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Abstract: Using the multiplicities of the Laplace eigenspace on the sphere (the space
of spherical harmonics) we endow the space with Gaussian probability measure. This
induces a notion of random Gaussian spherical harmonics of degree n having Laplace
eigenvalue E = n(n + 1). We study the length distribution of the nodal lines of random
spherical harmonics.

It is known that the expected length is of order n. It is natural to conjecture that the
variance should be of order n, due to the natural scaling. Our principal result is that,
due to an unexpected cancelation, the variance of the nodal length of random spherical
harmonics is of order log n. This behaviour is consistent with the one predicted by Berry
for nodal lines on chaotic billiards (Random Wave Model). In addition we find that a
similar result is applicable for “generic” linear statistics of the nodal lines.

1. Introduction

Nodal patterns (first described by Ernest Chladni in the 18th century) appear in many
problems in engineering, physics and natural sciences: they describe the sets that remain
stationary during vibrations. Hence, their importance in such diverse areas as musical
instruments, mechanical structures, earthquake study and other areas. They also arise
in the study of wave propagation and in astrophysics; this is a very active and rapidly
developing research area. Let (M, g) be a compact manifold and f : M → R be a real
valued function. The nodal set of f is its zero set f −1(0) = {x ∈ M : f (x) = 0}.

The most important or fundamental case is that of f being the eigenfunction of the
Laplace-Beltrami operator on M,

�g f + E f = 0, (1)
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with E ≥ 0. In this case it is known [8], that generically, the nodal sets are smooth
submanifolds of M of codimension 1. For example, if M is a surface, the nodal sets are
smooth curves, also called the nodal lines. One is interested in studying their volume
(i.e. the length of the nodal line for the 2-dimensional case) and other properties for
highly excited eigenstates. Yau conjectured [25,26] that the volume of the nodal set is
commensurable to

√
E in the sense that there exist constants cM,CM > 0 such that if

f satisfies (1) then

cM
√

E ≤ Vol( f −1(0)) ≤ CM
√

E . (2)

The lower bound was proved by Bruning and Gromes [7] and Bruning [6] for the pla-
nar case. Donnelly and Fefferman [10] finally settled Yau’s conjecture for real analytic
metrics. However, the general case of a smooth manifold is still open.

1.1. Spherical Harmonics. In this paper, we will concentrate on the nodal sets on the
sphere. It is well known that the eigenvalues E of the Laplace equation

� f + E f = 0

on the m-dimensional sphere Sm are all the numbers of the form

Em
n = n(n + m − 1), (3)

where n is an integer. Given a number Em
n , the corresponding eigenspace is the space

Em
n of spherical harmonics of degree n. Its dimension is given by

N = N m
n = 2n + m − 1

n + m − 1

(
n + m − 1

m − 1

)
∼ 2

(m − 1)!nm−1. (4)

Given an integral number n, we fix an L2(Sm) orthonormal basis of Em
n ,

η
n;m
1 (x), ηn;m

2 (x), . . . , ηn;m
N m

n
(x),

giving an identification Em
n

∼= R
N m

n . For further reading on the spherical harmonics we
refer the reader to [1], Chap. 9.

1.2. Random model. We consider a random eigenfunction

f m
n (x) =

√
|Sm |
N m

n

N m
n∑

k=1

akη
n;m
k (x), (5)

where ak are standard Gaussian N (0, 1) i.i.d. That is, we use the identification

Em
n

∼= R
N m

n

to endow the space Em
n with Gaussian probability measure υ as

dυ( f m
n ) = e− 1

2 ‖a‖2 da1 · . . . · daN m
n

(2π)N m
n /2

,

where a = (ai ) ∈ R
N m

n are as in (5).
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Note that υ is invariant with respect to the orthonormal basis for Em
n . Moreover, the

Gaussian random field f m
n is isotropic in the sense that for every x1, . . . xl ∈ Sm and

every orthogonal R ∈ O(m + 1),

( fn(Rx1), . . . , fn(Rxl))
d= ( fn(x1), . . . , fn(xl)). (6)

As usual, for any random variable X , we denote its expectation EX . For example,
with the normalization factor in (5), for every m ≥ 2, n and fixed point x ∈ Sm , one has

E[ f m
n (x)

2] = Sm

N m
n

N m
n∑

k=1

η
n;m
k (x)2 = 1, (7)

a simple corollary from the addition theorem (see [1], or (18) for m = 2).
Any characteristic X (L) of the nodal set

L = L( f m
n ) = {x ∈ S2 : f m

n (x) = 0}
is a random variable. The most natural characteristic of the nodal set L f m

n
of f m

n is, of
course, its (m − 1)-dimensional volume Z( f m

n ). The main goal of the present paper
is the study of the distribution of the random variable Z( f m

n ) for a random Gaussian
fn ∈ En .

1.3. Some Conventions. Throughout the paper, the letters x, y will denote either points
on the sphere Sm or spherical variables. For x, y ∈ Sm , d(x, y)will stand for the spher-
ical distance between x and y. Given a set F ⊆ Sm , we denote its area by |F |; len(C)
will stand for the length of a smooth curve C ⊂ Sm . For example,

|S2| = 4π,

and

Z( f 2
n ) = len({ f 2

n (x) = 0}).
In this paper we are mainly concerned with the 2-dimensional case. Therefore, to sim-

plify the notation we will use fn(x) := f 2
n (x), and accordingly En := E2

n , En := E2
n ,

Nn := N 2
n , ηn

k := η
n;2
k .

In this manuscript, we will use the notations A � B and A = O(B) interchangeably.
If necessary, the constant involved will depend on the parameters written in the subscript.
For example, Oϕ or �ϕ means that the constants involved depend on the function ϕ.

1.4. Nodal length and related subjects. It is widely believed that for generic chaotic
billiards, one can model the nodal lines for eigenfunctions of eigenvalue of order ≈ E
with nodal lines of isotropic, monochromatic random waves of wavenumber

√
E (this is

called Berry’s Random Wave Model or RWM). Berry [3] found that the expected length
(per unit area) of the nodal lines for the RWM is of size approximately

√
E , and he

argued that the variance should be of order log E .
Berard [2] proved that for every m ≥ 2,

E
[
Z( f m

n )
] = cm ·√Em

n , (8)
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where

cm = 2πm/2

√
m�

(m
2

) ,
(see also [15 and 23]). Furthermore, Neuheisel [15] established an asymptotic upper
bound for the variance of the form

Var(Z( f m
n )) = O

(
Em

n

n
(m−1)2

3m+1

)
= O

(
Em

n

N m−1
3m+1

)
(9)

and in our previous work [23], we improved the latter to be

Var(Z( f m
n )) = O

(
Em

n√
N m

n

)
.

Either of the bounds implies that the variance of the length, normalized so that its
expected value is 1, vanishes with prescribed rate,

Var

( Z( fn)

E[Z( fn)]
)

= O

(
1√
Nn

)

for the latter bound. This means that the constants cS2 and CS2 guaranteed by Donnely-
Fefferman (2) may be taken as essentially equal for “generic” eigenfunctions f m

n ∈ Em
n ,

where n is large.
The volume of the nodal line of a random eigenfunction on the torus

T 2 = R
2/Z2

was studied by Rudnick and Wigman [16] and subsequently by Krishnapur and Wigman
[14]. In this case, it is not difficult to see that the expectation is again E[Z( f T 2

)] =
const ·√E . Their principal result is that as the eigenspace dimension N grows to infinity,
the variance is bounded by

Var(Z( f T 2
)) = O

(
E

N 2

)
,

and it is likely that it is asymptotic to Var(Z( f T 2
)) ∼ ∗ E

N 2 for a “generic” sequence of
eigenvalues.

For generic manifolds, one does not expect the Laplacian to have any multiplicities,
so that we cannot introduce a Gaussian ensemble on the eigenspace. Let E j be the
eigenvalues and φ j the corresponding eigenfunctions. It is well known that the E j are
discrete, E j → ∞ and L2(M) = span{φ j }.

In this case, rather than considering random eigenfunctions, one considers random
combinations of eigenfunctions with growing energy window of either type

f L(x) =
∑

E j ∈[0,E]
a jφ j (x)



Fluctuations of Nodal Length 791

(called the long range), or

f S(x) =
∑

√
E j ∈[√E,

√
E+1]

a jφ j (x),

(called the short range), as E → ∞. Berard [2] and Zelditch [27] found that

EZ( f L) ∼ C̃M · √
E

and recently Zelditch [27] proved that

EZ( f S) ∼ C̃M · √
E,

notably with the same constant C̃M > 0 for both the long and the short ranges.
For billiards (i.e. surfaces with piecewise smooth boundary), one is interested in the

number of intersections of the nodal line with the boundary, or, equivalently, the number
of open nodal components. Toth and Wigman [21] studied the number of boundary
intersections for random combinations of eigenfunctions f L(x) and f S(x) on generic
billiards, defined precisely as above. They found that the expected number of the inter-
sections is of order

√
E .

In the first part of this paper, we resolve the high energy asymptotic behaviour for
the variance of the nodal length for random 2-dimensional spherical harmonics

fn = f 2
n : S2 → R.

Theorem 1.1. One has

Var (Z( fn)) = 65

32
log n + O(1), (10)

asymptotically as n → ∞.

For the higher dimensional sphere Sm ⊆ R
m+1 with m ≥ 3, it is possible to prove

[24] that

Var(Z( f m
n )) = O

(
1

nm−2

)
= O

(
Em

n

nN m
n

)
,

and it is likely that

Var(Z( f m
n )) ∼ c

nm−2

for some constant c > 0. We intend to address the question of precise asymptotics for
the higher dimensional case in the future.
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1.5. Smooth linear statistics.1 Rather than considering the volume of the full nodal line
one may choose a nice submanifold F ⊆ Sm of the sphere and consider the nodal
volume

Z F ( f m
n ) := Vol({ f m

n = 0} ∩ F)

inside F . More generally, let ϕ : Sm → R be a function. One then defines

Zϕ( f m
n ) :=

∫

f m
n

−1(0)

ϕ(x)d Vol f m
n

−1(0)(x).

The random variable Zϕ( f m
n ) is called a (smooth) linear statistic of the nodal set. A

priori, this definition makes sense only for the continuous test function ϕ ∈ C(Sm), so
that the restriction ϕ| f m

n
−1(0) ∈ C( f m

n
−1(0)) is defined. Unfortunately, the class C(S2)

of continuous functions does not contain the characteristic functions of smooth sets.
However, it is known [13] that for a smooth (m − 1)-dimensional hypersurface C one
can define the trace trC(ϕ) ∈ L1(C) of ϕ for some wider classes of functions such
as W 1,1(Sm), the class of integrable functions with integrable weak derivatives, even
though the values of ϕ ∈ W 1,1(Sm) are defined up to measure zero spherical sets. To
define the trace, one exploits the values of ϕ in a small tubular neighbourhood of C.

Unfortunately again, the class W 1,1 does not contain the family of characteristic
functions of nice sets. As an example, let us consider the 2-dimensional spherical disc
F = B(N , π4 ) � S2 centered at the north pole of radius π

4 , C = ∂F its boundary, and
ϕ = χF . Then the definition of trC(χF ) is ambiguous since one may define it as either
0 ∈ L1(C) or 1 ∈ L1(C). This phenomenon (i.e. the jump in f occurring precisely on C)
is typical to the class BV (Sm) of functions of bounded variation; it is known [13], that
for any characteristic functionχF of a submanifold F with C2 boundary,χF ∈ BV (Sm),
and, in addition, W 1,1(Sm) � BV (Sm). It turns out that, despite this subtlety, one can
still extend the notion of average trace

ϕ±
C = tr±C (ϕ) ∈ L1(C)

to the full class ϕ ∈ BV (Sm) (see Appendix C for more details). For instance, in our
previous example, tr±∂F (χF ) ≡ 1

2 . It is then natural to define

Zϕ( f m
n ) :=

∫

f m
n

−1(0)

ϕ±
C (x)d Vol f m

n
−1(0)(x).

It is easy to compute the expected value of a “generic” linear statistic, following along
the lines of the proof of [23], Prop. 1.4, starting from (121).

