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Abstract: The nonlinear Klein-Gordon-Maxwell equations provide models for the
interaction between the electromagnetic field and matter. We assume that the nonlin-
ear term W is positive and W (0) = 0. This fact makes the theory more suitable for
physical models (for example models in supersymmetry theory and in cosmology; see
e.g. [16,22,28] and their references).

A three dimensional vortex is a finite energy, stationary solution of the Klein-Gor-
don-Maxwell equations such that the matter field has nontrivial angular momentum
and the magnetic field looks like the field created by a finite solenoid. Under suitable
assumptions, we prove the existence of three dimensional vortex-solutions.
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1. Introduction

A vortex is a solitary wave ψ with non-vanishing angular momentum (M (ψ) �= 0).
Roughly speaking, a solitary wave is a solution of a field equation whose energy is
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localized and which preserves this localization in time. The vortices in the nonlinear
Klein-Gordon equation (KG) (with a positive nonlinear term W (s) with W (0) = 0) are
also considered in the Physics literature with the name of spinning Q-balls, even if they
do not exhibit spherical symmetry (see e.g. [16,37]).

In this paper we prove the existence of spinning Q-balls for the nonlinear Klein-Gor-
don-Maxwell equations (KGM) (Theorem 3). The KGM represents a basic example of a
system of equations exhibiting Poincarè and local gauge symmetries (see e.g. [33] Sect.
2.7 and [38] Sect. 1.4). Various physical phenomena like superconductivity or models
for elementary particles and cosmology are described by KGM (see e.g. [16,22,28] and
references) or by suitable variants (see e.g. [24] Sect. 8.8, [31] Sect. 3.6, [36] Sect. 4).

Now we will review some results relative to solitary waves and vortices. The KGM
can be regarded as a perturbation of the nonlinear Klein-Gordon equation (KG) (see
(3)). So first we recall also some existence results of solitary waves and vortices for KG:

• For the case M (ψ) = 0,we recall the pioneering paper of Rosen [32] and [14,17,34].
When the lower order term W is positive and W (0) = 0 (see (3)), the spherically
symmetric solitary waves have been called Q-balls by Coleman in [18] and this is the
name used in the physical literature.

• Vortices for KG in two space dimensions have been investigated in [26]; later also
three dimensional vortices for KG have been studied (see [3,5,13,16,37]).

Now let us see some literature on KGM. We notice that the peculiarities of the model
depend on the lower order term W and it is relevant to distinguish various situations.

• For the case M (ψ) = 0, the existence of solitary waves for KGM was first proved in
[7] assuming that

W (s) = 1

2
s2 − s p

p
, 4 < p < 6, s ≥ 0. (1)

The existence of solitary waves for KGM in this situation (i.e.with M (ψ) = 0 and
W as in (1)) has been studied also in [15,19–21]. In these papers the existence and the
non-existence of stationary solutions has been proved under different assumptions.

However the lower order term W defined by (1) is not suitable to model interesting
physical models since it is not positive for all s. In fact, in this case, there are configura-
tions with negative energy and since (in relativistic models) energy equals the mass, we
have the presence of negative mass which, usually, is not acceptable. So it is relevant to
investigate the case W ≥ 0.

• The case W ≥ 0 and M (ψ) = 0 has been treated in [8 and 12].

Now let us consider the existence of vortices (M (ψ) �= 0) for KGM.

• The existence of vortices for Abelian gauge theories in two space dimensions has been
discovered in a seminal paper by Abrikosov [1] in the study of the superconductivity.
Then, in [30], the planar vortices are studied in the context of elementary particles
(see also the books [24,31,33,38] with their references). We point out that, in these
cases, the function W that has been considered is of the type

W (s) =
(

1 − s2
)2
, (2)

namely it is a double well shaped and positive function.
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• In [11,10] the existence of vortices in 3 space dimensions has been proved assuming
(1).

• If W is positive and W (0) = 0, the vortices in KGM are called gauged spinning
Q-balls. As far as we know, no mathematical result exists.

In this paper we prove the existence of gauged spinning Q-balls in 3 space dimen-
sions (Th.3) provided that W satisfies W1), W2), W3) and W4) (see Sect. 2.4) which
are the natural assumptions for this kind of problems.

Since the KGM are invariant for the Lorentz group, a Lorentz boost of a vortex creates
a travelling and “spinning” solitary wave.

The paper is organized as follows. In Sect. 2 we introduce the KGM-equations, we
study some of their general features, we give the definition of three dimensional vor-
tex and finally state the main result in Theorem 3. Section 3 is devoted to the proof of
Theorem 3.

Remark 1. In many situations, as in this paper, the existence of stable structure such
as solitary waves and/or vortices is obtained by minimising the energy over a class of
configurations of a given charge (the charge is defined by (28)). If such a minimizing
configuration exists, we may think that there is a force which binds the “matter” (see [6]
for details). The relative solitary waves have been called hylomorphic in [4] (see also
[12]). This name comes from the Greek words ”hyle”=”matter ” and ”morphe”=”form”.
For this reason, the spinning Q-balls coud be called “hylomorphic vortices”.

2. Statement of the Problem and Results

2.1. The Klein-Gordon-Maxwell system. The nonlinear Klein-Gordon equation for a
complex valued field ψ, defined on the spacetime R

4, can be written as follows:

�ψ + W ′(ψ) = 0, (3)

where

�ψ = ∂2ψ

∂t2 −�ψ, �ψ = ∂2ψ

∂x2
1

+
∂2ψ

∂x2
2

+
∂2ψ

∂x2
3

and, with some abuse of notation,

W ′(ψ) = W ′(|ψ |) ψ|ψ |
for some smooth function W : [0,∞) → R. Hereafter x = (x1, x2, x3) and t will
denote the space and time variables. The field ψ : R

4 → C will be called matter field. If
W ′(s) is linear, W ′(s) = m2

0s, m0 �= 0, Eq. (3) reduces to the Klein-Gordon equation.
Consider the Abelian gauge theory in R

4 equipped with the Minkowski metric and
described by the Lagrangian density (see e.g. [9,33,38])

L = L0 + L1 − W (|ψ |), (4)

where

L0 = 1

2

[
|(∂t + iqφ)ψ |2 − |(∇ − iqA) ψ |2

]
,

L1 = 1

2
|∂t A + ∇φ|2 − 1

2
|∇ × A|2.
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Here q denotes a positive parameter, ∇× and ∇ denote respectively the curl and the
gradient operators with respect to the x variable, ∂t + iqφ and ∇ − iqA are the covariant
derivatives, and

A= (A1, A2, A3) ∈ R
3 and φ ∈ R

are the gauge potentials.
Now consider the total action

S =
∫
(L0 + L1 − W (|ψ |)) dxdt. (5)

Making the variation of S with respect to ψ, φ and A we get the system of equations
(KGM),

(∂t + iqφ)2 ψ − (∇ − iqA)2 ψ + W ′(ψ) = 0, (6)

∇ · (∂t A + ∇φ) = q

(
Im

∂tψ

ψ
+ qφ

)
|ψ |2 , (7)

∇ × (∇ × A) + ∂t (∂t A + ∇φ) = q

(
Im

∇ψ
ψ

− qA
)

|ψ |2 . (8)

Here ∇· denotes the divergence operator.
If we make the following change of variables:

E = −
(
∂A
∂t

+ ∇φ
)
, (9)

