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Abstract: Degree of mobility of a (pseudo-Riemannian) metric is the dimension of
the space of metrics geodesically equivalent to it. We prove that complete metrics on
(n ≥ 3)−dimensional manifolds with degree of mobility ≥ 3 do not admit complete
metrics that are geodesically equivalent to them, but not affinely equivalent to them.
As the main application we prove an important special case of the pseudo-Riemann-
ian version of the projective Lichnerowicz conjecture stating that a complete manifold
admitting an essential group of projective transformations is the standard round sphere
(up to a finite cover and multiplication of the metric by a constant).

1. Introduction

1.1. Definitions and result. Let M be a connected manifold of dimension n ≥ 3, let g
be a (Riemannian or pseudo-Riemannian) metric on it. We say that a metric ḡ on the
same manifold M is geodesically equivalent to g, if every g-geodesic is a reparamet-
rized ḡ-geodesic. We say that they are affine equivalent, if their Levi-Civita connections
coincide.

As we recall in Sect. 2.1, the set of metrics geodesically equivalent to a given one
(say, g) is in one-to-one correspondence with the nondegenerate solutions of Eq. (9).
Since Eq. (9) is linear, the space of its solutions is a linear vector space. Its dimension
is called the degree of mobility of g. Locally, the degree of mobility of g coincides with
the dimension of the set (equipped with its natural topology) of metrics geodesically
equivalent to g.

The degree of mobility is at least one (since const·g is always geodesically equivalent
to g) and is at most (n +1)(n +2)/2, which is the degree of mobility of simply-connected
spaces of constant sectional curvature.
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Our main result is:

Theorem 1. Let g be a complete Riemannian or pseudo-Riemannian metric on a con-
nected Mn of dimension n ≥ 3. Assume that for every constant c �= 0 the metric c · g is
not the Riemannian metric of constant curvature +1.

If the degree of mobility of the metric is≥ 3, then every complete metric ḡ geodesically
equivalent to g is affine equivalent to g.

The assumption that the metrics are complete is important: the examples constructed
by Solodovnikov [70,71] show the existence of complete metrics with a big degree of
mobility (all metrics geodesically equivalent to such metrics are not complete).

Theorem 2. Let g be a complete Riemannian or pseudo-Riemannian metric on a closed
(= compact, without boundary) connected manifold Mn of dimension n ≥ 3. Assume
that for every constant c �= 0 the metric c · g is not the Riemannian metric of constant
curvature +1. Then, at least one the following possibilities holds:

• the degree of mobility of g is at most two, or
• every metric g geodesically equivalent to ḡ is affine equivalent to g.

Remark 1. In the Riemannian case, Theorem 1 was proved in [57, Th. 16] and in [56].
The proof uses observations which are wrong in the pseudo-Riemannian situation; we
comment on them in Sect. 1.2. Our proof for the pseudo-Riemannian case is also not
applicable in the Riemannian case, since it uses lightlike geodesics in an essential way.
In Sect. 2.5, we give a new, shorter (modulo results of our paper) proof of Theorem 1
for the Riemannian metrics as well.

Remark 2. In the Riemannian case, Theorem 2 follows from Theorem 1, since every
Riemannian metric on a closed manifold is complete. In the pseudo-Riemannian case,
Theorem 2 is a separate statement.

Remark 3. Moreover, the assumptions that the metric is complete and the dimension is
≥ 3 could be removed from Theorem 2: by [60, Cor. 5.2] and [61, Cor. 1], if the degree
of mobility of g on a closed (n ≥ 2)−dimensional manifold is at least three, then for a
certain constant c �= 0 the metric c · g is the Riemannian metric of curvature 1, or every
metric geodesically equivalent to g is affine equivalent to g.

The proofs in [60] and [61] are nontrivial; the proof of [60, Cor. 5.2] is in particular
based on the results of Sect. 2.3.5 of the present paper.

1.2. Motivation I: Projective Lichnerowicz conjecture. Recall that a projective transfor-
mation of the manifold (M, g) is a diffeomorphism of the manifold that takes (unpara-
metrized) geodesics to geodesics. The infinitesimal generators of the group of projective
transformations are complete projective vector fields, i.e., complete vector fields whose
flows take (unparameterized) geodesics to geodesics.

Theorem 1 allows us to prove an important special case of the following conjecture,
which folklore attributes (see [57] for discussion) to Lichnerowicz and Obata (the latter
assumed in addition that the manifold is closed, see, for example, [26,63,77]):

Projective Lichnerowicz Conjecture. Let a connected Lie group G act on a complete
connected pseudo-Riemannian manifold (Mn, g) of dimension n ≥ 2 by projective
transformations. Then, it acts by affine transformations, or for a certain c ∈ R \ {0} the
metric c · g is the Riemannian metric of constant positive sectional curvature +1.
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We see that Theorem 1 implies

Corollary 1. The projective Lichnerowicz Conjecture is true under the additional
assumption that the dimension n ≥ 3 and that the degree of mobility of the metric
g is ≥ 3.

Indeed, the pullback of the (complete) metric g under the projective transformation
is a complete metric geodesically equivalent to g. Then, by Theorem 1, it is affine equiv-
alent to g, i.e., the projective transformation is actually an affine transformation, as it is
stated in Corollary 1.

Corollary 1 is thought to be the most complicated part of the solution of the projective
Lichnerowicz conjecture for pseudo-Riemannian metrics. We do not know yet whether
the Lichnerowicz conjecture is true (for pseudo-Riemannian metrics), but we expect that
its solution (= proof or counterexample) will require no new additional ideas beyond
those from the Riemannian case.

To support this optimistic expectation, let us recall that the projective Lichnerowicz
conjecture was recently proved for Riemannian metrics [51,57]. The proof contained
three parts:

(i) proof for the metrics with the degree of mobility 2 ([57, Th. 15], [51, Chap. 4]),
(ii) proof under the assumption dim(M) ≥ 3 for the metrics with the degree of mobility
≥ 3 ([57, Th. 16]),

(iii) proof under the assumption dim(M) = 2 for the metrics with the degree of mobility
≥ 3, [51, Cor. 5 and Th. 7].

The most complicated (= lengthy; it is spread over [57, §§3.2–3.5, 4.2]) part was
the proof under the additional assumptions (ii).

The proof was based on the Levi-Civita description of geodesically equivalent met-
rics, on the calculation of the curvature tensor for Levi-Civita metrics with degree of
mobility ≥ 3 due to Solodovnikov [70,71], and on global ordering of eigenvalues of
a j

i := aipg pj , where ai j is a solution of (9), due to [6,54,74]. This proof can not be
generalized to the pseudo-Riemannian metrics. More precisely, a pseudo-Riemannian
analog of the Levi-Civita theorem is much more complicated, calculations of Solodovni-
kov essentially use positive-definiteness of the metric, and, as examples show, the global
ordering of eigenvalues of a j

i is simply wrong for pseudo-Riemannian metrics.
Thus, Theorem 1 and Corollary 1 close the a priori most difficult part of the solution

of the Lichnerowicz conjecture for the pseudo-Riemannian metrics.
Let us now comment on (i), (iii), from the viewpoint of the possible generalization

of the Riemannian proof to the pseudo-Riemannian case. We expect that this is pos-
sible. More precisely, the proof of (i) is based on a trick invented by Fubini [18] and
Solodovnikov [70], see also [48,50,51]. The trick uses the assumption that the degree
of mobility is two to double the number of PDEs (for a vector field v to be projective
for the metric g), and to lower the order of this equation (the initial equations have order
2, the equations that we get after applying the trick have order 1). This of course makes
everything much easier; moreover, in the Riemannian case, one can explicitly solve this
system [18,64,70]. After doing this, one has to analyze whether the metrics and the
projective field are complete; in the Riemannian case it was possible to do.

