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Abstract: We study the free energy of the directed polymer in a random environment
model in dimension 1 + 1 and 1 + 2. For dimension one, we improve the statement of
Comets and Vargas in [8] concerning very strong disorder by giving sharp estimates on
the free energy at high temperature. In dimension two, we prove that very strong disorder
holds at all temperatures, thus solving a long standing conjecture in the field.

1. Introduction

1.1. The model. We study a directed polymer model introduced by Huse and Henley (in
dimension 1 + 1) [18] with the purpose of investigating impurity-induced domain-wall
roughening in the 2D-Ising model. The first mathematical study of directed polymers
in random environment was made by Imbrie and Spencer [19], and was followed by
numerous authors [1,3–6,8,9,19,23,26] (for a review on the subject see [7]). Directed
polymers in a random environment model, in particular, polymer chains in a solution
with impurities.

In our set–up the polymer chain is the graph {(i, Si )}1≤i≤N of a nearest–neighbor
path in Z

d , S starting from zero. The equilibrium behavior of this chain is described
by a measure on the set of paths: the impurities enter the definition of the measure as
disordered potentials, given by a typical realization of a field of i.i.d. random variables
ω = {ω(i,z) ; i ∈ N, z ∈ Z

d} (with associated law Q). The polymer chain will tend
to be attracted by larger values of the environment and repelled by smaller ones. More
precisely, we define the Hamiltonian

HN (S) :=
N∑

i=1

ωi,Si . (1.1)

We denote by P the law of the simple symmetric random walk on Z
d starting at 0 (in

the sequel P f (S), respectively Qg(ω), will denote the expectation with respect to P ,
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respectively Q). One defines the polymer measure of order N at inverse temperature β

as

µ
(β)
N (S) = µN (S) := 1

Z N
exp (βHN (S)) P(S), (1.2)

where Z N is the normalization factor which makes µN a probability measure

Z N := P exp (βHN (S)) . (1.3)

We call Z N the partition function of the system. In the sequel, we will consider the case
of ω(i,z) with zero mean and unit variance and such that there exists B ∈ (0,∞] such
that

λ(β) = log Q exp(βω(1,0)) < ∞, for 0 ≤ β ≤ B. (1.4)

Finite exponential moments are required to guarantee that Q Z N < ∞. The model can
be defined and it is of interest also with environments with heavier tails (see e.g. [26])
but we will not consider these cases here.

1.2. Weak, strong and very strong disorder. In order to understand the role of disorder
in the behavior of µN , as N becomes large, let us observe that, when β = 0, µN is the
law of the simple random walk, so that we know that, properly rescaled, the polymer
chain will look like the graph of a d-dimensional Brownian motion. The main questions
that arise for our model for β > 0 are whether or not the presence of disorder breaks the
diffusive behavior of the chain for large N , and what the polymer measure looks like
when diffusivity does not hold.

Many authors have studied diffusivity in polymer models: in [3], Bolthausen remarked
that the renormalized partition function WN := Z N /(Q Z N ) has a martingale property
and proved the following zero-one law:

Q

{
lim

N→∞ WN = 0

}
∈ {0, 1}. (1.5)

A series of papers [1,3,9,19,23] lead to

Q

{
lim

N→∞ WN = 0

}
= 0 ⇒ diffusivity , (1.6)

and a consensus in saying that this implication is an equivalence. For this reason, it is
natural and it has become customary to say that weak disorder holds when WN converges
to some non-degenerate limit and that strong disorder holds when WN tends to zero.

Carmona and Hu [4] and Comets, Shiga and Yoshida [6] proved that strong disorder
holds for all β in dimension 1 and 2. The result was completed by Comets and Yoshida
[9]: we summarize it here

Theorem 1.1. There exists a critical value βc = βc(d) ∈ [0,∞] (depending on the law
of the environment) such that

• Weak disorder holds when β < βc.
• Strong disorder holds when β > βc.
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Moreover:

βc(d) = 0 for d = 1, 2

βc(d) ∈ (0,∞] for d ≥ 3.
(1.7)

We mention also that the case βc(d) = ∞ can only occur when the random variable
ω(0,1) is bounded.

In [4 and 6] a characterization of strong disorder has been obtained in terms of
localization of the polymer chain: we cite the following result [6, Theorem 2.1]:

Theorem 1.2. If S(1) and S(2) are two i.i.d. polymer chains, we have

Q

{
lim

N→∞ WN = 0

}
= Q

⎧
⎨

⎩
∑

N≥1

µ⊗2
N−1(S(1)

N = S(2)
N ) = ∞

⎫
⎬

⎭. (1.8)

Moreover if Q{limN→∞ WN = 0} = 1 there exists a constant c (depending on β and
the law of the environment) such that for

− c log WN ≤
N∑

n=1

µ⊗2
n−1(S(1)

n = S(2)
n ) ≤ −1

c
log WN . (1.9)

One can notice that (1.9) has a very strong meaning in terms of trajectory localization
when WN decays exponentially: it implies that two independent polymer chains tend to
share the same endpoint with positive probability. For this reason we introduce now the
notion of free energy, we refer to [6, Prop. 2.5] and [9, Theorem 3.2] for the following
result:

Proposition 1.3. The quantity

p(β) := lim
N→∞

1

N
log WN , (1.10)

exists Q-a.s., it is non-positive and non-random. We call it the free energy of the model,
and we have

p(β) = lim
N→∞

1

N
Q log WN =: lim

N→∞ pN (β). (1.11)

Moreover p(β) is non-increasing in β.

