studies V2 = 0 and V1(x) := v(x/|x |), with v ∈ C∞(Sn−1).
We improve the weights of [39, Theorem 3.2] from 〈Q〉 to |Q|. We can also give a
non-self-adjoint version. Consider V1 satisfying (H1) and being relatively compact with
respect to 
 and V2(x) := v(x/|x |), where v ∈ C0(Sn−1), non-negative. If v−1(0) is
non-empty, one shows [0,∞) is included in the essential spectrum of H by using some
Weyl sequences.

Proof of Theorem C.1. Using (H0) and adapting the proof of Kato-Rellich, e.g., [62,
Theorem X.12], one obtains easily D(H) = D(H∗) = H 2(Rn). Let S := cs(−
)1/2,
with cs := 2 − c1 − (n − 2)2c′1/4 > 0. Set S := Ḣ 1(Rn), the homogeneous
Sobolev space of order 1, i.e., the completion of H 1(Rn) under the norm ‖ f ‖S :=
‖S1/2 f ‖2. Consider the strongly continuous one-parameter unitary group {Wt }t∈R act-
ing by: (Wt f )(x) = ent/2 f (et x), for all f ∈ L2(R3). This is the C0-group of dilatation.
By interpolation and duality, one derives WtS ⊂ S and WtH s(R3) ⊂ H s(Rn), for
all s ∈ R. Consider now its generator A in L2(Rn). By the Nelson lemma, it is essentially
self-adjoint on C∞c (Rn) and acts as follows: A = (P · Q + Q · P)/2 on C∞c (Rn). By
computing on C∞c (Rn) in the form sense, we obtain that

[(H), iA] − c1(H) = −(2 − c1)
− WV1 ≥ S, (C.2)

here we used the Hardy inequality for the last step. Furthermore, �(H) = V2(Q) ≥ 0,

[�(H), iA] = −Q · ∇(V2)(Q), (C.3)

and also

[[H, iA], iA] = −4
 + (Q · ∇V )2(Q). (C.4)

Since Wt stabilizes G := H 1 and as (C.2), (C.3) and (C.4) extend to bounded operators
from H 1 into H −1, we infer that H and H∗ are in C2(A;H 1,H −1) and also (B.8)
and (B.9). Now since C∞c (R3) is a core for H , H∗ and A, (C.2) and (C.3) give (B.7), with
notation H+ = H and H− = H∗. In addition (B.10) follows from the Hardy inequality
and (H1), as ‖(Q · ∇)2v(Q) f ‖2 ≤ c‖ |Q|(Q · ∇)2v(Q)‖2‖S f ‖2. Therefore, we can
apply Theorem B.1 and derive the weight |Q| by the Hardy inequality. ��

Finally, we recall the Hardy inequality. Take E a finite dimensional vector space. One
has:

(
n − 2

2

)2 ∫

Rn

∣∣∣∣
1

|x | f (x)

∣∣∣∣
2

dx ≤ ∣∣〈 f,−
 f 〉∣∣, where n ≥ 3 and f ∈ C∞c (Rn; E).

(C.5)
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