The trick survives in the pseudo-Riemannian setting. The obtained system of PDE
was solved for the simplest situations (for small dimensions [11,58], or under the addi-
tional assumption that the minimal polynomial of ai

j coincides with the characteristic
polynomial). We expect that the other part of the program could be realized for pseudo-
Riemannian metrics as well, though of course it will require a lot of work.
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Now let us comment on the proof under the assumptions (iii): dim(M) = 2, degree of
mobility is≥ 3. The initial proof of [51] uses the description of quadratic integrals of geo-
desic flows of complete Riemannian metrics due to [28]. This description has no analog
for pseudo-Riemannian metrics. Fortunately, one actually does not need this description
anymore: in [11,58] a complete list of 2-dimensional pseudo-Riemannian metrics admit-
ting a projective vector field was constructed; the degree of mobility for all these metrics
has been calculated. The metrics that are interesting for the setting (iii) are the metrics
(2a, 2b, 2c) of [11, Th. 1] and (3d) of [58, Th. 1], because all other metrics admitting
projective vector fields have constant curvature or degree of mobility equal to 2. All these
metrics are given by relatively simple formulas using only elementary functions. In order
to prove the projective Lichnerowicz conjecture in the setting (iii), one needs to under-
stand which metrics from this list could be extended to a bigger domain; it does not seem
to be too complicated. For the metrics (2a, 2b,2c) of [11, Theorem 1] it was already done
in [38]. Under the additional assumption that M2 is closed, two dimensional pseudo-
Riemannian version of the Licherowicz conjecture was proved in [61, Theorem 6].

As a consequence of Theorem 1, we obtain the following simpler version of the
Lichnerowicz conjecture.

Corollary 2. Let Projo (respectively, Affo) be the connected component of the Lie group
of projective transformations (respectively, affine transformations) of a complete con-
nected pseudo-Riemannian manifold (Mn, g) of dimension n ≥ 3. Assume that for
no constant c ∈ R\{0} the metric c · g is the Riemannian metric of constant positive
curvature +1. Then, the codimension of Affo in Projo is at most one.

Indeed, it is well known (see, for example [57], or more classical sources acknowelged
therein) that a vector field is projective if the (0, 2)−tensor

a := Lvg − 1

n + 1
trace(g−1Lvg) · g (1)

is a solution of (9), where Lv is the Lie derivative with respect to v. Moreover, the
projective vector field is affine, iff the function (10) constructed by ai j given by (1) is
constant.

Now, let us take two infinitesimal generators of the Lie group Projo, i.e., two complete
projective vector fields v and v̄. In order to show that the codimension of Affo in Projo
is at most one, it is sufficient to show that a linear combination of these vector fields is
an affine vector field. We consider the solutions a := Lvg − 1

n+1 trace(g−1Lvg) · g and
ā := L v̄g − 1

n+1 trace(g−1L v̄g) · g of (9).
If a, ā, and g are linearly independent, the degree of mobility of the metric is ≥ 3.

Then, Corollary 1 implies Projo = Affo.
Thus, a, ā, g are linearly dependent. Since the function λ := 1

2 gpq g pq , i.e., the
function (10) constructed by a = g, is evidently constant, there exists a nontrivial linear
combination â of a, ā such that the corresponding λ̂ given by (10) is constant. Since the
mapping

v �→ a := Lvg − 1

n + 1
trace(g−1Lvg) · g

is linear, the linear combination of v, v̄ with the same coefficients is an affine vector
field. ��
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1.3. Motivation II: New methods for investigation of global behavior of geodesically
equivalent metrics. The theory of geodesically equivalent metrics has a long and fas-
cinating history. First non-trivial examples were discovered by Lagrange [35]. Geode-
sically equivalent metrics were studied by Beltrami [5], Levi-Civita [36], Painlevé [65]
and other classics. One can find more historical details in the surveys [3,62] and in the
introduction to the papers [42,43,46,47,53,56,57,74].

The success of general relativity made it necessary to study geodesically equivalent
pseudo-Riemannian metrics. The textbooks [15,23,66,67] on pseudo-Riemannian met-
rics have chapters on geodesically equivalent metrics. In the popular paper [76], Weyl
stated a few interesting open problems on geodesic equivalence of pseudo-Riemannian
metrics. Recent references (on the connection between geodesically equivalent metrics
and general relativity) include Ehlers et al [16,17], Hall and Lonie [20,24,25], Hall
[21,22].

In many cases, local statements about Riemannian metrics could be generalised for
the pseudo-Riemannian setting, though sometimes this generalisation is difficult. As
a rule, it is very difficult to generalize global statements about Riemannian metrics to
the pseudo-Riemannian setting. The theory of geodesically equivalent metrics is not
an exception: most local results could be generalized. For example, the most classical
results: the Dini/Levi-Civita description of geodesically equivalent metrics [12,36] and
the Fubini Theorem [18] were generalised in [2,7–10].

Up to now, no global (if the manifold is closed or complete) methods for investigation
of geodesically equivalent metrics were generalized for the pseudo-Riemannian setting.
More precisely, virtually every global result on geodesically equivalent Riemannian
metrics was obtained by combining the following methods.

• “Bochner technique”. This is a group of methods combining local differential geom-
etry and the Stokes theorem. In the theory of geodesically equivalent metrics, the
most standard (de-facto, the only) way to use the Bochner technique was to use tensor
calculus to canonically obtain a nonconstant function f such as �g f = const · f ,
where const ≥ 0, which of course can not exist on closed Riemannian manifolds.
An example could be derived from our paper: from Eq. (55) it follows that (�gλ),k =
2(n + 1)Bλ,k . Thus, for a certain const ∈ R we have (�g(λ+ const)) = 2(n + 1)B(λ+
const). If B is positive, g is Riemannian, and M is closed, this implies that the function
λ is constant, which is equivalent to the statement that the metrics are affine equivalent.
The first application of this technique in the theory of geodesically equivalent metrics
is due to the Japan geometry school of Yano, Tanno, and Obata, see for example [27].
Also, the mathematical schools of Odessa and Kazan were extremely strong in this
group of methods, see the review papers [3,62], and the references inside these papers.
Of course, since for pseudo-Riemannian metrics the equation �g f = const · f
could have solutions for const ≥ 0, this technique completely fails in the pseudo-
Riemannian case.
• “Volume and curvature estimations”. For geodesically equivalent metrics g and ḡ, the

repametrisation of geodesics is controlled by a function φ given by (5). This function
also controls the difference between Ricci curvatures of g and ḡ. Playing with this, one
can obtain obstructions for the existence of positively definite geodesically equivalent
metrics with negatively definite Ricci-curvature (assuming the manifold is closed, or
complete with finite volume). Recent references include [29,68].
This method essentially uses the positive definiteness of the metrics.
• “Global ordering of eigenvalues of ai

j ”. The existence of a metric ḡ geodesically
equivalent to g implies the existence of integrals of special form (we recall one of
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the integrals in Lemma 1) for the geodesic flow of the metric g [39,42,43]. In the
Riemannian case, analysis of the integrals implies global ordering of the eigenvalues of

the tensor ai
j :=

(
det(ḡ)
det(g)

) 1
n+1 ḡi pgpj , where ḡi p is the tensor dual to ḡi j , see [6,54,74].

Combining it with the Levi-Civita description of geodesically equivalent metrics,
one could describe topology of closed manifolds admitting geodesically equivalent
Riemannian metrics [33,40,41,44–47,49,52].
Though the integrability survives in the pseudo-Riemannian setting [6,73], the global
ordering of the eigenvalues is not valid anymore (there exist counterexamples), so this
method also is not applicable to the pseudo-Riemannian metrics.

Our proofs (we explain the scheme of the proofs in the beginning of Sect. 2) use
essentially new methods. We would like to emphasize here once more that the last step
of the proof, which uses the local results to obtain global statements, is based on the
existence of lightlike geodesics, and, therefore, is essentially pseudo-Riemannian.

A similar idea was used in [30], where it was proved that complete Einstein met-
rics are geodesically rigid: every complete metric geodesically equivalent to a complete
Einstein metric is affine equivalent to it.

We expect further application of these new methods in the theory of geodesically
equivalent metrics.

1.4. Additional motivation: Superintegrable metrics. Recall that a metric is called
superintegrable, if the number of independent integrals of special form is greater than
the dimension of the manifold. Superintegrable systems are nowadays a hot topic in
mathematical physics, probably because almost all exactly solvable systems are super-
integrable. There are different possibilities for the special form of integrals; de facto the
most standard special form of the integrals is the so-called Benenti integrals, which are
essentially the same as geodesically equivalent metrics, see [4,6,34]. Theorem 2 of our
paper shows that complete Benenti-superintegrable metrics of nonconstant curvature
cannot exist on closed manifolds, which was a folklore conjecture.

2. Proof of Theorems 1, 2

In Sect. 2.1, we recall standard facts about geodesically equivalent metrics and fix the
notation. In Sect. 2.2, we will prove Lemma 2, which is a purely linear algebraic state-
ment. Given two solutions of Eq. (11), it gives us Eq. (27). The coefficients in the equation
are a priori functions. We will work with this equation for a while: In Sect. 2.3.1, we
prove (Lemma 5) that (under the assumptions of Theorem 1) one of the coefficients of
(27) is actually a constant. Later, we will show (Lemma 8) that the metric g determines
the constant uniquely.