H = ∇ × A, (10)

ρ = −q

(
Im

∂tψ

ψ
+ qφ

)
|ψ |2 , (11)

j = q

(
Im

∇ψ
ψ

− qA
)

|ψ |2 , (12)

we see that (7) and (8) are the second couple of the Maxwell equations with respect to a
matter distribution whose electric charge and current densities are respectively ρ and j:

∇ · E = ρ, (13)

∇ × H − ∂E
∂t

= j. (14)

Equations (9) and (10) give rise to the first couple of the Maxwell equations:

∇ × E +
∂H
∂t

= 0, (15)

∇ · H = 0. (16)

If we set

ψ (t, x) = u (t, x) ei S(t,x), u ∈ R
+, S ∈ R

2πZ
,
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Eq. (6) can be split in the two following ones:

�u + W ′(u) +

[
|∇S − qA|2 −

(
∂S

∂t
+ qφ

)2
]

u = 0,

∂

∂t

[(
∂S

∂t
+ qφ

)
u2

]
− ∇ ·

[
(∇S − qA) u2

]
= 0,

and these equations, using the variables j and ρ, become

�u + W ′(u) +
j2 − ρ2

q2u3 = 0, (17)

∂ρ

∂t
+ ∇ · j = 0. (18)

Equation (18) is the charge continuity equation.
Notice that Eq. (18) is a consequence of (13) and (14).
In conclusion, an Abelian gauge theory, via Eqs. (17 ,13,14,15,16), provides a model

of interaction of the matter field ψ with the electromagnetic field (E,H).
Observe that the Lagrangian (4) is invariant with respect to the gauge transformations

ψ → eiqχψ, (19)

φ → φ − ∂tχ, (20)

A → A + ∇χ, (21)

where χ ∈ C∞ (
R

4
)
.

So, our equations are gauge invariant; if we use the variable u, ρ, j,E, H, this fact
can be checked directly since these variables are gauge invariant.

In fact, Eqs. (13–17) are the gauge invariant formulation of Eqs. (6–8).

2.2. Conservation laws. Noether’s theorem states that any invariance for a one-param-
eter group of the Lagrangian implies the existence of an integral of motion (see e.g.
[25]).

Here there are the integrals which are relevant for this paper.

• Energy. Energy, by definition, is the quantity which is preserved by the time invariance
of the Lagrangian; using the gauge invariant variables, it takes the following form:

E = Em + E f , (22)

where

Em = 1

2

∫ [(
∂u

∂t

)2

+ |∇u|2 + W (u) +
ρ2 + j2

2q2u2

]
dx,

ρ = −q

(
∂S

∂t
+ qφ

)
u2, (23)

j = q (∇S − qA) u2, (24)
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and

E f = 1

2

∫ (
E2 + H2

)
dx

(for the computation of E , see e.g. ([9])).
• Momentum. Momentum, by definition, is the quantity which is preserved by the space

invariance of the Lagrangian; using the gauge invariant variables, it takes the following
form:

P = Pm + P f , (25)

where

Pm =
∫ [

− (∂t u ∇u) +
ρj

q2u2

]
dx

and

P f =
∫

E × H dx .

• Angular momentum. The angular momentum, by definition, is the quantity which is
preserved by virtue of the invariance under space rotations of the Lagrangian with
respect to the origin. Using the gauge invariant variables, we get:

M = Mm + M f , (26)

where

Mm =
∫ [

−x × (∇u ∂t u) + x × ρj
q2u2

]
dx (27)

and

M f =
∫

x × (E × H) dx .

Notice that each of the integrals E , P,M can be split in two parts (see (22), (25),
(26)). The first one refers to the “matter field” and the second to the “electromagnetic
field”.

• Electric charge. The electric charge is the quantity which is preserved by the gauge
action (19, 20, 21). Using (18), we see that it has the following expression:

Q =
∫
ρdx = −q

∫
(∂t S + qφ)u2dx . (28)
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2.3. Stationary solutions and vortices. We look for stationary solutions of (6), (7), (8),
namely solutions of the form

ψ (t, x) = u (x) ei S(x,t), u ∈ R
+, ω ∈ R, S = S0(x)− ωt ∈ R

2πZ
, (29)

∂t A = 0, ∂tφ = 0. (30)

Substituting (29) and (30) in (6), (7), (8), we get the following equations:

−�u +
[
|∇S0 − qA|2 − (ω − qφ)2

]
u + W ′ (u) = 0, (31)

−∇ ·
[
(∇S0 − qA) u2

]
= 0, (32)

−�φ = q (ω − qφ) u2, (33)

∇ × (∇ × A) = q (∇S0 − qA) u2. (34)

Observe that Eq. (32) easily follows from Eq. (34). Then we are reduced to study the
system (31), (33), (34). The energy of a solution of equations (31), (33), (34) has the
following expression:

E = 1

2

∫ (
|∇u|2 + |∇φ|2 + |∇ × A|2 + (|∇S0 − qA|2 + (ω − qφ)2) u2

)

+
∫

W (u). (35)

Moreover the (electric) charge (see (28)) is given by

Q = qσ, (36)

where

σ =
∫
(ω − qφ) u2dx . (37)

For a possible interpretation of σ see [6].
Clearly, when u = 0, the only finite energy gauge potentials which solve (33), (34)

are the trivial ones A =0, φ = 0.
It is possible to have three types of finite energy stationary non trivial solutions:

• electrostatic solutions: A = 0, φ �= 0;
• magnetostatic solutions: A �= 0, φ = 0;
• electro-magneto-static solutions: A �= 0, φ �= 0.

Under suitable assumptions, all these types of solutions exist. The existence and the
non existence of electrostatic solutions for Eqs. (31), (33) have been proved under dif-
ferent assumptions on W. In [7,15,19–21] lower order terms W like (1) have been taken
into account. In [8 and 12] the existence of electrostatic solutions has been studied for a
class of positive lower order terms W. In particular the existence of radially symmetric,
electrostatic solutions has been analyzed. These solutions have zero angular momentum.

Here we are interested in electro-magneto-static solutions, in particular we shall study
the existence of vortices, which are solutions with nonvanishing angular momentum.
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We set


 =
{
(x1, x2, x3) ∈ R

3 : x1 = x2 = 0
}
,

and we define the map

θ : R
3\
 → R

2πZ
,

θ(x1, x2, x3) = Im log(x1 + i x2).

In (29) we take S0 = �θ (� integer) and give the following definition.

Definition 2. A finite energy solution (u, S0, φ,A) of Eq. (31), (33), (34) is called vortex
if S0 = �θ(x) with � �= 0.

In this case, ψ has the following form:

ψ(t, x) = u(x) ei(�θ(x)−ωt); � ∈ Z− {0} . (38)

We shall see (Proposition 7) that the angular momentum Mm of the matter field of a
vortex does not vanish; this fact justifies the name “vortex”.

Observe that θ ∈ C∞
(
R

3\
, R

2πZ

)
. We set with abuse of notation

∇θ(x) = x2

x2
1 + x2

2

e1 − x1

x2
1 + x2

2

e2,

where e1, e2, e3 is the canonical base in R
3.

