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Abstract: We find the structure of generators of norm-continuous quantum Markov
semigroups onB(h) that are symmetric with respect to the scalar product tr (ρ1/2x∗ρ1/2 y)

induced by a faithful normal invariant state ρ and satisfy two quantum generalisations
of the classical detailed balance condition related with this non-commutative notion of
symmetry: the so-called standard detailed balance condition and the standard detailed
balance condition with an antiunitary time reversal.

1. Introduction

Symmetric Markov semigroups have been extensively studied in classical stochastic
analysis (Fukushima et al. [13] and the references therein) because their generators and
associated Dirichlet forms are very well tractable by Hilbert space and probabilistic
methods.

Their non-commutative counterpart has also been deeply investigated (Albeverio and
Goswami [1], Cipriani [6], Davies and Lindsay [8], Goldstein and Lindsay [15], Guido,
Isola and Scarlatti [17], Park [23], Sauvageot [26] and the references therein).

The classical notion of symmetry with respect to a measure, however, admits several
non-commutative generalisations. Here we shall consider the so-called KMS-symme-
try that seems more natural from a mathematical point of view (see e.g. Accardi and
Mohari [3], Cipriani [6,7], Goldstein and Lindsay [14], Petz [25]) and find the struc-
ture of generators of norm-continuous quantum Markov semigroups (QMS) on the von
Neumann algebra B(h) of all bounded operators on a complex separable Hilbert space
h that are symmetric or satisfy quantum detailed balance conditions associated with
KMS-symmetry or generalising it.

We consider QMS on B(h), i.e. weak∗-continuous semigroups of normal, completely
positive, identity preserving maps T = (Tt )t≥0 on B(h), with a faithful normal invari-
ant state ρ. This defines pre-scalar products on B(h) by (x, y)s = tr (ρ1−s x∗ρs y)

for s ∈ [0, 1] and allows one to define the s-dual semigroup T ′ on B(h) satisfying
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tr (ρ1−s x∗ρsTt (y)) = tr (ρ1−sT ′
t (x)∗ρs y) for all x, y ∈ B(h). The above scalar prod-

ucts coincide on an Abelian von Neumann algebra; the notion of symmetry T = T ′,
however, clearly depends on the choice of the parameter s.

The most studied cases are s = 0 and s = 1/2. Denoting T∗ the predual semigroup,
a simple computation yields T ′

t (x) = ρ−(1−s)T∗t (ρ
1−s xρs)ρ−s , and shows that for

s = 1/2 the maps T ′
t are positive but, for s �= 1/2 this may not be the case. Indeed,

it is well-known that, for s �= 1/2, the maps T ′
t are positive if and only if the maps Tt

commute with the modular group (σt )t∈R, σt (x) = ρi t xρ−i t (see e.g. [18] Prop. 2.1, p.
98, [22] Th. 6, p. 7985, for s = 0, [11] Th. 3.1, p. 341, Prop. 8.1, p. 362 for s �= 1/2). This
quite restrictive condition implies that the generator has a very special form that makes
simpler the mathematical study of symmetry but imposes strong structural constraints
(see e.g. [18 and 12]).

Here we shall consider the most natural choice s = 1/2 whose consequences are not
so stringent and say that T is KMS-symmetric if it coincides with its dual T ′. KMS-
symmetric QMS were introduced by Cipriani [6] and Goldstein and Lindsay [14]; we
refer to [7] for a discussion of the connection with the KMS condition justifying this
terminology.

All quantum versions of the classical principle of detailed balance (Agarwal [4],
Alicki [5], Frigerio, Gorini, Kossakowski and Verri [18], Majewski [20,21]), which is
at the basis of equilibrium physics, are formulated prescribing a certain relationship
between T and T ′ or between their generators, therefore they depend on the underlying
notion of symmetry. This work clarifies the structure of generators of QMS that are
KMS-symmetric or satisfy a quantum detailed balance condition involving the above
scalar product with s = 1/2 and is a key step towards understanding which is the most
natural and flexible in view of the study of their generalisations for quantum systems
out of equilibrium as, for instance, the dynamical detailed balance condition introduced
by Accardi and Imafuku [2].

The generator L of a norm-continuous QMS can be written in the standard Gorini-
Kossakowski-Sudarshan [16] and Lindblad [19] (GKSL) form

L(x) = i[H, x] − 1

2

∑

�≥1

(
L∗

� L�x − 2L∗
�x L� + x L∗

� L�

)
, (1)

where H, L� ∈ B(h) with H = H∗ and the series
∑

�≥1 L∗
� L� is strongly convergent.

The operators L�, H in (1) are not uniquely determined by L, however, under a natural
minimality condition (Theorem 2 below) and a zero-mean condition tr (ρL�) = 0 for all
� ≥ 1, H is determined up to a scalar multiple of the identity operator and the (L�)�≥1
up to a unitary transformation of the multiplicity space of the completely positive part
of L. We shall call special a GKSL representation of L by operators H, L� satisfying
these conditions.

As a result, by the remark following Theorem 2, in a special GKSL representation
of L, the operator G = −2−1 ∑

�≥1 L∗
� L� − i H , is uniquely determined by L up to a

purely imaginary multiple of the identity operator and allows us to write L in the form

L(x) = G∗x +
∑

�≥1

L∗
�x L� + xG. (2)

Our characterisations of QMS that are KMS-symmetric or satisfy a quantum detailed
balance condition generalising related with KMS-symmetry are given in terms of the
operators G, L� (or, in an equivalent way H, L�) of a special GKSL representation.
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Theorem 7 shows that a QMS is KMS-symmetric if and only if the operators G, L�

of a special GKSL representation of its generator satisfy ρ1/2G∗ = Gρ1/2 + icρ1/2

for some c ∈ R and ρ1/2 L∗
k = ∑

� uk�L�ρ
1/2 for all k and some unitary (uk�) on the

multiplicity space of the completely positive part of L coinciding with its transpose, i.e.
such that uk� = u�k for all k, �.

In order to describe our results on the structure of generators of QMS satisfying
a quantum detailed balance condition we first recall some basic definitions. The best
known is due to Alicki [5] and Frigerio-Gorini-Kossakowski-Verri [18]: a norm-con-
tinuous QMS T = (Tt )t≥0 on B(h) satisfies the Quantum Detailed Balance (QDB)
condition if there exists an operator L̃ on B(h) and a self-adjoint operator K on h such
that tr (ρL̃(x)y) = tr (ρxL(y)) and L(x) − L̃(x) = 2i[K , x] for all x, y ∈ B(h).
Roughly speaking we can say that L satisfies the QDB condition if the difference of L
and its adjoint L̃ with respect to the pre-scalar product on B(h) given by tr (ρa∗b) is a
derivation.

This QDB implies that the operator L̃ = L − 2i[K , · ] can be written in the form (2)
replacing G by G + 2i K and then generates a QMS T̃ . Therefore L and the maps Tt
commute with the modular group. This restriction does not follow if the dual QMS is
defined with respect to the symmetric pre-scalar product with s = 1/2.

The QDB can be readily reformulated replacing L̃ with the adjoint L′ defined via the
symmetric scalar product; the resulting condition will be called the Standard Quantum
Detailed Balance condition (SQDB) (see e.g. [9]).

Theorem 5 characterises generators L satisfying the SQDB and extends previous
partial results by Park [23] and the authors [11]: the SQDB holds if and only if there
exists a unitary matrix (uk�), coinciding with its transpose, i.e. uk� = u�k for all k, �,
such that ρ1/2 L∗

k = ∑
� uk�L�ρ

1/2. This shows, in particular, that the SQDB depends
only on the L�’s and does not involve directly H and G. Moreover, we find explicitly the
unitary (uk�)k� providing also a geometrical characterisation of the SQDB (Theorem 6)
in terms of the operators L�ρ

1/2 and their adjoints as Hilbert-Schmidt operators on h.
We also consider (Definition 3) another notion of quantum detailed balance, inspired

by Agarwal’s original notion (see [4], Majewski [20,21], Talkner [27]) involving an
antiunitary time reversal operator θ which does not play any role in the Alicki et al. def-
inition. Time reversal appears to keep into account the parity of quantum observables;
position and energy, for instance, are even, i.e. invariant under time reversal, momentum
are odd, i.e. change sign under time reversal. Agarwal’s original definition, however,
depends on the s = 0 pre-scalar product and implies then, that a QMS satisfying this
quantum detailed balance condition must commute with the modular automorphism.
Here we study the modified version (Definition 3) involving the symmetric s = 1/2
pre-scalar product that we call the SQDB-θ condition.

Theorem 8 shows that L satisfies the SQDB-θ condition if and only if there exists
a special GKSL representation of L by means of operators H, L� such that Gρ1/2 =
ρ1/2θG∗θ and a unitary self-adjoint (uk�)k� such that ρ1/2 L∗

k = ∑
� uk�θ L�θρ

1/2 for
all k. Here again (uk�)k� is explicitly determined by the operators L�ρ

1/2 (Theorem 9).
We think that these results show that the SQDB condition is somewhat weaker than

the SQDB-θ condition because the first does not involve directly the operators H , G.
Moreover, the unitary operator in the linear relationship between L�ρ

1/2 and their
adjoints is transpose symmetric and any point of the unit disk could be in its spec-
trum while, for generators satisfying the SQDB-θ , it is self-adjoint and its spectrum is
contained in {−1, 1}. Therefore, by the spectral theorem, it is possible in principle to
find a standard form for the generators of QMSs satisfying the SQDB-θ generalising the
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standard form of generators satisfying the usual QDB condition (that commute with the
modular group) as illustrated in the case of QMSs on M2(C) studied in the last section.
This classification must be much more complex for generators of QMSs satisfying the
SQDB.

