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Abstract: The isomonodromic tau function defined by Jimbo-Miwa-Ueno vanishes on
the Malgrange’s divisor of generalized monodromy data for which a vector bundle is non-
trivial, or, which is the same, a certain Riemann–Hilbert problem has no solution. In their
original work, Jimbo, Miwa, Ueno provided an algebraic construction of its derivatives
with respect to isomonodromic times. However the dependence on the (generalized)
monodromy data (i.e. monodromy representation and Stokes’ parameters) was not
derived. We fill the gap by providing a (simpler and more general) description in which
all the parameters of the problem (monodromy-changing and monodromy-preserving)
are dealt with at the same level. We thus provide variational formulæ for the isomono-
dromic tau function with respect to the (generalized) monodromy data. The construction
applies more generally: given any (sufficiently well-behaved) family of Riemann–Hilbert
problems (RHP) where the jump matrices depend arbitrarily on deformation parame-
ters, we can construct a one-form � (not necessarily closed) on the deformation space
(Malgrange’s differential), defined off Malgrange’s divisor. We then introduce the notion
of discrete Schlesinger transformation: it means that we allow the solution of the RHP to
have poles (or zeros) at prescribed point(s). Even if � is not closed, its difference evalu-
ated along the original solution and the transformed one, is shown to be the logarithmic
differential (on the deformation space) of a function. As a function of the position of
the points of the Schlesinger transformation, it yields a natural generalization of the
Sato formula for the Baker–Akhiezer vector even in the absence of a tau function, and it
realizes the solution of the RHP as such BA vector. Some exemplifications in the setting
of the Painlevé II equation and finite Töplitz/Hankel determinants are provided.
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1. Introduction

In the eighties Jimbo, Miwa and Ueno [9,7,8] derived a set of algebraic (in fact ratio-
nal) nonlinear equations describing deformations of a rational connection on P

1 which
preserve the generalized monodromy data. They associated to this deformation a closed
differential ωJ MU on the space of deformation parameters, namely, on the space of ”iso-
monodromic times” which we denote collectively by �t . In the simplest case of Fuchsian
singularities,

� ′(z) = A(z)�(z), �(∞) = 1, A(z) =
K∑

j=1

A j

z − a j
,
∑

A j = 0, (1.1)

the isomonodromic deformation equations were studied by Schlesinger [15]

δAk = −
∑

j �=k

[Ak, A j ]δ(ak − a j )

ak − a j
, δ :=

∑
da j∂a j , (1.2)

and the Jimbo-Miwa-Ueno differential reads

ωJ MU = 1

2

∑

j,k, j �=k

Tr(A j Ak)
δ(a j − ak)

a j − ak
. (1.3)

It can be checked directly that if the matrices Ak(�a) depend on the position of the poles
as mandated by (1.2) then ωJ MU above is a closed differential.



Dependence on Monodromy Data of the Isomonodromic Tau Function 541

This differential was generalized to an arbitrary (generic) rational connection in [9],
to which we refer the reader for details. In the above situation for Schlesinger defor-
mations, the locations of the poles constitute the “isomonodromic” parameters or times
and we denote them by �t . This was an important achievement because of the sweeping
applications of isomonodromic deformation to integrable systems (solitons solutions to
KP, solutions to Toda, etc.), Painlevé equations and, later, random matrix models. The
(exponential) integral of this closed differential is the “isomonodromic tau function”

τJ MU (�t; �m) = e
∫

ωJ MU, (1.4)

and the Painlevé property translates to the fact that τJ MU is a holomorphic function of the
isomonodromic times that has only zeroes away from an explicit set of times where it has
a branching behavior (the set of “diagonals” a j = ak , j �= k in the case of (1.2)). In (1.4)
we have indicated that the tau function depends necessarily on the (generalized) mo-
nodromy data, denoted generically by �m; this dependence is parametric and the present
paper addresses precisely the

Question 1 (Naive). What is the dependence of τJ MU on the monodromy data?

The question is conceptually simple but slightly ill-posed; since what JMU really
defined was only a differential (in symbolic notation)

ωJ MU =
∑

j

f j (�t; �m) dt j , ∂t j fk = ∂tk f j , (1.5)

the dependence of τ on �m is defined only up to multiplication by an arbitrary function
of the �m’s only. So a better question would be

Question 2 (Refined). What is the essential dependence of τJ MU on the monodromy
data? Can we define an extended closed differential � on the total phase space of the
problem that coincides with ωJ MU on the isomonodromic submanifold, namely

ωext =
∑

j

f j (�t; �m) dt j +
∑

ν

Gν(�t, �m) dmν, (1.6)

∂mν fk = ∂tk Gν , ∂mν Gµ = ∂mν Gµ? (1.7)

The question still admits many solutions as stated, since if we find one such extension
we are still free to add any closed differential of the �m’s alone. However we may and
should understand the problem in a relative setting, where the answer is taken modulo
closed forms of the �m’s which must be holomorphic on the whole space of monodr-
omy data. The reason for requiring holomorphicity is actually important because of the
interpretation of the singularity locus of ω, as we presently explain.

The meaning of the singularity locus of ωJ MU . Malgrange (for Fucshian systems) [11]
and later Palmer (for irregular singularities)[14] showed what the meaning of the zero-
locus of τJ MU is: when τJ MU (�t; �m) = 0 then a vector bundle on P

1 is nontrivial or –which
is equivalent– a Riemann–Hilbert problem is not solvable. This is the equivalent of say-
ing that ωJ MU has only simple poles (with “residue” one) away from the non-movable
singularity locus (Painlevé property). The divisor where the aforementioned bundle is
nontrivial is generally termed Malgrange 	 divisor (or simply Malgrange divisor).

It is clear then that whatever extension (1.6) we are looking for, it ought to preserve
the singularity locus, that is, the Gν(�t, �m) may have singularities only where some of
the fk’s has, and of the same type.
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So we arrive to the final formulation of a “sensible” problem, whose solution is the
principal aim of the paper.

Problem 1.1. Formulate a (“natural”) extended closed differential ωext (1.6) such that
its tau function (locally defined up to nonzero multiplicative constants)

τext (�t, �m) = e
∫

ωext (1.8)

vanishes precisely and only on the Malgrange divisor in the extended phase space of
isomonodromic times �t and monodromy data �m.

The differential we propose is in fact very natural (see Def. 2.2 and Thm. 5.1): it is
the pull–back of the (partial integral of the) generator of the third cohomology of the
“loop group” to the submanifold corresponding to our total phase space. In particular it
expresses the same cohomology class c[	] [11].

We will briefly indicate some interesting problems which can be addressed and that
require the knowledge of the derivative of τ with respect to non-isomonodromic times
(hence the knowledge of the Gν’s).

Organization of the paper. The heart of the paper is in fact Sect. 2 where we introduce
(recall) the definition of the Malgrange differential ωM (Def. 2.1) associated to any (suf-
ficiently well–behaved) Riemann–Hilbert problem. Such differential is ill–defined only
when the RHP is not solvable: however its exterior differential is (admits a) smooth
(extension) over the whole “loop group”, in particular also at the points where the RHP
is not solvable [11]. The curvature of ωM is not zero, but it is so explicit that it is immedi-
ate to identify “simple” families of Riemann–Hilbert problems for which ωM is closed.
By adding to ωM an explicit smooth differential (in particular this does not change its
singularity locus) we obtain a new differential � (Def. 2.2) whose curvature differs
slightly from that of ωM but within the same cohomology class.

In Sect. 2.3 we investigate the changes in � (or ωM ) under modification of the growth
conditions for the solution of the RHP (discrete “Schlesinger” transformations); this
allows to interpret the matrix solution of any Riemann–Hilbert problem as a Baker–
Akhiezer function via a Sato–like formula, even if a notion of tau-function is not avail-
able (see Thm. 2.1 and Sect. 2.3.1, Sect. 2.3.2).

In the second part we specialize the setting from arbitrary Riemann–Hilbert problems
to those that correspond to rational ODEs in the complex plane: Section 3 is a quick
reminder to the reader of the classical description of the (generalized) monodromy map,
i.e. how to associate to a rational ODE in the complex plane the set of “Birkhoff data” of
irregular type, connection matrices, monodromy representation and Stokes’ multipliers.
All the material is quite standard [17].

These Birkhoff data can be used viceversa (Sect. 4) to encode an ODE in a Riemann–
Hilbert problem (which may or may not have a solution, although generically it does
[16,17]).

In Sect. 5 we show that � is a closed differential in all the deformation parameters,
which include • Monodromy representation; • Connection matrices; • Stokes’ matrices.

In Sect. 5.1 we show that the restriction of � to the submanifold of isomonodro-
mic times coincides with the differential ωJ MU defined in [9]. Therefore � realizes the
solution to our Problem 1.1.

We conclude the paper with Sect. 6, where applications are provided to Painlevé II,
(shifted) Toeplitz and Hankel determinants.
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2. Riemann–Hilbert Problems

A Riemann–Hilbert problem consists of the data specified below: we will assume latitude
in the smoothness class as this is not our primary focus.

The Riemann–Hilbert data.

1. A finite collection of smooth oriented arcs γν, j = 1 . . . K , possibly meeting at a
finite number of points but always in non-tangential way (Fig. 5 is a good example).
We denote collectively these arcs by the symbol �γ ,

�γ =
⋃

ν

γν. (2.1)

If any of the contours γν extends to infinity then we shall assume that the contour
has an asymptotic direction and that the corresponding jump matrix Mν(z) tends to
the identity faster than any power Mν(z) = 1 + O(z−∞), z → ∞, with this decay
valid in an open sector of nonzero angle around the direction of approach.

2. A collection of r × r matrices Mν(z), each of which is analytic at each interior
point of its corresponding arc γν of a locally holomorphic function. We make the
assumption that these matrices have unit determinant1 det Mν(z) ≡ 1. We will
denote collectively by M(z) the matrix defined on �γ that coincides with Mν(z)
on γν ,

M : �γ → SLr (C)

z �→
∑

ν

Mν(z)χγν (z) (2.2)

where, for a set S, χS denotes its indicator function.
3. At each point c where several arcs meet, denoting by γ1, . . . , γ the arcs entering a

suitably small disk at c, we impose that the jump matrices along its corresponding
arc either tend to the identity matrix as O((z − c)∞) (faster than any power) in an
open sector containing the direction of approach, or admits a local analytic extension
within said disk.

Remark 2.1. The last requirement allows for example the situation depicted on the right
in Fig. 1; at the meeting point, c, of the circle and the “stem”, the jump matrices on each
local arc admit an analytic continuation to a neighborhood of c. Note that the jump on
the circle is actually a multivalued analytic function, but in a neighborhood of c each
branch allows an analytic continuation.

Remark 2.2. The condition for the jumps on contours that extend to infinity is perhaps
overly restrictive and it is made to avoid case distinctions later on. For example, the
RHP for the Airy functions (or for the linear problem associated to the Painlevé one
transcendent) does not readily fall within this description. It would however be possible
to reduce them to such type of situations with a sequence of transformations. Since the
point is of rather technical nature, we leave it to be dealt with on a need-to basis.

1 This is not really necessary but simplifies some matters. In some situations (typically where the deter-
minant is a rational function) it is necessary (but simple) to relax the condition and allow any matrices in
GLr (C). We face the problem on a need-to basis.
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Fig. 1. The process of “cloaking” of a point of growth. The two RHPs are equivalent in the sense that one
admits a solution if and only if the other does

The Riemann–Hilbert problem then consists in finding a holomorphic matrix on the
complement of the contours

�(z) : C \ �γ → SLr (C) (2.3)

such that it admits (non-tangential) boundary values satisfying

�+(z) = �−(z)M(z) z ∈ �γ. (2.4)

Here and throughout the paper we use the common convention that a subscript ± denotes
the (nontangential) boundary value from the left (plus) or the right (minus) of the given
oriented arc. The above data are insufficient to characterize uniquely the matrix � (if it
exists) and need to be supplemented by

• growth behavior near the endpoints/intersections of the contours γν and at ∞;
• an overall normalization.

