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Abstract: We use the remodeling approach to the B-model topological string in terms
of recursion relations to study open string amplitudes at orbifold points. To this end,
we clarify modular properties of the open amplitudes and rewrite them in a form that
makes their transformation properties under the modular group manifest. We exemplify
this procedure for the C

3/Z3 orbifold point of local P
2, where we present results for

topological string amplitudes for genus zero and up to three holes, and for the one-holed
torus. These amplitudes can be understood as generating functions for either open orbi-
fold Gromov–Witten invariants of C

3/Z3, or correlation functions in the orbifold CFT
involving insertions of both bulk and boundary operators.

1. Introduction

Topological string theory on Calabi–Yau threefolds has played a crucial role in our
understanding of string theory and Gromov–Witten theory. One of the most fascinating
aspects of this topological sector of string theory is that very often amplitudes can be
computed exactly, and their dependence on the moduli can be studied in detail. This has
led to very rich pictures of the moduli space of the theory, involving different phases
which exhibit different physics [10,56].

Modular and analytic properties of the amplitudes connect the different phases of
the Calabi–Yau moduli space in a very precise way. Each phase of the moduli space
is characterized by a set of “good coordinates,” and different good coordinates corre-
sponding to different phases are related by a transformation in the modular group of
the theory. As explained in [1], topological string amplitudes are modular objects with
specific transformation properties under this group, and as one goes from one phase
to the other, the amplitudes have to be transformed accordingly. For example, when
expanded at the large radius limit in moduli space, topological string amplitudes are
generating functions of Gromov–Witten invariants. As one moves away from this point
towards different regions in moduli space, the large radius expansion eventually ceases
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to converge, but after suitable modular transformations and analytic continuations, the
topological string amplitudes can be re-expanded in terms of the good variables of the
new phase. In particular, when going to orbifold points of the moduli space, the ampli-
tudes become generating functions for orbifold Gromov–Witten invariants. A detailed
understanding of the modular transformation properties of the amplitudes makes it then
possible to relate Gromov–Witten invariants to orbifold Gromov–Witten invariants, in
the spirit of the crepant resolution conjecture [19,24,53]. In [1] this was used to calcu-
late generating functions of orbifold Gromov–Witten invariants in the case of the C

3/Z3
orbifold, which corresponds to a phase in the moduli space of local P

2, its crepant res-
olution. The predictions obtained in this way have been later verified mathematically in
orbifold Gromov–Witten theory [11,17,20,25], and other examples have been recently
calculated [18,26].

A crucial ingredient in the approach of [1] is the ability to obtain exact results for the
topological string amplitudes on the whole of moduli space, so that they can be expanded
in different phases. These exact expressions are typically calculated by using the B-model
and mirror symmetry. On top of that, it is extremely useful to write these exact results in a
way that makes the transformation properties manifest. For local Calabi–Yau threefolds,
the mirror manifold reduces to an algebraic curve and the modular group is essentially
the symplectic group acting on the homology of the surface. Topological string ampli-
tudes can then be written in terms of modular forms with respect to this group, and when
the curve has genus one, as in the case of the mirror to local P

2, one can write them in
terms of elliptic functions [1].

The results of [1] were obtained for closed string amplitudes, and it is natural to
ask how one could extend these results to open topological string amplitudes. As in the
closed case, we first need a formalism to compute open topological string amplitudes
exactly on the whole closed and open moduli space. For the case of toric Calabi–Yau
threefolds, this formalism has been proposed in [16,49] and it is based on a recursion
relation first obtained in the context of matrix models [32,34]. One advantage of the
framework developed in [16,49], as compared to the holomorphic anomaly equations
of [12,54], is that the amplitudes are completely fixed by the recursion. It is then natural
to use this formalism in order to understand the properties of open string amplitudes as
one moves in the open and closed moduli space of toric Calabi–Yau threefolds, and in
particular to extract information about the open counterparts of orbifold Gromov–Witten
invariants (which so far have not been defined in the mathematical literature).

In [16] some steps were taken in this direction. In particular we discussed how to find
“good coordinates” for the open moduli at the orbifold point, and we made a preliminary
analysis of the disk amplitude. In this paper we present a detailed study of open topolog-
ical string amplitudes at the orbifold point, focusing on the case of C

3/Z3. First of all,
we clarify the transformation properties of the string amplitudes in the open sector, and
we present expressions for them which make their modular transformation properties
manifest. Since the recursion of [16,34,49] is based on the Bergman kernel of the mirror
curve, our first step is to write it (for a curve of genus one) in terms of elliptic functions.
One can then plug the resulting expression in the recursion to find modular expressions
for all the open string amplitudes. This leads to considerable improvements in terms of
computional efficiency of the recursion relations. As a consequence of this refinement
of the formalism of [16], we are able to calculate open orbifold string amplitudes at high
order, and we present explicit expressions for amplitudes with (g, h) = (0, 2), (0, 3) and
(1, 1). These expressions give generating functions for open orbifold Gromov–Witten
invariants, and from the CFT point of view they compute correlation functions of arbitrary
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insertions of both bulk operators, associated with twist fields, and boundary operators,
associated with deformation modes of the D-brane open moduli.

The organization of the paper is as follows. We start by reviewing the remodeling
approach to the B-model using recursion relations in Sects. 2.1 to 2.3. In Sect. 2.4, we
study modularity of the open amplitudes, which we rewrite in a form that makes their
transformation properties explicit in Sect. 2.5. Section 3 is then devoted to the study
of topological open string amplitudes at the C

3/Z3 orbifold point in the moduli space
of local P

2, using the formalism presented in Sect. 2. We also briefly comment on the
calculation of the open amplitudes at the conifold point in the moduli space of local P

2

in Sect. 3.5.

2. Open B-model on Mirrors of Toric Calabi-Yau Threefolds

2.1. The geometry. Consider the A-twisted sigma model on a (noncompact) toric
Calabi-Yau threefold X . A-branes are objects in the “derived Fukaya category” of X ;
roughly speaking, they correspond to Lagrangian submanifolds of X with bundles on
them. We consider a simple class of A-branes, given by noncompact special Lagrangian
submanifolds L ⊂ X with trivial bundle, with topology R

2 × S1; those were constructed
in [4,5,39] — see also [16] for a detailed description.

The mirror theory is a B-twisted sigma model1 on a family π : Y → M of non-
compact Calabi-Yau threefolds, where M is the moduli space of the closed B-model.
Let z = (z1, . . . , zk) be coordinates on M centered at a point of maximally unipotent
monodromy. The fiber Yz = π−1(z1, . . . , zk) of the family has the form

Yz = {ww′ = H(x, y; z)} ⊂ (C)2 × (C∗)2, (2.1)

where H(x, y; z) is a Laurent polynomial in x, y ∈ C
∗ of degree 1. The precise form

of H(x, y; z) is dictated by the toric data of the mirror X . Yz is a quadric fibration over
(C∗)2, with degeneration locus the Riemann surface

�z = {H(x, y; z) = 0} ⊂ (C∗)2. (2.2)

B-branes are objects in the derived category of coherent sheaves, some of which cor-
respond to holomorphic submanifolds of Yz with bundles on them. The B-branes mirror
to the simple A-branes considered above can be described as wrapping a holomorphic
curve in Yz , with trivial bundle on it. More precisely, fix a point p0 ∈ �z parameterized
by (x0, y0), and denote by Cz(p0) the holomorphic submanifold of Yz defined by

w′ = 0 = H(x0, y0; z). (2.3)

It is given by the line parameterized byw over the point p0 ∈ �z . This is the holomorphic
curve which is wrapped by the B-brane. The open moduli space corresponds to defor-
mations of the B-brane Cz(p0) in Yz , which are parameterized by the point p0 ∈ �z .
As a result, the moduli space of the open B-model on (Y,C) is given by the family of
Riemann surfaces � → M, with fiber (2.2).

1 The mirror is generally presented as a Landau-Ginzburg model; we explain the correspondence between
the Landau-Ginzburg model and the sigma model in Appendix A.
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Example 2.1. The main example that we will study is the mirror to local P2. Let X = KP2

be the total space of the canonical bundle over P
2. Its mirror is the family of Calabi-Yau

threefolds Y → M, where the closed moduli space M is one-dimensional, whose fibers
Yz are given by (2.1) with

H(x, y; z) = 1 + x + y +
z

xy
. (2.4)

The family of Riemann surfaces � → M has fibers �z (2.2), which are elliptic curves
with three punctures.

2.2. Disk amplitude. In this paper we focus on the open amplitudes of the B-model.
Let us start with the simplest amplitude, the disk amplitude (genus 0, 1 hole). Roughly
speaking, it is the open analog of the genus 0 closed amplitude, which corresponds to
the prepotential of special geometry of the closed moduli space M. The disk amplitude
on (Y,C) similarly admits a simple definition as follows.

Recall that the moduli space of the open B-model consists in a family of Riemann
surfaces (with punctures) � → M. Choose an embedding2 of the fibers �z in (C∗)2,

�z = {H(x, y; z) = 0} ⊂ (C∗)2, (2.5)

and define the one-form

ω(p) = log y(x(p))
dx(p)

x(p)

= log y(x)
dx

x
(2.6)

on �z , where p ∈ �z and x is chosen as local coordinate.

Remark 2.1. Note that in the following we will always omit the dependence on z to
simplify the notation. But since� → M is a family of curves, all the objects we define
on the fiber �z will have an implicit dependence on z.

The main conjecture of [4,5], which comes from dimensional reduction of the holo-
morphic Chern-Simons theory on the brane C , goes as follows.

Conjecture 2.1 ([4,5]). The “Abel-Jacobi” map

F (0,1) =
∫
γ

ω(p), (2.7)

where γ is the chain [q∗, q] and q∗ ∈ �z is a reference point, gives the B-model disk
amplitude, up to classical terms. F (0,1) should be understood as a series expansion in
the local coordinate x near x = 0, where x corresponds to the open modulus associated
to the brane.

2 The choice of embedding of �z in (C∗)2 corresponds to a choice of phase and framing of the mirror
brane. This was considered in detail in [16].
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The Abel-Jacobi map is defined on the Jacobian, that is only up to addition of inte-
grals ofω(p) over one-cycles. But here we will only be interested in the series expansion
of the amplitude in the open modulus, and so the ambiguity is irrelevant. Note that this
conjecture is the local analog of the result of [50], where the disk amplitude is computed
in terms of normal functions.

This formula has been verified in many examples, by expanding the disk amplitude
near a point of maximally unipotent monodromy in the closed moduli space, and compar-
ing with open A-model amplitudes on the toric mirror. It requires an explicit knowledge
of the closed and open mirror maps, which can be understood as solutions of an extended
Picard-Fuchs system (the latter was derived in the language of mixed Hodge structures
and relative cohomology in [48]).

2.3. General formalism. We now move on to the general amplitudes F (g,h) with genus
g and h holes. As for the closed amplitudes F (g), the physical B-model open amplitudes
are generally non-holomorphic, and satisfy an open analog of the holomorphic anomaly
equations of [12]. However, to compare with the A-model Gromov-Witten generating
functions, one needs to consider the holomorphic limit of the physical B-model ampli-
tudes expanded near a special point in the moduli space. The F (g,h) that we consider
here are these holomorphic objects, rather than the physical B-model amplitudes. Stated
from a modularity point of view, what we construct here are the quasi-modular forms,
rather than the almost holomorphic modular forms [1]. We will discuss this point in
more detail in the next subsection.