The above arguments and the fact that the SQDB-θ condition can be formulated in a
simple way both on the QMS or on its generator (this is not the case for the QDB when
L and its Hamiltonian part i[H, ·] do not commute), lead us to the conclusion that the
SQDB-θ is the more natural non-commutative version of the classical detailed balance
condition.

The paper is organised as follows. In Sect. 2 we construct the dual QMS T ′ and recall
the quantum detailed balance conditions we investigate, then we study the relationship
between the generators of a QMS and its adjoint in Sect. 3. Our main results on the
structure of generators are proved in Sects. 4 (QDB without time reversal) and 5 (with
time reversal).

2. The Dual QMS, KMS-Symmetry and Quantum Detailed Balance

We start this section by constructing the dual semigroup of a norm-continuous QMS
with respect to the (·, ·)1/2 pre-scalar product on B(h) defined by an invariant state ρ

and prove some properties that will be useful in the sequel. Although this result may be
known, the presentation given here leads in a simple and direct way to the dual QMS
avoiding non-commutative L p-spaces techniques.

Proposition 1. Let Φ be a positive unital normal map on B(h) with a faithful normal
invariant state ρ. There exists a unique positive unital normal map Φ ′ on B(h) such that

tr
(
ρ1/2Φ ′(x)ρ1/2 y

)
= tr

(
ρ1/2xρ1/2Φ(y)

)

for all x, y ∈ B(h). If Φ is completely positive, then Φ ′ is also completely positive.

Proof. Let Φ∗ be the predual map on the Banach space of trace class operators on h and
let Rk(ρ1/2) denote the range of the operator ρ1/2. This is clearly dense in h because ρ

is faithful and coincides with the domain of the unbounded self-adjoint operator ρ−1/2.
For all self-adjoint x ∈ B(h) consider the sesquilinear form on the domain Rk(ρ1/2)×

Rk(ρ1/2),

F(v, u) = 〈ρ−1/2v,Φ∗(ρ1/2xρ1/2)ρ−1/2u〉.
By the invariance of ρ and positivity of Φ∗ we have

−‖x‖ρ = −‖x‖Φ∗(ρ) ≤ Φ∗(ρ1/2xρ1/2) ≤ ‖x‖Φ∗(ρ) = ‖x‖ρ.

Therefore |F(u, u)| ≤ ‖x‖ · ‖v‖ · ‖u‖. Thus sesquilinear form is bounded and there
exists a unique bounded operator y such that, for all u, v ∈ Rk(ρ1/2),

〈v, yu〉 = 〈ρ−1/2v,Φ∗(ρ1/2xρ1/2)ρ−1/2u〉.
Note that, Φ being a ∗-map, and x self-adjoint

〈v, y∗u〉 = 〈y∗u, v〉
= 〈ρ−1/2u, Φ∗(ρ1/2xρ1/2)ρ−1/2v〉
= 〈Φ∗(ρ1/2xρ1/2)ρ−1/2u, ρ−1/2v〉
= 〈ρ−1/2v,Φ∗(ρ1/2xρ1/2)ρ−1/2u〉.
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This shows that y is self-adjoint. Defining Φ ′(x) := y, we find a real-linear map on self-
adjoint operators on B(h) that can be extended to a linear map on B(h) decomposing
each self-adjoint operator as the sum of its self-adjoint and anti self-adjoint parts.

Clearly Φ ′ is positive because ρ1/2Φ ′(x∗x)ρ1/2 = Φ∗(ρ1/2x∗xρ1/2) and Φ∗ is
positive. Moreover, by the above construction Φ ′(1l) = 1l, i.e. Φ ′ is unital. Therefore �′
is a norm-one contraction.

If Φ is completely positive, then Φ∗ is also and formula ρ1/2Φ ′(x)ρ1/2 = Φ∗(ρ1/2

xρ1/2) shows that Φ ′ is completely positive.
Finally we show that Φ ′ is normal. Let (xα)α be a net of positive operators on B(h)

with least upper bound x ∈ B(h). For all u ∈ h we have then

sup
α

〈ρ1/2u, Φ ′(xα)ρ1/2u〉 = sup
α

〈u, Φ∗(ρ1/2xαρ1/2)u〉
= 〈u, Φ∗(ρ1/2xρ1/2)u〉 = 〈ρ1/2u, Φ ′(x)ρ1/2u〉.

Now if u ∈ h, for every ε > 0, we can find a uε ∈ Rk(ρ1/2) such that ‖u − uε‖ < ε by
the density of the range of ρ1/2. We have then

∣∣〈u,
(
Φ ′(xα) − Φ ′(x)

)
u〉∣∣ ≤ ε

∥∥Φ ′(xα) − Φ ′(x)
∥∥ (‖u‖ + ‖uε‖)

+
∣∣〈uε,

(
Φ ′(xα) − Φ ′(x)

)
uε〉

∣∣

for all α. The conclusion follows from the arbitrarity of ε and the uniform boundedness
of ‖Φ ′(xα) − Φ ′(x)‖ and ‖uε‖. ��
Theorem 1. Let T be a QMS on B(h) with a faithful normal invariant state ρ. There
exists a QMS T ′ on B(h) such that

ρ1/2T ′
t (x)ρ1/2 = T∗t (ρ

1/2xρ1/2) (3)

for all x ∈ B(h) and all t ≥ 0.

Proof. By Proposition 1, for each t ≥ 0, there exists a unique completely positive nor-
mal and unital contraction T ′

t on B(h) satisfying (3). The semigroup property follows
from the algebraic computation

ρ1/2T ′
t+s(x)ρ1/2 = T∗t

(
T∗s(ρ

1/2xρ1/2)
)

= T∗t

(
ρ1/2T ′

s (x)ρ1/2)
)

= ρ1/2T ′
t

(
T ′

s (x))
)
ρ1/2.

Since the map t → 〈ρ1/2v, T ′
t (x)ρ1/2u〉 is continuous by the identity (3) for all u, v ∈ h,

and ‖T ′
t (x)‖ ≤ ‖x‖ for all t ≥ 0, a 2ε approximation argument shows that t → T ′

t (x)

is continuous for the weak∗-operator topology on B(h). It follows that T ′ = (T ′
t )t≥0 is

a QMS on B(h). ��
Definition 1. The quantum Markov semigroup T ′ is called the dual semigroup of T
with respect to the invariant state ρ.

It is easy to see, using (3), that ρ is an invariant state also for T ′.

Remark 1. When T is norm-continuous it is not clear whether also T ′ is norm-contin-
uous. Here, however, we are interested in generators of symmetric or detailed balance
QMS. We shall see that these additional properties of T imply that also T ′ is norm
continuous. Therefore we proceed studying norm-continuous QMSs whose dual is also
norm-continuous.
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The quantum detailed balance condition of Alicki, Frigerio, Gorini, Kossakowski and
Verri modified by considering the pre-scalar product (·, ·)1/2 on B(h), usually called stan-
dard (see e.g. [9]) because of multiplications by ρ1/2 as in the standard representation
of B(h), is defined as follows.

Definition 2. The QMS T generated by L satisfies the standard quantum detailed
balance condition (SQDB) if there exists an operator L′ on B(h) and a self-adjoint
operator K on h such that

tr (ρ1/2xρ1/2L(y)) = tr (ρ1/2L′(x)ρ1/2 y), L(x) − L′(x) = 2i[K , x] (4)

for all x ∈ B(h).

The operator L′ in the above definition must be norm-bounded because it is every-
where defined and norm closed. To see this consider a sequence (xn)n≥1 in B(h) con-
verging in norm to a x ∈ B(h) such that (L(xn))n≥1 converges in norm to b ∈ B(h) and
note that

tr
(
ρ1/2L′(x)ρ1/2 y

)
= lim

n→∞ tr
(
ρ1/2xnρ1/2L(y)

)

= lim
n→∞ tr

(
ρ1/2L′(xn)ρ1/2 y

)
= tr

(
ρ1/2bρ1/2 y

)

for all y ∈ B(h). The elements ρ1/2 yρ1/2, with y ∈ B(h), are dense in the Banach space
of trace class operators on h because ρ is faithful. Therefore it shows that L′(x) = b
and L′ is closed.

Since both L and L′ are bounded, also K is bounded.
We now introduce another definition of quantum detailed balance, due to Agar-

wal [4] with the s = 0 pre-scalar product, that involves a time reversal θ . This is an
antiunitary operator on h, i.e. 〈θu, θv〉 = 〈v, u〉 for all u, v ∈ h, such that θ2 = 1l and
θ−1 = θ∗ = θ .

Recall that θ is antilinear, i.e. θ zu = z̄u for all u ∈ h, z ∈ C, and its adjoint θ∗
satisfies 〈u, θv〉 = 〈v, θ∗u〉 for all u, v ∈ h. Moreover θ x θ belongs to B(h) (linearity
is re-established) and tr (θ xθ) = tr (x∗) for every trace-class operator x ([10] Prop. 4),
indeed, taking an orthonormal basis of h, we have

tr (θxθ) =
∑

j

〈e j , θxθe j 〉 =
∑

j

〈xθe j , θ
∗e j 〉

=
∑

j

〈θe j , x∗θ∗e j 〉 = tr(x∗).

It is worth noticing that the cyclic property of the trace does not hold for θ , since
tr (θ xθ) = tr (x∗) may not be equal to tr (x) for non-self-adjoint x .