Therefore we will pose the following

Problem 2.1 (RHP). Find a holomorphic matrix � : C \ �γ → GLn(C) such that

• �+(x) = �−(x)M(x) x ∈ �γ ;
• �(z) is uniformly bounded in C;
• �(z0) = 1.

In the following we will always choose z0 = ∞. In case there are contours extending to
infinity, this normalization needs a little of explanation: thanks to the requirement that
the jump matrices at infinity are exponentially close to the identity one can see that the
value of the solution �(z) is actually continuous at z = ∞ and hence it can be chosen as
a normalization point. The reason for allowing contours extending to infinity (under our
condition for the jump matrices) is because we want to consider the case of Painlevé II
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as an example in Sec. 6.1, and also most ODE’s with polynomial coefficients exhibiting
Stokes’ phenomenon can be transformed into such a RHP.

In general there are obstructions to the solvability of Problem 2.1: for example let c be
a point in �γ where several arcs γ1, . . . , γ meet (at nonzero tangential relative angles)
and suppose they are oriented towards c. Let M j (z), j = 1, . . . ,  be the corresponding
(locally analytic) jump matrices, then

M1(c)M2(c) . . . M(c) �= 1 (2.5)

is an obstruction. This does not mean that it is impossible to find � satisfying the jumps,
but it cannot be bounded at c in general and thus a relaxed growth constraint must be
allowed at c. However there are situations which are of interest for our applications
where a growth behavior can be “traded in” for an extra contour.

Example 2.1. A typical example is depicted in Fig. 1; here on the contour that terminates
at z = a there is a constant jump of the form M = C−1e2iπ LC , where L is upper triangu-
lar (in Jordan form, for example). It is clear that the diagonal entries of L (the exponents
of formal monodromy) are defined only up to addition of integers. This arbitrariness
in fact corresponds to the choice of a growth behavior at the endpoint for the solution
of the RHP. Once this choice has been made, we can always recast the problem into
an equivalent one where the solution � is bounded. This is achieved by adding a small
circle at a and re-defining �̃(z) = �(z)C−1(z − a)−L inside, with the cut of (z − a)−L

along the dotted line on the right panel of Fig. 1: in the new formulation for the problem,
�̃(z) will be bounded in a neighborhood of z = a and the two problems are equivalent,
in the sense that one has solution if and only if the other does, and the relation between
the two solutions is also very simple.

(Loop) group structure. Although we will not make any explicit use of the following
fact, we mention that the matrices M : �γ → SLr (C) that satisfy all the conditions
above form a (infinite dimensional) Lie group, akin to the usual loop group, were it not
for the fact that the contour is not a (collection of) circle(s). It is convenient to introduce
a symbol for this manifold (group),

G :=
{

M :
⋃

γν �→ SLr (C), M
∣∣
γν

(z) locally analytic
}

. (2.6)

Since we will only consider finite dimensional (analytic) submanifolds of G we will not
dwell on the infinite–dimensional differential-geometric issues. Most notably the tan-
gent bundle T G will be used in a rather naive form where possible issues of topological
nature (arising from the infinite dimensionality) are disposed of. In fact only the tangent
space to the finite dimensional submanifolds of interest will appear, and hence the point
is not relevant.

2.1. Deformations and Malgrange’s form. Suppose now that M(z) = M(z; �s) depends
holomorphically on additional parameters �s; the reader should think of this as an explicit
dependence, dictated by the problem under consideration. The parameters �s could be
thought of as coordinates on a manifold of deformations. When -eventually- we special-
ize the setting these �s’s will be the isomonodromic times together with the monodromy
data. On this manifold we define the one-form (differential) already used by Malgrange
[11].
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Fig. 2. The local extension of �+ across a contour

Definition 2.1. Let ∂ denote the derivative w.r.t. one of the parameters s and assume that
the Riemann–Hilbert Problem 2.1 admits a solution in an open subset of the s–parameter
space.2 Then we define Malgrange’s form ωM ,

ωM (∂) = ωM (∂; [�]) := −
∫

�γ

Tr
(
�−1− (x)�′−(x)�∂(x)

) dx

2iπ
(2.7)

�∂(z) := ∂ M(z)M−1(z).

Remark 2.3. The minus sign is –of course– conventional, but it is important because with
the minus the tau-function (when it exists) has a zero and not a pole on the Malgrange
divisor.

Remark 2.4. The definition would hold identically also for any RHP formulated on a
Riemann surface.

Remark 2.5. The reader may frown upon the boundary value of the derivative of �:
however, since our assumptions mandate that Mν(z) is analytic in a neighborhood of the
contour γν , it is simple to show that the derivative �′ also admits (bounded) boundary
values. In fact more is true: since the matrices M(z) are analytic at each interior point x of
the contours, both boundary values of the solution can be analytically continued within
a neighborhood of x to (germs of) analytic functions that we denote again �±(z). For
example, if we want to analytically continue �+(x) to an analytic function �+(z) within
a small disk of x ∈ �γ not containing any other arc, we simply define �+(z) := �(z) for
z on the left half disk (relative to the orientation of the arc), and �+(z) := �(z)M−1(z)
on the right side (see Fig. 2).

Remark 2.6. In the second notation for ωM we have indicated the dependence on �,
which depends on the choice of jump matrices and specifications of the growth behav-
iors. When no ambiguity can arise, we will understand such a dependence.

2 The small–norm theorem for Riemann–Hilbert problems implies that if a RHP is solvable, then any suf-
ficiently small deformation (in L2 and L∞ norms) of the jump matrices leads to a solvable RHP. With our
assumptions on the s–dependence of the jump matrices this implies that the subset of solvable RHP is an open
set (if non-empty).
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Curvature of ωM . The first issue is the computation of the exterior differential: the com-
putation can be found in [11] but in rather abstract terms and we prefer to give a direct
derivation here. We have first

Lemma 2.1. Let ∂ denote any vector field in the parameters of the jump matrices. Then

∂�(z) =
∫

�γ

�−(x)�∂(x)�−1− (x)

x − z

dx

2iπ
�(z) (2.8)

and, consequently

∂

(
�−1(z)�(w)

z − w

)
=
∫

�γ

�−1(z)�−(x)

z − x
�∂(x)

�−1− (x)�(w)

x − w

dx

2iπ
, (2.9)

∂
(
�−1(z)�′(z)

)
=
∫

�γ

�−1(z)�−(x)�∂(x)�−1− (x)�(z)

(z − x)2

dx

2iπ
. (2.10)

Proof. First of all we have

∂�+(z) = ∂�−(z)M(z) + �−(z)∂ M(z) , z ∈ �γ. (2.11)

This is a non-homogeneous Riemann–Hilbert problem: since the problem is normal-
ized at infinity, �(∞) = 1, it follows that ∂�(z)=O(z−1). It is seen that the proposed
expression fulfills (2.11) and this last condition. The uniqueness follows from the fact
that the homogeneous part has only the trivial solution that tends to zero at ∞. The for-
mula (2.9) follows by direct application of (2.8) and the Leibnitz rule. Finally, formula
(2.10) can be obtained as a limit w → z of (2.9) as follows:

∂
(
�−1(z)�′(z)

)
=− lim

w→z
∂

(
�−1(z)�(w)−1

z − w

)
=− lim

w→z
∂

(
�−1(z)�(w)

z − w

)
. (2.12)

	

Proposition 2.1. Denoting with ∂, ∂̃ the derivatives w.r.t to two of the parameters �s, the
exterior differential of ωM is

η(∂, ∂̃) :=∂ωM (̃∂)−∂̃ωM (∂)= 1

2

∫

�γ

Tr

(
�∂̃(x)

d

dx
�∂(x) − d

dx
�∂̃(x)�∂(x)

)
dx

2iπ
.

(2.13)

Proof. Let ∂, ∂̃ be two commuting vector fields so that

δω(∂, ∂̃) = ∂ω(̃∂) − ∂̃ω(∂). (2.14)

We have, from Definition 2.1,

∂ωM (̃∂) = −
∫

�γ

Tr
(
∂
(
�−1− (x)�′−(x)

)
�∂̃(x)

) dx

2iπ

−
∫

�γ

Tr
(
�−1− (x)�′−(x)∂

(
�∂̃(x)

)) dx

2iπ

= −
∫

�γ

Tr

(∫

�γ

K(x, y)�∂(y)K(y, x)�∂̃ (x)

(x − y)2

dy

2iπ

) ∣∣∣∣
x=x−

dx

2iπ

−
∫

�γ

Tr
(
�−1− (x)�′−(x)∂

(
�∂̃(x)

)) dx

2iπ
, (2.15)
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where we have used (2.10) and introduced the convenience notation

K(x, y) = �−1− (x)�−(y). (2.16)

Subtracting the term ∂̃ωM (∂) to (2.15) we have

∂ωM (̃∂) − ∂̃ωM (∂)

= −
∫

�γ

[∫

�γ

Tr

(K(x, y)�∂(y)K(y, x)�∂̃ (x)

(x − y)2

dy

2iπ

)] ∣∣∣∣
x=x−

dx

2iπ

+
∫

�γ

[∫

�γ

Tr

(K(x, y)�∂̃ (y)K(y, x)�∂(x)

(x − y)2

dy

2iπ

)] ∣∣∣∣
x=x−

dx

2iπ

+
∫

�γ

Tr
(
�−1− (x)�′−(x)

[
�∂̃(x),�∂(x)

]) dx

2iπ
(2.17)

(the subscripts x=x± or y=y± indicate which boundary value is taken after the integration),
where we have used the zero curvature relation for �∂(x) = ∂ M(x)M−1(x), namely

∂�∂̃(x) − ∂̃�∂(x) = [�∂(x),�∂̃ (x)
]
. (2.18)

In the first two terms the order of integration is important since the kernel is singular
due to the denominator (x − y)2. Let us examine the first two terms in the right-hand
side of Eq. (2.17): if we denote temporarily by F(x, y) the expression

F(z, w) := Tr
(
�−1− (z)�−(w)�∂(w)�−1− (w)�−(z)�∂̃(z)

)
(2.19)

the numerators are simply F(x, y) and F(y, x) respectively, due to the cyclicity of the
trace; note that by Remark 2.5 the function �−(z) has been extended to a local analytic
function across the contours of the jumps, so that F(z, w) can be taken as locally ana-
lytic around the contours of integration in both variables. If we interchange the order
of integration we must evaluate the boundary value of the singular kernel 1

(x−y)2 on the
opposite side, namely

∫

�γ

[∫

�γ

F(x, y)

(x − y)2

dy

2iπ

] ∣∣∣∣
x=x−

dx

2iπ
=
∫

�γ

[∫

�γ

F(x, y)

(x − y)2

dx

2iπ

] ∣∣∣∣
y=y+

dy

2iπ

=
∫

�γ

[∫

�γ

F(y, x)

(x − y)2

dy

2iπ

] ∣∣∣∣
x=x+

dx

2iπ
,

(2.20)
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where in the last equality we simply have renamed the dummy variables. We thus have
∫

�γ

[∫

�γ

Tr

(K(x, y)�∂̃ (y)K(y, x)�∂(x)

(x − y)2

)
dy

2iπ

]

x=x−

dx

2iπ

−
∫

�γ

[∫

�γ

Tr

(K(x, y)�∂(y)K(y, x)�∂̃ (x)

(x − y)2

)
dy

2iπ

]

x=x−

dx

2iπ

=
∫

�γ

[∫

�γ

F(y, x)

(x − y)2

dy

2iπ

]

x=x−

dx

2iπ
−
∫

�γ

[∫

�γ

F(x, y)

(x − y)2

dy

2iπ

]

x=x−

dx

2iπ

=
∫

�γ

[∫

�γ

F(y, x)

(x − y)2

dy

2iπ

]

x=x−

dx

2iπ

−1

2

∫

�γ

[∫

�γ

F(y, x)

(x − y)2

dy

2iπ

]

x=x+

dx

2iπ
− 1

2

∫

�γ

[∫

�γ

F(x, y)

(x − y)2

dy

2iπ

]

x=x−

dx

2iπ

= −1

2

∫

�γ

∂y F(y, x)
∣∣
y=x

dx

2iπ
+

1

2

∫

�γ

[∫

�γ

F(y, x)

(x − y)2

dy

2iπ

]

x=x−

dx

2iπ

−1

2

∫

�γ

[∫

�γ

F(x, y)

(x − y)2

dy

2iπ

]

x=x−

dx

2iπ

= −1

2

∫

�γ

∂y F(y, x)
∣∣
y=x

dx

2iπ
+

1

2

∫

�γ

[∫

�γ

F(x, y)

(x − y)2

dy

2iπ

]

x=x+

dx

2iπ

−1

2

∫

�γ

[∫

�γ

F(x, y)

(x − y)2

dy

2iπ

]

x=x−

dx

2iπ

= −1

2

∫

�γ

∂y F(y, x)
∣∣
y=x

dx

2iπ
+

1

2

∫

�γ

∂y F(x, y)
∣∣
y=x

dx

2iπ

= 1

2

∫

�γ

(
∂y F(x, y)

∣∣
y=x − ∂y F(y, x)

∣∣
y=x

) dx

2iπ
. (2.21)

We have used, on the fourth and fifth line of (2.21) the derivative form of Cauchy integral
formula. Computing explicitly the derivatives involved in this last expression we find

1

2

∫

�γ

(
∂y F(y, x)

∣∣∣
y=x

− ∂y F(x, y)

∣∣∣
y=x

)
dx

2iπ

= 1

2

∫

�γ

Tr
(
�′

∂ (x)�∂̃(x) − �∂(x)�′̃
∂
(x)
) dx

2iπ

−
∫

�γ

Tr
(
�−1− (x)�′−(x)

[
�∂̃(x),�∂(x)

]) dx

2iπ
. (2.22)

Replacing this last expression into (2.17) yields the proof. 	


