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Abstract: We use the formalism of generalized geometry to study the generic supersym-
metric Ad S5 solutions of type IIB supergravity that are dual to N = 1 superconformal
field theories (SCFTs) in d = 4. Such solutions have an associated six-dimensional
generalized complex cone geometry that is an extension of Calabi-Yau cone geome-
try. We identify generalized vector fields dual to the dilatation and R-symmetry of the
dual SCFT and show that they are generalized holomorphic on the cone. We carry out
a generalized reduction of the cone to a transverse four-dimensional space and show
that this is also a generalized complex geometry, which is an extension of Kähler-Ein-
stein geometry. Remarkably, provided the five-form flux is non-vanishing, the cone is
symplectic. The symplectic structure can be used to obtain Duistermaat-Heckman type
integrals for the central charge of the dual SCFT and the conformal dimensions of oper-
ators dual to BPS wrapped D3-branes. We illustrate these results using the Pilch-Warner
solution.

1. Introduction

Supersymmetric Ad S5 × Y solutions of type IIB supergravity, where Y is a compact
Riemannian manifold, are dual to supersymmetric conformal field theories (SCFTs) in
d = 4 spacetime dimensions with (at least) N = 1 supersymmetry. An important special
subclass is when Y is a five-dimensional Sasaki-Einstein manifold SE5, and the only
non-trivial flux is the self-dual five-form. Recall that, by definition, the six-dimensional
cone metric with base given by the SE5 space is a Calabi-Yau cone, and that the dual
SCFT arises from D3-branes located at the apex of this cone. There has been much pro-
gress in understanding the AdS/CFT correspondence in this setting. For example, there
are rich sets of explicit SE5 metrics [1–3], and there are also powerful constructions
using toric geometry. Moreover, for the toric case, the corresponding dual SCFTs have
been identified, e.g. [4–7].
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A key aspect of this progress has been the appreciation that the abelian R-symme-
try, which all N = 1 SCFTs in d = 4 possess, contains important information about
the SCFT. For example, the a central charge is fixed by the R-symmetry, as are the
anomalous dimensions of (anti-)chiral primary operators [8]. It is also known that the
R-symmetry can be identified via the procedure of a-maximization, which, roughly, says
that the correct R-symmetry is the one that maximizes the value of a over all possible
admissible R-symmetries [9]. For the solutions of type IIB supergravity with Y = SE5,
the R-symmetry manifests itself as a canonical Killing vector ξ on SE5. This defines
a Killing vector on the Calabi-Yau cone, also denoted by ξ , which is a real holomor-
phic vector field. The Calabi-Yau cone is Kähler, and hence symplectic, and Y admits
a corresponding contact structure for which ξ is the Reeb vector. When Y = SE5 the
a central charge is inversely proportional to the volume of SE5, and in [10,11] several
geometric formulae for a in terms of ξ were derived. Analogous geometric formulae
for the conformal dimension of the chiral primary operator dual to a D3-brane wrapped
on a supersymmetric submanifold �3 ⊂ Y were also presented. Of particular interest
here are the formulae that show that using symplectic geometry these quantities can
be written as Duistermaat-Heckman integrals on the cone and hence can be evaluated
by localization. In addition to providing a geometrical interpretation of a-maximiza-
tion, these formulae and others in [10,11] also provide practical methods for calculating
quantities of physical interest without needing the full explicit Sasaki-Einstein metric
(which, apart from some special classes of solution, remains out of reach).

The focus of this paper is on Ad S5 × Y solutions with Y more general than SE5.
Most known solutions are actually part of continuous families of solutions containing
a Sasaki-Einstein solution and correspond to exactly marginal deformations of the cor-
responding SCFT. For example, starting with a toric SE5 solution one can construct
new β-deformed solutions using the techniques of [12]. There is also the “Pilch-Warner
solution” explicitly constructed in [13] (based on [14]). It has been shown numerically
in [15] that the Z2 orbifold of the Pilch-Warner solution is part of a continuous family
of solutions that includes the Sasaki-Einstein Ad S5 × T 1,1 solution. Using the results
of [16,17] this should be part of a larger family of continuous solutions that are yet
to be found. Similarly, in addition to the β-deformations of the Ad S5 × S5 solution
there are additional deformations [16] that are also not yet constructed (a perturbative
analysis was studied in [18]). Having a better understanding of the geometry underlying
general Ad S5 × Y solutions could be useful for finding these deformed solutions but
more generally could be useful in constructing new solutions that are not connected with
Sasaki-Einstein geometry at all.

The first detailed analysis of supersymmetric Ad S5 × Y solutions of type IIB super-
gravity, for general Y with all fluxes activated, was carried out in [19]. The conditions
for supersymmetry boil down to a set of Killing spinor equations on Y for two spinors
(when Y = SE5 there is only one such spinor). By analysing these equations a set of
necessary and sufficient conditions for supersymmetry were established. In light of the
progress summarized above for the Sasaki-Einstein case, it is natural to investigate the
associated geometry of the cone over Y , and that is the principal purpose of this paper.

As we shall discuss in detail, the cone X admits a specific kind of generalized com-
plex geometry. Aspects of this geometry, restricting to a class of SU(2)-structures, were
first studied in [20,21]. By viewing Ad S5 × Y as a supersymmetric warped product
R

3,1× X , one sees immediately that the cone admits two compatible generalized almost
complex structures [22,23], or equivalently two compatible pure spinors, �±. In fact
d�− = 0, so that�− defines an integrable generalized complex geometry, while d�+ is
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related to the RR flux. The cone is thus generalized Hermitian, and it is also generalized
Calabi-Yau in the sense of [24].

Here, we will identify a generalized vector field ξ on the cone that is dual to the
R-symmetry and another that is dual to the dilatation symmetry of the dual SCFT and
show that they are both generalized holomorphic vector fields on the cone (with respect to
the integrable generalized complex structure). This precisely generalizes known results
for the Sasaki-Einstein case. We also note that all supersymmetric Ad S5 × Y solutions
satisfy the condition of [20] that there is an SU(2)-structure on the cone.

In the Sasaki-Einstein case, one can carry out a symplectic reduction of the
Calabi-Yau cone to obtain a four-dimensional transverse Kähler-Einstein space which,
in general, is only locally defined. Constructing locally defined Kähler-Einstein spaces
has been a profitable way to construct Sasaki-Einstein manifolds, e.g. [25]. Here we will
show, using the formalism of [26,27], that for general Y there is an analogous reduc-
tion of the corresponding six-dimensional generalized Calabi-Yau cone geometry to a
four-dimensional space, which again is only locally defined in general, that is general-
ized Hermitian. More precisely, the four-dimensional geometry admits two compatible
generalized almost complex structures, one of which is integrable.

We present explicit expressions for the pure spinors �± associated with the six-
dimensional cone in terms of the Killing spinor bilinears presented in [19]. We shall
comment upon how �−, associated with the integrable generalized complex structure,
contains information on the mesonic moduli space of the dual SCFT and also, briefly, on
some relations connected with generalized holomorphic objects and dual BPS operators.

By analysing the pure spinor �+, associated with the non-integrable complex struc-
ture, and focusing on the case when the five-form flux is non-vanishing, we show that,
perhaps somewhat surprisingly, the cone is symplectic. We shall see that Y is a contact
manifold and that the vector part, ξv , of the generalized vector ξ , which also defines a
Killing vector on Y , is the Reeb vector field associated with the contact structure. We
show that the symplectic structure can be used to obtain Duistermaat-Heckman type
integrals for the central charge a of the dual SCFT and also for the conformal dimen-
sions of operators dual to wrapped BPS D3-branes. Once again these results precisely
generalize those for the Sasaki-Einstein case. Some of these results were first presented
in [28]; here we will provide additional details and also show how they are related to the
generalized geometry on the cone.

Finally, we will illustrate some of our results using the Pilch-Warner solution. The
paper begins with a review of generalized geometry and it ends with three appendices
containing some details about our conventions, some technical derivations, and a brief
discussion of the Sasaki-Einstein case.

2. Generalized Geometry

We begin by reviewing some aspects of generalized complex geometry [24], to fix con-
ventions and notation. For further details see, for example, [29].

2.1. The generalized tangent and spinor bundles. Generalized geometry starts with the
generalized tangent bundle E over a manifold X , which is a particular extension of
T X by T ∗X obtained by twisting with a gerbe. A gerbe is simply a higher degree ver-
sion of a U (1) bundle with unitary connection. Just as topologically a U (1) bundle is
determined by its first Chern class, the topology of a gerbe is determined by a class in
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H3(X,Z). To define a gerbe [30], one begins with an open cover {Ui } of X together
with a set of functions gi jk : Ui ∩ U j ∩ U j → U (1) defined on triple overlaps. These
are required to satisfy gi jk = g jik

−1 = gik j
−1 = gkji

−1, together with the cocycle con-
dition g jkl gikl

−1gi jl gi jk
−1 = 1 on quadruple overlaps. A connective structure [30] on

a gerbe is a collection of one-forms �(i j) defined on double overlaps Ui ∩U j satisfying
�(i j) + �( jk) + �(ki) = −(2π il2

s )g
−1
i jkdgi jk on triple overlaps. In turn, a curving is a

collection of two-forms B(i) on Ui satisfying

B( j) − B(i) = d�(i j). (2.1)

It follows that dB( j) = dB(i) = H is a closed global three-form on X , called the curva-
ture, and, in cohomology, 1

(2πls )2
H ∈ H3(X,Z) (in the normalization that we shall use

in this paper). In string theory, the collection of two-forms B(i), which we write simply
as B, is the NS B-field and H is its curvature.

The generalized tangent bundle E is an extension of T X by T ∗X,

0 −→ T ∗X −→ E
π−→ T X −→ 0. (2.2)

Locally, sections of E , which we refer to as generalized tangent vectors, may be written
as V = x + λ, where x ∈ 	(T X) and λ ∈ 	(T ∗X). More precisely, in going from one
coordinate patch Ui to another U j the extension is defined by the connective structure

x(i) + λ(i) = x( j) +
(
λ( j) − ix( j)d�(i j)

)
. (2.3)

The bundle E is in fact isomorphic to T X ⊕ T ∗X . However, the isomorphism is not
canonical but depends on a choice of splitting, defined by a two-form curving B satis-
fying (2.1). It follows that

x + (λ− ix B) ∈ 	(T X ⊕ T ∗X). (2.4)

Thus the definition (2.3) of E can be viewed as encoding the patching of a class of
two-form curvings B.

Writing d = dimR X , there is a natural O(d, d)-invariant metric 〈·, ·〉 on E , given by

〈V,W 〉 = 1
2 (ixμ + iyλ), (2.5)

where V = x + λ, W = y + μ, or in two-component notation,

〈V,W 〉 = (x λ)

(
0 1

2
1
2 0

) (
y
μ

)
. (2.6)

This metric is invariant under O(d, d) transformations acting on the fibres of E , defining
a canonical O(d, d)-structure. A general element O ∈ O(d, d) may be written in terms
of d × d matrices a, b, c, and d as

O =
(

a b
c d

)
, (2.7)

under which a general element V ∈ E transforms by

V =
(

x
λ

)

→ OV =

(
a b
c d

)(
x
λ

)
. (2.8)
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The requirement that 〈OV , OV 〉 = 〈V, V 〉 implies aT c + cT a = 0, bT d + dT b = 0 and
aT d + cT b = 1. Note that the GL(d) action on the fibres of T X and T ∗X embeds as a
subgroup of O(d, d). Concretely it maps

V 
→ V ′ =
(

a 0
0 a−T

)(
x
λ

)
, (2.9)

where a ∈ GL(d). Given a two-form ω, one also has the abelian subgroup

eω =
(

1 0
ω 1

)
such that V = x + λ 
→ V ′ = x + (λ− ixω). (2.10)

This is usually referred to as a B-transform. Given a bivector β one can similarly define
another abelian subgroup of β-transforms

eβ =
(

1 β

0 1

)
such that V = x + λ 
→ V ′ = (x + iλβ) + λ. (2.11)

Note that the patching (2.3) corresponds to a B-transform with ω = d�(i j). Similarly,
the splitting isomorphism between E and T X⊕T ∗X defined by B is also a B-transform

E
eB

�
e−B

T X ⊕ T ∗X. (2.12)

There is a natural bracket on generalized vectors known as the Courant bracket, which
encodes the differentiable structure of E . It is defined as

[V,W ] = [x + λ, y + μ] = [x, y]Lie + Lxμ− Lyλ− 1
2 d

(
ixμ− iyλ

)
, (2.13)

where [x, y]Lie is the usual Lie bracket between vectors and Lx is the Lie derivative
along x . The Courant bracket is invariant under the action of diffeomorphisms and
B-shifts ω that are closed, dω = 0, giving an automorphism group which is a semi-
direct product Diff(X)��2

closed(X). Note, however, that in string theory only B-shifts
by the curvature of a unitary line bundle on X are gauge symmetries, as opposed to shifts
by arbitrary closed two-forms, leading to a smaller automorphism group. Under an infin-
itesimal diffeomorphism generated by a vector field x and a B-shift with ω = dλ, one
has the generalized Lie derivative by V = x +λ on a generalized vector field W = y +μ,

δW ≡ LV W = [x, y]Lie + (Lxμ− iydλ). (2.14)

This is also known as the Dorfman bracket [V,W ]D , the anti-symmetrization of which
gives the Courant bracket (2.13). Note that since the metric 〈·, ·〉 is invariant under
O(d, d) transformations its generalized Lie derivative vanishes. Given a particular
choice of splitting (2.1) defined by B, the Courant bracket on E defines a Courant
bracket on T X ⊕ T ∗X , known as the twisted Courant bracket. It is given by

[x + λ, y + μ]H = eB [e−B(x + λ), e−B(y + μ)]
= [x + λ, y + μ] + iyix H,

(2.15)

where by an abuse of notation we are writing x +λ and y +μ for sections of T X⊕T ∗X,
whereas above they were sections of E .