Definition 3. The QMS T generated by L satisfies the standard quantum detailed
balance condition with respect to the time reversal θ (SQDB-θ ) if

tr (ρ1/2xρ1/2L(y)) = tr (ρ1/2θy∗θρ1/2L(θx∗θ)), (5)

for all x, y ∈ B(h).
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The operator θ is used to keep into account parity of the observables under time
reversal. Indeed, a self-adjoint operator x ∈ B(h) is called even (resp. odd) if θxθ = x
(resp. θxθ = −x). The typical example of antilinear time reversal is a conjugation (with
respect to some orthonormal basis of h).

This condition is usually stated ([20,21,27]) for the QMS T as

tr(ρ1/2xρ1/2Tt (y)) = tr(ρ1/2θy∗θρ1/2Tt (θx∗θ)), (6)

for all t ≥ 0, x, y ∈ B(h). In particular, for t = 0 we find that this identity holds if
and only if ρ and θ commute, i.e. ρ is an even observable. This is the case, for instance,
when ρ is a function of the energy.

Lemma 1. The following conditions are equivalent:

(i) θ and ρ commute,
(ii) tr(ρ1/2xρ1/2 y) = tr(ρ1/2θy∗θρ1/2θx∗θ) for all x, y ∈ B(h).

Proof. If ρ and θ commute, from tr(θaθ) = tr(a∗), we have

tr(ρ1/2θy∗θρ1/2θx∗θ) = tr(θ(ρ1/2 y∗ρ1/2x∗)θ) = tr(xρ1/2 yρ1/2)

and (ii) follows cycling ρ1/2. Conversely, if (ii) holds, taking x = 1l, we have

tr(ρy) = tr(ρθy∗θ) = tr
(
θ(θy∗θ)∗ρθ

) = tr(yθρθ) = tr(θρθy),

for all y ∈ B(h), and ρ = θρθ . ��
Proposition 2. If ρ and θ commute then (5) and (6) are equivalent.

Proof. Clearly (5) follows from (6) differentiating at t = 0.
Conversely, putting α(x) = θxθ and denoting L∗ the predual of L we can write (5)

as

tr(L∗(ρ1/2xρ1/2)y) = tr
(
ρ1/2α(y∗)ρ1/2L(α(x∗))

)
= tr

(
ρ1/2α(L(α(x)))ρ1/2 y

)
,

for all y ∈ B(h), because tr(α(a)) = tr(a∗). Therefore we have

L∗(ρ1/2xρ1/2) = ρ1/2α(L(α(x)))ρ1/2

and, iterating, Ln∗(ρ1/2xρ1/2) = ρ1/2α(Ln(α(x)))ρ1/2 for all n ≥ 1. It follows that (5)
holds for all powers Ln with n ≥ 1. Since ρ and θ commute, it is true also for n = 0
and we find (6) by the exponentiation formula Tt = ∑

n≥0 tnLn/n!. ��
We do not know whether the SQDB condition (4) of Definition 2 has a simple explicit

formulation in terms of the maps Tt if L and L′ do not commute.

Remark 2. The SQDB condition (5), by tr(θaθ) = tr(a∗), reads

tr(ρ1/2xρ1/2L(y)) = tr(ρ1/2(θL(θxθ)θ)ρ1/2x),

for all x, y ∈ B(h), i.e. L′(x) = θL(θxθ)θ .
Write L in a special GKSL form as in (1) and decompose the generator L = L0 +

i[H, · ] into the sum of its dissipative part L0 and derivation part i[H, · ]. If H commutes
with θ , by the antilinearity of θ , we find L′(x) = θL0(θxθ)θ − i[H, x]. Therefore, if
the dissipative part is time reversal invariant, i.e. L0(x) = θL0(θxθ)θ , we end up with
L′ = L − 2i[H, · ].

The relationship with Definition 2 of SQDB, in this case, is then clear. The SQDB
conditions of Definition 2 and 3, however, in general are not comparable.
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3. The Generator of a QMS and its Dual

We shall always consider special GKSL representations of the generator of a norm-
continuous QMS by means of operators L�, H . These are described by the following
theorem (we refer to [24] Theorem 30.16 for the proof).

Theorem 2. Let L be the generator of a norm-continuous QMS on B(h) and let ρ be
a normal state on B(h). There exists a bounded self-adjoint operator H and a finite or
infinite sequence (L�)�≥1 of elements of B(h) such that:

(i) tr(ρL�) = 0 for each � ≥ 1,
(ii)

∑
�≥1 L∗

� L� is a strongly convergent sum,
(iii) if

∑
�≥0 |c�|2 < ∞ and c0 +

∑
�≥1 c�L� = 0 for complex scalars (ck)k≥0 then

ck = 0 for every k ≥ 0,
(iv) the GKSL representation (1) holds.

If H ′, (L ′
�)�≥1 is another family of bounded operators in B(h) with H ′ self-adjoint

and the sequence (L ′
�)�≥1 is finite or infinite then the conditions (i)–(iv) are fulfilled

with H, (L�)�≥1 replaced by H ′, (L ′
�)�≥1 respectively if and only if the lengths of the

sequences (L�)�≥1, (L ′
�)�≥1 are equal and for some scalar c ∈ R and a unitary matrix

(u�j )�, j we have

H ′ = H + c, L ′
� =

∑

j

u�j L j .

As an immediate consequence of the uniqueness (up to a scalar) of the Hamiltonian
H , the decomposition of L as the sum of the derivation i[H, ·] and a dissipative part
L0 = L−i[H, · ] determined by special GKSL representations of L is unique. Moreover,
since (u�j ) is unitary, we have

∑

�≥1

(
L ′

�

)∗
L ′

� =
∑

�,k, j≥1

u�ku�j L∗
k L j =

∑

k, j≥1

⎛

⎝
∑

�≥1

u�ku�j

⎞

⎠ L∗
k L j =

∑

k≥1

L∗
k Lk .

Therefore, putting G = −2−1 ∑
�≥1 L∗

� L� − i H , we can write L in the form (2), where
G is uniquely determined by L up to a purely imaginary multiple of the identity operator.

Theorem 2 can be restated in the index free form ([24] Thm. 30.12).

Theorem 3. Let L be the generator of a norm continuous QMS on B(h), then there exist
an Hilbert space k, a bounded linear operator L : h → h⊗k and a bounded self-adjoint
operator H on h satisfying the following:

1. L(x) = i[H, x] − 1
2 (L∗Lx − 2L∗(x ⊗ 1lk)L + x L∗L) for all x ∈ B(h);

2. the set {(x ⊗ 1lk)Lu : x ∈ B(h), u ∈ h} is total in h ⊗ k.

Proof. Let k be a Hilbert space with Hilbertian dimension equal to the length of the
sequence (Lk)k and let ( fk) be an orthonormal basis of k. Defining Lu = ∑

k Lku ⊗ fk ,
where the Lk are as in Theorem 2, a simple calculation shows that 1 is fulfilled.

Suppose that there exists a non-zero vector ξ orthogonal to the set of (x ⊗ 1lk)Lu
with x ∈ B(h), u ∈ h; then ξ = ∑

k vk ⊗ fk with vk ∈ h and

0 = 〈ξ, (x ⊗ 1lk)Lu〉 =
∑

k

〈vk, x Lku〉 =
∑

k

〈L∗
k x∗vk, u〉
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for all x ∈ B(h), u ∈ h. Hence,
∑

k L∗
k x∗vk = 0. Since ξ �= 0, we can suppose ‖v1‖ = 1;

then, putting p = |v1〉〈v1| and x = py∗, y ∈ B(h), we get

0 = L∗
1 yv1 +

∑

k≥2

〈v1, vk〉L∗
k yv1 =

(
L∗

1 +
∑

k≥2

〈v1, vk〉L∗
k

)
yv1. (7)

Since y ∈ B(h) is arbitrary, Eq. (7) contradicts the linear independence (see Theorem 2
(iii)) of the Lk’s. Therefore the set in (2) must be total. ��

The Hilbert space k is called the multiplicity space of the completely positive part
of L. A unitary matrix (u�j )�, j≥1, in the above basis ( fk)k≥1, clearly defines a unitary
operator on k. From now on we shall identify such matrices with operators on k.

We end this section by establishing the relationship between the operators G, L� and
G ′, L ′

� in two special GKSL representations of L and L′ when these generators are both
bounded.

The dual QMS T ′ clearly satisfies

ρ1/2T ′
t (x)ρ1/2 = T∗t (ρ

1/2xρ1/2),

where T∗ denotes the predual semigroup of T . Since L′ is bounded, differentiating at
t = 0, we find the relationship among the generator L′ of T and L∗ of the predual
semigroup T∗ of T ,

ρ1/2L′(x)ρ1/2 = L∗(ρ1/2xρ1/2). (8)

Proposition 3. Let L(a) = G∗a + aG +
∑

� L∗
�aL� be a special GKSL representation

of L with respect to a T -invariant state ρ = ∑
k ρk |ek〉〈ek |. Then

G∗u =
∑

k≥1

ρkL(|u〉〈ek |)ek − tr(ρG)u, (9)

Gv =
∑

k≥1

ρkL∗(|v〉〈ek |)ek − tr(ρG∗)v (10)

for every u, v ∈ h.

Proof. Since L(|u〉〈v|) = |G∗u〉〈v| + |u〉〈Gv| +
∑

� |L∗
�u〉〈L∗

�v|, putting v = ek we
have G∗u = |G∗u〉〈ek |ek and

G∗u = L(|u〉〈ek |)ek −
∑

�

〈ek, L�ek〉L∗
�u − 〈ek, Gek〉u.