The Theta divisor. The reader should observe and compare the expressions (2.13) and
(2.7): the crucial point is that ωM (2.7) is not defined whenever the RHP does not admit a
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solution. On the contrary, as a sort of “miracle” the expression (2.13) for its curvature is
defined and holomorphic for any group–valued matrix M(z), whether or not the RHP is
solvable. In other words, η is a closed two–form which is smooth also on the Malgrange
divisor, whereas ωM is undefined at those points. Malgrange proved [11] (and Palmer
generalized [14]) that ωM has a “pole” on such divisor: evidently, in the curvature such
a pole disappears.

Tau function. It is also apparent that ωM is in general not a closed one-form on the whole
(infinite–dimensional) manifold G: however, it may become closed when restricted to
suitable submanifolds L ↪→ G. Since the curvature η (2.13) is explicitly computable,
it is easy to verify for a given explicit submanifold L whether ωM

∣∣L is closed or not.
When such restriction turns out to be closed we can define (locally) a function on L by

τL = e
∫

ωM

∣∣
L . (2.23)

By Malgrange’s (Palmer’s) results, this function (defined up to nonzero multiplicative
constant) will vanish at the intersection with the 	 divisor,

τL(�s) = 0 ⇔ �s ∈ L ∩ 	. (2.24)

Suppose, however that ωM

∣∣L is not closed; we may still seek another differential ϑ

that “cures” the curvature

d
(
ωM + ϑ

) ∣∣L ≡ 0 (2.25)

and then proceed with the construction of the tau function as before.
Ideally such differential should be smooth on the whole G so that it does not change

the cohomology class of ωM and also does not change the singularity structure; this way
the tau function will still vanish only at L ∩ 	 and our goal is met.

Although it is not a pedagogical approach, since we know what L will be for our
purposes and we have already found ϑ , we will describe it directly here.

Changing the curvature of ωM . Consider the one–form ϑ that, evaluated on a vector ∂

yields

ϑ(∂) := −1

2

∫

�γ

Tr
(

M ′(x)M−1(x)∂ M(x)M−1(x)
) dx

2iπ
. (2.26)

Its curvature is the two–form

δϑ(∂, ∂̃) = ∂ϑ(̃∂) − ∂̃ϑ(∂)

= 1

2

∫

�γ

Tr
(
∂̃M ′(x)M−1(x)∂ M(x)M−1(x)−∂ M ′(x)M−1(x )̃∂ M(x)M−1(x)

) dx

2iπ

(2.27)

which the reader can verify using Leibnitz rule; here the prime denotes (as always) the
derivative with respect to x . The important (but trivial) additional observation is that ϑ

is a smooth differential on the whole G, since it does not require the solution of a RHP.

Definition 2.2. The modified Malgrange differential is defined as � := ωM + ϑ .
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Remark 2.7. A direct computation shows that
∫

�γ

Tr
(
�−1− (x)�′−(x)∂ M(x)M−1(x)

) dx

2iπ

−
∫

�γ

Tr
(
�−1

+ (x)�′
+(x)M−1(x)∂ M(x)

) dx

2iπ

= −
∫

�γ

Tr
(

M ′(x)M−1(x)∂ M(x)M−1(x)
) dx

2iπ
= 2ϑ(∂), (2.28)

so that � can be written in the more symmetric form

�(∂; [�]) = −1

2

∫

�γ

Tr
(
�−1− (x)�′−(x)∂ M(x)M−1(x)

+ �−1
+ (x)�′

+(x)M−1(x)∂ M(x)
) dx

2iπ
. (2.29)

Combining the computation of the curvature of ωM (Prop. 2.1) with the curvature of ϑ

above we have the simple

Proposition 2.2. The curvature of the modified Malgrange form is

δ�(∂, ∂̃) = ∂�(̃∂) − ∂̃�(∂)

= 1

2

∫

�γ

Tr
(

M ′(x)M−1(x)
[
∂ M(x)M−1(x), ∂̃ M(x)M−1(x)

]) dx

2iπ
.

(2.30)

Remark 2.8. Referring to ([11] Thm. 5.5) the curvature δ� clearly lies in the same coho-
mology class as δωM since the two differ by a smooth exact differential. If we define γ

as the total Maurer–Cartan form γ (x) = M ′(x)M−1(x) dx +
∑

∂s j M(x)M−1(x) ds j
one has the expression

δ� = 1

12π i

∫

�γ

Tr(γ ∧ γ ∧ γ ). (2.31)

2.2. Submanifolds of G where � is closed. Looking at the formula of the curvature
form of Prop. 2.2 we can ask ourselves what kind of jump-matrices give rise to a closed
instance of the form �; we will consider cases where the integrand is identically zero.
This can happen for many reasons but for our purposes and for all the applications that
we could find, it is sufficient to consider those jump matrices M(z) that on each arc of
�γ reduce to one of the following forms:

• Piecewise triangular. Matrices of the forms

Mν(z) = Pν(1 + Nν(z))P−1
ν , z ∈ γν, (2.32)

where Nν(z) are upper–triangular analytic matrices and Pν is any constant permuta-
tion matrix (i.e. an element of the Weyl group for SLr ).

• Constants. Matrices independent of z.
• Torals. Matrices Mν = Dν(z) with Dν(z) diagonal matrices or any conjugation

thereof by an arbitrarily chosen but fixed matrix.



552 M. Bertola

We see in Sect. 3 that any (generic) rational ODE can be encoded in a Riemann–
Hilbert problem with jumps of the form indicated here above. Therefore � on these
submanifolds yields a closed differential.

We will also show that its restriction to the isomonodromic submanifolds coincides
with ωJ MU .

2.3. “Schlesinger” transformations. The aim of this section is to compare the differen-
tial ωM on two RHP for �, �̃ defined by the same jumps but allowing poles (or requiring
vanishing) in the columns of the solution at specified points. We note immediately that
two such solutions differ (if both exist) by a left multiplication by a rational matrix
R(z); indeed –having �, �̃ the same jumps by assumption– the matrix

R(z) := �̃(z)�−1(z) (2.33)

is an analytic function in C taking away the points where �̃ has poles. Since �̃ is allowed
to have poles, the matrix R(z) can have a pole of order at most equal to that of �̃ and
hence it is forced to be rational by Liouville’s theorem.

We now make the following observation: let R(z) be a rational matrix such that the
divisor of all poles of both R(z), R−1(z) consists of the points c1, . . . , cK �∈ �γ . Define

�̃(z) := R(z)�(z). (2.34)

Quite clearly �̃ solve a different RHP with the same jumps but possibly poles at those
of R. The difference between the ωM evaluated using � or �̃ is given by

ωM (∂; [�̃]) − ωM (∂; [�]) = −
∫

�γ

Tr
(
�̃−1− (x)�̃′−(x)∂ M(x)M−1(x)

) dx

2iπ

+
∫

�γ

Tr
(
�−1− (x)�′−(x)∂ M(x)M−1(x)

) dx

2iπ

= −
∫

�γ

Tr
(
�−1− (x)R−1(x)R′(x)�−(x)∂ M(x)M−1(x)

) dx

2iπ

= −
∫

�γ

Tr
(

R−1(x)R′(x)�−(x)∂ M(x)M−1(x)�−1− (x)
) dx

2iπ

=
∫

�γ

Tr
(

R−1(x)R′(x)
(
∂�+(x)�−1

+ (x) − ∂�−(x)�−(x)
)) dx

2iπ

=
K∑

j=1

res
z=c j

Tr
(

R−1(z)R′(z)∂�(z)�−1(z)
)

dz. (2.35)

Therefore we see that –while ωM is an object of transcendental nature, the above dif-
ference requires only the evaluation of a finite number of residues. Note also that -since
� (Def. 2.2) differ by ωM only in an explicit term ϑ that depends only on the jump
matrices, we have

ωM (∂; [�̃]) − ωM (∂; [�]) = �(∂; [�̃]) − �(∂; [�]). (2.36)

We now proceed with the definitions in the title of the section and specialize the class
of rational matrices R(z).
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Definition 2.3. Given two distinct points ξ �= η and two (possibly formal) series

Yξ (z) = Gξ

(
1 +

∞∑

=1

Yξ ;zξ


)
, Yη(z) = Gη

(
1 +

∞∑

=1

Yη;zη


)
, (2.37)

zξ := (z − ξ), z∞ := 1

z
, (2.38)

an elementary Schlesinger transformation at two distinct points ξ �= η is a rational
matrix R(z) such that

R(z)Yξ (z) = Ŷξ (z)z
Ei
ξ , R(z)Yη(z) = Ŷη(z)z

−E j
η , (2.39)

where Ŷ• denote formal series of the same form. In the case of ∞ we have G∞ = 1 =
Ĝ∞. If neither ξ �= ∞ �= η then we impose also R(∞) = 1.

[For the case ξ = η the definition should be modified in an obvious way: please see
below].

The problem is purely of algebraic nature, and not a very difficult one: the computa-
tion is contained in [[7], App. A] and the derivation will not be reported (we will give
below the relevant results). Suppose now we have a RHP for � with jump matrices M as
in Prob. 2.1: at points ξ �= �γ the solution � to Prob. 2.1 yields a (convergent) power
series which can be used as input for the above procedures.

If ξ ∈ �γ we cannot have a (even formal) series since –in general– not even the
value of � is well defined at z = ξ . In the applications to ODEs the following situation
occurs; let ξ ∈ �γ be a point where γ1, . . . , γ meet ( ≥ 1). Suppose that the jump
matrices are analytic in small sectors centered at ξ containing the direction of approach
and that –in said sector– (see Fig. 3)

M j (z) = 1 + O((z − ξ)∞). (2.40)

Fig. 3. Illustration of the sectors of analyticity for M j where the decay (2.40) should be valid
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Then it is not hard to see3 that the solution �(z) has the same asymptotic expansion in
each of the sectors at ξ separated by the incoming arcs

�(z) ∼ Gξ

(
1 +

∞∑

1

Yξ ; j (z − ξ) j

)
=: Ŷξ (z). (2.41)

We will allow to perform Schlesinger transformations involving either points ξ not in �γ

or points where the condition (2.40) is met, so that the solution � defines unambiguously
a (formal) analytic series centered at the point.

