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Abstract: Using a technique of wheeled props we establish a correspondence
between the homotopy theory of unimodular Lie 1-bialgebras and the famous
Batalin-Vilkovisky formalism. Solutions of the so-called quantum master equation sat-
isfying certain boundary conditions are proven to be in 1-1 correspondence with rep-
resentations of a wheeled dg prop which, on the one hand, is isomorphic to the cobar
construction of the prop of unimodular Lie 1-bialgebras and, on the other hand, is quasi-
isomorphic to the dg wheeled prop of unimodular Poisson structures. These results allow
us to apply properadic methods for computing formulae for a homotopy transfer of a
unimodular Lie 1-bialgebra structure on an arbitrary complex to the associated quantum
master function on its cohomology. It is proven that in the category of quantum BV
manifolds associated with the homotopy theory of unimodular Lie 1-bialgebras quasi-
isomorphisms are equivalence relations.

It is shown that Losev-Mnev’s BF theory for unimodular Lie algebras can be
naturally extended to the case of unimodular Lie 1-bialgebras (and, eventually, to the case
of unimodular Poisson structures). Using a finite-dimensional version of the
Batalin-Vilkovisky quantization formalism it is rigorously proven that the Feynman
integrals computing the effective action of this new BF theory describe precisely homot-
opy transfer formulae obtained within the wheeled properadic approach to the quantum
master equation. Quantum corrections (which are present in our BF model to all orders
of the Planck constant) correspond precisely to what are often called “higher Massey
products” in the homological algebra.
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1. Introduction

The theory of operads and props has grown nowadays from a useful technical tool into
a kind of universal mathematical language with the help of which topologists, algebra-
ists, homotopy theorists and geometers can fruitfully communicate with each other. For
example, one and the same operad of little 2-disks (i) solves the recognition problem for
based 2-loop spaces in algebraic topology, (ii) describes homotopy Gerstenhaber struc-
ture on the Hochschild deformation complex in homological algebra, and (iii) controls
diffeomorphism invariant Hertling-Manin integrability equations [HeMa] in differential
geometry. It is yet to see whether or not basic concepts and constructions of theoretical
physics can be understood and developed in the framework of operads and props, but
the fact that space-time, “the background of everything”, can be turned into an ordinary
observable — a certain function (representation) on a prop — is rather intriguing.

This paper attempts to tell a story of the famous theoretical physics quantum master
equation,

��� +
1

2
{�,�} = 0, (1)

in the language of wheeled prop(erad)s. It is shown that an important class of its solu-
tions (specified by certain boundary conditions in the quasi-classical limit) is controlled
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by a surprisingly simple wheeled prop of unimodular Lie 1-bialgebras and hence can
be understood as a class of strongly homotopy algebras. It is proven that the homotopy
classification of this class of quantum master functions is as simple as, for example,
the homotopy classification of strongly homotopy Lie algebras given in [Ko]. These
results allow us to compare the standard Feynman technique of producing new quantum
master functions (called often in physics literature “effective actions”) by integrating the
original ones along certain Lagrangian submanifolds with the purely properadic homoto-
py transfer method which uses Koszul duality theory, and conclude (in a mathematically
rigorous way) that they are identical to each other.

Here is a detailed description of paper’s content. Section 2 gives a self-contained intro-
duction into the theory of wheeled props, their bar and cobar constructions [Me3,MMS].
We introduce and study Koszul duality theory for quadratic wheeled properads1 having
in mind applications (in § 4 and 5) of the Koszul duality technique to two example impor-
tant for us, the first of which controls the local finite-dimensional Poisson geometry, and
the other one the local geometry of master equation (1). The content of this theory is
standard (cf. [GeJo]):

• For any quadratic wheeled properad P there is a naturally associated Koszul dual
wheeled coproperad P⊥ which comes together with a canonical monomorphism of
dg coproperads, ı : P⊥ → B(P), into the bar construction on P .

• The cobar construction, Bc(P⊥), is a dg free wheeled properad denoted in this paper
by P∞.

• There exists an epimorphism, P∞ → P , which is a quasi-isomorphism if P is
Koszul.

The main result in § 2 is Theorem 2.7.1 which, if reformulated shortly, says that given
an arbitrary (not necessarily Koszul) quadratic wheeled properad and an arbitrary dg
P-algebra V , then every cohomological splitting of V makes canonically its cohomol-
ogy, H(V ), into a P∞-algebra; moreover, this induced P∞ structure is given precisely by
that sum of decorated graphs which describe the image of the canonical monomorphism
ı : P⊥ → B(P). This result gives a conceptual explanation of the well-known “exper-
imental” fact that the homotopy transfer formulae of infinity structures can be given in
terms of graphs. A closely related result (for ordinary operads) has been obtained recently
in [ChLa]. The first explicit graphic formulae have been obtained by Kontsevich and
Soibelman [KoSo] who have rewritten in terms of graphs the homotopy transfer formu-
lae of [Me1] for the case when P is an operad of associative algebras. Another example
can be found in the work of Mnev [Mn] who treated the case when P is a wheeled operad
of unimodular Lie algebras. One more example of explicit transfer formulae (related to
the master equation (1)) is given below in § 6.

In § 3 we introduce and study a category, Cat (BV ), of (quasi-classically split) quan-
tum BV manifolds whose

• objects, M, are, roughly speaking, formal solutions of all possible quantum mas-
ter equations (1) with non-degenerate odd Poisson brackets { , } which satisfy in the
quasiclassical (lim�→0 + lim�→0

d
d�

) limit certain boundary conditions (see § 3.9 for
a precise definition); these boundary conditions imply that the tangent space, T∗M,
to the formal manifold M at the distinguished point comes equipped with an induced
differential d; if this induced differential vanishes, then M is called minimal; if, on
the other hand, d encodes the full information about the corresponding solution to

1 Koszul duality for wheeled operads has been studied earlier in [MMS].
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(1) and the complex (T∗M, d) is acyclic, then such a quantum BV manifold M is
called contractible;

• morphisms are generated by symplectomorphisms, natural projections M1×M2 →
M1, and quantum embeddings, M1 → M1 × M2, depending on a choice of a
Lagrangian submanifold in M2.

One has the following two results in the category Cat (BV ):

(i) Every quantum BV manifold is isomorphic to the product of a minimal quantum
BV manifold and a contractible one.

(ii) Quasi-isomorphisms are equivalence relations.

In § 4 the material of § 2 and § 3 is tied together. We introduce and study a wheeled
prop, ULie1B, of unimodular Lie 1-bialgebras and prove that there is a one-to-one cor-
respondence between quantum BV manifolds and representations of the associated dg
free wheeled prop ULie1B∞. We do not know at present whether or not the wheeled
prop(erad) ULie1B is Koszul, i.e. whether or not the natural epimorphism,

(ULie1B∞, δ) −→ (ULie1B, 0),

is a quasi-isomorphism. If it is, then the wheeled prop quantization machine of [Me4]
would apply to deformation quantization of unimodular Poisson structures.

Formal unimodular Poisson structures can be identified with a subclass of solutions,
�, of the master equation (1) which are independent of �. Hence there is a canonical
epimorphism of dg wheeled props,

F : ULie1B∞ −→ UPoisson,

where UPoisson is a dg prop whose representations in a vector space V are formal
unimodular Poisson structures on V vanishing at 0. It is proven in § 5 that F is a quasi-
isomorphism.

Section 6 is inspired by the work of Mnev [Mn] on a remarkable approach to the
homotopy transfer formulae of unimodular L∞-algebras which is based on the BV
quantization of an extended B F theory and the associated Feynman integrals. We apply
in § 6 Losev-Mnev’s ideas to unimodular Lie 1-bialgebras and show that the Feynman
integrals technique provides us with exactly the same formulae for the homotopy trans-
fer of ULie1B∞-structures as the ones which follow from the Koszul duality theory for
quadratic wheeled properads developed in § 2. These results imply essentially that the
Ward identities in a certain class of quantum field theories can be interpreted as equations
for a morphism of certain dg wheeled (co)props.

A few words about notations. The symbol Sn stands for the permutation group, that
is the group of all bijections, [n] → [n], where [n] denotes (here and everywhere) the
set {1, 2, . . . , n}. If V = ⊕i∈ZV i is a graded vector space, then V [k] is a graded vector
space with V [k]i := V i+k . We work throughout over a field K of characteristic 0 so
that, for an action of finite group G on a vector space V , the subspace of invariants,
{v ∈ V |σ(v) = v ∀σ ∈ G}, is canonically isomorphic to the quotient space of coinvar-
iants, V/span{v − σ(v)}v∈V,σ∈G , so that we denote them by one and the same symbol
VG .
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2. Quadratic Wheeled Properads and Homotopy Transfer Formulae

2.1. Wheeled operads, properads and props [Me3,MMS,Me5]. Let G� be the family
of all possible (not necessarily connected) graphs constructed from the so called directed
(m, n)-corollas,

◦
�����

���. . . ���
�����

����
�

���. . . �
�� ����
�

︷ ︸︸ ︷

︸ ︷︷ ︸

m output legs

n input legs

, m, n ≥ 0, (2)

by taking their disjoint unions, and gluing some output legs in such a union with the
same number of input legs. The glued legs are called the internal edges of the graph and
all the rest retain their name legs of the graph. Note that every internal edge as well as
every leg of a graph is naturally directed; unless otherwise explicitly shown, we tacitly
assume in all our pictures that the direction flow runs from the bottom to the top. We
have G� = ∐

m,n≥0 G�(m, n), where G�(m, n) ⊂ G� is the subset of graphs having
m output legs and n input legs. We assume from now on that the input legs of each graph
G ∈ G�(m, n) are labeled by the natural numbers {1, . . . , n} and the output legs are
labeled by {1, . . . ,m} so that each set G�(m, n) comes equipped with a natural action
of the group Sm × Sn . For example,

◦����◦		 

◦����
21

�� ∈ G�(0, 2), 
��◦ ◦��

�

1
2

1
2 ∈ G�(2, 2),

◦����◦		 

◦����
23

�� 
��◦ ◦��

�

1
4

2
1 ∈ G�(2, 4).

Let E be an S-bimodule, that is a family, {E(p, q)}p,q≥0, of vector spaces on which the
group Sp act on the left and the group Sq act on the right and both actions commute
with each other. Fix an arbitrary graph G ∈ G�(m, n) and denote by V (G) the set of
its vertices, that is the set of its generating corollas (2). For each v ∈ V (G), denote
by Inv (resp. Outv) the set of the input (resp. output) legs of the vertex v. Assume the
cardinality of I nv (resp. Outv) equals q (resp. p) and note that vector spaces,

〈I nv〉
:=
{

the q!-dimensional vector space spanned by all bijections I nv → [q] if q ≥ 1
K if q = 0,

and

〈Outv〉
:=
{

the p!-dimensional vector space spanned by all bijections [p] → Outv if p ≥ 1
K if p = 0

have, respectively, a natural left Sq -module structure and a right Sp-module structure.
Hence one can form a quotient,

E(Outv, I nv) := 〈Outv〉 ⊗Sp E(p, q)⊗Sq 〈I nv〉,
which is (non-canonically) isomorphic to E(p, q) as a vector space and which carries
natural actions of the automorphism groups of the sets Outv and I nv . These actions
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make a so called unordered tensor product over the set V (G) (of cardinality, say, N ),

⊗

v∈V (G)

E(Outv, I nv)

:=
⎛

⎝

⊕

i :{1,... ,N }→V (G)

E(Outi(1), I ni(1))⊗ . . .⊗ E(Outi(N ), I ni(N ))

⎞

⎠

SN

,

into a representation space of the automorphism group, Aut (G), of the graph G which is,
by definition, the subgroup of the symmetry group of the 1-dimensional CW -complex
underlying the graph G which fixes its legs. Hence with an arbitrary graph G ∈ G� and
an arbitrary S-bimodule E one can associate a vector space,

G〈E〉 := (⊗v∈V (G)E(Outv, I nv)
)

AutG ,

whose elements are called decorated (by E) graphs. For example, the automorphism

group of the graph G0 =
◦����		 

◦����

21

is Z2 so that G0〈E〉 = E(1, 2)⊗Z2 E(2, 2). It is useful

to think of an element in G0〈E〉 as the graph G0 whose vertices are literarily decorated
by some elements a ∈ E(1, 2) and b ∈ E(2, 1); this pictorial representation of G0〈E〉
is correct provided the relations,

◦ a����		 

◦ b����
21

= ◦ aσ−1����		 

◦ σb����
21

, σ ∈ Z2,

λ

⎛

⎜

⎝

◦ a����		 

◦ b����
21

⎞

⎟

⎠ =
◦ λa����		 

◦ b����

21

=
◦ a����		 

◦ λb����

21

∀λ ∈ K,

◦ a1 +a2����		 

◦ b����
21

=
◦a1����		 

◦ b����

21

+
◦a2����		 

◦ b����

21

and similarly for b

are imposed. It also follows from the definition that

◦ a����		 

◦ b����
21

=
◦ a����		 

◦ b(12)����

12

, (12) ∈ Z2.

Thus one can define alternatively G0〈E〉 as a quotient space,
∏

v∈V (G) E(Outv, I nv)/ ∼,
with respect to the equivalence relation generated by the above pictures.

Note that if E is a differential graded (dg, for short) S-bimodule, then, for any graph
G ∈ G�(m, n), the associated graded vector space G〈E〉 comes equipped with an ind-
uced Sm×Sn-equivariant differential so that the collection, {⊕G∈G� (m,n) G〈E〉}m,n≥0,
is again a dg S-bimodule. The differential in G〈E〉 induced from a differential δ on E
is denoted by δG or, when no confusion may arise, simply by δ.
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Definition 2.1.1. A wheeled prop is an S-bimodule P = {P(m, n)} together with a
family of linear Sm × Sn-equivariant maps,

{µG : G〈P〉 → P(m, n)}G∈G� (m,n),m,n≥0 ,

parameterized by elements G ∈ G�, which satisfy the condition

µG = µG/H ◦ µ′H (3)

for any subgraph H ⊂ G. Here G/H is the graph obtained from G by shrinking the
whole subgraph H into a single internal vertex, and µ′H : G〈E〉 → (G/H)〈E〉 stands
for the map which equals µH on the decorated vertices lying in H and which is identity
on all other vertices of G.

If the S-bimodule P underlying a wheeled prop has a differential δ satisfying, for any
G ∈ G�, the condition δ◦µG = µG ◦δG, then the wheeled prop P is called differential.

Remarks 2.1.2. (i) IfCm,n denotes (m, n)-corolla (2), then the Sm×Sn-moduleCm,n〈P〉
is canonically isomorphic to P(m, n). Thus the defining linear mapµG : G〈P〉 →
P(m, n) associated to an arbitrary graph G ∈ G�(m, n) can be interpreted as a
contraction map, µG : G〈P〉 → Cm,n〈P〉, contracting all the internal edges and
all the internal vertices of G into a single vertex.

(ii) Equation (3) implies µG = µG/G ◦ µG for any graph G ∈ G�, which in turn
implies that µCm,n : P(m, n)→ P(m, n) is the identity map.

(iii) Condition (3) can be equivalently rewritten as the equality,µG/H1◦µ′H1
= µG/H2◦

µ′H2
, for any subgraphs H1, H2 ⊂ G, i.e. it is a kind of associativity condition for

the family of contraction operations {µG}.
(iv) Strictly speaking, the notion introduced in §2.1.1 should be called a wheeled prop

without unit. A wheeled prop with unit can be defined as in §2.1.1 provided one
enlarges the family of graphs G� by adding the following graphs without vertices,

tp,q := ↑ ↑ ↑ · · · ↑
︸ ︷︷ ︸

p

�� · · ·�
︸ ︷︷ ︸

q

, p, q ≥ 0, p + q ≥ 1,

to the family G�(p, p) (see [MMS]). The S-bimodule spanned by such graphs
without vertices has an obvious structure of wheeled prop with unit called the
trivial wheeled prop t. Similar to the case of an associative algebra, any wheeled
prop, P , without unit can be made into a wheeled prop, P+ := P ∗ t, with unit by
taking the free product of P and t. All the unital wheeled props we study in this
paper are obtained in this trivial way from non-unital ones prompting us to work in
this paper with non-unital props only. A small bonus of this choice is that one can
avoid bothering about (co)augmentation (co)ideals when dealing with bar-cobar
constructions of wheeled (co)props (see § 2.4 below)

Definitions 2.1.3. A wheeled properad, P = {P(m, n)}, is defined exactly as in §2.1.1
except that the graphs G and H are required now to belong to the subfamily, G�

c , of
G� consisting of connected graphs.

A wheeled operad is a wheeled properad P = {P(m, n)} with P(m, n) = 0 for
m ≥ 2.
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2.1.4. Generating compositions Associativity equations (3) imply that for an arbitrary
wheeled properad P the defining family of contraction maps, {µG : G〈P〉 → P}G∈G�

c
,

is uniquely determined (via iteration) by its subfamily, {µG : G〈P〉 → P}G∈G�
gen

, where

G�
gen ⊂ G�

c consists of graphs of the form,

(i) ◦
�����

����
. . . 





��������

���
��






. . . ��

��
���

��

◦
������

����
. . . ����

�����

��
��
. . .

��
��

��
��

�

and (i i) ◦
�����

����
. . . 





����

���
��





. . . ��

�� ���
�

��
(4)

i.e. of one-vertex graphs with precisely one internal edge (forming a loop) and of con-
nected two vertex graphs with precisely one internal edge. The set of graphs G�

gen lies
behind the notion of a quadratic wheeled properad introduced below in §2.6.1.

Generating compositions of a wheeled prop are given by graphs shown above and
the extra ones,

◦
�����

			... 



�����

���
��




... 		
	