Equation (27) will be used in Sect. 2.3.6. The main result of this section is Corollary 8.
This corollary gives us (under assumptions of Theorem 1) an ODE that must be fulfilled
along every lightlike geodesic, and that controls the reparameterization that produces
g-geodesics from ḡ-geodesics. The ODE is relatively simple and could be solved explic-
itly (Sect. 2.4). Analyzing the solutions, we will see that the geodesic is complete with
respect to both metrics iff the function controlling the reparametrization of the geodesics
is a constant, which implies that the metrics are affine equivalent. This proves Theorem 1
provided lightlike geodesics exist. As we mentioned in the Introduction, Theorem 1 was
already proved [45,57] for Riemannian metrics. Nevertheless, for self-containedness, in
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Sect. 2.5 we give a new proof for Riemannian metrics as well, which is much shorter
than the original proof from [45,57].

The proof of Theorem 2 will be done in Sect. 2.6. The idea is similar: we analyze
a certain ODE along lightlike geodesics (this ODE will easily follow from Eq. (55),
which is an easy corollary of Eq. (27)), and show that the assumption that the manifold
is closed implies that the solution of the ODE coming from the metric ḡ is constant,
which implies that g and ḡ are geodesically equivalent.

2.1. Standard formulas we will use. We work in tensor notation with the background
metric g. That means, we sum with respect to repeating indexes, use g for raising and
lowering indexes (unless we explicitly say otherwise), and use the Levi-Civita connec-
tion of g for covariant differentiation.

As it was known already for Levi-Civita [36], two connections � = �i
jk and �̄ = �̄i

jk
have the same unparameterized geodesics, if and only if their difference is a pure trace:
there exists a (0, 1)-tensor φ such that

�̄i
jk = �i

jk + δi
kφ j + δi

jφk . (2)

The reparametrizations of the geodesics for � and �̄ connected by (2) are done accord-
ing to the following rule: for a parametrized geodesic γ (τ) of �̄, the curve γ (τ(t)) is
a parametrized geodesic of �, if and only if the parameter transformation τ(t) satisfies
the following ODE:

φpγ̇
p = 1

2

d

dt

(
log

(∣∣∣∣
dτ

dt

∣∣∣∣
))

. (3)

(We denote by γ̇ the velocity vector of γ with respect to the parameter t , and assume
summation with respect to repeating index p.)

If � and �̄ related by (2) are Levi-Civita connections of metrics g and ḡ, then one
can find explicitly (following Levi-Civita [36]) a function φ on the manifold such that
its differential φ,i coincides with the covector φi : indeed, contracting (2) with respect
to i and j , we obtain �̄

p
pi = �

p
pi + (n + 1)φi . On the other hand, for the Levi-Civita

connection � of a metric g we have �
p
pk = 1

2
∂ log(|det (g)|)

∂xk
. Thus,

φi = 1

2(n + 1)

∂

∂xi
log

(∣∣∣∣
det(ḡ)

det(g)

∣∣∣∣
)
= φ,i (4)

for the function φ : M → R given by

φ := 1

2(n + 1)
log

(∣∣∣∣
det(ḡ)

det(g)

∣∣∣∣
)

. (5)

In particular, the derivative of φi is symmetric, i.e., φi, j = φ j,i.
The formula (2) implies that two metrics g and ḡ are geodesically equivalent if and

only if for a certain φi (which is, as we explained above, the differential of φ given by
(5)) we have

ḡi j,k − 2ḡi jφk − ḡikφ j − ḡ jkφi = 0, (6)
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where “comma” denotes the covariant derivative with respect to the connection �.
Indeed, the left-hand side of this equation is the covariant derivative with respect to
�̄, and vanishes if and only if �̄ is the Levi-Civita connection for ḡ.

Equations (6) can be linearized by a clever substitution: consider ai j and λi given by

ai j = e2φ ḡ pq gpi gq j , (7)

λi = −e2φφpḡ pq gqi , (8)

where ḡ pq is the tensor dual to ḡpq : ḡ pi ḡpj = δi
j . It is an easy exercise to show that the

following linear equations for the symmetric (0, 2)-tensor ai j and (0, 1)-tensor λi are
equivalent to (6).

ai j,k = λi g jk + λ j gik . (9)

Remark 4. For dimension 2, the substitution (7,8) was already known to R. Liouville [37]
and Dini [12], see [11, Sect. 2.4] for details and a conceptual explanation. For arbitrary
dimension, the substitution (7,8) and Eq. (9) are due to Sinjukov [69]. The underlying
geometry is explained in [13,14].

Note that it is possible to find a function λ whose differential is precisely the (0, 1)-
tensor λi : indeed, multiplying (9) by gi j and summing with respect to repeating indexes
i, j we obtain (gi j ai j ),k = 2λk . Thus, λi is the differential of the function

λ := 1

2
g pqapq . (10)

In particular, the covariant derivative of λi is symmetric: λi, j = λ j,i .
We see that Eqs. (9) are linear. Thus the space of the solutions is a linear vector space.

Its dimension is called the degree of mobility of the metric g.
We will also need integrability conditions for Eq. (9) (one obtains them substituting

the derivatives of ai j given by (9) in the formula ai j,lk − ai j,kl = aip R p
jkl + apj R p

ikl ,
which is true for every (0, 2)−tensor ai j )

aip R p
jkl + apj R p

ikl = λl,i g jk + λl, j gik − λk,i g jl − λk, j gil . (11)

The integrability condition in this form was obtained by Sinjukov [69]; in equivalent
form, it was known to Solodovnikov [70].

As a consequence of these integrability conditions, we obtain that every solution ai j
of (9) must commute with the Ricci tensor Ri j :

a p
i Rpj = a p

j Rip. (12)

To show this, we “cycle” Eq. (11) with respect to i, k, l, i.e., we sum it with itself after
renaming the indexes according to (i �→ k �→ l �→ i) and with itself after renaming
the indexes according to (i �→ l �→ k �→ i). The first term at the left-hand side of
the equation will disappear because of the Bianchi equality R p

ikl + R p
kli + R p

lik = 0, the
right-hand side vanishes completely, and we obtain

api R p
jkl + apk R p

jli + apl R p
jik = 0. (13)

Multiplying with g jk , using symmetries of the curvature tensor, and summing over the
repeating indexes we obtain api R p

l − apl R p
i = 0, i.e., (12).



Proof of Projective Lichnerowicz Conjecture for Pseudo-Riemannian Metrics 409

Remark 5. For further use, let us recall that Eqs. (9) are of finite type (they close after
two differentiations [14,62,69]). Since they are linear, and since in view of (10) they
could be viewed as equations on ai j only, linear independence of the solutions on the
whole connected manifold implies linear independence of the restriction of the solu-
tions to every neighborhood. Thus, the assumption that the degree of mobility of g (on
a connected M) is≥ 3 implies that the degree of mobility of the restriction of g to every
neighborhood is also ≥ 3.

We will also need the following statement from [39,74]. We denote by co(a)i
j the

classical comatrix (adjugate matrix) of the (1, 1)-tensor ai
j viewed as an n × n-matrix.

co(a)i
j is also a (1, 1)-tensor.

Lemma 1 ([39,74]). If the (0, 2)-tensor ai j satisfies (9), then the function

I : T M → R, ( x︸︷︷︸
∈M

, ξ︸︷︷︸
∈Tx M

) �→ gpq co(a)p
γ ξγ ξq (14)

is an integral of the geodesic flow of g.

Recall that a function is an integral of the geodesic flow of g, if it is constant along
the orbits of the geodesic flow of g, i.e., if for every parametrized geodesic γ (t) the
function I (γ (t), γ̇ (t)) does not depend on t .

Remark 6. If the tensor ai j comes from a geodesically equivalent metric ḡ by formula
(7), the integral (14) is

I (x, ξ) =
∣∣∣∣
det(g)

det(ḡ)

∣∣∣∣
2/(n+1)

ḡ(ξ, ξ).

In this form, Lemma 1 was already known to Painlevé [65].

2.2. An algebraic lemma.

Lemma 2. Assume symmetric (0, 2) tensors ai j , Ai j , λi j and �i j satisfy

aip R p
jkl + apj R p

ikl = λli g jk + λl j gik − λki g jl − λk j gil ,
(15)

Aip R p
jkl + Apj R p

ikl = �li g jk + �l j gik −�ki g jl −�k j gil ,

where gi j is a metric and Ri
jkl is its curvature tensor. Assume ai j , Ai j , and gi j are lin-

early independent at the point p. Then, at the point, λi j is a linear combination of ai j
and gi j .