Definition 2.4. The elementary Schlesinger transformation
{

ξ η
i j

}
for the solution � of

Problem 2.1 is the solution (if it exists) of the following new RHP (where zξ = (z − ξ)

if ξ �= ∞ and z∞ := 1
z )

ξ �= η ξ = η (i �= j)

�̃+ = �̃−M

�̃(z) = O(1)zξ
−Ei , z ∼ ξ

�̃(z) = O(1)zη
E j , z ∼ η

�̃+ = �̃−M

�̃(z) = O(1)zξ
−Ei +E j , z ∼ ξ

(2.42)

where the normalization is fixed by requiring that �̃(z) ∼ 1 + O(z−1) if ξ �= ∞ �= η or
–if either ξ or η are infinity– that the term indicated by O(1) above is actually 1+O(z−1).

Here and below we use the notation Ei j for the elementary matrices (with a 1 on the i th

row, j th column) and Ei := Eii . It is immediately seen that

�̃(z) = R(z)�(z) (2.43)

with R(z) rational: indeed the ratio �̃(z)�−1(z) for the transform
{

ξ η
i j

}
does not have

jumps and may have at most a simple pole at z = ξ . The matrix R(z) can be computed
directly from the (possibly formal) series-expansion of � at ξ, η (see [7]. We give below
a more compact formula that the reader can check autonomously.

3 By moving slightly the jump –which can be done due to the local analyticity of the jump matrix– one
sees that the solution � can be “continued” analytically across the jump from the left and from the right. The
ratio of these two extensions in the common sector of analyticity differs from the identity by exponentially
small terms, which have no bearing on the asymptotic expansion.
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Proposition 2.3 (cf. App. A, B in [7]). The left-multiplier matrix R(z) that implements

the elementary Schlesinger transform
{

ξ η
i j

}
is given by

{
ξ η
i j

}
(ξ �= η)

{
ξ ξ
i j

}
(i �= j)

R(z) = 1 +
ξ − η

(�−1(ξ)�(η))i j

�(η)E ji �
−1(ξ)

z − ξ
R(z) = 1 +

1

(�−1(ξ)�′(ξ))i j

�(ξ)E ji �
−1(ξ)

z − ξ

R−1(z) = 1 − ξ − η

(�−1(ξ)�(η))i j

�(η)E ji �
−1(ξ)

z − η
R−1(z) = 1 − 1

(�−1(ξ)�′(ξ))i j

�(ξ)E ji �
−1(ξ)

z − ξ

det R(z) = z − η

z − ξ
det R = 1

(2.44)
{

ξ ∞
i j

}
(ξ �= ∞)

{∞ η
i j

}
(η �= ∞)

R(z) = 1 − E j j +
R1

z − ξ
R(z) = Eii (z − η) + R0

R1 = −1
(�(ξ)−1)i j

[
(1 − E j j )�

′(∞) − 1
]

E ji �
−1(ξ) R0 = (1 − Eii �

′(∞)
)
(

1 − �(η)E ji

�i j (η)

)

R−1(z) = E j j (z − ξ) + R0 R−1(z) = 1 − Eii + R1
z−η

R0 =
(

1 − E ji �
−1(ξ)

�−1
i j (ξ)

)
(
1 + �′(∞)E j j

)
R1 = 1

�(η)i j
�(η)E ji

[
�′(∞)(1 − Eii ) + 1

]

det R(z) = 1

z − ξ
det R(z) = (z − η)

(2.45)

where we have denoted by �′(∞) the derivative in the local parameter, that is

�(z) = 1 +
1

z
�′(∞) + · · · . (2.46)

(The formulæ for
{∞ ∞

i j

}
can be found in loc cit.)

If ξ (or η or both) belong to �γ where condition (2.40) is in place, the computation
leading to (2.35) can be still carried out with minor modifications in the process but
not in the result. First of all note that the integral ωM (∂, [�̃]) is still convergent since
�∂ = ∂ M M−1 = O((x − c)∞) (recall that we assumed M = 1 + O((x − c)∞)) and
hence the additional algebraic growth of �̃−1�̃′ along the contours incident at c is still
integrable when multiplied by �∂ .

Let �γε denote the contours that lie outside of ε disks centered at the points z = ξ, η

(possibly the same) of the Schlesinger transform; we then have

ωM (∂; [�̃])−ωM (∂; [�])=− lim
ε→0

∫

�γε

Tr
((

�̃−1− (x)�̃′−(x)−�−1− (x)�′−(x)
)

�∂(x)
) dx

2iπ

= − lim
ε→0

∫

�γε

Tr
(
�−1− (x)R−1(x)R′(x)�−(x) ∂ M(x)M−1(x)

) dx

2iπ
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= − lim
ε→0

∫

�γε

Tr
(

R−1(x)R′(x)�−(x) ∂ M(x)M−1(x)�−1− (x)
) dx

2iπ

= lim
ε→0

∫

�γε

Tr
(

R−1(x)R′(x)
(
∂�+(x)�−1

+ (x) − ∂�−(x)�−(x)
)) dx

2iπ

= lim
ε→0

∮

|x−ξ |=|x−η|=ε

Tr
(

R−1(x)R′(x)∂�(x)�−1(x)
) dx

2iπ
. (2.47)

In the computation of the limit (2.47) we can replace ∂�(x)�−1(x) by a suitable trun-
cation of the asymptotic series at z = ξ, η (which does not depend on the direction of
approach under our assumptions for M), committing an o(1) error as ε → 0. Then the
limit equals the formal residue

ωM (∂; [�̃]) − ωM (∂; [�]) = res
z=ξ

Tr
(

R−1(z)R′(z)∂Ŷξ (z)Ŷξ (z)
−1
)

dz

+ res
z=η

Tr
(

R−1(z)R′(z)∂Ŷη(z)Ŷη(z)
−1
)

dz. (2.48)

Here the residue means simply the coefficient of the power −1 of the local parameter
(note that R−1(z)R′(z) has at most a double pole and hence the formal residue involves
at most the first two terms in the formal series Ŷ (z)). In case only one point is involved
in the Schlesinger transformation we have simply only one residue at the end.

Remark 2.9. In the case of a Schlesinger transformation involving two distinct points
the determinant of the solution det � cannot remain constant, since R(z) has non-con-
stant determinant. This does not pose any significant problem as we explain presently.
To account for the different power-law of the columns at the two points z = ξ, z = η,
small counterclockwise circles around those points should be added to �γ imposing
additional jumps of the form

M1(z) = (z − ξ)−Ei , |z − ξ | = ε , M2(z) = (z − η)E j , |z − η| = ε, (2.49)

conjugating by the same matrices any jump of a contour that passes within said circles.
Of course these jumps do not have unit determinant and hence the uniqueness of the
solution must be argued in a different way from the one used in the unimodular case:
given a solution �(z) of the new RHP we see that det �(z) is analytic and bounded
everywhere, except for jumps on the new circles where

det �+(z) = (z − ξ)−1 det �−(z)

on |z − ξ | = ε and det �+(z) = (z − η) det �−(z) , on |z − η| = ε.

(2.50)

This means that det �(z) admits analytic continuation in the interior of the two disks,
with a simple pole at z = η and a simple zero at z = ξ , plus the condition det �(∞) = 1.
This forces det �(z) ≡ z−ξ

z−η
outside of the disks, det �(z) = (z − ξ) for |z − η| < ε and

viceversa det �(z) = 1
z−η

for |z − ξ | < ε. Any solution will have the same determinant
and hence the uniqueness is established along the same way used previously.

A direct computation based on (2.35) yields the following theorem, which is simply a
rephrasing of an homologous theorem in [7], with the proper extension of understanding
to the setting of RHPs.
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Theorem 2.1 (Thm. 4.1 in [7]). Given two RHPs related by the elementary Schlesinger

transformation
{

ξ η
i j

}
(Def. 2.4), the difference of the Malgrange differential on the two

solutions is a closed differential on the deformation manifold given by

ωM (∂; [�̃]) − ωM (∂; [�]) = ∂ ln H

{
ξ η

i j

}
, (2.51)

where

H

{
ξ η

i j

}
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(�−1(ξ)�′(ξ))i j for
{

ξ ξ
i j

}
(i �= j)

(�(η))i j for
{∞ η

i j

}
, η �= ∞

(�(ξ)−1)i j for
{

ξ ∞
i j

}
, ξ �= ∞

(�−1(ξ)�(η))i j

ξ − η
for
{

ξ η
i j

}
, ξ �= ∞ �= η

, (2.52)

where the notation �′(∞) –as previously– denotes the derivative in the local parameter

�(z) =: 1 +
1

z
�′(∞) + . . . . (2.53)

For the reader’s convenience we verify Thm. 2.1 for the case
{

ξ η
i j

}
with distinct

ξ �= ∞ �= η and both ξ, η �∈ �γ . Let ∂ be a variation of the jump-matrices M (i.e. not
moving ξ, η). We have from Prop. 2.3,

R−1(z)R′(z) = �(η)E ji�
−1(ξ)

(�−1(ξ)�(η))i j

(
1

z − η
− 1

z − ξ

)
. (2.54)

We then have to compute the (possibly formal) residue (2.35)

res
z=ξ,η

Tr

{
�(η)E ji�

−1(ξ)

(�−1(ξ)�(η))i j

(
1

z − η
− 1

z − ξ

)
∂�(z)�−1(z)

}
dz

= (�−1(ξ)∂�(η))i j

(�−1(ξ)�(η))i j
− (�−1(ξ)∂�(ξ)�−1(ξ)�(η))i j

(�−1(ξ)�(η))i j

= (�−1(ξ)∂�(η))i j

(�−1(ξ)�(η))i j
+

(∂(�−1(ξ))�(η))i j

(�−1(ξ)�(η))i j

= ∂ ln

(
(�−1(ξ)�(η))i j

ξ − η

)
. (2.55)

To verify the formula for ∂ξ , ∂η as well, we must add a small circle around them and
a new jump M(z) = (z − ξ)Ei , M(z) = (z − η)−E j respectively. Since ξ, η did not
exist as deformation parameters in the RHP for �, from the definition of ωM we need to
compute (we do it only for ∂ξ , leaving the verification for ∂η to the reader)

ωM (∂ξ ; [�̃]) = −
∮

|x−ξ |=ε

Tr

(
�̃−1− (x)�̃′−(x)

Ei

x − ξ

)
dx

2iπ
. (2.56)
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Note that �̃−(z) = R(z)�(z) and �̃+(z) = R(z)�(z) (z − ξ)−E j when z belongs to the
circle |z − ξ | = ε so that

ωM (∂ξ ; [�̃]) = − res
z=ξ

Tr

(
R−1(z)R′(z)�(z)Ei�

−1(z)

z − ξ
+

�−1(z)�′(z)Ei

z − ξ

)
dz

= − 1

ξ − η
−
(
�−1(ξ)�′(ξ)�−1(ξ)�(η)

)
i j

(�−1(ξ)�(η))i j
= ∂ξ ln

((
�−1(ξ)�(η)

)
i j

ξ − η

)
. (2.57)

This proves completely the case considered. It appears quite obviously that

Proposition 2.4. An elementary Schlesinger transformation exists if and only if

H
{

ξ η
i j

}
�= 0.

Remark 2.10. The zeroes of the matrix entries of the solution of the RHP acquire there-
fore the meaning of intersection of the Malgrange divisor with the space of the parameter

added to the problem, namely, the position of the Schlesinger transform
{∞ η

i j

}
.

We are not going to dwell at length on the algebra of iterated elementary Schlesinger
transformations and on the general transformation since the formulæ are contained in
[7]; we only point out that in loc. cit. the transformations were applied to solution of
either isomonodromic or isospectral deformation problems and not a general Riemann–
Hilbert problem. Thus, we are mainly shifting the perspective (and compactifying some
notation) of [7].

Remark 2.11. The fact that ω evaluated on two solutions of RHPs with the same jumps
is a closed differential is immediate from the fact that the curvature of ω does not depend
on the growth behavior of the solution � but only on the jump matrices. When we spe-
cialize the setting to the case relevant to ODEs, Thm. 2.1 will hold for differentiations
with respect to the monodromy data as well.