In [16,49] a general recursive formalism for computing B-model genus g, h hole
open amplitudes F (g,h) on (Y,C) was proposed. From a mathematical point of view,
since the open B-model is not really well understood, this can be taken as a proposal for
a definition of the open B-model on these geometries.

Consider again the following data:

– A family of (punctured) Riemann surfaces� → M (the open B-model moduli space);
– A choice of embedding of the fibers �z in (C∗)2,

�z = {H(x, y; z) = 0} ⊂ (C∗)2. (2.8)

We claim that these data fully characterize the open B-model on (Y,C), with arbitrary
genus and number of holes.

By projecting onto the x-axis we may see �z as a branched cover of C
∗. Denote

by qi ∈ �z the ramification points of the projection map, such that dx(qi ) = 0. Let
λi := x(qi ) ∈ C

∗ be the branch points. We assume that they all have branching order
two. Then, near qi , there are two points q, q̄ ∈ �z with the same projection x(q) = x(q̄)
(those are defined only locally near qi ). As before, define the one-formω(p), which reads
in local coordinates

ω(p) = log y(x)
dx

x
. (2.9)

Definition 2.1. The Bergman kernel B(p, q) is the unique bilinear differential on �z
with a double pole at p = q with no residue, and no other pole. It is normalized by∮

AI
B(p, q) = 0, (2.10)

where (AI , BI ) is a symplectic basis of cycles on �z .
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Note that the Bergman kernel is defined on the Riemann surface itself, and does not
depend on the embedding in (C∗)2. Its definition however requires a choice of symplectic
basis of cycles on �z .

Definition 2.2. Near qi ∈ �z , define the one-form

dEq,q̄(p) = 1

2

∫ q̄

ξ=q
B(p, ξ), (2.11)

where the integration is in a neighborhood of qi . Note that this is defined only locally
near qi .

We are now ready to state the recursion, which was first derived in the context of
matrix models in [22,32,34].

Definition 2.3. Let W̃ (g,h)(p1, p2, . . . , ph), g, h ∈ Z, g ≥ 0, h ≥ 1, be multilinear
differentials on �z . Fix the initial conditions

W̃ (0,1)(p1) = 0, W̃ (0,2)(p1, p2) = B(p1, p2). (2.12)

Define the remaining differentials by the recursion3

W̃ (g,h)(p1, p2, . . . , ph) =
∑
qi

Res
q=qi

dEq,q̄(p1)

ω(q)− ω(q̄)

(
W̃ (g−1,h+1)(q, q̄, p2, . . . , ph)

+
g∑

l=0

∑
J⊆H

W̃ (g−l,|J |+1)(q, pJ )W̃
(l,|H |−|J |+1)(q̄, pH\J )

⎞
⎠ ,

(2.13)

where we used the notation H = {2, 3, . . . , h}, and given any subset J = {i1, . . . , i j } ⊆
H we defined pJ = {pi1, . . . , pi j }.

There is a second recursion which reads as follows.

Definition 2.4. Let F (g), g ∈ Z, g ≥ 2, be functions on �z defined by

F (g) = 1

2g − 2

∑
qi

Res
q=qi

θ(q)W̃ (g,1)(q), (2.14)

where θ(q) is any primitive of ω(q), i.e. dθ(q) = ω(q).

We define the function F (1) by:

Definition 2.5. Define

F (1) = −1

2
log τB − 1

24
log

∏
i

ω′(qi ), (2.15)

where τB is the Bergman tau-function and

ω′(qi ) = 1

dzi (p)
d

(
log y(x)

x

) ∣∣∣∣
p=qi

, zi (p) = √
x(p)− x(qi ). (2.16)

We refer the reader to [34] for more details.

3 Note that the integrand in the right-hand side is only defined locally near the ramification points qi .
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The main conjecture of [16,49], which relates the objects defined above recursively
to the B-model amplitudes, could be stated as follows.

Conjecture 2.2. Let F (0) be the prepotential of special geometry, F (1) be as in Definition
2.5, and the F (g)’s for g ≥ 2 be as in Definition 2.4.

For g ≥ 0, h ≥ 1, and (g, h) �= (0, 1), (0, 2), define the multilinear differentials

W (g,h)(p1, . . . , ph) = W̃ (g,h)(p1, . . . , ph), (2.17)

using Definition 2.3. Let

W (0,2)(p1, p2) = B(p1, p2)− d p1d p2

(p1 − p2)2
, (2.18)

and

W (0,1)(p) = ω(p). (2.19)

Define

F (g,h) =
∫
γ1

· · ·
∫
γh

W (g,h)(p1, . . . , ph), (2.20)

where the γi ’s are the chains [q∗
i , qi ], with the q∗

i ∈ �z reference points.
The F (g) constructed above are the genus g closed B-model amplitudes on Y , and the

F (g,h) are the genus g, h hole open B-model amplitudes on (Y,C). The F (g,h) should be
understood as series expansions in the local coordinates xi := x(pi ), which correspond
to the open moduli associated to the branes.

Note that as for the disk amplitude F (0,1), the F (g,h) are only defined modulo inte-
gration over closed cycles; but again, this ambiguity will be irrelevant since we only
consider instanton expansions of the amplitudes.

Remark 2.2. Note that the conjecture for F (1) should probably follow from the result of
Dubrovin and Zhang for the G-function associated to Frobenius manifolds [31], which
was also studied by Givental [36]. It can also be understood from a topological field
theory point of view as in [13].

There are various arguments behind this conjecture. First, a strong piece of evidence
comes from direct calculation. In [16,49], various amplitudes for the mirrors of C

3, local
P

1, P
2, P

1 × P
1, F1, F2 were computed. By expanding the amplitudes near a point of

maximally unipotent monodromy and plugging in the open and closed mirror maps, it
was shown that one recovers the open A-model amplitudes on the toric mirrors. This
however only tests the conjecture at large radius; in [16] the conjecture was also tested
at the orbifold point of local P

1 × P
1, by comparing with perturbative Chern-Simons

theory on the lens space S3/Z2.
A more conceptual argument for the conjecture goes as follows. The recursions were

derived by [22,34] in the context of matrix models. When � is the spectral curve of
a matrix model, the recursions (2.13) and (2.14) respectively generate the correlation
functions and free energies of the matrix model. For some B-model geometries, using
large N dualities on the mirror side, we can find matrix model representations with
spectral curve �z , which justifies the conjecture. However, in general no matrix model
representation is known; but it was argued first in [49], and then in much more detail in
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[30], that the B-model amplitudes should indeed satisfy the recursions (2.13) and (2.14),
whether there is a matrix model representation or not. This involves a detailed analysis of
the B-model, understood in the chiral boson picture developed in [2]. One can also show
that the amplitudes obtained through the recursion, after restoring non-holomorphicity
using modularity as in [1], satisfy the holomorphic anomaly equations (and their open
analogs) [33]. In any case, in the following we will take this conjecture for granted and
explore some of its consequences.

2.4. Modularity. In the previous subsection we introduced a recursive formalism to
compute open and closed B-model amplitudes. While the formalism is very elegant
conceptually, and provides a complete solution to the B-model on these geometries, it
turns out to be rather complicated computationally. One reason is that the formalism
makes no explicit use of the modular properties of the amplitudes; on the contrary, the
intermediate step of taking residues at the branch points destroys the symmetry of the
amplitudes. Indeed, the branch points are in general complicated functions of z, since
the projection �z → C

∗ is a branched cover. But the final amplitudes are simple func-
tions of z; in fact, only symmetric combinations of the branch points, which are simple
rational functions of z, appear in the final amplitudes.

It thus seems desirable to recast the recursion in a different form, bypassing the inter-
mediate step of taking residues at the branch points. However, one problem is that the
integrand in the right hand side of (2.13) is only defined locally near the branch points.
Hence, one cannot simply deform the contour integral to pick up residues at the other
poles in a straightforward way. Indeed, localizing the integrand at the branch points turns
out to be crucial in the derivation of the recursion in the matrix model context (see for
instance pp.14-15 of [22]), in order to get rid of unfixed polynomials. So it seems that
the intermediate step plays a more important role than one would have expected at first
sight.4

Even though it seems difficult to reformulate the recursion in a more computationally
effective way, what we can do is use our knowledge of the modular properties of the
amplitudes to rewrite the amplitudes a posteriori. That is, using modularity and regu-
larity of the amplitudes we write down a general ansatz for the amplitudes, either in
terms of modular forms, or as functionals of solutions of the Picard-Fuchs equations.
At each genus g and number of holes h, the ansatz involves rational functions in the
open and closed moduli comprising a finite number of unknown parameters. The latter
can be fixed by comparing the ansatz with the result obtained from the recursion (2.13).
Alternatively, the parameters can be fixed by comparing with a mirror calculation at
large radius using the topological vertex formalism [3].

These formulae prove to be very useful in studying the amplitudes at various points
in the moduli space, as we will do in the next section. However, the rational functions
become rather involved and increasingly difficult to determine for higher genus and a
larger number of holes.

2.4.1. Picard-Fuchs equations, monodromy and modularity of the closed amplitudes
Given a family of Calabi-Yau threefolds Y → M, it is standard to associate a system
of differential equations, called the Picard-Fuchs equations, which annihilate periods
of the holomorphic volume form 	z on the fiber Yz . In the noncompact setting, the

4 It is tempting to speculate that the process of localizing at the branch points is a B-model mirror analog
to the process of using localization with respect to a torus action in Gromov-Witten theory.
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Picard-Fuchs system can be extracted either by taking the limit of a compact three-
fold [23], or by considering the equivalent Landau-Ginzburg setting [36,41]. Solutions
to the Picard-Fuchs equations provide a set of flat coordinates on M.

When Y is of the form studied previously, it can be shown that the geometry “reduces”
to the family of curves � → M, and the Picard-Fuchs equations annihilate periods of
the one-form ω(p) over one-cycles on the Riemann surface�z . From now on, we focus
on the case where�z is a genus one curve. Let (A, B) be a canonical basis of one-cycles
on the genus one curve�z . Apart from a constant solution, there are two more solutions
to the Picard-Fuchs equations, which provide a basis of dual periods:

T =
∮

A
ω(p), TD =

∮
B
ω(p). (2.21)

The Picard-Fuchs differential equations have regular singular points, around which the
periods have monodromy. The monodromy group is a finite index subgroup of SL(2,Z).

A natural question is to study modularity of the B-model amplitudes with respect to
the monodromy group. This question was approached for the closed amplitudes from
physical principles in [1]. The physical closed B-model amplitudes F (g) are invariant
under the monodromy group — indeed, this is required for consistency of the physi-
cal theory all over the moduli space M — but they are non-holomorphic. This can be
reformulated in terms of modularity with respect to the modular parameter of �z :

τ = ∂TD

∂T
= ∂2F (0)

∂T 2 , (2.22)

where F (0) is the prepotential of special geometry giving the genus 0 closed B-model
amplitude. In this language, the statement becomes that for g ≥ 2, the physical ampli-
tudes F (g) are almost holomorphic modular forms with respect to the monodromy group
[1]. However, there is a canonical isomorphism between the ring of almost holomorphic
modular forms and the ring of quasi-modular forms — forms that transform with a shift
[44]. This is given by “taking the holomorphic limit” of F (g), which breaks the modular
invariance by keeping only the constant term in the finite expansion in Im(τ )−1. We
thus obtain the holomorphic closed B-model amplitudes F (g), which are quasi-modular
with respect to the monodromy group. Those are the amplitudes that were constructed
through the recursion.