We stress that the inequality p(β) ≤ 0 is the standard annealing bound. In view of
(1.9), it is natural to say that very strong disorder holds whenever p(β) < 0. One can
moreover define �βc(d) the critical value of β for the free energy i.e. :

p(β) < 0 ⇔ β > �βc(d). (1.12)

Let us stress that, from the physicists’ viewpoint, �βc(d) is the natural critical point
because it is a point of non-analyticity of the free energy (at least if �βc(d) > 0). In
view of this definition, we obviously have �βc(d) ≥ βc(d). It is widely believed that�βc(d) = βc(d), i.e. that there exists no intermediate phase where we have strong disor-
der but not very strong disorder. However, this is a challenging question: Comets and
Vargas [8] answered it in dimension 1 + 1 by proving that �βc(1) = 0. In this paper, we
make their result more precise. Moreover we prove that �βc(2) = 0.
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1.3. Presentation of the results. The first aim of this paper is to sharpen the result of
Comets and Vargas on the 1 + 1-dimensional case. In fact, we are going to give a precise
statement on the behavior of p(β) for small β. Our result is the following:

Theorem 1.4. When d = 1 and the environment satisfies (1.4), there exist constants
c and β0 < B (depending on the distribution of the environment) such that for all
0 ≤ β ≤ β0 we have

− 1

c
β4[1 + (log β)2] ≤ p(β) ≤ −cβ4. (1.13)

We believe that the logarithmic factor in the lower bound is an artifact of the method.
In fact, by using replica-coupling, we have been able to get rid of it in the Gaussian case.

Theorem 1.5. When d = 1 and the environment is Gaussian, there exists a constant c
such that for all β ≤ 1,

− 1

c
β4 ≤ p(β) ≤ −cβ4. (1.14)

These estimates concerning the free energy give us some idea of the behavior of µN
for small β. Indeed, Carmona and Hu in [4, Sect. 7] proved a relation between p(β)

and the overlap (although their notation differs from ours). This relation together with
our estimates for p(β) suggests that, for low β, the asymptotic contact fraction between
independent polymers

lim
N→∞

1

N
µ⊗2

N

N∑

n=1

1{S(1)
n =S(2)

n }, (1.15)

behaves like β2.
The second result we present is that �βc(2) = 0. As for the 1 + 1-dimensional case,

our approach yields an explicit bound on p(β) for β close to zero.

Theorem 1.6. When d = 2, there exist constants c and β0 such that for all β ≤ β0,

− exp

(
− 1

cβ2

)
≤ p(β) ≤ − exp

(
− c

β4

)
, (1.16)

so that

�βc(2) = 0, (1.17)

and 0 is a point of non-analyticity for p(β).

Remark 1.7. After the appearance of this paper as a preprint, the proof of the above result
has been adapted by Bertin [2] to prove the exponential decay of the partition function
for Linear Stochastic Evolution in dimension 2, a model that is a slight generalisation
of the directed polymer in a random environment.

Remark 1.8. Unlike in the one dimensional case, the two bounds on the free energy pro-
vided by our methods do not match. We believe that the second moment method, that
gives the lower bound is quite sharp and gives the right order of magnitude for log p(β).
The method developed in [16] to sharpen the estimate on the critical point shift for pin-
ning models at marginality adapted to the context of directed polymer should be able to
improve the result, getting p(β) ≤ − exp(−cεβ

−(2+ε)) for all β ≤ 1 for any ε.
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1.4. Organization of the paper. The various techniques we use have been inspired by
ideas used successfully for another polymer model, namely the polymer pinning on a
defect line (see [10,14,15,24,25]). However the ideas we use to establish lower bounds
differ sensibly from the ones leading to the upper bounds. For this reason, we present
first the proofs of the upper bound results in Sects. 2, 3 and 4. The lower bound results
are proven in Sects. 5, 6 and 7.

To prove the lower bound results, we use a technique that combines the so-called
fractional moment method and change of measure. This approach has been first used
for the pinning model in [10] and it has been refined since in [15,25]. In Sects. 2, we
prove a non-optimal upper bound for the free energy in the case of a Gaussian environ-
ment in dimension 1 + 1 to introduce the reader to this method. In Sect. 3 we prove the
optimal upper bound for an arbitrary environment in dimension 1 + 1, and in Sect. 4 we
prove our upper bound for the free energy in dimension 1 + 2 which implies that very
strong disorder holds for all β. These sections are placed in increasing order of technical
complexity, and therefore, should be read in that order.