Given the metric 〈·, ·〉, one can define Spin(d, d) spinors in the usual way. Since the
volume element in Cliff(d, d) squares to one, one can define two helicity spin bundles
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S±(E) as the ±1 eigenspaces, and thus take spinors to be Majorana-Weyl. A section of
S±(E) on Ui can be identified with a even- or odd-degree polyform �± ∈ �even/odd(X)
restricted to Ui , with the Clifford action of V ∈ 	(E) given by

V ·�± = ix�± + λ ∧�±. (2.16)

It is easy to see that

(V ·W + W · V ) ·�± = 2〈V,W 〉�±, (2.17)

as required. Using this Clifford action the B-transform (2.10) on spinors is given by

�± 
→ eω�±, (2.18)

where the exponentiated action is by wedge product. The patching (2.3) of E then implies
that

�
(i)
± = ed�(i j)�

( j)
± . (2.19)

Furthermore a splitting B also induces an isomorphism between S±(E) and S±(T X ⊕
T X∗),

S±(E)
eB

�
e−B

S±(T X ⊕ T ∗X), (2.20)

again by the action of the exponentiated wedge product. If �± is a section of S±(E),
we will sometimes write �B± ≡ eB�± for the corresponding section of S±(T X ⊕ T ∗X)
defined by the splitting B. The real Spin(d, d)-invariant spinor bilinear on sections of
S±(E) is a top form given by the Mukai pairing

〈�±, �±〉 ≡ (�± ∧ λ(�±))top , (2.21)

where one defines the operator λ

λ(�±m ) ≡ (−1)Int[m/2]�±m , (2.22)

with �m the degree m form in �±. The Mukai pairing is invariant under B-transforms:
〈eω�±, eω�±〉 = 〈�±, �±〉. For d = 6 the bilinear is anti-symmetric. The usual action
of the exterior derivative on the component forms of �± is compatible with the patch-
ing (2.19) and defines an action

d : S±(E)→ S∓(E), (2.23)

while the generalized Lie derivative on spinors is given by

LV�± = Lx�± + dλ ∧�± = d(V ·�±) + V · d�±. (2.24)

Note that given a splitting B the operator on �B± ∈ S±(T X ⊕ T ∗X) corresponding to d
is dH defined by

dH�
B± ≡ eBd(e−B�B±) = (d − H ∧ )�B±, (2.25)

where H = dB. Furthermore one has

LV� = e−B (
LV B − ix H ∧ )

�B, (2.26)

where V B = eB V = x + (λ− ix B).
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Finally, we note that there is actually a slight subtlety in the relation between general-
ized spinors and polyforms. Given the embedding (2.9) in O(d, d) of the GL(d) action
on the fibres of T X one actually finds that the Clifford action (2.16) implies that on Ui
we can identify S±(E)with |�d T ∗X |−1/2⊗�even/oddT ∗X ; that is, there is an additional
factor of the determinant bundle |�d T ∗X |. (This factor is the source, for instance, of the
fact that the Mukai pairing is a top form, rather than a scalar.) This bundle is trivial, so
generalized spinors can indeed be written as polyforms patched by (2.19), but there is no
natural isomorphism to make this identification. The simplest solution, and one which
will also allow us to incorporate the dilaton in a natural way, is to extend the O(d, d)
action to a conformal action O(d, d) × R

+. One can then define a family of spinor
bundles Sk±(E) transforming with weight k under the conformal factor R

+; that is, with
sections transforming as �± → ρk�±, where ρ ∈ R

+. If one embeds the GL(d) action
on T X in O(d, d) as in (2.9) and, in addition, makes a conformal scaling by ρ = det a
then sections of S−1/2

± (E) can be directly identified with polyforms patched by (2.19).

2.2. Generalized metrics and complex structures. A generalized metric G on E is the
generalized geometrical equivalent of a Riemannian metric on T X . We have seen that
there is a natural O(d, d) structure on E defined by the metric 〈·, ·〉 (2.5). The generalized
metric G defines an O(d) × O(d) substructure. It splits E = C+ ⊕ C− such that the
metric 〈·, ·〉 gives a positive-definite metric on C+ and a negative-definite metric on C−,
corresponding to the two O(d) structure groups. One can define G as a product structure
on E ; that is, G : E → E with G2 = 1 and 〈GU ,GV 〉 = 〈U, V 〉, so that 1

2 (1 ± G)
project onto C±. In general G has the form

G =
(

g−1 B g−1

g − Bg−1 B −Bg−1

)
=

(
1 0
−B 1

)(
0 g−1

g 0

) (
1 0
B 1

)
, (2.27)

where g is a metric on X and B is a two-form. The patching of E implies B satis-
fies (2.1), so that B may be identified with the curving of the gerbe used in the twisting
of E . Thus the generalized metric G defines a particular splitting of E . In particular, we
see from (2.27) that G = e−B G0eB, where G0 is a generalized metric on T X ⊕ T ∗X
defined by g.

The generalized metric G naturally encodes the NS fields g and B as the coset space
O(d, d)/O(d)× O(d). The dilaton φ appears when one considers the conformal group
O(d, d) × R

+, used to define the generalized spinors as true polyforms. To define a
O(d) × O(d) substructure in O(d, d) × R

+, in addition to G which gives the embed-
ding in the O(d, d) factor, one must give the embedding ρ in the conformal factor
ρ ∈ R

+. Recall that under diffeomorphisms ρ transforms as a section of �d T X . Given
the metric g we can define the generic embedding by ρ = e2φ/

√
g for some positive

function e2φ , which we identify as the dilaton. Note that ρ is by definition invariant
under O(d, d) and so one finds the conventional T-duality transformation of the dilaton
under O(d, d).

Under the generalized Lie derivative, LV G = 0 implies [31]

Lx g = 0, Lx B − dλ = 0, (2.28)

so that Lx H = 0, where H = dB. Such a V is called a generalized Killing vector.
Given G we may decompose generalized spinors in Spin(d, d) under Spin(d) ×

Spin(d). In fact one can go further. Using the projection π : E → T X the two Spin(d)
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groups can be identified and the generalized spinors may be decomposed as bispinors
of Spin(d):

�± = e−φe−B�even/odd. (2.29)

In this expression, one first uses the Clifford map to identify the bispinors with a gener-
alized spinor�even/odd of S±(T X⊕T ∗X) ∼= �even/oddT ∗X and then uses the splitting B
to map to a spinor of S±(E). The factor of e−φ appears because the polyforms are really
sections of S−1/2

± (E) transforming with weight− 1
2 under conformal rescalings. Explic-

itly, if �� is a bispinor, � ∈ �∗(X) a polyform, and γ i are Spin(d) gamma matrices, the
Clifford map is

�� =
∑

k

1

k!�i1···ik γ
i1···ik ←→ � =

∑

k

1

k!�i1···ik dxi1 ∧ · · · ∧ dxik . (2.30)

The Cliff(d, d) action is realized via left and right multiplication by the gamma matrices
γ i . For the chiral spinors �± the sum is over k even/odd respectively. We also note here
the Fierz identity

�� = 1

nd

∑

k

1

k!Tr
(��γik ···i1

)
γ i1···ik , (2.31)

where the γ i are nd × nd matrices. Finally, the generalized metric also defines an action
�G on generalized spinors which is the analogue of the Hodge star. It is given by

�± 
→ �G�± = e−B � λ(eB�±), (2.32)

where λ is the operator defined in (2.22) and � denotes the ordinary Hodge star for the
metric g.

If d = 2n one can also introduce a generalized almost complex structure on E . This is
a map J : E → E with J 2 = −1 and 〈J U ,J V 〉 = 〈U, V 〉 and gives a decomposition

EC = L ⊕ L̄, (2.33)

where L denotes the +i eigenspace of J . Note that L is maximally isotropic: 〈U, V 〉 =
〈J U ,J V 〉 = 〈iU , iV 〉 = −〈U, V 〉 = 0. This defines a U (n, n) ⊂ O(2n, 2n) structure
on E . By definition 〈U,J V 〉 + 〈J U , V 〉 = 0, so J can be viewed either as an element
of O(2n, 2n) or of the Lie algebra o(2n, 2n). A generic J can be written locally as

J =
(

I P
Q −I ∗

)
, (2.34)

where I ∗ is the linear map on T ∗X dual to the map I on T X , P is a bivector and Q is
a two-form. If the twisting (2.3) is trivial, so E = T X ⊕ T ∗X , there are two canoni-
cal examples of generalized almost complex structures. The first is an ordinary almost
complex structure I on T X , for which1

J1 =
(

I 0
0 −I ∗

)
. (2.35)

1 Note that we have chosen the opposite sign in (2.35) compared with [29]. This is so that the +i eigenspace
is identified with T (1,0) ⊕ T ∗(0,1).
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The second is a non-degenerate (stable) two-form ω, for which

J2 =
(

0 ω−1

−ω 0

)
. (2.36)

If dω = 0 this corresponds to a symplectic structure.
More generally, a generalized almost complex structure J is integrable if L is closed

under the Courant bracket. That is, given U, V ∈ 	(L) then [U, V ] ∈ 	(L). In the
above two cases (2.35), (2.36), this reduces to integrability of I and the closure of ω,
respectively. A generalized almost complex structure is equivalent to (the conformal
class of) a pure spinor �, which simply means a chiral complex generalized spinor such
that the annihilator

L� = {U ∈ EC : U ·� = 0} (2.37)

is maximal isotropic. The sub-bundle L defined by J is then identified with L�. No-
tice that L� is invariant under conformal rescalings � 
→ f�, for any function f .
A generalized almost complex structure is therefore more precisely equivalent to the
pure spinor line bundle generated by �. Integrability of J can be expressed as the con-
dition d� = V · � for some V ∈ 	(E). If one can find a nowhere vanishing globally
defined � then one has an SU (n, n) structure and if in addition d� = 0 then one has
a generalized Calabi-Yau structure in the sense2 of [24]. For example, in the complex
structure case (2.35) one has � = c�̄(n,0), where �(n,0) is the holomorphic (n, 0)-form
and c is a non-zero constant (the reason why �̄(n,0) appears, rather than�(n,0), is directly
related to the comment in footnote 1).

A generalized vector V = x +λ is called (real) generalized holomorphic if LV J = 0.
Equivalently, LV preserves the spinor line bundle generated by the corresponding pure
spinor �; that is, LV� = f� for some function f .

Given a splitting B, one can define the corresponding generalized complex objects
on T X ⊕ T ∗X . In particular, if J is the generalized almost complex structure for a pure
spinor �, then the corresponding generalized almost complex structure on T X ⊕ T ∗X
is defined in terms of the annihilator of

�B = eB� (2.38)

and is given by

J B ≡ eBJ e−B . (2.39)

In particular, integrability of J is equivalent to integrability of J B using the twisted
Courant bracket (2.15), or equivalently dH�

B = V ·�B .
Viewing J as a Lie algebra element one can define its action on generalized spinors

via the Clifford action [32]. Explicitly, one has

J · = 1

2

(
Qmndxm ∧ dxn ∧ + I m

n[i∂m , dxn ∧ ] + Pmni∂m i∂n

)
. (2.40)

Note that for any generalized vector V one has, under the Clifford action, [J ·, V ·] =
(J V )·. One can also define the operator Jh : S±(E)→ S±(E),

Jh ≡ e
1
2πJ ·, (2.41)

2 Note that a different definition is used in [29].
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which is the spinor space representation of J as an element of the group Spin(d, d). If
n is even and the pure spinor is a section of S±(E), then Jh defines a complex structure
on S∓(E), while if n is odd it defines a complex structure on S±(E). Observe that for
any generalized vector V we have the Clifford action identity Jh · V · J −1

h · = (J V )· .
Finally, a pair of generalized almost complex structures J1 and J2 are said to be

compatible if

[J1,J2] = 0, (2.42)

and the combination

G = −J1J2 (2.43)

is a generalized metric. If�1 and�2 are the corresponding pure spinors, (2.42) is equiv-
alent to J1 · �2 = J2 · �1 = 0. An example of a pair of compatible pure spinors
is (2.35), (2.36), with the compatibility condition being that I k

iω jk = gi j is positive
definite. Note this is ωi j = −gik I k

j , this mathematics convention differing by a sign to
the usual physics convention. A pair of compatible almost complex structures defines
an SU (n) × SU (n) structure. A generalized Kähler structure is an SU (n) × SU (n)
structure where both generalized almost complex structures are integrable, while for a
generalized Hermitian structure only one need be integrable.

Note that an SU (n)× SU (n) structure can equivalently be specified by a generalized
metric and a pair of chiral Spin(2n) spinors. For example, for d = 6 a pair of chiral
spinors η1

+, η2
+ can be used to construct an SU (3)× SU (3) structure given by

�+ = e−φe−Bη1
+η̄

2
+, �− = e−φe−Bη1

+η̄
2−, (2.44)

with η2− ≡ (η2
+)

c. This will play a central role in the following sections. Similarly, for
d = 4 a pair of chiral spinors η1

+, η2
+ give rise to an SU (2)× SU (2) structure specified

by two compatible pure spinors, but both of them consist of sums of even forms, since
now (η2

+)
c is a positive chirality spinor. We will see such an SU (2)× SU (2) structure in

Sect. 4. That the spinors have the same chirality is necessary for them to be compatible
in four dimensions [33].