2.4.2. Modularity of the open amplitudes We now want to understand the modular prop-
erties of the open amplitudes F (g,h), which are the holomorphic limits of the monodromy
invariant physical amplitudes F (g,h). This was studied in [33,34] using the recursion.

Let τ be the modular parameter of�z , which parameterizes the upper half plane. Let

τ̃ = Aτ + B

Cτ + D
,

(
A B
C D

)
∈ � ⊂ SL(2,Z) (2.23)

be a symplectic transformation of the periods in the monodromy group �.
Under (2.23), the Bergman kernel transforms as

B̃(p, q) = B(p, q)− 2π i u(p)(Cτ + D)−1Cu(q), (2.24)
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where u(p) is the holomorphic differential. The shift makes the Bergman kernel a quasi-
modular form of weight 0. Through the recursion (2.13), this induces quasi-modular
properties for all the open amplitudes W (g,h). One can compute the explicit transforma-
tion properties of the differentials W (g,h) by plugging in the transformation properties of
the Bergman kernel directly in the recursion, as was done in [33,34]; we will not repeat
the analysis here. Instead, what we are doing next is to use our knowledge of modularity
to write down explicit expressions for the (low genus and number of hole) amplitudes in
terms of modular forms, and as functionals of solutions of the Picard-Fuchs equations
(the periods).

2.5. Modular forms and functionals. As we have just seen, the multilinear differentials
W (g,h) are quasi-modular forms of weight 0 with respect to the monodromy group.
They are obtained by taking the holomorphic limit of the non-holomorphic differentials
W(g,h), which correspond to the physical amplitudes, therefore are monodromy invari-
ant. As a consequence, the holomorphic amplitudes W (g,h) can be universally written as
functionals of the periods and their derivatives, where the periods are functions of some
local coordinates on the moduli space.

The functional point of view provides a very useful way of computing modular trans-
formations of the amplitudes, since changing the period in the functional directly imple-
ments the symplectic transformation between the periods. In other words, the choice of
period in the functional corresponds to a choice of modular parameter, or equivalently
to a choice of canonical basis of cycles in the definition of the Bergman kernel. This
approach renders the computation of the amplitudes everywhere in the moduli space
straightforward.

To see how it goes, let us start by deriving a general expression for the annulus ampli-
tude (or the Bergman kernel) in terms of modular forms, which is the main ingredient in
the recursion relation, and induces the quasi-modular properties of the amplitudes. We
then explain how it can be written generally as a functional; we will propose an exact
form for the functional in the next section when we specialize to the local P

2 geometry.
Finally we propose a general ansatz for the higher order amplitudes, which we use in the
next section to derive functional expressions and compute the amplitudes at the orbifold
point of local P

2.

2.5.1. The annulus amplitude As usual, we start with a family of (punctured) Riemann
surfaces � → M (the open B-model moduli space), and a choice of embedding of the
fibers �z in (C∗)2,

�z = {H(x, y; z) = 0} ⊂ (C∗)2. (2.25)

We specialize to the case where �z is a genus one curve. Denote by qi ∈ �z the ramifi-
cation points of the projection map onto the x-axis, and by λi := x(qi ) ∈ C

∗ the branch
points.

When �z has genus one, the annulus amplitude W (0,2) can be written in terms of
the Weierstrass elliptic function, using uniformization parameters for the elliptic curve.
Alternatively, when �z has four distinct branch points λi , i = 1, . . . , 4, one can work
directly on the C

∗ which is the image of the x-projection. In terms of x-projected vari-
ables x1, x2 ∈ C

∗ (i.e. local coordinates x1 := x(p1) and x2 := x(p2)), Akemann
derived in [6] a formula for the annulus amplitude, which reads
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W (0,2)(p1, p2) = dx1dx2

4
√
σ(x1)σ (x2)

(
M(x1, x2) + M(x2, x1)

(x1 − x2)2

−(λ1 − λ3)(λ2 − λ4)
E(k)

K (k)

)
− dx1dx2

2(x1 − x2)2
, (2.26)

where

M(x1, x2) = (x1 − λ1)(x1 − λ2)(x2 − λ3)(x2 − λ4), (2.27)

σ(x) =
4∏

i=1

(x − λi ), (2.28)

and K (k) and E(k) are elliptic integrals with modulus

k2 = (λ1 − λ2)(λ3 − λ4)

(λ1 − λ3)(λ2 − λ4)
. (2.29)

Note that the amplitude depends on a choice of ordering of the branch points, which
corresponds to a choice of canonical basis of cycles on �z .

Let us start by rewriting the amplitude in terms of modular forms.

Proposition 2.1. Let

Sk =
∑

1≤ j1< j2<...< jk≤4

λ j1 · · · λ jk (2.30)

be the elementary symmetric polynomials in the four branch points, and let

u(x)dx = i

√
(λ1 − λ3)(λ2 − λ4)

4
√
σ(x)K (k)

dx (2.31)

be the holomorphic differential. The annulus amplitude can be written as

W (0,2)(p1, p2) =
(

− 1

2(x1 − x2)2
+

f (0,2)0 (x1, x2)

4
√
σ(x1)σ (x2)

+
π2

3
u(x1)E2(τ )u(x2)

)
dx1dx2, (2.32)

where τ is the modular parameter, E2(τ ) is the second Eisenstein series, and the rational
function f (0,2)0 (x1, x2) reads5

f (0,2)0 (x1, x2) = 1

3(x1 − x2)2

(
6x2

1 x2
2 − 3x1x2(x1 + x2)S1 + (x2

1 + 4x1x2 + x2
2 )S2

−3(x1 + x2)S3 + 6S4) . (2.33)

5 Recall from Remark 2.1 that we do not write explicitly the dependence on z for simplicity.
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Proof. We start with Akemann’s formula (2.26). Let us introduce

ω1 = 2i

π

K (k)√
(λ1 − λ3)(λ2 − λ4)

, e3 = 1

12
(S2 − 3(λ1λ2 + λ3λ4)) . (2.34)

e3 is one of the three roots of the elliptic curve in Weierstrass form. Then, manipulating
some of Akhiezer’s identities for elliptic integrals [7], we obtain the identity

E(k)K (k) = π2
(

1

12
E2(τ ) + ω2

1e3

)
. (2.35)

From this we rewrite the second term in (2.26) as

− 1

4
√
σ(x1)σ (x2)

(λ1 − λ3)(λ2 − λ4)
E(k)

K (k)

= π2

3
u(x1)E2(τ )u(x2) +

e3√
σ(x1)σ (x2)

, (2.36)

using the definition of the holomorphic differential above. By expanding the function
M(x1, x2) and combining with the e3 term, we can rewrite the other terms of (2.26) in
terms of elementary symmetric polynomials of the branch points, and we obtain (2.32).

Remark 2.3. In (2.32), the only term which is not quite modular invariant is the term
with E2(τ ). Since E2(τ ) is a quasi-modular form of weight 2, and the holomorphic
differentials are modular of weight −1, we see explicitly that the annulus amplitude is
a quasi-modular form of weight 0, as it should. The shift in the modular transformation
of the annulus amplitude comes, as in the closed case [1], from the shift in the modular
transformation of the second Eisenstein series E2(τ ).

Remark 2.4. Note that the function f (0,2)0 (x1, x2) is also rational in z — hence manifestly
modular invariant — since it involves only symmetric combinations of the branch points,
which are necessarily rational functions of z. The function f (0,2)0 (x1, x2) corresponds to
the “holomorphic ambiguity” in the integration of the holomorphic anomaly equation
for the open amplitudes.

Let us now define

G(τ ) = E2(τ )

3ω2
1

, (2.37)

which is a function of z through the definition ofω1, and depends on a choice of modular
parameter τ , but does not depend on the open string variables x1 and x2. The annulus
can now be rewritten as

W (0,2)(p1, p2) = − dx1dx2

2(x1 − x2)2
+

f (0,2)0 (x1, x2) + G(τ )

4
√
σ(x1)σ (x2)

dx1dx2. (2.38)

The Bergman kernel B(p1, p2) is obtained by changing the sign in front of the first term.
G(τ ) plays an important role in the following, since it encodes the quasi-modular

properties of the amplitudes. As a result, G(τ ) can be expressed as a functional of the
period T and its derivative; in which case we will denote it as G[T ; z]. The choice of
period T corresponds to the choice of modular parameter τ . The exact form of G[T ; z]
depends on the curve�z ; we will present it for the mirror of local P

2 in the next section.
To summarize, we now have an expression for the annulus amplitude in terms of

modular forms, which can be rewritten as a functional of the period and its derivatives,
using G[T ; z]. Let us now study the higher order amplitudes.
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2.5.2. Higher amplitudes Now that we have a functional expression for the annulus
amplitude (2.38), which is the main ingredient of the recursion, we can derive the prin-
cipal functional form of the higher genus amplitudes from (2.13).

Lemma 2.1. For g ≥ 0, h ≥ 1, and (g, h) �= (0, 1), (0, 2), the general form of the
amplitudes is

W (g,h)(p1, . . . , ph) = dx1 · · · dxh


2g−2+h
∏h

i=1
√
σ(xi )

3g−3+2h∑
i=0

Gi [T ; z] f (g,h)i (x1, . . . , xh),

(2.39)

where


 =
∏
i< j

(λi − λ j )
2 (2.40)

is the discriminant of the curve. The functions f (g,h)i (x1, . . . , xh) are rational in their
arguments and in the closed parameter z. Moreover, they have the form

f (g,h)i (x1, . . . , xh) = Q(g,h)
i (x1, . . . , xh)(∏h
j=1 σ(x j )

)3g−2+h
, (2.41)

where the Q(g,h)
i (x1, . . . , xh) are polynomials of finite degree in their arguments and in

z.

Proof Sketch of the proof. We obtain this general form by close inspection of the recur-
sion (2.13), and using the functional formula (2.38) for the annulus amplitude. Let us
simply sketch the main lines of the argument.

Let

W (g,h)(p1, . . . , ph) = w(g,h)(x1, . . . , xh)dx1 · · · dxh . (2.42)

First, it is clear from the definition that the functions
√
σ(x1) · · ·

√
σ(xh)w

(g,h)(x1, . . . , xh) (2.43)

are rational in the xi ’s, since multiplying by the square roots amounts to cancelling the
branch cuts.

Second, by pushing down the recursion (2.13) in order to obtain the analogs of
Feynman rules, as in Definition 4.5 of [34], we see that each amplitude is represented by

a graph with 3g − 3 + 2h edges. Each edge gives a factor of either B(p, q) or
dEq,q̄ (p)
ω(q)−ω(q̄) .

Since both of these factors are polynomials of degree 1 in G[T ; z], we obtain thatw(g,h)

must be a polynomial of order 3g − 3 + 2h in G[T ; z]. So what we know so far is that

w(g,h)(x1, . . . , xh) = 1∏h
i=1

√
σ(xi )

3g−3+2h∑
i=0

Gi [T ; z] f̃ (g,h)i (x1, . . . , xh), (2.44)
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where the f̃ (g,h)i (x1, . . . , xh) are rational in the xi ’s. It is also clear that the f̃ (g,h)i

are rational in z, since we are summing over branch points, hence the f̃ (g,h)i can be
expressed in terms of elementary symmetric polynomials in the branch points, which
must be rational functions of z.