Remark 7. We would like to emphasize here that, though the lemma is formulated in the
tensor notation, it is a purely algebraic statement (in the proof we will not use differen-
tiation, and, as we see, no differential condition on a, A is required). Moreover, we can
replace Ri

jkl by any (1,3)-tensor having the same algebraic symmetries (with respect
to g) as the curvature tensor, so that for example the fact that the first equation of (15)
coincides with (11) will not be used in the proof (but of course this will be used in the
applications of Lemma 2). The underlying algebraic structure of the lemma is explained
in the last section of [9].
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Proof. First observe that Eqs. (15) are unaffected by replacing

ai j �→ ai j + a · gi j , λi j �→ λi j + λ · gi j , Ai j �→ Ai j + A · gi j , �i j �→ �i j + � · gi j

for arbitrary a, λ, A,� ∈ R. Therefore we may suppose, without loss of generality, that
ai j , λi j , Ai j ,�i j are trace-free, i.e.,

ai j g
i j = λi j g

i j = Ai j g
i j = �i j g

i j = 0. (16)

Our assumptions become that ai j and Ai j are linearly independent and our aim is to
show that λi j = const · ai j .

We multiply the first equation of (15) by Al
l ′ and sum over l. After renaming l ′ �→ l,

we obtain

aip R p
jkq Aq

l + apj R p
ikq Aq

l = λpi Ap
l g jk + λpj Ap

l gik − λki A jl − λk j Ail . (17)

We use symmetries of the Riemann tensor to obtain a p
i Rpjkq Aq

l = a p
i Rqk jp Aq

l =
a p

i Aql Rq
k jp. After substituting this in (17), we get

a p
i Aql Rq

k jp + a p
j Aql Rq

kip = λpi Ap
l g jk + λpj Ap

l gik − λki A jl − λk j Ail . (18)

Let us now symmetrize (18) by l, k,

a p
i

(
Aql Rq

k jp + Aqk Rq
l jp

)
+ a p

j

(
Aqk Rq

lip + Aql Rq
kip

)

= λpi Ap
l g jk +λpj Ap

l gik − λki A jl − λk j Ail + λpi Ap
k g jl + λpj Ap

k gil−λli A jk − λl j Aik .

(19)

We see that the components in brackets are the left-hand side of the second equation of
(15) with other indexes. Substituting (15) in (19), we obtain

a p
i �pl g jk + a p

i �pk g jl −� jlaik −� jkail + a p
j �pl gik + a p

j �pk gil −�ila jk −�ika jl

= λpi Ap
l g jk + λpj Ap

l gik − λki A jl − λk j Ail + λpi Ap
k g jl + λpj Ap

k gil − λli A jk − λl j Aik .

(20)

Collecting the terms by g, we see that (20) is can be written as
(
a p

i �pl − λpi Ap
l

)
g jk +

(
a p

i �pk − λpi Ap
k

)
g jl

+
(

a p
j �pl − λpj Ap

l

)
gik +

(
a p

j �pk − λpj Ap
k

)
gil

= � jlaik + � jkail + �ila jk + �ika jl − λki A jl − λk j Ail − λli A jk − λl j Aik .

(21)

After denoting

τil := a p
i �pl − Ap

l λpi , (22)

Eq. (21) can be written as

τil g jk + τik g jl + τ jl gik + τ jk gil

= � jlaik + � jkail + �ila jk + �ika jl − λki A jl − λk j Ail − λli A jk − λl j Aik . (23)
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Multiplying (23) by g jk , contracting with respect to j, k, and using (16), we obtain

(n + 2)τil +
(
τ jk g jk

)
gil = �pla

p
i + �i pa p

l − λpi Ap
l − λlp Ap

i

(22)= τil + τli . (24)

We see that the right-hand side is symmetric with respect to i, l. Then, so should be
the left-hand-side implying τil = τli . Then, Eq. (24) implies nτil +

(
τ jk g jk

)
gil = 0

implying τil = 0. Then, Eq. (23) reads

0 = � jlaik + � jkail + �ila jk + �ika jl − λki A jl − λk j Ail − λli A jk − λl j Aik . (25)

We alternate (25) with respect to j, k to obtain

0 = � jlaik + �ika jl − λki A jl − λl j Aik −�klai j −�i j akl + λ j i Akl + λlk Ai j . (26)

Let us now rename i ↔ k in (26) and add the result with (25). We obtain

� jlaik + �ika jl − λki A jl − λl j Aik = 0.

In other words, �αaβ + �βaα = λβ Aα + λα Aβ , where α and β stand for the symmetric
indices jl and ik, respectively.

But it is easy to check that a non-zero simple symmetric tensor Xαβ = Pα Qβ + Pβ Qα

determines its factors Pα and Qβ up to scale and order (it is sufficient to check, for
example, by taking Pα and Qβ to be basis vectors). Since ai j and Ai j are supposed to
be linearly independent, it follows that λi j = const · ai j , as required. ��

2.3. Local results. Within this section, we assume that (M, g) is a connected Riemann-
ian or pseudo-Riemannian manifold of dimension n ≥ 3. Recall that the degree of
mobility of a metric g is the dimension of the space of the solutions of (9).

Lemma 3. Suppose that the degree of mobility of g is ≥ 3. Then for every solution ai j
of (9), where λi is the differential of the function λ given by (10), there exists an open
dense subset N of M each of whose points admits an open neighborhood U, a constant
B, and a function μ on U, such that the hessian of λ satisfies on U the equation

λ,i j = μgi j + Bai j . (27)

Proof. If a = const·g, then λ is constant and the lemma holds with N = M , μ ≡ B = 0.
Otherwise there exists a solution A of (9) such that a, A, g are linearly independent.
We denote by �i the (0, 1)-tensor from Eq. (8) corresponding to A, i.e., �i = �,i for
� := 1

2 Apq g pq .
Then the integrability conditions (11) for the solutions a and A are given by (15)

(with λi j = λ,i j and �i j = �,i j ).
Let N be the set of all x ∈ M which admit a neighborhood on which a, A, g are

either pointwise linearly independent or pointwise linearly dependent. Being a union of
open sets, N is open. N is also dense in M : every nonempty open set U ⊂ M either
consists only of points where a, A, g are linearly dependent, then U ⊂ N ; or it contains
a point where a, A, g are linearly independent and which is therefore contained in N .

By definition every point in N has an open connected neighborhood U on which one
of two possibilities holds:
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(a) a, A, g are pointwise linearly independent. Then, by Lemma 2, λ,i j = μgi j + Bai j ,
where μ and B are functions; they are unique and smooth because of linear inde-
pendence. Our goal is to show that B is actually a constant, this will be done in
Sect. 2.3.3.

(b) a, A, g are pointwise linearly dependent. Then there exist a nonempty open con-

nected subset U ′ of U and (smooth) functions
1
c,

2
c on U ′ such that on U ′, we have

a+
1
c A+

2
c g ≡ 0 or A+

1
c a+

2
c g ≡ 0. (To see that

1
c,

2
c can be chosen to be smooth,

distinguish three cases: the span of a, A, g has on U pointwise dimension 1; or A, g
are linearly independent somewhere; or a, g are linearly independent somewhere.)

We will prove in Sect. 2.3.1 that
1
c,

2
c are actually constants. (Lemma 5 can be applied

here because if a or A had the form const · g on U ′, then also on M , in contradiction
to linear independence.) Thus a, A, g are linearly dependent on U ′ and therefore on
M . This contradiction rules out case (b).

2.3.1. Linear dependence of three solutions over functions implies their linear depen-
dence over numbers. We will use the following statement (essentially due to Weyl [75]);
its proof can be found for example in [74], see also [9, Lemma 1 in Sect. 2.4].

Lemma 4. Suppose ai j and Ai j are solutions of (9). Assume a = f · A, where f is a
function. Then f is actually a constant.

Our main goal is the following lemma, which settles the case (b) of the proof of
Lemma 3.

Lemma 5. Suppose for certain functions
1
c,

2
c the solutions a, A (of (9) on a connected

manifold (Mn≥3, g)) satisfy

ai j = 1
c gi j +

2
c Ai j . (28)

We assume in addition that A is not const · g. Then the functions
1
c,

2
c are constants.

Remark 8. Though we will use that the dimension of the manifold is at least three, the
statement is true in dimension two as well provided the curvature of g is not constant,
see [33].