3. Ad S5 Backgrounds as Generalized Complex Geometries

3.1. Supersymmetric Ad S5 backgrounds. Our starting point is the most general class
of supersymmetric Ad S5 solutions of type IIB supergravity, as studied in [19]. The
ten-dimensional metric in Einstein frame is

gE = e2� (gAd S + gY ) , (3.1)

where gY is a Riemannian metric on the compact five-manifold Y , and � is a real
function on Y . The Ad S5 metric gAd S is normalized to have unit radius, so that

RicgAd S = −4 gAd S . (3.2)

The ten-dimensional string frame metric is defined to be gσ ≡ eφ/2gE . In addition to the
metric, there is the dilaton φ and NS three-form H ≡ dB in the NS sector, and the forms
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F ≡ F1 + F3 + F5 in the RR sector. The RR fluxes Fn are related to the RR potentials
Cn via

F1 = dC0, (3.3)

F3 = dC2 − HC0, (3.4)

F5 = dC4 − H ∧ C2. (3.5)

These are all taken to be forms on Y , so as to preserve the SO(4, 2) symmetry, with the
exception of the self-dual five-form F5 which necessarily takes the form

F5 = f
(
volAd S − ṽolY

)
, (3.6)

where f is a constant. Here ṽolY denotes a volume form for (Y, gY ). It is related by
ṽolY = −vol5 to the volume form of [19], where the latter was given in terms of an
orthonormal frame as vol5 = e12345 and used to define, for instance, the Hodge star.
In turns out that, in the Sasaki-Einstein limit, the conventional volume form is ṽolY
rather than vol5 and so here we will use the former throughout. In particular, it is the
orientation that we will use when defining integrals over Y .

In [19] the conditions for a supersymmetric Ad S5 background were written in terms
of two five-dimensional spinors ξ1, ξ2 on Y , giving the system of equations reproduced
here in (A.1)–(A.6) of Appendix A. Various spinor bilinears involving ξ1 and ξ2 were
also introduced, and used to determine the necessary and sufficient conditions for super-
symmetry. For example, it was shown that

A ≡ 1
2

(
ξ̄1ξ1 + ξ̄2ξ2

) = 1,

Z ≡ ξ̄2ξ1 = 0.
(3.7)

It will be useful for later in this paper to recall the definitions of the following scalar
bilinears:

sin ζ ≡ 1
2

(
ξ̄1ξ1 − ξ̄2ξ2

)
,

S ≡ ξ̄ c
2 ξ1,

(3.8)

the one-form bilinears:

K ≡ ξ̄ c
1β(1)ξ2,

K3 ≡ ξ̄2β(1)ξ1,

K4 ≡ 1
2

(
ξ̄1β(1)ξ1 − ξ̄2β(1)ξ2

)
,

K5 ≡ 1
2

(
ξ̄1β(1)ξ1 + ξ̄2β(1)ξ2

)
,

(3.9)

and the two-form bilinears:

V = − i

2
(ξ̄1β(2)ξ1 − ξ̄2β(2)ξ2),

W = −ξ̄2β(2)ξ1.

(3.10)

Here the βm generate the Clifford algebra for gY , so {βm, βn} = 2gY mn . Equivalently,
with respect to any orthonormal frame, we write β̂m with {β̂m, β̂n} = 2δmn . We have
also introduced the notation β(k) ≡ 1

k!βm1···mk dxm1 ∧ · · · ∧ dxmk .
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A key result of [19] is that K #
5 , the vector dual to the one-form K5, defines a Kill-

ing vector that preserves all of the fluxes. This was identified as corresponding to the
R-symmetry in the dual SCFT. Another important result was

e−4� f = 4 sin ζ. (3.11)

The Killing spinors ξ1, ξ2 were used to introduce a canonical five-dimensional ortho-
normal frame in Appendix B of [19], which is convenient for certain calculations. We
will refer to that paper for further details. Finally, we note that Eq. (A.22) of Appendix
A may be used to obtain expressions for the two-form potentials B and C2 in terms of
the bilinear W introduced in (3.10):

B = − 4

f
e6�+φ/2 Re W + b2, (3.12)

C2 = − 4

f
e6�+φ/2C0 Re W − 4

f
e6�−φ/2 Im W + c2. (3.13)

Here b2 and c2 are real closed two-forms. Notice that the first term in B in (3.12) is a glob-
ally defined two-form, and thus H = dB is exact. It follows that [H ] = 0 ∈ H3(Y,R),
although notice that b2 may be taken to be globally defined if and only if the torsion
class of H is zero in H3(Y,Z) (which for simplicity we shall assume). Similar remarks
apply to C2 (up to large gauge transformations of C0).

3.2. Reformulation as generalized complex geometries. The supersymmetric Ad S5
geometry described above can be simply reformulated in terms of generalized com-
plex geometry, as in the discussion of [20,21]. The basic observation is simply that these
solutions can be viewed as warped products of flat four-dimensional space with a six-
dimensional manifold X , satisfying a set of supersymmetry conditions that imply the
existence of a particular generalized complex geometry [22,23]. As we shall explain in
more detail below, combining this structure with the existence of the Killing vector K #

5
precisely generalizes the correspondence between Sasaki-Einstein geometry and Calab-
i-Yau cone geometry. In the following we analyze this reformulation in detail. We find
in particular that all supersymmetric Ad S5 solutions necessarily satisfy the condition
of [20] that there is an SU(2)-structure on X .

One begins by rewriting the unit Ad S5 metric in a Poincaré patch as

gAd S = dr2

r2 + r2gR3,1 . (3.14)

Switching to the string frame, we can consider (3.1) as a special case of a warped
supersymmetric R

3,1 solution of the form

gσ = e2AgR3,1 + g6, (3.15)

where the warp factor is given by

e2A = e2�+φ/2r2, (3.16)

and the six-dimensional metric is given by

g6 = e2�+φ/2
(

dr2

r2 + gY

)
. (3.17)
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We also define the six-dimensional volume form as

vol6 ≡ e12�+3φr5dr ∧ ṽolY . (3.18)

Notice that the six-dimensional manifold X , on which g6 is a metric, is a product R
+×Y ,

where r may be interpreted as a coordinate on R
+. In particular, X is non-compact. It

thus follows that supersymmetric Ad S5 solutions are special cases of supersymmetric
R

3,1 solutions.
In [23] the general conditions for an N = 1 supersymmetric R

3,1 background, in the
string frame metric (3.15), were written in terms of two chiral six-dimensional spinors
η1

+, η2
+ on X , namely the system of equations given here in (A.17)–(A.20). The relation

between the two sets of Killing spinors, for Ad S5 solutions, is given by first decomposing
Cliff(6) into Cliff(5) via

γ̂m = β̂m ⊗ σ3, m = 1, . . . , 5,

γ̂6 = 1⊗ σ1,
(3.19)

where γ̂i , i = 1, . . . , 6, generate Cliff(6) and σα , α = 1, 2, 3, denote the Pauli matrices.
Changing basis to ξ1 = χ1 + iχ2, ξ2 = χ1 − iχ2, we then have

η1
+ = eA/2

(
χ1
iχ1

)
, η1− = eA/2

(−χc
1

iχc
1

)
,

η2
+ = eA/2

( −χ2
−iχ2

)
, η2− = eA/2

(
χc

2−iχc
2

)
,

(3.20)

where χc
i ≡ D̃5χ

∗
i denotes 5D charge conjugation, and correspondingly ηi− ≡ (ηi

+)
c ≡

D6(η
i
+)
∗ where D6 = D̃5⊗σ2. For further details, see Appendix A. Using the two chiral

spinors η+
1 , η+

2 we may define the bispinors

�+ ≡ η1
+ ⊗ η̄2

+, �− ≡ η1
+ ⊗ η̄2−. (3.21)

Notice that, in the conventions of Appendix A, we have A6 = 1, so that η̄ ≡ η† is
just the Hermitian conjugate. Via the Clifford map (2.30) the bispinors for Spin(6) in
(3.21) may also be viewed as elements of �∗(X,C). We will mainly tend to think of
�± as complex differential forms of mixed degree. These are then Spin(6, 6) spinors, as
explained in Sect. 2.2. In fact �± in (3.21) are both pure spinors, and also compatible.
They then define an SU (3)× SU (3) structure on T X ⊕ T ∗X .

In terms of (3.21), the Killing spinor equations for a general supersymmetric R
3,1

solution (i.e. not necessarily associated with an Ad S5 solution, but with vanishing four-
dimensional cosmological constant) may be rewritten as [34] (see also [22])

dH

(
e2A−φ �−

)
= 0, (3.22)

dH

(
e2A−φ �+

)
= e2A−φdA ∧ �̄+

+
1

16
e2A

[
(|a|2 − |b|2)F + i(|a|2 + |b|2) � λ(F)

]
. (3.23)

Here recall that F = F1 + F3 + F5 is the sum of RR fields and from (2.22),

λ(F) = F1 − F3 + F5. (3.24)
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Note that the Hodge star is with respect to the metric g6, with positive orientation given
by dr ∧ ṽolY . The remaining Bianchi identities and equations of motion are (cf. [34]
Eq. (4.9)–(4.10))

dH = 0 , dH F = δsource, (3.25)

d(e4A−2φ � H)− e4A Fn ∧ �Fn+2 = 0, (3.26)

(d + H ∧ )(e4A � F) = 0. (3.27)

The equation of motion for F can also be written as

d
[
e4Ae−B � λ (F)

]
= 0, (3.28)

and follows from the supersymmetry equations. In fact, for Ad S5 solutions it was shown
in [19] that supersymmetry implies all of the equations of motion and Bianchi identities.
We have also introduced the spinor norms

|a|2 = |η+
1 |2, |b|2 = |η+

2 |2, (3.29)

which for a supersymmetric R
3,1 background must satisfy

|a|2 + |b|2 = eAc+, |a|2 − |b|2 = e−Ac−, (3.30)

where c± are constants. Upon squaring and subtracting the equations one obtains

|�±|2 = 1

8
|a|2|b|2 = 1

32

(
e2Ac2

+ − e−2Ac2−
)
. (3.31)

As we now show, for the particular case of Ad S5 solutions the above equations sim-
plify somewhat. In this case it is possible to fix the constant c− in (3.31) by the scaling
of �± with r which, using (3.16), implies that c− = 0 and hence |η+

1 | = |η+
2 |. This is

consistent with the equation Z = 0 in (3.7), since from (3.20) we see that |η1±| = |η2±|
is equivalent to Re Z = 0. Notice that c− = 0 is also a necessary condition in order to
have supersymmetric probe branes [35]. The normalization that was used in [19] implies
|a|2 = |b|2 = eA and hence c+ = 2. One can actually go a little further. In [20] it was
assumed that there was an SU(2)-structure on the cone. In terms of the spinors η+

i this
is equivalent to the condition that, in addition to c− = 0, one has

η̄+
1η

+
2 + η̄+

2η
+
1 = 0. (3.32)

However it is easy to see that this is equivalent to Im Z = 0, which again is required
by supersymmetry on Y . Thus in fact all supersymmetric Ad S5 solutions necessarily
satisfy the SU(2) condition of [20].

We now define the pure spinor

�B− ≡ e2A−φ�−, (3.33)

which by (3.22) is dH closed, dH�
B− = 0. The associated generalized almost complex

structure J B− is then integrable with respect to the twisted Courant bracket (2.15). We
also define

�− ≡ e−B�B− = e−Be2A−φ�−, (3.34)
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which is closed under the usual exterior derivative:

d�− = 0. (3.35)

The associated generalized almost complex structure, which we denote by J−,3 is then
integrable. Combined with the fact that the norm of �−, and hence of �−, is nowhere
vanishing, this means, in particular, that we have a generalized Calabi-Yau manifold in
the sense of [24].

We similarly define

�+ ≡ e−Be2A−φ�+. (3.36)

However, the corresponding generalized almost complex structure J+ is not integrable
in general, its integrability being obstructed by the RR fields in (3.23). If it were integra-
ble, we would have a generalized Kähler manifold. With these definitions we can write
the supersymmetry equations for Ad S5 solutions as

d�− = 0,

d�+ = dA ∧ �̄+ +
i

8
e3Ae−B � λ (F) .

(3.37)

It is worth noting that the latter equation may also be written as

d
(

e−ARe�+

)
= 0, (3.38)

d
(

eAIm�+

)
= 1

8
e4Ae−B � λ (F) , (3.39)

and that in turn Eq. (3.39) can be written as [36]

e−B F = 8J− · d
(

e−3A Im�+

)
= 8dJ−

(
e−3A Im�+

)
, (3.40)

where dJ− ≡ −[d,J−·]. For most of the paper we will demand that F5 �= 0, or equiva-
lently f �= 0. Physically this corresponds to having non-vanishing D3-brane charge. It
would be interesting to know whether or not all supersymmetric Ad S5 solutions of type
IIB supergravity have this property.

3.3. Canonical vector fields. In this section we examine the geometric properties of
the generalized vector fields r∂r , ξ ≡ J−(r∂r ) and η ≡ J−(d log r). As in the
Sasaki-Einstein case, r∂r and ξ correspond respectively to the dilatation symmetry and
the R-symmetry in the dual SCFT (while η is related to a contact structure on Y , as we
shall show later in Sect. 6).