Finally, the denominators of the functions f̃ (g,h)i (x1, . . . , xh) can be obtained from
the pole structure of the integrand in the recursion (2.13). The analysis is rather subtle,
and we leave the details to the reader. Roughly speaking, after taking residues and sum-
ming over branch points, each pole of the form σ(x)−k contributes a factor of
k in the
denominator, and the double poles of the Bergman kernels combine to give the factors
of σ(x) in the denominator.

For a particular geometry, by comparing the generic form of the amplitudes (2.39)
with the explicit result obtained with the recursion, we can determine the functions
f (g,h)i (x1, . . . , xh) at each genus and number of holes. Once this is done, the main
advantage of the functional form of the amplitudes is that the computation of the ampli-
tudes at various points in the moduli space simply amounts to inserting the right period
T in the functional. We exemplify this procedure in detail in the next section by studying
the mirror of local P

2 at the C
3/Z3 orbifold point.

Note that the general form of the amplitudes (2.39) was obtained directly by inspection
of the recursion and using the functional formula for the annulus amplitude. Alterna-
tively, it could have been obtained through direct integration of the open version of the
holomorphic anomaly equation, in which case the functions f (g,h)0 (x1, . . . , xh) would
correspond to the holomorphic ambiguities. This complementary approach sheds new
light on the structural constaints of the amplitudes coming directly from modularity; we
hope to report on that in future work.

3. Open Orbifold Gromov-Witten Invariants of C
3/Z3

In this section we apply our formalism to the study of the mirror to local P
2 at the orbifold

point in moduli space.

3.1. Geometry. We consider the geometry described in Example 2.1. � → M is the
one-parameter family of genus one Riemann surfaces with three punctures. We choose
the following embedding for the fibers,

�z =
{

y2 + y(1 + x) + zx3 = 0
}

⊂ (C∗)2. (3.1)

We consider the B-model on this geometry, with B-branes wrapping the curve C ⊂ Y
as usual. The mirror theory is the A-model on the target space X = KP2 , with a non-
compact A-brane wrapping a special Lagragian submanifold of topology R

2 × S1 (see
[5,4,16] for a detailed description of these branes). The parameterization of the curve
�z above corresponds on the A-model side to an “outer brane with zero framing”, in the
nomenclature of [4,16]. Unless specified, all our calculations in this section will be in
this parameterization.

By mirror symmetry, the closed A-model moduli space is isomorphic to M. It has two
patches, which correspond to two phases of the A-model. In each phase, there is a limit
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point near which the A-model amplitudes have a convergent expansion, and become the
amplitudes of a non-linear sigma model (coupled to two-dimensional gravity). In the first
patch, the limit point is the large radius point, which is located at z = 0. The amplitudes
expanded near this point become generating functions of Gromov-Witten invariants of
X = KP2 . In the second patch, the limit point is the orbifold point, located at z = ∞; a
good local coordinate is ψ = z−1/3. The amplitudes expanded near this point become
generating functions of orbifold Gromov-Witten invariants of X ′ = C

3/Z3. As a result,
moving from one patch to the other in M induces a topologically-changing transition
of the target space.

This analysis also extends to the open sector. In the large radius patch, the ampli-
tudes F (g,h) expanded near the large radius point become generating functions for
open Gromov-Witten invariants of (X, L), where L is the special Lagrangian subman-
ifold mirror to C . Open Gromov-Witten invariants are defined in terms of stable maps
from bordered Riemann surfaces with Lagrangian boundary conditions [45] — see also
[37]. If X admits a U (1) action which fixes L , then the U (1) acts naturally on the
space of stable maps, and one can use localization to compute open Gromov-Witten
invariants [45].

In the orbifold patch, one expects a similar story to hold, and the amplitudes expanded
near the orbifold point should be generating functions for open orbifold Gromov-Witten
invariants of (X ′, L ′). Here, L ′ is a Lagrangian submanifold of C

3 which is fixed by the
Z3 action, hence descends to a Lagrangian submanifold of the orbifold. This Lagrang-
ian L ′ corresponds to the original Lagrangian L at the large radius point, and should
exist as a consequence of the A-version of the McKay correspondence for derived cat-
egories. Therefore, one can consider stable maps from bordered Riemann surfaces to
the orbifold C

3/Z3, in such a way that the boundaries are mapped to L ′, and construct
the corresponding open orbifold Gromov–Witten invariants. One could then follow the
approach of [45] in the context of orbifolds, and use localization with respect to a U (1)
action to compute open orbifold Gromov-Witten invariants of C

3/Z3. Such open orb-
ifold Gromov-Witten invariants have not been defined in the mathematical literature
yet. However, Renzo Cavalieri informed us that he is presently working on this [21].
In particular, he has managed to compute disk orbifold Gromov-Witten invariants of
C

3/Z3 using localization of Z3-Hodge integrals. His calculation matches perfectly with
the results we present in Subsect. 3.3.1, as we explain there.

Another useful point of view on these open orbifold Gromov–Witten invariants is
to consider the topological string theory near the orbifold point as a perturbed N = 2
orbifold conformal field theory (CFT) coupled to gravity. From this point of view, the
open topological string amplitude F (g,h) is a generating function of arbitrary insertions
of bulk and boundary operators of the orbifold CFT. In the case of C

3/Z3 there is only
one bulk operator O. This is a twist operator which corresponds to a blow-up mode
of the orbifold singularity, i.e. to a deformation mode of the closed string modulus. In
the presence of Lagrangian boundary conditions specified by L ′, one also has boundary
preserving operators. These operators correspond to the insertion of open string states
on the boundaries of the Riemann surface which maps to L ′, and they are in one-to-one
correspondence with H1(L ,End(E)), where E is an appropriate vector bundle on L
[9,55]. Since we have open strings with h boundaries, the most general configuration
can be obtained by considering h branes wrapping L ′. In our case b1(L ′) = 1, therefore
there will be h (integrated) boundary operators ��, � = 1, . . . , h, corresponding to the
h branes wrapping L ′. We then have



604 V. Bouchard, A. Klemm, M. Mariño, S. Pasquetti

F (g,h) =
〈

exp

(
TorbO +

h∑
�=1

X���

)〉

g,h

=
∑

j,i1,...,ih≥0

1

j ! N (g,h)
(i1,...,ih), j T

j
orb Xi1

1 . . . Xih
h , (3.2)

where

N (g,h)
(i1,...,ih), j = 1

i1! · · · ih ! 〈O
j�

i1
1 . . . �

ih
h 〉g,h, (3.3)

and the vevs are calculated for the twisted N = 2 SCFT of the orbifold coupled to grav-
ity on a Riemann surface �g,h . The numbers N (g,h)

(i1,...,ih), j should be identified with the
open orbifold Gromov–Witten invariants. The combinatorial factor i1! · · · ih ! is included
in the invariant in order to agree with the conventions of Cavalieri for the open orbifold
Gromov–Witten invariants to which we will compare our results later on.

Our goal in this section is to use mirror symmetry and our B-model recursive for-
malism to compute generating functions of open orbifold Gromov-Witten invariants of
C

3/Z3. This can be done in two ways; either by extracting the B-model amplitudes
at the orbifold point from the large radius ones using the quasi-modular properties of
the amplitudes, or by generating the amplitudes directly at the orbifold point using the
functional expressions derived in the previous section. But before doing that, we need
to understand the open and closed mirror maps near the orbifold point, in order to map
the B-model amplitudes to the A-model amplitudes.

3.2. Open and closed mirror maps.

3.2.1. Closed mirror map The closed mirror map provides a local isomorphism between
the closed A- and B-model moduli spaces. One needs to compute the flat coordinate near
a given point of M, which is given by a solution of the associated Picard-Fuchs system.
Inversion of the flat coordinate gives the closed mirror map.

For the case under consideration, one obtains a single Picard-Fuchs equation, which
reads

(� + 3z(3� + 2)(3� + 1))� f = 0, (3.4)

with the logarithmic derivative � = z ∂
∂z .

The constant function f = 1 is always a solution of (3.4). Near z = 0, the two other
solutions are

T (z) = log z − 6z + 45z2 − 560z3 + · · · := log z + σ(z),

TD(z) = (log z)2 + 2σ(z) log z − 18z +
423

2
z2 − 2972z3 + · · · , (3.5)

T (z) is the flat coordinate in the large radius patch. At z = 0, T (0) → −∞, and the
expansion parameter is set to Q = eT . The closed mirror map in this patch, which
expresses z in terms of the flat parameter T , is then given by

z(Q) = Q + 6Q2 + 9Q3 + 56Q4 + · · · . (3.6)
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In the orbifold patch, the two non-trivial solutions to (3.4) read

Bk(ψ) = (−1)k+1ψk

k
3 F2

(
k

3
,

k

3
,

k

3
; 2k

3
, 1 +

k

3
;
(

−ψ
3

)3
)
, (3.7)

with k = 1, 2, and we used the local coordinateψ = z−1/3. Using the explicit expansion
of the hypergeometric system we get

Bk(ψ) =
∑
n≥0

(−1)3n+k+1ψ3n+k

(3n + k)!

(
�

(
n + k

3

)
�

( k
3

)
)3

. (3.8)

The flat parameter in this patch reads [1]

Torb(ψ) = B1(ψ), (3.9)

and the dual period is Torb,D(ψ) = B2(ψ). At ψ = 0, we get Torb(0) = 0, hence Torb
itself is a good expansion parameter. The closed mirror map reads

ψ(Torb) = Torb +
1

648
T 4

orb − 29

3674160
T 7

orb +
6607

71425670400
T 10

orb + · · · . (3.10)

3.2.2. The open mirror map The open mirror map extends the isomorphism to the open
sector, which in the case under consideration is the fiber of the moduli space � → M.
Again, one needs to determine the open flat coordinate, which is a solution of the extended
Picard-Fuchs system, as derived in [47,48]. The open mirror map is given by inverting
this open flat coordinate. We refer the reader to [16,47,48] for a detailed explanation of
the extended Picard-Fuchs system.

In the large radius patch, it was shown in [4,47] that the open flat coordinate is given
by

X (x, z) = xe
1
3 (log z−T (z)), (3.11)

where x is the local coordinate x on�z , and T (z) is the closed flat coordinate. Note that
X (x, z) is monodromy-invariant under z �→ e2π i z. At (x, z) = (0, 0), we have X → 0,
hence it is a good expansion parameter. The open mirror map becomes

x(Q, X) = X (1 − 2Q + 5Q2 − 32Q3 + . . .). (3.12)

In the orbifold patch, we argued in [16] — by requiring that the disk amplitude, when
expressed in flat coordinates, be monodromy-invariant under the Z3 orbifold monodr-
omy ψ �→ e2π i/3ψ , which fixes the open flat coordinate uniquely, up to scale — that
the open flat coordinate must be given by

Xorb(x, ψ) = xz1/3 = xψ−1. (3.13)

The open mirror map simply becomes

x(Xorb, Torb) = Xorbψ(Torb), (3.14)

where ψ(Torb) is the closed mirror map.
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Table 3.1. Some invariants N (0,1)i, j for the orbifold disk amplitude of C
3/Z3 at zero framing

i

j 1 2 3 4 5 6 7 8 9 10

0 0 0 − 1
3 0 0 − 1

4 0 0 − 10
27 0

1 1 0 0 1
2 0 0 6

7 0 0 2
2 0 − 1

2 0 0 − 6
5 0 0 − 15

4 0 0
3 0 0 2

3 0 0 4 0 0 20 0
4 1

27 0 0 − 40
27 0 0 − 154

9 0 0 − 3400
27

5 0 − 5
54 0 0 206

45 0 0 3215
36 0 0

6 0 0 10
27 0 0 − 160

9 0 0 − 4940
9 0

7 − 29
729 0 0 − 1432

729 0 0 19586
243 0 0 2820200

729
8 0 197

1458 0 0 15514
1215 0 0 − 384575

972 0 0
9 0 0 − 2

3 0 0 − 292
3 0 0 5540

3 0
10 6607

19683 0 0 80456
19683 0 0 5544602

6561 0 0 − 90503800
19683

11 0 − 63107
39366 0 0 − 945934

32805 0 0 − 214690135
26244 0 0

12 0 0 8074
729 0 0 53768

243 0 0 21092500
243 0

13 − 4736087
531441 0 0 − 51705832

531441 0 0 − 307254682
177147 0 0 − 528718078600

531441
14 0 58248455

1062882 0 0 906117742
885735 0 0 8720423035

708588 0 0

3.3. Quasi-modular transformations. Let us start by computing the amplitudes explic-
itly, using the quasi-modular transformation of the amplitudes from large radius to the
orbifold point.