Proof of Lemma 5. We assume that
1
c,k or

2
c,k is not zero everywhere, and find a contra-

diction.
Differentiating (28) and substituting (9) and its analog for the solution A, we obtain

λi g jk + λ j gik = 1
c,k gi j +

2
c �i g jk+

2
c � j gik+

2
c,k Ai j , (29)

which is evidently equivalent to

τi g jk + τ j gik = 1
c,k gi j +

2
c,k Ai j , (30)

where τi = λi− 2
c �i . We see that for every fixed k the left-hand side is a sym-

metric matrix of the form τiv j + τ jvi . If
1
c,k is not proportional to

2
c,k at some point
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x ∈ M , this will imply that gi j also is of the form τiv j + τ jvi at x , which contradicts the
nondegeneracy of g. Thus there exists a function f with

1
c,k= f · 2

c,k . (31)

At each point x there exists a nonzero vector ξ = (ξ k) ∈ Tx M such that ξ k 2
c,k= 0.

Multiplying (30) with ξ k and summing with respect to k, we see that the right-hand side
vanishes, and obtain the equation τiv j + τ jvi = 0, where vi := ξ k gik . Since vi �= 0, we

obtain τi = 0 at x ; hence Eq. (30) reads f · 2
c,k gi j = − 2

c,k Ai j everywhere on M . Since

the covector field
2
c,k is pointwise nonzero on some nonempty connected open subset U

of M , this equation implies f · gi j = −Ai j on U . By Lemma 4, f is constant on U . By
Remark 4, it is constant globally, which contradicts the assumptions. ��
2.3.2. In dimension 3, only metrics of constant curvature can have the degree

of mobility ≥ 3

Lemma 6. Assume that the conformal Weyl tensor Ch
i jk of the metric g on (a connected)

Mn≥3 vanishes. If the curvature of the metric is not constant, the degree of mobility of
g is at most two.

Since the conformal Weyl tensor Ch
i jk of any metric on a 3-dimensional manifold

vanishes, a special case of Lemma 6 is

Corollary 3. The degree of mobility of each metric g of nonconstant curvature on M3

is at most two.

Proof of Lemma 6. It is well-known that the curvature tensor of spaces with Ch
i jk = 0

has the form

Rh
i jk = Ph

k gi j − Ph
j gik + δh

k Pi j − δh
j Pik, (32)

where Pi j := 1
n−2

(
Ri j − R

2(n−1)
gi j

)
(and therefore Ph

k = Ppk g ph). We denote by P

the trace of Ph
k ; easy calculations give us P = R

2(n−1)
.

Substituting Eqs. (32) in the integrability conditions (11), we obtain

api P p
l g jk − api P p

k g jl + ali Pjk − aki Pjl + apj P p
l gik − apj P p

k gil + al j Pik − akj Pil

= λl,i g jk + λl, j gik − λk,i g jl − λk, j gil . (33)

Multiplying (33) with g jk and summing with respect to repeating indexes, and using the
symmetry of Pi j due to (12), we obtain

api P p
l = λl,i − P

n
ali +

P̂

n
gli +

2λ

n
Pil , (34)

where P̂ = gqγ apq P p
γ − λ

p
,p. Substituting (34) in (33), we obtain

0 =2λ

n
Pil g jk − 2λ

n
Pik g jl +

2λ

n
Pjl gik − 2λ

n
Pjk gil

+ ali Pjk − aki Pjl + al j Pik − akj Pil − P

n
ail g jk +

P

n
aik g jl − P

n
a jl gik +

P

n
a jk gil .

(35)
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Alternating Eq. (35) with respect to j, k, renaming i ←→ k, and adding the result to
(35), we obtain

2λ

n
Pil g jk − 2λ

n
Pjk gil + ali Pjk − akj Pil − P

n
ail g jk +

P

n
a jk gil = 0, (36)

which is evidently equivalent to

2λ

n
Pil g jk − 2λ

n
Pjk gil + ali

(
Pjk − P

n
g jk

)
− akj

(
Pil − P

n
gil

)
= 0. (37)

Hence (in view of Pjk − P
n g jk �= 0 because by assumption the curvature of g is not

constant) there exists a nonempty open set U such that every solution ai j of (9) is on
U a smooth linear combination of gi j and Pi j . Thus every three solutions g, a, â of (9)
are on U linearly dependent over functions. By Lemma 5, they are on U , and therefore
everywhere, linearly dependent over numbers. ��

2.3.3. Case (a) of Lemma 3: Proof that B = const. We consider a neighborhood U ⊆
Mn≥3 such that a, A, g are linearly independent at every point of the neighborhood; by
Lemma 5, almost every point has such neighborhood.

Remark 9. Within the whole paper we understand “almost everywhere” and “almost
every” in the topological sense: a condition is fulfilled almost everywhere (or in almost
every point) if and only if it the set of the points where it is fulfilled is everywhere dense.

In the beginning of the proof of Lemma 3, we explained that at every point of the
neighborhood Eq. (27) holds for certain smooth functions μ and B. Our goal is to show
that B is actually a constant (on U ).

Because of Corollary 3, we can assume n = dim(M) ≥ 4. Indeed, otherwise by
Corollary 3 the curvature of the metrics is constant, and the metric is Einstein. Then, by
[30, Cor. 1], Eq. (27) holds.

Within the proof, we will use the following equations, the first one is (9), the second
follows from Lemma 3:

{
ai j,k = λi g jk + λ j gik
λ,i j = μgi j + Bai j .

(38)

Our goal will be to show that B is constant. We assume that it is not the case and
show that for a certain covector field ui and functions α, β on the manifold we have
ai j = αgi j + βui u j . Later we will show that this gives a contradiction with the assump-
tion that the degree of mobility is three.

We consider the equation λi, j = μgi j + Bai j . Taking the covariant derivative ∇k , we
obtain

λi, jk = μ,k gi j + B,kai j + Bai j,k
(9)= μ,k gi j + B,kai j + Bλi g jk + Bλ j gik . (39)

By definition of the Riemannian curvature, we have λi, jk−λi,k j = λp R p
i jk . Substituting

(39) in this equation, we obtain

λp R p
i jk = μ,k gi j + B,kai j − μ, j gik − B, j aik + Bλ j gik − Bλk gi j . (40)
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Now, substituting the second equation of (38) in (11), we obtain

api R p
jkl + apj R p

ikl = B
(
ali g jk + al j gik − aki g jl − akj gil

)
. (41)

We multiply this equation by λl and sum over l. Using that api R p
jkqλq is evidently equal

to a p
i Rq

k jpλq , we obtain

a p
i Rq

k jpλq + a p
j Rq

kipλq = B
(
aiqλq g jk + a jqλq gik − akiλ j − akjλi

)
. (42)

Substituting the expressions for Rq
k jpλq and Rq

kipλq , we obtain

1
τ i a jk+

1
τ j aik+

2
τ i g jk+

2
τ j gki − B, j a

p
i apk − B,i a

p
j apk = 0, (43)

where
1
τ i := a p

i B,p − μ,i + 2Bλi and
2
τ i := a p

i μ,p − 2Bλpa p
i .

Now let us work with (43): we alternate the equation with respect to i, k to obtain:

1
τ i a jk+

2
τ i g jk − B,i a

p
j apk− 1

τ k a ji− 2
τ k g ji + B,ka p

j api = 0. (44)

We rename j ↔ k and add the result to (43): we obtain

1
τ i a jk+

2
τ i g jk = B,i a

p
j apk . (45)

Remark 10. If B = const on U , then
1
τ i a jk+

2
τ i g jk = 0. Since by Lemma 4 a jk is not

proportional to g jk , we have
1
τ i = 0, which implies that μ,i = 2Bλi .

The condition (45) implies that under the assumption B �= const the covectors
1
τ i ,

2
τ i

and B,i are collinear: Moreover, for certain functions
1
c,

2
c,

1
c B,i = 1

τ i ,
2
c B,i = 2

τ i ,
1
c a jk+

2
c g jk = a p

j apk . (46)

Taking the ∇k derivative of the last formula of (46), we obtain

λpa p
j gik + λi a jk + λpa p

i g jk + λ j aik = 1
c,k ai j +

2
c,k gi j +

1
c λi g jk+

1
c λ j gik .