Concerning the lower–bounds proofs: Sect. 5 presents a proof of the lower bound of
Theorem 1.4. The proof combines the second moment method and a directed percola-
tion argument. In Sect. 6 the optimal bound is proven for Gaussian environment, with a
specific Gaussian approach similar to what is done in [24]. In Sect. 7 we prove the lower
bound for arbitrary environment in dimension 1 + 2. These three parts are completely
independent of each other.

2. Some Warm Up Computations

2.1. Fractional moment. Before going into the core of the proof, we want to present
here the starting step that will be used repeatedly throughout Sects. 2, 3 and 4. We want
to find an upper–bound for the quantity

p(β) = lim
N→∞

1

N
Q log WN . (2.1)

However, it is not easy to handle the expectation of a log, for this reason we will use the
following trick. Let θ ∈ (0, 1), we have (by Jensen inequality)

Q log WN = 1

θ
Q log W θ

N ≤ 1

θ
log QW θ

N . (2.2)

Hence

p(β) ≤ lim inf
N→∞

1

θ N
log QW θ

N . (2.3)

We are left with showing that the fractional moment QW θ
N decays exponentially which

is a problem that is easier to handle.

2.2. A non-optimal upper–bound in dimension 1 + 1. To introduce the reader to the gen-
eral method used in this paper, combining fractional moment and change of measure, we
start by proving a non–optimal result for the free–energy, using a finite volume criterion.
As a more complete result is to be proved in the next section, we restrict to the Gaussian
case here. The method used here is based on the one of [8], majorizing the free energy
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of the directed polymer by the one of multiplicative cascades. Let us mention that is has
been shown recently by Liu and Watbled [22] that this majorization is in a sense optimal,
they obtained this result by improving the concentration inequality for the free energy.

The idea of combining the fractional moment with a change of measure and finite
volume criterion has been used with success for the pinning model in [10].

Proposition 2.1. There exists a constant c such that for all β ≤ 1,

p(β) ≤ − cβ4

(| log β| + 1)2 . (2.4)

Proof of Proposition 2.1 in the case of Gaussian environment. For β sufficiently small,

we choose n to be equal to
⌈

C1| log β|2
β4

⌉
for a fixed constant C1 (here and throughout the

paper for x ∈ R, 
x�, respectively �x, will denote the upper, respectively the lower,
integer part of x) and define θ := 1 − (log n)−1. For x ∈ Z we define

Wn(x) := P exp

(
n∑

i=1

[βω(i,Si ) − β2/2]
)

1{Sn=x}. (2.5)

Note that
∑

x∈Z
Wn(x) = Wn . We use a statement which can be found in the proof of

Theorem 3.3. in [8]:

log QW θ
nm ≤ m log Q

∑

x∈Z

[Wn(x)]θ ∀m ∈ N. (2.6)

This combined with (2.3) implies that

p(β) ≤ 1

θn
log Q

∑

x∈Z

[Wn(x)]θ . (2.7)

Hence, to prove the result, it is sufficient to show that

Q
∑

x∈Z

[Wn(x)]θ ≤ e−1, (2.8)

for our choice of θ and n.
In order to estimate Q[Wn(x)]θ we use an auxiliary measure Q̃. The region where

the walk (Si )0≤i≤n is likely to go is Jn = ([1, n] × [−C2
√

n, C2
√

n]) ∩ N × Z, where
C2 is a big constant.

We define Q̃ as the measure under which the ωi,x are still independent Gaussian
variables with variance 1, but such that Q̃ωi,x = −δn1(i,x)∈Jn , where δn = 1/(n3/4√

2C2 log n). This measure is absolutely continuous with respect to Q and

dQ̃

dQ
= exp

⎛

⎝−
∑

(i,x)∈Jn

[
δnωi,x +

δ2
n

2

]⎞

⎠ . (2.9)

Then we have for any x ∈ Z, using the Hölder inequality we obtain,

Q
[
Wn(x)θ

] = Q̃

[
dQ

dQ̃
(Wn(x))θ

]
≤

(
Q̃

[(
dQ

dQ̃

) 1
1−θ

])1−θ
(
Q̃Wn(x)

)θ
. (2.10)
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The first term on the right-hand side can be computed explicitly and is equal to

(
Q

(
dQ

dQ̃

) θ
1−θ

)1−θ

= exp

(
θδ2

n

2(1 − θ)
#Jn

)
≤ e, (2.11)

where the last inequality is obtained by replacing δn and θ by their values (recall
θ = 1 − (log n)−1). Therefore combining (2.10) and (2.11) we get that

Q
∑

x∈Z

(Wn(x))θ ≤ e
∑

|x |≤n

(
Q̃Wn(x)

)θ
. (2.12)

To bound the right–hand side, we first get rid of the exponent θ in the following way:

∑

|x |≤n

n−3θ
(
Q̃Wn(x)