Lemma 1.2. For

ϕ ∈ BV (S2) ∩ L∞(S2)

we have

E
[
Zϕ( fn)

] =

∫
S2

ϕ(x)dx

23/2

√
En . (11)

1 The author wishes to thank Steve Zelditch for his suggestion to consider the smooth linear statistics
as a measure of the “stability” for the result obtained for the length and “Berry’s cancelation phenomenon”
(discussed in Sect. 1.6.1 below)
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Remark 1.3. Note that fn is odd or even if n is odd or even respectively, so that in par-
ticular the nodal lines are symmetric w.r.t. the involution x �→ −x . Therefore if ϕ is odd
then Zϕ( fn) vanishes identically in either case. Moreover,

Zϕ( fn) = Zϕev
( fn),

where the even part of ϕ

ϕev(x) := ϕ(x) + ϕ(−x)

2

does not vanish identically, if and only if, ϕ is not odd. Therefore, we may assume that
ϕ is even in the first place, and we will assume so throughout the rest of this paper.

Under the assumption of continuous differentiability we have the following result for
the variance of Zϕ for 2-dimensional spherical harmonics.

Theorem 1.4. Let ϕ : S2 → R be a continuously differentiable even function, which
does not vanish identically. Then as n → ∞,

Var(Zϕ( fn)) = c(ϕ) · log n + O‖ϕ‖∞,V (ϕ)(1), (12)

where

c(ϕ) := 65
‖ϕ‖2

L2(S2)

128π
> 0, (13)

i.e. the constant involved in the “O”-notation depends only on the L∞ norm ‖ϕ‖∞ and
the total variation V (ϕ) of ϕ, and moreover, this dependency is monotone increasing.

Unfortunately, Theorem 1.4 does not cover the characteristic functions of nice sub-
manifolds. For this, we have Theorem 1.5; the main idea of its proof is approximating
a function ϕ ∈ BV (S2) with C∞ functions ϕi , for which we apply Theorem 1.4. We
control the error term in (12) applied to ϕi using its L∞ norm and variation, which is
why we included this technical statement in the formulation of Theorem 1.4 in the first
place.

Theorem 1.5. Let

ϕ ∈ BV (S2) ∩ L∞(S2)

be a not identically vanishing even function. Then as n → ∞,

Var(Zϕ( fn)) = c(ϕ) · log n + Oϕ(1), (14)

where

c(ϕ) := 65
‖ϕ‖2

L2(S2)

128π
> 0.

The characteristic function χF of a subsurface F ⊆ S2 with C2 boundary is of
bounded variation, i.e. χF ∈ BV (S2), [13] Example 1.4. Therefore, in this case the
statement of Theorem 1.5 is valid for Z F , as the following corollary states.
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Corollary 1.6. Let F ⊆ S2 be a subsurface of the sphere with C2 boundary. Then as
n → ∞,

Var(Z F ( fn)) = c · log n + OF (1),

c = c(F) := 65
|F |

128π
> 0.

(15)

Remark 1.7. One may observe from the proof of Theorem 1.5, that the constant involved
in the “O”-notation in (14) depends only on ‖ϕ‖∞ and the total variation V (ϕ). In par-
ticular, the constant involved in the “O”-notation (15) depends only on the length of the
boundary ∂F .

1.6. Discussion.

1.6.1. “Berry’s Cancelation Phenomenon”. Originally, it was conjectured that the var-
iance Var(Z( fn)) should be asymptotic to c · n, where c > 0 is a constant, due to the
natural scaling; however, it turned out that c vanishes, precisely as predicted by Berry
[3] for the RWM. The reason for this phenomenon, which we refer to as “Berry’s cancel-
ation phenomenon”, is that the leading nonconstant term in the long range asymptotics
of the 2-point correlation function is purely oscillating (see the Key Proposition 3.5),
so that it does not contribute to the variance. The non-oscillating leading terms cancel
(which is, according to Michael Berry [3], “obscure”). It seems that “Berry’s cancelation
phenomenon” is of general nature: it also occurs on the torus [14], and it is likely to
hold for random combinations of eigenfunctions on a generic manifold [22].

1.6.2. Spherical Harmonics vs. RWM The principal result of the present paper shows
that the behaviour of the nodal lines of 2-dimensional spherical harmonics of eigenvalue
E is consistent with the RWM of wavenumber

√
E , predicted for nodal lines of generic

chaotic systems. In both cases, the expected nodal length is of order
√

E and variance of
order log E . More precisely, Berry [3] argued that for a billiard of area A, the variance
of the nodal length should be asymptotic to

A

512π
log E

in the high energy limit. Taking into account the symmetry of the nodal lines on S2,
its “effective” area is 2π , and therefore, according to the RWM, the variance should be
asymptotic to 1

256 log E , which differs from the statement of Theorem 1.1 by a constant.
There is a direct relation between the random spherical harmonics and the RWM.

Kolmogorov’s theorem implies that a random centered Gaussian ensemble of functions
is determined by its covariance function (see Sect. 2.1). The covariance function for the
RWM is

rRW M (x, y) = J0(
√

E |x − y|),
x, y ∈ R

2, and for the random spherical harmonics is

rn(x, y) = Pn(cos(d(x, y))),
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where Pn are the Legendre polynomials. The Legendre polynomials admit Hilb’s asymp-
totics,

Pn(cos(φ)) ≈
√

φ

sin φ
J0(φ(n + 1/2)),

i.e. almost identical to RWM, up to the “correction factor”
√

φ
sin φ . This factor seems to

“know” about the geometry of the sphere; it is one of the underlying factors responsible
for the difference in the constants in the variance asymptotics. The geometry of the
sphere occurs in some other places as well.

1.6.3. Nodal Set vs. Level Sets. Interestingly, the behaviour of the level curves f −1
n (L)

for L > 0 is very different. Let ZL( fn) be the length of the level curve of fn . The
expected length is [24]

E[ZL( fn)] = c1e−L2/2
√

En,

consistent with the nodal case L = 0. However, unlike the nodal lines, the variance of
the level curves length is asymptotic to [24]

Var(ZL( fn)) ∼ c2 L4e−L2 · n.

1.6.4. Real vs. Complex Zeros.2 The behaviour of the zeros of complex analytic functions
was studied extensively in recent years and it is interesting to learn that their behaviour
is very different from our case of real valued spherical harmonics. Sodin and Tsirelson
[20] considered 3 different models of random complex analytic functionsψL : M → C,
all parametrized by an integer L → ∞, roughly corresponding to the degree of the har-
monic polynomials n. Here M is the natural domain corresponding to the model with
G-invariant measure m∗, where G is a group of symmetries; M is either the sphere
C ∪ {∞}, the complex plain C or the unit disc {|z| < 1}. In this case the set of zeros is
almost surely finite. The authors establish the asymptotic Gaussianity for smooth linear
statistics h : M → R, h ∈ C2

c (M),

Zh(ψL) :=
∑

z:ψL (z)=0

h(z),

where the expected value is given by

E[Zh(ψL)] = L · 1

π

∫
M

hdm∗,

for each of the models considered, consistent with (11). However the variance is of order

Var(Zh(ψL)) ∼ κ

L
‖�∗h‖2

L2(m∗) (16)

decaying with L → ∞; here κ > 0 is a universal constant, and �∗ is the invariant
Laplacian. Note also that here the dependency on the test function h is via the L2 norm

2 The author wishes to thank Mikhail Sodin and Steve Zelditch for pointing out the unexpected differences
between the real and the complex analytic cases.
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of a second order differential operator acting on h (namely the invariant Laplacian),
whereas in the real valued spherical harmonics case it depends on the L2 norm of ϕ
itself (i.e. the operator is the identity, see (12) and (13)).

For h = χU the characteristic function of a smooth domain U ⊆ M (i.e. Zh is
the number of zeros in U ), while the expected value of Zh(ψL) is still proportional to
area(U ) · L the variance is of different shape (cf. Corollary 1.6 in the spherical harmon-
ics case). Namely it is known [12] that the variance is asymptotically proportional to√

L · len(∂U ), different from Corollary 1.6 both in the power of L and the dependency
on the test function. This reflects the high frequency oscillations of the zeros smoothed
out by a smooth test function.

Shiffman and Zelditch [18,19] considered a more general situation of random inde-
pendent Gaussian sections s1 = sL,L

1 , . . . , sk = sL,L
k ∈ �(LL ,M) of high powers

LL , L → ∞ of holomorphic line bundles L on an m-dimensional Kähler manifold M,
where 1 ≤ k ≤ m. They considered the volume of the intersection of the zero sets of si ,

ZU (s1, . . . sk) = Vol2m−2k

(
(s1, . . . sk)

−1(0)
)
,

and its smooth linear statistics

Zh(s1, . . . sk) =
∫

(s1,...sk )
−1(0)

h(z)d Vol
(
(s1, . . . sk)

−1(0)
)

(here in case the system is full k = m, the volume is the number of points, and the
integral is a sum).

In both cases the expected value is asymptotic to

E

[
ZU (sL

1 , . . . s
L
k )
]
, E

[
Zh(sL

1 , . . . s
L
k )
]

∼ cLk,

where as earlier, c > 0 is proportional to either Vol(U ) or the mass of h. For the “sharp”
random variable they obtained [18] the asymptotic

Var(ZU (sL
1 , . . . s

L
k )) ∼ cmk L2k−m−1/2 · Vol(∂U ),

where cmk are some universal constants, extending Forrester-Honner [12], whereas for
the smooth statistics they established a Central Limit Theorem with variance

Var(Zh(sL
1 , . . . s

L
k )) ∼ ch L2k−m−2,

where, as in case of Sodin-Tsirelson (16), ch involves a certain 2nd order differential
operator acting on h.

1.7. On the proof of the main results. The proof of Theorem 1.1 involves some geo-
metric as well as some probabilistic aspects; we improve upon both in comparison with
our previous paper. We employ the Kac-Rice formula, which reduces the computation
of the length variance to the 2-point correlation function, given in terms of distribution
of the values fn(x) as well as their gradients ∇ fn(x) ∈ Tx (S2), for all x ∈ S2.

Thanks to the isotropicity of the model, it is sufficient to evaluate the 2-point correla-
tion function only on the arc {θ = 0} (in the usual spherical coordinates); this reduces the
problem to an essentially 1-dimensional one. One then has to identify the spaces Tx (S2)
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via a family of isometries φx , smooth w.r.t. x , for x on the arc only, which is natural
in the spherical coordinates. Scaling the arc we find out that for typical x, y ∈ S2, the
distribution of the values and the gradients is a small perturbation of standard Gaussian
i.i.d random variables N (0, I ), the latter recovering the square of the expected value of
the nodal length to be canceled. We then expand the 2-point correlation function into a
Taylor polynomial around the asymptotic one; to do so we use Berry’s elegant method.

It turns out that the long range behaviour of the two-point correlation function given
is also sufficient to extend the result to continuously differentiable linear statistics (i.e.
Theorem 1.4). In the course of generalizing the proof to include this case we naturally
encounter an auxiliary function Wϕ : [0, π ] → R. To conclude the proof of Theorem 1.4
we will have to understand its behaviour at the origin.

To prove Theorem 1.5, we apply a standard density argument, approximating ϕ with
C∞ functions, to which we apply Theorem 1.4. To this end we use the full strength of
the statement of Theorem 1.4 applied to ϕi , which enables to uniformly control the error
term in (12). For a more detailed explanation see Sect. 5.1.

1.8. Plan of the paper. The goal of Sect. 2 is to give a formula for the length variance,
explicit as possible, starting from the classical Kac-Rice formula. In Sect. 3, we use
the formula obtained to analyze the variance, asymptotically for high energy (i.e. prove
Theorem 1.1). In Sects. 4 and 5, we give the proofs for Theorem 1.4 and Theorem 1.5,
respectively.

Appendix A will carry on a certain technical computation we will encounter in this
paper, namely, that of the covariance matrix of a random vector involving values and
gradients of fn . Appendix B will be devoted to the Legendre polynomials and some
of their basic properties. The goal of Appendix C is to give the definition and some
properties of the class BV (S2) of functions of bounded variation, including their traces
on smooth curves.

2. An Explicit Integral Formula for the Variance

In this section, culminating in Proposition 2.7, we derive an “explicit” integral formula
for the variance. First we need to introduce the covariance function.