Using the ansatz (38), Eqs. (31), (33), (34) become

−�u +
[
|�∇θ − qA|2 − (ω − qφ)2

]
u + W ′(u) = 0, (39)

−�φ = q (ω − qφ) u2, (40)

∇ × (∇ × A) = q (�∇θ − qA) u2. (41)

2.4. The main existence result. Let W satisfy the following assumptions:

• W1) ∀s ≥ 0 : W (s) ≥ 0,
• W2) W is C2 with W (0) = W ′(0) = 0, W ′′(0) = m2 > 0,

• W3) inf
s>0

(
W (s)
m2
2 s2

)
< 1,

• W4) There exist positive constants c1, c2, p, q,with 2 < q ≤ p < 6, such that for
s ≥ 0,

∣∣N ′(s)
∣∣ ≤ c1sq−1 + c1s p−1.

We shall set

W (s) = m2

2
s2 + N (s). (42)

Clearly assumption W3) is equivalent to require that there exists s0 > 0 such that

N (s0) < 0. (43)
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By rescaling time and space we can assume without loss of generality

m2 = 1.

Moreover, for technical reasons it is useful to assume that W is defined for all s ∈ R

just setting

W (s) = W (−s) f or s < 0.

Now we can state the main existence result.

Theorem 3. Assume that the function W satisfies assumptions W1),W2),W3),W4). Then
for all � ∈ Z there exists q̄ > 0 such that for every 0 ≤ q ≤ q̄ , Eqs. (39)–(41) admit a
finite energy solution in the sense of distributions (u, ω, φ,A), u �= 0, ω > 0. The maps

u, φ depend only on the variables r =
√

x2
1 + x2

2 and x3

u = u(r, x3), φ = φ(r, x3),

and the magnetic potential A has the following form:

A = a(r, x3)∇θ = a(r, x3)
( x2

r2 e1 − x1

r2 e2

)
. (44)

If q = 0, then φ = 0,A = 0. If q > 0 then φ �= 0.Moreover A �= 0 if and only if � �= 0.

Remark 4. When there is no coupling with the electromagnetic field, i.e. q = 0, Eqs.
(39)–(41) reduce to find vortices to the nonlinear Klein-Gordon equation and an analo-
gous result has been obtained in [3].

Remark 5. When � = 0 and q > 0 the last part of Theorem 3 states the existence of
electrostatic solutions, namely finite energy solutions with u �= 0, φ �= 0 and A = 0.
This result is a variant of a recent theorem (see [12]).

Remark 6. By the presence of the term ∇θ Eqs. (39), (41) are not invariant under the
O(3) group action as it happens for Eqs. (6)–(8) we started from. Indeed there is a
breaking of radial symmetry and the solutions u, φ, A in Theorem 3 have only an S1

symmetry.

Proposition 7. Let (u, ω, φ,A) be a non trivial, finite energy solution of Eqs. (39)–(41)
as in Theorem 3. Then the angular momentum Mm (see (27)) has the following expres-
sion:

Mm = −
[∫

(�− qa) (ω − qφ) u2dx

]
e3, (45)

and, if � �= 0, it does not vanish.

Proof. By (27), (38), (23), (24) and (44), we have that

Mm =
∫

x × ∇θ (�− qa) (ω − qφ) u2dx .
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Let us compute

x × ∇θ = (x1e1 + x2e2 + x3e3)×
( x2

r2 e1 − x1

r2 e2

)

= − x2
1

r2 e3 − x2
2

r2 e3 +
x2x3

r2 e2 +
x1x3

r2 e1

= x1x3

r2 e1 +
x2x3

r2 e2 − e3.

Then

Mm (ψ) =
∫ ( x1x3

r2 e1 +
x2x3

r2 e2 − e3

)
(�− qa) (ω − qφ) u2dx . (46)

On the other hand, since the functions x1x3
(�−qa)(ω−qφ)u2

r2 and x2x3
(�−qa)(ω−qφ)u2

r2

are odd in x1 and x2 respectively, we have
∫

x1x3
(�− qa) (ω − qφ) u2

r2 =
∫

x2x3
(�− qa) (ω − qφ) u2

r2 = 0. (47)

Then (45) follows from (46) and (47). Now let � �= 0. In order to see that Mm �= 0,
it is sufficient to prove that

(�− qa) (ω − qφ) > 0, (48)

or that

(�− qa) (ω − qφ) < 0. (49)

Clearly, since �, ω �= 0 (48) or (49) are satisfied when q = 0.Now let q > 0.Assume
that � > 0 and we show that (48) is verified. The case � < 0 can be treated analogously.

By (33) we have that

−�φ + q2u2φ = qωu2.

Sinceω/q is a supersolution, by the maximum principle,φ < ω/q and henceω−qφ > 0.
So, in order to prove (48), it remains to show that

�− qa > 0. (50)

By (34) we have that

∇ × (∇ × A) = q (�∇θ − qA) u2. (51)

Now a straight computation shows that,

∇ × (∇ × a∇θ) = b ∇θ, (52)

where

b = −∂
2a

∂r2 +
1

2

∂a

∂r
− ∂2a

∂x2
3

.

Then, setting A = a∇θ in (51) and using (52), we have

−∂
2a

∂r2 +
1

2

∂a

∂r
− ∂2a

∂x2
3

= q (�− qa) u2.

Since �/q is a supersolution, by the maximum principle, a < �/q and hence (50) is
proved. 
�
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Finally let us observe that under general assumptions on W,magnetostatic solutions
(i.e. with ω = φ = 0) do not exist. In fact the following proposition holds:

Proposition 8. Assume that W satisfies the assumptions W (0) = 0 and W ′(s)s ≥ 0.
Then (39), (40), (41) has no solutions with ω = φ = 0.

Proof. Set ω = 0, φ = 0 in (39) and we get

−�u + |�∇θ − qA|2 u + W ′(u) = 0.

Then, multiplying by u and integrating, we get
∫

|∇u|2 + |�∇θ − qA|2 u2 + W ′(u)u = 0.

So, since W ′(s)s ≥ 0, we get u = 0. 
�

3. The Existence Proof

3.1. The functional setting. Let H1 denote the usual Sobolev space with norm

‖u‖2
H1 =

∫
(|∇u|2 + u2)dx;

moreover we need to use also the weighted Sobolev space Ĥ1 whose norm is given by

‖u‖2
Ĥ1 =

∫ [
|∇u|2 +

(
1 +

�2

r2

)
u2

]
dx, � ∈ Z,

where r =
√

x2
1 + x2

2 . Clearly Ĥ1 = H1 when � = 0.

We set D = C∞
0 (R

3) and we denote by D1,2 the completion of D with respect to the
inner product

(v | w)D1,2 =
∫

∇v · ∇wdx . (53)

Here and in the following the dot · will denote the Euclidean inner product in R
3.

We set

H = Ĥ1 × D1,2 ×
(
D1,2

)3
,

‖(u, φ,A)‖2
H =

∫
|∇u|2 +

(
1 +

�2

r2

)
u2 + |∇φ|2 + |∇A|2.

(54)

We shall denote by u = u(r, x3) the real maps in R
3 which depend only on

r =
√

x2
1 + x2

2 and x3. We set

Dr = {u ∈ D : u = u(r, x3)} , (55)

and we shall denote by D1,2
r (respectively Ĥ1

r ) the closure of Dr in the D1,2 (respectively
Ĥ1) norm.
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Now we consider the functional

J (u, φ,A) = 1

2

∫
|∇u|2 − |∇φ|2 + |∇ × A|2

+
1

2

∫ [
|�∇θ − qA|2 − (ω − qφ)2

]
u2 +

∫
W (u), (56)

where (u, φ,A) ∈ H. Equations (39), (40) and (41) are the Euler-Lagrange equations
of the functional J . Standard computations show that the following lemma holds:

Lemma 9. Assume that W satisfies W1),…, W4). Then the functional J is C1 on H.