���
�� ◦

�����
			... 




�����
���

��




... 		
	

���
�� , (5)

having two vertices and no internal edges.

2.1.5. An endomorphism wheeled prop(erad) For any finite-dimensional vector space
V the S-bimodule EndV := {Hom(V⊗n, V⊗m)} is naturally a wheeled prop(erad) with
compositions defined as follows:

• for graphs G of the form (4)(i) the associated composition µG : G〈EndV 〉 → EndV
is the ordinary composition of two linear maps;

• for graphs G of the form (4)(ii) the associated composition µG is the ordinary trace
of a linear map;

• for graphs G of the form (5) the associated composition µG is the ordinary tensor
product of linear maps.

For an arbitrary graph G ∈ G� the associated composition µG : G〈EndV 〉 → EndV
is defined as an iteration of the above “elementary” compositions, and it is easy to see
that such a µG is independent of a particular choice of an iteration; this independence
means, in fact, that associativity conditions (3) are fulfilled. The prop(erad) EndV is
called the endomorphism wheeled prop(erad) of V . Note that if V is a complex, then
EndV is naturally a dg prop(erad).

2.1.6. A free wheeled prop(erad) Given an arbitrary S-bimodule, E = {E(m, n)}, there
is an associated S-bimodule, F�〈E〉 = {F�〈E〉(m, n) :=⊕

G∈G� (m,n) G〈E〉}, which
has a natural prop structure with the contraction maps µG : G〈F�〈E〉〉 → F�〈E〉
being tautological. The wheeled prop F�〈E〉 is called the free wheeled prop generated
by an S-bimodule E .

A free wheeled properad, F�
c 〈E〉, generated by an S-bimodule E is defined as in

the previous paragraph but with the symbol G� replaced by G�
c .
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2.1.7. Prop(erad)s, dioperads and operads Consider the follows subsets of the set G�:

(a) G↑ is a subset of G� consisting of directed graphs with no wheels, i.e. directed
paths of internal edges which begin and end at the same vertex;

(b) G
↑
c := G↑ ∩G�

c ;

(c) G
↑
c,0 is a subset of G

↑
c consisting of graphs of genus zero;

(d) G
↑
oper is a subset of G

↑
c,0 built from corollas (2) of type (1, n) only, n ≥ 1.

Let G✓ be any one of these families of graphs. Then one can define an G✓-algebra as in
§2.1.1 by requiring that all the graphs G, H and G/H involved in that definition belong
to the subset G✓ (cf. [Me5]). Then:

(a) an G↑- algebra is called a prop [Mc];
(b) an G

↑
c -algebra is called a properad [Va];

(c) an G
↑
c,0-algebra is called a dioperad [Ga];

(d) an G
↑
oper -algebra is called an operad [May].

A quadratic G✓-algebra is defined (in all the above cases) as a quotient of a free
G✓-algebra, F✓〈E〉, by the ideal generated by a subspace R ⊂ G✓

gen〈E〉, where G✓
gen

is the minimal subset of G✓ whose elements generate all possible compositions, µG ,
via iteration (cf. §2.1.4). We apply the same minimality principle for the definition of a
quadratic wheeled properad in § 2.6 below.

2.2. Morphisms of wheeled props. One can make dg wheeled prop(erad)s into a cat-
egory by defining a morphism, f : P1 → P2, as a morphism of the underlying dg
S-bimodules, { f : P1(m, n)→ P2(m, n)}m,n≥0, such that, for any graph G ∈ G�, one
has f ◦µG = µG ◦ ( f ⊗G), where f ⊗G means a map, G〈P1〉 → G〈P2〉, which changes
decorations of each vertex in G in accordance with f .

Definition 2.2.1. A morphism of wheeled prop(erad)s, P → EndV , is called a repre-
sentation of the wheeled prop(erad) P in a graded vector space V .

Definition 2.2.2. A morphism of dg wheeled prop(erad)s, P1 → P2, is called a quasi-
isomorphism, if the induced morphism of cohomology prop(erad)s, H(P1)→ H(P2),
is an isomorphism.

2.2.3. A useful fact If P2 is an arbitrary wheeled prop(erad) and P1 is a free wheeled
prop(erad), F�〈E〉, generated by some S-bimodule E , then the set of morphisms of
wheeled prop(erad)s, { f : P1 → P2}, is in one-to-one correspondence with the vector
space of degree zero morphisms of S-bimodules, { f |E : E → P2}, i.e. f is uniquely
determined by its values on the generators. In particular, the set of morphisms, F�〈E〉 →
P2, has a graded vector space structure for any P2.

Definition 2.2.4. A free resolution of a dg wheeled prop(erad) P is, by definition, a
dg free wheeled prop(erad), (F�〈E〉, δ), generated by some S-bimodule E together
with an epimorphism, π : (F�〈E〉, δ) → P , which is a quasi-isomorphism. If the
differential δ in F�〈E〉 is decomposable with respect to the compositions µG, then
π : (F�〈E〉, δ)→ P is called a minimal model of P .
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2.3. Coprop(erad)s. A wheeled coproperad is an S-bimodule P = {P(m, n)} together
with a family of linear Sm × Sn-equivariant maps,

{�G : P(m, n)→ G〈P〉}G∈G�
c (m,n),m,n≥0 ,

parameterized by elements G ∈ G�
c , which satisfy the condition

�G = �′H ◦�G/H (6)

for any connected subgraph H ⊂ G. Here�′H : (G/H)〈E〉 → G〈E〉 is the map which
equals�H on the distinguished vertex of G/H and which is identity on all other vertices
of G. Wheeled coprops are defined analogously.

If the S-bimodule P underlying a wheeled coprop(erad) has a differential δ satisfy-
ing, for any G ∈ G�, the condition �G ◦ δ = δG ◦�G , then the wheeled coprop(erad)
P is called differential.
For any S-bimodule, E = {E(m, n)}, the associated S-bimodule, F�〈E〉, has a natural
coproperad structure with the co-contraction map

� :=
∑

G∈G� (m,n)

�G : F�〈E〉 −→
∑

G∈G� (m,n)

G〈F�〈E〉〉 = F�〈F�〈E〉〉

given, on an arbitrary element g ∈ G〈E〉 ⊂ F�〈E〉, by [MMS],

�g =
∑

f :Edg(G)→{0,1}
g f ,

where the sums run over markings, f : Edg(G) → {0, 1}, of the set, Edg(G), of
internal edges of G by numbers 0 and 1, and g f is an element of F�〈F�〈E〉〉 obtained
from g by the following recipe:

(i) cut every internal edge of the graph G marked by 0 in the middle; let G1, . . . ,Gk ,
for some k ≥ 1, be the resulting connected components of G; the vertices of the
latter graphs inherit E-decorations, and hence the marking f defines elements
g1 ∈ G1〈E〉, . . . , gk ∈ Gk〈E〉;

(ii) let G ′ be the graph with k-vertices obtained from G by shrinking each subgraph
G1, . . . ,Gk into a single vertex; then g f is, by definition, the decorated graph g
viewed as an element of G ′〈F�〈E〉〉, i.e. it equals G ′ with vertices decorated by
elements g1, . . . , gk ∈ F�〈E〉.

The wheeled coprop (F�〈E〉,�) is called the free coprop generated by the S-module
E .

One can show analogously that F�
c 〈E〉 has a natural coproperad structure�; the data

(F�
c 〈E〉,�) is called the free coproperad generated by the S-module E . We denote it

by F�
co〈E〉 (to avoid confusion with the natural properad structure in F�

c 〈E〉).

2.4. Bar construction. With an S-module E = {E(m, n)} one can associate two other
S-bimodules,

wE =: {E(m, n)⊗ sgnn[−n]} , w−1 E := {E(m, n)⊗ sgnn[n]} ,
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where sgnm stands for the 1-dimensional sign representation of Sm . We shall show in
this subsection that for any properad P the associated free coproperad,

B(P) := F�
co〈w−1P〉,

comes canonically equipped with a differential, δP , encoding all the generating prope-
radic compositions {µG : G〈P〉 → P}G∈G�

gen
. For this purpose let us consider a family

of graphs, G�• , obtained from the family of directed connected graphs G�
c by inserting

into each input leg and each internal edge of a graph G ∈ G�
c a black (1, 1)-corolla, •,

and denoting the resulting graph by G•. For example,

if G =
◦ ���
������◦ ��

�
��
�

◦ ��
�

��
�

21

1 2

��
then G• =

◦ ���
������◦ ��

�
��
�

◦ ��
�

��
�

21

1 2

••
• •
• •

��

The automorphism group of such a graph G• is defined as in § 2.1 with an extra assump-
tion that the colour is preserved. Then, obviously, Aut (G) = Aut (G•).

Let 1 stand for the unit in the field K, and 1̄ for its image under the isomorphism
K → K[1]. The vector 1̄ has degree−1. For an arbitrary S-bimodule E and an arbitrary
graph G ∈ G�• we denote by G•〈E〉 the vector space spanned by the graph G• whose
white vertices are decorated by elements of E and the special black (1, 1)-vertices are
decorated by 1̄.

Lemma 2.4.1. For any S-module E there is a canonical isomorphism of S-modules,

F�
c 〈w−1 E〉 =

⊕

G•∈G�• (m,n)

G•〈E〉.

Proof. It is enough to show a canonical isomorphism Sm × Sn-modules, G〈w−1 E〉 =
G•〈E〉 for an arbitrary graph G ∈ G�

c (m, n). The graph G• is obtained from G by
replacing each constituting (m, n)-corolla of G as follows:

Cm,n = ◦
�����

���. . . ���
�����

����
�

���. . . �
�� ����
�

︷ ︸︸ ︷

︸ ︷︷ ︸

m output legs

n input legs

−→ Cm,n • = ◦
�����

���. . . ���
�����

����
�

���. . . �
�� ����
�

︷ ︸︸ ︷

︸ ︷︷ ︸

m output legs

n input legs

• • ••

It is obvious that Cm,n •〈E〉 = Cm,n〈w−1 E〉 as Sm × Sn-bimodules. If we set
E(Outv, I nv) := 1̄ for every black vertex v in G•, then

⊗

v∈V (G•) E(Outv, I nv) =
⊗

v∈V (G) w−1 E(Outv, I nv) and the claim follows finally from the isomorphism
Aut (G•) = Aut (G). ��
Corollary 2.4.2. For any wheeled properad P there is a canonical isomorphism of
S-modules,

B(P) =
⊕

G•∈G�•

G•〈P〉 (7)

The r.h.s of (7) is denoted sometimes by B•(P).
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Fact 2.4.3. Let P be an arbitrary wheeled properad. The S-module
⊕

G•∈G�• G•〈P〉 can
be made naturally into a complex with the differential,

δP = “
∂

∂•edge
",

which is equal to zero on all white vertices and all black vertices attached to legs, and
which deletes a black vertex lying on every internal edge and contracts the associated
internal edge with the help of the corresponding composition in P; equation δ2

P = 0
follows then from associativity conditions (3). More precisely, one defines δP g for some
g ∈ G•〈E〉 = (

⊗

v∈V (G•) E(Outv, I nv))Aut (G•) as follows: choose first a representa-
tive, g̃ ∈ E(Outv1 , I nv2) ⊗ . . . E(Outvp , I nvp ), of the equivalence class g associated
with some ordering of all vertices in G, apply then δP to the vertices of g̃ in the chosen
order, and finally set δP g = π(δP g̃), where π is the natural surjection

π : E(Outv1 , I nv2)⊗ . . .⊗ E(Outvp , I nvp ) −→ (
⊗

v∈V (G•)
E(Outv, I nv))Aut (G•).

The result does not depend on the choice of a section, g → g̃, of π used in the definition.
For example, if

g =
◦ ���
��

�
���◦ ��
�

��
�

◦ ��
�

��
�

21

1 2

•
•

• •
• •

c
b

a
��

for some a ∈ E(2, 2), b ∈ E(1, 2), c ∈ E(3, 2),

then, ordering the vertices from the bottom to the top, we obtain that δP g is the equiva-
lence class (in the unordered tensor product) of the following graph:

(−1)a+b
◦ ���
���

��
�

◦ ��
�

��
�

21

1 2

•
•

•
• •

c

e1��
− (−1)a+bc

◦
�������

���

��
�

◦ ��
�

��
�

21

1 2 •
•

•
• •

b

e2

��

+ (−1)a+b
◦ ���
���

��
�

◦ ��
�

��
�

21

1 2

•
•

•
• •

e3

a

��

− (−1)a+c
◦ ���
���

��
�

◦ ��
�

��
�

21

1 2

•
•

•
• •

e4

a

��

,

where e1 := µ

(

◦���� ����
◦  b a

)

∈ E(2, 3), etc. Applying δP again and using associativity

relations (3), one easily concludes that δ2
P = 0.

Isomorphism (7) induces a differential in the free coproperad B(P)which we denoted
by the same symbol δP . It obviously respects the coproperad structure in B(P). If P is
a differential operad with differential d, then the sum d + δP is a differential in B(P).

Definition 2.4.4. The dg coproperad (B(P), d + δP ) is called the bar construction of
a dg properad (P, d).

This notion was first introduced in [MMS] but with a different S-module structure and
Z-grading on B(P). We shall be most interested below in the situations when d = 0.
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2.5. Cobar construction. If (C, d) is a dg coproperad, then its cobar construction is, by
definition, a free wheeled properad, Bc(C) := F�

c 〈wC〉, equipped with a differential,
d + ∂C , where ∂C is the differential encoding the co-composition maps�G : C → G〈C〉
in a way dual to the definition of ∂P in § 2.4 (see [MMS]). Let G�� be a family of graphs
obtained from G�

c by inserting into each input leg and each internal edge of a graph
G ∈ G�

c a white rhombic (1, 1)-corolla, �, and let us denote the resulting graph by G�.
Then, by analogy to §2.4.2, we have a canonical degree 0 isomorphism of S-modules,

Bc(C) =
⊕

G�∈G��

G�〈C〉, (8)

where in the r.h.s. we used s(1), s being the isomorphism K → K[−1], to decorate
special �-vertices. The differential ∂C is, by definition, equal to zero on the special white
rhombic corollas while on ordinary (decorated by C) vertices it is equal to the map
∑

G �G : C → ∑

G∈G�
gen

G〈C〉 with the sum running over all possible graphs of the

form (4); the unique internal edge in the image of the map
∑

G �G is then decorated by
� so that ∂C increases the number of rhombic white vertices by one.

In the case when C is the bar construction, (C = B(P), d + δP ) on some dg properad
(P, d) one has a natural epimorphism of dg properads,

π̄ : (Bc(B(P)), δ := d + δP + ∂B(P)
) −→

(

w(w−1P) = P, d
)

,

which is a quasi-isomorphism [MMS]. If we now apply constructions (7) and (8) to
Bc(B(P), we shall get decorated graphs whose internal edges are decorated by either
black vertices or simultaneously by black and white rhombic vertices. As white rhombic
and black corollas placed on the same edge “annihilate” each other with respect to their
total impact on graph, we have a degree 0 isomorphism of S-bimodules,

Bc(B(P)) =
⊕

G�∈G�
•,−

G•,−〈P〉,

where, by definition, G•,− is a family of graphs obtained from graphs in G�
c by inserting

into some (possibly, none) internal edges black (1, 1)-corollas; thus every internal edge
of a graph G from G•,− is either straight or equipped with the black (1, 1)-corolla, and
every input or output leg of G is straight. Then the differential ∂B(P) gets a very simple
interpretation — it eliminates, in accordance with the Leibnitz rule, each black corolla
making the corresponding edge straight; on the other hand, the differential δP contracts
(again in accordance with the Leibnitz rule) each internal edge decorated by the black
corolla and performs a corresponding to this contraction composition in the original
properad P .

2.6. Quadratic wheeled (co)properads and Koszul duality. Koszul duality for ordinary
quadratic operads was introduced in [GiKa], for dioperads in [Ga], for ordinary prop-
erads in [Va] and for wheeled operads in [MMS]. In this section we extend the idea to
arbitrary quadratic wheeled properads.

For a graph G ∈ G� with p vertices and q wheels (that is, closed paths of directed
internal edges) set ||G|| := p + q and call it the weight of G. For an S-module E set
F�
(λ)〈E〉 to be a submodule of the free properad F�

c 〈E〉 spanned by decorated graphs
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of weight λ. Note that properadic compositions {µG : G〈F�
c 〈E〉〉 → F�

c 〈E〉}G∈G�
c

are homogeneous with respect to this weight gradation. Note also that the quadratic
subspace F�

(2)〈E〉 ⊂ F�
c 〈E〉 is distinguished as it is spanned,

F�
(2)〈E〉 =

∑

G∈G�
gen

G〈E〉,

by the minimal set of graphs (4) which generate all possible wheeled properadic com-
positions.

Definition 2.6.1. A wheeled properad P is called quadratic if it is the quotient, P :=
F�

c 〈E〉/I , of a free wheeled properad (generated by some S-bimodule E) by the ideal,
I , generated by some subspace R ⊂ F�

(2)〈E〉.

An obvious dualization of the above definition gives the notion of a quadratic
coproperad.

Any quadratic (co)properad, P , comes equipped with an induced weight gradation,
P = ∑

λ≥1 P(λ), where P(λ) is the image of F�
(λ)〈E〉 under the natural surjection

F�
c 〈E〉 → P . Note that P(1) = E and P(2) is given by an exact sequence

0 −→ R −→ F�
(2)〈E〉 −→ P(2) −→ 0. (9)

The subspace B(P(1)) ⊂ B(P) is obviously a sub-coproperad, but, in general, it is not
preserved by the bar differential ∂P . It is not hard to check that an S-bimodule P ¡ defined
by the exact sequence,

0 −→ P ¡ −→ B(P(1))
∂P−→ B(P)[1],

is a sub-coproperad of B(P(1)) so that the natural composition of inclusions,

ı : P ¡ −→ B(P(1)) −→ B(P), (10)

is a monomorphism of dg wheeled coproperads.