2.1. Covariance function. The covariance function (sometimes also referred to as two-
point function) is defined as

un(x, y) := E [ fn(x) fn(y)] = |S2|
Nn

Nn∑
k=1

ηn
k (x)η

n
k (y). (17)

It follows from the Kolmogorov theorem [9], that, in principle un(x, y) determines the
centered Gaussian random field fn , so that one can compute any property of fn in terms
of un and its derivatives. By the addition theorem [1], p. 456, Theorem 9.6.3, un(x, y)
has an explicit expression as

un(x, y) = Pn(cos d(x, y)), (18)

where

Pn : [−1, 1] → R



798 I. Wigman

is the Legendre polynomial of degree n (see e.g. [17]). Recall that d(x, y) is the spherical
distance so that

cos d(x, y) = 〈x, y〉,
thinking of S2 as being embedded into R

3.
The orthogonal invariance (6) is then equivalent to the corresponding property of the

covariance function, namely

un(Rx, Ry) = un(x, y) (19)

for every orthogonal R ∈ O(3). In case y is not specified, we take it to be the northern
pole N ∈ S2, that is

un(x) := un(x, N ). (20)

For every t ∈ [−1, 1], |Pn(t)| ≤ 1 and |Pn(t)| = 1, if and only if t = ±1. Therefore

(un(x, y) = ±1) ⇔ (x = ±y), (21)

and

(un(x) = ±1) ⇔ (x ∈ {N , S}), (22)

where N and S are the northern and the southern poles respectively.

2.2. Kac-Rice formulas for moments of length. In this section we express the first cou-
ple of moments of Z( fn) via the Kac-Rice formula. The most general version due to
Bleher-Shiffman-Zelditch [4,5] gives an integral expression for all the moments k ≥ 1
of the (m − l)-dimensional volume of {F = 0} for “generic” smooth vector valued
random field

F = (Fi )1≤i≤l : M → R
l

defined on an m-dimensional smooth manifold M, 1 ≤ l ≤ m. In our previous paper
[23] we gave an independent elementary proof for the Kac-Rice formula in the particular
case of our interest M = Sm , F = f m

n , k = 1, 2.
To present the Kac-Rice formula in our case we will need some notation. For x, y ∈ S2

we define the following random vectors:

Zn;x
1 = ( fn(x),∇ fn(x)) ∈ R × Tx (S2)

and

Zn;x,y
2 = ( fn(x), fn(y)∇ fn(x),∇ fn(y)) ∈ R

2 × Tx (S2)× Ty(S2). (23)

More generally, for k ≥ 1 and x1, . . . , xk ∈ S2 one may define

Zk = Zn;x1,...,xk
k ∈ R

k ×
k∏

i=1

Txi (S2)
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in similar fashion. The vectors Zk are all centered Gaussian in the sense that for every
fixed x1, . . . , xk ∈ S2 any linear functional of Zk is mean zero Gaussian. Let

Dn;x1,...,xk
k (v1, . . . , vk, ξ1, . . . ξk)

be the (mean zero Gaussian) probability density function of Zn;x1,...,xk
k . The Kac-Rice

formula expresses the kth moment of Z( fn) in terms of the distributions of Zk only (see
Lemma 2.1), namely Dn;∗

k . Therefore to express the variance (and the expected value)

of Z( fn) we will only need to study Dn;∗
1 and Dn;∗

2 .

Lemma 2.1. ([4] Th. 2.2; [5] Th. 4.3; [23] Prop. 3.3) The first two moments of the nodal
length of the spherical harmonics are given by the following formulas:

(1) Expectation:

E [Z( fn)] =
∫

S2

P̃n(x)dx, (24)

where the density of the zero set P̃n(x) is given by

P̃n(x) =
∫

Tx (S2)

‖ξ‖Dn;x
1 (0, ξ)dξ.

(2) Second moment:

E

[
Z( fn)

2
]

=
∫∫

S2×S2

K̃n(x, y)dxdy, (25)

where the 2-point correlation function K̃n is given by

K̃n(x, y)= 1

2π
√

1 − un(x, y)2

∫∫

Tx (S2)×Ty(S2)

‖ξ x‖ · ‖ξ y‖Dn
2 (0, 0, ξ x , ξ y)dξ x dξ y .

(26)

Neuheisel [15] (see also [23]) noticed that for every x ∈ S2, under any isometry
Tx (Sm) ∼= R

2 (i.e. any choice of orthonormal basis of Tx (S2)), the distribution of Zn;x
1

is mean zero Gaussian with the diagonal covariance matrix

(
1

En
2 I2

)
,

where I2 is the 2 × 2 identity matrix. It is then clear that P̃n is x-independent (this also
follows from the rotational independence), and

P̃n(x) ≡ 1√
2π
,
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by a standard computation. This, together with (24), yields (8) for m = 2 and finishes
the treatment of the expectation in this case3. Moreover, slightly modifying the proof of
(24), we obtain

E
[
Zϕ( fn)

] =
∫

S2

ϕ(x)P̃n(x)dx,

and (11) follows.
The goal of the remaining part of the present section, culminating with Proposi-

tion 2.7, is to make the formula (25) for the second moment “explicit” and suitable for
asymptotic analysis. The rotational invariance (6) of our model implies that K̃n depends
only on the spherical distance d(x, y) between x and y, i.e. (with a slight abuse of
notations)

K̃n(x, y) = K̃n(d(x, y)), (27)

which will be used later.

Remark 2.2. One may define K̃n(x, y) intrinsically as

K̃n(x, y) = 1

(2π)
√

1 − un(x, y)2
E [‖∇ f (x)‖ · ‖∇ f (y)‖| f (x) = f (y) = 0],

the expectation being one of the product of gradients conditioned on f vanishing at x
and y.

Remark 2.3. It is important to note that the symmetry of the nodal lines w.r.t. the invo-
lution x �→ −x (see Remark 1.3) implies that

K̃n(x, y) = K̃n(x,−y). (28)

The main disadvantage of the formula (26) is that one has to work with probability
densities defined on the tangent planes Tx (S2) which depend on the point x ∈ S2. In
principle one may consider the tangent planes being embedded in R

3. This, however, is
highly inadvisable since that would result in working with singular Gaussians supported
on a plane corresponding to Tx (S2). It is thus desired to identify for every x ∈ S2,

Tx (S2) ∼= R
2,

via an isometry, i.e. fix an orthonormal basis Bx varying smoothly for x ∈ S2 (i.e. an
orthonormal frame). Unfortunately it is impossible to choose a global orthonormal frame
on S2; however one can still get around that by noting that in fact all we need is a local
choice for given x, y ∈ S2.

In general, the orthonormal frame chosen will affect the probability density function
Dn;∗

2 of Zn;∗
2 induced on R

6 (though Dn;∗
1 will stay invariant); in Sect. 2.3 we show how

to compute Dn;∗
2 for a given choice of local orthonormal frames. In Sect. 2.4 we will

show how to choose the orthonormal frames to simplify the computations; we will use
this construction while evaluating the two-point correlation function (26).

3 The same computation gives the result for every m ≥ 2.
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2.3. Kac-Rice formula in coordinate system. Given x, y ∈ S2, we consider two local
orthonormal frames F x (z) = {ex

1 , ex
2 } and F y(z) = {ey

1 , ey
2 }, defined in some neigh-

bourhood of x and y respectively. This gives rise to (local) identifications

Tx (S2) ∼= R
2 ∼= Ty(S2), (29)

which are isometries.
Under the identification (29) the random vector (23) is a R

6 mean zero Gaussian with
covariance matrix

� = �(x, y) =
(

A B
Bt C

)
,

where

A2×2 = An(x, y) =
(

1 un(x, y)
un(x, y) 1

)
, (30)

B2×4 = Bn(x, y) =
(

0 ∇yun(x, y)
∇x un(x, y) 0

)
(31)

and

C4×4 = Cn(x, y) =
( En

2 I2 H
Ht En

2 I2

)
(32)

with “pseudo-Hessian”

H2,2(x, y) = (∇x ⊗ ∇y
)

un(x, y), (33)

i.e. H = (h jk) j,k=1,2 with entries given by

h jk = ∂2

∂ex
j ∂ey

k

un(x, y).

The covariance matrix of the Gaussian distribution of Z2 in (23) conditioned upon
fn(x) = fn(y) = 0 is given by4

�n(x, y) = C − Bt A−1 B. (34)

We then have a frame-dependent formula for the two-point correlation function (26),

K̃n(x, y) = 1√
1 − un(x, y)2

∫∫

R2×R2

‖w1‖ · ‖w2‖

× exp

(
−1

2
(w1, w2)�n(x, y)−1(w1, w2)

t
)

dw1dw2

(2π)3
√

det�n(x, y)
,

where �n(x, y) is given by (34).

Remark 2.4. Note that even though K̃n is rotational invariant (i.e. K̃n(x, y) depends
only on the spherical distance d(x, y)), the same is, in general, false for the covariance
matrices �n (and �n).

4 This is the inverse of the lower right corner of �−1.
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Let φ, θ be the standard spherical coordinates on S2. Using the rotational invariance
(27) of the 2-point correlation function we obtain

E

[
Z( fn)

2
]

=
∫∫

S2×S2

K̃n(x, y)dxdy = |S2|
∫

S2

K̃n(N , x)dx

= 2π |S2|
π∫

0

K̃n(N , x(φ)) sin φdφ,

where x(φ) ∈ S2 is the point corresponding to the spherical coordinates (φ, θ = 0).
Note that K̃ (N , x(φ)) = K̃ (x, y) for any x, y ∈ S2 with d(x, y) = φ. We therefore
have the following corollary.

Corollary 2.5. One has

E

[
Z( fn)

2
]

= 2π |S2|
π∫

0

K̃n(φ) sin φdφ, (35)

where

K̃n(φ) = K̃n(x, y),

x, y ∈ S2 being any pair of points with d(x, y) = φ.

The main goal of the present paper is to understand the asymptotic behaviour of the
function K̃n(φ). To this end we will have to provide a more explicit formula for K̃n
by choosing concrete orthonormal frames in Sect. 2.4. It also turns out that it is more
natural to scale the parameter φ by essentially n; this will be done in Sect. 2.5.

2.4. Choosing orthonormal frames. Corollary 2.5 implies that it is sufficient to provide
a choice x, y ∈ S2 with d(x, y) = φ for any given φ ∈ (0, π), and for the choice made,
provide local frames around x and y. Hence we may restrict ourselves only to points on
the half circular arc

N̆ S = {θ = 0}.

Let

F =
{

e1 = ∂

∂φ
, e2 = 1

sin φ

∂

∂θ

}
(36)

be the orthonormal frame defined on S2 \ {N , S}.
Given φ ∈ (0, π) we choose any pair of points x, y ∈ N̆ S \ {N , S} with d(x, y) = φ

and set F x := F and F y := F locally in the neighbourhood of x and y respectively.
An explicit computation shows that in this case the covariance matrix�n(x, y) depends
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only on φ rather than on x, y, and, thus so does �n(φ) = �n(x, y) of our interest. We
compute in Appendix A the conditional distribution covariance matrix explicitly to be

�n(φ) =

⎛
⎜⎜⎝

En
2 + ã 0 b̃ 0

0 En
2 0 c̃

b̃ 0 En
2 + ã 0

0 c̃ 0 En
2

⎞
⎟⎟⎠, (37)

whose entries are given by

ã = ãn(φ) = − 1

1 − Pn(cosφ)2
· P ′

n(cosφ)2(sin φ)2, (38)

b̃ = b̃n(φ) = P ′
n(cosφ) cosφ − P ′′

n (cosφ)(sin φ)2

+
Pn(cosφ)

1 − Pn(cosφ)2
· P ′

n(cosφ)2(sin φ)2 (39)

and

c̃ = c̃n(φ) = P ′
n(cosφ). (40)

We then have

K̃n(φ) =
∫∫

R2×R2

1√
1 − u(x)2

‖w1‖ · ‖w2‖

× exp

(
−1

2
(w1, w2)�n(φ)

−1(w1, w2)
t
)

dw1dw2

(2π)3
√

det�n(φ)
,

with the covariance matrix �n given by (37).

Remark 2.6. We choose to work with points on the arc {θ = 0} since here the covariance
matrix �n(φ) is relatively simple. This corresponds to Berry’s [3] choice of points on
the x axis while dealing with random waves on R

2, which takes advantage of the fact that
for two points x, y ∈ R

2 on the x axis the canonical orthonormal bases for Tx (R
2) and

Ty(R
2) coincide under the natural identification Tx (R

2) ∼= Ty(R
2). Rather than working

with the canonical bases, one may of course choose to work with such orthonormal bases
for any two points on the plane; this approach results in the same computation as on the
x axis.