By the above lemma it follows that the critical points (u, φ,A) ∈ H of J (with u ≥ 0)
are weak solutions of Eq. (39), (40) and (41), namely

∫
∇u · ∇v +

[
|�∇θ − qA|2 − (ω − qφ)2

]
uv + W ′ (u) v = 0, ∀v ∈ Ĥ1, (57)

∫
∇φ · ∇w − qu2 (ω − qφ)w = 0, ∀w ∈ D1,2, (58)

∫
(∇ × A) · (∇ × V)− qu2 (�∇θ − qA) · V = 0, ∀V ∈ (D1,2)3. (59)

3.2. Solutions in the sense of distributions. Since D is not contained in Ĥ1, a solution
(u, φ,A) ∈ H of (57), (58), (59) need not to be a solution of (39), (40), (41) in the
sense of distributions on R

3. In fact, since ∇θ (x) is singular on 
, it might be that for
some test function v ∈ D, when � �= 0, the integral

∫ |�∇θ − qA|2 uv diverges, unless
u is sufficiently small as x → 
.

In this section we will show that this fact does not occur, namely the singularity is
removable in the sense of the following theorem:

Theorem 10. Let (u0, φ0,A0) ∈ H, u0 ≥ 0 be a solution of (57), (58), (59) (i.e. a crit-
ical point of J ). Then (u0, φ0,A0) is a solution of Eqs. (39), 40) and (41) in the sense
of distribution, namely
∫

∇u0 · ∇v +
[
|�∇θ − qA0|2 − (ω − qφ0)

2
]

u0v + W ′ (u0) v = 0, ∀v ∈ D, (60)
∫

∇φ0 · ∇w − qu2
0 (ω − qφ0) w = 0, ∀w ∈ D, (61)

∫
(∇ × A0) · (∇ × V)− qu2

0 (�∇θ − qA0) · V = 0, ∀V ∈ D3. (62)

Let χn (n positive integer) be a family of smooth functions depending only on

r =
√

x2
1 + x2

2 and x3 and which satisfy the following assumptions:

• χn (r, x3) = 1 for r ≥ 2
n ,

• χn (r, x3) = 0 for r ≤ 1
n ,

• |χn (r, x3)| ≤ 1,
• |∇χn (r, x3)| ≤ 2n,
• χn+1 (r, x3) ≥ χn (r, x3).
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Lemma 11. Let ϕ be a function in H1 ∩ L∞ with bounded support and set ϕn = ϕ ·χn .

Then, up to a subsequence, we have that

ϕn → ϕ weakly in H1.

Proof. Clearly ϕn → ϕ a.e. Then, by standard arguments, the conclusion holds if we
show that {ϕn} is bounded in H1. Clearly {ϕn} is bounded in L2. Let us now prove that

{∫
|∇ϕn|2

}
is bounded.

We have
∫

|∇ϕn|2 ≤ 2
∫

|∇ϕ · χn|2 + |ϕ · ∇χn|2

≤ 2
∫

|∇ϕ|2 + 2
∫

�ε

|ϕ · ∇χn|2 ,

where

�ε =
{

x ∈ R
3 : ϕ �= 0 and |∇χn (r, z)| �= 0

}
.

By our construction, |�ε| ≤ c/n2, where c depends only on ϕ. Thus
∫

|∇ϕn|2 ≤ 2
∫

|∇ϕ|2 + 2 ‖ϕ‖2
L∞

∫

�ε

|∇χn|2

≤ 2
∫

|∇ϕ|2 + 2 ‖ϕ‖2
L∞ · |�ε| · ‖∇χn‖2

L∞

≤ 2
∫

|∇ϕ|2 + 8c ‖ϕ‖2
L∞ .

Thus ϕn is bounded in H1 and ϕn → ϕ weakly in H1. 
�
Now we are ready to prove Theorem 10.

Proof. Clearly (61) and (62) immediately follow by (58) and (59). Let us prove (60).
The case � = 0 is trivial. So assume � �= 0. We take any v ∈ D and set ϕn = v+χn ,
where v+ = |v|+v

2 . Then, taking ϕn as a test function in Eq. (57), we have
∫

∇u0 · ∇ϕn +
[
|qA0 − �∇θ |2 − (qφ0 − ω)2

]
u0ϕn + W ′ (u0) ϕn = 0. (63)

Equation (63) can be written as follows

An + Bn + Cn + Dn = 0, (64)

where

An =
∫

∇u0 · ∇ϕn, Bn =
∫ (

q2A2
0u0 − (qφ0 − ω)2 u0 + W ′ (u0)

)
ϕn, (65)

Cn = −2
∫

qA0 · �∇θ u0ϕn, Dn =
∫

|�∇θ |2 u0ϕn . (66)
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By Lemma 11,

ϕn → v+ weakly in H1. (67)

Then we have

An →
∫

∇u0 · ∇v+. (68)

Now
(

q2A2
0u0 − (qφ0 − ω)2 u0 + W ′ (u0)

)
∈ L6/5 =

(
L6

)′
.

Then, using again (67) and by the embedding H1 ⊂ L6, we have

Bn →
∫ (

q2A2
0u0 − (qφ0 − ω)2 u0 + W ′ (u0)

)
v+ < ∞. (69)

Now we shall prove that

Cn → −2
∫

qA0 · �∇θ u0v
+ < ∞. (70)

Set

C = BR × [−d, d] , BR =
{
(x1, x2) ∈ R

2 : r2 = x2
1 + x2

2 < R
}
,

where d, R > 0 are so large that the cylinder C contains the support of v+.

Then
∫ (ϕn

r

) 3
2

dx =
∫

C

(
v+χn

r

) 3
2

dx (71)

≤ c1

∫ d

−d

∫ R

0

(
1

r

) 3
2

rdrdx3 = M < ∞, (72)

where c1 = 2π sup
(
v+

) 3
2 . By (72) we have

∫
|A0 · ∇θ u0ϕn| dx ≤ ‖u0A0 ‖L3

∥∥∥ϕn

r

∥∥∥
L

3
2

≤ ‖u0A0 ‖L3 M
2
3 . (73)

Now

|A0 · ∇θ u0ϕn| → ∣∣A0 · ∇θ u0v
+
∣∣ a.e. in R

3

and the sequence {|A0 · ∇θ u0ϕn|} is monotone . Then, by the monotone convergence
theorem, we get

∫
|A0 · �∇θ u0ϕn| dx →

∫ ∣∣A0 · �∇θ u0v
+
∣∣ dx . (74)

By (73) and (74) we deduce that
∫ ∣∣A0 · �∇θ u0v

+
∣∣ dx < ∞. (75)
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Then, since

|A0 · ∇θ u0ϕn| ≤ ∣∣A0 · ∇θ u0v
+
∣∣ ∈ L1,

by the dominated convergence theorem, we get (70). Finally we prove that

Dn →
∫

|�∇θ |2 u0v
+ < ∞. (76)

By (64), (68), (69) and (70) we have that

Dn =
∫

|�∇θ |2 u0ϕn is bounded. (77)

Then the sequence |∇θ |2 u0ϕn is monotone and it converges a.e. to |∇θ |2 u0v
+. Then,

by the monotone convergence theorem, we get∫
|�∇θ |2 u0ϕndx →

∫
|�∇θ |2 u0v

+dx . (78)

By (77) and (78) we get (76).
Taking the limit in (64) and by using (68), (69), (70), (76) we have∫

∇u0 · ∇v+ +
[
|qA0 − �∇θ |2 − (qφ0 − ω)2

]
u0v

+ + W ′ (u0) v
+ = 0.