Definition 2.6.2. The coproperad P ¡ is called Koszul dual to a quadratic wheeled pro-
perad P .

Definition 2.6.3. A quadratic wheeled properad P is called Koszul, if the associated
morphism of dg coproperads, ı : P¡ −→ B(P), is a quasi-isomorphism.

As the cobar construction functor Bc is exact [MMS], the composition

π : P∞ := Bc(P ¡)
Bc(i)−→ Bc(B(P)) π̄−→ P

is a quasi-isomorphism if P is Koszul; then the dg free wheeled properad P∞ gives us
a minimal resolution of P .
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2.6.4. Remark on notation In general (i.e. if P is not Koszul), the dg properad Bc(P ¡)

is only an approximation to the genuine minimal wheeled resolution of P (if it exists
at all); it is, however, associated canonically to P , and, slightly abusing tradition, we
continue denoting it in this paper by P∞ even in the cases when P is not Koszul.

Note that B(P(1)) is the free co-properad generated by the S-module w−1P(1) =
w−1 E . By the definition of the bar differential ∂P , the image, I co, of the degree 0 map
∂P : B(P(1))→ B(P)[1] is spanned by graphs with all (except one!) vertices decorated
by the w−1P(1) and with the exceptional vertex decorated by w−1P(2)[1]. Thus we have
an exact sequence,

0 −→ P ¡ −→ F�
co〈w−1 E〉 −→ I co −→ 0.

As w−1F�
(2)〈E〉 = F�

(2)〈w−1 E〉[−1], we can rewrite (9) as follows:

0 −→ w−1R[1] −→ F�
(2)〈w−1 E〉 −→ w−1P(2)[1] −→ 0, (11)

and conclude that I co is the co-ideal of F�
cc 〈w−1 E〉 cogenerated by quadratic

co-relations w−1P(2)[1]. Hence we proved the following

Proposition 2.6.5. For any quadratic wheeled properad P the associated Koszul dual
wheeled coproperad P ¡ is quadratic.

Remark 2.6.6. If the S-bimodule E = {E(m, n)} is of finite type (i.e. each E(m, n) is
finite-dimensional), then it is often easier to work with the wheeled properad P ! :=
(P ¡)∗, the ordinary dual of the coproperad P ¡. It is a quadratic wheeled properad gener-
ated by the S-bimodule,

E∨ := {

E(m, n)∗ ⊗ sgnn[−n]} ,
with the relations, R⊥, given by the exact sequence,

0 −→ R⊥ −→ F�
(2)〈E∨〉 −→ wR∗[−1] −→ 0, (12)

where R are the quadratic relations for P .

Remark 2.6.7. Definition 2.6.1 implies that there exists a canonical wheelification func-
tor,

� : Category of quadratic
(co)dioperads −→ Category of quadratic wheeled

(co)properads
D −→ D�

(13)

which is, by definition, identity on the (co)generators and the quadratic (co)relations of
the dioperad D. It is worth noting that, in general, (D¡)� �= (D�)¡, implying that (D�)∞
may be substantially larger than (D∞)�, where D∞ stands for the cobar construction
on the Koszul dual co-dioperad D¡ in the category of dioperads; we refer to [MMS]
for explicit examples of this phenomenon for the cases D = Ass and D = Comm, the
operads of associative and, respectively, commutative algebras. In the case of the operad
of Lie algebras one actually has an equality, (Lie¡)� = (Lie�)¡ (see [Me3]).

The wheelification functor does not, in general, preserve Koszulness: a Koszul dio-
perad, D, may have a non-Koszul wheelification, D�. We give an explicit example of this
phenomenon in § 4. It is worth noting in this connection that the functor � applied to the
three classical operads Ass, Comm, and Lie does preserve Koszulness (see [Me3,MMS]
for the proofs).
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2.7. Homotopy transfer formulae. Let (V, d) and (W, d) be dg vector spaces equipped
with linear degree 0 maps of complexes, i : W → V and p : V → W , such that the
composition i ◦ p : V → V is homotopy equivalent to the identity map, Id : V → V ,

I dV = i ◦ p + d ◦ h + h ◦ d, (14)

via a fixed homotopy h : V → V [−1]. Without loss of generality we may assume that
the data (i, p, h) satisfies the so called side conditions [LaSt],

p ◦ i = IdW , p ◦ h = 0, h ◦ i = 0, h ◦ h = 0.

When W is the cohomology of the complex V the above data is often called a cohomo-
logical splitting of (V, d).

Theorem 2.7.1. Let P be a quadratic wheeled properad, and ρ : P → EndV an arbi-
trary P-algebra structure on the complex V . For any element G ∈ wP¡(m, n) let

G〈i, h, p, ρ〉 ∈ EndW (m, n),

be a linear map W⊗n → W⊗n defined as follows:

(i) consider the image, ı(G), of G under the canonical inclusion ı : wP¡ → wB•(P);
(ii) decorate the input legs of each graph summand in the image ı(G)with i , the output

legs with p, and the special vertices, •, lying on the internal edges with h,
(iii) replace a decoration, e, of every non-special vertex in ı(G) by ρ(e), and finally
(iv) interpret the resulting decorated graph as a scheme for the composition of maps

i , h, ρ(e) and p.

Then the family of maps,

{G −→ G〈i, h, p, ρ〉 ∈ EndW }G∈wP¡ ,

defines a representation of the dg free wheeled properad P∞ in the dg space W .

Proof. Any morphism, P∞ = F�〈wP ¡〉 → EndW , of wheeled properads is uniquely
determined by its values on the generators, i.e. by a morphism, w−1P ¡ −→ EndW of
S-modules. Define such a morphism, ρ∞ : P∞ → EndW , by setting

ρ∞(G) := G〈i, h, p, ρ〉.
This morphism gives a representation of the dg properad P∞ if and only if it respects
the differentials, i.e.

ρ∞(∂B(P)G) = d(G〈i, h, p〉),
where ∂B(P) is the differential in Bc(B(P)) restricted to the subcomplex Bc(P ¡), and d
is the differential in EndW (induced by the differential d in W and denoted by the same
letter).

Let us assume, for an illustration, that

G =

��� ���
a

!!
! ��

�
��� !!!

b

∈ wP ¡
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for some a, b ∈ P . Then

G〈i, h, p, ρ〉 =

��� ���
ρ(a)

!!
! ��

�
��� !!!
ρ(b)

••

p p

i

h h

and, using (14), we obtain

d(G〈i, h, p, ρ〉) = (−1)b

��� ���
ρ(a)

!!
! ��

�
��� !!!
ρ(b)

•

p p

i

hId − (−1)b

��� ���
ρ(a)

!!
! ��

�
��� !!!
ρ(b)

•

p p

i

h Id

−(−1)b

��� ���
ρ(a)

!!
! ��

�
��� !!!
ρ(b)

•

p p

i

h
p

i
+ (−1)b

��� ���
ρ(a)

!!
! ��

�
��� !!!
ρ(b)

•

p p

i

h
p

i

= ρ(∂P G) + ρ(∂B(P)G)
= ρ(∂B(P)G).

In the above calculation we used

– the identification of ∂P with a machine deleting the black vertices and contracting
the associated internal edge (so that the first two terms in the above sum of 4 graphs
are precisely ρ(∂P G〈i, h, p, ρ〉)),

– the identification of ∂B(P) with a machine deleting the black vertices without sub-
sequent contraction of the associated internal edge (so that the last two terms in the
above sum are precisely ρ(∂B(P)G〈i, h, p, ρ〉)), and

– the fact that, by definition of P ¡, one has ρ(∂P G) = 0 for any G ∈ wP ¡.

The pattern exposed above is universal, i.e. it does not depend on the particularities of
G. This simple calculation proves the claim. ��
Remarks 2.7.2. (i) The above arguments work for any dg sub-coproperad of B(P),

not only for P ¡.
(ii) Theorem 2.7.1 gives a conceptual explanation of the well-known “experimen-

tal” fact that homotopy transfer formulae are given by sums over certain families
of decorated graphs. Moreover, it follows that these sums describe essentially a
morphism of coproperads P ¡ → B(P). This fact prompts one to think about the
following two closely related problems:
⇒ Given a quadratic (wheeled) properad, construct a quantum field theory whose

Feynman perturbation series for the effective action gives precisely the
homotopy transfer formulae, i.e. a morphism of (wheeled) coproperads. This
idea was first proposed by A. Losev.
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⇐ Given a quantum field theory, find dg (wheeled) props such that Feynman’s
perturbation series for certain expectation values can be interpreted as their
morphism.

A simple and beautiful example where both problems have been successfully addressed
was constructed by Mnev in [Mn]. Another example is studied in § 6 of this paper.
A much less trivial example is given by the works of Kontsevich [Ko] and Cattaneo
and Felder [CaFe1] which imply that the quantum Poisson sigma model on the 2-disk
describes a morphism of certain dg wheeled props (see [Me4] for their explicit construc-
tion).

In the rest of the paper we apply the above theory to a rather simple quadratic wheeled
properad, ULie1B, of unimodular Lie 1-bialgebras. Remarkably, representations of the
associated dg wheeled prop, ULie1B∞, are in one-to-one correspondence with so called
(quasi-classically split) quantum BV manifolds, interesting structures which one encoun-
ters in the Batalin-Vilkovisky quantization of certain gauge systems.

3. Geometry of Quantum Batalin-Vilkovisky Manifolds

3.1. Z-graded formal manifolds. Batalin-Vilkovisky (shortened, BV) formalism [BaVi]
is one of most effective and universal methods for perturbative quantization of field the-
ories with gauge symmetries. The first attempt to understand the BV formalism as a
geometric theory was done by Schwarz who introduced and studied in [Schw] a cat-
egory of so called S P-manifolds to understand BV structures. We adopt, however,
in this paper a slightly different picture of BV geometry based on semidensities and
Khudaverdian’s laplacian [Kh]. When one works in a fixed background the difference
between these two pictures is not principal, but we are going to concentrate in this sec-
tion on morphisms and equivalences of BV structures, and in this case the difference
becomes decisive.

First we note that

(i) “manifolds”, i.e. spaces of fields, used in the BV quantization are often pointed;
the distinguished point is called a vacuum state;

(ii) to make sense of perturbation series around the vacuum state one is only interested
in a formal neighborhood of that state in the space of fields, not in the global
structure of the latter.

Of course, one can try to ignore the formal nature of the perturbation series and accept a
genuine smooth supermanifold as a toy model for a space of fields. However, the formal
nature of the basic notions and operations used in the BV formalism resurrects again

when one attempts to make sense of expressions of the type e
�(x,�)

� , where the function
in the exponent,

�(x, �) = �0(x) + �1(x)� + . . . + �n(x)�
n + . . .

is a formal power series in a parameter (“Planck constant”) �. One can try to ignore this
issue as well, and set � = 1. This is what is often done in many papers on geometric
aspects of the BV formalism. We, however, can not afford setting the formal parameter
to 1 in the present paper as without � no link between BV manifolds and the homotopy
theory of unimodular Lie 1-bialgebras holds true. Therefore right from the beginning we
shall be working in the category of formal Z-graded manifolds in which one can easily
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make a coordinate independent sense of functions of the type e
�(x,�)

� by demanding, for
example, that �0(x) ∈ I, where I is the maximal ideal of the distinguished point. Let
us give precise definitions.

The category of finite-dimensional Z-graded formal manifolds over a field K is, by
definition, the category opposite to the category whose
• objects are (isomorphism classes) of completed finitely generated free Z-graded com-

mutative K-algebras; every such a K-algebra R has a natural translation invariant
adic topology defined by the condition that the powers, {In}n≥1, of the maximal
ideal I ⊂ R form a basis of open neighborhoods of 0 ∈ R;

• morphisms are (isomorphism classes of) continuous morphisms of topological
K-algebras.

Thus, every Z-graded formal manifold M corresponds to a certain isomorphism class,
OM, of completed free finitely generated algebras of the form K[[x1, . . . , xn]], where
formal variables xa (called coordinates) are assigned some degrees |xa | ∈ Z. The iso-
morphism class, OM, of K-algebras is called the structure sheaf 2 of the manifold M.
A representation of OM in the form K[[x1, . . . , xn]] is called a coordinate chart on M.
Such a representation is not canonical: a coordinate chart is defined up to an arbitrary
(preserving Z-grading) change of coordinates of the form

xa −→ x̂a = φa(x) :=
∞
∑

k=1

φa
b1...bk

xb1 . . . xbk , for some φa
b1...bk

∈ K, (15)

where φa
b1

form an invertible matrix. Such changes form a group of formal diffeomor-
phisms, Diff (M), and the Constitution of (formal) Geometry says that every construction
on a Z-graded formal manifold M must be invariant under this group. There are, unfor-
tunately, not that many Diff (M)-invariant constructions possible in nature, and their
study is the major theme of geometry rather than algebra. This is why we use geometric
terminology and intuition throughout this section.

A smooth map, φ : M → N , of formal graded manifolds is the same as a mor-
phism, φ∗ : ON → OM, of their structure sheaves. It is given in local coordinates
by formulae of the type (15) with φa

b1
not necessarily forming an invertible matrix. A

smooth invertible map is called a diffeomorphism. The tangent sheaf, TM, of a Z-graded
manifold M is, by definition, the Z-graded OM-module of derivations of the structure
sheaf, that is, the module of linear maps X : OM → OM satisfying the Leibnitz con-
dition, X ( f g) = (X ( f ))g + (−1)|X || f | f X (g). It is a free OM-module generated, in a
coordinate chart {xa}, by partial derivatives, ∂/∂xa . Elements of TM are called smooth
vector fields on M. Every vector field X ∈ TM is given in a coordinate chart as a linear
combination,

X =
∑

a

Xa(x)
∂

∂xa
, Xa(x) ∈ K[[xa]].

This representation is not canonical: if {x̂a} is another set of generators of OM related
to {xa} via (15), then

X =
∑

a

Xa(x)
∂

∂xa
=
∑

b

X̂b(x̂)
∂

∂ x̂b

2 We apologize for using the term sheaf in the present formal context as all the sheaves the reader encoun-
ters in the present section are rather primitive — they are skyscrapers consisting of a single stalk over the
distinguished point; this terminology helps, however, the geometric intuition (cf. [Me6]).
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with

X̂b(x̂) |x̂a=φa(x)=
∑

a

Xa(x)
∂φb(x)

∂xa
.

The matrix (∂φb(x)/∂xa) is called the Jacobian of the coordinate transformation (15).
The OM-module TM has a natural graded Lie algebra structure with respect to the
ordinary graded commutator of derivations, [X1, X2] = X1 ◦ X2− (−1)|X1||X2|X2 ◦ X1.
The rank of TM is equal to the number of generators of the algebra OM and is called
the dimension of the graded manifold M.

Let V be a finite dimensional Z-graded vector space. One can associate to V a Z-
graded formal manifold V by defining OV to be the isomorphism class of the
K-algebra ̂�•V ∗, where V ∗ := Hom(V,K). The manifold V is said to be modeled
on the graded vector space V . Every formal Z-graded manifold M is modeled by some
uniquely defined graded vector space T
∈M := (I/I2)∗ called the tangent vector space
at the distinguished point 
 in M. Note that every morphism of graded manifolds,
φ : M → N , gives rise to a well-defined map, dφ∗ : T
∈M → T
∈N , of tangent vector
spaces, but, in general, not to a morphism, dφ : TM → TN , of tangent sheaves. The
latter is well-defined if, for example, φ is an isomorphism.

Let T ∗
M := HomOM(TM,OM) be the dual OM-module, and let �1

M := T ∗
M[1]

be the same OM-module T ∗
M but with shifted grading. The latter is called the sheaf of

differential 1-forms on the graded manifold M. Note that the natural pairing,

〈 , 〉 : TM ×�1
M −→ OM

X ⊗ τ −→ 〈X, τ 〉

has degree 1. There is a canonical degree -1 K-linear morphism,

d : OM −→ �1
M

f −→ d f,

defined, for arbitrary vector field X ∈ TM by the equality 〈X, d f 〉 = X ( f ). It is clear
that �1

M is a free OM module with a basis given, in some coordinate chart {xa}, by
1-forms dxa , i.e. every 1-form τ can be represented in this chart as a linear combination,
τ =∑

a dxaτa(x), for some τa(x) ∈ K[[xa]]. We also have d f =∑

a dxa∂ f/∂xa .
The sheaf of graded commutative algebras, �•M := �•OM�1

M, generated by

1-forms is called the De Rham sheaf on M. Elements of �k
M := �k�1

M are called
differential k-forms. The morphism d : �0

M → �1
M extends naturally to a morphism

d : �k
M → �k+1

M for any k making thereby (�•M, d) into a sheaf of differential alge-
bras, i.e. satisfying d2 = 0 and d(τ1τ2) = (dτ1)τ2 +(−1)|τ1|τ1dτ2 for any τ1, τ2 ∈ �M.
In a local coordinate chart {xa} on M we have an isomorphism

�•M � K[[xa, dxa]], |dxa | = |xa | − 1,

with the de Rham differential given on generators by d(xa) := dxa , d(dxa) := 0.
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3.2. Odd Poisson structure. Let M be a formal Z-graded manifold. A odd Poisson
structure on M is a degree -1 linear map,

{ • } : OM ⊗K OM −→ OM
f ⊗ g −→ { f • g},

such that { f • g} = (−1) f g+ f +g{g • f } and

{ f • {g • h}} = {{ f • g} • h} + (−1)(| f |+1)(|g|+1{g • { f • h} (16)

{ f • gh} = { f • g}h + (−1) f g+gg{ f • h} (17)

for any f, g, h ∈ OM. Thus brackets { • } and the ordinary product of functions make
the structure sheaf OM into a sheaf of so called Gerstenhaber algebras.