Multiplying both sides by ρk and summing on k, we find then

G∗u =
∑

k≥1

ρkL(|u〉〈ek |)ek −
∑

�,k

ρk〈ek, L�ek〉L∗
�u −

∑

k≥1

ρk〈ek, Gek〉u

=
∑

k≥1

ρkL(|u〉〈ek |)ek −
∑

�

tr(ρL�)L∗
�u − tr(ρG)u

and (9) follows since tr (ρL j ) = 0. The identity (10) is now immediate computing the
adjoint of G. ��
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Proposition 4. Let T ′ be the dual of a QMS T generated by L with normal invariant
state ρ. If G and G ′ are the operators (10) in two GKSL representations of L and L′
then

G ′ρ1/2 = ρ1/2G∗ +
(
tr(ρG) − tr(ρG ′)

)
ρ1/2. (11)

Moreover, we have tr(ρG) − tr(ρG ′) = ic for some c ∈ R.

Proof. The identities (10) and (8) yield

G ′ρ1/2v =
∑

k≥1

L′∗(ρ1/2 |v〉〈ρ1/2
k ek |)ρ1/2

k ek − tr(ρG ′∗)ρ1/2v

=
∑

k≥1

L′∗(ρ1/2(|v〉〈ek |)ρ1/2)ρ1/2ek − tr(ρG ′∗)ρ1/2v

=
∑

k≥1

ρ1/2L(|v〉〈ek |)ρ1/2ρ1/2ek − tr(ρG ′∗)ρ1/2v

= ρ1/2G∗v +
(
tr(ρG) − tr(ρG ′∗)

)
ρ1/2v.

Therefore, we obtain (11). Right multiplying this equation by ρ1/2 we have G ′ρ =
ρ1/2G∗ρ1/2 +

(
tr(ρG) − tr(ρG ′∗)

)
ρ, and, taking the trace,

tr(ρG) − tr(ρG ′∗) = tr(G ′ρ) − tr(ρ1/2G∗ρ1/2)

= tr(G ′ρ) − tr(G∗ρ) = −(tr(ρG) − tr(ρG ′∗));
this proves the last claim. ��

We can now prove as in [11] Th. 7.2, p. 358 the following

Theorem 4. For all special GKSL representations of L by means of operators G, L� as
in (2) there exists a special GKSL representation of L′ by means of operators G ′, L ′

�
such that:

1. G ′ρ1/2 = ρ1/2G∗ + icρ1/2 for some c ∈ R,
2. L ′

� ρ1/2 = ρ1/2L∗
� for all � ≥ 1.

Proof. Since L′ is bounded, it admits a special GKSL representation L′(a) = G ′∗a +∑
k L ′∗

k aL ′
k + aG ′. Moreover, by Proposition 4, we have G ′ρ1/2 = ρ1/2G∗ + icρ1/2,

c ∈ R, and so (8) implies

∑

k

ρ1/2 L ′∗
k x L ′

kρ
1/2 =

∑

k

Lkρ
1/2xρ1/2 L∗

k . (12)

Let k (resp. k′) be the multiplicity space of the completely positive part of L (resp.
L′), ( fk)k (resp. ( f ′

k)k) an orthonormal basis of k (resp. k′) and define a linear operator
X : h ⊗ k′ → h ⊗ k,

X (x ⊗ 1lk′)L ′ρ1/2u = (x ⊗ 1lk)
∑

k

ρ1/2 L∗
ku ⊗ fk
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for all x ∈ B(h) and u ∈ h, where L : h → h⊗k, Lu = ∑
k Lku ⊗ fk , L ′ : h → h⊗k′,

L ′u = ∑
k L ′

ku ⊗ f ′
k . Note that the right-hand side series is convergent for all u ∈ h

because of (12), since
∥∥∥∥∥

n∑

k=m

ρ1/2 L∗
ku ⊗ fk

∥∥∥∥∥

2

=
n∑

k=m

∥∥∥ρ1/2 L∗
ku

∥∥∥
2 =

n∑

k=m

〈
u, LkρL∗

ku
〉
,

and the right-hand side goes to 0 for n, m tending to infinity because ρ is an invariant
state and the series

∑
k LkρL∗

k = −(Gρ + ρG) is trace-norm convergent.
The identity (12) yields

〈X (x ⊗ 1lk′)L ′ρ1/2u, X (y ⊗ 1lk′)L ′ρ1/2v〉 =
∑

k

〈u, ρ1/2 L ′∗
k x∗yL ′

kρ
1/2v〉

= 〈(x ⊗ 1lk′)L ′ρ1/2u, (y ⊗ 1lk′)L ′ρ1/2v〉
for all x, y ∈ B(h) and u, v ∈ h, i.e. X preserves the scalar product. Therefore, since
the set {(x ⊗ 1lk′)L ′ρ1/2u | x ∈ B(h), u ∈ h} is total in h ⊗ k′ (for ρ1/2(h) is dense
in h and Theorem 3 holds), X is well defined and extends to an isometry from h ⊗ k′ to
h ⊗ k.

The operator X is unitary because its range is dense in h ⊗ k. Indeed, if we suppose
that there exists a vector ξ = ∑

k vk ⊗ fk , with vk ∈ h and
∑

k ‖vk‖2 < ∞, orthogonal
to all (x ⊗ 1lk)

∑
k ρ1/2 L∗

ku ⊗ fk ; then

0 = 〈ξ, (x ⊗ 1lk)
∑

k

ρ1/2 L∗
ku ⊗ fk〉 =

∑

k

〈vk, xρ1/2 L∗
ku〉 =

∑

k

〈Lkρ
1/2x∗vk, u〉

for all x ∈ B(h), u ∈ h. Taking x = |w1〉〈w2|, by the arbitrarity of u, we have then∑
k〈w1, vk〉Lkρ

1/2w2 = 0. Since w2 is arbitrary, the range of ρ1/2 is dense in h and
the sequence (〈w1, vk〉)k≥1 is square-summable we find

∑
k〈w1, vk〉Lk = 0. The linear

independence of the Lk , in the sense of Theorem 2 (iii), implies then 〈w1, vk〉 = 0 for
all k and all w1 ∈ h, i.e. ξ = 0.

As a consequence we have X∗ X = 1lh⊗k′ and X X∗ = 1lh⊗k.
Moreover, since X (y ⊗ 1lk′) = (y ⊗ 1lk′)X for all y ∈ B(h), we can conclude that

X = 1lh ⊗ Y for some unitary map Y : k′ → k′.
The definition of X implies then

(ρ1/2 ⊗ 1lk)L∗ = X L ′ρ1/2 = (1lh ⊗ Y )L ′ρ1/2.

This means that, replacing L ′ by (1lh ⊗ Y )L ′, or more precisely L ′
k by

∑
� uk�L ′

� for
all k, we have

ρ1/2 L∗
k = L ′

kρ
1/2.

Since tr (ρL ′
k) = tr (ρL∗

k) = 0 and, from L′(1l) = 0, G ′∗ + G ′ = −∑
k L ′∗

k L ′
k , the

properties of a special GKSL representation follow. ��
Remark 3. Condition 2 implies that the completely positive parts Φ(x) = ∑

� L∗
�x L�

and Φ ′ of the generators L and L′, respectively are mutually adjoint, i.e.

tr(ρ1/2�′(x)ρ1/2 y) = tr(ρ1/2xρ1/2�(y)) (13)

for all x, y ∈ B(h). As a consequence, also the maps x → G∗x + xG and x →
(G ′)∗x + xG ′ are mutually adjoint.



534 F. Fagnola, V. Umanità

4. Generators of Standard Detailed Balance QMSs

In this section we characterise the generators of norm-continuous QMSs satisfying the
SQDB of Definition 2.

We start noting that, since ρ is invariant for T and T ′, i.e. L∗(ρ) = L′∗(ρ) = 0, the
operator K commutes with ρ. Moreover, by comparing two special GKSL representa-
tions of L and L′ + 2i[K , · ], we have immediately the following

Lemma 2. A QMS T satisfies the SQDB L − L′ = 2i[K , · ] if and only if for all special
GKSL representations of the generators L and L′ by means of operators G, Lk and
G ′, L ′

k respectively, we have

G = G ′ + 2i K + ic L ′
k =

∑

j

uk j L j

for some c ∈ R and some unitary (ukj )k j on k.

Since we know the relationship between the operators G ′, L ′
k and G, Lk thanks to

Theorem 4, we can now characterise generators of QMSs satisfying the SQDB. We
emphasize the following definition of T -symmetric matrix (operator) on k in order to
avoid confusion with the usual notion of symmetric operator X meaning that X∗ is an
extension of X .

Definition 4. Let Y = (yk�)k,�≥1 be a matrix with entries indexed by k, � running on the
set (finite or infinite) of indices of the sequence (L�)�≥1. We denote by Y T the transpose
matrix Y T = (y�k)k,�≥1. The matrix Y is called T -symmetric if Y = Y T .

Theorem 5. T satisfies the SQDB if and only if for all special GKSL representation of
the generator L by means of operators G, Lk there exists a T -symmetric unitary (um�)m�

on k such that, for all k ≥ 1,

ρ1/2 L∗
k =

∑

�

uk�L�ρ
1/2. (14)

Proof. Given a special GKSL representation of L, adding a purely imaginary multiple
of the identity operator to the anti-selfadjoint part of G ′ if necessary, Theorem 4 allows
us to write the dual L′ in a special GKSL representation by means of operators G ′, L ′

k
with

G ′ρ1/2 = ρ1/2G∗, L ′
kρ

1/2 = ρ1/2 L∗
k . (15)

Suppose first that T satisfies the SQDB. Since L ′
k = ∑

j uk j L j for some unitary
(ukj )k j by Lemma 2, we can find (14) substituting L ′

k with
∑

j uk j L j in the second
formula (15).