2.5. Scaling the integral formula. As pointed out earlier, the two-point correlation func-
tion K̃n is expressible in terms of the covariance function un and a couple of its deriv-
atives, which in turn are expressible in terms of degree n Legendre polynomial and its
derivatives. The high energy asymptotics n → ∞ of K̃ is then intimately related to
the behaviour of Pn(cos d) for large n. It is known from the Hilb’s asymptotics (see
Appendix B) that

Pn(cosφ) ≈
√

φ

sin φ
J0(φ(n + 1/2)).
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It is thus only natural to introduce a new parameter ψ related to φ by

φ = ψ

m
,

where from this point and throughout the rest of the paper we denote

m := n +
1

2
. (41)

We will rewrite the formula (35) in terms of ψ rather than φ, in the hope to simplify the
subsequent computations.

Proposition 2.7. The variance of the nodal length is given by

Var(Z( fn)) = 4π2 En

n + 1/2
In, (42)

where

In =
πm∫
0

(
Kn(ψ)− 1

4

)
sin(ψ/m)dψ, (43)

the scaled two-point correlation function

Kn(ψ) =
∫∫

R2×R2

1√
1 − u(x)2

‖w1‖ · ‖w2‖

× exp

(
−1

2
(w1, w2)�n(ψ)

−1(w1, w2)
t
)

dw1dw2

(2π)3
√

det�n(ψ)
(44)

with scaled covariance matrix

�n(ψ) = �(ψ/m)

En/2
=
⎛
⎜⎝

1 + 2a 0 2b 0
0 1 0 2c

2b 0 1 + 2a 0
0 2c 0 1

⎞
⎟⎠, (45)

whose entries are explicitly given by

a = an(ψ) = 1

En
ãn(ψ/m)

= − 1

En

1

1 − Pn (cos(ψ/m))2
· P ′

n (cos(ψ/m))2 sin(ψ/m)2,
(46)

b = bn(ψ) = 1

En
b̃n(ψ/m)

= 1

En

[
P ′

n (cos(ψ/m)) cos(ψ/m)− P ′′
n (cos(ψ/m)) sin(ψ/m)2

+
Pn(cos(ψ/m))

1 − Pn (cos(ψ/m))2
· P ′

n (cos(ψ/m))2 sin(ψ/m)2
]

(47)

and

c = cn(ψ) = 1

En
c̃n((ψ/m)) = 1

En
P ′

n (cos(ψ/m)). (48)



Fluctuations of Nodal Length 805

Remark 2.8. Using the Cauchy-Schwartz inequality one can easily check that |bn(ψ)|,
|cn(ψ)| ≤ 1

2 . The inequality |an(ψ)| ≤ 1
2 is obvious.

Remark 2.9. We rewrite (28) as

K̃n(φ) = K̃n(π − φ). (49)

Remark 2.10. One can express Kn(ψ) in probabilistic language as

Kn(ψ) = 1

(2π)
√

1 − Pn(cosψ/m)2
E [‖U‖ · ‖V ‖],

where (U, V ) are mean zero Gaussian random variables with covariance matrix�n(ψ).
We will find this expression useful later, when we will study the asymptotic behaviour
of Kn for large ψ (see Proposition 3.5).

3. Asymptotics for the Variance

In this section we establish the asymptotics for the variance of the nodal length, i.e.
prove Theorem 1.1. Recall that the variance of the nodal length is given by (42). Thus
Theorem 1.1 is equivalent to the following proposition.

Proposition 3.1. As n → ∞ one has

In = 65

128π2

log n

n
+ O

(
1

n

)
.

The rest of the present section is dedicated to the proof of Proposition 3.1.

3.1. Asymptotics for In. Recall the definition

In =
πm∫
0

(
Kn(ψ)− 1

4

)
sin (ψ/m) dψ

of In , where Kn is given by (44) or, equivalently, (61), and m is related to n via (41).
We note that the scaled version of (49) is

Kn(ψ) = Kn(πm − ψ). (50)

Thus, by the definition (43) of In and (50), we have

In = 2 ·
πm/2∫
0

(
Kn(ψ)− 1

4

)
sin (ψ/m) dψ. (51)

Therefore we may concentrate ourselves on [0, πm/2] rather than the full interval.
Ideally, to evaluate In , one would hope to obtain an explicit formula for Kn(ψ).

Unfortunately, to the best knowledge of the author of this paper, no such formula exists.
However we will still be able to give an asymptotic expression for Kn(ψ) for large
values of ψ uniformly w.r.t. n and ψ .
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For small values ofψ the behaviour of Kn is very different, due to the fact that asψ →
0+, Pn(cos(ψ/m)) approaches 1, which results in the singularity of 1√

1−Pn(cos(ψ/m))2

and of the covariance matrix�n(ψ) at the origin. Nevertheless, we will see that this “sin-
gular” contribution is negligible, so that a relatively soft upper bound already obtained
in [23] will suffice (see Lemma 3.2).

More precisely, we choose a constant C > 0, which is kept fixed throughout the rest
of the computations, and write

πm/2∫
0

=
C∫

0

+

πm/2∫
C

. (52)

The main contribution to the integral will come from the second (“nonsingular”) integral
in (52) i.e. outside the origin. Our first task is then to bound the first (“singular”) integral
of (52). A satisfactory bound was already given in [23].

Lemma 3.2. (Restatement of Lemma 4.2 from [23])5 For any constant C > 0 we have
as n → ∞,

C∫
0

∣∣∣∣Kn(ψ)− 1

4

∣∣∣∣ sin(ψ/m)dψ = O

(
1

n

)
.

Lemma 3.2 together with (52) and (51) yield the following lemma.

Lemma 3.3. For any choice of the constant C > 0 we have as n → ∞,

In = 2 Ĩn + O

(
1

n

)
, (53)

where

Ĩn =
πm/2∫
C

(
Kn(ψ)− 1

4

)
sin(ψ/m)dψ. (54)

Therefore, to understand the asymptotic behaviour of In it is sufficient to under-
stand the asymptotic behavior of Ĩn . Proposition 3.4 resolves the latter. The proof of
Proposition 3.4 is given throughout the rest of the present section.

Proposition 3.4. For any choice of the constant C > 0 in the definition (54) of Ĩn, we
have as n → ∞,

Ĩn = 65

256π2

log n

n
+ O

(
1

n

)
. (55)

Proof of Proposition 3.1 assuming Proposition 3.4. Just use Proposition 3.4 together
with (53). ��

5 Note that in [23], Lemma 4.2 was given without scaling, i.e. in terms of φ rather that ψ .
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3.2. Asymptotics for the 2-point correlation function. Recall that Kn(ψ) is given by
(44). One may notice that

Kn(ψ) = 1

2π
√

1 − Pn(cos(ψ/m))2
F(an(ψ), bn(ψ), cn(ψ)),

where F(α, β, γ ) is a smooth function independent of n, defined on some neighbour-
hood of the origin (α, β, γ ) = (0, 0, 0). Its arguments an(ψ), bn(ψ) and cn(ψ) are
uniformly small for ψ > C (see Lemma 3.9).

An easy explicit computation shows that

F(0, 0, 0) = 1

4
,

which cancels out with the constant term in (43) which corresponds to (EZ)2. This is not
a coincidence, since the origin α = β = γ = 0 corresponds to the covariance matrix�n
being the identity matrix �n = In ; in this case the probability density function factors.

We choose to expand F(α, β, γ ) into a finite Taylor polynomial around the origin.6

We note that the matrix elements are of different order or decay rate, so that we may cut
the smaller terms earlier than the larger ones. The decay rate of an, bn and cn prescribed
by Lemma 3.9 implies that it is sufficient to expand an, bn and cn up to 2nd, 4th and 1st

degrees respectively.
The following is the Key Proposition for the whole paper. We will reuse it while

proving Theorem 1.4 (see Sect. 4) for smooth linear statistics of the nodal line, (see also
Remark 3.7).

Proposition 3.5. (Key Proposition) For any choice of C > 0, as n → ∞, one has

Kn(ψ) = 1

4
+

1

2

sin(2ψ)

πn sin(ψ/m)
+

65

256

1

π2n sin(ψ/m)ψ
+

9

32

cos(2ψ)

πnψ sin(ψ/m)

+
27
64 sin(2ψ)− 11

256 cos(4ψ)

π2nψ sin(ψ/m)
+ O

(
1

ψ3 +
1

nψ

)
(56)

uniformly for C < ψ < πm/2.

Remark 3.6. It is important to notice that the leading nonconstant term 1
2

sin(2ψ)
πn sin(ψ/m) is

oscillating, and we will see that it does not contribute to the variance (see the proof of
Proposition 3.1). We observe this obscure “Berry’s cancelation phenomenon”, which is
responsible for the variance being surprisingly small, in some other situations, such as
Berry’s original work [3], and on the torus [14]. This suggests that this phenomenon is
of a more general nature, and we expect it to occur on a “generic” surface [22].

Remark 3.7. As another application of Proposition 3.5, one may exploit it to study the
morphology of the nodal lines for n-dependent linear statistics ϕ = ϕn . It is most effi-
cient for ϕn whose support is not shrinking too rapidly (relatively to the scaling ψ ≈ nφ
we introduced earlier), for example ϕn a characteristic function of a spherical disc of
radius an , where

an · n → ∞.

6 Intuitively, the origin a = b = c = 0 corresponds to ψ“ = ”∞ (see the decay at infinity in Lemma 3.9),
hence this expansion should be good for large values of ψ .
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For finer “local” statistics of the nodal lines, such as studying the nodal length inside a
spherical disc of radius ≈ 1

n , one needs to expand Kn(ψ) around the origin, where the
behaviour is very different from the one at infinity. We may want to do so in the future.

The asymptotic evaluation (56) in Proposition 3.5 is done in two steps. Lemma 3.8
provides an approximation for the two-point correlation function Kn(ψ) with a poly-
nomial in Pn(cos(ψ/m)), an(ψ), bn(ψ) and cn(ψ) i.e. the Taylor expansion of Kn as
a function of the above expressions. In the second step, performed in Lemma 3.9, we
evaluate each of the terms appearing in the Taylor expansion obtained in the first step
using the high degree asymptotics of the Legendre polynomials and its derivatives (Hilb
asymptotics). Lemmas 3.8 and 3.9 are proved in Sects. 3.4.1 and 3.4.2 respectively.

Lemma 3.8. For C > 0 large enough, one has the following expansion on [C, πm/2]:

Kn(ψ) = 1

4
+

1

4
· an(ψ) +

1

8
· bn(ψ)

2 − 1

32
· an(ψ)

2 − 3

16
· an(ψ)bn(ψ)

2

+
3

128
· bn(ψ)

4 +
1

8
· Pn(cos(ψ/m))2 +

1

8
· an(ψ)Pn(cos(ψ/m))2

+
1

16
· bn(ψ)

2 Pn(cos(φ/m))2 +
3

32
· Pn(cos(φ/m))4

+O
(

Pn(cos(ψ/m))6 + an(ψ)
3 + bn(ψ)

5 + cn(ψ)
2
)
, (57)

where the constants involved in the “O”-notation depend only on C.

Lemma 3.9. For n ≥ 1, C < ψ < πm/2 we have the following estimates for a, b, c
and Pn(cos(ψ/m)):

(1)

Pn(cos(ψ/m))2 = 1 + sin(2ψ)

πn sin(ψ/m)
− cos(2ψ)

4πnψ sin(ψ/m)
+ O

(
1

ψ3 +
1

ψn

)

= 1 + sin(2ψ)

πn sin(ψ/m)
+ O

(
1

ψ2

)
. (58)

(2)

an(ψ) = − 1 − sin(2ψ)

πn sin(ψ/m)
+

3 cos(2ψ)

4πn2 sin(ψ/m)2
− 1 + cos(4ψ)

2π2n2 sin(ψ/m)2

+O

(
1

ψ3 +
1

nψ

)

= − 1 − sin(2ψ)

πn sin(ψ/m)
+ O

(
1

ψ2

)
.