Taking ϕn = v−χn and arguing in the same way as before, we get∫
∇u0 · ∇v− +

[
|qA0 − �∇θ |2 − (qφ0 − ω)2

]
u0v

− + W ′ (u0) v
− = 0.

Then ∫
∇u0 · ∇v +

[
|qA0 − �∇θ |2 − (qφ0 − ω)2

]
u0v + W ′ (u0) v = 0.

Since v ∈ D is arbitrary, we get that Eq. (60) is solved. 
�
The presence of the term − ∫ |∇φ|2 gives to the functional J a strong indefiniteness,

namely any critical point of J has infinite Morse index: this fact is a great obstacle to a
direct study of the critical points. To avoid this difficulty we shall introduce a reduced
functional

3.3. The reduced functional. Equation (40) can be written as follows

−�φ + q2u2φ = qωu2, (79)

and it can be easily verified (see [7], Lemma 3.3) that for any u ∈ H1(R3), there exists
a unique solution φ ∈ D1,2 of (79).

Clearly, if u ∈ Ĥ1
r (R

3), the solution φ = φu of (79) belongs to D1,2
r . Then we can

define the map

u ∈ Ĥ1
r (R

3) → Zω (u) = φu ∈ D1,2
r solution of (79). (80)

Since φu solves (79), clearly we have

dφ J (u, Zω (u) ,A) = 0, (81)

where J is defined in (56) and dφ J denotes the partial differential of J with respect to
φ.
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Proposition 12. The map defined in (80) is C1.

Proof. Observe that dφ J = J ′
φ does not depend on A. By (81), the points (u, Zω (u))

of the graph of the map (80) are the zeros of J ′
φ. On the other hand a straightforward

calculation shows that the derivatives J ′′
φφ, J ′′

φu of J ′
φ are

J ′′
φφ(u, φ) [ξ, η] =

∫
∇ξ · ∇ηdx +

∫
q2u2ξηdx,

J ′′
φu(u, φ) [ξ, ν] =

∫
∇ξ · ∇νdx +

∫
q2u2ξνdx,

where ξ, η ∈ D1,2
r and ν ∈ Ĥ1

r (R
3). Standard calculations show that J ′′

φφ and J ′′
φu

are continuous and J ′′
φφ is invertible. Then the conclusion follows by using the implicit

function theorem. 
�
For u ∈ H1(R3), let� = �u be the solution of Eq. (79) with ω = 1, then�u solves

the equation

−��u + q2u2�u = qu2. (82)

Clearly

φu = ω�u . (83)

Now let q > 0, then, by maximum principle arguments, it is easy to show that for any
u ∈ H1(R3) the solution �u of (82) satisfies

0 ≤ �u ≤ 1

q
. (84)

Now, if (u,A) ∈ Ĥ1 × (D1,2
)3
, we set

J̃ (u,A) = J (u, Zω (u) ,A),

where J is defined in (56). Observe that, since the functional J and the map u →
Zω (u) = φu are C1 (see Lemma 9 and Proposition 12), also the functional J̃ is C1.

Now, by using the chain rule and Eq. (81), it can be shown (see the first part of the proof
of Theorem 16 in [11] or the Proposition 3.5 in [7] ) that

(
(u,A) critical point of J̃

)
�⇒ ((u, Zω (u) ,A) critical point of J ) . (85)

We will refer to J̃ (u,A) as the reduced action functional. From (82) we have

∫
qu2�udx =

∫
|∇�u |2 dx + q2

∫
u2�2

udx . (86)
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Now, by (83), (86), we have:

J̃ (u,A) = J (u, Zω (u) ,A) = 1

2

∫
|∇u|2 − |∇φu |2 + |∇ × A|2

+
1

2

∫ [
|�∇θ − qA|2 − (qφu − ω)2

]
u2 +

∫
W (u)

= 1

2

∫ (
|∇u|2 + |∇ × A|2 + |�∇θ − qA|2 u2

)

−1

2
ω2

∫ (
|∇�u |2 + q2u2�2

u + u2 − 2qu2�u

)
+

∫
W (u)

= 1

2

∫
|∇u|2 + |∇ × A|2 + |�∇θ − qA|2 u2 +

∫
W (u)

−ω
2

2

∫
([1 − q�u]) u2. (87)

Then

J̃ (u,A) = I (u,A)− ω2

2
Kq(u), (88)

where

I (u,A) = 1

2

∫
|∇u|2 + |∇ × A|2 + |�∇θ − qA|2 u2 +

∫
W (u)

and

Kq(u) =
∫
([1 − q�u]) u2. (89)

Now, following the same lines as before, we can define the reduced energy functional
as follows:

Ẽ (u,A) = E(u, Zω (u) ,A),

where (see (35))

E = 1

2

∫ (
|∇u|2 + |∇φ|2 + |∇ × A|2 + (|�∇θ − qA|2 + (ω − qφ)2) u2

)
+

∫
W (u).

(90)

It can be shown as for (88) that

Ẽ (u,A) = I (u,A) +
ω2

2
Kq(u). (91)

Observe that

Q = qσ = qωKq(u)

represents the (electric) charge (see (36) and (37)), so that we can write for u �= 0,

Ẽ (u,A) = I (u,A) +
ω2

2
Kq(u) = I (u,A) +

σ 2

2Kq(u)
.
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Then for any σ �= 0, the functional defined by

Eσ,q (u,A) = I (u,A) +
σ 2

2Kq(u)
, (u,A) ∈ Ĥ1 ×

(
D1,2

)3
, u �= 0 (92)

represents the energy on the configuration (u, ω�u,A) having charge Q = qσ or,
equivalently, frequency ω = σ

Kq (u)
.

The following lemma holds

Lemma 13. The functional

Ĥ1 ∈ u → K (u) =
∫

u2(1 − q�u)dx

is differentiable and for any u ∈ Ĥ1 we have

K ′(u) = 2u(1 − q�u)
2. (93)

Proof. Set

A(u,�) =
∫

|∇�|2 dx +
∫

u2(1 − q�)2dx .

By (86) clearly we have

A(u,�u) = K (u).

Then

K ′(u) = ∂A
∂u
(u,�u) +

∂A
∂�

(u,�u)�
′
u, (94)

where ∂A
∂u ,

∂A
∂�

denote the partial derivatives of A with respect to u and � respectively.
Since �u solves (82), we have

∂A
∂�

(u,�u) = 0.

Then (94) gives

K ′(u) = ∂A
∂u
(u,�u) = 2u(1 − q�u)

2.


�
The following proposition holds

Proposition 14. Let σ �= 0 and let (u,A) ∈ Ĥ1 × (D1,2
)3
, u �= 0 be a critical point of

Eσ,q (see (92)). Then, if we set ω = σ
Kq (u)

, (u, Zω (u) ,A) is a critical point of J .