A Z-graded formal manifold M equipped with a degree -1 Poisson structure is called
an odd Poisson manifold. A Poisson map, φ : (M1, { • })→ (M2, { • }), of odd Poisson
manifolds is a degree 0 smooth map φ : M1 → M2 such that

{φ∗( f ) • φ∗(g)} = φ∗{ f • g}
for any f, g ∈ OM2 . If one translates brackets { • } from OM to its “shifted” version,
OM[1] via the natural isomorphisms OM � OM[1], one obtains an ordinary Z-graded
Lie algebra structure on OM[1].

An important example of an odd Poisson structure comes from the sheaf of polyvector
fields defined next.

3.3. Polyvector fields. For any Z-graded n-dimensional formal manifold M the com-
pleted graded commutative algebra OM := ̂�•(TM [−1]) is free of rank 2n and hence
defines a Z-graded formal manifold M which is often called the total space, M := �1

M ,
of the bundle of 1-forms on M . Elements of its structure sheaf OM are called polyvector
fields on the manifold M and the structure sheaf itself is often denoted by Poly(M). One
sets Polyk(M) := �k(TM [−1]) and call its elements k-vector fields. This terminology
for M and its structure sheaf originates from the duality TM [−1] = HomOM (�

1
M ,OM )

and from the natural inclusion of the degree shifted3 tangent sheaf TM [−1] ⊂ Poly(M).
A coordinate chart {xa} on M induces a coordinate chart

{

xa, ψa := �
∂

∂xa
, |ψa | = −|xa | + 1

}

on M, where � : TM → TM [−1] is the natural isomorphism. A change of coordinates
(15) on M induces a change of coordinates,

xa −→ x̂a = φa(x)

ψa −→ ψ̂a =
∑

b

∂φa(x)

∂xb
ψb

(18)

on M. In these coordinates we have an isomorphism,

OM ≡ Poly(M) � K[[xa, ψa]].
3 To avoid such a degree shifting the sheaf of polyvector fields Poly(M) is defined by some authors as

OM[−1].
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It is not hard to check that the degree -1 brackets on OM defined in such a coordinate
chart by

{ f • g} :=
∑

a

(

(−1)| f ||xa | ∂ f

∂xa

∂g

∂ψa
+ (−1)| f |(|xa |+1) ∂ f

∂ψa

∂g

∂xa
.

)

(19)

satisfy the axioms (16) and (17), and, moreover, are invariant under transformations
(18). Hence they define an odd Poisson structure on the manifold M. Brackets (19) on
Poly(M) are often denoted by [ • ]S and called Schouten brackets.

Schouten brackets [ • ]S restricted to the subsheaf TM [−1] ⊂ Poly(M) give, modulo
the degree shifting, the ordinary commutator of vector fields.

3.4. Odd symplectic structures. Any odd Poisson structure on a graded formal mani-
fold M defines a homogeneous (of degree 1) section, ν, of the bundle Poly2(M) by the
formula,

〈ν, d f dg〉 = { f • g} ∀ f, g ∈ OM,

where 〈 , 〉 stands for the natural duality pairing between Poly2(M) = HomOM
(�2

M,OM) and�2
M. An odd Poisson structure on M is called non-degenerate or odd

symplectic if the associated 2-vector field is non-degenerate in the sense that the induced
“raising of indices” morphism of sheaves,

�1
M

�ν−→ TM,

is an isomorphism. The inverse map gives rise to a degree −1 differential 2-form, ω :=
“ν−1”, on M which satisfies, due to the Jacobi identity (16), the condition dω = 0.

3.4.1. Darboux lemma (see, e.g., [Kh,Le,Schw]) Any Z-graded manifold with a non-
degenerate odd Poisson structure is locally isomorphic to an odd Poisson manifold M
described in § 3.3.

Thus any odd symplectic manifold M admits local coordinates, {(xa, ψa), |ψa | =
−|xa | + 1}, in which the odd Poisson brackets are given by (19). The associated sym-
plectic 2-form is then given by ω =∑

a dxadψa . These coordinates are called Darboux
coordinates.

3.4.2. Symplectomorphisms and canonical transformations By Lemma 3.4.1, any odd
symplectic manifold can be covered by a Darboux coordinate chart (xa, ψa). For future
reference we note that a generic change of coordinates

xa −→ x̂a = φa(x, ψ)

ψa −→ ψ̂a = φa(x, ψ)
(20)

defines a new Darboux coordinate chart (x̂a, ψ̂a) if and only if the equations

∑

a

(−1)|xa |(|xc|+1) ∂φ
a

∂xb

∂φa

∂xc
= 0,

∑

a

(−1)|xa ||xc| ∂φa

∂ψb

∂φa

∂ψc
= 0,

∑

a

(

(−1)|xa ||xc| ∂φa

∂xb

∂φa

∂ψc
+ (−1)(|xa |+1)(|xb|+1) ∂φ

a

∂ψc

∂φa

∂xb

)

= δc
b :=

{

1 if b = c,
0 if b �= c,

(21)
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are satisfied. A diffeomorphism (20) satisfying Eqs. (21) is called a canonical transfor-
mation. It is easy to check that (18) is a canonical transformation for arbitrary functions
φa(x) which have the associated Jacobi matrix ∂φa(x)/∂xb|x=0 invertible.

A Poisson diffeomorphism of odd symplectic manifolds, φ : (M, ω)→ (M̂, ω̂), is
called a symplectomorphism. This is the same as a diffeomorphism φ : M → M̂
of smooth Z-graded manifolds such that φ∗(ω̂) = ω. It is the assumption on the
non-degeneracy of the odd symplectic forms which forces one to define symplecto-
morphisms as special cases of diffeomorphisms. In Darboux coordinate charts, (xa, ψa)

and (x̂a, ψ̂a), on M and, respectively, M̂ any symplectomorphism is given by func-
tions (20) satisfying Eqs. (21); for that reason a symplectomorphism is also often called
a canonical transformation.

Remark 3.4.3. The collection of Poisson morphisms of odd symplectic manifolds is
much richer than the collection of symplectomorphisms. For example, if M1 and M2
are odd symplectic manifolds, then M1 ×M2 is naturally an odd symplectic manifold
and the natural projection M1×M2 → M1 is a well defined Poisson morphism, which
is not a symplectomorphism.

3.4.4. Hamiltonian vector fields For any function� ∈ OM on an odd Poisson manifold
M, the associated map

H� : OM −→ OM
g −→ {� • g}

is a derivation of the structure ring OM and hence is a smooth vector field on M called
the Hamiltonian vector field associated with a function �. It is not hard to check that
[H�1 , H�2 ] = H{�1•�2} for any �1,�2 ∈ OM .

If the Poisson structure is non-degenerate, then in a local Darboux coordinate chart
one has,

H� =
∑

a

(

(−1)|�||xa | ∂�
∂xa

∂

∂ψa
+ (−1)�|(|xa |+1) ∂�

∂ψa

∂

∂xa

)

.

Note that if the function�(xa, ψa) has degree 1, then the associated hamiltonian vector
field H� has degree zero, and it makes sense to consider a system of ordinary differential
equations,

dφa(x, ψ, t)

dt
= −(−1)|xa | ∂�(x̂, ψ̂)

∂ψ̂a
|x̂a=φa(x,ψ,t), ψ̂a=φa(x,ψ,t)

,

dφa(x, ψ, t)

dt
= (−1)|xa | ∂�(x̂, ψ̂)

∂ x̂a
|x̂a=φa(x,ψ,t), ψ̂a=φa(x,ψ,t)

,

φa(x, ψ, t)|t=0 = xa,

φa(x, ψ, t)|t=0 = ψa,

(22)

for the unknown functions φa(x, ψ, t) and φa(x, ψ, t) of degrees |xa | and, respectively,
|ψa |. Moreover, a classical theorem from the theory of systems of ordinary differential
equations guarantees that, for a sufficiently small strictly positive ε ∈ R, its solution,

{φa
t = φa(x, ψ, t), φt a = φa(x, ψ, t)},
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exists and is unique for all t in the interval [0, ε). Moreover, the solution is real analytic
with respect to the parameter t . Using the above equations it is easy to check that

d

dt

∑

a

(−1)|xa |(|xc|+1) ∂φ
a
t

∂xb

∂φt a

∂xc
= 0,

d

dt

∑

a

(−1)|xa ||xc| ∂φa

∂ψb

∂φa

∂ψc
= 0,

d

dt

∑

a

(

(−1)|xa ||xc| ∂φa

∂xb

∂φa

∂ψc
+ (−1)(|xa |+1)(|xb|+1) ∂φ

a

∂ψc

∂φa

∂xb

)

= 0,

implying, in view of the boundary t = 0 conditions on φt , that, for any t ∈ [0, ε) the
map

xa −→ x̂a = φa(x, ψ, t)

ψa −→ ψ̂a = φa(x, ψ, t)

satisfies Eq. (21) and hence defines a canonical transformation. Thus any degree 1 func-
tion� on M gives rise naturally to a 1-parameter family of local symplectomorphisms
φt : M → M.

3.4.5. Lagrangian submanifolds Let M be a Z-graded manifold and I ⊂ OM an ideal
such that the quotient ring OS ⊂ OM/I is free; this ring corresponds, therefore, to
a Z-graded manifold S which is called a submanifold of M; the natural epimorphism
OM → OS is called an embedding S ↪→ M.

Lemma 3.4.1 implies that any odd symplectic manifold (M, ω) is even dimensional,
say dim M = 2n. An n-dimensional submanifold L ↪→ M is called Lagrangian if
ω|L = 0, i.e. the induced map ω|L : �2(TL[−1]) → OL is zero. The normal sheaf,
NL|M, of the submanifold L ↪→ M is defined by the short exact sequence of sheaves
of OL-modules,

0 −→ TL
i−→ TM |L−→ NL|M −→ 0

so that its dualization (and degree shifting) gives

0 −→ N∗
L|M[1] −→ �1

M |L p−→ �1
L −→ 0.

The odd symplectic form ω provides us with a degree 0 isomorphism of the middle
terms of the short exact sequences above,

TM |L �ω−→ �1
M.

The condition ω|L = 0 is equivalent to saying that the composition

TL
i−→ TM |L �ω−→ �1

M
p−→ �1

L
vanishes. Hence we get a canonical monomorphism of sheaves,

�ω ◦ i : TL −→ N∗
L|M[1],

which is an isomorphism because both sheaves have the same rank as locally free OL-
modules. Hence, for any Lagrangian submanifold L ↪→ M, NL|M = (TL)∗[1] = �1

L
and there is a canonically associated exact sequence,

O −→ TL
i−→ TM |L−→ �1

L −→ 0 (23)

of sheaves.
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3.5. Densities and semidensities. If V is a Z-graded free module over a Z-graded ring
R, then Ber(V ) is, by definition, a degree 0 rank 1 free module over R equipped with a
distinguished family of bases {De} defined as follows [Ma1] (see also [Ca2]):

(i) for any base e = {eα} of the module V , there is an associated basis vector, De, of
Ber(V );

(ii) if e = {eα} and ê = {êβ} are two bases of V with the relation êβ =∑

α eαAαβ for

some non-degenerate matrix Aβα ∈ R, then Dê = Ber(A)De, where Ber(A) is the
Berezinian of the matrix A.

If M is a Z-graded manifold, then

Ber(M) := Ber(T ∗
M) =

(

Ber(�1
M)

)∗

is a rank 1 locally free sheaf of OM-modules. Its elements which do not vanish at the
distinguished point, are called densities or volume forms on the manifold M. Let, for
concreteness, M be an odd symplectic manifold. To every Darboux coordinate chart
(xb, ψb) on M there corresponds, by definition, a basis section, Dx,ψ , of Ber(M);
if (xb, ψb) and (x̂a, ψ̂a) are two Darboux coordinate charts related to each other by a
canonical transformation (20), then

Dx̂,ψ̂ = Ber

(

∂(x̂, ψ̂)

∂(x, ψ)

)

Dx,ψ ,

where ∂(x̂,ψ̂)
∂(x,ψ) stands for the Jacobi matrix of the natural transformation (20).

One can show (see, e.g., [Schw,KhVo]) that for any odd symplectic manifold M the
sheaf Ber(M) admits a square root, that is, there exists a sheaf Ber1/2(M) of so called
semidensities such that

Ber(M) =
(

Ber1/2(M)
)⊗2

. (24)

An element� of the OM-module Ber1/2(M)which does not vanish at the distinguished
point, is called a semidensity on M. In a Darboux coordinate chart on M a semidensity,
�, can be represented in the form� = �x,ψ

√
Dx,ψ for some degree zero formal power

series�x,ψ ∈ K[[xa, ψa]]with�x,ψ |x=0,ψ=0 ∈ K
∗. Under a canonical transformation

this representation changes as follows:

�x̂,ψ̂ =
(

Ber

(

∂(x̂, ψ̂)

∂(x, ψ)

))−1/2

�x,ψ . (25)

3.5.1. Odd Laplacian on semidensities Let (M, ω) be an odd symplectic manifold.
The odd symplectic structure on M gives canonically rise to a differential operator on
semidensities,

�ω : Ber1/2(M) −→ Ber1/2(M)

� −→ �ω�,
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defined in an arbitrary Darboux coordinate system as follows [Kh]:

�ω� :=
(

∑

a

∂2�x,ψ

∂xa∂ψa

)√
Dx,ω.

A remarkable fact is that�ω is well-defined, i.e. does not depend on a particular choice of
Darboux coordinates used in the definition, as under arbitrary canonical transformations
(20) one has [Kh],

∑

a

∂2�x̂,ψ̂

∂ x̂a∂ψ̂a
| x̂a=φa (x,ψ)
ψ̂a=φa (x,ψ)

=
(

Ber

(

∂(x̂, ψ̂)

∂(x, ψ)

))−1/2
∑

a

∂2�x,ψ

∂xa∂ψa
. (26)

The operator �ω is uniquely determined by the underlying odd symplectic structure
and is called the odd Laplacian. This is an odd analogue of the modular vector field
in ordinary Poisson geometry [Wein]. Its invariant definition can be found in [Se]; that
definition is a bit tricky and involves Manin’s beautiful description of the Berezinian
Ber(M) as a cohomology class in a certain complex (see Chap. 3, §4.7 in [Ma1]).

For an arbitrary Darboux coordinate chart (xa, ψa) the second order operator
∑

a
∂2

∂xa∂ψa
is denoted from now on by �x,ψ or, when a particular choice of Darboux

coordinates is implicitly assumed, simply by �0. This operator has an invariant mean-
ing only when applied to (coordinate representatives of) semidensities, not to ordinary
functions.

Lemma 3.5.2. �2
ω = 0.

Proof is evident when one uses Darboux coordinates.

3.6. Batalin-Vilkovisky manifolds. A Batalin-Vilkovisky structure (or, shortly, BV-struc-
ture) on an odd symplectic manifold (M, ω) is a semidensity� ∈ Ber1/2(M) satisfying
an equation,

�ω� = 0. (27)

Equation (27) is called a master equation, while its solution � ∈ Ber1/2(M) a master
semidensity.

Such structures first emerged in the powerful Batalin-Vilkovisky approach to the
quantization of field theories with gauge symmetries (see, e.g., [BaVi,Schw,Ca1,Ca2,
CKTB] and references cited there). A concrete example of such a BV quantization
machine is considered in § 6 below.

The automorphism group, Aut (M, ω), of the odd symplectic manifold (that is, the
group of symplectomorphisms (M, ω) → (M, ω)) acts naturally on the set of BV-
structures on (M, ω): if � is a master semidensity, then for any φ ∈ Aut (M, ω), its
pullback φ∗(�) defined by (25) is again a master semidensity.

Remark 3.6.1. Following Schwarz [Schw], BV-structures on odd symplectic manifolds
are defined in many papers in a different way: one first fixes an extra structure, a volume
form ρ on M, and then one defines an odd Laplacian, �ω,ρ , on functions as a map

�ω,ρ : OM −→ OM
f −→ LH f ρ

ρ
,
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where LH f stands for the Lie derivative along the Hamiltonian vector field H f associ-
ated with a function f ∈ OM. The data (M, ω, ρ) is called in [Schw] an S P-manifold,
and a BV-structure on an S P-manifold is defined as a function f ∈ OM satisfying the
equation�ω,ρ f = 0. In fact, the volume form ρ can not be arbitrary but must satisfy an
extra condition [Schw] which assures that in some Darboux coordinate the equation for
f takes the form�x,ψ f = 0 making it completely equivalent to the above semidensity
approach via an association

f � �√
ρ
.

The S P-manifold approach to the BV-geometry does not seem to be a natural one for
the following two reasons:

(i) it is often accompanied with an undue restriction of the gauge group of the set
of BV-structures on M from arbitrary symplectomorphisms to volume preserving
symplectomorphisms (in contrast to ordinary symplectic geometry, in odd symplec-
tic geometry a generic symplectomorphism is not necessarily volume preserving);

(ii) in applications of the BV formalism to quantizations one never integrates over the
“phase space” M itself but rather over its Lagrangian submanifolds L ↪→ M (see
§ 6 for a concrete example) depending on a gauge fixing. Thus what one needs
in applications is not a volume form on M but rather a global object on that odd
symplectic manifold which restricts to a volume form on its arbitrary Lagrangian
submanifold L ↪→ M. Extension (23) implies,

Ber(M) |L= Ber(L)⊗ Ber(�1
L)
∗ = Ber(L)⊗2, (28)

which in turn implies that it is an appropriately chosen semidensity on M
(rather than a volume form on M) which might restrict to a volume form on the
Lagrangian submanifold.