3.3.1. Disk amplitude For completeness, let us review the calculation of the orbifold
disk amplitude, which was done in [16]. Recall that the disk amplitude is simply given
by the Abel-Jacobi map

F (0,1) =
∫

log(y(x))
dx

x
, (3.15)

up to classical terms. y(x) is obtained by solving the curve �z and keeping the relevant
branch:

y(x) = 1

2

(
1 + x +

√
(1 + x)2 − 4 z x3

)
. (3.16)

We want to expand the Abel-Jacobi map at the orbifold point. Remark that the open
mirror map (3.14) is linear in ψ . Hence we must plug in the open mirror map before
expanding in the closed coordinate to get a meaningful expansion. This being done, we
get the orbifold disk amplitude

F (0,1)orb =
∑
i, j

1

j ! N (0,1)
i, j X i

orbT j
orb, (3.17)

with the invariants given in Table 3.1.

3.3.2. Incorporating framing As we mentioned earlier, the calculation above was done
for an outer brane with zero framing. However, for the orbifold disk amplitude the cal-
culation can be easily generalized to arbitrary framing. From a Gromov-Witten point
of view, framing corresponds to a choice of torus action in the localization process.
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Table 3.2. Some invariants N (0,1)i, j for the orbifold disk amplitude of C
3/Z3 at general framing f

i

j 1 2 3 4

0 0 0 − 1
3 0

1 1 0 0 f + 1
2

2 0 − f − 1
2 0 0

3 0 0 3 f 2 + 3 f + 2
3 0

4 1
27 0 0 − 8

27

(
54 f 3 + 81 f 2 + 37 f + 5

)
5 0 − 5

54 (2 f + 1) 0 0
6 0 0 5

27

(
9 f 2 + 9 f + 2

)
0

7 − 29
729 0 0 − 8

729

(
1890 f 3 + 2835 f 2 + 1303 f + 179

)
8 0 197(2 f +1)

1458 0 0
9 0 0 1

3

(−9 f 2 − 9 f − 2
)

0

10 6607
19683 0 0

8
(
102870 f 3+154305 f 2+71549 f +10057

)
19683

11 0 − 63107(2 f +1)
39366 0 0

12 0 0 4037
729

(
9 f 2 + 9 f + 2

)
0

13 − 4736087
531441 0 0 − 8

(
65783718 f 3+98675577 f 2+45818317 f +6463229

)
531441

14 0 58248455(2 f +1)
1062882 0 0

Hence the calculation at arbitrary framing is relevant for comparison with localization
computations in Gromov-Witten theory.

Recall from [16] that a framing transformation of the brane is given by reparameter-
izing the embedding of the fibers �z in (C∗)2 by

(x f , y f ) = (xy f , y), (3.18)

where (x f , y f ) are the new coordinates, and f ∈ Z is the framing. In particular, the
embedding of �z becomes

�z =
{

y3 f +2
f + y3 f +1

f + x f y2 f +1
f + zx3

f = 0
}

⊂ (C∗)2. (3.19)

We compute the disk amplitude for this curve as

F (0,1)f =
∫

log(y f (x f ))
dx f

x f
, (3.20)

where the function y f (x f ) is obtained by solving (3.19) for x f (as a series expansion).
Plugging in the mirror map, we obtain the invariants presented in Table 3.2, for general
framing f .

As we mentioned already, the framing f is correlated to the choice of torus weights
for localization of the Hodge integrals in Gromov–Witten theory. Renzo Cavalieri has
implemented the Hodge integral calculation for the disk amplitude of C

3/Z3 [21]. It
turns out that the most natural choice of torus weights in Gromov–Witten theory does
not correspond to f = 0, but rather to f = −2/3 (or f = −1/3). To ease compar-
isons, we present in Table 3.3 the disk invariants for f = −2/3. Rather amazingly,
these invariants are precisely equal to the invariants computed by Cavalieri in orbifold
Gromov–Witten theory! Since the Gromov–Witten calculation is done on the A-model
side, this comparison also shows that our choice of open orbifold mirror map (3.14),
which was argued in [16] from monodromy considerations, is correct, including the
scale.
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Table 3.3. Some invariants N (0,1)i, j for the orbifold disk amplitude of C
3/Z3 at framing f = −2/3

i

j 1 2 3 4 5 6 7 8 9 10

0 0 0 − 1
3 0 0 1

12 0 0 − 1
27 0

1 1 0 0 − 1
6 0 0 5

63 0 0 − 4
81

2 0 1
6 0 0 − 4

45 0 0 7
108 0 0

3 0 0 0 0 0 0 0 0 0 0
4 1

27 0 0 − 8
81 0 0 35

243 0 0 − 400
2187

5 0 5
162 0 0 − 188

1215 0 0 875
2916 0 0

6 0 0 0 0 0 0 0 0 0 0
7 − 29

729 0 0 − 248
2187 0 0 5705

6561 0 0 − 146800
59049

8 0 − 197
4374 0 0 − 10972

32805 0 0 221221
78732 0 0

9 0 0 0 0 0 0 0 0 0 0
10 6607

19683 0 0 10984
59049 0 0 889805

177147 0 0 − 74714800
1594323

11 0 63107
118098 0 0 385132

885735 0 0 51307949
2125764 0 0

12 0 0 0 0 0 0 0 0 0 0
13 − 4736087

531441 0 0 − 6768584
1594323 0 0 17027675

4782969 0 0 − 33798787600
43046721

14 0 − 58248455
3188646 0 0 − 381155716

23914845 0 0 3576521095
57395628 0 0

It may seem however odd to assign a non-integral value to f ; it would be interesting
to understand this issue better. Presumably, the denominator of 3 comes from the orbi-
fold Z3 action at the orbifold point — indeed, framing has so far only been interpreted
from a large radius point of view in topological strings. Note however that non-integral
framings have already been considered, although in a different context [27].

3.3.3. Annulus amplitude We now want to compute the annulus amplitude, which is
slightly more complicated, since it has non-trivial modular properties and transforms
with a shift. More precisely, recall from (2.24) that the annulus transforms as

W (0,2)
orb (p1, p2) = W (0,2)(p1, p2)− 2π i u(p1)(Cτ + D)−1Cu(p2), (3.21)

where W (0,2)(p1, p2) is the large radius annulus amplitude and (Cτ + D)−1C comes
from the modular transformation of the period matrix τ from large radius to the orbifold.

The first step consists then in computing the annulus amplitude at large radius, using
Akemann’s formula (2.26). This was done in [16,49], and we will not repeat the cal-
culation here. What we need to do however is to analytically continue this result to the
orbifold point, to obtain the first term on the right hand side of (3.21). The analytic con-
tinuation can be done directly in Akemann’s formula, by expanding the branch points
around ψ = 0. However, it is important to note that as for the disk amplitude, we must
write things in terms of the open flat coordinates X1 and X2 — henceforth we will drop
the subscript orb — before expanding in ψ , since the open mirror map is linear in ψ .

After using a few identities involving elliptic functions and �-functions, we obtain
the following analytic continuation of the large radius annulus amplitude to the orbifold
point, in orbifold flat coordinates X1 and X2:
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W (0,2) = dX1dX2

(
−9

√
3�( 2

3 )
6

8π3 − 81ψ �( 2
3 )

12

64π6 + ψ2

(
1

18
− 243

√
3�( 2

3 )
18

512π9

)

+

(
1 +

9
√

3ψ �( 2
3 )

6

8π3 +
81ψ2 �( 2

3 )
12

64π6

)
X1+

(
−2ψ− 9

√
3ψ2 �( 2

3 )
6

8π3

)
X1

2

+

(
1 +

9
√

3ψ �( 2
3 )

6

8π3 +
81ψ2 �( 2

3 )
12

64π6

+

(
−3ψ − 9

√
3ψ2 �( 2

3 )
6

8π3

)
X1 + 5ψ2 X1

2

)
X2

+

(
−2ψ − 9

√
3ψ2 �( 2

3 )
6

8π3 + 5ψ2 X1 + 3 X1
2

)
X2

2 + · · ·
)
. (3.22)

One can see that it is not rational, as expected; the non-rational terms should be cancelled
by the shift in (3.21).

The next step is to compute the modular transformation between the large radius
periods (T, TD) and the orbifold periods (Torb, Torb,D). This can be done by standard
analytic continuation, as in [1]. Define

c1 = − 1

2π i

�(1/3)

�(2/3)2
, c2 = 1

2π i

�(2/3)

�(1/3)2
, β = 1

(2π i)3
, ω = e2π i/3. (3.23)

We get the transformation

⎛
⎝

TD

T
1

⎞
⎠ =

⎛
⎜⎝
βω2

c1

βω
c2

1
3

−c2 c1 0

0 0 1

⎞
⎟⎠

⎛
⎝

Torb,D

Torb
1

⎞
⎠ . (3.24)

Note that this transformation is not quite symplectic, since its determinant is −β; that
is, it changes the scale of the symplectic form. However, this can be taken into account
by renormalizing the string coupling constant, as in [1].

Now the modular transformation that we want is given by the inverse of this matrix.
We get that

C = −c2

β
, D = −ω

2

c1
. (3.25)

We also need the large radius period matrix τ , analytically continued around ψ = 0. By
definition, it is given by

τ(ψ) = ∂TD

∂T
= ∂TD/∂ψ

∂T/∂ψ
. (3.26)

Using the transformation above between TD, T and Torb,D, Torb, and expanding around
ψ = 0, we get

τ(ψ) = − (−1)
1
6√

3
− i 2

1
3 ψ �( 2

3 )
2

�( 1
6 )

2 − i ψ2 �( 2
3 )

7

2π �( 1
3 )

5
+ O(ψ3). (3.27)
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Table 3.4. Some invariants N (0,2)
(i1,i2), j for the orbifold annulus amplitude of C

3/Z3

(i1, i2)

j (1,1) (2,1) (3,1) (2,2) (4,1) (3,2) (5,1) (4,2) (3,3)
0 0 1

2 0 0 0 0 3
5

1
2

1
3

1 0 0 − 2
3 − 3

4 0 0 0 0 0
2 1

9 0 0 0 14
9

5
3 0 0 0

3 0 − 1
6 0 0 0 0 − 26

5 − 16
3 − 16

3
4 0 0 34

81
11
36 0 0 0 0 0

5 − 1
243 0 0 0 − 338

243 − 65
81 0 0 0

6 0 − 1
54 0 0 0 0 238

45
56
27

40
27

7 0 0 562
2187

197
972 0 0 0 0 0

8 391
6561 0 0 0 − 17206

6561 − 4261
2187 0 0 0

9 0 − 29
162 0 0 0 0 3614

135
1552

81
160

9
10 0 0 31606

59049
8333

26244 0 0 0 0 0
11 − 225595

177147 0 0 0 30802
177147

158125
59049 0 0 0

12 0 8455
1458 0 0 0 0 − 44338

1215 − 48104
729 − 52712

729
13 0 0 − 49954466

1594323 − 15072793
708588 0 0 0 0 0

14 301065409
4782969 0 0 0 712334462

4782969
8347925
1594323 0 0 0

Finally, we can compute the holomorphic differential u(p) from the standard formula
(2.31).