Finally we show that the unitary matrix u = (um�)m� is T -symmetric. Indeed, taking
the adjoint of (14) we find L�ρ

1/2 = ∑
m ū�mρ1/2 L∗

m . Writing ρ1/2 L∗
m as in (14) we

have then

L�ρ
1/2 =

∑

m,k

ū�mumk Lkρ
1/2 =

∑

k

(
(u∗)T u

)

�k
Lkρ

1/2.



Generators of Quantum Markov Semigroups and Detailed Balance 535

The operators L�ρ
1/2 are linearly independent by property (iii) Theorem 2 of a special

GKSL representation, therefore (u∗)T u is the identity operator on k. Since u is also
unitary, we have also u∗u = (u∗)T u, namely u∗ = (u∗)T and u = uT .

Conversely, if (14) holds, by (15), we have L ′
kρ

1/2 = ∑
� uk�L�ρ

1/2, so that L ′
k =∑

� uk�L� for all k and for some unitary (ukj )k j . Therefore, thanks to Lemma 2, to
conclude it is enough to prove that G = G ′ + i(2K + c) namely, that G − G ′ is anti
self-adjoint.

To this end note that, since ρ is an invariant state, we have

0 = ρG∗ +
∑

k

LkρL∗
k + Gρ, (16)

with
∑

k

LkρL∗
k =

∑

k

(Lkρ
1/2)(ρ1/2L∗

k) =
∑

k

∑

�, j

uk�ukjρ
1/2 L∗

� L jρ
1/2

=
∑

�

ρ1/2 L∗
� L�ρ

1/2 = −ρ1/2(G + G∗)ρ1/2,

(for condition (14) holds) and so, by substituting in Eq. (16) we get

0 = ρG∗ − ρ1/2Gρ1/2 − ρ1/2G∗ρ1/2 + Gρ = ρ1/2
(
ρ1/2G∗ − Gρ1/2

)

−
(
ρ1/2G∗ − Gρ1/2

)
ρ1/2 = [Gρ1/2 − ρ1/2G∗, ρ1/2],

i.e. Gρ1/2 − ρ1/2G∗ commutes with ρ1/2.
We can now prove that G − G ′ is anti self-adjoint. Clearly, it suffices to show that

ρ1/2Gρ1/2 − ρ1/2G ′ρ1/2 is anti self-adjoint. Indeed, by (15), we have

(
ρ1/2Gρ1/2 − ρ1/2G ′ρ1/2

)∗ =
(
ρ1/2Gρ1/2 − ρG∗)∗

=
(
ρ1/2

(
Gρ1/2 − ρ1/2G∗))∗

=
((

Gρ1/2 − ρ1/2G∗) ρ1/2
)∗

= ρG∗ − ρ1/2Gρ1/2 = ρ1/2G ′ρ1/2 − ρ1/2Gρ1/2,

because Gρ1/2 − ρ1/2G∗ commutes with ρ1/2. This completes the proof. ��
It is worth noticing that, as in Remark 3, T satisfies the SQDB if and only if the

completely positive part Φ of the generator L is symmetric. This improves our previous
result, Thm. 7.3 [11], where we gave Gρ1/2 = ρ1/2G∗−(2i K + ic) ρ1/2 for some c ∈ R

as an additional condition. Here we showed that it follows from (14) and the invariance
of ρ.

Remark 4. Note that (14) holds for the operators L� of a special GKSL representation
of L if and only if it is true for all special GKSL representations because of the second
part of Theorem 2. Therefore the conclusion of Theorem 5 holds true also if and only if
we can find a single special GKSL representation of L satisfying (14).
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The T -symmetric unitary (um�)m� is determined by the L�’s because they are linearly
independent. We shall now exploit this fact to give a more geometrical characterisation
of SQDB.

When the SQDB holds, the matrices (bkj )k, j≥1 and (ck j )k, j≥1 with

bkj = tr
(
ρ1/2 L∗

kρ
1/2 L∗

j

)
, and ck j = tr

(
ρL∗

k L j
)

(17)

define two trace class operators B and C on k by Lemma 3 (see the Appendix); B is
T -symmetric and C is self-adjoint. Moreover, it admits a self-adjoint inverse C−1

because ρ is faithful. When k is infinite dimensional, C−1 is unbounded and its domain
coincides with the range of C .

We can now give the following characterisation of QMS satisfying the SQDB con-
dition which is more direct because the unitary (uk�)k� in Theorem 5 is explicitly given
by C−1 B.

Theorem 6. T satisfies the SQDB if and only if the operators G, Lk of a special GKSL
representation of the generator L satisfy the following conditions:

(i) the closed linear span of
{
ρ1/2 L∗

� | � ≥ 1
}

and
{

L�ρ
1/2 | � ≥ 1

}
in the Hilbert

space of Hilbert-Schmidt operators on h coincide,
(ii) the trace-class operators B, C defined by (17) satisfy C B = BCT and C−1 B is

unitary T -symmetric.

Proof. If T satisfies the SQDB then, by Theorem 5, the identity (14) holds. The series
in the right-hand side of (14) is convergent with respect to the Hilbert-Schmidt norm
because

∥∥∥∥∥∥

∑

m+1≤�≤n

uk�L�ρ
1/2

∥∥∥∥∥∥

2

H S

=
∑

m+1≤�,�′≤n

ūk�′uk�tr
(
ρL∗

�′ L�

)

≤ 1

2

∑

m+1≤�,�′≤n

|uk�′ |2 |uk�|2 +
1

2

∑

m+1≤�,�′≤n

|c�′�|2

≤ 1

2

⎛

⎝
∑

m+1≤�≤n

|uk�|2
⎞

⎠
2

+
1

2

∑

m+1≤�,�′≤n

|c�′�|2,

and the right-hand side vanishes as n, m go to infinity because the operator C is trace-
class by Lemma 3 and the columns of U = (uk�)k� are unit vectors in k by unitarity.

Left multiplying both sides of (14) by ρ1/2 L∗
j and taking the trace we find B = CU T

= CU . It follows that the range of the operators B, CU and C coincide and C−1 B = U
is everywhere defined, unitary and T -symmetric because U is T -symmetric. Moreover,
since B is T -symmetric by the cyclic property of the trace, we have also

BCT = CU T CT = C(CU )T = C BT = C B.

Conversely, we show that (i) and (ii) imply the SQDB. To this end notice that, by
the spectral theorem we can find a unitary linear transformation V = (vmn)m,n≥1 on
k such that V ∗CV is diagonal. Therefore, choosing a new GKSL representation of the
generator L by means of the operators L ′′

k = ∑
n≥1 vnk Ln , if necessary, we can suppose
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that both (L�ρ
1/2)�≥1 and (ρ1/2 L∗

k)k≥1 are orthogonal bases of the same closed linear
space. Note that

tr(ρ1/2(L ′′)∗kρ1/2(L ′′)∗j ) =
∑

m,n≥1

v̄nk v̄mj tr(ρ
1/2 L∗

nρ1/2 L∗
m)

and the operator B, after this change of GKSL representation, becomes V ∗ B(V ∗)T

which is also T -symmetric.
Writing the expansion of ρ1/2 L∗

k with respect to the orthogonal basis (L�ρ
1/2)�≥1,

for all k ≥ 1 we have

ρ1/2 L∗
k =

∑

�≥1

tr(ρ1/2L∗
�ρ

1/2 L∗
k)

‖L�ρ1/2‖2
H S

L� ρ1/2. (18)

In this way we find a matrix Y of complex numbers yk� such thatρ1/2 L∗
k = ∑

� yk�L�ρ
1/2

and the series is Hilbert-Schmidt norm convergent. Clearly, since C is diagonal and B
is T -symmetric, yk� = (BC−1)k� = ((B(C−1)T )k� = ((C−1 B)T )k�. It follows from
(ii) that Y coincides with the unitary operator (C−1 B)T and (14) holds. Moreover, Y is
symmetric because

y�k = (BC−1)�k = ((B(C−1)T )�k = (C−1 B)k� = yk�.

This completes the proof. ��
Formula (18) has the following consequence.

Corollary 1. Suppose that a QMS T satisfies the SQDB condition. For every special
GKSL representation of L with operators L�ρ

1/2 that are orthogonal in the Hilbert
space of Hilbert-Schmidt operators on h if tr (ρ1/2 L∗

�ρ
1/2 L∗

k) �= 0 for a pair of indices
k, � ≥ 1, then tr(ρL∗

� L�) = tr(ρL∗
k Lk).

Proof. It suffices to note that the matrix (uk�) with entries

uk� = tr(ρ1/2 L∗
�ρ

1/2 L∗
k)

‖L�ρ1/2‖2
H S

= tr(ρ1/2 L∗
�ρ

1/2 L∗
k)

tr(ρL∗
� L�)

must be T -symmetric. ��
Remark 5. The matrix C can be viewed as the covariance matrix of the zero-mean (recall
that tr (ρL�) = 0) “random variables” { L� | � ≥ 1 } and in a similar way, B can be
viewed as a sort of mixed covariance matrix between the previous random variable and
the adjoint { L∗

� | � ≥ 1 }. Thus the SQDB condition holds when the random variables
L� right multiplied by ρ1/2 and the adjoint variables L∗

� left multiplied by ρ1/2 generate
the same subspace of Hilbert-Schmidt operators and the mixed covariance matrix B is
a left unitary transformation of the covariance matrix C .