In fact we have no choice as to adopt a definition of BV structures via semidensities
rather than via S P-manifolds as in our approach Definition 3.6 (as well as definition of
a morphism of BV -manifolds, see § 3.9 below) follows from the homotopy theory of
Lie 1-bialgebras and the associated homotopy transfer formulae.

Definition 3.6.2. A data (M, ω,�) consisting of an odd symplectic manifold (M, ω)

and a master semidensity � ∈ Ber1/2(M) is called a Batalin-Vilkovisky manifold, or
simply a BV-manifold.

3.6.3. Dilation group action and pointed manifolds If � is a BV structure on an odd
symplectic manifold M thenλ� is again a BV structure for any non-zero constantλ ∈ K.
From now on we identify such BV structures, i.e. we understand a master semidensity
� as an element of the projective space PBer1/2(M).

Formal Z-graded manifolds M are always pointed, i.e. have a distinguished point
∗ ∈ M corresponding to the unique maximal ideal in OM which is often called (in
the quantization context) the vacuum state. In a Darboux coordinate system (xa, ψa)

centered at ∗ one can always normalize a master semidensity � = �x,ψDx,ψ ∈
PBer1/2(M) in such a way that �x,ψ |x=ψ=0 = 1 ∈ K, and this normalization is
invariant under formal canonical transformations. It is often suitable to represent such a
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normalized semidensity in the form � = e�(x,ψ)
√

Dx,ψ for some smooth formal func-
tion �(x, ψ) vanishing at zero (so that its exponent is well-defined as a formal power
series); the master equation takes then the form

�ω� =
(

�0� +
1

2
{� • �}

)

� = 0.

As � is, by assumption, non-vanishing, the latter equation is equivalent to

�0� +
1

2
{� • �} = 0, (29)

where { • } are the odd Poisson brackets on M. The normalization �|∗ = 0 is assumed
from now on.

3.7. Sheaves of Gerstenhaber-Batalin-Vilkovisky (GBV) algebras. A Z-graded commu-
tative unital algebra A equipped with a degree -1 linear map � : A → A satisfying

(i) �2 = 0,
(ii) and, for any a, b, c ∈ A,

�(abc) = �(ab)c + (−1)|b|(|a|+1)b�(ac) + (−1)|a|a�(bc)

−�(a)bc − (−1)|a|a�(b)c − (−1)|a|+|b|ab�(c)

is called a GBV-algebra (see, e.g., [Ma2]). Note that �(1) = 0. One can check [Ma2]
that the linear map

[ • ] : A⊗A −→ A
a ⊗ b −→ [a • b] := (−1)|a|�(ab)− (−1)|a|�(a) ◦ b − a�(b)

(30)

makes A into an odd Lie superalgebra, i.e. the Jacobi identities of type (16) are satisfied.
Moreover, the odd Poisson identity (17) also holds true,

[a • (bc)] = [a • b]c + (−1)|a|(|b|+1)b[a • c],
for any a, b ∈ A. The operator � is called a BV-operator of the GBV-algebra A.

Lemma 3.7.1. Let (M, ω,�) be a BV-manifold. Then its structure sheaf is naturally a
sheaf of GBV-algebras with the BV operator given by

�ω,� : OM −→ OM
f −→ �ω,� f := �ω( f�)

�
.

Proof. Representing � in a local Darboux coordinate system as e�
√

Dx,ψ , we get

�ω,� f = �0( f e�)Dx,ψ

�
= (�0 f + {� • f })�

�
= �0 f + {� • f }.

Then, for any f ∈ OM,

(�ω,�)
2 f = �ω,� (�0 f + {� • f })

= �0 (�0 f + {� • f }) + {� • (�0 f + {� • f })}
=
{(

�0� +
1

2
{� • �}

)

• f

}

= 0,
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so that condition (i) in the definition of a GBV algebra is satisfied. Condition (ii) can be
checked analogously. ��

It is easy to see that the odd Lie brackets induced on the structure sheaf OM by for-
mula (30) coincide precisely with the Poisson brackets of the underlying odd symplectic
structure.

3.8. Quantum master equation. Let � be a formal parameter of degree 2 and let K[[�]] :=
{∑n≥0 an�

n, an ∈ R} be the associated graded commutative ring of formal power series.
The latter defines a Z-graded manifold which we denote by K[[�]]v. We are interested in
considering �-twisted formal smooth manifolds M� whose structure sheaves OM� are
non-canonically isomorphic to OM[[�]] := OM⊗R R[[�]] where OM is the structure
sheaf of some Z-graded smooth manifold M. Such an �-twisted manifold M� is best
understood as a formal family of manifolds,π : M� → K[[�]]v, over the 1-dimensional
formal Z-graded manifold K[[�]]v. The fiber, M0 := π−1(
), over the distinguished
point 
 ∈ K[[�]]v is a Z-graded formal manifold called the classical limit of M�.

More precisely, let us consider a category, C�, whose objects are (isomorphism clas-
ses) of completed Z-graded free K[[�]]-algebras; they are equipped with a natural mono-
morphism, π∗ : K[[�]] → OM�

, of K[[�]]-algebras; morphisms in this category are
defined as continuous morphisms of topological K[[�]]-algebras commuting with the
monomorphism π∗. The quotient of an algebra OM� by the ideal generated by � is
denoted by OM0 ; this is the structure sheaf of the classical limit M0 = π−1(
).

The opposite category Cv
�

is called the category of �-twisted manifolds. As in § 3.1–
3.4 on can define natural relative versions of all basic concepts — tangent sheaves, De
Rham sheaves, odd Poisson structures and odd symplectic structures. For example, an
�-twisted odd symplectic manifold can be defined as an equivalence class of Darboux
coordinate charts (xa, ψa) modulo canonical transformation of the form,

xa −→ x̂a = φa(x, ψ, �),

ψa −→ ψ̂a = φa(x, ψ, �),
(31)

where φa(x, ψ, �) and φa(x, ψ, �) are formal power series from K[[xa, ψa, �]] such

that Eqs. (21) hold and the Jacobian ∂(x̂,ψ̂)
∂(x,ψ) gives an invertible matrix at the point (xa =

0, ψa = 0, � = 0).
Let M� be an �-twisted Z-graded manifold. We need a singular (with respect to �)

extension of its structure sheaf OM� . Let us fix an isomorphism i : OM� � OM0 ⊗K

K[[�]], and use it to extend OM� as follows,

OM�,�−1 :=
{ ∞
∑

n=−∞
fn�

n ∈ OM0 ⊗K K[[�, �−1]] : f−n ∈ I n for n ≥ 1

}

, (32)

where I is the maximal ideal in OM0 . The resulting vector space has natural a K[[�]]-
algebra structure extending that of OM�

; moreover, the isomorphism class of this exten-
sion is independent of a particular choice of a map i used in the definition.

Let M� be an �-twisted odd symplectic manifold. An invertible element � of the
sheaf Ber1/2(M�) ⊗OM�

OM�,�−1 is called regular if in some Darboux coordinate
charts, (xa, ψa) it can be represented in the form

� = e
�
�

√
Dx,ψ
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for some function �(x, ψ, �) ∈ I whose classical limit, �|�=0, lies in I . (Here and
elsewhere I stands for the maximal ideal in the K-algebra OM�

, and I for the maximal
ideal of OM0 .) It is clear that this notion does not depend on the choice of a Darboux
coordinate chart used in the definition.

Definition 3.8.1. A quantum Batalin-Vilkovisky structure on an �-twisted odd sym-
plectic manifold (M�, ω) is a regular element � ∈ Ber1/2(M�) ⊗OM�

OM�,�−1

satisfying an equation,

�ω� = 0. (33)

This equation is called a quantum master equation, while its solution� a quantum mas-
ter semidensity. In a Darboux coordinate system the quantum master equation has the
form,

��0� +
1

2
{� • �} = 0. (34)

The structure sheaf OM� can be made into a sheaf of GBV algebras with respect to the
operator,

�ω,� : OM� −→ OM�

f −→ �ω,� f := �
�ω( f�)

�
= ��0 f + {� • f }. (35)

3.8.2. Fact-definition Let φ : (M�, ω) → (M̂�, ω̂) be a symplectomorphism of odd
symplectic manifolds, and � a quantum BV structure on M�. Then �̂ := (φ−1)∗�
(with the pullback map (φ−1)∗ given in local coordinates by (25)) is a quantum BV
structure on M̂�; such a pair, (M�, ω,�) and (M̂�, ω̂, �̂), of quantum BV structures
is called symplectomorphic.

3.9. Quantum BV manifolds. Let V be a Z-graded finite-dimensional vector space.
Slightly abusing notations, the formal �-twisted Z-graded manifold corresponding to
the isomorphism class of the K[[�]]-algebra ̂�•(V ⊕ V ∗[−1])∗ ⊗K K[[�]] is denoted
from now on by M�

V rather than by M�
V⊕V ∗[−1]; it has a natural odd symplectic structure

induced by the pairing between V and V ∗[−1]. Any �-twisted odd symplectic manifold
is isomorphic to M�

V for some non-canonically defined vector space V . We shall con-
sider next an extra structure — a ordered pair of transversal Lagrangian submanifolds
in the classical � → 0 limit, M0

V , of M�
V — which will make the correspondence

M�
V � V canonical.
The inclusions V ⊂ V ⊕ V ∗[−1] and V ∗[−1] ⊂ V ⊕ V ∗[−1] correspond to two

transversal Lagrangian submanifolds in M0
V which we denote by the symbols LV and,

respectively, L⊥V and consider from now as an extra part of the definition of an � twisted
odd symplectic manifold π : M�

V → K[[�]]v. The automorphism group of M�
V con-

sists, therefore, of those symplectomorphisms φ : M�
V → M�

V which leave Lagrangian
submanifolds LV and L⊥V in the fiber M0

V over � = 0 invariant. We can always find an
adopted Darboux coordinate chart, (xa, ψa) on M�

V such that the Lagrangian subman-
ifold LV ↪→ M0

V is given by the equations ψa = 0 and the Lagrangian submanifold
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L⊥V ↪→ M0
V by the equations xa = 0. Then Aut (M�

V ) consists of canonical transfor-
mations (31) satisfying the conditions,

φa(x, ψ, �) |x=�=0= 0, φa(x, ψ, �) |ψ=�=0= 0. (36)

Note that the vector space V is canonically isomorphic to the Lagrangian subspace
T
∈LV of the tangent space T
∈MV and hence has an invariant meaning. Moreover,
the tangent space T
∈MV is canonically decomposed into a direct sum of Lagrangian
subspaces, T
∈LV ⊕ T ⊥


∈LV
, so that the odd symplectic structure on M0

V does indeed
coincide with the one which is induced from the natural parings between T
∈LV and
T ⊥

∈LV

= HomK (T
∈LV ,K)[−1].

3.9.1. Fact (cf. [Schw]) Any odd symplectic manifold M� equipped with an ordered
pair of transversal Lagrangian submanifolds L1 and L2 in M0 is symplectomorphic to
the odd symplectic manifold M�

V for some uniquely defined vector space V := T
∈L1 .

Definition 3.9.2. (i) A quantum BV manifold is an �-twisted odd symplectic mani-
fold M�

V associated with some graded vector space V equipped with a quantum
Batalin-Vilkovisky structure� such that in an adopted Darboux coordinate chart

(xa, ψa) one has � = e
�
� Dx,ψ with “classical” and “semiclassical” parts of

�(x, ψ, �) =∑

k≥0 �k(x, ψ)�k satisfying the boundary conditions,

�0(x, ψ) ∈ IV IV⊥ and �1(x, ψ) ∈ IV + IV⊥ , (37)

where IV � ψK[[x, ψ]] and IV⊥ � xK[[x, ψ]] are the ideals of the Lagrangian
submanifolds LV and, respectively, LV⊥ in the classical limit M0

V .
(ii) A symplectomorphism,φ : (M�

V1
,�1)→ (M�

V2
,�2), of quantum BV manifolds is

a symplectomorphismφ of the associated quantum BV structures (see §3.8.2) which
respects Lagrangian submanifolds in the fibre over � = 0, i.e. lim�→0 φ(LV1) ⊂
LV2 and lim�→0 φ(L⊥V1

) ⊂ L⊥V2
.

Remarks 3.9.3. (i) The second boundary condition, �1(x, ψ) ∈ IV + IV⊥ , says only
that �1 has no constant term, i.e. � itself has no term proportional to �; as the
quantum master equation is invariant under translations � → � + K[[�]], the
second boundary condition is only a partial normalization condition on the quan-
tum master function. The first boundary condition in Definition 3.9.2(i) is quite
restrictive, but still allows many interesting examples such as, e.g., B F theory and
its various generalizations (see, e.g., [CaRo,Mn] and also § 6).

(ii) In view of the presence of boundary conditions, the structure in §3.9.2 should be
more precisely called a quantum BV manifold with split quasi-classical limit. We
abbreviate it to simply a quantum BV manifolds in this paper.

3.10. Homotopy classification of quantum BV manifolds. Let (M�
V ,�) be a quantum

BV manifold associated with a Z-graded vector space V . In an adopted Darboux coor-

dinate chart we have � = e
�
�

√
Dx,ψ , where, in view of boundary conditions (37), the

formal power series must have the form

�(x, ψ, �) =
∑

a,b

� a
(0) bxbψa

︸ ︷︷ ︸

�0

+
∑

n≥1,p+q+2n≥3
p+n≥2,q+n≥2

1

p!q!�
b1...bq

(n) a1...ap
xa1 . . . xapψb1 . . . ψbq �

n

︸ ︷︷ ︸

�

,
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for some �
b1...bq

(n) a1...ap
∈ K. Quantum master equation (34) immediately implies

{�0 • �0} = 0,

or, equivalently,
∑

c

� a
(0) c�

c
(0) b = 0.

The linear functions xa mod I2
�

, where I� is the maximal ideal in the K[[�]]-algebra
K[[xa, ψa, �]], form a basis of the vector space V ∗; let {ea} be the associated dual basis
of V , and define a degree 1 map

d : V −→ V
ea −→ d(ea) :=∑

c ec�
c

(0) a
.

Clearly, d2 = 0. Moreover, the map d does not depend on the choice of an adopted
Darboux coordinate chart (xa, ψa) used in its definition as the third equation in (21)
implies that under a generic canonical transformation (31),

xa −→ x̂a = φa(x, ψ, �) =
∑

b

Aa
b xb + other terms, Aa

b ∈ K,

ψa −→ ψ̂a = φa(x, ψ, �) =
∑

b

Bb
aψb + other terms, Ba

b ∈ K,

the leading matrices A and B must be inverse to each other. Hence the differential
d on the vector space V is defined canonically and is called the differential induced
by the master semidensity or simply induced differential. In this situation we say that
the quantum BV manifold (M�

V ,�) is modeled on a dg vector space (V, d). Setting
d := {�0 • . . .} we can rewrite the quantum master equation in the form,

d� + ��0� +
1

2
{� • �} = 0. (38)

Definition 3.10.1. A quantum BV-manifold (M�
V ,�) is called minimal if in some (and

hence any) adopted Darboux coordinate system (xa, ψa) one has � = e
�
�

√
Dx,ψ with

the quadratic part, �0, of � vanishing, i.e. with � = �.

Definition 3.10.2. A quantum BV-manifold (M�
V ,�) is called contractible if the asso-

ciated complex (V, d) is acyclic and there exists an adopted Darboux coordinate system

(xa, ψa) in which � = e
�
�

√
Dx,ψ with � = �0, i.e. with � = 0.

3.10.3. Symplectomorphisms and morphisms of tangent complexes. A symplectomor-
phism, φ : (M�

V ,�) → (M�

V̂
, �̂), of quantum BV manifolds induces a linear map,

T
∈M�

V
→ T
∈M�

V̂
, of tangent spaces at the distinguished points and, as φ(LV ) ⊂ LV̂

and φ(L⊥V ) ⊂ L⊥
V̂

, the linear maps,

dφ
 : T
∈LV = V −→ T
∈LV̂
= V̂ ,
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and

dφ⊥
 : T
∈L⊥V = V ∗[−1] −→ T
∈LV̂⊥ = V̂ ∗[−1]

of the associated subspaces. The differentials d in V and d̂ in V̂ induce, respectively,
dual differentials d∗ in V ∗[−1] and d̂∗ in V̂ ∗[−1].
Lemma 3.10.4. The maps dφ
 : V −→ V̂ and dφ⊥
 : V ∗[−1] → V̂ ∗[−1] respect the
induced differentials.

Proof. Let (xa, ψa) and (x̂ A, ψ̂A)be arbitrary adopted Darboux coordinate charts on odd
symplectic manifolds M and, respectively, M̂. The map φ is given in these coordinates
by

x̂ A =∑

a AA
a xa + higher order terms, AA

a ∈ K,

ψ̂A =∑

a Ba
Aψa + higher order terms, Ba

A ∈ K.

The invertible matrix AB
a (resp. Ba

A) is a coordinate representative of the map dφ
 (resp.,
dφ⊥
 ) in the associated (to a choice of Darboux coordinates) bases of V and V̂ (resp., of
V ∗[−1] and V̂ ∗[−1]). Equality (21) implies that matrices A and B are inverse to each
other; then equality (25) in the limit � → 0 implies

∑

b

AA
b �

b
(0) a =

∑

B

� A
(0) BAB

a ,
∑

b

� A
(0) bBb

A =
∑

B

Ba
B�

B
(0) A,

which in turn implies the required claims. ��
Main Theorem 3.10.5. Every quantum BV -manifold (M�

V ,�) is symplectomorphic to
the product, (M�

V1
,�1)× (M�

V2
,�2), of a minimal quantum BV manifold (M�

V1
,�1)

and a contractible one, (M�
V2
,�2).