3 The generalized complex structures J B− and J− are related by (2.39).
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3.3.1. Dilatation symmetry. We begin with the dilatation vector field r∂r . It immediately
follows from (3.16), (3.20) and (3.21) that

Lr∂r�± = �±, (3.41)

and therefore

Lr∂r�± = 3�±. (3.42)

This follows since e2A has scaling dimension 2 (3.16), and both the B-field and the
dilaton φ are pull-backs from Y . Notice that Eq. (3.42) may also be trivially rewritten in
terms of the generalized Lie derivative (2.24):

Lr∂r�± = 3�±. (3.43)

This implies that

Lr∂r J± = 0. (3.44)

To see this, recall that J± is defined by saying that its +i eigenspace is equal to the anni-
hilator L�± of �±, and the latter is clearly preserved under the one-parameter family
of (generalized) diffeomorphisms generated by r∂r . It further follows that Lr∂r G = 0,
where G is the generalized metric G = −J+J− = −J+J−, so that r∂r is generalized
Killing. Equation (3.44) says that r∂r is a (real) generalized holomorphic vector field
for the integrable generalized complex structure J−. We shall not use this terminology
for J+, since the latter is not in general integrable. Clearly, this generalizes the Sasaki-
Einstein result where the cone is Calabi-Yau and the dilatation vector r∂r is holomorphic.

3.3.2. R-symmetry. We next define the generalized vectors

ξ ≡ J−(r∂r ), (3.45)

η ≡ J−(d log r), (3.46)

which are, in general, a mixture of vectors and one-forms. Recall that the generalized
almost complex structures J± are related to the generalized metric via G = −J+J− =
−J−J+. The conical form (3.17) of the metric g6 and the fact that B has no component

along dr implies that G d log r = e−2�−φ2 r∂r , G r∂r = e2�+
φ
2 d log r , and hence in

addition to (3.45) and (3.46) we may also write

ξ = e2�+
φ
2 J+(d log r),

(3.47)

η = e−2�−φ2 J+(r∂r).

We may split ξ and η into a vector part and a one-form part, in a fixed splitting of E ,

ξ = ξv + ξ f , (3.48)

η = ηv + η f . (3.49)
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By carrying out a calculation, presented in Appendix B, we may then write these as
bilinears constructed from the five-dimensional Killing spinors (3.9):

ξv = K #
5 ,

ξ f = iξvb2,

ηv = e−2�−φ/2 Re K #
3 ,

η f = 4

f
e4�K4 + iηvb2.

(3.50)

As discussed in Appendix B, it is the B-transform, ξ B , of the generalized vector ξ that
is naturally related to the bilinears of [19]. We have obtained (3.50) by performing an
inverse B-transform using the expression for the B-field given in terms of bilinears
presented in (3.12). In particular, this is where the closed two-form b2 appears. Since
the B-transform of b2 by an exact form is a generalized diffeomorphism, and a gauge
symmetry of string theory, we see that the physical information in b2 is represented by
its cohomology class in H2(X,R). More precisely, large gauge transformations of the
B-field, which correspond to tensoring the underlying gerbe by a unitary line bundle
on X , lead to the torus H2(X,R)/H2(X,Z) (with suitable normalization). Turning on
the two-form b2 corresponds to giving vacuum expectation values to moduli (of the
NS field B) and so is a symmetry of the supersymmetry equations. It is therefore left
undetermined. In the field theory dual, the cohomology class of b2 thus corresponds to
a marginal deformation.

In [19] it was shown that K #
5 is a Killing vector that preserved all of the fluxes, and

thus K #
5 was identified as being dual to the R-symmetry in the SCFT. In the generalized

geometry we can show the stronger conditions that

LξJ± = 0, (3.51)

and hence ξ is a generalized holomorphic Killing vector field. In fact it is straightfor-
ward to show Lξ�− = −3i�− and hence LξJ− = 0. Indeed since d�− = 0 and
r∂r − iξ ∈ L�− annihilates �−, using (2.24) and (3.43) we have

Lξ�− = d (ξ ·�−) = −id (r∂r ·�−) = −iLr∂r�− = −3i�−. (3.52)

In Appendix B we show that Lξ�+ = 0 and hence LξJ+ = 0. There we also show that

Lξ (e
−B F) = 0. (3.53)

Thus, we have established that ξ ≡ J−(r∂r ) is a generalized holomorphic vector field,
which moreover is generalized Killing for the generalized metric G = −J−J+, and
also preserves the RR fluxes. Again, this clearly generalizes the Sasaki-Einstein result,
where ξ = I (r∂r ) is a holomorphic Killing vector field for the Calabi-Yau cone.

To conclude this section we note that when f �= 0 the vector field ξv = K #
5 is

nowhere vanishing on Y = {r = 1}. One can see this from the formula

|K #
5 |2 = sin2 ζ + |S|2, (3.54)

and using (3.11). Thus for f �= 0, ξv acts locally freely on Y and hence the orbits of ξv
define a corresponding one-dimensional foliation of Y . This is again precisely as in the
Sasaki-Einstein case (although in the Sasaki-Einstein case the norm of ξv is constant).
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4. Generalized Reduction of AdS5 Backgrounds

Recall that in the Sasaki-Einstein case one can consider the symplectic reduction of the
Calabi-Yau cone metric with respect to the R-symmetry Killing vector ξ (or equiva-
lently a holomorphic quotient with respect to r∂r − iξ ). Generically ξ does not define a
U (1) fibration and the four-dimensional reduced space is not a manifold. Nonetheless,
locally one can consider the geometry on the transversal section to the foliation formed
by the orbits of ξ in the Sasaki-Einstein space. The result of the reduction is that this
four-dimensional geometry is Kähler-Einstein. Thus locally one can always write the
Sasaki-Einstein metric as

gY = η ⊗ η + gKE, (4.1)

where gKE is a Kähler-Einstein metric.
The existence of the generalized holomorphic vectors ξ and r∂r in the generic case

suggests one can make an analogous generalized reduction to four dimensions. In this
section, we show that this is indeed the case following the theory of generalized quotients
developed in [26,27]. We first review the formalism and then apply it to our particular
case, showing that there is a generalized Hermitian structure on the local transversal
section, giving the conditions satisfied by the corresponding reduced pure spinors.

4.1. Generalized reductions. We will follow the description of generalized quotients
given in [27]4. These include both symplectic reductions and complex quotients as spe-
cial cases. One first needs to introduce the reduction data.

In conventional geometry, the action of a Lie group G on M is generated infinitesi-
mally by a set of vector fields, defined by a map from the Lie algebra ψ : g→ 	(T M).
Given a vector field x ∈ 	(T M), the infinitesimal action of u ∈ g is then just the Lie
derivative (or in this case Lie bracket)

δx = Lψ(u)x = [ψ(u), x]. (4.2)

One requires that given u, v ∈ g, one has [ψ(u), ψ(v)] = ψ([u, v]) so that

Lψ(u)Lψ(v) − Lψ(v)Lψ(u) = L[ψ(u),ψ(v)] = Lψ([u,v]), (4.3)

and thus there is a Lie algebra homomorphism between g and the algebra of vector fields
under the Lie bracket.

In generalized geometry, we have a larger group of symmetries, diffeomorphisms and
B-shifts, which are generated infinitesimally by the generalized Lie derivative (2.14).
Thus given an action of G on M , it is natural to consider the infinitesimal “lifted action”
of G on E defined by the map ψ̃ : g→ 	(E), such that for any V ∈ 	(E) and u ∈ g
we have

δV = Lψ̃(u)V, (4.4)

and under the projection π : E → T M we simply get the vector fields ψ(u), that is

πψ̃(u) = ψ(u). (4.5)

4 Note that the bracket [[, ]] used in [27] is the Dorfman bracket or generalized Lie derivative [[V,W ]] =
LV W and is not anti-symmetric.



Ad S5 Solutions of Type IIB Supergravity and Generalized Complex Geometry 383

Such transformations are infinitesimal automorphisms of E that have the property that
they preserve both the metric 〈·, ·〉 on E and the Courant bracket (2.13). If we again
assume that

Lψ̃(u)Lψ̃(v) − Lψ̃(v)Lψ̃(u) = Lψ̃([u,v]), (4.6)

then ψ̃ defines an equivariant structure on E . (Note that this is equivalent to the Courant
bracket condition [ψ̃(u), ψ̃(v)] = ψ̃([u, v]).) In what follows it will also be assumed
that ψ̃ is isotropic, that is

〈ψ̃(u1), ψ̃(u2)〉 = 0 (4.7)

for all u1, u2 ∈ g.
One can actually define a more general action on E which is a homomorphism

between algebras with Courant brackets rather than Lie algebras. One starts by extend-
ing g to a larger algebra. The construction considered in [27] which is relevant for us is
as follows. Let h be a vector space on which there is some representation of g. Then we
can form a “Courant algebra” a = g⊕h with Courant bracket5 given ui ∈ g andwi ∈ h,

[(u1, w1), (u2, w2)] = ( [u1, u2], 1
2 (u1 · w2 − u2 · w1) ), (4.8)

where u · w is the action of g on h. Suppose in addition μ : M → h∗ is a g-equivariant
map, meaning Lψ(u)μ(w) = μ(u · w) for all u ∈ g and w ∈ h. Then, given some
isotropic lifted action ψ̃ of g, one can then define the extended action

� : g⊕ h→ 	(E),

(u, w) 
→ ψ̃(u) + dμ(w),
(4.9)

which, it is easy to show, has the property that

[�(u1, w1),�(u2, w2)] = �([u1, u2], 1
2 (u1 · w2 − u1 · w2)), (4.10)

and hence � defines a homomorphism of Courant algebras as opposed to Lie algebras
as in (4.3). Note that the extra factor dμ(w) in (4.9) corresponds to a trivial B-shift,
and thus L�(u,v) = Lψ̃(u). Note also that μ will play the role of a moment map. In the
conventional case of symplectic reductions one has μ : M → g∗, whereas here h can
be any representation space. The triple (ψ̃, h, μ) is known as the reduction data.

This reduction data can then be used to define a reduced generalized tangent bundle
E red. First one makes the usual assumptions about μ and the G action on M so that
M red = μ−1(0)/G is a manifold. (This requires that 0 is a regular point of μ and that
the G action on μ−1(0) is free and proper.) Then define the sub-bundle K which is the
image of the bundle map a× M associated to �, that is

K =
{
ψ̃(u) + dμ(w), u ∈ g, w ∈ h

}
⊆ E, (4.11)

and also the orthogonal bundle K⊥, the fibres of which are orthogonal to K with respect
to the O(d, d) metric 〈·, ·〉. One can then construct the generalized tangent space on
M red,

E red = K⊥|μ−1(0)

K |μ−1(0)

/

G. (4.12)

5 Note we take a slightly different definition of the bracket to that in [27] in to order to match the Courant
bracket (2.13) on E .
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The main results of [26,27] are then to show how various geometrical structures can be
transported from E to E red. The case of particular interest to us is that of generalized
Hermitian reduction.

As discussed in Sect. 2.2 a generalized Hermitian manifold is a generalized complex
manifold with a compatible generalized metric (or equivalently a second, compatible,
generalized almost complex structure). Let J be the integrable generalized complex
structure and G be the generalized metric. Given some reduction data (ψ̃, h, μ), recall-
ing L�(u,v) = Lψ̃(u), the structures are G-invariant if

Lψ̃(u)G = Lψ̃(u)J = 0, (4.13)

for all u ∈ g. One can also define the sub-bundles

K G = G K⊥ ∩ K⊥, (4.14)

which is the sub-bundle of K⊥ the fibres of which are orthogonal to K , with respect to
G, and

EK = K ⊕ G K , (4.15)

which is the G-orthogonal complement to K G . Theorem 4.4 of [27] then states

Theorem 1 (Generalized Hermitian reduction [27]). Let E be a generalized tangent
space over M with reduction data (ψ̃, h, μ). Suppose E is equipped with a G-invariant
generalized Hermitian structure (J ,G). If over μ−1(0), J K G = K G, or equivalently
J EK = EK , then J and G can be reduced to Ered where they define a generalized
Hermitian structure.

Even if the group action is such that the reduced space is not a manifold, one can still
define a generalized Hermitian structure on the transversal section to the foliation.

4.2. Generalized reduction from ξ . We now use the reduction formalism to show that
the generalized Calabi-Yau geometry on the cone X reduces to a generalized Hermi-
tian geometry in four dimensions. This is the analogue of the reduced Kähler-Einstein
geometry in the Sasaki-Einstein case.

First we note that there is a group action on the cone X generated by the vectors r∂r
and ξv . These commute and the corresponding Lie algebra is simply R⊕R. If the orbits
of ξv form a U (1) action then together r∂r and ξv integrate to a C

∗ action, but this need
not be the case. The generalized vectors r∂r and ξ give a lifted action of R ⊕ R on E ,
so that, if u = (a, b) ∈ R⊕ R,

ψ̃(u) = ar∂r + bξ. (4.16)

By definition we have πψ̃(u) = ar∂r + bξv . Under the Courant bracket, given the
expressions (3.50) we see that [r∂r , ξ ] = 0, and hence

[ψ̃(u1), ψ̃(u2)] = 0 = ψ̃([u1, u2]) (4.17)

for all u1 and u2, as required for a lifted action. Furthermore, from (B.5) we see that ψ̃
is isotropic.

We also have a generalized Hermitian structure on X given by J±. The generalized
complex structure J− is integrable, and we have the compatible generalized metric
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G = −J+J−. In Sect. 3 we showed Lr∂r J± = LξJ± = 0, and hence the Hermitian
structure is invariant under both group actions.

There are then two different ways we can view the generalized reduction, mirroring
the symplectic reduction and the complex quotient in the Sasaki-Einstein case. In the
first reduction, we take g = R generated by ξv , and in the reduction data we take h = g
and μ = log r . This is the same moment map one takes in the symplectic reduction. In
the second case we take the complex Lie algebra g = C generated by r∂r−iξv and h = 0
so there is no moment map. The reduction is then analogous to a complex quotient. We
now discuss these in turn. As in the Sasaki-Einstein case, both lead to the same reduced
structure.