)θ ≤ n−3θ #{x ∈ Z, |x | ≤ n such that Q̃Wn(x) ≤ n−3}

+
∑

|x |≤n

1{Q̃Wn(x)>n−3} Q̃Wn(x)n3(1−θ). (2.13)

If n is sufficiently large ( i.e., β sufficiently small) the first term on the right-hand side
is smaller than 1/n so that

∑

|x |≤n

(
Q̃Wn(x)

)θ ≤ exp(3)Q̃Wn +
1

n
. (2.14)

We are left with showing that the expectation of Wn with respect to the measure Q̃ is
small. It follows from the definition of Q̃ that

Q̃Wn = P exp (−βδn#{i | (i, Si ) ∈ Jn}) , (2.15)

and therefore

Q̃Wn ≤ P{the trajectory S goes out of Jn} + exp(−nβδn). (2.16)

One can choose C2 such that the first term is small, and the second term is equal to
exp(−βn1/4/

√
2C2 log n) ≤ exp(−C1/4

1 /4
√

C2) that can be arbitrarily small by choos-
ing C1 large compared to (C2)

1/2. In that case (2.8) is satisfied and we have

p(β) ≤ 1

θn
log e−1 ≤ − β4

2C1| log β|2 (2.17)

for small enough β. ��
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3. Proof of the Upper Bound of Theorem 1.4 and 1.5

The upper bound we found in the previous section is not optimal, and can be improved
by replacing the finite volume criterion (2.8) by a more sophisticated coarse graining
method. The technical advantage of the coarse graining we use is that we will not have
to choose the θ of the fractional moment close to 1 as we did in the previous section and
this is the way we get rid of the extra log factor we had. The idea of using this type of
coarse graining for the copolymer model appeared in [25] and this has been a substantial
source of inspiration for this proof.

We will prove the following result first in the case of the Gaussian environment, and
then adapt the proof to the general environment.

Proof in the case of Gaussian environment. Let n be the smallest squared integer bigger
than C3β

−4 (if β is small we are sure that n ≤ 2C3β
−4). The number n will be used in

the sequel of the proof as a scaling factor. Let θ < 1 be fixed (say θ = 1/2). We consider
a system of size N = nm (where m is meant to tend to infinity).

Let Ik denote the interval Ik = [k√
n, (k + 1)

√
n). In order to estimate QW θ

N we
decompose WN according to the contribution of different families path:

WN =
∑

y1,y2,...,ym∈Z

̂

W (y1,y2,...,ym ), (3.1)

where

̂
W (y1,y2,...,ym ) = P exp

[
N∑

i=1

(
βωi,Si − β2

2

)
1{Sin∈Iyi ,∀i=1,...,m

}

]
. (3.2)

Then, we apply the inequality
(∑

ai
)θ ≤ ∑

aθ
i (which holds for any finite or count-

able collection of positive real numbers) to this decomposition and average with respect
to Q to get

QW θ
nm ≤

∑

y1,y2,...,ym∈Z

Q

̂

W θ
(y1,y2,...,ym ). (3.3)

In order to estimate Q

̂

W θ
(y1,y2,...,ym ), we use an auxiliary measure as in the previous

section. The additional idea is to make the measure change depend on y1, . . . , ym .
For every Y = (y1, . . . , ym) we define the set JY as

JY := {
( km + i, yk

√
n + z), k = 0, . . . , m − 1, i = 1, . . . , n, |z| ≤ C4

√
n
}
, (3.4)

where y0 is equal to zero. Note that for big values of n and m,

#JY ∼ 2C4mn3/2. (3.5)

We define the measure Q̃Y to be the measure under which the ω(i,x) are independent
Gaussian variables with variance 1 and mean Q̃Y ω(i,x) = −δn1{(i,x)∈JY }, where δn =
n−3/4C−1/2

4 . The law Q̃Y is absolutely continuous with respect to Q and its density is
equal to
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Fig. 1. The partition of Wnm into

̂

W (y1,...,ym ) is to be viewed as a coarse graining. For m = 8, (y1, . . . , y8) =
(1, −1, 2, 3, 1,−1, −3, 1),

̂

W
(y1,...,ym )
n corresponds to the contribution to WN of the path going through the

thick barriers on the figure

dQ̃Y

dQ
(ω) = exp

⎛

⎝−
∑

(i,x)∈JY

[
δnω(i,x) + δ2

n/2
]
⎞

⎠ . (3.6)

Using Hölder inequality with this measure as we did in the previous section, we obtain

Q

[ ̂

W θ
(y1,y2,...,ym )

]
= Q̃Y

[
dQ

dQ̃Y

̂

W θ
(y1,y2,...,ym )

]

≤ Q̃Y

([(
dQ

dQ̃Y

) 1
1−θ

])1−θ (
Q̃Y

̂

W(y1,...,ym )

)θ

. (3.7)

The value of the first term can be computed explicitly,

(
Q

[(
dQ

dQ̃Y

) θ
1−θ

])1−θ

= exp

(
#JY θδ2

n

2(1 − θ)

)
≤ exp(3m), (3.8)

where the upper bound is obtained by using the definition of δn , (3.5) and the fact that
θ = 1/2.