Proof. We shall construct by induction an adopted Darboux coordinate chart (xa, ψa)a∈I

on MV in which the quantum density � is represented by e
�(x,ψ,�)

�

√
Dx,ψ with

�(x, ψ, �) =
∑

A,B∈I ′
�B

A x AψB

︸ ︷︷ ︸

�0

+
∞
∑

N=3

∑

N=p+q+2n
p,q≥1,n≥0

∑

b•,c•∈I ′′

1

p!q!�
c1...cq

(n)b1...bp
xb1 . . . xbpψc1 . . . ψcq �

n

︸ ︷︷ ︸

�

, (39)

for some partition of the labeling set I = {1, 2, . . . , dimK V } into disjoint subsets
I = I ′

∐

I ′′. Then the data,

(

K[[x A, ψA, �]], �2 := e
�0
�

√
Dx A,ψA

)

A∈I ′
,
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defines a contractible BV manifold (M�
V2
,�2) while the data,

(

K[[xa, ψa, �]], �1 := e
�
�

√
Dxa,ψa

)

a∈I ′′
,

defines a minimal BV manifold (M�
V1
,�1) proving thereby the Main Theorem. The

complete separation of variables in (39) assures that �1 and �2 satisfy the correspond-
ing quantum master equations.

The required separation of variables (39) will be achieved by induction on an integer
valued parameter N starting with N = 2. From now on the order of a monomial

xa1 . . . xapψb1 . . . ψbq �
n ∈ K[[x, ψ, �]]

is assumed to be p +q + 2n and, for an natural number N , we denote by O(N ) the subset
of K[[x, ψ, �]] consisting of formal power series spanned by monomials of order ≥ N .
For formal power series f, g ∈ K[[x, ψ, �]] the equality f = g mod O(N ) means
equality of their polynomial parts of order strictly less than N .

As we already know, the lowest second order polynomial part,

�0 :=
∑

a,b

� a
(0) bxbψa

of the master function �(x, ψ, �) defines a differential d in the vector space V (and
hence in V [−1]). A choice of an adopted Darboux coordinate system (xa, ψa) deter-
mines the associated basis, {ψa mod I2

�
}, of V [−1] and the (dual) basis, {xa mod I2

�
},

of V ∗. As we are working over a field of characteristic zero, it is always possible to
(non-canonically) represent the complex (V [−1], d) as a direct sum,

V [−1] = H(V, d)[−1] ⊕ B ⊕ B[−1]
with the differential d given by d(a ⊕ b ⊕ c) = b[−1]. Let {ψa}a∈I ′ , be a basis of
H(V, d)[−1], {ψα}α∈J a basis of B and {ψᾱ := dψα}α∈J the associated basis of B[−1].
In the basis {ψa, ψα,ψᾱ} of V [−1] the differential d is given by the block-matrix

d =
⎛

⎝

0 0 0
0 0 0
0 Id 0

⎞

⎠ . (40)

The above splitting induces an associated splitting of V ∗, and hence an associated dual
base, {xa, xα, x ᾱ} of V ∗. Thus we can always find an adopted Darboux coordinate chart

(

xa, ψa
) =

⎛

⎜

⎝(xα, x ᾱ, ψα, ψᾱ)
︸ ︷︷ ︸

(x A,ψA)

, (xa, ψa)

⎞

⎟

⎠ (41)

in which the master semidensity is given by

�(x, ψ, �) =
∑

a,b∈I

� a
(0) bxbψa mod O(3)

=
∑

α∈J

xαψᾱ mod O(3). (42)
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Assume now that we have constructed an adopted Darboux chart (41) in which�(x, ψ, �)
is given by (39) modulo terms of order N + 1 ≥ 3, i.e.,

�(x, ψ, �) =
∑

α∈J

xαψᾱ +
N
∑

k=3

�k(x
a, ψa, �) mod O(N + 1)

holds true for some N ≥ 2. Here�k stands for a sum of monomials of degree k. It follows
from the quantum master equation (34) that the next term, �N+1(xa, x A, ψa, ψA, �), in
the Taylor expansion of � must satisfy an equation,

{
∑

α∈J

x ᾱψα • �N+1} + ��0�N+1 +
1

2

∑

p+q=N+3
p,q≥3

{

�p • �q
} = 0. (43)

The map

d : K[[xa, x A, ψa, ψA, �]] −→ K[[xa, x A, ψa, ψA, �]]
f −→ d f := {

∑

α∈J

xαψᾱ • f }

is a differential which can be equivalently represented as

d =
∑

α∈J

(

ψᾱ
∂

∂ψα
+ (−1)|xα |xα ∂

∂x ᾱ

)

, |ψᾱ| = |ψα| + 1, |xα| = |x ᾱ| + 1.

As d�0 +�0d = 0 and�2
0 = 0, the map d +��0 is also a differential in K[[xa, x A, ψa,

ψA, �]]. Thus we can rewrite the master equation (43) in the form,

(d + ��0)�N+1 = FN+1, (44)

where FN+1 := − 1
2

∑

p+q=N+3
p,q≥3

{�p •�q} does not depend (by the induction assumption)

on the variables (x A, ψA).

Lemma A. The vector subspace

i : K[[xa, ψa, �]] ⊂ K[[xa, x A, ψa, ψA, �]]

is a subcomplex of the complex (K[[xa, x A, ψa, ψA, �]], d + ��0) with the induced dif-

ferential δ being equal to �
∑

a∈I ′′
∂2

∂xa∂ψa
. The inclusion i is a quasi-isomorphism of

complexes.4

4 It is worth pointing out that the homology of the complex (K[[xa, ψa]], ∂2

∂xa∂ψa
) is a one dimensional

vector space spanned over K by the product, η = xa′ · · ·ψa′′ , of all those elements of the set, (xa, ψa), of
generators which have degrees in 2Z + 1. Hence the cohomology of the complex (K[[xa, ψa,�]], δ) is equal

to the direct sum A ⊕ �K[[�]] ⊗ η, where A is the kernel of the operator ∂2

∂xa∂ψa
in K[[xa, ψa]].
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Proof of Lemma A. The inclusion i respects the filtrations,

K[[xa, ψa, �]] ⊃ �K[[xa, ψa, �]] ⊃ �
2
K[[xa, ψa, �]] ⊃ . . . ,

K[[xa, x A, ψa, ψA, �]]⊃�K[[xa, x A, ψa, ψA, �]]⊃�
2
K[[xa, x A, ψa, ψA, �]]⊃ . . . ,

and hence induces maps,

ir : (Er , δr ) −→ (Er , Dr ) r ≥ 0,

of the associated spectral sequences. The differential δ0 vanishes while the differential
D0 is equal to d. The Poincaré Lemma (see, e.g., §3.4.5 in [Ma1]) says that the cohomol-
ogy of the complex (E0 = K[[xa, x A, ψa, ψA]], D0 = d) is equal K[[xa, ψa]] =: E1.
Hence the map i1 : (E1, δ1) → (E1, D1) is obviously an isomorphism. Both spec-
tral sequences are regular (terminating at r = 2), and the filtrations are complete and
exhaustive. Hence by the classical Complete Convergence Theorem 5.5.10 (see p.139
in [Weib]) they both converge. Then Comparison Theorem 5.2.12 in [Weib] says that
the inclusion i is a quasi-isomorphism completing the proof of Lemma A. ��
Lemma B. Every solution, A = ∑∞

k=0 Ak�
k , Ak ∈ K[[xa, x A, ψa, ψA]], of the equa-

tion,

(d + ��0)A = 0,

can be represented in the form

A = B + (d + ��0)C

for some B ∈ K[[xa, ψa, �]] and C ∈ K[[xa, x A, ψa, ψA, �]]. Moreover, if A satisfies
the boundary conditions (37), that is,

A0|x=0 = 0, A0|ψ=0 = 0, A1|x=0 · A1|ψ=0 = 0,

and has polynomial order N + 1 ≥ 3, then B can be chosen to satisfy (37) and have
order N + 1 ≥ 3 as well.

Proof of Lemma B. The first part of this lemma follows, of course, from lemma A, but
we show another explicit proof which makes the second part of the Lemma immediate.
We have,

d A0 = 0, d A1 = −�0 A0, . . . , d Ai = −�0 Ai+1, . . . .

The Poincaré Lemma says that the cohomology of the complex (K[[xa, x A, ψa, ψA]], d)
is equal K[[xa, ψa]]. Hence we get,

A0 = B0 + dC0, A1 −�0C0 = B1 + dC1, . . . , Ai −�0Ci−1 = Bi + dCi , . . .

for some Bi ∈ K[[xa, ψa]] and Ci ∈ K[[xa, x A, ψa, ψA]], i = 0, 1, 2, . . .. Thus

A =
∞
∑

k=0

Bk�
k

︸ ︷︷ ︸

B

+(d + ��0)

∞
∑

k=0

Ck�
k

︸ ︷︷ ︸

C

,

proving the first half of Lemma B. The differentials d + ��0 and δ preserve the polyno-
mial order, and the splitting homotopy in the proof of the Poincare’ Lemma (see p. 171
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in [Ma1]) can also be chosen to be degree preserving. Thus if A has order N + 1, then
B and C can also be chosen to have order N + 1 (or be zero). The boundary conditions
for A imply B0|xa=0 + d(C0|xa) = 0 which, by the Poincaré Lemma, in turn implies
B0|xa=0. Analogously, B0|ψa=0. Note that equation A1|x=0 · A1|ψ=0 = 0 says that the
formal power series A1 ∈ K[[x, ψ]] has no constant (i.e. belonging to K) term. As C0
is of order N + 1 ≥ 3 in x and ψ , the power series �0C0 has not a constant term as
well. Then B1, being the part of A1 −�0C0 which is independent of (x A, ψA), has no
constant term either and hence B1|x=0 · B1|ψ=0 = 0. The proof is completed. ��
Lemma C. Every solution of Eq. (44) can be represented in the form,

�N+1 = �N+1 + (d + ��0)�N+1

for some�N+1 ∈ K[[xa, ψa, �]] and�N+1 ∈ K[[xa, x A, ψa, ψA, �]]. Moreover, if�N+1
satisfies the boundary conditions (37) and N + 1 ≥ 3, then �N+1 also satisfies boundary
conditions (37).

Proof of Lemma C. If an element FN+1 ∈K[[xa, ψa, �]] is (d+��0)-exact in K[[xa, x A,

ψa, ψA, �]], then, by Lemma A, it is δ-exact, i.e.

FN+1 = δGN+1

for some GN+1 ∈ K[[xa, ψa, �]], and we can rewrite (44) in the form,

(d + ��0)(�N+1 −GN+1) = 0.

Then the claim follows from Lemma B. ��
We continue with an inductive proof of the Main Theorem. Our task now is to show

that one can further adjust a Darboux coordinate chart (41) in such a way that decom-
position (39) holds true modO(N + 2), i.e.

�(x, ψ, �) =
∑

α∈J

xαψᾱ +
N+1
∑

k=3

�k(x
a, ψa, �) mod O(N + 2). (45)

Let�N+1 ∈ OMV � K[[xa, x A, ψa, ψA, �]] have degree 1 and order N +1. The associ-
ated degree 0 Hamiltonian vector field H�N+1 on MV generates a one parameter family
of canonical transformations (see §3.4.4) which makes sense at t = 1,

xa −→ x̂a = φa(x, ψ, �), ψa −→ ψ̂a = φa(x, ψ, �)

and induces the following change of the coordinate representation of the master function,

e
�̂(x̂,ψ̂,�)

� | x̂=φ(x,ψ,�)
ψ̂=φ(x,ψ,�)

=
(

Ber

(

∂(x̂, ψ̂)

∂(x, ψ)

))−1/2

e
�(x,ψ,�)

� . (46)

Equations (22) for the symplectomorphism generated by H�N+1 imply,

x̂a = xa − (−1)|xa | ∂�N+1

∂ψa
mod O(N + 1),

ψ̂a = ψa + (−1)|xa | ∂�N+1

∂xa
mod O(N + 1)
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so that

�̂(x̂, ψ̂, �) = �̂(x, ψ, �) + {�N+1 • �̂} mod O(N + 2)

= �̂(x, ψ, �)− {
∑

α∈J

xαψᾱ •�N+1} mod O(N + 2)

= �̂(x, ψ, �)− d� mod O(N + 2),

and

Ber

(

∂(x̂, ψ̂)

∂(x, ψ)

)

= 1 +
∑

a

(

(−1)|xa | ∂
∂xa

(

−(−1)|xa | ∂�
∂ψa

)

+ (−1)|ψa | ∂
∂ψa

(

(−1)|xa | ∂�
∂xa

))

,

= 1− 2�0�,

where we used a well-known fact that Ber(1+X) = 1+Str(X)modulo higher order poly-
nomials in entries of X . Thus Eq. (46) says that �̂(x, ψ, �) = �(x, ψ, �) mod O(N +1)
and

�̂N+1 − d�N+1 = �N+1 + ��0�.

Representing �N+1 as in Lemma C, we obtain,

�̂N+1 = �N+1 + (d + ��0)(�N+1 +�N+1),

and conclude that by choosing �N+1 = −�N+1 we can always adjust the adopted
Darboux coordinate system in such a way that separation of variables (39) holds true
modO(N + 2). The induction completes proof of the Main Theorem. ��

3.11. Quantum morphisms of BV manifolds. A quantum morphism,

φ� :
(

M�
V , ω,�

)

−→
(

M�

V̂
, ω̂, �̂

)

of quantum BV manifolds is, by definition, a morphism of dg K[[�]]-modules (see (35)),

φ∗
�
:
(

OM�

V̂
,�

ω̂,�̂

)

−→
(

OM�

V
,�ω,�

)

inducing in the classical limit � → 0 a morphism of algebras, φ∗0 : OM0
V̂
→ OM0

V

which preserves the ideals of the distinguished Lagrangian submanifolds in M0
V and

M0
V̂

.

It is easy to see that any quantum morphism φ� :
(

M�
V , ω,�

)

−→
(

M�

V̂
, ω̂, �̂

)

induces a morphism, dφ0 : (V, d)→ (V̂ , d̂), of the associated tangent complexes; such
a morphism is called a quasi-isomorphism if the map dφ0 induces an isomorphism of
the associated cohomology groups. Note that a quantum morphism is a morphism of
algebras only in the classical limit; therefore, in general, it is not a morphism of smooth
manifolds and can not be characterized in local coordinates (i.e. in terms of genera-
tors of the structure sheaves). Let us denote by Ĉat(BV ) the category of quantum BV
manifolds associated to the above definition of quantum morphisms.
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Examples 3.11.1. (i) Symplectomorphisms of quantum BV manifolds are obviously
quantum morphisms.

(ii) Natural projections,

φ� : M�
V ×M�

V̂
−→ M�

V

are obviously quantum morphisms.
The above two examples are special in the sense that the associated maps of dg
K[[�]]-modules, φ∗

�
: (OM�

V̂
,�

ω̂,�̂
)→ (OM�

V
,�ω,�), are maps of K[[�]]-alge-

bras. The next example does not have this property in general.

(iii) Let
(

M�
V , ω,�

)

and
(

M�

V̂
, ω̂, �̂

)

be quantum BV manifolds. It is a well-known

and very useful fact [Schw] that, for a Lagrangian submanifold L� ⊂ M�

V̂
, the

associated integration map

φ∗
�
: OM�

V×M�

V̂
−→ OM�

V

f −→ ∫

L� f �̂

satisfies,

φ∗
�

(

(�ω,� +�
ω̂,�̂

) f
)

=
∫

L�

(

(�ω,� +�
ω̂,�̂

) f
)

�̂

= �

∫

L�

�ω ( f�)

�
�̂ + �

∫

L�

�ω̂

(

f �̂
)

= �

�ω

(
∫

L� f �̂
)

�

= �ω,�φ
∗
h( f ),

and is, therefore, a quantum morphism provided the integral exists as a perturbative
series in �. We shall see § 6 that such a quantum embedding

φh : M�
V −→ M�

V ×M�

V̂

can always be constructed (as a well-defined formal power series in � satisfying
the algebra morphism condition in the limit � → 0) in the case when the quantum
manifold M�

V̂
is contractible; in the latter case the quantum embedding is also

called contractible; such quantum embeddings are often given by Feynman type
sums over decorated graphs.

Proposition 3.11.2. For any quantum BV manifold M�
V and any decomposition, M�

V �
M�

min ×M�
cntr , into a product of a minimal quantum BV manifold and a contractible

one, there exists a contractible quantum embedding,

φh : M�
min −→ M�

V ,

such that π�◦φ� = Id, where π� is the composition M�
V

�→ M�
min×M�

cntr → M�
min.
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We shall prove this statement in § 6 below by giving an explicit formula for φ�. This
fact has an important corollary which we discuss next.

Let Cat (BV ) be the full subcategory of Ĉat(BV ) whose class of morphisms con-
sists, by definition, of all possible compositions of symplectomorphisms, projections
and contractible quantum embeddings. Then Theorem 3.10.5 and Proposition 3.11.2
imply that quasi-isomorphisms in this category are equivalence relations. Therefore,
in the homotopy theory sense, the category Cat (BV ) is as good as, for example, the
famous category of strong homotopy Lie algebras [Ko,St].