2.3.1. Generalized Sato formula Let η �∈ �γ : denote by �η;i j (z) the Schlesinger trans-

form
{∞ η

i j

}
of the solution of the RHP 2.1. Then the second formula (2.52) reads

�i j (η) ∝ exp
∫ �s

ωM (•; [�η;i j ]) − ωM (•; [�]), (2.58)

where the one form under integration is closed by the above remark. This is nothing but
the Sato formula for the Baker Akhiezer vector; of course, at this level of generality we
do not have a “tau” function because –in general– ωM will not be a closed differential of
the deformation parameters of the problem. If the problem admits a τ–function, that is,
if the differential ωM (or �) is closed on the submanifold of Riemann–Hilbert problems
under consideration, then we have a honest version of the Sato formula,

�i j (η) =
τ
{∞ η

i j

}

τ
, (2.59)

where τ
{∞ η

i j

}
stands for the τ–function of the problem with the “insertion” of the

Schlesinger transform.
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To make the remark a bit more concrete, let us pick a point z = a �∈ �γ and a small
disk D. For simplicity in writing the formulæ we will simply set a = 0. Let T (z) be a
diagonal matrix defined on ∂D that admits analytic continuation on P

1 \ D,

T (z) =
∞∑

k=1

Tk

zk
, Tk = diag(tk;1, . . . , tk,r ) , (2.60)

where the Laurent series is supposed to be actually convergent on P
1 \ D. Let �(z; [T ])

denote the solution of the RHP,

�+(z) = �−(z)M(z) , z ∈ �γ, (2.61)

�+(z) = �−(z)eT (z) , z ∈ ∂D, (2.62)

�(∞) = 1. (2.63)

If the L∞ ∩ L2 norm of eT (z) − 1 on ∂D is sufficiently small, then the solvability of the
problem is guaranteed by standard perturbation theorems. Therefore �(z; [T ]) is defined
at least in a ball around T (z) ≡ 0. Since the jump matrix eT (z) is diagonal (and analytic
in the complement of the disk), it is immediately seen from Prop. 2.2 that ωM = �4 and
that they are closed as differentials on the (infinite dimensional) manifold of T ’s. Thus
there is a locally defined function such that

δ ln τ(T ) :=
∮

∂D

Tr
(
�−1− (x)�′−(x)δT (x)

) dx

2iπ
. (2.64)

Denote now by τ
{

ξ η
i j

}
( �T )5 the tau–function resulting after the elementary Schlesinger

transformation
{

ξ η
i j

}
. Then the content of Thm. 2.1 can be rephrased as

�i j (ζ ) =
τ
{∞ ζ

i j

}
( �T )

τ ( �T )
, �−1

i j (ζ ) =
τ
{

ζ ∞
i j

}
( �T )

τ ( �T )
. (2.65)

In fact, more is true: if ζ falls within the disk D then the RHP for the Schlesinger

transforms
{∞ ζ

i j

}
,
{

ζ ∞
i j

}
can be formulated as (exercise)

{∞ ζ
i j

} {
ζ ∞
i j

}

�+(z) = �−(z)eT (z)
(

1 − ζ
z

)−E j
zEi −E j , z ∈ ∂D �+(z) = �−(z)eT (z)(1 − ζ

z )Ei zEi −E j , z ∈ ∂D

�+(z) = �−(z)z−Ei MzEi z ∈ �γ �+(z) = �−(z)zE j M(z)z−E j z ∈ �γ

�(∞) = 1 �(∞) = 1

.

(2.66)

The jumps on ∂D can be written

eT (z)
(

1 − ζ

z

)−E j

= exp
∞∑

k=1

Tk + E jζ
k/k

zk
; eT (z)

(
1 − ζ

z

)Ei

= exp
∞∑

k=1

Tk − Eiζ
k/k

zk
. (2.67)

4 This follows by observing that ϑ will be identically zero due to the analyticity of T outside of the disk.
5 The notation �T stands for the (infinite) vector of the (matrix) coefficients of T (z), �T = (T1, T2, . . . ).
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This leads to the following identities

�i j (ζ ; [T ]) = �i j
(
0; [T − E j [ζ ]]) , �−1

i j (ζ ; [T ]) = �−1
i j (0; [T + Ei [ζ ]]) ,

(2.68)

and hence

�i j (ζ ; [T ]) =
τ
{∞ 0

i j

}
( �T − E j [ζ ])

τ ( �T )
; �−1

i j (ζ ; [T ]) =
τ
{

0 ∞
i j

}
( �T + Ei [ζ ])

τ ( �T )
.

(2.69)

Here we have used the standard notation [ζ ] = (ζ,
ζ 2

2 , . . . ,
ζ k

k , . . . ).

2.3.2. Hirota bilinear relations We will not go into much depth here, since all is well–
known, but it may give an analytic perspective on the relations, which are usually taken
only formally.

As in the previous Sect. 2.3.1, let C be a counterclockwise circle around a point
z = a �∈ �γ (a = 0 for simplicity) and let T (z) : C → glr (C) be as (2.60). We have
∮

C
�+(ζ ; [T ])e−T (ζ )+T̃ (ζ )�−1

+ (ζ ; [T̃ ]) dζ

2iπζ 2 =
∮

C
�−(ζ ; [T ])�−1− (ζ ; [T̃ ]) dζ

2iπζ 2 .

(2.70)

Now, the matrix �(x; [T ])�−1(x; [T̃ ]) has no jumps outside C since the other jumps
of the problem have been left unmodified; thus it is analytic on the complement of the
disk D and goes to the identity at ∞. Thus we have the identity

∮

C
�+(ζ ; [T ])e−T (ζ )+T̃ (ζ )�−1

+ (ζ ; [T̃ ]) dζ

2iπζ 2 = 0 (2.71)

which is valid identically in T, T̃ in a neighborhood of T ≡ 0.
In view of the interpretation of � as the Baker–Akhiezer vector for the τ–function

(Sato-formula above), the reader may regard (2.71) as the generating function of an
infinity of bilinear identities between matrix–valued τ functions;

r∑

=1

∮
τ

{∞ 0

i 

}
( �T − E[ζ ])eT̃(ζ )−T(ζ )τ

{
0 ∞
 j

}
( �̃T + E[ζ ]) dζ

ζ 2 ≡ 0. (2.72)

The identity (2.72) should be used as a generating function of an infinite hierarchy of

PDEs for the matrix–valued tau-function [τ ( �T )]i j = τ
{∞ 0

i j

}
( �T ) when expanding it

in Taylor series with respect to T̃ around the diagonal �̃T = �T . This generates a sort of
“addition theorem” for tau-functions (see Remark 2 in [8]).

The variational formula (2.9) in Lemma 2.1 takes on an added significance in view
of the identity

1

τ
τ

{
ξ η

i j

}
=
[
�−1(ξ)�(η)

ξ − η

]

i j
. (2.73)
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To explain this in a simple situation we now consider two disks D0 and D1 centered
at two points –say– a = 0, 1; on the boundaries of these disks we introduce diagonal
jumps exactly as in Sect. 2.3.1,

T (0)(z) =
∞∑

k=1

T (0)
k

zk
, T (1)(z) =

∞∑

k=1

T (1)
k

(z − 1)k
. (2.74)

We denote by τ( �T (0), �T (1)) the tau–function as a function of the two (infinite) sets of

times and τ
{

0 1
i j

}
( �T (0), �T (1)) the Schlesinger–transformed one. Let ζ ∈ D0 and η ∈ D1;

retracing the steps that lead to (2.69) we find

1

τ( �T (0), �T (1))
τ

{
0 1

i j

}
( �T (0) + Ei [ξ ], �T (1) − E j [η]) =

[
�−1(ξ)�(η)

ξ − η

]

i j
. (2.75)

This formula is the content (in different notation) of (3.11) in Thm. 3.2 of [8].
The variational equation (2.9) in our Lemma 2.1 applied to derivatives with respect

to some directions in T (0), T (1) then become the generating functions for the Hirota
bilinear relations that appear in Thm. 3.4 of [8]. They all boil down to the following
identity, to be understood as generating functions of PDEs when evaluating its Taylor
expansion on the diagonal T ( j) = T̃ ( j), j = 0, 1,

0 =
(∮

∂D0

+
∮

∂D1

)
�−1(ξ ; T )�−(x; T )

ξ − x

�−1− (x; T̃ )�(η; T̃ )

x − η

dx

2iπ

=
∮

∂D0

�−1(ξ ; T )�+(x; T )

ξ − x
eT̃ (0)(x)−T (0)(x) �

−1
+ (x; T̃ )�(η; T̃ )

x − η

dx

2iπ
+ 0

+
∮

∂D1

�−1(ξ ; T )�+(x; T )

ξ − x
eT̃ (1)(x)−T (1)(x) �

−1
+ (x; T̃ )�(η; T̃ )

x − η

dx

2iπ
. (2.76)

The interested reader should compare this with Theorem 3.4 in [8]. Since it is not the
primary focus of this paper (and it is certainly not a new result), we will not pursue the
issue here, also because it has been dealt with at length in [8], even though in the context
of isomonodromic and isospectral deformations only.

2.4. Right gauge equivalence. We will say that the two problems are (right) gauge
equivalent if there exists an analytic function

G : C \ �γ → GLr (C) (2.77)

admitting boundary values (also for its derivative) at �γ , with G(z) = 1 + O(z−1) as
z → ∞ and such that the jump matrices stand in the relation

M̃(z) = G−1− (z)M(z)G+(z) , z ∈ �γ. (2.78)

It is immediate then that the two solutions are related by �̃(z) = �(z)G(z). It is then
seen that the difference of ωM (or �) along the two solutions �, �̃ differ only in terms
that do not involve � or �̃ and depend only and explicitly on M, G. Thus this equivalence
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will not modify the singularity locus of ωM and –if both deformation families admit a
tau function– both tau functions will differ only by multiplication by a smooth nonzero
factor. Indeed a direct computation yields

ωM (∂; [�̃]) − ωM (∂; [�])
=
∫

�γ

Tr
(
�−1− (x)�′−(x)G−1− (x)∂G−(x) − �−1

+ (x)�′
+(x)G−1

+ (x)∂G+(x)
) dx

2iπ

+
∫

�γ

Tr
(

M−1(x)M ′(x)G−1
+ (x)∂G+(x) − G−1− (x)G ′−(x)G−1− (x)∂G−(x)

− G−1− (x)G ′−(x)∂ M(x)M−1(x)

+ G−1− (x)G ′−(x)M(x)G−1
+ (x)∂G+(x)M−1(x)

) dx

2iπ
. (2.79)

The first term in the right hand side of (2.79) vanishes by the Cauchy theorem, since
it amounts to the (boundary value of) the integral of Tr(�−1�′G−1∂G) on a collection
of contours surrounding �γ and contractible. Thus the difference will not involve the
solution of the RHP and hence be a smooth differential in the parameters (i.e. gauge
equivalence cannot modify the Malgrange divisor). Such equivalence does play a role
in some cases (see [1] for examples where this happens, although not phrased in these
terms).

3. Rational Differential Equations in Terms of Riemann–Hilbert Data

We now describe the class of ODE’s with rational coefficients

� ′(z) = A(z)�(z) (3.1)

in an unconventional way: we will start from the formulation of a RHP and then indi-
cate how this problem (when solvable) is equivalent to an ODE. The class of matri-
ces A(z) that will be eventually described has poles at points a1, . . . , ak with orders
n1 + 1, . . . , nk + 1. If n j = 0 then the pole is simple.

One may take the point of view that we are providing a different (transcendental)
coordinate system on the finite–dimensional vector space of rational matrices with fixed
polar divisor.

The forward problem, namely, the construction of the RHP from the matrix A(z)
is more standard and we only sketch the main points, since it does not really play a
direct rôle here. This procedure is often called the (extended) monodromy map. The
standard reference for many assertions below is Wasow’s book [17] but also the paper
[9] provides a concise recall.

3.1. Monodromy map. Given a rational matrix

A(z) =
K∑

j=1

n j +1∑

=1

A j,−1

(z − a j )
+

n0−1∑

=0

A0,+1z, (3.2)

we consider the ODE � ′(z) = A(z)�(z). Without loss of generality we will assume
Tr A(z) ≡ 0 so that any solution has constant determinant that we can assume to be unity
det � ≡ 1. We make the usual assumption:



Dependence on Monodromy Data of the Isomonodromic Tau Function 563

Assumption 3.1 (Genericity). The leading-coefficient matrices A j,n j for n j > 0 have
distinct simple eigenvalues. The diagonal matrix of eigenvalues (with an arbitrarily cho-
sen order) will be denoted by Tj,n j . If n j = 0 (simple pole) then Tj,0 has eigenvalues
which are also distinct modulo Z (i.e. no pair of eigenvalues differ by an integer).