Now we compute the second term

Q̃Y

̂

W(y1,...,ym ) = P exp (−βδn# {i |(i, Si ) ∈ JY }) 1{Skn∈Iyk , ∀k∈[1,m]}. (3.9)

We define

J := {(i, x), i = 1, . . . , n, |x | ≤ C4
√

n},
�J := {(i, x), i = 1, . . . , n, |x | ≤ (C4 − 1)

√
n}. (3.10)
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Equation (3.9) implies that (recall that Px is the law of the simple random walk starting
from x , and that we set y0 = 0)

Q̃Y

̂

W(y1,...,ym ) ≤
m∏

k=1

max
x∈I0

Px exp (−βδn# {i : (i, Si ) ∈ J }) 1{Sn∈Iyk−yk−1 }. (3.11)

Combining this with (3.1), (3.7) and (3.8) we have

log QW θ
N≤m

⎡

⎣3+log
∑

y∈Z

(
max
x∈I0

Px exp (−βδn# {i : (i, Si ) ∈ J }) 1{Sn∈Iy}
)θ

⎤

⎦ .

(3.12)

If the quantity in the square brackets is smaller than −1, by Eq. (2.3) we have p(β) ≤
−1/n. Therefore, to complete the proof it is sufficient to show that

∑

y∈Z

(
max
x∈I0

Px exp (−βδn# {i : (i, Si ) ∈ J }) 1{Sn∈Iy}
)θ

(3.13)

is small. To reduce the problem to the study of a finite sum, we observe (using some
well known result on the asymptotic behavior of a random walk) that given ε > 0 we
can find R such that

∑

|y|≥R

(
max
x∈I0

Px exp (−βδn# {i : (i, Si ) ∈ J }) 1{Sn∈Iy}
)θ

≤
∑

|y|≥R

max
x∈I0

(
Px {Sn ∈ Iy}

)θ

≤ ε. (3.14)

To estimate the remainder of the sum we use the following trivial bound:

∑

|y|<R

(
max
x∈I0

Px exp (−βδn# {i : (i, Si ) ∈ J }) 1{Sn∈Iy}
)θ

≤ 2R

(
max
x∈I0

Px exp (−βδn# {i : (i, Si ) ∈ J })
)θ

. (3.15)

Then we get rid of the max in the sum by observing that if a walk starting from x makes
a step in J , the walk with the same increments starting from 0 will make the same step
in �J (recall (3.10)),

max
x∈I0

Px exp (−βδn# {i : (i, Si ) ∈ J }) ≤ P exp
(−βδn#

{
i |(i, Si ) ∈ �J })

. (3.16)

Now we are left with something similar to what we encountered in the previous section

P exp
(−βδn#

{
i : (i, Si ) ∈ �J })≤ P{ the random walk goes out of �J } + exp(−nβδn).

(3.17)

If C4 is chosen large enough, the first term can be made arbitrarily small by choosing
C4 large, and the second is equal to exp(−C−1/4

3 /
√

C4) and can be made also arbitrarily
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small if C3 is chosen large enough once C4 is fixed. An appropriate choice of constant
and the use of (3.16) and (3.17) can lead then to

2R

(
max
x∈I0

Px exp (−βδn# {i : (i, Si ) ∈ J })
)θ

≤ ε. (3.18)

This combined with (3.14) completes the proof. ��
Proof of the general case. In the case of a general environment, some modifications
have to be made in the proof above, but the general idea remains the same. In the change
of measure one has to change the shift of the environment in JY (3.6) by an exponential
tilt of the measure as follows:

dQ̃Y

dQ
(β) = exp

⎛

⎝−
∑

(i,z)∈JY

[
δnω(i,z) + λ(−δn)

]
⎞

⎠ . (3.19)

The formula estimating the cost of the change of measure (3.8) becomes

(
Q

(
dQ

dQ̃Y

) θ
1−θ

)1−θ

= exp

(
#JY

[
(1 − θ)λ

(
θδn

1 − θ

)
+ θλ(−δn)

])

≤ exp(2m), (3.20)

where the last inequality is true if βn is small enough if we consider that θ = 1/2 and

use the fact that λ(x)
x→0∼ x2/2 (ω has 0 mean and unit variance). The next thing we

have to do is to compute the effect of this change of measure in this general case, i.e.

find an equivalent for (3.9). When computing Q̃Y

̂

W(y1,...,ym ), the quantity

Q̃Y exp(βω1,0 − λ(β)) = exp [λ(β − δn) − λ(−δn) − λ(β)] (3.21)

appears instead of exp(−βδn). Using twice the mean value theorem, one gets that there
exists h and h′ in (0, 1) such that

λ(β − δn) − λ(−δn) − λ(β) = δn
[
λ′(−hδn) − λ′(β − hδn)

]

= −βδnλ′′(−hδn + h′β). (3.22)

And as ω has unit variance, limx→0 λ′′(x) = 1. Therefore if β and δn are chosen small
enough, the right-hand side of the above is less than −βδn/2. So (3.9) can be replaced
by

Q̃Y

̂

W(y1,...,ym ) ≤ P exp

(
−βδn

2
# {i |(i, Si ) ∈ JY }

)
1{Skn∈Iyk , ∀k∈[1,m]}. (3.23)

The remaining steps follow closely the argument exposed for the Gaussian case. ��
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4. Proof of the Upper Bound in Theorem 1.6

In this section, we prove the main result of the paper: very strong disorder holds at all
temperatures in dimension 2.