4. From Unimodular Lie 1-Bialgebras to Quantum BV Manifolds

4.1. Lie n-bialgebras. [Me2,Me4]. A Lie n-bialgebra is a graded vector space V ,
equipped with linear maps,

� : V → V ∧ V and [ • ] : ∧2(V [−n])→ V [−n],

such that

• the data (V, δ) is a Lie coalgebra;
• the data (V [−n], [ • ]) is a Lie algebra;
• the compatibility condition,

�[a • b] =
∑

a1 ⊗ [a2 • b] + [a • b1] ⊗ b2

+ (−1)|a||b|+n|a|+n|b|([b • a1] ⊗ a2 + b1 ⊗ [b2 • a]),

holds for any a, b ∈ V . Here �a =:∑ a1 ⊗ a2, �b =:∑ b1 ⊗ b2.

The case n = 0 gives us the ordinary definition of Lie bialgebra [Dr]. The case n = 1 is
of most interest to us in this paper as it controls Poisson geometry [Me2] and, with uni-
modularity conditions added, controls the category of quantum BV manifolds (see § 4.3
below). Note that in this case one has ∧2(V [−1]) = (�2V )[−2] so that the brackets
[ • ] describe a degree 1 linear map �2V → V .

4.1.1. Wheeled prop(erad) of Lie 1-bialgebras. This is a wheeled prop(erad),Lie1B� :=
F�〈E〉/ < R >, defined as the quotient of the free wheeled prop(erad) generated by
an S-bimodule

E(m, n) :=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

sgn2 ⊗ 111 ≡ span

〈

����◦
1

21
= − ����◦

1

12
〉

if m = 2, n = 1,

111 ⊗ 112[−1] ≡ span

〈

����◦
1

21
= ����◦

1

12

〉

if m = 1, n = 2,

0 otherwise,

(47)
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by the ideal generated by the relations

R :

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

◦����◦""
��

3
21

+ ◦����◦""
��

2
13

+ ◦����◦""
��

1
32

∈ F�
(2)〈E〉(3, 1)

◦����◦		

 3
21

+ ◦����◦		

 2
13

+ ◦����◦		

 1
32

∈ F�
(2)〈E〉(1, 3)

����◦
◦
!! ��

21

1 2

− 
��◦ ◦#

#

1
2

2
1 − 

��◦ ◦#
#

2
1

2
1

+ 
��◦ ◦#

#

2
1

1
2

+ 
��◦ ◦#

#

1
2

1
2 ∈ F�

(2)〈E〉(2, 2).

(48)

It is clear from the association

�↔ ����◦ , [ • ] ↔ ����◦
that there is a one-to-one correspondence between representations of Lie1B� in a finite
dimensional space V and Lie 1-bialgebra structures in V .

4.1.2. Cobar construction on the Koszul dual coproperad (Lie1B�)¡ It follows from
the exact sequence (12) that the Koszul dual wheeled properad (Lie1B�)! is the quotient,
F�〈E∨〉/ < R⊥ >, of the free wheeled prop(erad) generated by the S-bimodule,

E∨(m, n) :=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

sgn2 ⊗ 111[1] ≡ span

〈

����◦
1

21
= − ����◦

1

12
〉

if m = 2, n = 1,

111 ⊗ sgn2[1] ≡ span

〈

����◦
1

21
= − ����◦

1

12

〉

if m = 1, n = 2,

0 otherwise,

(49)

by the ideal generated by relations

R⊥ :

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

����◦
1

�� = 0 , ����◦
1

�� = 0

◦����◦""
��

3
21

− ◦����◦""
��

1
32

= 0,
◦����◦		

 3
21

− ◦����◦		

 1
32

= 0,
����◦
◦
!! ��

21

1 2

+ 
��◦ ◦#

#

1
2

2
1 = 0.

Thus

(Lie1B�)¡(m, n) � (Lie1B�)!(m, n) = sgnm ⊗ sgnn[m + n − 2] = span

〈

◦
��� ���
◦

��� ���
··◦

��� ���

◦
��� ���◦

��� ���··◦
��� ���

〉

,
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and, in accordance with § 2.6, the dg free wheeled prop Lie1B�∞ := Bc((Lie1B�)¡) is
generated by the S-bimodule,

w(Lie1B�)¡(m, n) = sgnm ⊗ 11n[m − 2] = span

〈

◦
�����

����
. . . 





�����

1 2 m−1 m

���
��






. . .

��
��

���
��

1 2 n−1 n

〉

, m, n ≥ 1,m + n ≥ 3, (50)

and its differential is given on the generating corollas by (cf. [Me2])

δ ◦
�����

����
. . . 





�����

1 2 m−1 m

���
��






. . . ��

��
���

��

1 2 n−1 n

=
∑

[1,...,m]=I1�I2|I1|≥0,|I2 |≥1

∑

[1,...,n]=J1�J2|J1|≥1,|J2 |≥1

(−1)σ(I1�I2)+|I1|(|I2|+1) ◦
�����

����
. . . 





��������

︷ ︸︸ ︷

I1

���
��






. . . ��

��
���

��

︸ ︷︷ ︸

J1

◦
������

����
. . . ����

�����

︷ ︸︸ ︷

I2

��
��
. . .

��
��

��
��

�

︸ ︷︷ ︸

J2

,

(51)

where σ(I1� I2) is the sign of the shuffle [1, . . . ,m] = I1� I2. It is easy to see that repre-
sentations of Lie1B�∞-algebras in a finite-dimensional vector space V are in one-to-one
correspondence with graded pointed formal Poisson structures on V , that is, total degree
2 polyvector fields, π ∈ ∧•≥1TV , which satisfy the Schouten equations [π, π ]S = 0 and
vanish at the distinguished point 0 ∈ V (cf. [Me2,Me4] and § 4.3 below).

4.1.3. Non-Koszulnes of Lie1B�. Let Lie1B∞ be a subcomplex of the complex Lie1B�∞
spanned by graphs with no closed directed paths, i.e with no wheels. This subset has
an obvious structure of an ordinary prop and, in fact, is a minimal resolution of the
ordinary prop, Lie1B, of Lie 1-bialgebras (which is defined by the same generators
(47) and relations (48) as Lie1B� but in the category of ordinary props). The natural
epimorphism,

π : (Lie1B∞, δ) −→ (Lie1B, 0)

which sends to zero all generating (m, n)-corollas (50) except those with m + n = 3,
is a quasi-isomorphism [Me2,Me3]. This means that the prop Lie1B is Koszul in the
category of ordinary props. The wheelification functor from the category of ordinary
props to the category of wheeled props [MMS] sends these two props into precisely
Lie1B� and Lie1B�∞, and the above morphism π into the associated morphism of dg
wheeled props,

π� : (Lie1B�∞, δ) −→ (Lie1B�, 0).

The morphism π� is not, however, a quasi-isomorphism: the following element [Me3]:

◦$$
◦

��
��
�

���������

◦
%%%

��

��

��

−
◦ ���

◦��
&&&&&&◦

%%%

��

����

+
◦ ���

◦��
''

''
''◦(((

��

���� ∈ Lie1B�∞ (52)
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gives a non-trivial cohomology class in H(Lie1B�∞, δ) which is, however, sent to zero
under π�. This means that the wheeled prop of Lie 1-bialgebras is not Koszul, and its
minimal resolution, (Lie1B�)∞ is larger than Lie1B�∞. Representations of (Lie1B�)∞
in a vector space V are called formal wheeled Poisson structures ; these (at present
mysterious) structures are Maurer-Cartan elements of a certain L∞ algebra5 which, in
accordance with the general theory of [MeVa], is canonically associated to (Lie1B�)∞
and which involve not only Schouten brackets but also divergence operators; it was
proven in [Me4] that wheeled Poisson structures can be deformation quantized over Q.

4.2. Wheeled prop, ULie1B, of unimodular Lie 1-bialgebras. A finite dimensional Lie
1-bialgebra V is called unimodular if, for any e ∈ V and e∗ ∈ V ∗, the supertraces of
linear maps,

Ade : V −→ V
v −→ [e • v] and

Ade∗ : V ∗ −→ V ∗
v∗ −→ [e∗, v∗] ,

are zero. Here [ , ] are the Lie brackets on V ∗ induced by Lie coalgebra structure on
V . The wheeled prop(erad), ULie1B of unimodular Lie 1-bialgebras is a quotient of the
free wheeled prop(erda) generated by the S-bimodule (47) by the ideal generated by
relations (48) and the following ones:

����◦
1

�� = 0 , ����◦
1

�� = 0.

Hence the Koszul dual properad, (ULie1B)!, is a quadratic wheeled properad generated
by the S-bimodule (49) modulo the relations,

◦����◦
""

��
3

21

− ◦����◦""
��

1
32

= 0,
◦����◦		

 3
21

− ◦����◦		

 1
32

= 0,
����◦
◦
!! ��

21

1 2

+ 
��◦ ◦#

#

1
2

2
1 = 0.

Therefore,

(ULie1B)!(m, n)=
∞
⊕

a=0

sgnm ⊗ sgnn[m + n − 2− 2a]=span

〈

◦
��� ���
◦

��� ���
··◦

��� ���

◦
��� ���◦

��� ���··◦
��� ���

···

◦◦
��

�� 〉

︸ ︷︷ ︸

m out legs, n in legs, a loops

.

Note that the graph on the r.h.s. above is zero unless Z≥0-valued parameters m, n and a
satisfy inequalities,

m + n + 2a ≥ 3,m + a ≥ 1, n + a ≥ 1.

5 Graph (52) gives, in fact, an explicit formula for a particular µ3 composition in that L∞ algebra.
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Hence the dg free wheeled prop ULie1B∞ := Bc((ULie1B)¡) is generated by an
S-bimodule,

w(ULie1B)¡(m, n) =
∞
⊕

a≥0

sgnm ⊗ 11n[m − 2− 2a] = span

〈

a

���
))) ���

***
...

��
�
**
* ��

�
))
)
...

1 2 m−1 m

1 2 n−1 n

〉

m+n+2a≥3
m+a≥1,n+a≥1

.(53)

Definition of the cobar construction given in § 2.5 gives, after straightforward compu-
tations, the following formula for the differential in ULie1B∞:

δ a

���
))) ���

***
...

��
�
**
* ��

�
))
)

...

1 2 m−1 m

1 2 n−1 n

= (−1)m−1 a−1

���
))) ���

***
...

��
�
**
* ���))
)

...

1 2 m

1 2 n
��

+
∑

a=b+c
b,c≥0

∑

m=I ′�I ′′
[n]=J ′�J ′′

(−1)σ(I1�I2)+|I1|(|I2 |+1)

b

���
)))

������
***

...

��
�
**
* ��

�
))
)

...

c

���)) ** ���
...

++
+ ,,
,
--

-
...
︸︷︷︸

J ′′

︸ ︷︷ ︸

J ′

I ′
︷︸︸︷

I ′′
︷︸︸︷

,

(54)

where σ(I1 � I2) is the sign of the shuffle [1, . . . ,m] = I1 � I2.

4.3. Representations of ULie1B∞ and quantum BV manifolds. Let (V, d) be a finite-
dimensional dg vector space, and M�

V ∗ the formal �-twisted odd symplectic manifold
corresponding to the graded commutative ring ̂�•(V ∗⊕V [−1])[[�]], � being the formal
variable of degree 2 (see § 3.9).

An arbitrary morphism ρ : ULie1B∞ → EndV is uniquely defined by its values on
the generators,

ρ(a)m,n := ρ

⎛

⎜

⎝
a

���
))) ���

***
...

��
�
**
* ��

�
))
)
...

1 2 m−1 m

1 2 n−1 n

⎞

⎟

⎠ ∈ Hom(�n V,∧m V [2− m − 2a])

= �n V ∗ ⊗ ∧m V [2− m − 2a]) ⊂ EndV (m, n).

We assemble the collection of linear maps, {ρ(a)m,n}, into one “generating” degree 0 func-
tion,

� :=
∑

a,m,n≥0

ρ(a)m,n�
a ∈ OMV .

Let {ea} be an arbitrary basis in V , and {xa, ψa} the associated basis in V ∗ ⊕ V [−1],
|ψa | = −|xa | − 1 = |ea | − 1. Then

ρ(a)m,n(eb1 , . . . , ebn ) =
∑

a1,...,am

µ
α1...αm
b1...bn

ψa1 . . . ψam ,

d(eb) =
∑

b

da
bψa,
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for some µα1...αm
b1...bn

∈ K, da
b ∈ K, and we set

� :=d + � =
∑

a,b

da
b xbψb +

∑

m+n≥3

1

m!n!
∑

a1,...,am
b1,...,bn

µ
a1...am
b1...bn

xb1 · · · xbnψa1 . . . ψam ∈ OMV .

It is a straightforward calculation to check using formula (54) that the compatibility of
the morphism ρ with the differentials,

ρ ◦ δ = d ◦ ρ
is equivalent to the equation,

�0� +
1

2
[� • �]S = 0,

where�0 =∑

∂2/∂xa∂ψa and [ • ]S stand for the odd Poisson brackets on M�
V ∗ . The

function� satisfies the boundary conditions (37) of the definition §3.9.2. Hence we have
proven the following

Proposition 4.3.1. There is a one-to-one correspondence between representations of the
dg wheeled prop (ULie1B∞, δ) in a dg vector space V and quantum BV structures on
the formal odd symplectic manifold M�

V ∗ .

Thus the category of quantum BV manifolds is controlled by a surprisingly simple
quadratic wheeled prop, ULie1B, of unimodular Lie 1-bialgebras.

Remark 4.3.2. We do not know at present whether or not the wheeled properad ULie1B
is Koszul, i.e. whether or not the natural epimorphism,

π� : (ULie1B∞, δ) −→ (ULie1B, 0),

is a quasi-isomorphism. Our study of the category of quantum BV manifolds in § 3 was
partly motivated by this open problem. If it is Koszul, then unimodular Poisson struc-
tures can be deformation quantized over Q with the help of the wheeled prop quantization
machine developed in [Me4].

5. Wheeled dg Prop of Unimodular Poisson Structures

5.1. Modular volume form. Let M be a Z-graded manifold. A Poisson structure on M
is a Maurer-Cartan element, π ∈ ∧•TM , in the Schouten Lie algebra on M , that is, a
total degree 2 polyvector field, satisfying the equation [π • π ]S = 0. If M is concen-
trated in degree 0, then π must be a bivector field, but in general π might have non-zero
summands lying in ∧nTM with n �= 2. Let M be the total space of the bundle, �1

M ,
of 1-forms on M . Then a polyvector field π defines a function on M which we denote
by the same letter; the Schouten equations translate into {π • π} = 0, where { • } are
the odd Poisson brackets associated with the canonical odd symplectic structure on M
(see § 3.3). The Poisson structure π gives rise to the associated degree 1 hamiltonian
vector field, Hπ , on M which is homological, i.e. [Hπ , Hπ ] = H{π•π} = 0. Any volume
form ν ∈ Ber(M), induces, via the canonical isomorphism Ber(M) = (Ber(M))⊗2, a
volume form on M which we denote by ν̂.
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Definition 5.1.1. [Wein]. Let (M, π) be a Z-graded Poisson manifold. A volume form
ν ∈ Ber(M) is called modular if the equation,

LHπ ν̂ = 0,

is satisfied. In this case π is called a unimodular Poisson structure on (M, ν).

Any vector space V (viewed as a linear formal manifold) admits a translation invariant
Berezin volume form, ν0, which is defined uniquely up to multiplication by a non-zero
constant. A formal Poisson structure π on (V, ν0) is called a unimodular Poisson struc-
ture on V . If {xa} are linear coordinates on V , then a unimodular Poisson structure on
V is given by an ordinary Poisson structure on V ,

π :=
∑

n≥1

∑

a1,...,an

πa1,...,an (x)ψa1 . . . ψan ∈ O�1
V
,

with coefficients πa1,...,an (x) satisfying an extra condition

∑

b

∂πba2,...,an(x)

∂xb
= 0, ∀n ≥ 1.

5.2. Wheeled dg prop of unimodular Poisson structures. Let I � be the ideal in the dg
wheeled prop ULie1B∞ (see §4.1.2) generated by loops,

I � :=
〈

◦
�����

����
. . . 





����

1 2 m

���
��






. . . ��

�� ���
�

1 2 n
��

〉

.

Lemma 5.2.1. δ ◦
�����

����
. . . 





����

1 2 m

���
��






. . . ��

�� ���
�

1 2 n
��

∈ I �.

Proof is a straightforward calculation based on formula (51).
Thus I � is a dg ideal in ULie1B∞, and the quotient prop,

UPoisson := ULie1B∞/I �,

is a dg wheeled prop whose representations in a dg vector space V are in one-to-one
correspondence with formal unimodular Poisson structures, π ∈ ∧•TV , which vanish at
O ∈ V .

Remark 5.2.2. Every free wheeled prop has a natural filtration by the number of vertices.
For applications to homological algebra and differential geometry one is often interested
in completed (with respect to this filtration) topological props, and in continuous mor-
phisms between them [Me4,Me7,MeVa]).

In the next section we shall assume that both dg props ULie1B∞ and UPoisson are
completed with respect to the filtration by the number of vertices.
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5.3. Quasi-isomorphism theorem. A continuous morphism of dg wheeled topological
props,

F : ULie1B∞ −→ UPoisson,

given on the generators by the formula

F

⎛

⎜

⎝
a

���
))) ���

***
...

��
�
**
* ��

�
))
)
...

1 2 m−1 m

1 2 n−1 n

⎞

⎟

⎠ =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

◦
�����

����
. . . 





�����

1 2 m−1 m

���
��






. . . ��

��
���

��

1 2 n−1 n

for a = 0,

0 otherwise,

is a quasi-isomorphism.

Proof. The prop ULie1B∞ is generated by the S-module (53). Let us enlarge the latter
non-differential S-bimodule to a dg S-bimodule, (E = {E(m, n)}, d0), given by

E(m, n) :=
∞
⊕

a≥0

(sgnm ⊗ 11n[m − 2− 2a] ⊕ sgnm ⊗ 11n[m − 1− 2a])

= span

〈

a

���
))) ���

***
...

��
�
**
* ��

�
))
)
...