If we consider a special GKSL representation of L with operators L�ρ
1/2 that are

orthogonal, then, by Corollary 1 and the identity ‖L�ρ
1/2‖H S = ‖Lkρ

1/2‖H S , the uni-
tary matrix U can be written as C−1/2 BC−1/2. This, although not positive definite, can
be interpreted as a correlation coefficient matrix of { L� | � ≥ 1 } and { L∗

� | � ≥ 1 }.
The characterisation of generators of symmetric QMSs with respect to the s = 1/2

scalar product follows along the same lines.
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Theorem 7. A norm-continuous QMS T is symmetric if and only if there exists a special
GKSL representation of the generator L by means of operators G, L� such that

(1) Gρ1/2 = ρ1/2G∗ + icρ1/2 for some c ∈ R,
(2) ρ1/2 L∗

k = ∑
� uk�L�ρ

1/2, for all k, for some unitary (uk�)k� on k which is also
T -symmetric.

Proof. Choose a special GKSL representation of L by means of operators G, Lk . The-
orem 4 allows us to write the symmetric dual L′ in a special GKSL representation by
means of operators G ′, L ′

k as in (15).
Suppose first that T is KMS-symmetric. Comparing the special GKSL representa-

tions of L and L′, by Theorem 2 we find

G = G ′ + ic, L ′
k =

∑

j

uk j L j ,

for some unitary matrix (ukj ) and some c ∈ R. This, together with (15) implies that
conditions (1) and (2) hold.

Assume now that conditions (1) and (2) hold. Taking the adjoint of (2) we find imme-
diately Lkρ

1/2 = ∑
k uk�ρ

1/2 L∗
� . Then a straightforward computation, by the unitarity

of the matrix (uk�), yields

L∗(ρ1/2xρ1/2) = Gρ1/2xρ1/2 +
∑

k

Lkρ
1/2xρ1/2 L∗

k + ρ1/2xρ1/2G∗

= ρ1/2G∗xρ1/2 +
∑

� k j

uk� ukj ρ1/2 L∗
k x L jρ

1/2 + ρ1/2xGρ1/2

= ρ1/2L(x)ρ1/2

for all x ∈ B(h). Iterating we find Ln∗(ρ1/2xρ1/2) = ρ1/2Ln(x)ρ1/2 for all n ≥ 0,
therefore, exponentiating, we find T∗t (ρ

1/2xρ1/2) = ρ1/2Tt (x)ρ1/2 for all t ≥ 0. This,
together with (3), implies that T is KMS-symmetric. ��
Remark 6. Note that condition (2) in Theorem 7 implies that the completely positive
part of L is KMS-symmetric. This makes a parallel with Theorem 4, where condition
(2) implies that the completely positive parts of the generators L and L′ are mutually
adjoint.

The above theorem simplifies a previous result by Park ([23], Thm 2.2) where con-
ditions (1) and (2) appear in a much more complicated way.

5. Generators of Standard Detailed Balance (with Time Reversal) QMSs

We shall now study generators of semigroups satisfying the SQDB-θ introduced in Def-
inition 3 involving the time reversal operation. In this section, we always assume that
the invariant state ρ and the anti-unitary time reversal θ commute.

The relationship between the QMS satisfying the SQDB-θ , its dual and their gener-
ators is clarified by the following
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Proposition 5. A QMS T satisfies the SQDB-θ if and only if the dual semigroup T ′
is given by

T ′
t (x) = θTt (θxθ)θ for all x ∈ B(h). (19)

In particular, if T is norm-continuous, then T ′ is also norm-continuous. Moreover, in
this case T ′ is generated by

L′(x) = θL(θxθ)θ, x ∈ B(h). (20)

Proof. Suppose that T satisfies the SQDB-θ and put σ(x) = θxθ . Taking t = 0 Eq. (6)
reduces to tr(ρ1/2xρ1/2 y) = tr(ρ1/2 σ(y∗)ρ1/2σ(x∗)) for all x, y ∈ B(h), so that

tr(ρ1/2xρ1/2Tt (y)) = tr(ρ1/2 σ(y∗)ρ1/2Tt (σ (x∗)))
= tr(ρ1/2 σ(Tt (σ (x∗))∗ρ1/2σ(σ(y∗)∗))
= tr(ρ1/2 σ(Tt (σ (x)))ρ1/2 y)

for every x, y ∈ B(h) and (19) follows. Therefore, if T is norm continuous,
T ′

t = (σ ◦ Tt ◦ σ)t is also.
Conversely, if (19) holds, the commutation between ρ and θ implies

tr(ρ1/2T ′
t (x)ρ1/2 y) = tr

(
ρ1/2θTt (θxθ)θρ1/2 y

)

= tr
(
θ

(
ρ1/2Tt (θxθ)θρ1/2 yθ

)
θ
)

= tr
(
ρ1/2θy∗ρ1/2θTt (θx∗θ)

)

and (19) is proved. Now (20) follows from (19) differentiating at t = 0. ��
We can now describe the relationship between special GKSL representations of L

and L′.

Proposition 6. If T satisfies the SQDB-θ then, for every special GKSL representation
of L by means of operators H, Lk, the operators H ′ = −θ Hθ and L ′

k = θ Lkθ yield a
special GKSL representation of L′.

Proof. Consider a special GKSL representation of L by means of operators H , Lk . Since
L′(a) = θL(θaθ)θ by Proposition 5, from the antilinearity of θ and θ2 = 1l we get

θL′(a) θ = i[H, θaθ ] − 1

2

∑

k

(
L∗

k Lkθaθ − 2L∗
kθaθ Lk + θaθ L∗

k Lk
)

= iθ (θ Hθa − aθ Hθ) θ +
∑

k

θ
(
(θ L∗

kθ)a(θ Lkθ)
)
θ

−1

2

∑

k

θ
(
(θ L∗

kθ)(θ Lkθ)a + a(θ L∗
kθ)(θ Lkθ)

)
θ

= θ (−i[θ Hθ, a] ) θ − 1

2

∑

k

θ
(
L ′∗

k L ′
ka − 2L ′∗

k aL ′
k + aL ′∗

k L ′
k

)
θ,

where L ′
k := θ Lkθ . Therefore, putting H ′ = −θ Hθ , we find a GKSL representation of

L′ which is also special because tr(ρL ′
k) = tr(θρLkθ) = tr(L∗

kρ) = tr(ρLk) = 0.
��
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The structure of generators of QMSs satisfying the SQDB-θ is described by the
following

Theorem 8. A QMS T satisfies the SQDB-θ condition if and only if there exists a special
GKSL representation of L, with operators G, L�, such that:

1. ρ1/2θG∗θ = Gρ1/2,
2. ρ1/2θ L∗

kθ = ∑
j uk j L jρ

1/2 for a self-adjoint unitary (ukj )k j on k.

Proof. Suppose that T satisfies the SQDB-θ condition and consider a special GKSL rep-
resentation of the generator L with operators G, Lk . The operators −θ Hθ and θ Lkθ give
then a special GKSL representation of L′ by Proposition 6. Moreover, by Theorem 4, we
have another special GKSL representation of L′ by means of operators G ′, L ′

k such that
G ′ρ1/2 = ρ1/2G∗+icρ1/2 for some c ∈ R, and L ′

kρ
1/2 = ρ1/2 L∗

k . Therefore there exists
a unitary (vk j )k j on k such that L ′

k = ∑
j vk jθ L jθ , and ρ1/2 L∗

k = ∑
j vk jθ L jθρ

1/2.
Condition 2 follows then with ukj = v̄k j left and right multiplying by the antiunitary θ .

In order to find condition 1, first notice that by the unitarity of (vk j )k j ,
∑

k

L ′∗
k L ′

k =
∑

k

θ L∗
k Lkθ. (21)

Now, by the uniqueness of G ′ up to a purely imaginary multiple of the identity in a
special GKSL representation, H ′ = (G ′∗ − G ′)/(2i) is equal to −θ Hθ + c1 for some
c1 ∈ R. From (21) and G ′ρ1/2 = ρ1/2G∗ + icρ1/2 we obtain then

ρ1/2G∗ + icρ1/2 = G ′ρ1/2 = −i H ′ρ1/2 − 1

2

∑

k

L ′∗
k L ′

kρ
1/2

= iθ Hθρ1/2 + ic1ρ
1/2 − 1

2

∑

k

θ L∗
k Lkθρ

1/2

= θGθρ1/2 + ic1ρ
1/2.

It follows that ρ1/2θG∗θ = Gρ1/2 + ic2ρ
1/2 for some c2 ∈ R. Left multiplying by ρ1/2

and tracing we find

ic2 = tr
(
θρG∗θ

) − tr(ρG) = tr(Gρ) − tr(ρG) = 0

and condition 1 holds.
Finally we show that the square of the unitary (ukj )k j on k is the identity operator.

Indeed, taking the adjoint of the identity ρ1/2θ L∗
kθ = ∑

j uk j L jρ
1/2, we have

θ Lkθρ
1/2 =

∑

j

ūk jρ
1/2 L∗

j .

Left and right multiplying by the antilinear time reversal θ (commuting with ρ) we find

Lkρ
1/2 =

∑

j

θ ūk jρ
1/2 L∗

jθ =
∑

j

uk jρ
1/2θ L∗

jθ.