(3)

bn(ψ)
2 = 1 + sin(2ψ)

πn sin(ψ/m)
+

7 cos(2ψ)

4πn sin(ψ/m)ψ
+

1 + cos(4ψ)

π2n sin(ψ/m)ψ
+O

(
1

ψ3 +
1

nψ

)
.

(4)

|cn(ψ)| = O

(
1

ψ3/2

)
.
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(5)

Pn(cos(ψ/m))4 =
3
2 + 2 sin(2ψ)− 1

2 cos(4ψ)

π2n2 sin(ψ/m)2
+ O

(
1

ψ3

)
.

(6)

an(ψ)
2 =

3
2 − 2 sin(2ψ)− 1

2 cos(4ψ)

π2n2 sin(ψ/m)2
+ O

(
1

ψ3

)
.

(7)

bn(ψ)
4 =

3
2 + 2 sin(2ψ)− 1

2 cos(4ψ)

π2n2 sin(ψ/m)2
+ O

(
1

ψ3

)
.

(8)

Pn(cos(ψ/m))2an(ψ) = − 1 + cos(4ψ)

2π2n2 sin(ψ/m)2
+ O

(
1

ψ3

)
.

(9)

Pn(cos(ψ/m))2bn(ψ)
2 = 3/2 + 2 sin(2ψ)− 1

2 cos(4ψ)

π2n2 sin(ψ/m)2
+ O

(
1

ψ3

)
.

(10)

an(ψ)bn(ψ)
2 = − 1 + cos(4ψ)

2π2n2 sin(ψ/m)2
+ O

(
1

ψ3

)
.

Proof of Proposition 3.5. Substituting all the various estimates in Lemma 3.9 into (57)
we obtain, after collecting similar terms together and some reorganization (replacing

1
n2 sin(ψ/m)2

by 1
n sin(ψ/m)ψ whenever necessary)

Kn(ψ) = 1

4
+

1

πn sin(ψ/m)

(
1

4
· sin(2ψ) +

1

8
sin(2ψ) +

1

8
sin(2ψ)

)

+
1

π2n sin(ψ/m)ψ

(
−1

4
· 1

2
+

1

8
· 1 − 1

32
· 3

2
+

3

16
· 1

2
+

3

128
· 3

2

+
1

8
· 0 − 1

8
· 1

2
+

1

16
· 3

2
+

3

32
· 3

2

)

+
1

πnψ sin(ψ/m)

(
1

4
· 3

4
cos(2ψ) +

1

8
· 7

4
cos(2ψ)− 1

8
· 1

4
cos(2ψ)

)

+
1

π2nψ sin(ψ/m)

(
−1

4
· 1

2
cos(4ψ) +

1

8
· cos(4ψ) +

1

32
(2 sin(2ψ)

+
1

2
cos(4ψ)) +

3

16
· 1

2
cos(4ψ) +

3

128
(2 sin(2ψ)− 1

2
cos(4ψ))− 1

8
· 1

2

× cos(4ψ) +
1

16
(2 sin(2ψ)− 1

2
cos(4ψ)) +

3

32
· (2 sin(2ψ)− 1

2
cos(4ψ))

)
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+O

(
1

ψ3 +
1

nψ

)

= 1

4
+

1

2

sin(2ψ)

πn sin(ψ/m)
+

65

256

1

π2n sin(ψ/m)ψ
+

3

8

cos(2ψ)

πnψ sin(ψ/m)

+
27
64 sin(2ψ)− 11

256 cos(4ψ)

π2nψ sin(ψ/m)
+ O

(
1

ψ3 +
1

nψ

)
.

��

3.3. Concluding the proof of Proposition 3.4. All the hard work establishing the asymp-
totics (56) of Kn(ψ) at infinity finally pays off as the proof of Proposition 3.4 is now
straightforward.

Proof of Proposition 3.4. Recall that Ĩn is given by (54), where Kn(ψ) for large ψ we
may asymptotically expand Kn(ψ) as (56). First note that the constant term 1

4 in (56)
cancels out in (54). Thus we have

Ĩn =
πm/2∫
C

[
1

2

sin(2ψ)

πn sin(ψ/m)
+

65

256

1

π2n sin(ψ/m)ψ
+

9

32

cos(2ψ)

πnψ sin(ψ/m)

+
27
64 sin(2ψ)− 11

256 cos(4ψ)

π2nψ sin(ψ/m)

]
sin(ψ/m)dψ

+O

⎛
⎝
πm/2∫
C

[
1

ψ3 +
1

nψ

]
sin(ψ/m)dψ

⎞
⎠

= 1

πn

πm/2∫
C

[
1

2
sin(2ψ)+

65

256

1

πψ
+

9

32

cos(2ψ)

ψ
+

27
64 sin(2ψ)− 11

256 cos(4ψ)

πψ

]
dψ

+O

(
1

n

)
. (59)

The contribution of the first term in (59) is bounded by

� 1

n

πm/2∫
C

sin(2ψ)dψ = O

(
1

n

)
.

The main contribution to (59) comes from the leading non-oscillatory term, i.e. the
second term:

65

256π2n

πm/2∫
C

dψ

ψ
= 65

256π2 · log n

n
+ O

(
1

n

)
. (60)

Bounding the contribution of the other oscillatory terms using integration by parts, as
well as bounding the error term in (59), is easy. The asymptotic expression (60) together
with the bound for the contribution of the other terms in (56) yields the result (55) of
the present proposition. ��
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3.4. Proofs of auxiliary lemmas.

3.4.1. Taylor expansion for Kn(ψ) In principle, one may compute the coefficients of the
multivariate Taylor expansion directly using the Leibnitz rule for differentiating under
the integral sign. The following elegant method due to Berry [3] gives the necessary
Taylor coefficients avoiding the long and tedious computations.

Proof of Lemma 3.8. We use Remark 2.10 to write

Kn(ψ) = 1

(2π)
√

1 − Pn(cosψ/m)2
E [‖U‖‖V ‖], (61)

where (U, V ) is a mean zero multivariate Gaussian random vector with covariance matrix
� = �n(ψ) given by (45). On [C, πm/2] we may Taylor expand the first term in (61)
as

1√
1 − Pn(cosψ/m)2

= 1 +
1

2
Pn(cosψ/m)2 +

3

8
Pn(cosψ/m)4

+O
(

Pn(cosψ/m)6
)
, (62)

since by part 1 of Lemma 3.9, |Pn(cos(ψ/m))| is bounded away from 1, provided that C
is large enough. It then remains to expand the remaining part of (61), i.e. E [‖U‖‖V ‖]
in terms of powers of a, b and c.

To this end we use the identity

√
α = 1√

2π

∞∫
0

(1 − e− αt
2 )

dt

t3/2 ,

which implies

E[‖U‖‖V ‖] = E

[
1

2π

∫ ∞

0

∫ ∞

0

(
1 − e− t‖U‖2

2

)(
1 − e− t‖V ‖2

2

)
dtds

(ts)3/2

]

= 1

2π

∫ ∞

0

∫ ∞

0
[ f (0, 0)− f (t, 0)− f (0, s) + f (t, s)] dtds

(ts)3/2
, (63)

where we define

f (t, s) = f �n(ψ)(t, s) := E

[
e− t‖U‖2+s‖V ‖2

2

]

= 1

(2π)2(det�n(ψ))1/2

∫

R2×R2

e
− 1

2 W t

(
�n(ψ)

−1+

(
t I2

s I2

))
W

dW
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= 1

(det�n(ψ))1/2 det

(
�n(ψ)−1 +

(
t I2

s I2

))1/2

= 1

det

(
I +

(
t I2

s I2

)
�n(ψ)

)1/2 . (64)

Let

�n(ψ) = I +

(
A B
B A

)
,

where

A = An(ψ) =
(

2a
0

)
; B = Bn(ψ) =

(
2b

2c

)
,

with entries defined by (46), (47) and (48). Thus we have

I +

(
t I2

s I2

)
�n(ψ) =

(
(1 + t)I + t A t B

s B (1 + s)I + s A

)
,

so that

det

(
I +

(
t I2

s I2

)
�

)

= det ((1 + t)I + t A) det
(
(1 + s)I + s A − st B((1 + t)I + t A)−1 B

)

= (1 + t)2(1 + s)2 det

(
I +

t

1 + t
A

)

× det

(
I +

s

1 + s
A − st

(1 + s)(1 + t)
B

(
I +

t

1 + t
A

)−1

B

)
, (65)

where we make use of the fact that both A and B are diagonal and hence commute.
We compute the first determinant explicitly as

det

(
I +

t

1 + t
A

)
= 1 +

t

1 + t
2a. (66)

Next we wish to compute the other determinant in (65). For this we write(
I +

t

1 + t
A

)−1

= I − t

1 + t
A + O

(
a2
)
,

where we understand the “O”-notation entry-wise. Therefore (taking advantage of the
fact that all the matrices involved are diagonal), we have

I +
s

1 + s
A − st

(1 + s)(1 + t)
B2

(
I +

t

1 + t
A

)−1

= I +
s

1 + s
A − st

(1 + s)(1 + t)
B2 +

st2

(1 + s)(1 + t)2
AB2 + O

(
a2b2

)

=
(

1 + 2s
1+s a − 4st

(1+s)(1+t)b
2 + 8st2

(1+s)(1+t)2
ab2

1 − 4st
(1+s)(1+t)c

2

)
+ O

(
a2b2

)
.
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Therefore, we have

det

(
I +

s

1 + s
A − st

(1 + s)(1 + t)
B2

(
I +

t

1 + t
A

)−1
)

=
(

1 +
2s

1 + s
a − 4st

(1 + s)(1 + t)
b2 +

8st2

(1 + s)(1 + t)2
ab2

)(
1 − 4st

(1 + s)(1 + t)
c2
)

+O
(
(a2b2 + c2)

)

=
(

1 +
2s

1 + s
a − 4st

(1 + s)(1 + t)
b2 +

8st2

(1 + s)(1 + t)2
ab2

)
+ O

(
a2b2 + c2

)
.

Substituting (66) and (67) into (65) we obtain

det

(
I +

(
t I2

s I2

)
�

)
= (1 + t)2(1 + s)2

(
1 +

2t

1 + t
a

)
(67)

×
(

1 +
2s

1 + s
a − 4st

(1 + s)(1 + t)
b2 +

8st2

(1 + s)(1 + t)2
ab2 + O

(
a2b2 + c2

))

= (1 + t)2(1 + s)2

×
(

1 +
2(t + s + 2st)

(1 + s)(1 + t)
a +

4st

(1 + s)(1 + t)
(a2 − b2) + O

(
a2b2 + c2

))
.

Now we use the expansion

1√
1 + x

= 1 − 1

2
x +

3

8
x2 + O(x3)

to write

f �n(ψ)(t, s) = 1

det

(
I +

(
t I2

s I2

)
�

)1/2 = 1

(1 + t)(1 + s)

×
(

1 − (t + s + 2st)

(1 + s)(1 + t)
a +

2st

(1 + s)(1 + t)
b2

+

(
3s2

2(1 + s)2
+

3t2

2(1 + t)2
+

st

(1 + s)(1 + t)

)
a2

− 6st

(1 + t)2(1 + s)2
(t +s+2st)ab2 +

6t2s2

(1 + t)2(1 + s)2
b4 O(a3+b5+c2)

)
.