1 2 m−1 m

1 2 n−1 n

, a

���
))) ���

***
...

��
�
**
* ���))
)
...

1 2 m

1 2 n
��

〉

with the direct summand zero unless m + n + 2a ≥ 3, m + a ≥ 2 and n + a ≥ 2, and with
differential d0 given on the generators of E by

d0 a

���
))) ���

***
...

��
�
**
* ��

�
))
)
...

1 2 m−1 m

1 2 n−1 n

= (−1)m−1 a−1

���
))) ���

***
...

��
�
**
* ���))
)
...

1 2 m

1 2 n
��

d0 a

���
))) ���

***
...

��
�
**
* ���))
)
...

1 2 m

1 2 n
��

= 0.

It is clear that the cohomology, H(E) = {H(E)(m, n)}, of this dg S-bimodule is equal
to

H(E)(m, n) = span

〈

0

���
))) ���

***
...

��
�
**
* ��

�
))
)
...

1 2 m−1 m

1 2 n−1 n

〉

.

Consider next the decreasing filtrations

ULie1B∞ = F0ULie1B∞ ⊃ F1ULie1B∞ ⊃ . . . ⊃ FpULie1B∞ ⊃ . . . ,

UPoisson = F0UPoisson ⊃ F1UPoisson ⊃ . . . ⊃ FpUPoisson ⊃ . . . ,
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of dg props ULie1B∞ and UPoisson by the number of vertices: the subspaces Fp
spanned, by definition, by decorated graphs with at least p vertices. The morphism
F respects the filtrations and hence induces the morphism, {Fr : (ErULie1B∞, dr )→
(ErUPoisson, δr }, of the associated spectral sequence, in particular, a morphism,

F0 : (E0ULie1B∞, d0)→ (ErUPoisson, d0}
of the initial terms. The dg S-bimodule (E0ULie1B∞, d0) is canonically isomorphic to
the following one:

F�
no loops〈E〉 :=

∑

G∈G�
no loops

G〈E〉,

with the differential induced from d0 on E (hence the same notation). As we work over
a field of characteristic zero, by Kunneth and Mashke theorems the functor F�

no loops on
the category of dg S-bimodules is exact, i.e.

H
(

F�
no loops〈E〉

)

= F�
no loops〈H (E)〉.

Therefore, the morphism F0 is an isomorphism. By assumptions on ULie1B∞ and
UPoisson, both filtrations are complete, exhaustive and regular (degenerating at the 1st

term). Hence the associated spectral sequences are convergent by the classical Complete
Convergence Theorem 5.5.10 (see p.139 in [Weib]). Then, by the classical Comparison
Theorem 5.2.12 (see p. 126 [Weib]), the morphism F is a quasi-isomorphism. ��

6. BF Theory of Quantum BV Manifolds

6.1. Introduction. This section is inspired by the work of Mnev [Mn] on a remarkable
approach to the homotopy transfer formulae of unimodular L∞-algebras which is based
on the BV quantization of an extended B F theory and the associated Feynman inte-
grals. We apply here Losev-Mnev ideas to unimodular Lie 1-bialgebras and show that
the Feynman integrals technique provides us with exactly the same formulae for the
homotopy transfer of ULie1B∞-structures as the ones which one obtains with the help
of the Koszul duality technique in the wheeled props approach to quantum BV manifolds
(see §§ 2–4). We believe that the established interrelation,

Feynman integrals � Morphisms of dg wheeled (co)props

is quite general.

6.2. BF-theory of unimodular Lie 1-bialgebras. Let V be finite-dimensional, and
assume that its dual space V ∗ is equipped with a structure of unimodular dg Lie
1-bialgebra, i.e. with degree 1 Lie brackets [ • ] : �2V ∗ → V ∗[1] and degree 0 Lie
co-brackets �CoLie : V ∗ → ∧2V ∗ (see § 4.2). The dualization and degree shifting of
the latter gives a map [ , ] : �2(V [−1])→ V [−2] which makes V [−1] into a degree 1
Lie algebra. Consider a degree 2 polynomial function (called action) on the vector space
V ∗ ⊕ V [−1],

S : V ∗ ⊕ V [−1] −→ K

p ⊕ ω −→ S(p, ω) := 〈p, dω〉 + 1
2 〈p, [ω,ω]〉 + 1

2 〈[p • p], ω〉,



Wheeled Pro(p)file of Batalin-Vilkovisky Formalism 633

where 〈 , 〉 stand for the natural pairing. A choice of a basis {ea} in V induces linear
coordinates {pa : |pa | = |ea |} on V ∗ and linear coordinates {ωa : |ωa | = 1 − |ea |} on
V [−1] in which the function S takes the form

S(p, ω) =
∑

a,b

(

pa Da
bω

b ±
∑

c

1

2

(

pb pcCbc
a ωa ± pa�

a
bcω

bωc
)

)

,

where Da
b , Cbc

a and �a
bc are the structure constants of, respectively, the differential, the

odd Lie brackets and Lie cobrackets in the chosen basis.
Let M�

V be an odd symplectic manifold corresponding to the completed graded
commutative ring �̂(V ⊕ V ∗[1])[[�]] � K[[pa, ω

a, �]].

Lemma 6.2.1. The semidensity e
S(p,ω)

�

√
D p,ω makes M�

V into a quantum BV manifold.

Proof. The boundary conditions S|p=0 = 0 and S|ω=0 = 0 are obvious so that, by
Defintion 3.9.2(i), one should only check the equation ��0S + 1

2 {S • S} = 0, where

�0 =∑
∂2

∂pa∂ωa . As S is independent of �, this is equivalent to two equations,

{S • S} = 0 and �0S = 0.

The first equation follows from relations (48). Equations �0〈p, [ω • ω]〉 = 0 and
�0〈[p, p], ω〉 = 0 are equivalent to unimodularity of [ • ] and δCoLie. Finally, equation
�0〈p, dω〉 = 0 follows from the well-known fact that, for an arbitrary differential d,
there exist a basis in V in which d is given by a matrix (40) with zero supertrace. ��

The quadratic form S(2) := 〈p, dω〉 is degenerate on the vector space V ∗ ⊕ V [−1].
We shall next specify a subspace, W ⊂ V ∗ ⊕ V [−1], on which S(2) is non-degener-
ate so that one can develop a perturbative quantization of the action S = S(2) + S(3)
with S(2) determining the “propagator” of the quantum theory and with the cubic part,
S(3) := 1

2 〈p, [ω •ω]〉+ 1
2 〈[p, p], ω〉, playing the role of “interactions” between “fields”

p and ω. With this purpose we fix an arbitrary cohomological splitting,

V = H(V )⊕ B ⊕ B[−1], (55)

of the complex V . Let pa = {p′a, p′′α, p′′′α } be adopted to this splitting basis of V in
which the differential is given by the matrix (40). Put another way, {p′a}a∈I ′ is a basis of
the cohomology group H(V, d), {p′′α}α∈J a basis of B, {p′′′α }α∈J a basis of B[−1] and
the differential d is given by

dp′a = 0, dp′′α = p′′′α , dp′′′α = 0.

This splitting of V induces associated splitting of V ∗[1] and hence the associated split
base of the direct sum V ⊕ V ∗[1] which we denote as follows,

V
︸︷︷︸

p

⊕ V ∗[1]
︸ ︷︷ ︸

ω

= H(V )
︸ ︷︷ ︸

p′a

⊕ B
︸︷︷︸

p′′α

⊕ B[−1]
︸ ︷︷ ︸

p′′′α

⊕ H(V )∗[1]
︸ ︷︷ ︸

ω′a
⊕ B∗[1]
︸ ︷︷ ︸

ω′′′α
⊕ B∗[2]
︸ ︷︷ ︸

ω′′α
,

so that

dω′a = 0, dω′′α = −ω′′′α, dω′′′α = 0.
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The linear functions on the space V ∗ ⊕ V [−1] corresponding to the above basis vec-
tors of V ⊕ V ∗[1] we denote by the same letters p′a, p′′α, p′′′α , ω′a, ω′′α, ω′′′α . Then the
quadratic term of the action takes the form (cf. (42))

S(2) = 〈p, dω〉 = − < p′′′, ω′′′ >= −
∑

α∈J

p′′′α ω′′′α, (56)

where < , > is the natural degree 2 pairing between B and B∗[2].
Let now M�

B⊕B[−1] be the formal odd symplectic manifold corresponding to a graded
commutative algebra

̂�• (B ⊕ B[−1] ⊕ B∗[1] ⊕ B∗[2])⊗K[[�]] � K[[p′′, p′′′, ω′′, ω′′′, �]],
and M�

H(V ) the odd symplectic manifold corresponding to

̂�• (H(V )⊕ H(V )∗[1]) [[�]] � K[[p′, ω′, �]].
Cohomological splitting (55) induces an isomorphism of odd Poisson manifolds,

M�
V = M�

H(V ) ×M�
B⊕B[−1].

Following [Mn] we shall show next how a perturbative Feynman type integration
along a Lagrangian submanifold L in the odd symplectic manifold M�

B⊕B[−1] trans-

forms a simple quantum BV structure on M�
V given by Lemma 6.2.1 into a rather

non-trivial quantum BV structure on M�

H(V ) (in full accordance with Theorem 2.7.1).

Let
√

DB⊕B[−1] be the semidensity on M�

B⊕B[−1]) associated with the choice of linear
Darboux coordinates made above.

Lemma 6.2.2. For any Lagrangian submanifold L in M�
B⊕B[−1] and any function

f ∈ OMV one has,

�̄0

∫

L
f
√

DB⊕B[−1]|L =
∫

L
(�0 f )

√
DB⊕B[−1]|L,

provided the integral exists. Here �0 = ∑

a
∂2

∂pa∂ωa is the odd Laplacian on M�
V ,

�̄0 = ∑

a
∂2

∂pa∂ωa is the odd Laplacian on M�

H(V ) and
√

DB⊕B[−1]|L stands for the

restriction (in accordance with (28)) of the semidensity
√

DB⊕B[−1] to a volume form
on L.

This lemma is in fact a classical Stokes theorem in disguise. We refer to [Schw]
or [CaFe2] for its simple proof. Thus, if we can find a Lagrangian submanifold L ⊂
MB⊕B[−1] such that the integral

∫

L f
√

DB⊕B[−1]|L exists for f = e
S(p,ω)

� given by
Lemma 6.2.1, then we obtain a quantum BV structure on the �-twisted odd symplectic
manifold M�

H(V ) from the unimodular Lie 1-bialgebra structure on V ∗. Formula (56)
suggests a natural choice: let L be the formal Z-graded manifold associated with the
vector subspace B[−1] ⊕ B∗[1] ⊂ B ⊕ B[−1] ⊕ B∗[1] ⊕ B∗[2]. It is a submanifold of
MB⊕B[−1] given by the equations p′′ = ω′′ = 0. The semidensity

√
DB⊕B[−1] restricts

to L as an ordinary translation invariant Berezin volume dp′′′dω′′′ = ∏

α dp′′′α dω′′′α
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(see [Be]). As the quadratic volume form S(2) = − < p′′′, ω′′′ > is obviously non-
degenerate on B[−1] ⊕ B∗[1], the integral,

N :=
∫

L
e

S2(p,ω)
�

√
DB⊕B[−1]|L =

∫

e−
<p′′′,ω′′′>

� dp′′′dω′′′,

is a well-defined constant6. Moreover,

e
Seff (p

′,ω′,�)
� := N−1

∫

e
S(p′,p′′′,ω′,ω′′′)

� dp′′′dω′′′

= N−1
∫

e
−<p′′′,ω′′′>+S(3)(p

′,p′′′,ω′,ω′′′)
� dp′′′dω′′′

= N−1
∑

k≥0

�
−k

k!
∫

e−
<p′′′,ω′′′>

�

(

S(3)(p
′, p′′′, ω′, ω′′′)

)k
dp′′′dω′′′

is well-defined as an element of the algebra (32). It can be computed via the classi-
cal Wick theorem (see. e.g., [CKTB], ) with the propagator 〈〈ω′′′, p′′′〉〉 (which is, by
definition equal to the quadratic form inverse to S(2)) given by the matrix7

〈〈ω′′′α, p′′′β 〉〉0 := −�δαβ .

As

S(3)(p
′, p′′′, ω′, ω′′′) = 1

2

〈

p′ + p′′′,
[

(ω′ + ω′′′) • (ω′ + ω′′′)
]〉

+
1

2

〈[p′ + p′′′, p′ + p′′′], ω′ + ω′′′
〉

= S3(p
′, ω′) + 〈p′, [ω′ • ω′′′]〉 +

1

2

〈

p′,
[

ω′′′ • ω′′′]〉 + 〈p′′′, [ω′ • ω′′′]〉

+
1

2

〈

p′′′,
[

ω′′′ • ω′′′]〉 + 〈[p′, p′′′], ω′〉 + 〈[p′, p′′′], ω′′′〉 +
1

2

〈[p′′′, p′′′], ω′〉

+
1

2

〈[p′′′, p′′′], ω′′〉 ,

we conclude by the Wick theorem that this integral is equal to the formal power series,

e
Seff (p

′,ω′,�)
� =

∑

G∈G̃�
G(p′, ω′, �),

where the sum runs over all possible graphs built from corollas of two types,

[ , ] ↔ ����◦ , [ • ] ↔ ����◦ .
It is well-known (see, e.g., Ch. 4, §3 in [Ma2] or Prop. 2.10 in [Po]) that

log
∑

G∈G̃�
G(p′, ω′, �) =

∑

G∈G̃�
c

G(p′, ω′, �),

6 This is a “Gaussian” integral of special type 1.2.1.2 according to Cattaneo’s review [CKTB] of Gaussian
integrals. Strictly speaking, we should view here the formal parameter � as a purely imaginary complex num-
ber ih with h being an arbitrary positive real number; such “Gaussian” integrals can be made well-defined via
a real analytic continuation of ordinary Gauss integrals for positive definitive quadratic forms, see [CKTB].

7 This matrix (up to the factor �
−1) is precisely the coordinate representation of the homotopy operator

h : V → V (see § 2.7).
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where the sum on the r.h.s. runs over the subset, G̃�
c ⊂ G̃�, consisting of connected

graphs. Thus the effective action can be written finally as

Seff =
∑

G∈G̃�
c

G(p′, ω′, �) =
∑

g≥0

∑

G∈G̃�
g,c

�
gG(p′, ω′), (57)

where

– the second sum runs over the subset, G̃�
g,c ⊂ G̃�

g,c, consisting of all possible con-
nected trivalent directed graphs of genus g;

– G(p′, ω′) is a linear map H(V )⊗• → H(V )⊗• obtained from the graph G by deco-
rating it exactly as in Theorem 2.7.1: vertices are decorated by the structure constants,
Cc

ab and�bc
a , of the Lie and co-Lie operations in V , and internal edges are decorated

with the homotopy operator h; legs are now decorated with p′′ and ω′′.
By Lemmas 6.2.2 and 6.2.1, the effective action satisfies the equation,

�0e
Seff (p

′,ω′,�)
� = 0, i.e. ��0Seff +

1

2
{Seff • Seff } = 0,

and hence makes MH(V ) into a quantum BV manifold.

Proposition 6.2.3. For any dg Lie 1-bialgebra on V and any cohomological splitting of
V there is a canonically associated structure of quantum BV manifold on the cohomol-
ogy, H(V ), given by the quantum master function (57). Moreover, there exists a natural
quasi-isomorphism of quantum BV manifolds,

φ� :
(

MH(V ), e
Seff (p

′,ω′,�)
�

√
D p′,ω′

)

−→
(

MV , e
S(p,ω)

�

√
D p,ω

)

.

Proof. It remains to construct a morphism φ�, which, by Definition 3.9.11, is a topo-
logical morphism of K[[�]]-modules,

φ∗ : K[[p, ω, �]]. −→ K[[p′, ω′, �]],
which in the limit � → 0 induces a morphism of algebras and satisfies the equation

e
−Seff (p

′,ω′,�)
� �̄0

(

φ∗
�
( f )e

Seff (p
′,ω′,�)
�

)

= φ∗
(

e
−S(p,ω)

� �0

(

f e
S(p,ω)

�

))

, (58)

for any f ∈ K[[p, ω, �]]. In view of Lemma 6.2.2, the map (cf. [Mn])

φ∗
�
( f ) := N−1e

−Seff (p
′,ω′,�)

�

∫

p′′=0,ω′′=0

f (p, ω, �)e
S(p,ω)

� dp′′′dω′′′ (59)

does satisfy Eq. (58):

e
−Seff (p

′,ω′,�)
� �′0

(

φ∗
�
( f )e

Seff (p
′,ω′,�)
�

)

= N−1e
−Seff (p

′,ω′,�)
�

∫

p′′=0,ω′′=0

�0

(

f (p, ω, �)e
S(p,ω)

�

)

dp′′′dω′′′

= φ∗
(

e
−S(p,ω)

� �0

(

f e
S(p,ω)

�

))

.
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Moreover, in the limit � → 0 formula (58) gives simply the evaluation map,

lim
�→0

φ∗
�
( f ) = f |�=0,p′′=0,p′′′=0,ω′′=0,ω′′′=0,

and hence defines a morphism of algebras OM0
V
→ OM0

H(V )
. ��

Formula (58) proves Proposition 3.11.2 in the special case when the quantum master
function S(ω, p) is associated with a unimodular Lie 1-bialgebra structure on a finite-
dimensional vector space. However the same formula (59) gives obviously a well-defined
perturbative power series in � for an arbitrary (quasi-classically) split quantum master
function S(p, ω, �) and proves thereby Proposition 3.11.2 in general.
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