Alternating the last formula with respect to i and k, we obtain:

3
τ i a jk− 3

τ k ai j +
4
τ i g jk− 4

τ k gi j = 0, (47)

where
3
τ i = λi +

1
c,i ,

4
τ i = λpa p

i− 1
c λi +

2
c,i . Let us explain that this equation implies

either ai j = αgi j + βui u j (which was our goal), or
3
τ = 4

τ = 0.

We fix a point x ∈ U and assume that
3
τ i �= 0 at the point. Then,

4
τ i �= 0 as well.

For every vector ξ ∈ Tx M we multiply (47) by ξ j and sum with respect to j . Denoting
A(ξ)k := a jkξ

j and G(ξ)k := g jkξ
j , we obtain

3
τ i A(ξ)k− 3

τ k A(ξ)i +
4
τ i G(ξ)i− 4

τ k G(ξ)i = 0. (48)
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Then, the (at most two-dimensional) subspaces of T ∗x M generated by { 3
τ i , A(ξ)i } and

by { 4
τ i , G(ξ)i } coincide. Since the metric g is nondegenerate, varying ξ we obtain all

possible elements of T ∗x M as G(ξ)i , so the subspaces generated by { 4
τ i , G(ξ)i } are all

possible at most two-dimensional subspaces containing
4
τ i , and the subspace generated

by { 4
τ i } is the intersection of all such subspaces. Similarly, the subspace generated by

{ 3
τ i } is the intersection of subspaces generated by { 3

τ i , A(ξ)i }. Thus,
3
τ i = −α

4
τ i for a

certain constant α, and Eq. (47) looks like

3
τ i (a jk − αg jk)− 3

τ k (ai j − αg jk) = 0. (49)

We take η ∈ Tx M such that ηk 3
τ k= 0, multiply (49) by ηk and sum over k. We obtain that

A(η) = αG(η) for all such η. Thus, for a certain const β we have ai j = αgi j + β
3
τ i

3
τ j

as we claimed.

In the case where
3
τ and

4
τ vanish identically on U ′, using (46), (9) and the defini-

tion of
3
τ and

4
τ , we obtain λαaα

i = (n+2)
1
c−2λ

n+4 λi , i.e., that λα is an eigenvector of a j
i .

Differentiating this equation and substituting (38), (46), (9), and
3
τ= 0, we obtain

⎛
⎝μ+

1
c B − (n + 2)

1
c −2λ

n + 4
B

⎞
⎠ ai j =

⎛
⎝ (n + 2)

1
c −2λ

n + 4
μ− λpλp− 2

c B

⎞
⎠ gi j − 2λiλ j .

Assume that the coefficient of ai j vanishes identically on U ′. Since gi j has rank≥ 4 and
λiλ j has rank≤ 1, the coefficient of gi j vanishes identically on U ′, and thus the covector
field λi vanishes identically on U ′. Differentiating λi = 0, and using λi j = μgi j + Bai j
and Lemma 5, we see that either a = const · g on U ′ and therefore everywhere, in
contradiction to our linear independence assumption; or B ≡ 0 on U ′, in contradiction

to the choice of U ′. This shows that also in the case
3
τ= 4

τ≡ 0 there exist a nonempty
open subset U ′′ of U ′ and functions α, β on U ′′ and a covector field u on U ′′ with
ai j = αgi j + βui u j .

Let us now explain that if ai j is not proportional to g and ai j = α(x)gi j + β(x)ui u j
for every point x of some neighborhood, then α is a smooth function, and β (resp. ui )
can be chosen to be smooth function (resp. smooth covector field), probably in a smaller
neighborhood. Indeed, under these assumptions α is the eigenvalue of a j

i of (algebraic
and geometric) multiplicity precisely n − 1. Then, it is a smooth function. Then, βui u j
is a smooth (0, 2)-tensor field. Since ai j and gi j are not proportional, βui u j is not zero
and we can choose β = ±1. Then, we have precisely two choices for the covector ui (x)

at every point x and in a small neighborhood we can choose ui (x) smoothly.
Thus, under the assumptions of this section, for every solution ai j of (9), we have

(for certain functions α1, α2 and a covector field ui )

ai j = α1gi j + α2ui u j . (50)

For the solution Ai j an analog of Eq. (50) holds so (in a possible smaller neighbor-
hood) we also have (for certain functions β1, β2 and a covector field vi )

Ai j = β1gi j + β2viv j . (51)
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Without loss of generality, we can assume that ai j + Ai j (which is certainly a solution
of (9)) is also not proportional to gi j , otherwise we replace Ai j by 1

2 Ai j . Then,

ai j + Ai j = γ1gi j + γ2wiw j . (52)

Subtracting (52) from the sum of (50) and (51), we obtain

(γ1 − α1 − β1)gi j = α2ui u j + β2viv j − γ2wiw j . (53)

Since the tensor gi j is nondegenerate, its rank coincides with the dimension of M that
is at least 4. The rank of the tensor α2ui u j + β2viv j − γ2wiw j is at most three. Thus
the coefficient (γ1 − α1 − β1) must vanish, which implies that

α2ui u j + β2viv j = γ2wiw j . (54)

We see that the rank of α2ui u j + β2viv j is at most one, which implies that ui is pro-
portional to vi (the coefficient of the proportionality is a function). Thus (54) implies
that wi is proportional to ui as well. Thus ai j , Ai j , and gi j are linearly dependent over
functions, which implies by Lemma 5 that they are linearly dependent over numbers.
This is a contradiction to the assumptions, which proves the remaining part of Lemma 3.

2.3.4. The constant B is universal. Let (Mn≥3, g) be a connected pseudo-Riemannian
manifold. Assume the degree of mobility of g is≥ 3, let (ai j , λi ) be a solution of Eqs. (9)
such that ai j �= const · gi j for every const ∈ R. Then, in a neighborhood of almost every
point there exist a constant B and a function μ such that Eqs. (38) hold. Note that the
constant B determines the function μ: indeed, multiplying (27) by gi j and summing
with respect to i, j we obtain λi

,i = nμ− 2Bλ.
Our goal is to prove the statement announced in the title of the section: we would like

to show that the constant B is the same in all such neighborhoods (which in particular
implies that Eqs. (38) hold at all points with one universal constant B and one universal
function μ). We will need the following

Corollary 4. Let ai j , λi satisfy Eqs. (38) in a neighborhood U ⊆ (M, g) with a certain
constant B and a smooth function μ. Then the function λ given by (10) satisfies the
equation

λ,i jk − B
(
2λ,k gi j + λ, j gik + λ,i g jk

) = 0. (55)

Remark 11. This equation is a famous one; it naturally appeared in different parts of
differential geometry. Obata and Tanno used this equation trying to understand the con-
nection between the eigenvalues of the laplacian �g and the geometry and topology
of the manifold. They observed [64,72] that the eigenfunctions corresponding to the
second eigenvalue of the Laplacian of the metrics of constant positive curvature −B on
the sphere satisfy Eq. (55).

Tanno [72] and Hiramatu [27] related the equations to projective vector fields. Tanno
has shown that for every solution λ of this equation the vector field λ i

, is a projective
vector field (assuming B �= 0), Hiramatu proved the reciprocal statement under certain
additional assumptions.

As it was shown by Gallot [19], see also [1,59,60], decomposability of the holonomy
group of the cone over a manifold implies the existence of a nonconstant solution of
Eq. (55) on the manifold.
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Proof of Corollary 4. Covariantly differentiating (27) and replacing the covariant deriv-
ative of ai j by (9) we obtain (55) from Remark 10 if a �= const · g. If a = const · g, we
have λ,i = 0, thus (55) holds as well. ��
Corollary 5. Let the degree of mobility of a metric g on a connected (n > 3)-
dimensional M be ≥ 3. Assume (ai j , λi ) is a solution of (9). Then, if λi �= 0 at a
point, then the set of the points such that λi �= 0 is everywhere dense.

Remark 12. The assumption that the degree of mobility of g is ≥ 3 is important: Levi-
Civita’s description of geodesically equivalent metrics [36] immediately gives counte-
rexamples.

Proof of Corollary 5. Combining Lemma 3, Remark 10, and Corollary 4, we obtain
that in a neighborhood of almost every point λ given by (8) satisfies (55). By [72, Prop.
2.1], the vector field λi is a projective vector field (almost everywhere, and, therefore,
everywhere) on (M, g). As it was shown for example in [23, Th. 21.1(ii)], if it is not
zero at a point, then it is not zero at almost every point. ��
Corollary 6. Let ai j , λi satisfy Eqs. (38) in a neighborhood U with a certain constant
B and a smooth function μ. Let λ be the function constructed by (10). Then for every
geodesic γ (t) the following equation holds (at every t ∈ γ−1(U )):

d3

dt3 λ(γ (t)) = 4Bg(γ̇ (t), γ̇ (t)) · d

dt
λ(γ (t)), (56)

where γ̇ denotes the velocity vector of the geodesic γ , and g(γ̇ (t), γ̇ (t)) := gi j γ̇
i γ̇ j .