Spinning Q-Balls for the Klein-Gordon-Maxwell Equations 657

Proof. Since (u,A) ∈ Ĥ1 × (D1,2
)3
, u �= 0 is a critical point of Eσ,q , we have

0 = E ′
σ,q (u,A) = I ′(u,A)− σ 2 K ′

q(u)

2Kq(u)2
= I ′(u,A)− ω2 K ′

q(u)

2
, ω = σ

Kq(u)
.

Hence (u,A) is a critical point of the functional

J̃ (u,A) = I (u,A)− ω2 Kq(u)

2
.

So by (85) (u, Zω (u) ,A) is a critical point of J. 
�
By Proposition 14 and Theorem 10 we are reduced to study the critical points of Eσ,q

which is a functional bounded from below.
However Eσ,q contains the term

∫ |∇ × A|2 which is not a Sobolev norm.

In order to avoid this difficulty we introduce a suitable manifold V ⊂ Ĥ1 × (D1,2
)3

such that:

• the critical points of J restricted to V satisfy Eq. (39), (40), 41); namely V is a “natural
constraint” for J .

• The components A of the elements in V are divergence free, then the term
∫ |∇ × A|2

can be replaced by ‖A‖2
(D1,2)

3 = ∫ |∇A|2.

We set

A0 :=
{

X ∈ C∞
0 (R

3\
,R3) : X = b (r, x3)∇θ; b ∈ C∞
0

(
R

3\
,R
)}
. (95)

Let A denote the closure of A0 with respect to the norm of
(D1,2

)3
. We shall consider

the following space:

V := Ĥ1
r × A, (96)

where Ĥ1
r has been defined in Sect. 3.1. We shall set U = (u,A) and

‖U‖V = ‖(u,A)‖V = ‖u‖Ĥ1
r

+ ‖A‖
(D1,2)

3 .

Lemma 15. If A ∈ A, then
∫

|∇ × A|2 =
∫

|∇A|2 .

Proof. Let A =b∇θ ∈ A0. Since b depends only on r and x3, it is easy to check that

∇b · ∇θ = 0.

Since θ is harmonic in R
3\
 and b has support in R

3\
,

b�θ = 0.

Then

∇ · A =∇ · (b∇θ) = ∇b · ∇θ + b�θ = 0.
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Thus, by continuity, we get∫
(∇ · A)2 = 0 for any A ∈ A.

Then ∫
|∇ × A|2 =

∫
(∇ · A)2 +

∫
|∇ × A|2 =

∫
|∇A|2 .


�

3.4. Analysis of the minimizing sequences. The ratio energy/charge is a crucial quantity
for the following lemmas. For a charge σ > 0 this ratio is defined as a function of u and
A in the following way;

�σ,q (u,A) = Eσ,q(u,A)
σ

= I (u,A)
σ

+
σ

2Kq(u)
, (u,A) ∈ Ĥ1 ×

(
D1,2

)3
, u �= 0,

where

Kq(u) =
∫
([1 − q�u]) u2. (97)

In the following we shall always assume that the W satisfies W1),W2),W3), W4). First
we state the following continuity lemma:

Lemma 16. Let u ∈ H1, then∫
(1 − q�u)u

2 →
∫

u2 as q → 0.

Proof. Clearly it is enough to show that

q
∫
�uu2 → 0 as q → 0. (98)

Since �u depends on q a little work is needed to prove (98). Since �u solves (82), we
have

‖�u‖2
D1,2 + q2

∫
u2�2

u = q
∫

u2�u

≤ q ‖u‖2

L
12
5

‖�u‖L6 , (99)

and then, if u �= 0, we have

‖�u‖2
D1,2

‖�u‖L6
≤ q ‖u‖2

L
12
5
.

So, since D1,2 is continuously embedded into L6, we easily get

‖�u‖D1,2 ≤ c1q ‖u‖2

L
12
5
, (100)

where c1 is a positive constant. Then we get

q
∫

u2�u ≤ q ‖u‖2

L
12
5

‖�u‖L6 ≤ c1q2 ‖u‖4

L
12
5
,

from which we deduce (98). 
�
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Lemma 17. There exist σ, q̄ > 0, such that for all 0 ≤ q < q̄ there exists u ∈ Ĥ1
r such

that

�σ,q(u, 0) < 1.

Proof. For 0 < µ < λ we set:

Tλ,µ =
{
(r, x3) : (r − λ)2 + x3

2 ≤ µ
}

and, for λ > 2, we consider a smooth function uλ with cylindrical symmetry such that

uλ(r, x3) =
⎧⎨
⎩

s0 i f (r, x3) ∈ Tλ,λ/2

0 i f (r, x3) /∈ Tλ,λ/2+1

,

where s0 is such that N (s0) < 0 (see (43)). Moreover we may assume that

|∇uλ (r, x3)| ≤ 2 for (r, x3) ∈ Tλ,λ/2+1\Tλ,λ/2.

We have that for all σ �= 0,

�σ,q(uλ, 0) = 1

σ

∫ [
1

2
|∇uλ|2 +

�2

2

u2
λ

r2 + W (uλ)

]
dx +

σ

2Kq(uλ)

=
∫ [

|∇uλ|2 +
�2u2

λ

r2

]
dx

2σ
+

∫
u2
λ

2σ
+

∫
N (uλ)dx

σ
+

σ

2Kq(uλ)

(remember that W has the form (42) and m2 = 1). Now take

σ = σλ =
∫

u2
λ;

in this case we get

�σλ,q(uλ, 0) = 1

2
+

σλ

2Kq(uλ)
+

∫ [
|∇uλ|2 +

�2u2
λ

r2

]
dx

2
∫

u2
λ

+

∫
N (uλ)dx∫

u2
λ

. (101)

By a direct computation we have that
∫

|∇uλ|2 ≤ c1meas(Tλ,λ/2+1\Tλ,λ/2) = c2λ
2 (102)

∫
u2
λ

r2 ≤ c3

λ2 meas(Tλ,λ/2+1) = c4λ (103)
∫

u2
λ ≥ c5meas(Tλ,λ/2+1) = c6λ

3 (104)

so that

∫ [
|∇uλ|2 +

�2u2
λ

r2

]
dx

2
∫

u2
λ

= O

(
1

λ

)
. (105)
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Moreover
∫

N (uλ)dx ≤ N (s0)meas(Tλ,λ/2) + c7meas(Tλ,λ/2+1\Tλ,λ/2)

≤ c8 N (s0)λ
3 + c9λ

2. (106)

From (106) and (104) we get
∫

N (uλ)dx∫
u2
λ

≤ c10
N (s0)

s2
0

+ O

(
1

λ

)
= g(s0, λ). (107)

From (101), (105) and (107) we get

�σλ,q(uλ, 0) ≤ 1

2
+

σλ

2Kq(uλ)
+ g(s0, λ). (108)

Since N (s0) < 0, we can take λ0 so large that

g(s0, λ0) < 0. (109)

Now we take

σ = σλ0 =
∫

u2
λ0
, and u = uλ0 .

Now, by Lemma 16, we have

Kq(u) → K0(u) = σ for q → 0.

So

σ

2Kq(u)
→ 1

2
for q → 0. (110)

Then, by (108), (109) and (110), there is q̄ > 0 so small that, for all 0 ≤ q < q̄, we
have

�σ,q(u, 0) ≤ 1

2
+

σ

2Kq(u)
+ g(s0, λ0) < 1.