4.2.1. g = R reduction. In this case, the reduction data is

ψ̃(u) = uξ, h = R, μ = log r. (4.18)

We have already seen that ψ̃ is an isotropic lifted action. It is also clear that μ is
g-equivariant since, from (B.5), iξvdμ = 0. Thus (ψ̃, h, μ) are suitable reduction data.
Furthermore, J− and G are both invariant under ψ̃(u). We have

μ−1(0) = Y, (4.19)

and given u ∈ g and v ∈ h,

K = {uξ + v d log r}. (4.20)

Using

Gξ = e2�+φ/2η, G d log r = e−2�−φ/2r∂r (4.21)

we have

G K = {u′η + v′r∂r }, (4.22)

and hence

EK ≡ K ⊕ G K = {uξ + v d log r + u′η + v′r∂r }. (4.23)

Using the definitions (3.46) we immediately see that J−EK = EK . Hence, assuming
the action of ξv on Y gives a U (1) fibration, using the generalized Hermitian reduction
theorem, we see that we have a generalized Hermitian structure on E red over the four-
dimensional space M red = Y/U (1). More generally, we get a generalized Hermitian
structure on the transversal section to the ξv orbits.

4.2.2. g = C reduction. In this case, the reduction data is

ψ̃(u) = u(r∂r − iξ), h = 0, μ = 0. (4.24)

Given h is trivial, we have

K = {u(r∂r − iξ)}. (4.25)
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As before, we have already seen that ψ̃ is an isotropic lifted action and so (ψ̃, h, μ) are
suitable reduction data. J− and G are both invariant under ψ̃(u) and finally, using (4.21),
we now have

G K = {u′(d log r − iη)}, (4.26)

and hence

EK = {u(r∂r − iξ) + u′(d log r − iη)}. (4.27)

Again we immediately see that J−EK = EK . Hence, again assuming the action of ξv
on Y gives a U (1) fibration, using the generalized Hermitian reduction theorem, we see
that we have a generalized Hermitian structure on E red over the four-dimensional space
M red = X/C∗ = Y/U (1), or more generally, we get a generalized Hermitian structure
on the transversal section to the r∂r − iξv orbits.

Note that in both cases the reduced manifold M red is the same. Furthermore, the
(complexified) spaces EK , and hence the G-orthogonal complements K G , also agree.
As discussed in [27], K G is a model for the reduced bundle E red. Thus the two reductions
give identical generalized Hermitian structures on M red.

4.3. The reduced pure spinors. We now calculate the conditions on the reduced gen-
eralized Hermitian structure implied by supersymmetry. The reduced structure can be
defined by a pair of commuting generalized almost complex structures: J̃1 which is
integrable and is the reduction of J−, and a non-integrable structure J̃2, defined such
that−J̃1J̃2 is the reduced generalized metric. Equivalently, the structures are defined as
a pair of pure spinors �̃1 and �̃2. It is the differential conditions on �̃1 and �̃2 implied
by supersymmetry that we will derive.

In order to construct the reduced pure spinors, first note that the reduction gives a
splitting of the generalized tangent space

E = EK ⊕ K G (4.28)

such that, in general, the O(d, d) metric 〈·, ·〉 factors into an O(p, p) metric on K G and
an O(d − p, d − p) metric on EK . Thus we can similarly decompose sections of the
spinor bundles S±(E) into spinors of Spin(d − p, d − p) × Spin(p, p). In particular,
generic sections �± ∈ S±(E) can be written as

�± = �± ⊗ �̃+ ⊕�∓ ⊗ �̃−. (4.29)

It is then the spinor components of �̃± in S±(KG) which correspond to the reduced
pure spinors. For the case in hand the relevant decomposition is under Spin(2, 2) ×
Spin(4, 4) ⊂ Spin(6, 6). As we will see below, the reduction is such that the pure spi-
nors defining the supersymmetric background decompose as

�− = �− ⊗ �̃1,

�+ = �+ ⊗ �̃2.
(4.30)

Thus the reduced spinors �̃1 and �̃2 are both positive helicity in Spin(4, 4).
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To make this explicit we need a basis for the Spin(6, 6) gamma matrices reflecting
the decomposition (4.28). We first introduce coordinates adapted to the reduction. We
write the R-symmetry Killing vector as6

ξv = K #
5 = ∂ψ . (4.31)

Let ym be coordinates on the transversal section to the R-symmetry foliation. This means
that iξvdym = 0 and, in particular, the metric decomposes as

gY = K5 ⊗ K5 + gred
mndymdyn, (4.32)

in analogy to (4.1). The reduction structure already defines a natural basis on EK given
by

f̂1 = r∂r , f 1 = d log r,

f̂2 = ξ, f 2 = η,
(4.33)

and satisfying 〈 f i , f̂ j 〉 = 1
2δ

i
j and 〈 f i , f j 〉 = 〈 f̂i , f̂ j 〉 = 0. We can then define an

orthogonal basis on K G given by

êm = e−b2∂ym − η̃mξ, em = dym − ηmξ, (4.34)

where η̃m = 2〈η, e−b2∂ym 〉 and ηm = 2〈η, dym〉 = iηvdym . This basis again satisfies
〈em, ên〉 = 1

2δ
m

n and 〈em, en〉 = 〈êm, ên〉 = 0.
Given such a basis we can then write a generic Spin(6, 6) spinor using the stan-

dard raising and lowering operator construction. Consider the polyform �(0) = e−b2 ∈
S+(E). It is easy to see that we have the Clifford actions

f̂i ·�(0) = êm ·�(0) = 0, (4.35)

for all i and m. Thus we can regard �(0) as a ground state for the lowering operators
( f̂i , êm). A generic spinor is then given by acting with the anti-commuting raising oper-
ators ( f i , em). Acting with the em first, we see that a generic (non-chiral) spinor has the
form

� = e−b2�̃0 + f 1 · e−b2�̃1 + f 2 · e−b2�̃2 + f 1 · f 2 · e−b2�̃3, (4.36)

where �̃i are polyforms in dym , and e−b2�̃i transform as a Spin(4, 4) spinor under the
Clifford action of (em, êm).

We can now write the supersymmetry pure spinors �± in the form (4.36). Requiring
that r∂r−iξ and d log r−iη annihilate�−while r∂r−ie2�+φ/2η and d log r−ie−2�−φ/2ξ

annihilate �+, one finds the only possibility is

�− = (d log r − iη) · r3e−3iψe−b2�̃1,

�+ =
(

1 + ie2�+φ/2d log r · η
)
· r3e−b2�̃2,

where �̃1 and �̃2 are both even polyforms in dym , as claimed in (4.30). We have
introduced factors of r3 and e−3iψ so that �̃1 and �̃2 are independent of the r and ψ

coordinates. In general, they are then only locally defined.

6 Note that this, more conventional, normalization of ψ differs from the corresponding coordinate in [19]
by a factor of three.
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One can then derive the conditions on �̃1 and �̃2, reduced to the transversal section,
implied by supersymmetry. From d�− = 0 one finds

d�̃1 = −3iη̃ · �̃1, (4.37)

where η̃ is a generalized vector on the transversal section defined by

η = dψ + e−b2 η̃. (4.38)

This is means that �̃1 defines an integrable generalized complex structure on the trans-
verse section, as expected from the reduction theorem.

For the second pure spinor, the condition (3.38) on Re�+ is equivalent to

d
(

e�+φ/4η̃ · Im �̃2

)
= −2e−�−φ/4 Re �̃2,

d
(

e�+φ/4 Im �̃2

)
= 0.

(4.39)

Finally, since ir∂r F = 0, following (4.36), we can decompose the flux as

e−B F = e−b2 F̃ + η · e−b2 G̃. (4.40)

The final condition (3.40) is then equivalent to

d
(

e−�−φ/4η̃ · Re �̃2

)
= − 1

8 G̃,
[
J̃1 d(4� + φ)

]
· Im �̃2 = − 1

8 e3�+3φ/4 F̃,
(4.41)

and to

J̃1 · d
(

e−�−φ/4η̃ · Re �̃2

)
= 0, (4.42)

where J̃1 is the reduction to the transverse section of the generalized complex structure
J b2− = eb2J−e−b2 , and we have used the compatibility relation J̃1 · �̃2 = 0.7

The conditions (4.39) and (4.42), which do not involve the flux, can be viewed as
a generalization of the usual Kähler-Einstein conditions. Given an �̃2 satisfying these
conditions, the flux is then determined by (4.41).

5. The Pure Spinor �−

The closed pure spinor �− is associated with the integrable generalized complex-struc-
ture J−. The latter in turn holds information regarding BPS operators in the dual field
theory. In this section we explore two aspects of this duality. The first is the mesonic
moduli space of the dual theory, which is known to correspond to the subspace for
which the polyform �− reduces to a three-form. The second is the connection between
generalized holomorphic objects and dual BPS operators.

7 Note that in the language defined in Sect. 5.3 below, the condition (4.42) states that d
(

e−�−φ/4η̃ · Re �̃2

)

(and hence G̃) is an element of U0
J̃1

.
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5.1. The general form of �−. Recall that the most general pure spinor takes the form
[29]

� = αθ1 ∧ θ2 ∧ · · · ∧ θk ∧ e−b+iω0
, (5.1)

where α is some complex function, θi are complex one-forms, while b and ω0 are both
real two-forms. The integer k is called the type of the pure spinor, which can change
along various subspaces of X .

Using the definition of �±, the Fierz identity (2.31), and the results of Sect. 3.1 and
Appendix A, one can find expressions for �± in terms of spinor bilinears introduced in
[19]. We find that in general �− is of type one with

�− = θ ∧ e−b−+iω− , (5.2)

where

θ = −r3

8
e4�(iK + Sd log r),

ω− = 4e6�+φ/2

f (sin 2φ̄)2
(
K5 ∧ Im(K3)− cos 2θ̄ cos 2φ̄ Re(K3) ∧ d log r

)
,

b− = − 4e6�+φ/2

f (sin 2φ̄)2

(
K4 ∧ Re(K3) + (cos 2φ̄)2 Im(K3) ∧ d log r

)
+ b2.

(5.3)

Note that ω− and b− are not uniquely defined since we can add two-forms that vanish
when wedged with θ . Here the angles θ̄ and φ̄, which appear in Appendix B of [19]
without bars, are functions on the link Y that are related to the scalar spinor bilinears
through

sin ζ = cos 2θ̄ cos 2φ̄, (5.4)

|S| = − sin 2θ̄ cos 2φ̄. (5.5)

Using the results of [19], we have the important result that θ is exact8

θ = d

[
− 1

24
e4�r3S

]
≡ d

(
r3θ0

)
. (5.6)

Alternatively, from the supersymmetry equation d�− = 0 and the definite scaling
dimension Lr∂r�− = 3�−, we immediately obtain

�− = 1
3 d(r∂r��−), (5.7)

the one-form part of which reduces to (5.6).

8 The fact that θ is closed was essentially observed in [37], and it was also shown to be exact in the special
cases of the Pilch-Warner and Lunin-Maldacena solutions in [20].
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5.2. Type change of �− and the mesonic moduli space. The pure spinor �− has the
property that its type can jump from type one to type three on the locus θ = 0. This
locus can be neatly parameterized through the angles θ̄ and φ̄. Assuming f �= 0, we
have from (3.11) that sin ζ is nowhere zero and then (5.4) implies that both cos 2φ̄ and
cos 2θ̄ are nowhere zero. Using the expression for K in Appendix B of [19], we see that
when f �= 0,

sin 2θ̄ = 0⇐⇒ θ0 = 0, (5.8)

sin 2θ̄ = sin 2φ̄ = 0⇐⇒ θ = 0. (5.9)

The locus θ = 0 is thus a sublocus of θ0 = 0. Notice that, where θ = 0, �− is not
identically zero, as one might have naively expected from (5.2), but instead reduces to a
finite, non-zero three-form. Indeed, the powers of sin 2φ̄ in the denominator of b− and
ω− are cancelled by those in K , K3 and K4.

The locus θ = 0 is precisely where a probe pointlike D3-brane in X is super-
symmetric. This follows from [37] where it was shown that the pull-back of θ to the
D3-brane worldvolume is equal to the F-term of the worldvolume theory. The supersym-
metric locus of such a pointlike D3-brane is naturally interpreted as the mesonic moduli
space.

5.3. BPS operators and generalized holomorphic spinors. In the Sasaki-Einstein case,
holomorphic functions on the Calabi-Yau cone with a definite scaling weight λ under
the action of r∂r also have a charge λ under the action of ξ . This stems from the intimate
connection (via Kaluza-Klein reduction on the Sasaki-Einstein manifold) between ho-
lomorphic functions on the cone and BPS operators in the dual CFT, in fact (anti-)chiral
primary operators. For general Ad S5 solutions we might expect that the holomorphic
functions should be replaced by polyforms and that the BPS condition of matching
charges should be with respect to the generalized Lie derivative L discussed in Sect. 2.
We now derive such a result, leaving the detailed connection with Kaluza-Klein reduction
on the internal space Y to future work.

We first recall that a generalized almost complex structure J defines a grading on
generalized spinors, or equivalently differential forms. If� ∈ 	(S±(E)) is a pure spinor
corresponding to J , one defines the canonical pure spinor line bundle U n

J ⊂ S±(E) as
sections of the form ϕ = f� for some function f . One can then define

U (n−k)
J = ∧k L̄ ⊗ U n

J . (5.10)

Elements of U k
J have eigenvalues ik under the Lie algebra action of J given in (2.40).