To simplify some issues in the general description we will assume that in fact there
is no pole of the connection ∂z − A(z) at z = ∞; this can always be achieved without
loss of generality by a Möbius transformation that maps ∞ to a finite point (without
mapping any of the other poles to infinity!).

Monodromy representation. In order to fix the normalization of the initial value prob-
lem we choose a finite basepoint z0 ∈ C (not coinciding with any of the poles) and we
will denote by D the simply connected domain of P

1 obtained by dissecting P
1 along

nonintersecting smooth arcs joining z0 with each of the poles (Fig. 4).
We consider the initial value problem �(∞) = 1 (recall that ∞ is now a regular

point of our ODE). By analytic continuation of the solution around a loop (based at ∞)
that “goes around a j ” (i.e. has index one relative to a j and zero relative to z0 and all
other poles) we obtain �(z) �→ �(z)M−1

j , det M j = 1. These loops generate the fun-
damental group π1(C \ {a1, . . . },∞) and provide a representation of this fundamental
group

π(P1 \ {a1, . . . },∞) �→ SLr (C). (3.3)

Therefore, on the simply connected domain D defined here above, the matrix �(z) is
analytic, but on the boundary of the cuts from z0 to the pole a j we have a jump M j .

Stokes’ phenomenon in brief. Consider a higher order pole a j , with n j ≥ 1 and denote
as follows the distinct eigenvalues of the leading coefficient matrix A j,n j ,

Tj,n j = diag(� j,1, . . . , � j,r ) , � j, �= � j,s,  �= s , ζ := (z − a j ). (3.4)

One can find at each pole a j 2n j directions (the anti-Stokes directions) angularly sepa-
rated by π

n j
such that along each of them there exists a permutation σ (uniquely defined)

yielding the definite ordering below:

�
(

� j,σ (1)

ζ n j

)
> �

(
� j,σ (2)

ζ n j

)
> · · · > �

(
� j,σ (r)

ζ n j

)
. (3.5)

Note that if on a direction we have the above ordering, on the next (counter)clockwise
we have the exact reversed (with the same permutation).

Fig. 4. The schematic arrangement of the basepoint z0 and the dissection of P
1 into a simply connected

domain D by means of cuts (thick arcs). Also the generators of the homotopy group and the corresponding
jumps on the arcs of the dissection
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The theorem which can be found in several places (e.g. [17]) is the following: given
our IVP �(z) on the simply connected domain D, there are 2n j matrices S j,ν , ν =
1 . . . 2n j (the Stokes’ matrices) which are of the form

S j,ν = Pσ (1 + N j,ν)P−1
σ , (3.6)

where N j,ν is upper-triangular on the directions where the ordering is as in (3.5) and
lower-triangular on the directions where the ordering is reversed, and Pσ is the permuta-
tion matrix corresponding to the permutation σ appearing in (3.5). There is an invertible
matrix C j ∈ SLr (C) (the connection matrix) and diagonal matrix

Hj (ζ ) := eTj (ζ )ζ L j , Tj (ζ ) =
n j∑

=1

Tj,ζ
−, ζ = (z − a j ) (3.7)

in which Tj,n j is the matrix of eigenvalues of the leading coefficient used in the defini-
tion of the anti-Stokes directions. This matrix will be called the toral element (for lack
of a better name, since it belongs to the complex toral subalgebra of SLr (C)) and the
diagonal matrix L j is called the exponent of formal monodromy.

These matrices (Stokes’ connections and toral elements) are uniquely determined by
the following set of conditions
1. In one (arbitrarily chosen and then fixed) sector separated by the two consecutive

anti-Stokes directions we have the asymptotic expansion

�(z) ∼ Ŷ j (z)e
Tj (ζ )ζ L j C j , (3.8)

Ŷ j (z) = G j

(
1 +

∞∑

=0

Y j,ζ


)
, det G j = 1, (3.9)

where the (constant in z) matrix G j depends on which pole we are considering.
2. In the next sector counterclockwise we have

�(z) ∼ Ŷ j (z)e
Tj (ζ )ζ L j S j,1C j , (3.10)

where we have labeled by 1 the anti-Stokes direction separating the two sectors, and
in general

�(z) ∼ Ŷ j (z)e
Tj (ζ )ζ L j S j,ν · · · S j,2 · S j,1C j , (3.11)

where we are in the sector between two anti-Stokes and we have crossed ν such lines.
3. The monodromy around the pole under consideration, the connection matrix and the

Stokes matrices satisfy the condition

M j = C−1
j S j,2n j · · · S j,1C j . (3.12)

Note that at a simple pole we simply have n j = 0 and hence there are no anti-Stokes’
lines but only the exponents of formal monodromy L j and the connection matrix C j .

Remark 3.1. If we had allowed a pole at infinity we would need to make only technical
modifications: in that case –of course– one cannot set-up an initial value problem at
∞, but can require a specified normalized asymptotic behavior in a chosen sector. The
description of the Stokes’ phenomenon is identical to the one provided above, using the
coordinate ζ = 1

z . We feel that there is no sufficient added value to this more general
setting to justify entering into these confusing details, especially given that the properties
of a rational ODE are invariant under Möbius transformations.

Since these are standard facts about ODEs we will not dwell on other subtleties.
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3.1.1. Forward Birkhoff map. Given the rational matrix A(z) of our form, a chosen
basepoint and dissection D, anti-Stokes lines and base-sector from where to start the
counting we have associated the collection of all the data

M := {a j , Tj (ζ j ), L j , C j , {Sν, j : ν = 1 . . . 2n j }, } j=1,...,k . (3.13)

The statement is that the map is (locally) injective but not surjective in general; there are
some choices of data in M for which there is no corresponding ODE of the specified
form. As the reader may suspect (or know), these data constitute the Malgrange divisor.

There are two logically (and historically) distinct types of data in the above: the
isomonodromic times

T := {a j , Tj (ζ j )} j=1...k (3.14)

(the positions a j and the coefficients of the matrices Tj (ζ )). On the other hand there are
the genuine generalized monodromy data

S := {L j , C j , {S j,νν = 1 . . . 2n j }, } j=1...k (3.15)

and M is locally the product of the two. Of course this separation can be only done
locally since the anti-Stokes directions depend on the leading coefficients of Tj (ζ ) and
the dissection D depends on the position of the poles, and hence some care is in order
–if global questions are at issue– in describing the patching of these local descriptions
(see for example [5]).

4. Inverse Birkhoff Map: Riemann–Hilbert Problem

Given the Birkhoff data described above, the question arises as to whether one can invert
the map: starting from a concrete dissection, anti-Stokes lines, etc., together with all the
matrices appearing in M, can one reconstruct A(z)? To this end it is necessary to specify
a Riemann–Hilbert problem in the same spirit as Sect. 2.

4.1. The set of contours. The set of contours �γ consists of (see Fig. 5)

1. For each pole we draw a circle not containing any other pole: we will call this the
connection circle.

2. For each pole a j a smaller circle is chosen, called the formal monodromy circle.
On this circle a point β j is chosen.

3. Each β j on the formal monodromy circle is connected with a set of mutually nonin-
tersecting paths (stems) to the basepoint.

4. At the higher poles we choose a third smaller circle called the toral circle.
5. A point (arbitrarily chosen) on the toral circle is connected finally to the pole by

2n j smooth curves that approach the singularity along the directions mentioned in
Sect. 3.1;

The word description is awkward but Fig. 5 should clarify all the elements.
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4.2. The jump-matrices. Rather than describing the matrices in words, we refer to the
picture (Fig. 5) where we depict a situation with only two points a1, a2 with n1 = 0
(simple pole). The general picture is quite simply a repetition of several copies of the
basic elements already manifest here. Since there is no monodromy around the basepoint
z0 chosen for the dissection, we have to impose the constraint

C−1
K e2iπ L K CK · · · C−1

1 e2iπ L1C1 = 1. (4.1)

It will be understood that the matrices (z − a j )
L j are defined on the formal monodromy

circles as continuous functions taken away from the point of insertion of the points β j
(Fig. 5).

4.3. Riemann–Hilbert problem.

Problem 4.1. Find a piecewise analytic matrix–valued function �(z) on the complement
of the indicated contours as per Fig. 5 so that

• on each arc it solves �+(z) = �−(z)M(z) with the matrix M(z) as indicated in
Fig. 5;

• it is bounded on P
1;

• it satisfies the normalization �(∞) = 1.

Some properties follow immediately:

• Any solution satisfies det �(z) ≡ 1. Indeed det M(z) ≡ 1 implies that det(�(z)) has
no jumps across the contours. Since �(z) is bounded, so must det � be, and hence it
is an entire function, bounded everywhere, hence a constant. Since �(∞) = 1 then
det �(z) = det �(∞) = 1.

Fig. 5. The typical set of contours. The dashed lines within the formal monodromy circles are not jumps, but
the domain where the determination of the powers (z − a)−L is continuously defined so as to give a precise
meaning to the expressions for the various jump matrices
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Fig. 6. The constant-jump Riemann–Hilbert problem for �(z)

• If a solution exists, it is unique: indeed any two solutions �(z), �̃(z) are analyti-
cally invertible by the above remark. Hence �̃(z)�−1(z) is promptly seen to have
no jumps, be uniformly bounded, and thus it is a constant. The normalization forces
�(z) ≡ �̃(z).

The connection with the ODE is as follows; define the piecewise analytic matrix
�(z) related to the solution �(z) as follows:

• �(z) = �(z) outside the formal monodromy circles;
• �(z) = �(z)(z − a j )

L j in the annulus between toral and formal-monodromy circles;
• �(z) = �(z)eTj (z)(z − a j )

L j inside the formal-monodromy circles.

The cut of the logarithm is taken where the dotted line is traced in Fig. 5. It is promptly
seen that �(z) solves a new RHP where the jump matrices are piecewise constant and
unimodular (see Fig. 6 for an example). Thus

A(z) := � ′(z)�−1(z) (4.2)

is a meromorphic (traceless) matrix function with isolated singularities at the a j ’s. A
local inspection shows that it has poles of finite order there, and hence it is rational.

5. Tau Function and (Iso)monodromic Deformations

The goal now is to show that the modified Malgrange form � is closed when evaluated
along the manifold L ⊂ G consisting of jump-matrices M(z)’s described in the previous
section. We emphasize that the parameters are

• the toral data Tj (z)’s,
• the connection matrices C j ,
• the Stokes’ matrices S j,ν ,
• the exponents of formal monodromy L j .

The reader acquainted with the literature about isomonodromic deformations should
now realize that we allow many more directions of deformations. The computation of
the closure of � relies directly on Prop. 2.2:

δ�(∂, ∂̃) = 1

2

∫

�γ

Tr
(

M ′(x)M−1(x)
[
∂ M(x)M−1(x), ∂̃ M(x)M−1(x)

]) dx

2iπ
.

(5.1)
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It is clear that no contribution to (5.1) can come from the arcs where M(z) is indepen-
dent of z. This leaves only the contributions coming from the toral circles, the formal
monodromy circles and the Stokes’ lines. Let us consider each type separately

• Stokes’ lines; up to a constant conjugation by a permutation matrix the jumps are of
the form 1 + N (z) with a strictly triangular N (z), and hence they do not contribute to
(5.1) (the trace is identically zero).

• Toral circles; on the Toral circles the jumps are diagonal and hence the commutator
in (5.1) is identically zero.

• Formal monodromy circles; once more, since the jumps are diagonal, no contribu-
tion to (5.1) comes from them. Note that at a simple pole the matrix L may actually
be upper triangular: in this case the trace vanishes identically.

Therefore we have

Theorem 5.1. The differential � restricted to the submanifold L of group–valued jump-
matrices described above is closed and defines a local function via the formula

τ( �T , �a, �L, �S,̂ ) = e
∫

�. (5.2)

This function is defined up to a nonzero multiplicative constant and it vanishes precisely
when the Riemann–Hilbert problem is not solvable, namely, on the Malgrange 	 divisor.