The proof is technically quite involved. It combines the tools of the two previous
sections with a new idea for the change of measure: changing the covariance structure
of the environment. We mention that this idea was introduced recently in [15] to deal
with the marginal disorder case in the pinning model. We choose to present first a proof
for the Gaussian case, where the idea of the change of measure is easier to grasp.

Before starting, we sketch the proof and how it should be decomposed in different
steps:

(a) We reduce the problem by showing that it is sufficient to show that for some real
number θ < 1, QW θ

N decays exponentially with N .
(b) We use a coarse graining decomposition of the partition function by splitting it into

different contributions that correspond to trajectories that stay in a large corridor.
This decomposition is similar to the one used in Sect. 3.

(c) To estimate the fractional moment terms appearing in the decomposition, we change
the law of the environment around the corridors corresponding to each contribution.
More precisely, we introduce negative correlations into the Gaussian field of the
environment. We do this change of measure in such a way that the new measure is
not very different from the original one.

(d) We use some basic properties of the random walk in Z
2 to compute the expectation

under the new measure.

Proof for the Gaussian environment. We fix n to be the smallest squared integer bigger
than exp(C5/β

4) for some large constant C5 to be defined later, for small β we have
n ≤ exp(2C5/β

4). The number n will be used in the sequel of the proof as a scaling fac-
tor. For y = (a, b) ∈ Z

2 we define Iy = [a√
n, (a+1)

√
n−1]×[b√

n, (b+1)
√

n−1] so
that Iy are disjoint and cover Z

2. For N = nm, we decompose the normalized partition
function WN into different contributions, very similarly to what is done in dimension
one (i.e. decomposition (3.3)), and we refer to Fig. 2 to illustrate how the decomposition
looks like:

WN =
∑

y1,...,ym∈Z2

̂

W(y1,...,ym ), (4.1)

where

̂

W(y1,...,ym ) = P exp

(
N∑

i=1

[
βωi,Si − β2/2

])
1{Sin∈Iyi ,∀i=1,...,m

}. (4.2)

We fix θ < 1 and apply the inequality (
∑

ai )
θ ≤ ∑

aθ
i (which holds for any finite or

countable collection of positive real numbers) to get

QW θ
N ≤

∑

y1,...,ym∈Z2

Q

̂

W θ
(y1,...,ym ). (4.3)

In order to estimate the different terms in the sum of the right–hand side in (4.3), we
define some auxiliary measures Q̃Y on the the environment for every Y =(y0, y1, . . . , ym)

∈ Z
d+1 with y0 = 0. We will choose the measures QY absolutely continuous with respect

to Q. We use the Hölder inequality to get the following upper bound:
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Fig. 2. This figure represents in a rough way the change of measure QY . The region where the mean of ω(i,x)
is lowered (the shadow region on the figure) corresponds to the region where the simple random walk is likely
to go, given that it goes through the thick barriers

Q

̂

W θ
(y1,...,ym ) ≤

(
Q

(
dQ

dQ̃Y

) θ
1−θ

)1−θ (
Q̃Y

̂

W(y1,...,ym )

)θ

. (4.4)

Now, we describe the change of measure we will use. Recall that for the 1-dimen-
sional case we used a shift of the environment along the corridor corresponding to Y . The
reader can check that this method would not give the exponential decay of WN in this
case. Instead we change the covariance function of the environment along the corridor
on which the walk is likely to go by introducing some negative correlation.

We introduce the change of measure that we use for this case. Given Y = (y0, y1, . . . ,

ym) we define m blocks (Bk)k∈[1,m] and JY their union (here and in the sequel, |z| denotes
the l∞ norm on Z

2):

Bk :=
{
(i, z) ∈ N × Z

2 : 
i/n� = k and |z − √
nyk−1| ≤ C6

√
n
}

,

JY :=
m⋃

k=1

Bk .
(4.5)

We fix the covariance of the field ω under the law Q̃Y to be equal to

Q̃Y
(
ωi,zωi,z′

) = CY
(i,z),( j,z′)

:=

⎧
⎪⎨

⎪⎩

1{(i,z)=( j,z′)} − V(i,z),( j,z′) if ∃ k ∈ [1, m]
such that (i, z) and ( j, z′) ∈ Bk

1{(i,z)=( j,z′)} otherwise,

(4.6)

where

V(i,z),( j,z′) :=
{

0 if (i, z) = ( j, z′)
1{|z−z′|≤C7

√| j−i |}
100C6C7n

√
log n| j−i | otherwise.