These bundles then give a grading of the spinor bundles S±(E). A generalized vector
V ∈ 	(E) acting on an element of U k

J gives an element of U k+1
J ⊕U k−1

J . In particular
an annihilator of � acts by purely raising the level by one. If the generalized complex
structure J is also integrable then the exterior derivative splits into the sum

d = ∂J + ∂̄J , (5.11)

where

C∞
(

U k
J

) ∂̄J←−−→
∂J

C∞
(

U k−1
J

)
. (5.12)
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Consider now a spinor ψ satisfying

ψ ∈ U k
J− ,

Lr∂rψ = λψ, (5.13)

for some k and λ. Then imposing in addition

∂̄J−ψ = 0, (r∂r + iξ) · ψ = 0 implies Lξψ = iLr∂rψ. (5.14)

In other words, subject to the constraints (5.13), a spinor is BPS if it is generalized
holomorphic and is annihilated by r∂r + iξ . To see this result, we first write r∂r =
(1/2)(r∂r + iξ) + (1/2)(r∂r − iξ) and use (5.13) to deduce that

∂J−[(r∂r + iξ) · ψ] + (r∂r + iξ) · ∂J−ψ = 0,

∂̄J−[(∂r − iξ) · ψ] + (r∂r − iξ) · ∂̄J−ψ = 0.
(5.15)

In obtaining this we used the fact that since r∂r − iξ is an annihilator of �− it raises the
level of ψ and similarly r∂r + iξ lowers the level. We then compute

Lξψ = iLr∂rψ − i {d [(r∂r + iξ) · ψ] + (r∂r + iξ) · dψ}
= iLr∂rψ − i

{
∂̄J− [(r∂r + iξ) · ψ] + (r∂r + iξ) · ∂̄J−ψ

}
. (5.16)

In a similar way, given (5.13) we also have

∂J−ψ = 0, (r∂r − iξ) · ψ = 0 implies Lξψ = −iLr∂rψ. (5.17)

6. The Pure Spinor �+

6.1. The general form of �+. One can see immediately from the supersymmetry equa-
tion (3.39) that if we assume F5 �= 0, which we shall do, then Im�+ must have a scalar
component and hence �+ is of type 0:

�+ = α+e−b++iω0
+ . (6.1)

Using the same procedure as in the last section, we may again express these quantities
in terms of the bilinears of [19]. After defining the rescaled two-form

ω = e−2Ar4ω0
+, (6.2)

we find

α+ = − i

32
f e−Ar4,

ω = −4r2

f
e4� (V + K4 ∧ d log r) ,

b+ = e6�+φ/2 4

f
Im K3 ∧ d log r + b2,

(6.3)

where b2 appears in (3.12).
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6.2. A canonical symplectic structure. The rescaling (6.2) is motivated by the fact that
ω defines a canonical symplectic structure. To see this, we first observe that Y admits a
contact structure defined by the one-form

σ ≡ 4

f
e4�K4. (6.4)

Recall that for a one-form σ to be contact, the top-degree form σ ∧ dσ ∧ dσ must be
nowhere vanishing. Using (3.19) of [19], and results in Appendix B of [19], one can
easily show that

σ ∧ dσ ∧ dσ = 128

f 2 e8�ṽolY = 8

sin2 ζ
ṽolY , (6.5)

where recall ṽolY = −e12345 (using the orthonormal frame in Appendix B of [19]). We
then observe, using (3.19) of [19], that

ω = 1
2 d(r2σ), (6.6)

which shows that ω is closed and non-degenerate, and hence defines a symplectic struc-
ture on the cone X = R

+×Y . Alternatively, one can see the formula (6.6) for ω directly
from the supersymmetry equation (3.38) on noting that e−A�+ has scaling dimension 2
under r∂r . Furthermore, again using the results of Appendix B of [19], we have

1 = ξv�σ, 0 = ξv�dσ, (6.7)

which shows that ξv is also the unique “Reeb vector field” associated with the contact
structure. Notice also that (6.6) implies that H = r2/2 is precisely the Hamiltonian
function for the Hamiltonian vector field ξv , i.e. dH = −iξvω. It is remarkable that these
features, which are well-known in the Sasaki-Einstein case, are valid for all supersym-
metric Ad S5 solutions with non-vanishing five-form flux.

Although we have a symplectic structure, we do not quite have a Kähler structure,
as in the Calabi-Yau case, but it is quite close. Using the last equation in (3.50) and the
definition (6.4) we see that

η f = σ + iηvb2, (6.8)

and thus
(
eb2η

) |1−form= σ . Since eb2(d log r) = d log r manifestly, and by definition
η ≡ J−(d log r), we have, using (2.34),

σ = J b2− (d log r) |1−form= −(I b2− )∗(d log r). (6.9)

Note this is precisely analogous to the formula for the contact form in the Sasakian case.
We then have

dJ b2− r2 = −r2 d

(
Qb2− +

1

2
Tr I b2−

)
− (I b2− )∗(d(r2)), (6.10)

where here we recall that in general we define dJ− ≡ −[d,J−], and we use (2.40) for
the action on generalized spinors. From this it follows that

ω = 1

4
ddJ b2− r2 +

1

4
d(r2) ∧ d

(
Qb2− +

1

2
Tr I b2−

)
. (6.11)

Thus r2 is almost a Kähler potential, for the b2-transformed complex structure J b2− =
eb2J−e−b2 , except for the last term.
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6.3. The central charge as a Duistermaat-Heckman integral. Recall that in any four-
dimensional CFT there are two central charges, usually called a and c, that are constant
coefficients in the conformal anomaly

〈Tμ
μ 〉 =

1

120(4π)2

(
c(Weyl)2 − a

4
(Euler)

)
. (6.12)

Here Tμν denotes the stress-energy tensor, and Weyl and Euler denote certain curvature
invariants for the background four-dimensional metric. For SCFTs, both a and c are
related to the R-symmetry [8] via

a = 3

32

(
3TrR3 − TrR

)
, c = 1

32

(
9TrR3 − 5TrR

)
. (6.13)

Here the trace is over the fermions in the theory. For SCFTs with Ad S5 gravity duals,
in fact a = c holds necessarily in the large N limit [38]. The central charge of the
SCFT is then inversely proportional to the dual five-dimensional Newton constant G5
[38], obtained here by Kaluza-Klein reduction on Y . The Newton constant, in turn, was
computed in Appendix E of [19], and is given by

G5 = G10

V5
= κ2

10

8πV5
, (6.14)

where G10 is the ten-dimensional Newton constant of type IIB supergravity, and we
have defined

V5 ≡
∫

Y
e8�ṽolY . (6.15)

We may derive an alternative formula for G5 as follows. We begin by rewriting

V5 = f 2

16

∫

Y

1

sin2 ζ
ṽolY , (6.16)

where we have used the relation (3.11). Importantly, the constant f is quantized, being
essentially the number of D3-branes N . Specifically, we have

N = 1

(2πls)4gs

∫

Y
dC4 = 1

(2πls)4gs

∫

Y
(F5 + H ∧ C2) . (6.17)

Using the Bianchi identity DG = −P ∧ G∗ and the result (A.22), one derives that
d(H ∧ C2) = −(2/ f )d[e6�Im(W ∗ ∧ G)], and so we can also write

N = 1

(2πls)4gs

∫

Y

(
F5 − 2e6�

f
Im

[
W ∗ ∧ G

])
. (6.18)

We may evaluate this expression in terms of the orthonormal basis of forms ei introduced
in Appendix B of [19], and after some calculation we find

N = − f

(2πls)4gs

∫

Y

1

sin2 ζ
ṽolY . (6.19)
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Combining these formulae and using 2κ2
10 = (2π)7l8

s g2
s leads to the result

G5 = 8V5

π2 f 2 N 2 . (6.20)

Consider now the integral

μ = 1

(2π)3

∫

X
e−r2/2ω

3

3! . (6.21)

This is the Duistermaat-Heckman integral for a symplectic manifold (X, ω)with Hamil-
tonian function H = r2/2, which we have shown is the Hamiltonian for the Reeb vector
field ξv . Using (6.6) and (6.5) we may rewrite

ω3

3! =
16

f 2 e8�r5dr ∧ ṽolY . (6.22)

Performing the r -integral in (6.21) allows us to rewrite the five-dimensional Newton
constant as

G5 = πμ

2N 2 . (6.23)

Since μ = 1 for the round five-sphere solution, we thus obtain the ratio G5
GS5
= μ.

Recalling that this is, by AdS/CFT duality, the inverse ratio of central charges [38], we
deduce the key result

aN=4

a
= 1

(2π)3

∫

X
e−r2/2ω

3

3! =
1

(2π)3

∫

Y
σ ∧ dσ ∧ dσ. (6.24)

Here aN=4 = N 2/4 denotes the (large N ) central charge of N = 4 super-Yang-Mills
theory.

The formula (6.24) implies that the central charge depends only on the symplectic
structure of the cone (X, ω) and the Reeb vector field ξv . This is perhaps surprising:
one might have anticipated that the quantum numbers of quantized fluxes would appear
explicitly in the central charge formula. However, recall from formulae (3.12), (3.13)
that the two-form potentials B and C2 are globally defined. In particular, for example,
the period of H = dB through any three-cycle in Y is zero.

As discussed in [11], the Duistermaat-Heckman integral in (6.24) may be evaluated
by localization. The integral localizes where ξv = 0, which is formally at the tip of the
cone r = 0. Unless the differentiable and symplectic structure is smooth here (which
is only the case when X ∪ {r = 0} is diffeomorphic to R

6), one needs to equivariantly
resolve the singularity in order to apply the localization formula. Notice here that since
ξv preserves all the structure on the compact manifold (Y, gY , σ ), the closure of its orbits
defines a U (1)s action preserving all the structure, for some s ≥ 1. Here we have used
the fact that the isometry group of a compact Riemannian manifold is compact. Thus
(X, ω) comes equipped with a U (1)s action.

Rather than attempt to describe this in general, we focus here on the special case
where the solution is toric: that is, there is a U (1)3 action on Y under which σ , and
hence ω under the lift to X , is invariant. Notice that we do not necessarily require that
the full supergravity solution is invariant under U (1)3 – we shall illustrate this in the
next section with the Pilch-Warner solution, where σ and the metric are invariant under
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U (1)3, but the G-flux is invariant only under a U (1)2 subgroup. For the arguments that
follow, it is only σ (and henceω) that we need to be invariant under a maximal dimension
torus U (1)3. In fact any such symplectic toric cone is also an affine toric variety. This
implies that there is a (compatible) complex structure on X , and that the U (1)3 action
complexifies to a holomorphic (C∗)3 action with a dense open orbit. There is then always
a symplectic toric resolution (X ′, ω′) of (X, ω), obtained by toric blow-up. In physics
language, this is because one can realize (X, ω) as a gauged linear sigma model, and
one obtains (X ′, ω′) by simply turning on generic Fayet-Iliopoulos parameters. One can
also describe this in terms of moment maps as follows. The image of a symplectic toric
cone under the moment map μ : X → R

3 is a strictly convex rational polyhedral cone
(see [11]). Choosing a toric resolution (X ′, ω′) then amounts to choosing any simplicial
resolution P of this polyhedral cone. Here P is the image of μ′ : X ′ → R

3. Assuming
the fixed points of ξv are all isolated, the localization formula is then simply [11]

1

(2π)3

∫

X
e−r2/2 ω

3

3! =
∑

vertices p∈P

3∏

i=1

1

〈ξv, up
i 〉
. (6.25)

Here up
i , i = 1, 2, 3, are the three edge vectors of the moment polytope P at the vertex

point p, and 〈·, ·〉 denotes the standard Euclidean inner product on R
3 (where we regard

ξv as being an element of the Lie algebra R
3 of U (1)3). The vertices of P precisely

correspond to the U (1)3 fixed points of the symplectic toric resolution X ′ = XP of X .
Thus, remarkably, these results of [11] hold in general, even when there are non-trivial
fluxes turned on and X is not Calabi-Yau.

6.4. The conformal dimensions of BPS branes. A supersymmetric D3-brane wrapped
on �3 ⊂ Y gives rise to a BPS particle in Ad S5. The quantum field � whose excita-
tions give rise to this particle state then couples, in the usual way in AdS/CFT, to a dual
chiral primary operator O = O�3 in the boundary SCFT. More precisely, there is an
asymptotic expansion of � near the Ad S5 boundary

� ∼ �0r�−4 + A�r−�, (6.26)

where �0 acts as the source for O and � = �(O) is the conformal dimension of O.
In [39], following [40], it was argued that the vacuum expectation value A� of O in a
given asymptotically Ad S5 background may be computed from e−SE , where SE is the
on-shell Euclidean action of the D3-brane wrapped on �4 = R

+ × �3, where R
+ is

the r -direction. In particular, via the second term in (6.26) this identifies the conformal
dimension � = �(O�3) with the coefficient of the logarithmically divergent part of the
on-shell Euclidean action of the D3-brane wrapped on �4. We refer to Sect. 2.3 of [39]
for further details.