Putting all this together, and integrating, we obtain the orbifold annulus amplitude in
flat orbifold coordinates X1, X2, Torb,

F (0,2)orb =
∑

i1,i2, j

1

j ! N (0,2)
(i1,i2), j X i1

1 Xi2
2 T j

orb, (3.28)

with the invariants N (0,2)
(i1,i2), j given in Table 3.4; the invariants are symmetric in (i1, i2).

The invariants are rational, as they should be. Moreover, it is easy to see that the ampli-
tude is invariant under the Z3 orbifold monodromy. Indeed, the orbifold monodromy is
given by

(Torb, X1, X2) �→ (ωTorb, ω
2 X1, ω

2 X2), ω = e2π i/3. (3.29)

Thus all terms in the expansion above are monodromy invariant.
In Table 3.5 we also present some results for the corresponding framed invariants.

3.3.4. Higher amplitudes Computing the higher amplitudes directly using the modular
shift is rather complicated, partially because of all the elliptic functions involved in the
calculation. It is much simpler to use the functional expressions to compute the orbifold
amplitudes. We have however checked that the genus 0, three-hole amplitude computed
through the shift also matches the functional calculation, but we will not present the
calculation here for brevity.

3.4. Calculation using the functionals. Let us now use the functional expressions for
the amplitude derived in the previous section to compute the open orbifold amplitudes.
First, we need to specify what the functional G[T ; z] is for the curve �z given by (3.1).
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Table 3.5. Some invariants N (0,2)
(i1,i2), j for the framed orbifold annulus amplitude of C

3/Z3

(i1, i2)

j (1,1) (2,1) (3,1) (2,2)
0 0 1

2 + f 0 0
1 0 0 − 2

3 + f (2 f − 1) − 3
4 + f (2 f − 1)

2 1
9 0 0 0
+ f ( f + 1)

3 0 − 1
6 0 0

− 1
3 f

(
12 f 2 + 18 f + 7

)
0 0

4 0 0 34
81

11
36

− f (2646 f 3+2592 f 2+538 f −53)
27 − f (2727 f 3+2754 f 2+637 f −35)

27
5 − 1

243 + 5 f (1+ f )
27 0 0 0

6 0 − 1
54 0 0

− f (31+90 f +60 f 2)
27

3.4.1. Generalities First, from the embedding of the elliptic curve (3.1), we obtain

σ(x) = (x + 1)2 − 4x3z, (3.30)

and the discriminant


 = 1 + 27z. (3.31)

We claim that the functional G[T ; z] reads

G[T ; z] = − 1

z2Czzz

∂

∂z

(
4 log

∂T

∂z
+

1

3
log
 + 5 log z

)
, (3.32)

where

Czzz = ∂3 F (0)

∂z3 = 3

z3

(3.33)

is the Yukawa coupling in the local variable z. Let us sketch the derivation of this func-
tional formula.

The genus one amplitude F (1) was defined in Definition 2.5. In our context, one can
show that (2.15) becomes, up to a constant term,

F (1) = − log η(τ)− 1

24
log 
̃(ψ), (3.34)

where 
̃(ψ) = 27 + ψ3 is the discriminant in terms of ψ = z−1/3, and η(τ) is the
Dedekind η-function. Alternatively, F (1) can also be expressed as [13]

F (1) = −1

2
log

∂T

∂ψ
− 1

12
log 
̃(ψ). (3.35)

Combining the two formulae, we obtain

log η(τ) = 1

2
log

∂T

∂ψ
+

1

24
log 
̃(ψ). (3.36)
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Now the second Eisenstein series E2(τ ) is related to the Dedekind η-function by:

E2(τ ) = 24
d

dτ
log η(τ). (3.37)

As a result, we get

E2(τ ) = ∂

∂τ

(
12 log

∂T

∂ψ
+ log 
̃(ψ)

)
. (3.38)

Using the fact that

τ = ∂2 F (0)

∂T 2 , 
̃(z−1/3) = 


z
, (3.39)

we obtain

E2(τ ) =
(
∂T

∂z

)2 1

Czzz

∂

∂z

(
12 log

∂T

∂z
+ log
 + 15 log z

)
. (3.40)

Finally, recall that G[T ; z] is defined by

G[T ; z] = E2(τ )

3ω2
1

. (3.41)

By direct computation, we can write ω1 as a functional of T and z,

ω1 = iz
∂T

∂z
, (3.42)

and we obtain the final formula for G[T ; z] given in (3.32).
With this explicit formula for the functional G[T ; z], we can proceed with the cal-

culation of the higher amplitudes, using our ansatz (2.39). As explained previously, to
compute the amplitudes at the orbifold point, all that we need to do is to input the period
Torb corresponding to the flat parameter at the orbifold point in the functional.

3.4.2. Annulus amplitude The functional expression for the annulus amplitude was
obtained in (2.38), using the expression (3.32) for G[T ; z]. For the curve �z under
consideration, the rational function f (0,2)0 (x1, x2) can be computed, and reads

f (0,2)0 (x1, x2) = 6 + 6x2 + x2
2 + x2

1 (1 − 12x2z) + x1(6 + 4x2 − 12x2
2 z)

3(x1 − x2)2
. (3.43)

All that one needs to do to obtain the orbifold annulus amplitude, is to do the change
of variable z = ψ−3, replace the open moduli x1 and x2 by the open orbifold mirror
map x1,2 = X1,2ψ , where X1 and X2 are the open flat coordinates, and insert the closed
flat orbifold coordinate T = Torb(ψ) in the functional. Then, we plug in the closed
mirror map in the result and expand in X1, X2 and Torb to obtain the orbifold annulus
amplitude. It is easy to show that we obtain precisely (3.28) with the invariants of Table
3.4; note however how much simpler the calculation was.
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Table 3.6. Some invariants N (1,1)i, j for the genus 1, 1 hole orbifold amplitude of C
3/Z3

i

j 1 2 3 4 5 6 7 8 9

0 0 0 5
24 0 0 11

8 0 0 85
12

1 1
72 0 0 − 5

9 0 0 − 77
12 0 0

2 0 − 1
36 0 0 25

12 0 0 110
3 0

3 0 0 1
12 0 0 −10 0 0 − 495

2
4 1

1944 0 0 − 86
243 0 0 18823

324 0 0
5 0 − 11

972 0 0 3301
1620 0 0 − 127415

324 0
6 0 0 31

324 0 0 − 412
27 0 0 162755

54
7 475

52488 0 0 − 5210
6561 0 0 1237285

8748 0 0
8 0 − 223

26244 0 0 307847
43740 0 0 − 6757145

4374 0
9 0 0 − 1

12 0 0 − 610
9 0 0 344095

18
10 − 395585

1417176 0 0 172678
177147 0 0 168774025

236196 0 0
11 0 712639

708588 0 0 − 5242661
1180980 0 0 − 1966276115

236196 0
12 0 0 − 38945

8748 0 0 − 62488
729 0 0 158337275

1458
13 640118305

38263752 0 0 133378114
4782969 0 0 23152439695

6377292 0 0
14 0 − 1726238977

19131876 0 0 − 11317800859
31886460 0 0 − 152933889775

1594323 0

3.4.3. Genus 1, one-hole The amplitude has the form predicted by the ansatz (2.39).
By comparing with the result obtained through the recursion, we can fix the functions
f (1,1)i (x). We obtain

W (1,1) = dx√
σ(x)


(
9

32
G2[T ; z] + f (1,1)1 (x)G[T ; z] + f (1,1)0 (x)

)
, (3.44)

with the functions:

f (1,1)1 (x) = x(1 + x)


8σ(x)
,

f (1,1)0 (x) = 1

96σ(x)2
(1 + 36z + 4x(1 + 36z) + 16x6z2(1 + 36z)

+6x2(1 + 46z + 270z2) + x4(1 + 56z + 396z2)

+4x3(1 + 55z + 495z2) + 4x5z(1 + 57z + 1296z2)). (3.45)

Doing the transformations as above to go to the orbifold point, we obtain the ampli-
tude

F (1,1)orb =
∑
i, j

1

j ! N (1,1)
i, j X i T j

orb, (3.46)

with the invariants given in Table 3.6.

3.4.4. Genus 0, three-hole The amplitude has again the form predicted by the ansatz
(2.39). We can fix the functions f (0,3)i (x1, x2, x3) by comparing with the recursion, and
we obtain

W (0,3) = dx1dx2dx3√
σ(x1)σ (x2)σ (x3)


(
9

64
G3[T ; z] + f (0,3)2 (x1, x2, x3)G

2[T ; z]

+ f (0,3)1 (x1, x2, x3)G[T ; z] + f (0,3)0 (x1, x2, x3)
)
. (3.47)
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Table 3.7. Some invariants N (0,3)
(i1,i2,i3), j for the genus 0, 3 hole orbifold amplitude of C

3/Z3

(i1, i2, i3)

j (1, 1, 1) (2, 1, 1) (3, 1, 1) (2, 2, 1) (4, 1, 1) (3, 2, 1) (2, 2, 2)

0 2
3 0 0 0 4

3 1 9
8

1 0 − 5
6 0 0 0 0 0

2 0 0 52
27

23
12 0 0 0

3 − 1
27 0 0 0 − 176

27 − 19
3 − 49

8
4 0 13

162 0 0 0 0 0
5 0 0 − 124

729 − 11
324 0 0 0

6 − 1
81 0 0 0 − 32

81 − 37
27 − 133

72
7 0 397

4374 0 0 0 0 0
8 0 0 − 17972

19683 − 7303
8748 0 0 0

9 37
243 0 0 0 2480

243
709
81

1771
216

10 0 − 92273
118098 0 0 0 0 0

11 0 0 3393164
531441

1584895
236196 0 0 0

12 − 42703
6561 0 0 0 − 475424

6561 − 57857
729 − 172613

1944
13 0 120276571

3188646 0 0 0 0 0
14 0 0 − 4470350924

14348907 − 1939962841
6377292 0 0 0

The functions f (0,3)i (x1, x2, x3) are rather complicated; we present them in Appendix
B.

Doing the transformations as above to go to the orbifold point, we obtain the ampli-
tude

F (0,3)orb =
∑

i1,i2,i3, j

1

j ! N (0,3)
(i1,i2,i3), j X i1

1 Xi2
2 Xi3

3 T j
orb, (3.48)

with the invariants given in Table 3.7. The invariants are symmetric in (i1, i2, i3).