Writing ρ1/2θ L∗
jθ as

∑
m u jm Lmρ1/2 by condition 2 we have then

Lkρ
1/2 =

∑

j,m

ukj u jm Lmρ1/2 =
∑

m

(u2)km Lmρ1/2
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which implies that u2 = 1l by the linear independence of the Lmρ1/2. Therefore, since
u is unitary, u = u∗.

Conversely, if 1 and 2 hold, we can write ρ1/2θL(θxθ)θρ1/2 as

ρ1/2θG∗θxρ1/2 +
∑

k

ρ1/2θ L∗
kθxθ Lkθρ

1/2 + ρ1/2xθGθρ1/2

= Gρ1/2xρ1/2 +
∑

j

L jρ
1/2xρ1/2 L∗

j + ρ1/2xρ1/2G∗.

This, by Theorem 4, can be written as

ρ1/2(G ′)∗xρ1/2 +
∑

j

ρ1/2(L ′
j )

∗x L ′
jρ

1/2 + ρ1/2xG ′ρ1/2 = ρ1/2L′(x)ρ1/2.

It follows that θL(θxθ)θ = L′(x) for all x ∈ B(h) because ρ is faithful. Moreover,
it is easy to check by induction that θLn(θxθ)θ = (L′)n(x) for all n ≥ 0. Therefore
θTt (θxθ)θ = T ′

t (x) for all t ≥ 0 and T satisfies the SQDB-θ condition by Proposition 5.
��

We now provide a geometrical characterisation of the SQDB-θ condition as in The-
orem 6. To this end we introduce the trace class operator R on k

R jk = tr
(
ρ1/2 L∗

jρ
1/2θ L∗

kθ
)

. (22)

A direct application of Lemma 3 shows that R is trace class. Moreover it is self-adjoint
because, by the property tr(θxθ) = tr(x∗) of the antilinear time reversal, we have

R jk = tr
(
ρ1/2 L∗

jρ
1/2θ L∗

kθ
)

= tr
(
θ(Lkθρ

1/2 L jρ
1/2θ)θ

)

= tr
(
ρ1/2θ L∗

jρ
1/2θ L∗

k

)

= tr
(
(ρ1/2θ L∗

jθ)(ρ1/2L∗
k)

)
= Rkj .

Theorem 9. T satisfies the SQDB-θ if and only if the operators G, Lk of a special GKSL
representation of the generator L fulfill the following conditions:

1. ρ1/2θG∗θ = Gρ1/2,
2. the closed linear span of

{
ρ1/2θ L∗

�θ | � ≥ 1
}

and
{

L�ρ
1/2 | � ≥ 1

}
in the Hilbert

space of Hilbert-Schmidt operators on h coincide,
3. the self-adjoint trace class operators R, C defined by (17) and (22) commute and

C−1 R is unitary and self-adjoint.

Proof. It suffices to show that conditions 2 and 3 above are equivalent to condition 2 of
Theorem 8.

If T satisfies the SQBD-θ , then it can be shown as in the proof of Theorem 6 that
2 follows from condition 2 of Theorem 8. Moreover, left multiplying by ρ1/2 L∗

� the
identity ρ1/2θ L∗

kθ = ∑
j uk j L jρ

1/2 and tracing, we find

tr
(
ρ1/2 L∗

�ρ
1/2θ L∗

kθ
)

=
∑

j

uk j tr
(
ρL∗

� L j
)
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for all k, �, i.e. R = CU T . The operator U T is also self-adjoint and unitary. Therefore
R and C have the same range and, since the domain of C−1 coincides with the range of
C , the operator C−1 R is everywhere defined, unitary and self-adjoint. It follows that the
densely defined operator RC−1 is a restriction of (C−1 R)∗ = C−1 R and C R = RC .

In order to prove, conversely, that 2 and 3 imply condition 2 of Theorem 8, we first
notice that, by the spectral theorem there exists a unitary V = (vmn)m,n≥1 on the multi-
plicity space k such that V ∗CV is diagonal. Choosing a new GKSL representation of the
generator L by means of the operators L ′′

k = ∑
n≥1 vnk Ln , if necessary, we can suppose

that both (L�ρ
1/2)�≥1 and (ρ1/2 L∗

k)k≥1 are orthogonal bases of the same closed linear
space. Note that

tr
(
ρ1/2(L ′′)∗kρ1/2θ(L ′′)∗jθ

)
=

∑

m,n≥1

v̄nkvmj tr(ρ
1/2 L∗

nρ1/2θ L∗
mθ)

and the operator R, in the new GKSL representation, transforms into V ∗ RV which is
also self-adjoint.

Expanding ρ1/2θ L∗
kθ with respect to the orthogonal basis (L�ρ

1/2)�≥1, for all k ≥ 1,
we have

ρ1/2θ L∗
kθ =

∑

�≥1

tr(ρ1/2 L∗
�ρ

1/2θ L∗
kθ)

‖L�ρ1/2‖2
H S

L� ρ1/2, (23)

i.e. ρ1/2θ L∗
kθ = ∑

� yk�L�ρ
1/2 with a unitary matrix Y of complex numbers yk�.

Clearly, we have yk� = (C−1 R)�k . It follows then from condition 3 above that Y coin-
cides with the unitary operator (C−1 R)T and condition 2 of Theorem 8 holds. Moreover,
Y is self-adjoint because both R and C are. ��

As an immediate consequence of the commutation of R and C we have the following
parallel of Corollary 1 for the SQDB condition

Corollary 2. Suppose that a QMS T satisfies the SQDB-θ condition. For every special
GKSL representation of L with operators L�ρ

1/2 orthogonal as Hilbert-Schmidt oper-
ators on h if tr(ρ1/2 L∗

�ρ
1/2θ L∗

kθ) �= 0 for a pair of indices k, � ≥ 1, then tr(ρL∗
� L�) =

tr(ρL∗
k Lk).

When the time reversal θ is given by the conjugation θu = ū (with respect to some
orthonormal basis of h), θx∗θ is equal to the transpose xT of x and we find the following

Corollary 3. T satisfies the SQDB-θ condition if and only if there exists a special GKSL
representation of L, with operators G, Lk, such that:

1. ρ1/2GT = Gρ1/2;
2. ρ1/2 LT

k = ∑
j uk j L jρ

1/2 for some unitary self-adjoint (ukj )k j .

6. SQDB-θ for QMS on M2(C)

In this section, as an application, we find a standard form of a special GKSL represen-
tation of the generator L of a QMS on M2(C) satisfying the SQDB-θ .

The faithful invariant state ρ, in a suitable basis of C
2, can be written in the form

ρ =
(

ν 0
0 1 − ν

)
= 1

2
(σ0 + (2ν − 1)σ3) , 0 < ν < 1,
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where σ0 is the identity matrix and σ1, σ2, σ3 are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The time reversal θ is the usual conjugation in the same basis of C
2.

In order to determine the structure of the operators G and Lk satisfying conditions
of Corollary 3 we find first a convenient basis of M2(C). We choose then a basis of
eigenvectors of the linear map X → ρ1/2 X T ρ−1/2 in M2(C) given by σ0, σ

ν
1 , σ ν

2 , σ3,
where

σν
1 =

(
0

√
2ν√

2(1 − ν) 0

)
, σ ν

2 =
(

0 −i
√

2ν

i
√

2(1 − ν) 0

)
.

Indeed, σ0, σ
ν
1 , σ3 (resp. σν

2 ) are eigenvectors of the eigenvalue 1 (resp. −1).
Every special GKSL representation of L is given by (see [11], Lemma 6.1)

Lk = −(2ν − 1)zk3σ0 + zk1σ
ν
1 + zk2σ

ν
2 + zk3σ3, k ∈ J ⊆ {1, 2, 3}

with vectors zk := (zk1, zk2, zk3) (k ∈ J ) linearly independent in C
3.

The SQDB-θ holds if and only if G, Lk satisfy

(i) G = ρ1/2GT ρ−1/2,
(ii) Lk = ∑

j∈J ukjρ
1/2 LT

j ρ−1/2 for some unitary self-adjoint U = (ukj )k, j∈J .

Now, if J �= ∅, since every unitary self-adjoint matrix is diagonalizable and its spec-
trum is contained in {−1, 1}, it follows that U = W ∗ DW for some unitary matrix
W = (wi j )i, j∈J and some diagonal matrix D of the form

diag(ε1, . . . , ε|J |), εi ∈ {−1, 1}, (24)

where |J | denotes the cardinality of J . Therefore, replacing the Lk’s by operators
L ′

k := ∑
j∈J wk j L j if necessary, we can take U of the form (24).

We now analyze the structure of Lk’s corresponding to the different (diagonal) forms
of U . By condition (i i) we have either Lk = ρ1/2 LT

k ρ−1/2 or Lk = −ρ1/2 LT
k ρ−1/2; an

easy calculation shows that

Lk = ρ1/2 LT
k ρ−1/2 if and only if zk2 = 0 (25)

and

Lk = −ρ1/2 LT
k ρ−1/2 if and only if zk1 = zk3 = 0. (26)

Therefore, the linear independence of {z j : j ∈ J } forces U to have at most two eigen-
values equal to 1 and at most one equal to −1 and, with a suitable choice of a phase
factor for each Lk , we can write

Lk = (1 − 2ν)rkσ0 + rkσ3 + ζkσ
ν
1 for k = 1, 2 and rk ∈ R, ζk ∈ C (27)

L3 = r3σ
ν
2 , r3 ∈ R. (28)

Clearly L1 and L2 are linearly independent if and only if r1ζ2 �= r2ζ1. This, together
with non triviality conditions leaves us, up to a change of indices, with the following
possibilities:
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(a) |J | = 1, U = 1 then J = {1} with r1ζ1 �= 0,
(b) |J | = 1, U = −1 then J = {3} with r3 �= 0,
(c) |J | = 2, U = diag(1, 1) then J = {1, 2} with r1ζ1r2ζ2 �= 0, r1ζ2 �= r2ζ1,
(d) |J | = 2, U = diag(1,−1) then J = {1, 3}, with r3 �= 0, r1ζ1 �= 0,
(e) |J | = 3, U = diag(1, 1,−1) then J = {1, 2, 3} with r1ζ2 �= r2ζ1, r3 �= 0,

r1ζ1r2ζ2 �= 0.