Proof. Multiplying (55) by γ̇ i γ̇ j γ̇ k and summing with respect to i, j, k we obtain
(56). ��
Lemma 7. Let (Mn≥3, g) be a connected manifold and (ai j , λi ) be a solution of (9).
Assume almost every point has a neighborhood such that in this neighborhood there
exists a constant B and a smooth function μ such that Eq. (27) is fulfilled. Then the
constant B is the same in all such neighborhoods.

Proof. It is sufficient to prove this statement locally, in a sufficiently small neighborhood
of arbitrary point. We take a small neighborhood U , two points p0, p1 ∈ U , and two
neighborhoods U (p0) ⊂ U, U (p1) ⊂ U of these points. We assume that our neighbor-
hoods are small enough and that we can connect every point of U (p0) with every point
of U (p1) by a unique geodesic lying in U . We assume that Eq. (27) holds in U (pi ) with
the constant B := Bi ; our goal is to show that B0 = B1.

Suppose it is not the case. We consider all geodesics γp,p0 lying in U connecting all
points p ∈ U (p1) with p0, see Fig. 1. We will think that γ (0) = p0 and γ (1) ∈ U (p1).

For every such geodesic γp,p0(t) there exists a point qp,p0 := γp,p0(tp,p0) on this
geodesic such that for all t ∈ [0, tp,p0) the following conditions are fulfilled:

1. Equations (38) are fulfilled with B = B0 in a small neighborhood of γ (t), and
2. for no neighborhood of γp,p0(tp,p0) Eqs. (38) are fulfilled with B = B0.

Then, at every such point γp,p0(tp,p0) we have that ai j = 2
n λgi j . Indeed, the trace-free

version of (27) is

λ,i j − 1

n
λ k

,k = B

(
ai j − 2

n
λgi j

)
, (57)
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p0

p
1

q

Fig. 1. The geodesics γp,p0 , their velocity vectors at p0, and the point qp,p0 = γp,p0 (tp,p0 ) on one of these
geodesics

implying that B is the coefficient of proportionality of two smooth tensors. If ai j �= 2
n λgi j

at γp,p0(tp,p0), we have ai j − 2
n λgi j �= 0, and B can be prolonged to a smooth function

in a small neighborhood of γp,p0(tp,p0). Since it is locally-constant, it is (the same)
constant at all points of the neighborhood of γp,p0(tp,p0) contradicting the conditions
1, 2.

Moreover, at every such point γp,p0(tp,p0) we have λi = 0. Indeed, otherwise we
multiply (55) by gi j and sum with respect to i, j . We obtain λi

,ik = 2(n + 1)Bλk . We
again have that B is the coefficient of proportionality of two smooth tensors. Arguing
as above we obtain that λi = 0 at every point γp,p0(tp,p0).

Since at every point γp,p0(tp,p0) we have λi = 0, we have that d
dt λ(γp,p0(t))|t=tp,p0

=
0. Then, the set of all such γp,p0(tp,p0) contains a smooth (connected) hypersurface
(because the set of zeros of the derivatives of the solutions of Eq. (56) depends smoothly
on the initial data and on g(γ̇ , γ̇ )). We denote this hypersurface by H . Since λi = 0 at
every point of H , the function λ is constant (we denote it by λ̃ ∈ R) on H .

Now let us return to the geodesics γp,p0 connecting points p ∈ U (p1) with p0. We
consider the integral I given by (14). Direct calculations show that at every point q
where ai j = c · gi j the integral is given by

I (ξ) = cn−1g(ξ, ξ) (58)

(for every tangent vector ξ ∈ Tq M). As we explained above, every such geodesic
passing through a point of H has a point such that ai j = c · gi j , where c = 2

n λ̃ is
a constant. Since the integral is constant on the orbits, we have that I

(
γ̇p,p0(0)

) =
cn−1 · g (

γ̇p,p0(0), γ̇p,p0(0)
)
. Then, the measure of the subset

{ξ ∈ Tp0 M | I (ξ) = cn−1 · g(ξ, ξ)} ⊆ Tp0 M

is not zero. Since this set is given by an algebraic equation, it must coincide with the
whole Tp0 M . Then, ai j = c · gi j at the point p0. Since we can replace p0 by every point
of its neighborhood U (p0), we obtain that ai j = cn−1 · gi j at every point of U (p0). By
Remark 5, a = cn−1 · g on the whole manifold. ��

2.3.5. The metric g uniquely determines B. By Lemma 3, under the assumption that the
degree of mobility is ≥ 3, for every solution a of (9) there exists a constant B such that
Eq. (27) holds on a suitable open set. In this chapter we show that the constant B is the
same for all (nontrivial) solutions ai j , i.e., the metric determines it uniquely.
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Lemma 8. Suppose two nonconstant functions f, F : Mn → R on a connected manifold
(Mn, g) of dimension n > 1 satisfy

f,i jk − b
(
2 f,k gi j + f, j gik + f,i g jk

) = 0,
(59)

F,i jk − B
(
2F,k gi j + F, j gik + F,i g jk

) = 0,

where b and B are constants. Assume that there exists a point where the derivative of f
is nonzero and a point where the derivative of F is nonzero. Then, b = B.

Proof. By definition of the curvature, for every function f , we have f,i jk − f,ik j =
f p R p

i jk ; replacing f,i jk by the right-hand side of the first equation of (59) we obtain.

f,p R p
i jk = b

(
f,k gi j − f, j gik

)
. (60)

The same is true for the second equation of (59):

F,p R p
i jk = B

(
F,k gi j − F, j gik

)
. (61)

Multiplying (60) by F k
, , summing with respect to repeating indexes and using (61)

we obtain

B
(
F,p f p

, gi j − F, j f,i
) = b

(
F,p f p

, gi j − F,i f, j
)
. (62)

Multiplying by gi j and summing with respect to repeating indexes, we obtain
B(n − 1)F,p f p

, = b(n − 1)F,p f p
, . If F,p f p

, �= 0 we are done: B = b. Assume
F,p f p

, = 0. Then, (62) reads B F, j f,i = bF,i f, j . Since by Corollary 5 there exists a
point where F, j and f,i are both nonzero, we obtain again B = b. Then, f,i is propor-
tional to F, j . Hence, B = b. ��

2.3.6. An ODE along geodesics.

Lemma 9. Let g be a metric on a connected Mn≥3 of degree of mobility ≥ 3. For a
metric ḡ geodesically equivalent to g, let us consider ai j , λi , and φ given by (7, 8, 5).
Then, there exist constants B, B̄ such that the following formula holds:

φi, j − φiφ j = −Bgi j + B̄ ḡi j . (63)

Proof. We covariantly differentiate (8) (the index of differentiation is “j”); then we
substitute the expression (6) for ḡi j,k to obtain

λi, j = −2e2φφ jφp ḡ pq gqi − e2φφp, j ḡ
pq gqi + e2φφp ḡ ps ḡsl, j ḡ

lq gqi

= −e2φφp, j ḡ
pq gqi + e2φφpφs ḡ ps gi j + e2φφ jφl ḡ

lq gqi , (64)

where ḡ pq is the tensor dual to ḡpq , i.e., ḡ pi ḡpj = δi
j . We now substitute λi, j from (27),

use that ai j is given by (7), and divide by e2φ for cosmetic reasons to obtain

e−2φμgi j + Bḡ pq gpj gqi = −φp, j ḡ
pq gqi + φpφs ḡ ps ḡi j + φ jφl ḡ

lq gqi . (65)

Multiplying with giξ ḡξk , we obtain

φk, j − φkφ j = (φpφq ḡ pq − e−2φμ)︸ ︷︷ ︸
b̄

ḡk j − Bgkj . (66)
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The same holds with the roles of g and ḡ exchanged (the function (5) constructed by the
interchanged pair ḡ, g is evidently equal to −φ). We obtain

− φk; j − φkφ j = (φpφq g pq − e2φμ̄)︸ ︷︷ ︸
b

gk j − B̄ ḡk j , (67)

where φi; j denotes the covariant derivative of φi with respect to the Levi-Civita connec-
tion of the metric ḡ. Since the Levi-Civita connections of g and of ḡ are related by the
formula (2), we have

−φk; j − φkφ j = −φk, j + 2φkφ j︸ ︷︷ ︸
−φk; j

−φkφ j = −(φk, j − φkφ j ).