�
Now the following a priori estimate on the minimizing sequences can be obtained

Lemma 18. Any minimizing sequence (un,An) ⊂ V for Eσ,q |V is bounded in Ĥ1 ×(D1,2
)3
.

Proof. Let (un,An) ⊂ V be a minimizing sequence for Eσ,q |V . Clearly

‖An‖
(D1,2)

3 is bounded.

So it remains to prove that

‖un‖Ĥ1
r

is bounded. (111)
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To this end we shall first show that

‖un‖L2 is bounded. (112)

Since (un,An) is a minimizing sequence for Eσ,q |V we get
∫

W (un) and
∫

|∇un|2 are bounded. (113)

Then we have also that
∫

u6
n is bounded. (114)

Let ε > 0 and set

�n =
{

x ∈ R
3 : |un(x)| > ε

}
and �c

n = R
3\�n .

By (113) and since W ≥ 0 we have
∫

�c
n

W (un) is bounded. (115)

By W2) we can write

W (s) = 1

2
s2 + ◦(s2).

Then, if ε is small enough, there is a constant c > 0 such that
∫

�c
n

W (un) ≥ c
∫

�c
n

u2
n . (116)

By (115) and (116) we get that
∫

�c
n

u2
n is bounded. (117)

On the other hand

∫

�n

u2
n ≤

(∫

�n

u6
n

) 1
3

meas(�n)
2
3 . (118)

By (114) we have that

meas(�n) is bounded. (119)

By (118), (119) and again by (114) we get
∫

�n

u2
n is bounded. (120)

So (112) follows from (117) and (120).
Let us finally prove (111).
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Clearly

Eσ,q (un,An) ≥ I (un,An)

≥ 1

2

∫ (
|∇un|2 + |∇An|2 + q2 |An|2 u2

n + �2 u2
n

r2 − 2q
�

r
|An| |un|2

)
dx

≥ 1

2
‖un‖2

Ĥ1
r

− q
∫
�

r
|An| |un|2 − sup ‖un‖L2 . (121)

Also we have ∫
q�

r
|An| |un|2 ≤ 1

2

∫ (
4q2�2 |An|2 +

1

4r2

)
|un|2

≤ 1

8
‖un‖2

Ĥ1
r

+ 2q2�2
∫

|An|2 |un|2 . (122)

Since Eσ,q (un,An) is bounded, by (121) and (122) we deduce that

c1 ≥
(

1

2
− 1

8

)
‖un‖2

Ĥ1
r

− 2q2�2
∫

|An|2 |un|2 . (123)

Here c1, c2 will denote suitable constants.
Now, since ‖un‖L2 and ‖un‖L6 are bounded, also ‖un‖L3 is bounded.
Then, by using also the boundedness of ‖An‖L6 , we get

∫
|An|2 |un|2 ≤ (‖An‖L6

) 1
3
(‖un‖L3

) 2
3 ≤ c2. (124)

From (123) and (124) we deduce the boundedness of ‖un‖2
Ĥ1

r
. 
�

By Lemma 18 any minimizing sequence Un := (un,An) ⊂ V of Eσ,q |V weakly
converges (up to a subsequence). Observe that Eσ,q is invariant for translations along
the x3-axis, namely for U ∈ V and L ∈ R we have

Eσ,q(TLU ) = Eσ,q(U ),

where

TL (U ) (x1, x2, x3) = U (x1, x2, x3 + L) . (125)

As a consequence of this invariance we have that (un,An) does not contain in general
a (strongly) convergent subsequence. So we argue as follows: we prove that for suitable
σ, q there exists a minimizing sequence (un,An) of Eσ,q |V which, up to translations
along the x3-direction, weakly converges to a non-trivial limit (u0,A0) . This limit will
be actually a critical point of Eσ0,q for some charge σ0.

To follow the above program we first prove the following lemma

Lemma 19. Let Un = (un,An) ⊂ V be a minimizing sequence of Eσ,q |V , σ > 0. Then
there exist δ,M > 0 such that

δ ≤ ωn ≤ M,

where

ωn = σ

Kq(un)
.
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Proof. Since (un,An) ⊂ V is a minimizing sequence of the functional Eσ,q |V defined
by

Eσ,q (u,A) = I (u,A) +
σ 2

2Kq(u)
,

we have that for some constant c1 > 0,

c1 ≤ Kq(un). (126)

Also for some constant c2 > 0 we have

Kq(un) ≤ c2. (127)

In fact, arguing by contradiction, we assume that, up to a subsequence,

Kq(un) =
∫
(
[
1 − q�un

]
) u2

n → ∞,

then by (84) also we get
∫

u2
n → ∞,

contradicting (112).
Finally the conclusion immediately follows from (126) and (127). 
�
Now we shall prove the following proposition

Proposition 20. There exist σ, q̄ > 0 such that for all 0 ≤ q < q̄, for any minimizing
sequence (un,An) ⊂ V of Eσ,q |V we have

∫
|N (un)| ≥ c > 0 for n large.

Proof. Let σ and q be chosen as required in Lemma 17. Now let (un,An) ⊂ V be
a minimizing sequence of Eσ,q and hence of �σ,q . Then by Lemma 17 we get for n
sufficiently large,

�σ,q(un,An) ≤ 1 − δ, δ > 0. (128)

Then we have also
∫ [

|∇un|2 + �2u2
n

r2

]
dx

2σ
+

∫
u2

n

2σ
+

∫
N (un)dx

σ
+

σ

2
∫

u2
n

≤ 1 − δ.

Thus
∫

N (un)dx

σ
≤ 1 − δ −

(∫
u2

n

2σ
+

σ

2
∫

u2
n

)
≤ −δ.

This implies that
∫

N (un)dx ≤ −δσ.
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Then
∫

|N (un)| dx ≥ δσ.


�
Proposition 21. For anyσ, q ≥ 0 there exists a minimizing sequence (un,An) of Eσ,q |V,
with un ≥ 0 and which is also a P.S. sequence for Eσ,q , i.e.

E ′
σ,q (un,An) → 0.

Proof. Let (un,An) ⊂ V be a minimizing sequence for Eσ,q |V . It is not restrictive to
assume that un ≥ 0, in fact, if not, we can replace un with |un| (see (90)). By standard
variational arguments we can also assume that (un,An) is a P.S. sequence for Eσ |V ,
namely we can assume that

E ′
σ,q |V (un,An) → 0.

By using the same arguments used in proving Theorem 16 in [11], it can be shown that
(un,An) is a P.S. sequence also for Eσ,q , i.e.

E ′
σ,q (un,An) → 0. (129)


�
Proposition 22. There exist σ , q̄ > 0 such that for all 0 ≤ q < q̄ there exists a P.S.
sequence Un = (un,An) for Eσ,q which weakly converges to (u0,A0) , u0 ≥ 0 and
u0 �= 0..

Proof. Take σ , q as in Proposition 20. By Proposition 21 there exists a minimizing
sequence Un = (un,An) of Eσ,q |V with un ≥ 0 and which is also a P.S. sequence for
Eσ,q , i.e.

E ′
σ,q (Un) → 0.