(68)

The asymptotic expansion (68) implies, in particular,

f �n(ψ)(0, 0) = 1, (69)

f �n(ψ)(t, 0) = 1

1 + t

(
1 − t

1 + t
a +

3t2

2(1 + t)2
a2 + O(a3 + b5 + c2)

)
, (70)

and
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f �n(ψ)(0, s) = 1

1 + s

(
1 − s

1 + s
a +

3s2

2(1 + s)2
a2 + O(a3 + b5 + c2)

)
. (71)

Define

F�n(ψ)(t, s) := f �n(ψ)(0, 0)− f �n(ψ)(t, 0)− f �n(ψ)(0, s) + f �n(ψ)(t, s), (72)

so that in the new notations (63) is

E[‖U‖‖V ‖] = 1

2π

∫ ∞

0

∫ ∞

0
F�n(ψ)(t, s)

dtds

(ts)3/2
. (73)

Plugging the estimates (68), (69), (70) and (71) into the definition (72) of F�n(ψ) yields

F�n(ψ)(t, s) = ts

(1 + t)(1 + s)
+

st (2 + t + s)

(1 + t)2(1 + s)2
· a

+
2st

(1 + s)2(1 + t)2
· b2 − ts(t + 10ts + s + 3ts2 + 3t2s − 2)

2(1 + t)3(1 + s)3
· a2

− 6st

(1 + t)3(1 + s)3
(t + s + 2st) · ab2 +

6t2s2

(1 + t)3(1 + s)3
· b4

+O(a3 + b5 + c2), (74)

where the constants involved in the “O”-notation are universal. We wish to plug (74)
into (73) and integrate with respect to t and s. The problem is that the integral

∫∞
0

dt
t3/2

diverges at the origin so that the bound for the error term in (74) is not sufficient. To
resolve this isssue we notice that (72) implies that we have

F�n(ψ)(t, s)|t=0 = F�n(ψ)(t, s)|s=0 = 0, (75)

and identify the expression (74) as the Taylor expansion of F�n(ψ)(t, s) considered as
a function of (a, b, c) with fixed parameters t, s around the origin (a, b, c) = (0, 0, 0).
The vanishing property (75) implies that all the Taylor coefficients in the expansion (74)
considered as a function of t, s, are divisible by ts, so that we may improve the error
term in (74) as

F�n(ψ)(t, s) = ts

(1 + t)(1 + s)
+

st (2 + t + s)

(1 + t)2(1 + s)2
· a

+
2st

(1 + s)2(1 + t)2
· b2 − ts(t + 10ts + s + 3ts2 + 3t2s − 2)

2(1 + t)3(1 + s)3
· a2

− 6st

(1 + t)3(1 + s)3
(t + s + 2st) · ab2 +

6t2s2

(1 + t)3(1 + s)3
· b4

+O
(

m(t, s) · (a3 + b5 + c2)
)
, (76)

where we introduce the notations m(t) := min{t, 1} and

m(t, s) := m(t) · m(s).

Plugging (76) into (73) and integrating term by term we obtain
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E[‖U‖‖V ‖] = π

2
+
π

2
· a +

π

4
· b2 − π

16
· a2 − 3π

8
· ab2 +

3π

64
b4

+O(a3 + b5 + c2), (77)

where we used the standard integrals

∞∫
0

dt√
t(1 + t)

= π,

∞∫
0

dt√
t(1 + t)2

= π

2
,

∞∫
0

√
t

(1 + t)2
dt = π

2
,

∞∫
0

t3/2

(1 + t)3
dt = 3π

8
,

∞∫
0

√
t

(1 + t)3
dt = π

8
,

∞∫
0

dt√
t(1 + t)3

= 3π

8
.

We finally plug the estimates (62) and (77) into (61) to obtain (57), that is the statement
of the present lemma. ��

3.4.2. Some estimates related to the matrix elements In this section we evaluate the vari-
ous expressions appearing in (57) asymptotically asψ → ∞, namely prove Lemma 3.9.
To evaluate the matrix elements a, b, c we will need to deal with the asymptotic behav-
iour of the Legendre polynomials of high degree. The reader may find the necessary
background on the Legendre polynomials as well as some basic asymptotic estimates in
Appendix B (see Lemma B.3).

Proof of Lemma 3.9. It is easy to check that parts 5-10 of the present lemma follow
directly from parts 1-4. Moreover, part 1 may be obtained by a straightforward applica-
tion of (116), and part 4 is a direct consequence of the high degree asymptotics (117)
for the derivatives of Legendre polynomials. It then remains to prove parts 2-3.

Recall they we assume that C < ψ < πm/2, so that Pn(cos(ψ/m)) is bounded away
from 1 by Hilb’s asymptotics (115). Hence we may write

an(ψ) = − 1

n2 P ′(cos(ψ/m))2 sin(ψ/m)2

− 1

n2 P(cos(ψ/m))2 P ′(cos(ψ/m))2 sin(ψ/m)2 (78)

+O

(
1

nψ
+

1

ψ3

)
,

where to bound the error term we used the decay

|P ′(cos(ψ/m))| = O

(
n2

ψ3/2

)
, (79)

which follows from (117).



816 I. Wigman

Now we use (117) to obtain

1

n2 P ′
n(cos(ψ/m))2 sin(ψ/m)2 = 2

πn sin(ψ/m)3

(
sin(ψ/m)2 sin

(
ψ − π

4

)2

− 3

8n
sin(ψ/m) cos(2ψ) + O

(
1

n2

))

+O

(
1

ψ3 +
1

nψ

)

= 1 − sin(2ψ)

πn sin(ψ/m)
− 3 cos(2ψ)

4πn2 sin(ψ/m)2

+O

(
1

ψ3 +
1

nψ

)
, (80)

and (58) together with (80) imply

1

n2 Pn(cos(ψ/m))2 P ′
n(cos(ψ/m))2 sin(ψ/m)2 = 1 + cos(4ψ)

2π2n2 sin(ψ/m)2

+O

(
1

ψ3 +
1

nψ

)
. (81)

Substituting (80) and (81) into (78) we obtain part 2 of the present lemma.
It then remains to prove part 3 of the lemma, i.e. establish a two-term asymptotics

for bn(ψ)
2. To achieve that we first evaluate bn(ψ). From the definition (47) of bn(ψ)

we have, using (79) to replace En = n(n + 1) by n2 and

cos(ψ/m) = 1 + O

(
ψ2

n2

)

to replace cos(ψ/m) by 1,

bn(ψ) = 1

n2 P ′
n(cos(ψ/m)) cos(ψ/m)− 1

n2 P ′′
n (cos(ψ/m)) sin(ψ/m)2

+
1

n2 Pn(cos(ψ/m))P ′
n(cos(ψ/m))2 sin(ψ/m)2 + O

(
1

ψ5/2
+

1

n
√
ψ

)

= 1

n2 P ′
n(cos(ψ/m))− 1

n2 P ′′
n (cos(ψ/m)) sin(ψ/m)2

+
1

n2 Pn(cos(ψ/m))P ′
n(cos(ψ/m))2 sin(ψ/m)2 + O

(
1

ψ5/2
+

1

n
√
ψ

)
.

Next we use the differential equation (113) satisfied by the Legendre polynomials to
write
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bn(ψ) = Pn(cos(ψ/m))− 1

n2 P ′
n(cos(ψ/m))

+
1

n2 Pn(cos(ψ/m))P ′
n(cos(ψ/m))2 sin(ψ/m)2 + O

(
1

ψ5/2
+

1

n
√
ψ

)

=
√

2

πn sin(ψ/m)

(
sin(ψ +

π

4
)− 1

8

cos(ψ + π
4 )

ψ

)
−
√

2

π

sin
(
ψ − π

4

)
n3/2 sin(ψ/m)3/2

+

√
2

πn sin(ψ/m)
sin(ψ +

π

4
) · 1 − sin(2ψ)

πn sin(ψ/m)
+ O

(
1

ψ5/2
+

1

n
√
ψ

)
,

where we used (116), (117) and reused (80) once more to obtain the second equality.
Reorganizing the terms in the last expression, we have

bn(ψ) =
√

2

πn sin(ψ/m)
sin(ψ +

π

4
) +

7

8

√
2

πn sin(ψ/m)

cos(ψ + π
4 )

ψ

+

√
2 · (sin

(
ψ + π

4

)
+ 1

2 cos
(
3ψ + π

4

)− 1
2 cos

(
ψ − π

4

))
π3/2n3/2 sin(ψ/m)3/2

+O

(
1

ψ5/2
+

1

n
√
ψ

)

=
√

2

πn sin(ψ/m)
sin(ψ +

π

4
) +

7

8

√
2

πn sin(ψ/m)

cos(ψ + π
4 )

ψ

+

(
sin(ψ + π

4 ) + cos(3ψ + π
4 )
)

√
2π3/2n3/2 sin(ψ/m)3/2

+ O

(
1

ψ5/2
+

1

n
√
ψ

)
,

and we obtain part 3 of the present lemma by squaring the last equality. ��

4. Proof of Theorem 1.4

In this section we assume that ϕ : S2 → R is a continuously differentiable even func-
tion. For the sake of proving Theorem 1.5, we will conduct the analysis of the error
terms in terms of the L∞ norm ‖ϕ‖∞ and the total variation V (ϕ) of the test function,
as prescribed by Theorem 1.4.

Our first goal is to formulate an analogue of Proposition 2.7 for the variance of
Zϕ( fn). It turns out that a certain auxiliary function Wϕ defined below comes out from
a straightforward repetition of the steps we performed in Sect. 2.5, adapted to suit Zϕ

rather than Z .
For ϕ ∈ C1(S2) the analogue of (25) is

E

[
Z( fn)

2
]

=
∫∫

S2×S2

ϕ(x)ϕ(y)K̃n(x, y)dxdy,

where K̃n(x, y) is given again by (26). Since K̃ (x, y) = K̃ (φ), where φ = d(x, y), we
may employ Fubini, to obtain (cf. (35))

E

[
Zϕ( fn)

2
]

= 2π |S2|
π∫

0

K̃n(φ)W
ϕ(φ)dφ,
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where Wϕ : [0, π ] → R is a continuously differentiable function defined by

Wϕ(φ) := 1

8π2

∫
d(x,y)=φ

ϕ(x)ϕ(y)dxdy. (82)

For example, for the constant function ϕ ≡ 1 we have

W 1(φ) = sin(φ).

It is easy to check that, since d(x,−y) = π − d(x, y), we have

Wϕ(π − φ) = Wϕ(φ), (83)

as we assume that ϕ is even.
Scaling the integrand in the same manner exactly as in Sect. 2.5, we finally obtain

the following lemma (cf. Proposition 2.7).

Lemma 4.1. The variance of Zϕ( fn) is given by

Var(Zϕ( fn)) = 4π2 En

n + 1/2
I ϕn , (84)

where

I ϕn =
πm∫
0

(
Kn(ψ)− 1

4

)
Wϕ(ψ/m)dψ.

Remark 4.2. One deduces from (50) and (83) that

I ϕn = 2

πm/2∫
0

(
Kn(ψ)− 1

4

)
Wϕ(ψ/m)dψ. (85)

We will need some rather simple properties of Wϕ . Writing the double integral (82)
as an iterated integral and using the spherical coordinates with pole at x for each x ∈ S2

we obtain

Wϕ(φ) = 1

8π2 sin(φ)Wϕ
0 (φ), (86)

where

Wϕ
0 (φ) =

∫

S2

ϕ(x)dx
∫

STx (S2)

ϕ(expx (d · η))dη

is a continuously differentiable function with

Wϕ
0 (0) = 2π‖ϕ‖2

L2(S2)
, (87)

whose values are uniformly bounded by

|Wϕ
0 (φ)| ≤ 2π‖ϕ‖∞‖ϕ‖L1(S2) ≤ 8π2‖ϕ‖2∞ (88)



Fluctuations of Nodal Length 819

and derivative uniformly bounded by

|Wϕ
0

′
(φ)| ≤ 2π‖ϕ‖∞V (ϕ). (89)

Now we pursue the proof of Theorem 1.4. By (84), evaluating the variance of Zϕ

is equivalent to evaluating I ϕn , and for notational convenience we choose to work with
the expression (85). As in the proof of Theorem 1.1, we choose a constant C > 0,
which remains fixed throughout the present section, and divide the interval [0, πm/2] =
[0,C] ∪ [C, πm/2] (see Sect. 3.1),

We then have the following lemma (cf. Lemma 3.3); to prove it just use (86) and the
bound (88) for Wϕ

0 together with Lemma 3.2.