(4.7)
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We define

V̂ := (V(i,z),( j,z′))(i,z),( j,z′)∈B1 . (4.8)

One remarks that the so-defined covariance matrix CY is block diagonal with m iden-
tical blocks which are copies of I − V̂ corresponding to the Bk , k ∈ [1, m], and just ones
on the diagonal elsewhere. Therefore, the change of measure we describe here exists if
and only if I − V̂ is definite positive.

The largest eigenvalue for V̂ is associated to a positive vector and therefore is smaller
than

max
(i,z)∈B1

∑

( j,z′)∈B1

∣∣V(i,z),( j,z′)
∣∣ ≤ C7

C6
√

log n
. (4.9)

For the sequel we choose n such that the spectral radius of V̂ is less than (1 − θ)/2 so
that I − V̂ is positive definite. With this setup, Q̃Y is well defined.

The density of the modified measure Q̃Y with respect to Q is given by

dQ̃Y

dQ
(ω) = 1√

det CY
exp

(
−1

2

t

ω((CY )−1 − I )ω

)
, (4.10)

where

tωMω =
∑

(i,z),( j,z′)∈N×Z2

ω(i,z)M(i,z),( j,z′)ω( j,z′), (4.11)

for any matrix M of (N × Z
2)2 with finite support.

Then we can compute explicitly the value of the second term in the right-hand side
of (4.4),

(
Q

(
dQ

dQ̃Y

) θ
1−θ

)1−θ

=
√√√√√

det CY

det
(

CY

1−θ
− θ I

1−θ

)1−θ
. (4.12)

Note that the above computation is right if and only if CY − θ I is a definite positive
matrix. Since its eigenvalues are the same of those of (1−θ)I − V̂ , this holds for large n
thanks to (4.9). Using again the fact that CY is composed of m blocks identical to I − V̂ ,
we get from (4.12),

(
Q

(
dQ

dQ̃

) θ
1−θ

)1−θ

=
(

det(I − V̂ )

det(I − V̂ /(1 − θ))1−θ

)m/2

. (4.13)

In order to estimate the determinant in the denominator, we compute the Hilbert-Schmidt
norm of V̂ . One can check that for all n,

‖V̂ ‖2 =
∑

(i,z),( j,z′)∈B1

V 2
(i,z),( j,z′) ≤ 1. (4.14)
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We use the inequality log(1 + x) ≥ x − x2 for all x ≥ −1/2 and the fact that the spectral
radius of V̂ /(1 − θ) is bounded by 1/2 (cf. (4.9)) to get that

det

[
I − V̂

1 − θ

]
= exp

(
Trace

(
log

(
I − V̂

1 − θ

)))
≥ exp

(
− ‖V̂ ‖2

(1 − θ)2

)

≥ exp

(
− 1

(1 − θ)2

)
.

(4.15)

For the numerator, Trace V̂ = 0 implies that det(I − V̂ ) ≤ 1. Combining this with
(4.13) and (4.15) we get

(
Q

(
dQ

dQ̃Y

) θ
1−θ

)1−θ

≤ exp

(
m

2(1 − θ)

)
. (4.16)

Now that we have computed the term corresponding to the change of measure, we esti-

mate

̂

W(y1,...,ym ) under the modified measure (just by computing the variance of the
Gaussian variables in the exponential, using (4.6)) :

Q̃Y

̂

W(y1,...,ym ) = P Q̃Y exp

(
N∑

i=1

(
βωi,Si − β2

2

))
1{Skn∈Iyk ,∀k=1,...,m

}

= P exp

⎛

⎜⎜⎝
β2

2

∑

1≤i, j≤N
z,z′∈Z

2

(
CY

(i,z),( j,z′) − 1{(i,z)=( j,z′)}
)

1{Si =z,S j =z′}

⎞

⎟⎟⎠

× 1{Skn∈Iyk ,∀k=1,...,m
}. (4.17)

Replacing CY by its value we get that

Q̃Y

̂

W(y1,...,ym ) = P exp

⎛

⎜⎜⎝−β2

2

∑

1≤i �= j≤N
1≤k≤m

1{((i,Si ),( j,S j ))∈B2
k , |Si −S j |≤C7

√|i− j |}
100C6C7n

√
log n| j − i |

⎞

⎟⎟⎠

1{Skn∈Iyk ,∀k=1,...,m
}. (4.18)

Now we do something similar to (3.11): for each “slice” of the trajectory (Si )i∈[(m−1)k,mk],
we bound the contribution of the above expectation by maximizing over the starting point
(recall that Px denotes the probability distribution of a random walk starting at x). Thanks
to the conditioning, the starting point has to be in Iyk . Using the translation invariance
of the random walk, this gives us the following (∨ stands for maximum):

Q̃Y

̂

W (y1,...,ym ) ≤
m∏

i=k

max
x∈I0

× Px

⎡

⎣exp

⎛

⎝−β2

2

∑

1≤i �= j≤n

1{|Si |∨|S j |≤C6
√

n, |Si −S j |≤C7
√|i− j |}

100C6C7n
√

log n| j − i |

⎞

⎠ 1{
Sn∈Iyk −yk−1

}

⎤

⎦ .