3.5. Conifold point. So far we considered the A- and B-model amplitudes in the two
distinct phases of M, namely the large radius phase and the orbifold one. There is how-
ever a third point around which the amplitudes have an interesting expansion, which
is the conifold point. This is not a limit point of a phase of M; rather, it is a singular
point of the moduli space, where the target space of the A-model develops a conifold
singularity.6 This point is located at z = − 1

27 .
It is generally interesting to expand the amplitudes near the conifold point. For

instance, the leading behavior of the closed amplitudes F (g)con expanded at the coni-
fold point can be understood as the amplitudes of the non-critical c = 1 string at the
self-dual radius [35]. Moreover, the amplitudes F (g)con seem to possess a universal gap, as
discovered in [42]. That is, the leading behavior of the closed amplitudes is of the form:

F (g)con = B2g

2g(2g − 2)T 2g−2
con

+ k(g)1 Tcon + O(T 2
con) , (3.49)

where the Bn are the Bernoulli numbers and Tcon is the vanishing period at the conifold.
This feature is rather striking, and very useful computationally. Indeed, one of the most

6 In the gauged linear sigma model description of the A-model, at the conifold point new massless modes
appear, which defines a new branch of vacua.
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effective approaches for computing closed amplitudes is by directly integrating [38] the
holomorphic anomaly equation of [12], using the polynomial structure of the amplitudes
proposed in [57]. However, the holomorphic anomaly equation is not complete; at each
genus one needs to fix a finite number of constants (the holomorphic ambiguity) using
extra data. In conjunction with the leading behavior of the amplitudes, the gap behavior
at the conifold point — more precisely the absence of the 2g − 3 subleading negative
powers in the Tcon expansion — imposes 2g −2 such extra conditions, which have been
shown to completely fix the holomorphic ambiguity in many local geometries. In the
compact setting, they allow computation of closed amplitudes to very high genus [43].

One may wonder if this approach has an open counterpart. So far, we relied entirely
on the recursion formalism to compute open amplitudes. As we have seen, while this
formalism is very satisfactory conceptually, it is rather cumbersome computationally.
Direct integration of the open holomorphic anomaly equations — recently derived in
[33] in the local setting — would provide an alternative method to compute the open
amplitudes. In particular, one could hope that a gap behavior exists for the open ampli-
tudes expanded at the conifold point, providing sufficient boundary conditions to fix the
holomorphic ambiguity.

This is surely enough motivation for studying in more detail the open amplitudes
near the conifold point. In what follows we present general properties of the amplitudes;
technical and computational aspects are relegated to Appendix C.

Consider as usual the moduli space � → M. As mentioned before, the conifold
point in the closed moduli space M is located at z = −1/27; a good local coordinate is

w = 27z + 1. (3.50)

Since we are computing open amplitudes, we must also specify where we expand the
amplitudes in the open moduli space �w. At the conifold point w = 0, it turns out that
two of the branch points of the x-projection of the curve�w collapse to the same value,
x = −1/3. Instead of expanding the open amplitudes near x = 0, we will now expand
the amplitudes near this critical point x = −1/3, using a new local coordinate centered
at this point:7

p = 1

x
+ 3. (3.51)

On the mirror A-model side, expanding the amplitudes near this point should correspond
to considering branes located near a vertex of the toric diagram.

The open B-model amplitudes expanded near this critical point should correspond, at
leading order, to c = 1 string amplitudes at the self-dual radius,8 which are in turn equiv-
alent to Gaussian matrix model amplitudes [29]. More precisely, the expected leading
behavior of the open amplitudes near the critical point is [14]:

F (g,h) ∼ T 2−2g−h
con F̃ (g,h), (3.52)

7 Note however that this critical point is a singular limit of the curve �w , hence one has to choose an
appropriate set of coordinates to smooth out the singularity. In particular, one must consider a double–scaling
limit, where the open coordinate p is rescaled with the closed modulus, as explained in [34]. We will come
back to that in the explicit computations in Appendix C.

8 Note that such critical points have already been considered in the context of matrix models. In [28] it was
proposed that c = 1 amplitudes can be obtained in a two-cut matrix model by considering the critical limit
where the two cuts touch each other.
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where Tcon is the closed flat coordinate near the conifold pointw = 0, which corresponds
to the vanishing period. The amplitudes F̃ (g,h), which are independent of Tcon , are to
be identified with the amplitudes for FZZT branes in the c = 1 string at the self-dual
radius. Indeed, as noticed in a similar context in [49], in the critical limit toric branes
should become FZZT branes.

The leading behavior (3.52) is the open analog to the leading behavior for the closed
amplitudes, as presented in (3.49). Recalling the discussion above for the closed ampli-
tudes, the open amplitudes would possess a gap if the subleading terms in Tcon with
negative exponents vanished.

We can use the recursion and the formalism developed in Sect. 2 to compute the
B-model amplitudes explicitly at the critical point; we report this calculation in Appen-
dix C. The calculation shows that the amplitudes indeed possess the expected leading
behavior in Tcon . However, the subleading terms in Tcon are not vanishing, in contrast
with the closed amplitudes. As a result, we conclude that in the open case, there is no
simple gap behavior at the conifold. This renders the use of the direct integration of the
holomorphic anomaly equations as a method to solve for the amplitudes rather limited
in the open case, since one lacks the boundary conditions provided by the gap behavior
and required to fix the holomorphic ambiguity.

A word of caution to end this section; as we discuss in Appendix C, it is not clear to us
how to fix the open flat coordinate near the critical point (w, p) = (0, 0). This prevents
us from providing unambiguous results for the open amplitudes near the conifold point.
It would be interesting to clarify these issues further.

A. Landau-Ginzburg vs Sigma Model

In this Appendix we explain the relation between the standard Landau-Ginzburg mirrors
to toric threefolds and the sigma models described previously. We follow the argument
presented by Hori, Iqbal and Vafa in p.93 of [40].

Consider the A-twisted sigma model on a (noncompact) toric Calabi-Yau threefold
X defined by the toric charge vectors Qa , a = 1, . . . , k. Its mirror [36,41] — see also
[24] for a clear explanation — is a B-twisted Landau-Ginzburg model on the family of
algebraic tori π : V → M, with V = (C∗)3+k , and M = (C∗)k , with projection map

π : (y0, . . . , yk+2) �→ (z1, . . . , zk) =
(

k+2∏
i=0

y
Q1

i
i , . . . ,

k+2∏
i=0

y
Qk

i
i

)
. (A.1)

The Landau-Ginzburg superpotential W : V → C reads

W =
k+2∑
i=0

yi . (A.2)

Choose local coordinates y0, y1, y2 on the fiber Vz = π−1(z1, . . . , zk), and use the
projection map π to rewrite the superpotential as

Wz := W
∣∣
Vz

= G(y0, y1, y2; z), (A.3)

where G(y0, y1, y2; z) is a homogeneous Laurent polynomial in (y0, y1, y2) of
degree 1.
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Consider now the Landau-Ginzburg model on V ′
z = (C∗)3 × (C2), with superpoten-

tial

W ′
z = G(y0, y1, y2; z)− ww′. (A.4)

By Knörrer periodicity, the category of B-branes in the Landau-Ginzburg model (Vz ,Wz)

is equivalent to the category of B-branes in the Landau-Ginzburg model (V ′
z ,W ′

z) [51].
The “periods” of the Landau-Ginzburg model consists in integrals of the form

∫
eG(y0,y1,y2;z)−ww′

d log y0 ∧ d log y1 ∧ d log y2 ∧ dw ∧ dw′. (A.5)

Since y0 is a C
∗-coordinate, we can define new coordinates ỹi = yi/y0, i = 1, 2,

and w̃ = w/y0. The superpotential becomes

W ′
z = y0(G(1, ỹ1, ỹ2; z)− w̃w′), (A.6)

and the periods now take the form

∫
ey0(G(1,ỹ1,ỹ2;z)−w̃w′)dy0 ∧ d log ỹ1 ∧ d log ỹ2 ∧ dw̃ ∧ dw′. (A.7)

Note that d log y0 has become dy0, due to the rescaling ofw. As a result, we can “integrate
out” y0, and we obtain a delta function

δ(G(1, ỹ1, ỹ2; z)− w̃w′). (A.8)

In other words, the B-twisted Landau-Ginzburg model “localizes” on the B-twisted
sigma model on the family of noncompact threefolds Y → M with fiber

Yz = {ww′ = H(x, y; z)} ⊂ (C∗)2 × (C2), (A.9)

where we redefined x = ỹ1, y = ỹ2, w = w̃ and H(x, y; z) := G(1, x, y; z).
Note however that we have only shown equivalence of the period integrals. What

one would need to show is the equivalence of the category of B-branes for both models,
as in the first step involving Knörrer periodicity. In other words, there should be an
equivalence between the category of B-branes of the Landau-Ginzburg model (V ′

z ,W ′
z),

which is generally understood as the category of matrix factorizations, and the derived
category of coherent sheaves of Yz . It would be very interesting to understand this rela-
tion better, in the spirit of the Landau-Ginzburg/Calabi-Yau correspondence which was
derived in [52].

B. Functions f (0,3)
i (x1, x2, x3) for the Genus 0, 3 Hole Amplitude

We present in this Appendix the functions f (0,3)i (x1, x2, x3), i = 0, 1, 2 entering into
the expression for the amplitude W (0,3) (3.47):
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f (0,3)2 = 1

64σ(x1)σ (x2)σ (x3)
(4z(4z(12zx3

3 + (108z + 1)x2
3 + 2(54z − 1)x3 − 3)x3

2 + (4z(108z + 1)x3
3

−(216z + 5)x2
3 − 6(54z + 1)x3 − 108z − 1)x2

2 + 2(4z(54z − 1)x3
3 − 3(54z + 1)x2

3

−2(108z + 1)x3 − 54z + 1)x2 − 12zx3
3 − (108z + 1)x2

3 + (2 − 108z)x3 + 3)x3
1

+(4z(4z(108z + 1)x3
3 − (216z + 5)x2

3 − 6(54z + 1)x3 − 108z − 1)x3
2

+(−4z(216z + 5)x3
3 + 9(36z + 1)x2

3 + 2(270z + 7)x3 + 216z + 5)x2
2 + (−24z(54z + 1)x3

3

+2(270z + 7)x2
3 + 4(216z + 5)x3 + 324z + 6)x2 − 4z(108z + 1)x3

3 + (216z + 5)x2
3 + 108z

+6(54z + 1)x3 + 1)x2
1 + 2(4z(4z(54z − 1)x3

3 − 3(54z + 1)x2
3 − 2(108z + 1)x3 − 54z + 1)x3

2

+(−12z(54z + 1)x3
3 + (270z + 7)x2

3 + 2(216z + 5)x3 + 162z + 3)x2
2 + (−8z(108z + 1)x3

3

+2(216z + 5)x2
3 + 12(54z + 1)x3 + 216z + 2)x2 + 4(1 − 54z)zx3

3 + 3(54z + 1)x2
3 + 54z

+(216z + 2)x3 − 1)x1 + 12zx3
3 + 108zx2

3 + x2
3 + 108zx3 − 2x3

−4zx3
2 (12zx3

3 + (108z + 1)x2
3 + 2(54z − 1)x3 − 3) + x2(8(1 − 54z)zx3

3 + 6(54z + 1)x2
3

+(432z + 4)x3 + 108z − 2) + x2
2 (−4z(108z + 1)x3

3 + (216z + 5)x2
3

+6(54z + 1)x3 + 108z + 1)− 3), (B.1)

f (0,3)1 = 1

192σ(x1)σ (x2)σ (x3)
(−4z(4z(12z(180z + 7)x3

3 + (2592z2 − 12z − 5)x2
3 − 2x3 + 108z + 3)x3

2

+(4z(2592z2 − 12z − 5)x3
3 +(1296z2 +48z+1)x2

3 +6(648z2 − 12z − 1)x3 +1296z2 − 168z − 7)x2
2

−2(4zx3
3 + (−1944z2 + 36z + 3)x2

3 + (−1944z2 + 360z + 14)x3 + 324z + 11)x2

+12z(36z + 1)x3
3 + (1296z2 − 168z − 7)x2

3 − 3(144z + 5)− 2(324z + 11)x3)x
3
1

+(−4z(4z(2592z2 − 12z − 5)x3
3 + (1296z2 + 48z + 1)x2

3

+6(648z2 − 12z − 1)x3 + 1296z2 − 168z − 7)x3
2 + (−4z(1296z2 + 48z + 1)x3

3

+2(10368z2 + 492z + 5)x3 + 9072z2 + 9(36zx3 + x3)
2 + 336z + 1)x2

2

+2(12z(−648z2 + 12z + 1)x3
3 + (10368z2 + 492z + 5)x2

3 + 2(7452z2 + 276z + 1)x3

+5832z2 + 108z − 3)x2 + 4z(−1296z2 + 168z + 7)x3
3 + 5184z2 + (9072z2 + 336z + 1)x2