Lemma 4.3. For any constant C > 0, we have as n → ∞,

I ϕn = 2 Ĩ ϕn + O‖ϕ‖∞

(
1

n

)
, (90)

where

Ĩ ϕn :=
πm/2∫
C

(
Kn(ψ)− 1

4

)
Wϕ

(
ψ

m

)
dψ. (91)

Proof of Theorem 1.4. First we evaluate Ĩ ϕn as defined in (91). Plugging (56) into (91),
we have (cf. (59))

Ĩ ϕn =
πm/2∫
C

[
1

2

sin(2ψ)

πn sin(ψ/m)
+

65

256

1

π2n sin(ψ/m)ψ
+

9

32

cos(2ψ)

πnψ sin(ψ/m)

+
27
64 sin(2ψ)− 11

256 cos(4ψ)

π2nψ sin(ψ/m)

]
Wϕ

(
ψ

m

)
dψ

+O

⎛
⎝
πm/2∫
C

[
1

ψ3 +
1

nψ

]
Wϕ

(
ψ

m

)
dψ

⎞
⎠

= 1

16π3n

πm/2∫
C

[
sin(2ψ) +

65

128

1

πψ
+

9

16

cos(2ψ)

ψ

+
27
32 sin(2ψ)− 11

128 cos(4ψ)

πψ

]
Wϕ

0

(
ψ

m

)
dψ + O

(
‖ϕ‖2∞

1

n

)
, (92)

with constants involved in the “O”-notation universal. Here we used the identity (86);
to effectively control the error term we use (88).
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We integrate by parts the first oscillatory term in (92), using the continuous differen-
tiability assumptions; this yields the bound for its contribution

� 1

n

πm/2∫
C

sin(2ψ)Wϕ
0 (ψ/m)dψ

� 1

n

∣∣cos(2ψ) · Wϕ
0 (ψ/m)

∣∣ ∣∣C
ψ=πm/2 +

1

n2

∣∣∣∣∣∣
πm/2∫
C

cos(2ψ)Wϕ
0

′
(ψ/m)dψ

∣∣∣∣∣∣
� ‖ϕ‖2∞

n
+

‖Wϕ
0

′‖L1([0,π ])
n

� (‖ϕ‖2∞ + ‖ϕ‖∞V (ϕ)) · 1

n

with constants involved in the “«”-notation universal, by (89). It is easy to establish
similar bounds for the remaining oscillatory terms in (92), i.e. the 3rd and the 4th terms.

To analyze the main contribution, which comes from the remaining second term in
(92), we note that the continuous differentiability of Wϕ

0 implies

W0(φ) = 2π‖ϕ‖2
L2(S2)

+ O‖ϕ‖∞,V (ϕ)(φ),

by (87) and (89). The main contribution to (92) is then

65

2048π4

1

n

πm/2∫
C

Wϕ
0 (ψ/m)

ψ
dψ = 65

1024π3 ‖ϕ‖2
L2(S2)

· 1

n

πm/2∫
C

dψ

ψ

+O‖ϕ‖∞,V (ϕ)

⎛
⎝ 1

n2

πm/2∫
C

dψ

⎞
⎠

= 65

1024π3 ‖ϕ‖2
L2(S2)

· log n

n
+ O‖ϕ‖∞,V (ϕ)

(
1

n

)
.

All in all we evaluated Ĩ ϕn as

Ĩ ϕn = 65

1024π3 ‖ϕ‖2
L2(S2)

· log n

n
+ O‖ϕ‖∞,V (ϕ)

(
1

n

)
.

Plugging this into (90) yields

I ϕn = 65

512π3 ‖ϕ‖2
L2(S2)

· log n

n
+ O‖ϕ‖∞,V (ϕ)

(
1

n

)
. (93)

We finally obtain the statement of Theorem 1.4 by plugging (93) into (84). ��

5. Proof of Theorem 1.5

As implied by the formulation of Theorem 1.5, in this section we will deal with functions
of bounded variation. The definition and some basic properties of the class BV (S2) of
functions of bounded variation is given in Appendix C.
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5.1. On the proof of Theorem 1.5. To prove Theorem 1.5 one wishes to apply a standard
approximation argument, approximating our test function ϕ of bounded variation with
a sequence ϕi of C∞, for which we can apply Theorem 1.4. There are two major issues
with this approach however.

On one hand, one needs to check that ϕi approximating ϕ implies the corresponding
statement for the random variables Zϕ( fn) and Zϕi ( fn), and, in particular, their var-
iance. While it is easy to check that if ϕi → ϕ in L1 then for every fixed n we also
have

E[Zϕi ( fn)] → E[Zϕ( fn)],
the analogous statement for the variance is much less trivial (see Proposition 5.17).

On the other hand, when applying Theorem 1.4 for ϕi , one needs to control the error
term in (14), which may a priori depend on ϕi . To resolve the latter we take advantage8of
the fact that Theorem 1.4 allows us to control the dependency of the error term in (14)
on the test function in terms of its L∞ norm and total variation. Thus to resolve this
issue it would be sufficient to require from ϕi to be essentially uniformly bounded and
having uniformly bounded total variation.

Fortunately the standard symmetric mollifiers construction from [13] as given in
Appendix C satisfy both the requirements above. Namely given a function ϕ ∈ BV (S2)

we obtain a sequence ϕi of the C∞ function, that converge in L1 to ϕ, ‖ϕi‖∞ ≤ ‖ϕ‖∞
and in addition

V (ϕi ) → V (ϕ).

5.2. Continuity of the distribution of Zϕ . As pointed in Sect. 5.1, to prove Theorem 1.5
we will need to show that the distribution of Zϕ depends continuously on ϕ. Proposi-
tion 5.1 makes this statement precise. We believe that it is of independent interest.

Proposition 5.1. Let ϕ ∈ BV (S2) ∩ L∞(S2) be any test function. Then

E

[
Zϕ( fn)

2
]

= O
(

n2‖ϕ‖2
L1(S2)

+ ‖ϕ‖∞‖ϕ‖L1(S2)

)
, (94)

where the constant involved in the “O”-notation are universal. In particular, if F ⊆ S2

has a C2 boundary then

E

[(
Z F ( fn)

)2
]

= O(n2|F |2 + |F |).

Proof. Recall that we defined Wϕ as (82); the assumption ϕ ∈ L∞(S2) saves us from
dealing with the validity of this definition. Starting from (121), and repeating the steps
in the proof of Lemma 2.1 from either [23] or [4,5], we may extend the validity of
the Kac-Rice formula (84) with (85) for this class as well. Note that the constant term

7 Proposition 5.1 gives a stronger claim. First, it evaluates the second moment rather than the variance.

Secondly, it gives a general bound for E
[(

Z
ϕi ( fn)− Z

ϕ( fn)
)2] = E

[(
Z
ϕi −ϕ( fn)

)2]. It is easy to derive

the result we need employing the triangle inequality.
8 This is by no means a lucky coincidence; it is precisely the proof of Theorem 1.5 that motivated the

technical statement made in Theorem 1.4.
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in (85) comes from the squared expectation, so that we need to omit it if we want to
compute the second moment. We then have

E

[(
Zϕ( fn)

)2
]

= 8π2 En

n + 1/2
Jϕn , (95)

where

Jϕn =
πm/2∫
0

Kn (ψ)Wϕ

(
ψ

m

)
dφ,

denoting as usual m := n + 1/2.
As usual while estimating this kind of integrals we remove the origin by choosing a

constant C > 0 and writing

Jϕn = Jϕn,1 + Jϕn,2, (96)

where

Jϕn,1 =
C∫

0

Kn (ψ)Wϕ

(
ψ

m

)
dψ,

and

Jϕn,2 =
πm/2∫
C

Kn (ψ)Wϕ

(
ψ

m

)
dψ.

First, for C < ψ < πm
2 , Kn(ψ) is bounded by a constant, which may depend only

on C , i.e.

|Kn(ψ)| = OC (1),

which follows directly from Proposition 3.5. Therefore we may bound Jϕn,2 as

|Jϕn,2| �C

πm/2∫
C

∣∣∣∣Wϕ

(
ψ

m

)∣∣∣∣ dψ ≤
πm/2∫
0

∣∣∣∣Wϕ

(
ψ

m

)∣∣∣∣ dψ

= m

π/2∫
0

∣∣Wϕ(φ)
∣∣ dψ � n‖ϕ‖2

L1(S2)
, (97)

as earlier.
We claim that for 0 < ψ < C we may bound Kn as

|Kn(ψ)| = OC

(
1

ψ

)
. (98)
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Before proving this estimate we will show how it helps us to bound Jϕn,1. We have by
the definition of Jϕn,1,

∣∣∣Jϕn,1
∣∣∣ �

C∫
0

1

ψ

∣∣∣∣Wϕ

(
ψ

m

)∣∣∣∣ dψ � 1

n

C∫
0

∣∣∣∣Wϕ
0

(
ψ

m

)∣∣∣∣ dψ

�
C/n∫
0

∣∣Wϕ
0 (φ)

∣∣ dφ �C
1

n
‖ϕ‖∞‖ϕ‖L1(S2), (99)

by (86) and the first inequality of (88).
The statement of the present lemma now follows from plugging the estimates (97)

and (99) into (96) and (95). We still have to prove (98) though.
To see (98) we use Remark 2.10 and the Cauchy-Schwartz inequality to write

Kn(ψ) = 1

(2π)
√

1 − Pn(cosψ/m)2
E [‖U‖ · ‖V ‖], (100)

where U and V are 2-dimensional mean zero Gaussian vectors with covariance matrix
(45), whose entries uniformly bounded by an absolute constant, whence

E [‖U‖ · ‖V ‖] ≤
√

E
[‖U‖2

]
E
[‖V ‖2

] = O(1), (101)

with the constant involved in the “O”-notation uniform. For the other term Lemma B.2
yields

√
1 − Pn(cos(ψ/m))2 � 1

ψ
, (102)

so that we obtain the necessary bound (98) for Kn(ψ) plugging the estimates (101) and
(102) into (100). ��

5.3. Proof of Theorem 1.5. Now we are ready to give a proof of Theorem 1.5.

Proof of Theorem 1.5. Given a function ϕ ∈ BV (S2), let ϕi ∈ C∞ be a sequence of
smooth functions such that ϕi → ϕ in L1(S2),

Vi := V (ϕi ) → V (ϕ)

and

‖ϕi‖∞ ≤ ‖ϕ‖∞. (103)

(see Appendix C). Let M1 := ‖ϕ‖∞ and

M2 := max{Vi }i≥1 < ∞,

since Vi is convergent.
Theorem 1.4 applied on ϕi ∈ C∞(S2) states that

Var(Zϕi ( fn)) = c(ϕi ) · log n + OM1,M2(1), (104)
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where c(ϕi ) is given by

c(ϕi ) := 65
‖ϕi‖2

L2(S2)

128π
> 0.

Note that since ϕi and ϕ are uniformly bounded (103), L1(S2) convergence implies
L2(S2) convergence, so that

c(ϕi ) → c(ϕ), (105)

the latter being given by (13).
On the other hand we know from Proposition 5.1 that

E

[(
Zϕi ( fn)− Zϕ( fn)

)2
]

= E

[(
Zϕi −ϕ( fn)

)2
]

→ 0,

using the uniform boundedness (103) again to ensure that (94) holds uniformly. This
together with the triangle inequality implies that

Var
(
Zϕi ( fn)

) → Var
(
Zϕ( fn)

)
, (106)

and we take the limit i → ∞ in (104) to finally obtain the main statement of Theorem 1.5.
��

Remark 5.2. From the proof presented, it is easy to see that the constant in the “O”-nota-
tion in the statement (14) of Theorem 1.5 could be made dependent only on ‖ϕ‖∞ and
V (ϕ).

Appendix A. Computation of the Covariance Matrix

In this section we compute the matrix�n(φ) explicitly, as prescribed by (37). The matrix
�n(φ) is the 4×4 covariance matrix of the mean zero Gaussian random vector Z2 in (23)
with x �= y ∈ S2 any two points on the arc {θ = 0} with d(x, y) = φ, conditioned upon
f (x) = f (y) = 0. Recall that as such, �n(φ) is given by (34), where A = An(x, y),
B = Bn(x, y) and C = Cn(x, y) are given by (30), (31) and (32) respectively, and
x, y ∈ S2 are any points on the arc {θ = 0} with d(x, y) = φ. Here the gradients
are given in the orthonormal frame (36) of the tangent planes Tx (S2) associated to the
spherical coordinates (see Sect. 2.4 for explanation).

Let x and y correspond to the spherical coordinates (φx , θx = 0) and (φy, θy = 0),
and denote

φ = d(x, y) = |φx − φy |.
Recall that

un(x, y) = Pn(cos(d(x, y))) = Pn(cosφ).