By Proposition 20 and assumption W4), we can assume that

c1 ‖un‖q
Lq + c2 ‖un‖p

L p ≥ c > 0 for n large. (130)

By Lemma 18 the sequence {Un} is bounded in Ĥ1 × (D1,2
)3

so we can assume that
it weakly converges. However the weak limit could be trivial. We will show that there is
a sequence of integers jn such that (see (125)) Vn := Tjn Un ⇀ U0 = (u0,A0) , u0 �= 0,

weakly in H1 × (D1,2
)3

.
We set

� j = {(x1, x2, x3) : j ≤ x3 < j + 1} , j integer.

In the following c3, . . . , c6 denote positive constants.
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We have for all n,

‖un‖q
Lq =

∑
j

∫

� j

|un |q =
∑

j

(∫

� j

|un |q
)1/q

·
(∫

� j

|un |q
) q−1

q

≤ sup
j

‖un‖Lq(� j )

∑
j

(∫

� j

|un |q
) q−1

q

≤ c3 · sup
j

‖un‖Lq(� j ) ·
∑

j

‖un‖q−1
H1(� j )

≤ c3 · sup
j

‖un‖Lq(� j ) · ‖un‖q−1
H1(R3)

≤ (since ‖un‖q−1
H1(R3)

is bounded)

≤ c4 sup
j

‖un‖Lq(� j ) . (131)

Analogously we get

‖un‖p
L p ≤ c5 sup

j
‖un‖L p(� j) . (132)

Then by (130), (131) and (132) it is easy to deduce that, for n large, there exists an
integer jn such that

‖un‖Lq(� jn )
+ ‖un‖L p(� jn )

≥ c6 > 0. (133)

Now set
(

u′
n,A

′
n

)
= U ′

n(x1, x2, x3) = Un(x1, x2, x3 + jn) = Tjn (Un) .

By Lemma 18 the sequence u′
n is bounded Ĥ1

(
R

3
)
, then (up to a subsequence) it

converges weakly to u0 ∈ Ĥ1
(
R

3
)
. Clearly u0 ≥ 0, since u′

n ≥ 0. We want to show
that u0 �= 0. Now, let ϕ = ϕ (x3) be a nonnegative, C∞-function whose value is 1 for
0 < x3 < 1 and 0 for |x3| > 2.Then, the sequence ϕu′

n is bounded in H1
0 (R

2×(−2, 2)),
moreover ϕu′

n has cylindrical symmetry. Then, using the compactness result proved in
[23], we have that, up to a subsequence,

ϕu′
n converges strongly both in Lq(R2 × (−2, 2)) and in L p(R2 × (−2, 2)).

On the other hand

ϕu′
n → ϕu0 a.e. (134)

Then

ϕu′
n → ϕu0 strongly both in Lq(R2 × (−2, 2)) and in L p(R2 × (−2, 2)). (135)

Moreover for r = p, q we clearly have
∥∥ϕu′

n

∥∥
Lr(R2×(−2,2))

≥ ∥∥u′
n

∥∥
Lr (�0)

= ‖un‖Lr(� jn )
. (136)

Then by (135), (136) and (133) we have

‖ϕu0‖Lq(R2×(−2,2)) + ‖ϕu0‖L p(R2×(−2,2)) ≥ c6 > 0.

Thus we have that u0 �= 0. 
�
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Proposition 23. There exists q̄ > 0 such that, for all 0 ≤ q < q̄, for some charge
σ0 > 0, Eσ0,q has a critical point (u0,A0) u0 �= 0, u0 ≥ 0.

Proof. Let σ , q > 0 be as in Proposition 22, then there exists a sequence Un = (un,An)

in V , with un ≥ 0 and such that

E ′
σ,q (un,An) → 0 (137)

and

(un,An) → (u0,A0) weakly, u0 �= 0.

Since un ≥ 0 we have u0 ≥ 0.
Let us show that U0 = (u0,A0) is a critical point of Eσ0,q for some charge σ0 > 0.
By (137) we get that

d Eσ,q (Un) [w, 0]→0 and d Eσ,q (Un) [0,w]→0 for any (w,w) ∈ Ĥ1 ×
(
D1,2

)3
.

Then for any w ∈ C∞
0 (R

3\
) and w ∈ (
C∞

0 (R
3)

)3
we have

du I (Un) [w] + du

(
σ 2

2Kq(un)

)
[w] → 0 (138)

and

dA I (Un) [w] → 0, (139)

where du and dA denote the partial differentials of I with respect u and A. So from (138)
we get for any w ∈ C∞

0 (R
3\
),

du I (Un) [w] − σ 2 K ′
q(un)

2
(
Kq(un)

)2 [w] → 0

which can be written as follows:

du I (Un) [w] − ω2
n K ′

q(un)

2
[w] → 0, (140)

where

ωn = σ

Kq(un)
.

By Lemma 19 we have (up to a subsequence)

ωn → ω0 > 0.

Then by (140) we get for any w ∈ C∞
0 (R

3\
)

du I (Un) [w] − ω2
0 K ′

q(un)

2
[w] → 0. (141)

Now let �n be the solution in D1,2 of the equation

−��n + q2u2
n�n = qu2

n . (142)
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Since {un} is bounded in H1 (see (111) and (112)) and since �n solves (142), stan-
dard Sobolev estimates show that {�n} is bounded in D1,2 and that its weak limit (up to
subsequence) �0 is a weak solution of

−��0 + q2u2
0�0 = qu2

0. (143)

Then, by Lemma 13, we have

K ′
q(un) = 2un(1 − q�n)

2 and K ′
q(u0) = 2u0(1 − q�0)

2. (144)

By standard calculations we have:

for any w ∈ C∞
0 (R

3\
)∫
un(1 − q�n)

2w →
∫

u0(1 − q�0)
2w. (145)

Then, by (144) and (145), we get for any w ∈ C∞
0 (R

3\
),
K ′

q(un) [w] → K ′
q(u0) [w] . (146)

Similar standard estimates show that for any w ∈ C∞
0 (R

3\
),
du I (Un) [w] → du I (U0) [w] . (147)

Then, passing to the limit in (141), by (146) and (147), we get

du I (U0) [w] − ω2
0 K ′

q(u0)

2
[w] = 0 for any w ∈ C∞

0 (R
3\
). (148)

On the other hand similar arguments show that we can pass to the limit also in dA I (Un) [w]
and have

for all w ∈
(

C∞
0 (R

3)
)3

dA I (Un) [w] → dA I (U0) [w] . (149)

From (139) and (149) we get

dA I (U0) [w] = 0 for all w ∈
(

C∞
0 (R

3)
)3
. (150)

By (148) and (150) we deduce, by using density and continuity arguments, that
U0 = (u0,A0) is a critical point of Eσ0,q with σ0 = ω0 Kq(u0) > 0. 
�
Proof of Theorem 3. The first part of Theorem 3 immediately follows from Proposi-
tions 23, 14 and Theorem 10. In fact, if u0,A0 are like in Proposition 23, by Proposition 14
and Theorem 10 we deduce that (u0, ω0, φ0,A0)withω0 = σ0

Kq (u0)
, φ0 = Zω0(u0) solves

(39), (40), (41).
Now assume q = 0, then, by (40) and (41), we easily deduce that φ0 = 0 and

A0 = 0. Finally assume that q > 0. Then, since ω0 > 0, by (40) we deduce that φ0 �= 0.
Moreover by (41) we easily deduce that A0 �= 0 if and only if � �= 0. 
�
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