To conclude, we analyze condition (i). If G = (
g jk

)
1≤ j,k≤2 then statement (i) is

equivalent to

√
ν g21 = √

1 − ν g12. (29)

Since G = −i H −2−1 ∑
k L∗

k Lk with H = ∑3
j=1 v jσ j , v j ∈ R, and

∑
k L∗

k Lk is equal
to the sum of a term depending only on σ0 and σ3 plus

∑

k=1,2

2rk

(
0 ζk

√
2ν(1 − ν) − ζ̄kν

√
2(1 − ν)

ζ̄k
√

2ν(1 − ν) − ζkν
√

2(1 − ν) 0

)
,

in the case J �= ∅ the identity (29) holds if and only if
{

v1
(√

1 − ν − √
ν
) = −√

2ν(1 − ν)
(√

1 − ν +
√

ν
)2 ∑2

k=1 rkIζk

v2
(√

1 − ν +
√

ν
) = −√

2ν(1 − ν)
(√

1 − ν − √
ν
)2 ∑2

k=1 rkRζk
. (30)

On the other hand, when J = ∅, condition (29) is equivalent to
√

ν(v1 + iv2) =√
1 − ν(v1 − iv2), i.e.

v1

(√
1 − ν − √

ν
)

= 0, v2 = 0, (31)

Therefore we have the following possible standard forms for L.

Theorem 10. Let L1, L2, L3 be as in (27), (28), H = ∑3
j=1 v jσ j with v1, v2 as in

(30) and v3 ∈ R. The QMS T satisfies the SQDB-θ if and only if there exists a special
GKSL representation of L given, up to phase factors multiplying L1, L2, L3, in one of
the following ways:

(o) H with v1 = v2 = 0 if ν �= 1/2, and v1 ∈ R, v2 = 0 if ν = 1/2,
(a) H, L1 with r1ζ1 �= 0,
(b) H, L3 with r3 �= 0,
(c) H, L1, L2 with r1ζ1r2ζ2 �= 0 and r1ζ2 �= r2ζ1,
(d) H, L1, L3 with r3 �= 0 and r1ζ1 �= 0,
(e) H, L1, L2, L3 with r1ζ2 �= r2ζ1, r1ζ1r2ζ2 �= 0 and r3 �= 0.

Roughly speaking, the standard form of L corresponds, up to degeneracies when
some of the parameter vanish or when some linear dependence arises, to the case e).

We know that a QMS satisfying the usual (i.e. with pre-scalar product with s = 0)
QDB-θ condition must commute with the modular group. Moreover, when this happens,
the SQDB-θ and QDB-θ conditions are equivalent (see e.g. [6,11]).

We finally show how the generators of a QMSs on M2(C) satisfying the usual QDB-θ
condition can be recovered by a special choice of the parameters r1, r2, r3, ζ1, ζ2 in
Theorem 10 describing the generator of a QMS satisfying the SQDB-θ condition.
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To this end, we recall that T fulfills the QDB-θ when tr (ρxTt (y)) = tr (ρθy∗θTt
(θx∗θ)) for all x, y ∈ B(h). In [11] we classified generators of QMS on M2(C) satisfy-
ing the QDB condition without time reversal (i.e., formally, replacing θ by the identity
operator, that is, of course, not antiunitary). The same type of arguments show that, dis-
regarding trivialisations that may occur when some of the parameters below vanishes,
QMSs on M2(C) satisfying the QDB-θ condition have the following standard form

L(x) = i[H, x] − |η |2
2

(
L2x − 2Lx L + x L2

)

−|λ |2
2

(
σ−σ +x − 2σ−xσ + + xσ−σ +) − |μ |2

2

(
σ +σ−x − 2σ +xσ− + xσ +σ−)

, (32)

where H = h0σ0 + h3σ3 (h0, h3 ∈ R), L = −(2ν − 1)σ0 + σ3, σ± = (σ1 ± iσ2)/2
and, changing phases if necessary, λ,μ, η can be chosen as non-negative real numbers
satisfying

λ2(1 − ν) = νμ2. (33)

Choosing r1 = η, ζ1 = 0 we find immediately that the operator L in (32) coincides
with the operator L1 in (27). Moreover, choosing r2 = 0 we find v2 = 0 and also v1 = 0
for ν �= 1/2. A straightforward computation yields

(
λ σ+
μσ−

)
=

(
λ/(2ζ2

√
2ν) iλ/(2r3

√
2ν)

μ/(2ζ2
√

2(1 − ν)) −iμ/(2r3
√

2(1 − ν))

)(
L2
L3

)

and the above 2×2 matrix is unitary if we choose ζ2 = λ/(2
√

ν), r3 = iμ/(2
√

1 − ν)) =
iζ2 because of (33) and changing the phase of r3 in order to find a unitary that is also
self-adjoint.

This shows that we can recover the standard form (32) choosing H , L1, L2, L3 as in
Theorem 10 e) with r1 = η, ζ1 = 0, r2 = 0, ζ2 = λ/(2

√
ν), r3 = iμ/(2

√
1 − ν)), v1 =

v2 = 0.

Appendix

We denote by �2(J ) the Hilbert space of complex-valued, square summable sequences
indexed by a finite or countable set J .

Lemma 3. Let J be a complex separable Hilbert space and let (ξ j ) j∈J , (η j ) j∈J be two

Hilbertian bases of J satisfying
∑

j∈J

∥∥ξ j
∥∥2

< ∞,
∑

j∈J

∥∥η j
∥∥2

< ∞. The complex
matrices A = (a jk) j,k∈J , B = (b jk) j,k∈J , C = (c jk) j,k∈J given by

a jk = 〈ξ j , ξk〉, b jk = 〈ξ j , ηk〉, c jk = 〈η j , ηk〉
define trace class operators on �2(J ) satisfying B∗ A−1 B = C. Moreover A and C are
self-adjoint and positive.

Proof. Note that
∑

j,k≥1

∣∣b jk
∣∣2 ≤

∑

j,k≥1

∥∥ξ j
∥∥2 · ‖ηk‖2 =

∑

j

∥∥ξ j
∥∥2 ·

∑

k

‖ηk‖2 < ∞.

Therefore B defines a Hilbert-Schmidt operator on �2(J ).
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In a similar way A and C define Hilbert-Schmidt operators on �2(J ) that are obvi-
ously self-adjoint. These are also positive because for any sequence (zm)m∈J of complex
numbers with zm �= 0 for a finite number of indices m at most we have

∑

m,n∈J

z̄mamnzn =
∑

m,n∈J

z̄m 〈ξm, ξn〉 zn =
∥∥∥∥∥
∑

m∈J

zmξm

∥∥∥∥∥

2

≥ 0.

Moreover, they are trace class because
∑

j∈J

a j j =
∑

j∈J

∥∥ξ j
∥∥2

< ∞,
∑

j∈J

c j j =
∑

j∈J

∥∥η j
∥∥2

< ∞.

Finally, we show that B is also trace class. By the spectral theorem, we can find a unitary
V = (vk j )k, j∈J on �2(J ) such that V ∗ AV is diagonal. The series

∑
m∈J vmjξm is norm

convergent because

∥∥∥∥∥
∑

m

vmjξm

∥∥∥∥∥

2

=
∑

m,n∈J

v̄nj anmvmj = (V ∗ AV ) j j .

The series
∑

m∈J vmjξm is norm convergent as well for a similar reason. Therefore,
putting ξ ′

j = ∑
m∈J vmjξm and η′

j = ∑
m∈J vmjηm we find immediately (V ∗ AV )k j =

〈ξ ′
k, ξ

′
j 〉 = 0 for j �= k, (V ∗ AV ) j j =

∥∥∥ξ ′
j

∥∥∥
2

and

(V ∗ BV )k j =
∑

m,n

v̄mkvnj 〈ξm, η j 〉 = 〈ξ ′
k, η

′
j 〉,

(V ∗CV )k j =
∑

m,n

v̄mkvnj 〈ηm, η j 〉 = 〈η′
k, η

′
j 〉.

As a consequence, the following identity
(

V ∗ B∗ A−1 BV
)

k j
=

(
(V ∗B∗V )(V ∗ AV )−1(V ∗ BV )

)

k j

=
∑

m∈J

(V ∗ B∗V )km
(
(V ∗ AV )mm

)−1
(V ∗BV )mj

=
∑

m∈J

〈
η′

k,
ξ ′

m

‖ξ ′
m‖

〉 〈
ξ ′

m

‖ξ ′
m‖ , η′

j

〉

= 〈η′
k, η

′
j 〉 = (V ∗CV )k j

holds because (ξ ′
m/‖ξ ′

m‖)m∈J is an orthonormal basis of J .
This proves that V ∗ B∗ A−1 BV = V ∗CV i.e. B∗ A−1 B = C . It follows that |A−1/2

B| = C1/2 is Hilbert-Schmidt as well as A−1/2 B and B = A1/2(A−1/2 B) is trace class
being the product of two Hilbert-Schmidt operators. ��
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