First we compute the inverse of A in (30) as

An(φ)
−1 = 1

1 − Pn(cosφ)2

(
1 −Pn(cosφ)

−Pn(cosφ) 1

)
. (107)
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It is easy to either see from the geometric picture or compute explicitly that

∇x un(x, y) = −∇yun(x, y) = ±P ′
n(cosφ) sin(φ)(1, 0), (108)

depending on whether φx > φy or φx < φy , so that

Bn(φ) = ±
(

0 0 P ′
n(cosφ) sin φ 0

−P ′
n(cosφ) sin φ 0 0 0

)
. (109)

Next we turn to the missing part of Cn(φ) defined in (32), i.e. the “pseudo-Hessian”
Hn(φ) given by (33). By the chain rule

Hn(φ) = (∇x ⊗ ∇y
)

un(x, y) = ∇x ⊗ P ′
n(cos(d(x, y)))∇y cos(d(x, y))

= P ′′
n (cosφ)∇x cos(d(x, y))⊗ ∇y cos(d(x, y)) (110)

+P ′
n(cosφ)

(∇x ⊗ ∇y
)

cos(d(x, y)).

We denote

h(x, y) := cos d(x, y) = cosφx cosφy + sin φx sin φy cos(θx − θy),

and compute explicitly that for θx = θy = 0 we have

(∇x ⊗ ∇y
)

cos(d(x, y)) = (∇x ⊗ ∇y
)

h(x, y) =
(

cosφ 0
0 1

)
. (111)

Plugging (108) and (111) into (110) we obtain

H =
(

P ′
n(cosφ) cosφ − P ′′

n (cosφ) sin(φ)2 0
0 P ′

n(cosφ).

)
. (112)

Finally plugging (112) into (32), and plugging that together with (107) and (109) into
(34), we obtain an explicit expression for�n(φ) as prescribed by (37) with entries given
by (38), (39) and (40).

Appendix B. Estimates for the Legendre Polynomials and Related Functions

The goal of this section is to give a brief introduction to the Legendre polynomials
Pn : [−1, 1] → R and give some relevant basic information necessary for the purposes
of the present paper. The high degree asymptotic analysis of behaviour of Pn and its
first two derivatives involves the Hilb’s asymptotics in Lemma B.1 together with the
recursion (114) for the 1st derivative and the differential equation (113) for the second
one. We refer the reader to [17] for more information.

The Legendre polynomials Pn are defined as the unique polynomials of degree n
orthogonal w.r.t. the constant weight function ω(t) ≡ 1 on [−1, 1] with the normaliza-
tion Pn(1) = 1. They satisfy the following second order differential equation:

P ′′
n (cos(ψ/m))=− n(n + 1)

sin(ψ/m)2
Pn(cos(ψ/m))+

2 cos(ψ/m)

sin(ψ/m)2
P ′

n(cos(ψ/m)), (113)

as well as the recursion

P ′
n(cos(ψ/m))=(Pn−1 (cos(ψ/m))−cos(ψ/m)Pn (cos(ψ/m)))

n

sin(ψ/m)2
. (114)

The Hilb asymptotics gives the high degree asymptotic behaviour of Pn .
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Lemma B.1. (Hilb Asymptotics (formula (8.21.17) on p. 197 of Szego [17]))

Pn(cosφ) =
(

φ

sin φ

)1/2

J0((n + 1/2)φ) + δ(φ), (115)

uniformly for 0 ≤ φ ≤ π/2, J0 is the Bessel J function of order 0 and the error term is

δ(φ) �
{
φ1/2 O(n−3/2), Cn−1 < φ < π/2
φα+2 O(nα), 0 < φ < Cn−1,

where C > 0 is any constant and the constants involved in the “O”-notation depend on
C only.

We have the following rough estimate for the behaviour of the Legendre polynomials
at ±1, which follows directly from Hilb’s asymptotic.

Lemma B.2. For 0 < φ < π
2 one has

1 − Pn(cos(φ))2 � n2φ2,

where the constant in the “�”-notation is universal.

Lemma B.3. The Legendre polynomials Pn and its couple of derivatives satisfy uni-
formly for n ≥ 1, ψ > C :

(1)

Pn(cos(ψ/m)) =
√

2

πn sin(ψ/m)

(
sin(ψ +

π

4
)− 1

8

cos(ψ + π
4 )

ψ

)

+O

(
1

ψ5/2
+

1√
ψn

)
, (116)

(2)

P ′
n(cos(ψ/m))

=
√

2

π

√
n

sin(ψ/m)5/2

(
sin(ψ/m) sin

(
ψ − π

4

)
+

3

8n
sin

(
ψ +

π

4

))

+O

(
n2

ψ7/2 +
n

ψ3/2

)
, (117)

(3)

P ′′
n (cos(ψ/m)) = − n2

sin(ψ/m)2
Pn(cos(ψ/m)) +

2

sin(ψ/m)2
P ′

n(cos(ψ/m))

+O

(
n3

ψ5/2

)
. (118)
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Proof. By Lemma B.1 and the standard asymptotics for the Bessel functions we obtain

Pn(cos(ψ/m)) =
√
ψ/m√

sin(ψ/m)
J0(ψ) + O

(√
ψ

n2

)

=
√

2

π

√
ψ/m√

sin(ψ/m)

(
sin

(
ψ + π

4

)
√
ψ

− 1

8

cos
(
ψ + π

4

)
ψ3/2

)

+O

(
1

ψ5/2
+

√
ψ

n2

)

=
√

2

πn sin(ψ/m)

(
sin(ψ +

π

4
)− 1

8

cos(ψ + π
4 )

ψ

)

+O

(
1

ψ5/2
+

1√
ψn

)
,

which is (116).
To obtain (117) we employ the recursive formula (114), evaluating the Legendre

polynomials appearing there using (116). Finally we obtain a simple approximate dif-
ferential equation (118), replacing n(n + 1) by n2 and cos(ψ/m) by 1 in the differential
equation (113) satisfied by the Legendre polynomials. To do so we use the decay

|Pn(cos(ψ/m))| = O

(
1√
ψ

)

of Pn , which follows directly from (116), as well as (79) of its derivative. ��

Appendix C. Functions of Bounded Variation

In this section we give the definition and some basic properties on the functions of
bounded variation. For more information we refer the reader to [13].

Classically, the variation of a function η : [a, b] → R on [a, x] is defined as

V (η; x) := sup
λ: t1=a<t2<...<tk=x

k−1∑
i=1

|η(ti+1)− η(ti )|,

where the supremum is over all the partitions λ of [a, x]. We denote I := [a, b]. If
η ∈ C1(I ) then the variation is

V (η; x) =
x∫

a

|η′(t)|dt.

In fact, the last inequality holds even for η ∈ W 1,1(I ), where for this class of functions
the derivative η′ is the weak derivative.

This definition has two major disadvantages. First, one wishes to identify functions

η1 ∼ η2, if η1(x) = η2(x) for almost all x ∈ I. (119)

However, altering the values of η on a measure zero set does impact its variation. Sec-
ondly, one cannot extend this definition for the multivariate case.
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We then need to find a better definition. Fortunately, the following definition elimi-
nates the disadvantages of the previous one. Let

V (η; x) := sup
g

x∫
0

η(t)g′(t)dt,

where the supremum is over all the continuously differentiable functions g : [a, x] → R

with |g(t)| ≤ 1 for all t ∈ [a, x]. The number V (η) := V (η; I ) is called the total var-
iation of η on I . We define the space BV (I ) to be the equivalence classes of functions
η with finite total variation, i.e.

BV (I ) := {η ∈ L1(I ) : V (η) < ∞}/ ∼,
where the equivalence relation is given by (119). It is known [13] that

W 1,1(I ) � BV (I ).

We may extend the latter definition quite naturally for the multivariate case. Of our
interest is the case of the sphere. Let ϕ ∈ L1(S2) be an integrable function. We define
its variation on an open subset � ⊆ S2 as

V (ϕ;�) := sup
g

∫
�

ϕ(x) div g(x)dx,

where the supremum is over the continuously differentiable compactly supported vector
fields

g ∈ C1
c (�, T�)

with |g(x)| ≤ 1 for all x ∈ �. We define the total variation as

V (ϕ) := V (ϕ;S2).

The space BV (�) is defined as the equivalence class of functions ϕ with V (ϕ) < ∞,
with the equivalence relation (119) adapted to the sphere. Again, for a smooth (and
W 1,1(S2)) function ϕ ∈ C1(S2) we have

V (ϕ) =
∫

S2

‖∇ϕ(x)‖dx,

and

W 1,1(�) � BV (�).

For a function ϕ ∈ BV (S2) [13], Theorem 1.17 gives a construction9 of a sequence
ϕi ∈ C∞ of smooth test functions such that ϕi → ϕ in L1(S2) as well as

V (ϕi ) → V (ϕ).

9 This book gives only the theory of functions of bounded variation on R
m . One can obtain a similar theory

for the sphere only slightly modifying the one given.
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Moreover, part (b) of that theorem implies that

‖ϕi‖∞ ≤ ‖ϕ‖∞.

We are interested in the linear statistics of the nodal sets of smooth functions, where
the test functions are of bounded variation. The definition of the linear statistics is natural
for continuous test functions ϕ : S2 → R as

Zϕ( f ) =
∫

f −1(0)

ϕ(x)dx,

i.e. integrating the restriction of ϕ on the nodal line. However, things become more com-
plicated as one drops the continuity assumption; since the values of ϕ ∈ BV (S2) (or
ϕ ∈ L1(S2)) are only defined up to measure zero sets, there is no meaning to restricting
ϕ on curves. In general, one cannot define linear statistics corresponding to integrable
functions, and to define a notion of trace of ϕ on a smooth curve C , we will have to
exploit the values of ϕ in a tubular neighbourhood around C . Such a construction is
known for the functions belonging to the class W 1,1(S2), i.e. for every smooth curve
C ⊆ � there exists a map

trC : W 1,1(�) → L1(C)

satisfying the natural properties.
The situation is more involved in the BV -case, which is essential to us, since W 1,1

does not contain the characteristic functions of nice spherical subsets. A smooth curve
divides the sphere and a tubular neighbourhood around it into two parts. One may then
define [13], chap. 2, two traces ϕ+ = tr+

C ϕ and ϕ− = tr−C ϕ both belonging to L1(C),
corresponding to the values of ϕ on the different parts. The traces ϕ+ and ϕ− may in
general be different10, and moreover, one cannot canonically distinguish between the
traces. For instance, if F ⊆ S2 is a nice subset, and χF is its characteristic function,
then tr∂F (χF )might be defined as either 1 or 0, depending on whether we approach the
circle from inside or outside the disc respectively. Accordingly, the corresponding linear
statistic might be len(∂F) or 0.

We define the average trace of ϕ on a smooth curve C ⊆ S2 as

ϕ± := 1

2
ϕ+ +

1

2
ϕ−, (120)

and this is the notion that appears in the formulation of Theorem 1.5 and throughout the
present paper. For ϕ ∈ L∞(S2) we have

‖ϕ±‖∞ ≤ ‖ϕ‖∞.

10 Intuitively, the traces ϕ+ and ϕ− will be different precisely if the jump of ϕ occurs on a subset of C , as
follows from [13], Proposition 2.8. It is plausible that with probability 1 this situation will not happen for
the nodal lines of spherical harmonics; we believe that this is a minor issue and of little interest to the present
paper. This situation is almost surely impossible for the characteristic functions of nice sets, which are the
main motivation for considering the class BV .
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Following the approach of [13], (2.10) and Federer’s co-area formula [11], one may
obtain the inequality

1

ε

ε∫
0

∣∣∣∣∣∣∣
∫

f −1(t)

ϕ(x)dx −
∫

f −1(0)

ϕ+(x)dx

∣∣∣∣∣∣∣
dt

= O f

(
V
(
ϕ; f −1((0, ε))

)
+ sup

0<t<ε

∣∣∣len( f −1(t))− len( f −1(0))
∣∣∣
)
.

As β → 0, the right-hand side of the last inequality vanishes. Therefore we have the
following Kac-Rice type formula:

∫

f −1(0)

ϕ+(x)dx = lim
ε→0

1

ε

∫
0< f (x)<ε

‖∇ f (x)‖ϕ(x)dx,

and similarly
∫

f −1(0)

ϕ−(x)dx = lim
ε→0

1

ε

∫
−ε< f (x)<0

‖∇ f (x)‖ϕ(x)dx .

Combining the last two formulas we obtain
∫

f −1(0)

ϕ±(x)dx = lim
ε→0

1

2ε

∫
| f (x)|<ε

‖∇ f (x)‖ϕ(x)dx . (121)

We employ (121) to extend the validity of the Kac-Rice formula for the second moment
for ϕ ∈ BV (S2) (see (95)).
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