3

−24z + 6(1944z2 + 36z − 1)x3 − 7)x2
1 + 2(4z(4zx3

3 + (−1944z2 + 36z + 3)x2
3

+(−1944z2 + 360z + 14)x3 + 324z + 11)x3
2 + (12z(−648z2 + 12z + 1)x3

3

+(10368z2 + 492z + 5)x2
3 + 2(7452z2 + 276z + 1)x3 + 5832z2 + 108z − 3)x2

2

−2(4z(972z2 − 180z − 7)x3
3 − (7452z2 + 276z + 1)x2

3 + (6 − 5832z2)x3 − 972z2 + 180z + 7)x2

+4z(324z+11)x3
3 +3(1944z2 +36z − 1)x2

3 − 324z+2(972z2 − 180z − 7)x3 − 11)x1 +1728z2x3
3

+60zx3
3 + 5184z2x2

3 − 24zx2
3 − 7x2

3 − 432z − 648zx3 − 22x3

+4zx3
2 (−12z(36z + 1)x3

3 + (−1296z2 + 168z + 7)x2
3 + (648z + 22)x3 + 432z + 15)

+2x2(4z(324z + 11)x3
3 + 3(1944z2 + 36z − 1)x2

3 + 2(972z2 − 180z − 7)x3 − 324z − 11)

+x2
2 (4z(−1296z2 + 168z + 7)x3

3 + (9072z2 + 336z + 1)x2
3 + 6(1944z2 + 36z − 1)x3

+5184z2 − 24z − 7)− 15), (B.2)
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f (0,3)0 = 1

576σ(x1)σ (x2)σ (x3)
(4z(4z(36z(144z2 + 32z + 1)x3

3 + (7776z2 + 480z + 7)x2
3

+2(4536z2 + 306z + 5)x3 + 3(864z2 + 60z + 1))x3
2 + (4z(7776z2 + 480z + 7)x3

3 + (108864z3

+7920z2 + 168z + 1)x2
3 + 6(7776z3 + 1368z2 + 66z + 1)x3 + 3888z2 + 276z + 5)x2

2

+2(4z(4536z2 + 306z + 5)x3
3 + 3(7776z3 + 1368z2 + 66z + 1)x2

3

+2(4212z2 + 288z + 5)x3 + 5184z2 + 378z + 7)x2 + 12z(864z2 + 60z + 1)x3
3 + 9(24z + 1)2

+(3888z2 + 276z + 5)x2
3 + 2(5184z2 + 378z + 7)x3)x

3
1

+(4z(4z(7776z2 + 480z + 7)x3
3 + (108864z3 + 7920z2 + 168z + 1)x2

3

+6(7776z3 + 1368z2 + 66z + 1)x3 + 3888z2 + 276z + 5)x3
2 + (124416z3 + 8496z2

+4(108864z3 + 7920z2 + 168z + 1)x3
3 z + 120z + 3(186624z4 + 53568z3 + 3888z2 + 108z + 1)x2

3

+(264384z3 + 20160z2 + 444z + 2)x3 − 1)x2
2 + 2(46656z3 + 2376z2

+12(7776z3 + 1368z2 + 66z + 1)x3
3 z − 54z + (132192z3 + 10080z2 + 222z + 1)x2

3

+2(81648z3 + 5292z2 + 60z − 1)x3 − 3)x2 + 4z(3888z2 + 276z + 5)x3
3

+(124416z3 + 8496z2 + 120z − 1)x2
3 − 132z + 6(15552z3 + 792z2 − 18z − 1)x3 − 5)x2

1

+2(4z(4z(4536z2 + 306z + 5)x3
3 + 3(7776z3 + 1368z2 + 66z + 1)x2

3

+2(4212z2 + 288z + 5)x3 + 5184z2 + 378z + 7)x3
2 + (46656z3 + 2376z2

+12(7776z3 + 1368z2 + 66z + 1)x3
3 z − 54z + (132192z3 + 10080z2 + 222z + 1)x2

3

+2(81648z3 + 5292z2 + 60z − 1)x3 − 3)x2
2 + 2(4z(4212z2 + 288z + 5)x3

3

+(81648z3 + 5292z2 + 60z − 1)x2
3 + 6(5832z3 + 108z2 − 30z − 1)x3 − 324z2 − 144z − 5)x2

+4z(5184z2 + 378z + 7)x3
3 + 2592z2 + 3(15552z3 + 792z2 − 18z − 1)x2

3 − 90z

−2(324z2 + 144z + 5)x3 − 7)x1 + 20736z3x3
3 + 1728z2x3

3 + 36zx3
3 + 10368z2 − 132zx2

3

−5x2
3 + 144z + 5184z2x3 − 180zx3 − 14x3 + 4zx3

2 (12z(864z2 + 60z + 1)x3
3

+(3888z2 + 276z + 5)x2
3 + 2(5184z2 + 378z + 7)x3 + 9(24z + 1)2)

+x2
2 (4z(3888z2 + 276z + 5)x3

3 + (124416z3 + 8496z2 + 120z − 1)x2
3

+6(15552z3 + 792z2 − 18z − 1)x3 − 132z − 5) + 2x2(4z(5184z2 + 378z + 7)x3
3

+3(15552z3 + 792z2 − 18z − 1)x2
3 − 2(324z2 + 144z + 5)x3 + 2592z2 − 90z − 7)− 9). (B.3)

C. Conifold Expansion

In this Appendix we provide detailed calculations supporting the discussion of the open
amplitudes near the conifold point in Subsect. 3.5.

Before computing the amplitudes, one needs to fix the open and closed mirror maps
near the critical point (w, p) = (0, 0) in the moduli space. First, the closed mirror map
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can be easily obtained by performing analytic continuation of the large radius periods
to the conifold point w = 0. One obtains

Tcon = w +
11w2

18
+

109w3

243
+

9389w4

26244
+ · · · ,

T D
con = w log(w) +

(
11 log(w)

18
+

7

12

)
w2 +

(
109 log(w)

243
+

877

1458

)
w3 + · · · .

(C.1)

The vanishing period Tcon atw = 0 gives the closed flat coordinate at the conifold point,
and the closed mirror map is obtained as usual by inverting the series.

The open mirror map is much more delicate. As explained in [16], it should be given
by a linear combination of solutions of the extended Picard-Fuchs system. That is, by a
linear combination of the constant solution, the closed periods (C.1), the solution (see
[16]):

u = log(p − 3) +
1

3
log

(
w − 1

27

)
, (C.2)

and the other relevant solution which is given by the disk amplitude.9 At the critical
point (w, p) = (0, 0), the latter reads

F (0,1) = i
√

3

[
p2

36
+

11p3

972
+

47p4

11664
+ · · ·

+w

(
−1

3
log(p)− p

54
+

p2

324
+

23p3

13122
+ · · ·

)

+w2
(

−11

54
log(p)− 1

2p
+

1

2p2 − 29p

2916
+

31p2

17496
+ · · ·

)
+ · · ·

]
. (C.3)

Therefore, generically, the open flat coordinate should be of the form:

P = A u + B F (0,1) + C Tcon + D T D
con + G. (C.4)

We can directly set B and D to zero, as both F (0,1) and T D
con contain a logarithm

which would then introduce non-trivial monodromy in the physical disk amplitude. We
further decide to fix A = −1 and G = 4π i

3 , for the following reasons. First, fixing A
just fixes the overall scale of the map. For instance, for A = −1 we get that

P(p, w) = p

3
+
w

3
+ · · · + C Tcon + G − 4π i

3
. (C.5)

Then, we fix G = 4iπ
3 to cancel the constant term in the p, w expansion, as we want the

flat coordinate to vanish at (p, w) = (0, 0). We then obtain

P(p, w) = p

3
+

p2

18
+ · · · +

w

3
+
w2

6
+ · · · + C Tcon, (C.6)

9 By disk amplitude here we mean its completion with classical terms such that it is a solution of the
extended Picard-Fuchs system.
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and the inverse mirror map reads:

p = −(3C + 1)Tcon − 1

18

(
27C2 + 18C + 1

)
T 2

con + · · ·

+

(
3 + (3C + 1)Tcon +

1

18

(
27C2 + 18C + 1

)
T 2

con + · · ·
)

P + · · · . (C.7)

We did not however find any argument to fix the constant C in the open mirror map. As
a result, we are left with a one-parameter family of open mirror maps at the conifold,
parameterized by C .

Now, as we already mentioned in footnote 7, the conifold point is a singular limit for
the mirror curve, and one needs to choose an appropriate coordinate on the resolution.
To smooth out the singularity, as in [34] we introduce the rescaled open flat coordinate:

X = P
√

Tcon . (C.8)

We will then expand the open amplitudes in the flat coordinates X and Tcon .
Conifold amplitudes can be easily obtained with the method developed in Sect. 2.

As for the orbifold point studied in Sect. 3, basically we only need to input the flat
coordinate Tcon in the functionals W (g,h), and expand the result in the flat coordinates
Tcon and X at the conifold point. We obtain the following results.

The disk amplitude at the conifold point reads:

F (0,1) =
[

X +
3X2

4
+ · · ·

]
Tcon +

[
−3C X

2
+

(
3C

8
+

1

8

)
X2 + · · ·

]
T 3/2

con

+

[
−

(
C

4
+

1

72
+

3C2

8

)
X + · · ·

]
T 2

con + . . . . (C.9)

The annulus amplitude:

F (0,2) = 3X1 X2

16
+

9X2
1 X2

2

512
+

9(X3
1 X2 + X1 X3

2)

256
+ · · ·

+

[
1

64
(−9C + 1) (X2 X2

1 + X1 X2
2) + · · ·

] √
Tcon

+

[(
1

24
− C

16
+

9C2

32

)
X1 X2 + · · ·

]
Tcon + · · · , (C.10)

and the genus 1, one-hole amplitude:

F (1,1) =
(

3

32
X +

15

256
X3 + · · ·

)
1

Tcon
+

[
1

256
(1 − 45C) X2 + . . .

]
1√
Tcon

+

(
45C2

256
− C

128
− 77

2304

)
X + · · · +

[
−15C3

256
+

C2

256
+

77C

2304
+

83

6912

+

(
135C2

256
+

595C

3072
+

35

9216

)
X2 + · · ·

] √
Tcon + · · · . (C.11)

These amplitudes have indeed the expected leading behavior T 2−2g−h
con , as explained in

(3.52). However the subleading terms are not vanishing (for any value of C), and so
there is no simple gap behavior.
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