The fact that τ has zeroes (and not a branching singularity) does not follow from our
construction, it follows from [14 and 11].

We would like to stress that, had we chosen the Malgrange form ωM directly, the
closure would have failed. Indeed the reader may check that

δωM

(
∂, ∂̃
) = 1

2

∑

j

(
∂a j ∂̃Tr(L2

j ) − ∂̃a j∂Tr(L2
j )
)

K j , (5.3)

K j =
∮

β j

ln(x − a j )

(x − a j )2

dx

2iπ
= 1

β j − a j
�= 0, (5.4)

where the integrals are on the toral circles with basepoint at the necks β j .
Aside from this, the correction term ϑ in (2.26) does not contribute anything for most

of the contours in �γ ; in fact the only contribution comes –not surprisingly in view of
the above computation– from the formal monodromy circles

ϑ(∂) = 1

2

∫

�γ

Tr
(

M ′(x)M−1(x)∂ M(x)M−1(x)
) dx

2iπ

= 1

2

∑

j

Tr(L j∂L j )

∮

β j

ln(x − a j )

x − a j

dx

2iπ
(5.5)

= 1

2

∑

j

Tr(L j∂L j )(2iπ + 2 ln(β j − a j )). (5.6)

Note that this “problem” is invisible if we allow only isomonodromic deformations,
in which case using ωM or � yields the same differential.

Before we turn to a list of applications of the above result to explicit examples, we
make the connection with the definition of [9].
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5.1. Relationship between ωM and ωJ MU . In order to establish the relationship we must
“freeze” all the monodromy parts of the Birkhoff data, that is, the connection matrices,
the Stokes matrices and the exponents of formal monodromy. As noted above, in this
case � = ωM . Then the observation that ωM and ωJ MU coincide can be dug out [14]
but we re-derive it here for the sake of being self-contained. If now ∂ is a derivative
along the isomonodromic submanifold of the Birkhoff data, the differential reduces to
an integral only on the Stokes’ lines, the toral circles and the formal-monodromy circles.
Since the expression is repeated for each pole, we consider only the localization at one
pole a = a j , i.e. we vary the toral data/position only of one pole. Let ∂ denote one such
deformation involving only data at a = a j . Then

�(∂) = ωM (∂) = −
∫

Tr
(
�−1− (x)�′−(x)∂ M(x)M−1(x)

) dx

2iπ
. (5.7)

There are two types of integrals here: the integrals along the Stokes lines and the inte-
gral around the toral circle. Along each Stokes contour the integrand can be equivalently
written as follows:

Tr

⎛

⎜⎜⎝�−1− (x)�′−(x)

⎛

⎜⎜⎝∂ T̂ j (x) −
M(x)︷ ︸︸ ︷

eT̂ j (x)S j,νe−T̂ j (x) ∂ T̂ j (x)

M−1(x)︷ ︸︸ ︷
eT̂ j (x)S−1

j,νe−T̂ j (x)

⎞

⎟⎟⎠

⎞

⎟⎟⎠

= Tr
(
�−1− (x)�′−(x)∂ T̂ j (x) − �−1

+ (x)�′
+(x)∂ T̂ j (x)

)
+
����������� 0(traceless)

Tr(M−1(x)M ′(x)∂ T̂ j (x)) (5.8)

T̂ j (z) := Tj (z) + L j ln(z − a j ), (5.9)

where we have used the cyclicity of the trace on the second term followed by

M−1(x)�−1− (x)�′−(x)M(x) = �−1
+ (x)�′

+(x) − M−1(x)M ′(x). (5.10)

Recall also that ∂ T̂ j (z) does not contain a logarithmic term because ∂L j = 0 (only
isomonodromic deformations are allowed). As a consequence of (5.8) the resulting sum
of integrals along the Stokes tentacles (refer to Fig. 7) can be evaluated by excising an ε

circle6 around the pole z = a j and integrating Tr(�−1(z)�′(z)∂ T̂ j (z)) on the solid black
contours indicated in Fig. 7, followed by a limit ε → 0. For fixed ε the integral along
these solid “tentacles” is equal (by Cauchy’s theorem) to the counterclockwise integral
along the ε circle and the clockwise integral along the bigger dashed circle indicated in
Fig. 7, on the + side (inside) of the toral circle.

We now have two integrals of Tr(�−1− (x)�′−(x)∂Tj (x)) on the right (outside) of
the toral circle, coming from the definition of ωM minus the integral of Tr(�−1

+ (x)�′
+(x)

∂ T̂ j (x)) on the right (inside) coming from the above contour deformation:

−
∮

toral
Tr(�−1− (x)�′−(x)∂Tj (x) − �−1

+ (x)�′
+∂ T̂ j (x)) dx . (5.11)

Given the jump condition on the toral circle �+(z) = �−(z)e−Tj (z), we have

Tr(�−1
+ (z)�′

+∂(z)T̂ j (z)) = Tr(�−1− (z)�′−(z)∂ T̂ j (z)) − T ′
j (z)∂ T̂ j (z). (5.12)

6 Note that �(z) has a jump of the form e2iπ L j in the straight ray from a to the toral circle (Fig. 5), but the
expression Tr(�−1(x)�′(x)∂ T̂ j (x)) does not have a jump there, since L j and T̂ j are both diagonal. This is
the reason why we did not draw the corresponding solid line in Fig. 7.
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Fig. 7. The set of contours for the computation of ωJ MU

Hence (5.11) reduces to (recall from (5.9 that ∂Tj (z) − ∂ T̂ j (z) = − L j ∂a j
z−a j

)

= −
��
0

︷ ︸︸ ︷∮

toral
Tr(T ′

j (x)∂ T̂ j (x)) +
∮

toral
Tr

(
�−1− (x)�′−(x)

L j∂a j

x − a j

)
dx

2iπ
, (5.13)

where the first integral is zero because T ′
j (z)∂ T̂ j (z) is a Laurent polynomial starting

from the term (z − a j )
−2. The remaining can be deformed within the annulus between

the toral and formal-monodromy circle (and the �− of the toral circle becomes the �+
of the local monodromy circle) and combines with the outer integral therein to give

∮

f or.mon.

Tr

((
�−1

+ (x)�′
+(x) − �−1− (x)�′−(x)

) L j∂a j

a j − x

)
dx

2iπ

= −
∮

f or.mon.

Tr(L2
j )∂a2

j

(x − a j )2

dx

2iπ
= 0. (5.14)

The remaining integrals can therefore be retracted to an integral around the ε circle:
∮

|x−a j |=ε

Tr
(
�−1(x)�′(x)∂ T̂ j (x)

) dx

2iπ
. (5.15)

In each sector we have the expansion valid for any N ,

�(z)=G j

(
1+

N∑

0

Y j,k(z − a j )
k

)
+O((z − a j )

N+1) ∼ G j

(
1+

∞∑

0

Y j,k(z − a j )
k

)
,

(5.16)
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where the coefficient matrices G, Yk are the same irrespective of the sector. If we replace
�(z) in (5.15) by a suitably high truncation of the formal series, we commit an error that
it is easily estimated to vanish as ε tends to zero. On the other hand the new integral is
independent of ε and reduces to the formal residue,

�(∂; [�]) = ωM (∂; [�]) = res
z=a j

Tr
(

Ŷ −1
j (z)Ŷ ′

j (z)∂ T̂ j (z)
)

dz ,

Ŷ j (z) := G j

(
1 +

∞∑

0

Y j,k(z − a j )
k

)
, (5.17)

to be understood simply as the coefficient of (z − a j )
−1 of the above formal series with

a finite Laurent tail. The reader acquainted with the definition of ωJ MU will recognize
that the expression is precisely the same defining ωJ MU in [9] (of course one should
repeat the residue computation at each pole and sum up).

In conclusion we have shown

Proposition 5.1. The (modified) Malgrange differential � restricted to the manifold of
isomonodromic deformations coincides with the Jimbo-Miwa-Ueno differential.

6. Applications and Examples

6.1. Painlevé II equation. We single out the second Painlevé for its relative simplicity
in formulæ and as an illustration of potential applications to other Painlevé equations.
We follow the setup in [6]. The Riemann–Hilbert description is shown in the picture,
with the notations and condition

L(s) :=
[

1 0

s e
2i
(

4
3 z3+t z

)

1

]
, U (s) :=

[
1 s e

−2i
(

4
3 z3+t z

)

0 1

]
, (6.1)

s1 − s2 + s3 + s1s2s3 = 0. (6.2)

The matrices U (s), L(s) (where the letters stand mnemonically to remind one of the
“upper” or “lower” triangularity) are the jump matrices for the RHP, and the parameter s
depends on the ray under consideration as in Fig. 8. Condition 6.2 is the condition that the
products of the jumps at the origin is the identity. The Riemann–Hilbert problem is then
that of finding �(z) uniformly bounded, with the indicated jumps and the normalization
condition

�(z) ∼ 1 + O(z−1). (6.3)

The solution has the symmetry

�(z) =
[

0 1
−1 0

]
�(−z)

[
0 −1
1 0

]
(6.4)

which is seen by showing that if �(z) solves the problem then so does the right hand
side of (6.4). The matrix T (z) in the notation of Sect. 3 is given by

T (z) = −
(

4i

3
z3 + i t z

)
σ3 , σ3 :=

[
1 0
0 −1

]
, (6.5)
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Fig. 8. The contours (1, ..., 6) and jump matrices (with the notation in (6.1)) of the RHP associated to the
second Painlevé transcendent

and the matrix �(z) := �(z)eT has constant jumps (on the anti-Stokes lines) and satisfies

� ′(z)�(z)−1 = −i
(

4z2 + t + 2u2
)

σ3 − 4uzσ2 − 2vσ1

=
(−4i 0

0 4i

)
z2+

(
0 4iu

−4iu

)
z+

(−i t − 2iu2 −2v

−2v i t + 2iu2

)
,

(6.6)

σ1 :=
[

0 1
1 0

]
, σ2 :=

[
0 −i
i 0

]
, v = q ′(t). (6.7)

Under an isomonodromic deformation the coefficients u, v in (6.6) must evolve as func-
tions of t and –in particular–

u = u(t; �s) = 2 lim
z→∞ z �12(z; t, �s) (6.8)

(the limit does not depend on the sector we choose) solves the second Painlevé equation

d2u

dt2 = 2u3 + tu. (6.9)

By direct computations we have

ωJ MU =
((

du

dt

)2

− tu2 − u4

)
dt = ∂t ln τ(t; �s) dt

∂2
t ln τ(t; �s) = u(t; �s)2. (6.10)
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Generically we can solve the condition (6.2) for s3 and use s1, s2 as independent vari-
ables: more appropriately one should consider the parameter space as the algebraic
manifold specified by (6.2). Introduce the matrix kernel

K(x, y) := �(x)−1�(y)

x − y
. (6.11)

We then have

∂s1 ln τ(t; �s) = −2
∫

1

Tr

(
�−1(x)�′(x)

[
0 0

e
i4
3 x3+i t x 0

])
dx

2iπ

+ 2
1 + s2

2

(1 + s1s2)2

∫

3

Tr

(
�−1(x)�′(x)

[
0 e− i4

3 x3−i t x

0 0

])
dx

2iπ

= −2
∫

1

K12(x, x)e
i4
3 x3+i t x dx

2iπ

+ 2
1 + s2

2

(1 + s1s2)2

∫

3

K21(x, x)e− i4
3 x3−i t x dx

2iπ
, (6.12)

where the boundary–value indication is irrelevant since the indicated matrix element
does not have a jump on the corresponding line and we have used the symmetry (6.4)
which causes the factor of 2. Using formula (2.15) for the second derivatives and then
(2.9), one may derive an integral formula for the derivative ∂2

t ∂s1 ln τ ; however, in view
of (6.8) it is simpler to use the variational formula (2.8) directly, thus yielding

∂s1 u(t; �s) = 2 lim
z→∞ z ∂s1�12(z)

= 4 lim
z→∞

∫

1

z

(
�(x)

[
0 0

e
i4
3 x3+i t x 0

]
�−1(x)�(z)

)

12

x − z

dx

2iπ

−4 lim
z→∞

1 + s2
2

(1 + s1s2)2

∫

3

z

(
�(x)

[
0 e− i4

3 x3−i t x

0 0

]
�−1(x)�(z)

)

12

x − z

dx

2iπ
,

(6.13)

where we have used again the symmetry (6.4) to simplify the expression. Since �(z) → 1
we have

∂s1 u(t; �s) = 4
1 + s2

2

(1 + s1s2)2

∫

3

�11(x)2e− i4
3 x3−i t x dx

2iπ
− 4

∫

1

�12(x)2e
i4
3 x3+i t x dx

2iπ
.