We are thus interested in the on-shell Euclidean action of a supersymmetric D3-
brane wrapped on �4 = R

+ × �3. The condition of supersymmetry is equivalent to a
generalized calibration condition, namely Eq. (3.16) of [35]. In our notation and con-
ventions, this calibration condition reads

Re
[
−i�+ ∧ eF]

|�4=
|a|2

8

√
det(h + F) dx1 ∧ · · · ∧ dx4. (6.27)
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Here h is the induced (string frame) metric on�4, and F = F−B is the gauge-invariant
worldvolume gauge field, satisfying

dF = −H |�4 . (6.28)

Recalling from Sect. 3.2 that |a|2 = eA, we may then substitute for �+ in terms of �+
using (3.36) and (6.1) to obtain

Re
[
−i�+ ∧ eF]

|�4=
f

64
eA+φd log r ∧ σ ∧ dσ |�4 −

f

64
e−3A+φr4(F − b+)

2 |�4 ,

(6.29)

where, as in (6.3),

b+ = e6�+φ/2 4

f
Im K3 ∧ d log r + b2. (6.30)

Here b2 is a closed two-form, whose gauge-invariant information is contained in its
cohomology class in H2(X,R)/H2(X,Z). In writing b+ in (6.29) we have chosen a par-
ticular representative two-form for the class of b2 in H2(X,R)/H2(X,Z). Then under
any gauge transformation of b+ (induced from a B-transform of �+), the worldvolume
gauge field F transforms by precisely the opposite gauge transformation restricted to�4,
so that the quantity F − b+ is gauge invariant on �4. We now choose the worldvolume
gauge field F to be

F = b2 |�4 , (6.31)

so that (6.29) becomes simply

Re
[
−i�+ ∧ eF]

|�4=
f

64
eA+φd log r ∧ σ ∧ dσ |�4 . (6.32)

In fact, there is a slight subtlety in (6.31). If the cohomology class of b2/(2πls)2 |�4 in
H2(�4,R) is not integral, then the choice (6.31) is not possible as F is the curvature
of a unitary line bundle. Having said this, notice H2(�4,R) ∼= H2(�3,R), and thus
in particular that if H2(�3,R) = 0 then every closed b2 |�4 is exact, and thus may be
gauge transformed to zero on �4. Then (6.31) simply sets F = 0. For every example of
a supersymmetric �3 that we are aware of, this is indeed the case. In any case, we shall
assume henceforth that the choice (6.31) is possible.

The calibration condition (6.27) for a D3-brane with worldvolume�4 and with gauge
field (6.31) is thus

f

8
d log r ∧ σ ∧ dσ = e−φ

√
det(h − B) dx1 ∧ · · · ∧ dx4. (6.33)

Notice the right hand side is precisely the Dirac-Born-Infeld Lagrangian, up to the D3-
brane tension τ3 = 1/(2π)3l4

s gs . From (6.33), and the comments above on the scaling
dimension �(O(�3)) of the dual operator O(�3), we thus deduce

�(O(�3)) = −τ3 f

8

∫

�3

σ ∧ dσ. (6.34)

(The sign just arising from a convenient choice of orientation.) Using (6.19) and (6.5)
we have
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f = − 8(2πls)4gs N
∫

Y σ ∧ dσ ∧ dσ
, (6.35)

and hence

�(O(�3)) =
2πN

∫
�3
σ ∧ dσ

∫
Y σ ∧ dσ ∧ dσ

. (6.36)

This is our final formula for the conformal dimension of the chiral primary operator dual
to a BPS D3-brane wrapped on �3. Since we may write

∫

�3

σ ∧ dσ =
∫

�4

e−r2/2ω
2

2! , (6.37)

we again see that it depends only on the symplectic structure of (X, ω) and the Reeb vec-
tor field ξv . This again may be evaluated by localization, having appropriately resolved
the tip of the cone �4.

7. The Pilch-Warner Solution

In this section we illustrate the general results derived so far with the Pilch-Warner
solution [13]. (Some aspects of the generalized complex geometry of this background
have already been discussed in [20].) Recall that the Pilch-Warner solution is dual to a
Leigh-Strassler fixed point theory [16] which is obtained by giving a mass to one of the
three chiral superfields (in N = 1 language) of N = 4 SU (N ) super-Yang-Mills theory,
and following the resulting renormalization group flow to the IR fixed point theory. This
latter theory is an N = 1 SU (N ) gauge theory with two adjoint fields Za , a = 1, 2,
which form a doublet under an SU (2) flavour symmetry, and a quartic superpotential.
Since the superpotential has scaling dimension three, this fixes �(Za) = 3/4, implying
that the IR theory is strongly coupled. The mesonic moduli space is simply SymN

C
2.

The Pilch-Warner supergravity solution [13] was rederived in [19], and we shall use
some of the results from that reference also. We have Y = S5 with non-trivial metric,

gY = 1

9

[

6dϑ2 +
6 cos2 ϑ

3− cos 2ϑ
(σ 2

1 + σ 2
2 ) +

6 sin2 2ϑ

(3− cos 2ϑ)2
σ 2

3

+4

(
dϕ +

2 cos2 ϑ

3− cos 2ϑ
σ3

)2
]

, (7.1)

where 0 ≤ ϑ ≤ π
2 , 0 ≤ ϕ ≤ 2π , and σi , i = 1, 2, 3, are left-invariant one-forms on

SU (2) (denoted with hats in [19]). The dilaton φ and axion C0 are simply constant,
while the warp factor is

e4� = f

8
(3− cos 2ϑ). (7.2)

There is also a non-trivial NS and RR three-form flux given by (see (A.7))

G = (2 f )1/2

33/2 e2iϕ cosϑ

(
dϕ ∧ dϑ − i sin 2ϑ

3− cos 2ϑ
dϕ ∧ σ3

− 4 cos2 ϑ

(3− cos 2ϑ)2
dϑ ∧ σ3

)
∧ (σ2 − iσ1). (7.3)
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We introduce the Euler angles (α, β, γ ) on SU (2) (as in [19]), so that

σ1 = − sin γ dα − cos γ sin αdβ,

σ2 = cos γ dα − sin γ sin αdβ,

σ3 = dγ − cosαdβ.

(7.4)

In terms of these coordinates, the R-symmetry vector ξv is [19]

ξv = 3

2
∂ϕ − 3∂γ . (7.5)

Using the explicit formulae in [19], it is easy to show that the contact form is

σ = −2

3

(
cos 2ϑ dϕ + cos2 ϑ σ3

)
. (7.6)

The solution is toric, in the sense that both σ and the metric are invariant under
shifts of ϕ, β and γ . However, notice that the G-flux in (7.3) is not invariant under
shifts of ϕ, thus breaking this U (1)3 symmetry to only a U (1)2 symmetry of the full
supergravity solution. This is expected, since the dual field theory described above has
only an SU (2)×U (1)R global symmetry.

On Y = S5 there are precisely three invariant circles under the U (1)3 action, where
two of the U (1) actions degenerate, namely at {ϑ = π

2 }, {ϑ = 0, α = 0}, {ϑ = 0,
α = π}. A set of 2π -period coordinates on U (1)3 are

ϕ1 = ϕ, ϕ2 = −1

2
(ϕ + γ − β), ϕ3 = −1

2
(ϕ + γ + β). (7.7)

These restrict to coordinates on the above three invariant circles, respectively. On X ∼=
R

6\0 we also have three corresponding moment maps:

μ1 = r2

3
sin2 ϑ, μ2 = r2

3
cos2 ϑ(1 + cosα), μ3 = r2

3
cos2 ϑ(1− cosα), (7.8)

so that ω = 1
2 d(r2σ) =∑3

i=1 dμi ∧dϕi . It follows that the image of the moment map –
the space spanned by the μi coordinates – is the cone (R≥0)

3, where the three invariant
circles map to the three generating rays u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1).
The Reeb vector (7.5) in this basis is then computed to be

ξ = 3

2
∂ϕ − 3∂γ = 3

2
∂ϕ1 +

3

4
∂ϕ2 +

3

4
∂ϕ3 . (7.9)

Since the symplectic structure is smooth at r = 0, we may evaluate (6.25) by localization
without having to resolve X at r = 0. In the case at hand, we have the single fixed point
at r = 0, and from (7.9) one obtains the known result

aN=4

aPW
= 1

ξ1ξ2ξ3
= 32

27
. (7.10)

They key point about the above calculation is that we have computed this knowing only
the symplectic structure of the solution and the Reeb vector field ξv .

We may similarly compute the conformal dimensions of the operators det Za , using
(6.36), by interpreting them as arising from a BPS D3-brane wrapped on the three-
spheres at α = 0 and α = π , respectively. It is simple to check these indeed satisfy the
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calibration condition (6.33) and are thus supersymmetric. Using (6.37) and localization
at r = 0 implies that (6.37) is equal to 1/ξ1ξ2, 1/ξ1ξ3, respectively, which in both cases
is 8/9. The formula (6.36) thus gives�(det Za) = 3N/4, or equivalently�(Za) = 3/4,
which is indeed the correct result.

Next recall that the complex one-form θ = d(r3θ0), where θ0 = − 1
24 e4�S, and the

mesonic moduli space should be the locus θ = 0. As discussed in Sect. 5.2, this is the
locus sin 2θ̄ = sin 2φ̄ = 0. For the Pilch-Warner solution, we may easily compute

sin 2θ̄ = −
√

3 sin2 ϑ√
1 + 3 sin4 ϑ

, cos 2φ̄ =
√

1 + 3 sin4 ϑ

1 + sin2 ϑ
. (7.11)

Thus, as discussed in [20], the mesonic moduli space S = 0 is equivalent to ϑ = 0,
which is a codimension two submanifold in R

6 diffeomorphic to R
4. Moreover, this is

C
2 in the induced complex structure, and we thus see explicit agreement with the field

theory N = 1 mesonic moduli space.
Finally, although the Pilch-Warner solution is generalized complex, rather than com-

plex, we note that one can nevertheless define a natural complex structure [41]. The
relation between this integrable complex structure and the generalized geometry has
been discussed in [20]. Let us conclude this section by elucidating this connection. One
can introduce the following complex coordinates [20] in terms of the angular variables
(7.7):

s1 = r3/2 sin ϑ e−iϕ1 ,

s2 = r3/4 cosϑ cos α
2 eiϕ2 ,

s3 = r3/4 cosϑ sin α
2 eiϕ3 .

(7.12)

This makes R
6 ∼= C

3. However, because of the minus sign in the first coordinate in
(7.12), the corresponding integrable complex structure I∗ is not the unique complex
structure that is compatible with the toric structure of the solution: the latter instead
has complex coordinates s̄1, s2, s3. Indeed, also the Reeb vector field ξv is not given by
I∗(r∂r ). This makes the physical significance of this complex structure rather unclear.
Nevertheless, one can show that I∗ does in fact come from an SU (3) structure defined
by a Killing spinor. Following [20], we define

2âη∗ = η1
+ + iη2

+ = eA/2
(
ξ2
iξ2

)
, (7.13)

where by definition we require η̄∗η∗ = 1. It is then convenient to define â ≡ |â|eiz ,
where |â|2 = 1

2 eA|ξ2|2 = 1
2 eA(1−sin ζ ). We then introduce the bilinears corresponding

to the SU (3) structure defined by η∗:

J∗ ≡ −iη̄∗γ(2)η∗, (7.14)

�∗ ≡ η̄c∗γ(3)η∗. (7.15)

One computes that d�∗ = 0, implying that the corresponding complex structure I∗ is
integrable, and moreover that

e2iz�∗ = −e2iα

√
2 f 3/2

9e3A
ds1 ∧ ds2 ∧ ds3, (7.16)
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implying that (7.12) are indeed complex coordinates for this complex structure. We also
compute

J∗ = −e2A

r2

[
d log r ∧ 2

3

(
dϕ +

cos2 ϑ

(1 + sin2 ϑ)
σ3

)
+

1

3(1 + sin2 ϑ)
(sin 2ϑσ3 ∧ dϑ

+ cos2 ϑσ1 ∧ σ2

) ]
. (7.17)

8. Conclusion

In this paper we have initiated an analysis of the generalized cone geometry associ-
ated with supersymmetric Ad S5 × Y solutions of type IIB supergravity. The cone is
generalized Hermitian and generalized Calabi-Yau and we have identified holomor-
phic generalized vector fields that are dual to the dilatation and R-symmetry of the
dual SCFT. We identified a relationship between “BPS polyforms”, i.e. polyforms with
equal R-charge and scaling weight, and generalized holomorphic polyforms that should
be worth exploring further. In particular, we would like to make a precise connection
between such objects and the spectrum of chiral operators in the SCFT via Kaluza-Klein
reduction on Y .

We also showed how one can carry out a generalized reduction of the six-dimensional
cone to obtain a new four-dimensional transverse generalized Hermitian geometry. This
generalizes the transverse Kähler-Einstein geometry in the Sasaki-Einstein case. By
analogy with the Sasaki-Einstein case (e.g. [25]) this perspective could be useful for
constructing new explicit solutions.