We see that the left hand side of (66) is equal to minus the left hand side of (67). Thus,
b · gi j − B̄ · ḡi j = B · gi j − b̄ · ḡi j holds on U . Since the metrics g and ḡ are not
proportional on U by assumption, b̄ = B̄, and the formula (66) coincides with (63). ��
Corollary 7. Let g, ḡ be geodesically equivalent metrics on a connected Mn≥3 such that
the degree of mobility of g is ≥ 3. We consider a (parametrized) geodesic γ (t) of the
metric g, and denote by φ̇, φ̈ and

...
φ the first, second and third derivatives of the function

φ given by (5) along the geodesic. Then, there exists a constant B such that for every
geodesic γ the following ordinary differential equation holds:

...
φ = 4Bg(γ̇ , γ̇ )φ̇ + 6φ̇φ̈ − 4(φ̇)3 , (68)

where g(γ̇ , γ̇ ) := gi j γ̇
i γ̇ j .

Since lightlike geodesics have g(γ̇ , γ̇ ) = 0 at every point, a partial case of Corollary 7
is

Corollary 8. Let g, ḡ be geodesically equivalent metrics on a connected Mn≥3 such
that the degree of mobility of g is ≥ 3. Consider a (parametrized) lightlike geodesic
γ (t) of the metric g, and denote by φ̇, φ̈ and

...
φ the first, second and third derivatives of

the function φ given by (5) along the geodesic. Then, along the geodesic, the following
ordinary differential equation holds:

...
φ = 6φ̇φ̈ − 4(φ̇)3 . (69)

Proof of Corollary 7. If φ ≡ 0 in a neighborhood U , the equation is automatically
fulfilled. Then, it is sufficient to prove Corollary 7 assuming φi is not constant.

The formula (63) is evidently equivalent to

φi, j = B̄ ḡi j − Bgi j + φiφ j . (70)

Taking the covariant derivative of (70), we obtain

φi, jk = B̄ ḡi j,k + φi,kφ j + φ j,kφi . (71)

Substituting the expression for ḡi j,k from (6), and substituting B̄ ḡi j given by (63), we
obtain

φi, jk = B̄(2ḡi jφk + ḡikφ j + ḡ jkφi ) + φi,kφ j + φ j,kφi

= B(2gi jφk + gikφ j + g jkφi ) + 2(φkφi, j + φiφ j,k + φ jφk,i )− 4φiφ jφk . (72)

Contracting with γ̇ i γ̇ j γ̇ k and using that φi is the differential of the function (5) we
obtain the desired ODE (68). ��
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2.4. Proof of Theorem 1 for pseudo-Riemannian metrics. Let g be a metric on a connected
Mn≥3. Assume that for no constant c �= 0 the metric c · g is Riemannian, which in par-
ticular implies the existence of lightlike geodesics.

Let ḡ be geodesically equivalent to g. Assume both metrics are complete. Our goal
is to show that φ given by (5) is constant, because in view of (2) this implies that the
metrics are affine equivalent.

Consider a parameterized lightlike geodesic γ (t) of g. Since the metrics are geo-
desically equivalent, for a certain function τ : R → R the curve γ (τ) is a geodesic
of ḡ. Since the metrics are complete, the reparameterization τ(t) is a diffeomorphism
τ : R→ R. Without loss of generality we can think that τ̇ := d

dt τ is positive, otherwise
we replace t by −t . Then, Eq. (3) along the geodesic reads

φ(t) = 1

2
log(τ̇ (t)) + const0. (73)

Now let us consider Eq. (69). Substituting

φ(t) = −1

2
log(p(t)) + const0 (74)

in it (since τ̇ > 0, the substitution is global), we obtain
...
p = 0. (75)

The solution of (75) is p(t) = C2t2 + C1t + C0. Combining (74) with (73), we see
that τ̇ = 1

C2t2+C1t+C0
. Then

τ(t) =
∫ t

t0

dξ

C2ξ2 + C1ξ + C0
+ const. (76)

We see that if the polynomial C2t2 + C1t + C0 has real roots (which is always the case
if C2 = 0, C1 �= 0), then the integral explodes in finite time. If the polynomial has no
real roots, but C2 �= 0, the function τ is bounded. Thus, the only possibility for τ to be
a diffeomorphism is C2 = C1 = 0 implying τ(t) = 1

C0
t + const1, implying τ̇ = 1

C0
,

implying φ is constant along the geodesic.
Since every two points of a connected pseudo-Riemannian manifold such that for no

constant c the metric c · g is Riemannian can be connected by a sequence of lightlike
geodesics, φ is a constant, so that φi ≡ 0, and the metrics are affine equivalent by (2).

��

2.5. Proof of Theorem 1 for Riemannian metrics. As we already mentioned in the Intro-
duction and at the beginning of Sect. 2, Theorem 1 was proved for Riemannian metrics
in [45,57]. We present an alternative proof, which is much shorter (modulo the results
of the previous sections and a nontrivial result of Tanno [72]).

We assume that g is a complete Riemannian metric on a connected manifold such
that its degree of mobility is ≥ 3. Then, by Corollary 4, the function λ is a solution of
(55). If the metrics are not affine equivalent, λ is not identically constant.

Let us first assume that the constant B in Eq. (55) is negative. Under this assumption,
Eq. (55) was studied by Obata [64], Tanno [72], and Gallot [19]. Tanno [72] and Gallot
[19] proved that a complete Riemannian g such that there exists a nonconstant function
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λ satisfying (55) must have a constant positive sectional curvature. Applying this result
in our situation, we obtain the claim.

Now, let us suppose B ≥ 0. Then, one can slightly modify the proof from Sect. 2.4
to obtain the claim. More precisely, substituting (74) in (68), we obtain the following
analog of Eq. (75):

...
p = 4Bg(γ̇ , γ̇ ) ṗ. (77)

If B = 0, the equation coincides with (75). Arguing as in Sect. 2.4, we obtain that φ is
constant along the geodesic.

If B > 0, the general solution of Eq. (77) is

C + C+e2
√

Bg(γ̇ ,γ̇ )·t + C−e−2
√

Bg(γ̇ ,γ̇ )·t . (78)

Then, the function τ satisfies the ODE τ̇ = 1
C+C+e2

√
Bg(γ̇ ,γ̇ )·t +C−e−2

√
Bg(γ̇ ,γ̇ )·t implying

τ(t) =
∫ t

t0

dξ

C + C+e2
√

Bg(γ̇ ,γ̇ )·ξ + C−e−2
√

Bg(γ̇ ,γ̇ )·ξ + const. (79)

If one of the constants C+, C− is not zero, the integral (79) is bounded from one side,
or explodes in finite time. In both cases, τ is not a diffeomorphism of R on itself, i.e.,
one of the metrics is not complete. The only possibility for τ to be a diffeomorphism of
R on itself is C+ = C− = 0. Finally, φ is a constant along the geodesic γ .

Since every two points of a connected complete Riemannian manifold can be con-
nected by a geodesic, φ is a constant, so that φi ≡ 0, and the metrics are affine equivalent
by (2). ��
Remark 13. A similar idea (contracting the equation with lightlike geodesic and inves-
tigating the obtained ODE along the geodesic) was recently used in [31,59]

2.6. Proof of Theorem 2. Let g be a complete pseudo-Riemannian metric on a connected
closed manifold Mn such that for no const �= 0 the metric const · g is Riemannian (if
g is Riemannian, Theorem 2 follows from Theorem 1). We assume that the degree of
mobility of g is ≥ 3. Our goal is to show that every metric ḡ geodesically equivalent to
g is actually affine equivalent to g.

We consider the function λ constructed by (10) for the solution ai j of (9) given by
(7). We consider a lightlike geodesic γ (t) of the metric g, and the function λ(γ (t)). By
Corollary 6, the function λ(γ (t)) satisfies the ODE d3

dt3 λ(γ (t)) = 0. Hence λ(γ (t)) =
C2t2 + C1t + C0. If C2 �= 0, or C1 �= 0, then the function λ is not bounded; that con-
tradicts the compactness of the manifold. Thus λ(γ (t)) is constant along every lightlike
geodesic. Since every two points can be connected by a sequence of lightlike geodesics,
λ is constant. Thus λi = 0, implying in view of (8) that φi = 0, implying in view of (6)
that the metrics are affine equivalent. ��
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