(6.14)

6.2. Variation of finite Toeplitz determinants for discontinuous symbols. Let
S1 = {|z| = 1}. Suppose that we have the following data:

• A finite partition of S1 in sub-arcs γ j , with β j being the separating points;
• A collection of functions a j (z) : γ j → C which are analytic in a neighborhood of γ j .



574 M. Bertola

Define a(z) : S1 → C as the piecewise analytic function that coincides with a j on each
(interior of) γ j . The nth Toeplitz determinant is defined as

Tn[a] := det[µ j−i ]i, j=1...n , µ j :=
∮

|z|=1
z j a(z)

dz

2iπ z
, T0[a] := 1. (6.15)

It was shown in [1] that Tn[a] (and more general objects) are isomonodromic tau func-
tions for the following RHP;

�̃+(z) = �̃−(z)

[
1 w(z)
0 1

]
, z ∈ S1,

�̃(z) =
(

1 + O(z−1)
)

znσ3 , z → ∞,

�̃(z) = O(ln(z − β j )) , z → β j ,

w(z) := zn−1a(z). (6.16)

Note that �̃ depends on the integer n as well, and we will write �̃n when needed to
specify the value of this integer. In order to reduce to the general setting of Sect. 2 we
should add a big counterclockwise circle (the “formal monodromy” circle) with jump
znσ3 and replace the asymptotics with �(∞) = 1; to take care of the logarithmic growth
at the endpoints β j we take ε–circles centered at the β j (with ε sufficiently small) and
define �(z) as �(z) = �̃(z) for z outside of the added circles, while inside we set

�(z) := �̃(z)

[
1 −C[w](z)
0 1

]
, |z − β j | < ε , C[w](z) :=

∮

|x |=1

w(x)

x − z

dx

2iπ
.

(6.17)

Thus the problem (6.16) is recast to the equivalent Riemann–Hilbert problem (see
Fig. 9),

�+(z) = �−(z)

[
1 zna(z)
0 1

]
, |z| = 1, min

j
|z − β j | > ε,

�+(z) = �−(z)

[
1 −C[w](z)
0 1

]
|z − β j | = ε,

�+(z) = �−(z)znσ3 , |z| = R > 1,

�(z) =
(

1 + O(z−1)
)

, z → ∞, (6.18)

and �(z) uniformly bounded in C. When necessary to specify the integer n, we will
simply write �n(z).

Note that the additional jump on |z| = R (oriented counterclockwise) is independent
of the symbol and hence undergoes no deformation. Therefore this has no impact in the
definition of the differential �n(•) = �(•; [�n]).

Note that the first column of the solution �(z) to problem (6.18) consists of poly-
nomials (of degree ≤ n) for |z| < R; indeed it has no jumps on |z| = 1 and the added
small circles (due to the triangularity of the jump-matrices). Outside the circle |z| = R,
said column divided by zn is bounded at infinity, which proves the assertion.



Dependence on Monodromy Data of the Isomonodromic Tau Function 575

Fig. 9. The modification to the RHP to guarantee that the solution is bounded everywhere: here C[w](z) :=∮ w(x)
x−z

dx
2iπ and the new RHP has no jump within the small disk centered at β j

Similarly, the second row of �−1(z) (which solves a RHP with the jump matrix on
the left) also consists of polynomials, by parallel arguments.

Thus the integrand in the definition of the differential � is in fact the integral of a
polynomial kernel7

K21(z, w) :=
[
�−1(z)�(w)

]
21

z − w
(6.19)

of degree ≤ n − 1 in both variables (it has no jumps, it is regular on the diagonal z = w

and bounded by a power at infinity separately in each variable).
Now, the computations in [1] were done for an isomonodromic tau function, however

the proof passes through without change to the extended �-differential. Namely, the
proof consisted in showing that

�n+1 − �n = δ ln

(
Tn+1[a]
Tn[a]

)
, (6.20)

where �n denotes the differential evaluated on the solution �n of (6.18). Since the two
RHPs differ by an elementary Schlesinger transformation of the type discussed in Sect.
2.3, this part is identical. Moreover, �0 ≡ 0 because the integrands in (2.26) and (2.7)
are identically zero (all the matrices are upper triangular and �∂ is strictly upper trian-
gular), which means that τ0 = exp

∫
�0 is a constant independent of the symbol, and

can be taken to be 1. Since T0[a] = 1 as well, this implies that

δ ln Tn[a] = �n, (6.21)

where δ is the total differential w.r.t. any parameters and may appear in the symbol and
the positions of the endpoints.

7 A fact which is well known and key to matrix model computations.
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Dependence on the β j . The dependence on each of the β j is only in the jumps around
the corresponding circle, and we have

�∂β j
=
[

0
−� j ( �β)

2iπ
1

z−β j

0 0

]
, � j ( �β) := wR (β j ) − wL (β j ), (6.22)

where the subscripts L ,R indicate the boundary value on the Left/Right of w along the
contour, relative to the orientation of the contour, namely, � is the jump of the symbol.
This shows –a well–known fact– that

∂β j Tn[a] = −
∮

|x−β j |=ε

K21(x, x)
−� j ( �β)

2iπ

1

x − β j

dx

2iπ
= � j ( �β)

2iπ
K21(β j , β j ). (6.23)

Dependence on the symbol. Let ∂ denote a deformation of one of the functions a j ; then
the jump matrices M(z) deforms only on the arc γ j and the small circles we have added,
on a “dumb-bell” contour (Fig. 10). In particular, on the two circles the integral for �

reduces to
∮

|z−β j |=ε

K21(x, x)C[∂w](x)
dx

2iπ
, (6.24)

C[∂w](z) =
∫

γ j

xn∂a j (x; �s)
x − z

dx

2iπ
. (6.25)

Since, K21(x, x) is a analytic in the interior of the ε–circle (in fact, it is a polynomial!)
then we can perform the integration by “contour deformation” leaving an integral of
K21(x, x) against the jump of C[∂w]. In conclusion, taking into consideration all the
contours we have simply

∂Tn[a] =
∫

γ j

K21(x, x)xn∂a j (x; �s) dx

2iπ
. (6.26)

In general we have simply

∂ ln Tn[a] =
∮

|z|=1
Tr

(
�−1(x)�′(x)

[
0 xn∂sa(x; �s)
0 0

])
dx

2iπ
(6.27)

=
∮

K21(x, x)xn∂sa(x; �s) dx

2iπ
(6.28)

K(x, y) := �−1(x)�(y)

x − y
. (6.29)

Fig. 10. The “dumbbell” contour
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Example 6.1. A particular case is if a j (x; s) = s j are constants, in which case the above
reduces to an integral on the sub-arc γ j ,

∂s j ln Tn[a] =
∫

γ j

K21(x, x)xn dx

2iπ
. (6.30)

6.3. Hankel and shifted Töplitz determinants. The notion of semiclassical symbols was
defined in [12] and it was shown in [1] that the corresponding Hankel/Toeplitz determi-
nant was an isomonodromic tau function, to within an explicit non-vanishing factor.

The weights we are considering are all of the semiclassical type as defined in [2,4,
10,12,13]. This means that they are of the form µ(x) = e−V (x) with V ′(x) an arbitrary
rational function.

They are integrated over contours γ j which can be arbitrary contours in the complex
plane as long as all integrals

∫
γ j

xkµ(x) dx are convergent integrals. The range for k

will be either N or Z, depending on the situation; a detailed description of the contours
can be found in [2,3] and we refer thereto for a more detailed discussion.

We will choose arbitrary complex constants κ j for each contour γ j and use the
notation

∫

κ

xkµ(x) dx :=
∑

κ j

∫

γ j

xkµ(x) dx = µk, (6.31)

We will also use the notation κ : C → C to indicate the locally constant function that
takes the (constant) value κ j on the corresponding contour γ j . The Markov function
(sometimes referred to as a Weyl function) for these semiclassical weights is simply
defined as the locally analytic function on C \ ∪γ j given by

W (x) :=
∫

κ

µ(ζ ) dζ

ζ − x
, κ :=

∑

j

κ jχγ j (x). (6.32)

The function W (x) has logarithmic growth at the hard–edges, i.e. the endpoints of con-
tours γ j , where µ is O(1). In this case one verifies that W (x) = O(ln |x − a|), where a
is the hard–edge point.

Consider the jump matrix supported on the contours
⋃

γ j ,

M(z) :=
[

1 κ j e−V (z)

0 1

]
, z ∈ γ j . (6.33)

Consider the following Riemann–Hilbert problems for a matrix � = �(n,) parametrized
by two integers n, 

�+(z) = �−(z)M(z)

�(z) =

⎧
⎪⎪⎨

⎪⎪⎩

O(1)

[
1 0
0 zn−−1

]
z → 0

(1 + O(z−1))

[
zn 0
0 z−−1

]
z → ∞

, (6.34)

and �(z) = O(ln(z − a)) at any “hard-edge”.
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By definition of Schlesinger transformations (Sect. 2.3) we see that all these prob-
lems are successive Schlesinger transformations of the problem n = 0,  = 1, which
has the immediate solution

�(0,1)(z) =
[

1
∫
κ

e−V (x)

x−z
dx
2iπ

0 1

]
(6.35)

It is also apparent that the differentials ωM (or �, they coincide here because the term ϑ in
Def. 2.2 vanishes identically, being the jumps 1+upper triangular) are closed differentials
in the deformations of V , the endpoints and in the κ j ’s.

Moreover, comparing the change ωM (∂; [�(n,)]) between two problems with n �→
n ± 1 or  �→  ± 1 one sees exactly as in [1] that

∂ ln �
n = ωM (∂; [�(n,)]), (6.36)

where �
n are the shifted Toeplitz determinants

�
n := det

⎛

⎜⎜⎝

µ µ+1 · · · µ+n−1
µ−1 µ · · · µ+n−2

. . .
. . .

µ−n+1 µ−n+2 · · · µ

⎞

⎟⎟⎠ �
0 ≡ 1 , �−n ≡ 0.

Here the case of Hankel determinants corresponds to  = n − 1; then �n−1
n is –up to a

permutation of columns, hence a sign– a Hankel determinant.
In particular the derivatives w.r.t. the parameters κ j are

∂κj ln �
n =

∫

γ j

K (n,)(x, x)e−V (x) dx

2iπ
. (6.37)

K (n,)(x, y) =
[
�(n,)(x)−1�(n,)(y)

]
21

x − y
. (6.38)

This kernel is the usual Christoffel–Darboux kernel: for example, if  = n − 1 (Hankel
determinants) then

K (n,n−1)(x, y) = 1

hn−1

pn(x)pn−1(y) − pn−1(x)pn(y)

x − y
=

n−1∑

j=0

1

h j
p j (x)p j (y),

(6.39)

where p j are the monic orthogonal polynomials of exact degree j for the moment-func-
tional, namely,

∫

κ

p j (x)pk(x)e−V (x) dx = h jδ jk . (6.40)

Remark 6.1. Note that the RHP for �(n,) can be converted to a RHP with constant jumps

for � := �e− V
2 σ3 and hence reduced to a rational ODE � ′�−1 = D(z). The resulting

isomonodromic tau function is not exactly equal to �
n because the RHP for �(n,) and

the RHP in the canonical form described in Sect. 4 differ by a gauge in the sense of Sect.
2.4. However the corresponding factor is easy to compute and this was accomplished
in [1].
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We conclude with the remark that the variational formulæ for �
n are valid for very

general weights, not necessarily of semiclassical type. Indeed we are really using only
the results of Sect. 2, where the connection to rational ODE is not necessary.
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