We also analysed the symplectic structure on the cone geometry, which exists pro-
viding that the five-form flux is non-vanishing. It would be interesting to know whether
or not this includes all solutions. We obtained Duistermaat-Heckman type integrals for
the central charge of the dual SCFT and the conformal dimensions of operators dual to
BPS wrapped D3-branes. These formulae precisely generalize analogous formulae that
were derived in [10,11] for the Sasaki-Einstein case. Other formulae for these quantities
were also presented in [10,11] and we expect that these will also have precise generaliza-
tions in terms of generalized geometry. In particular, we expect a generalized geometric
interpretation of a-maximization.
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A. Conventions and 6D to 5D Map

We use exactly9 the same conventions as in [19], up to some simple relabelling. Here we
will explain how the results of that paper concerning the five-dimensional geometry with
metric gY can be uplifted to six-dimensions. In particular, we will relate the five-dimen-
sional Killing spinors discussed in [19] to the six-dimensional chiral spinors ηi that

9 Although it will not be relevant in this paper we point out that there is a typo in [19]: the ρa matrices
generating Cliff(4, 1) actually satisfy ρ01234 = −i.
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define the bispinors �±. We first recall the Killing spinor equations in five-dimensions,
related to the geometry gY , given in [19]. There are two differential conditions

(∇m − i

2
Qm)ξ1 +

i

4

(
e−4� f − 2

)
βmξ1 +

1

8
e−2�Gmnpβ

npξ2 = 0, (A.1)

(∇m +
i

2
Qm)ξ2 − i

4

(
e−4� f + 2

)
βmξ2 +

1

8
e−2�G∗mnpβ

npξ1 = 0, (A.2)

and four algebraic conditions

βm∂m�ξ1 − 1

48
e−2�βmnpGmnpξ2 − i

4

(
e−4� f − 4

)
ξ1 = 0, (A.3)

βm∂m�ξ2 − 1

48
e−2�βmnpG∗mnpξ1 +

i

4

(
e−4� f + 4

)
ξ2 = 0, (A.4)

βm Pmξ2 +
1

24
e−2�βmnpGmnpξ1 = 0, (A.5)

βm P∗mξ1 +
1

24
e−2�βmnpG∗mnpξ2 = 0. (A.6)

Here10 the βm generate the Clifford algebra for gY , so {βm, βn} = 2gY mn . Equivalently,
with respect to any orthonormal frame the corresponding β̂m satisfy {β̂m, β̂n} = 2δmn .
We have chosen β̂12345 = +1. In addition we have set the parameter m in [19] to be
m = 1, consistent with (3.2). In the usual string theory variables we have

P = 1

2
dφ +

i

2
eφF1,

Q = −1

2
eφF1,

G = −ieφ/2 F3 − e−φ/2 H,

(A.7)

where the RR field strengths Fn are defined by (3.3). We also note that the constant f
appearing in the Killing spinor equations is related to the component of the self-dual
five-form flux on Y (3.6) via

F5|Y = − f ṽolY , (A.8)

where the five-dimensional volume form is defined as ṽolY = −e12345 and ei is the
orthonormal frame introduced in Appendix B of [19].
We now provide a map between the five-dimensional spinors and Killing spinor equa-
tions (A.1)-(A.6) to six-dimensional quantities. We begin by using the Cliff(5) gamma
matrices β̂m to construct Cliff(6) gamma matrices γ̂i , i = 1, . . . , 6, via

γ̂m = β̂m ⊗ σ3, m = 1, . . . , 5,

γ̂6 = 1⊗ σ1, (A.9)

where σα , α = 1, 2, 3, are the Pauli matrices. These satisfy {γ̂i , γ̂ j } = 2δi j . The cor-
responding gamma matrices for the six-dimensional metric g6 will be denoted γi . We
define the 6D chirality operator to be

γ̃ ≡ −iγ̂123456 = 1⊗ σ2. (A.10)

10 Notice we have relabelled γi 
→ βm in [19], as in this paper we want to keep the notation γi for six-
dimensional gamma matrices.
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We may choose the D6 intertwiner

D6 = D̃5 ⊗ σ2, (A.11)

where D̃5 = D5 = C5 is the intertwiner of Cliff(5) discussed in [19], and one checks
D−1

6 γi D6 = −γ ∗i . We also note that since in [19] the interwiner A5 = 1 we have A6 = 1

and γ
†
i = γi . If η+ is a Weyl spinor, satisfying γ̃ η+ = η+, then the conjugate spinor

η− ≡ ηc
+ ≡ D6η

∗
+ satisfies γ̃ η− = −η−.

To construct the relevant 6D spinors we first write

ξ1 = χ1 + iχ2, ξ2 = χ1 − iχ2, (A.12)

as in [19]. Given this, the normalization for ξi chosen in [19] implies that the χi are
normalized as

χ̄1χ1 = χ̄2χ2 = 1
2 . (A.13)

We then define

η1
+ = eA/2

(
χ1
iχ1

)
, η1− = eA/2

(−χc
1

iχc
1

)
,

η2
+ = eA/2

( −χ2
−iχ2

)
, η2− = eA/2

(
χc

2−iχc
2

)
,

(A.14)

where recall from (3.16) that

eA/2 = r1/2e�/2+φ/8, (A.15)

and also from [19] that

χc ≡ D̃5χ
∗. (A.16)

In the conventions of [19] we have χ̄ = χ†.
After some detailed calculation one finds that the five-dimensional Killing spinor equa-
tions (A.1)–(A.6), using the five-dimensional metric gY , are equivalent to the six-dimen-
sional Killing spinor equations, using the six-dimensional metric g6 in (3.17) and volume
form (3.18), given by

(
Di − 1

4
Hi

)
η1

+ +
eφ

8
�Fγiη

2
+ = 0, (A.17)

1

2
eA � ∂A η1

+ −
1

8
eA+φ �Fη2

+ = 0, (A.18)

�Dη1
+ +

(
� ∂(2A − φ)− 1

4
�H

)
η1

+ = 0, (A.19)

and additional equations obtained by applying the rule:

η1 ↔ η2, �F →−�F†, H →−H. (A.20)

In these equations we are using the notation that, e.g.

Hi = 1
2 Hi jkγ

jk, �F = F1iγ
i + 1

3! F3i jkγ
i jk + 1

5! F5i jklmγ
i jklm . (A.21)
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These are precisely the same equations that were used in [34] (for zero four-dimensional
cosmological constant).
Finally, we record the following equation of [19]:

D(e6�W ) = −e6�P ∧W ∗ +
f

4
G, (A.22)

where W is the two-form bilinear defined in (3.10). Using this one can show that

iK #
5

(
4

f
e6�+φ/2 Re W

)
= e2�+

φ
2 Re K3, (A.23)

and furthermore that

d

(
e2�+

φ
2 Re K3

)
= iξv H. (A.24)

To see the latter one can derive an expression for the left hand side using, amongst other
things, (3.18), (3.38) and (B.10) of [19], and an expression for the right hand side using
Eq. (3.38) and (B.8) of [19]. Using these results we can deduce that

LK #
5

B = d(iK #
5
b2),

LK #
5
C2 = d(iK #

5
c2),

(A.25)

where b2, c2 were introduced in (3.12), (3.13), respectively.

B. More on the Generalized Vectors ξ and η

In this appendix we derive an expression for the generalized vector ξ in terms of the
bilinears introduced in [19]. We also use the results of [19] to show that LξJ± = 0.
The projections of ξ onto the vector and form parts (in a fixed trivialization of E) are
denoted ξv , ξ f , respectively. It will also be convenient to introduce ξ B ≡ eBξ whose
form part is given by

ξ B
f = ξ f − iξv B, (B.1)

and we recall that ξ B
v = ξv . We next construct the following two generalized (1, 0)−

vectors, which, by definition, are in the +i eigenspace of J−:

Z−1 = r∂r − iξ,

Z−2 = d log r − iη.
(B.2)

That is, both are in the annihilator of �−. We may similarly also construct the (1, 0)+
vectors, with respect to J+:

Z+
1 = e−�−φ/4r∂r − ie�+φ/4η,

Z+
2 = e�+φ/4d log r − ie−�−φ/4ξ.

(B.3)

Together Z±i are four independent generalized vectors. We next note that since Z±i live
within null isotropic subspaces we have six relations of the form, using the notation of
(2.5),

〈Z±i , Z±j 〉 = 0. (B.4)
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Explicitly we have

iξv ξ f = 0, iξvd log r = 0, ir∂r ξ f = 0,

iηvη f = 0, iηvd log r = 0, ir∂r η f = 0, 〈ξ, η〉 = 1
2 .

(B.5)

Since Z−1 annihilates �−, using the definition (3.34) we deduce that

ir∂r�− = i
(

iξv�− + ξ B
f ∧�−

)
. (B.6)

To proceed we use (3.20) to write

�− ≡ η1
+ ⊗ η̄2− = eAχ1χ̄

c
2 ⊗ (σ3 + iσ1). (B.7)

Since ��− =
∑

odd n
1
n!�i1...inγ

i1...in we have

iv�− = 1
2 {viγi ,�−}, ω ∧�− = 1

2 [ωiγ
i ,�−]. (B.8)

Hence, using the Clifford algebra decomposition (3.19) and metric (3.17) we have

ir∂r�−= 1
2 {e�+φ/4γ̂6,�−}= 1

2 eA+�+φ/4χ1χ̄
c
2 ⊗ {σ1, σ3 + iσ1}= ieA+�+φ/4χ1χ̄

c
2⊗1.

(B.9)

On the other hand using (B.5) we have

iξv�− + ξ B
f ∧�− = 1

2 {e�+φ/4ξm
v βm ⊗ σ3,�−} + 1

2 [e−�−φ/4ξ B
f mβ

m ⊗ σ3,�−]
= e�+φ/4v+

mβ
m ⊗ σ3�− + e�+φ/4v−m�−βm ⊗ σ3

= eA+�+φ/4 (
v+

mβ
m(χ1χ̄

c
2 ) + v−m (χ1χ̄

c
2 )β

m)⊗ 1

−eA+�+φ/4 (
v+

mβ
m(χ1χ̄

c
2 )− v−m (χ1χ̄

c
2 )β

m)⊗ σ2, (B.10)

where recall that {βm, βn} = 2gY mn and we have defined

v±m = 1
2 (ξvm ± e−2�−φ/2ξ B

f m). (B.11)

To satisfy (B.6) we thus require

v+
mβ

m(χ1χ̄
c
2 ) = v−m (χ1χ̄

c
2 )β

m = 1
2χ1χ̄

c
2 , (B.12)

which implies

v+
mβ

mχ1 = 1
2χ1, v−mβmχ2 = 1

2χ2, (B.13)

or equivalently

v+
m =

χ̄1βmχ1

2χ̄1χ1
, v−m =

χ̄2βmχ2

2χ̄2χ2
. (B.14)

Hence, given the normalizations (A.13) we deduce that, in terms of the bilinears defined
in (3.9),

ξv = K #
5 ,

ξ B
f = e2�+φ/2Re K3.

(B.15)
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A similar calculation using

ir∂r�+ = ie2�+φ/2
(

iηv�− + ηB
f ∧�+

)
, (B.16)

leads to

ηv = e−2�−φ/2 Re K #
3 ,

ηB
f = K5. (B.17)

Using the expression for the B-field given in (3.12) we obtain the expressions for ξ f and
η f given in (3.50).
In [19] it was shown that K5 is a Killing one-form, so that its dual vector field K #

5 ,
with respect to the metric gY on Y , is a Killing vector field. In fact K #

5 generates a full
symmetry of the supergravity solution, in that all bosonic fields (warp factor, dilaton,
NS three-form H and RR fields) are preserved under the Lie derivative along ξv = K #

5 .
However, importantly, the Killing spinors ξ1, ξ2 are not invariant under ξv . In [19] it was
shown that

Lξv S = −3iS, (B.18)

where S ≡ ξ̄ c
2 ξ1. Notice that, since ξv preserves all of the bosonic fields, one may take

the Lie derivative of the Killing spinor equations (A.1)-(A.6) for ξ1, ξ2 along ξv , showing
that {Lξv ξi } satisfy the same equations as the {ξi }. It thus follows that

Lξv ξi = iμξi , (B.19)

where μ is a constant. Now (B.18) implies that 2μ = −3, and thus

Lξv ξi = −3i

2
ξi . (B.20)

One can also derive this last equation directly from the Killing spinor equations (A.1)–
(A.6) of [19]. It thus follows that

Lξv �+ = 0, (B.21)

Lξv �− = −3i�−. (B.22)

From (A.24) we have dξ B
f = iξv H and we deduce that

Lξ B�+ = iξv H ∧�+,

Lξ B�− = −3i�− + iξv H ∧�−. (B.23)

Since (A.24) is also equivalent to dξ f = Lξv B we deduce that

Lξ�+ = 0,

Lξ�− = −3i�−,
(B.24)

and hence LξJ± = 0. It is also interesting to point out that

(Lξ B − iξv H∧)F = 0, or equivalently, Lξ (e
−B F) = 0. (B.25)
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C. The Sasaki-Einstein Case

Here we discuss the special case in which the compact five-manifold Y is Sasaki-
Einstein. Setting G = P = Q = 0, f = 4e4� and ξ2 = 0, the Killing spinor equations
(A.1)-(A.6) reduce to

∇mξ1 +
i

2
βmξ1 = 0. (C.1)

In terms of Appendix B of [19] we choose θ̄ = φ̄ = 0 and e2iᾱ = −1 (these angles had
no bars on them in [19]). We then have the equalities

η = 1

2
ξ̄1β(1)ξ1 = K5 = e1,

ωKE = i

2
ξ̄1β(2)ξ1 = −V = e25 + e43,

�KE = 1

2
ξ̄1β(2)ξ

c
1 = (e2 + ie5) ∧ (e4 + ie3),

(C.2)

and

dη = 2ωKE,

d�KE = 3iη ∧�KE. (C.3)

Observe that

η ∧ 1

2!ω
2
KE = −e12345 = ṽolY . (C.4)

Next using the 5D-6D map (3.20), we obtain

iη̄1
+γ(2)η

1
+ = r(d log r ∧ e1 + ωKE) ≡ 1

r
ωCY,

−iη̄1c
+ γ(3)η

1
+ = r(d log r − ie1)(e2 − ie5)(e4 − ie3) ≡ 1

r2 �̄CY.

(C.5)

It is worth noting that

1

3!ω
3
CY = r6e123456 = r6d log r ∧ η ∧ 1

2!ω
2
KE, (C.6)

where e6 = dr/r . We also find, directly from (3.33), (3.36),

�− = 1

8
�̄CY,

�+ = − ir3

8
exp

(
i

r2ωCY

)
.

(C.7)

A useful check is that these expressions agree with those obtained from the general
expressions obtained in Sects. 5.1 and 6.1, respectively.
One can also write down the corresponding reduced structures �̃1 and �̃2, as defined in
Sect. 4.3, on the Kähler-Einstein space. One finds

�̃1 = 1

8
e3iψ�̄KE, �̃2 = − i

8
eiωKE , (C.8)

where ψ is the coordinate, defined such that K #
5 = ∂ψ , introduced in (4.31).
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