(4.19)
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For trajectories S of a directed random-walk of n steps, we define the quantity

G(S) :=
∑

1≤i �= j≤n

1{|Si |∨|S j |≤C6
√

n, |Si −S j |≤C7
√|i− j |}

100C6C7n
√

log n| j − i | . (4.20)

Combining (4.19) with (4.16), (4.4) and (4.3), we finally get

QW θ
N ≤ exp

(
m

2(1 − θ)

)⎡

⎣
∑

y∈Z

max
x∈I0

(
Px exp

(
−β2

2
G(S)

)
1{Sn∈Iy}

)θ
⎤

⎦
m

. (4.21)

The exponential decay of QW θ
N (with rate n) is guaranteed if we can prove that

∑

y∈Z

max
x∈I0

(
Px exp

(
−β2

2
G(S)

)
1{Sn∈Iy}

)θ

(4.22)

is small. The rest of the proof is devoted to that aim.
We fix some ε > 0. Asymptotic properties of the simple random walk, guarantees

that we can find R = Rε such that

∑

|y|≥R

max
x∈I0

(
Px exp

(
−β2

2
G(S)

)
1{Sn∈Iy}

)θ

≤
∑

|y|≥R

max
x∈I0

(
Px {Sn ∈ Iy}

)θ≤ε. (4.23)

To estimate the rest of the sum, we use the following trivial and rough bound

∑

|y|<R

max
x∈I0

[
Px exp

(
−β2

2
G(S)

)
1{Sn∈Iy}

]θ

≤R2
[

max
x∈I0

Px exp

(
−β2

2
G(S)

)]θ

. (4.24)

Then we use the definition of G(S) to get rid of the max by reducing the width of the
zone where we have negative correlation:

max
x∈I0

Px exp

(
−β2

2
G(S)

)

≤ P exp

⎛

⎝−β2

2

∑

1≤i �= j≤n

1{|Si |∨|S j |≤(C6−1)
√

n, |Si −S j |≤C7
√|i− j |}

100C6C7n
√

log n| j − i |

⎞

⎠ . (4.25)

We define �B := {(i, z) ∈ N × Z
2 : i ≤ m, |z| ≤ (C6 − 1)

√
n}. We get from the above

that

max
x∈I0

Px exp

(
−β2

2
G(S)

)
≤ P{the RW goes out of �B}

+P exp

⎛

⎝−β2

2

∑

1≤i �= j≤n

1{|Si −S j |≤C7
√|i− j |}

100C6C7n
√

log n| j − i |

⎞

⎠ .

(4.26)
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One can make the first term of the right-hand side arbitrarily small by choosing C6 large,
in particular one can choose C6 such that

P

{
max

i∈[0,n] |Sn| ≥ (C6 − 1)
√

n

}
≤ (ε/R2)

1
θ . (4.27)

To bound the other term, we introduce the quantity

D(n) :=
∑

1≤i �= j≤n

1

n
√

log n| j − i | , (4.28)

and the random variable X ,

X :=
∑

1≤i �= j≤n

1{|Si −S j |≤C7
√|i− j |}

n
√

log n| j − i | . (4.29)

For any δ > 0, we can find C7 such that P(X) ≥ (1 − δ)D(n). We fix C7 such that
this holds for some good δ (to be chosen soon), and by remarking that 0 ≤ X ≤ D(n)

almost surely, we obtain (using the Markov inequality)

P{X > D(n)/2} ≥ 1 − 2δ. (4.30)

Moreover we can estimate D(n), getting that for n large enough,

D(n) ≥ √
log n. (4.31)

Using (4.30) and (4.31) we get

P exp

⎛

⎝−β2

2

∑

1≤i �= j≤n

1{|Si −S j |≤C7
√|i− j |}

100C6C7n
√

log n| j − i |

⎞

⎠ = P exp

(
− β2

200C6C7
X

)

≤ 2δ + exp

(
−β2√log n

200C6C7

)
.

(4.32)

Due to the choice of n we have made (recall n ≥ exp(C5/β
4)), the second term is less

than exp
(
−β2C1/2

5 /(200C6C7)
)

. We can choose δ, C7 and C5 such that the right-hand

side is less than (ε/R2)
1
θ . This combined with (4.27), (4.26), (4.24) and (4.23) allow us

to conclude that

∑

y∈Z

max
x∈I0

(
Px exp

(
−β2

2
G(S)

)
1{Sn∈Iy}

)θ

≤ 3ε. (4.33)

So that with a right choice for ε, (4.21) implies

QW θ
N ≤ exp(−m). (4.34)

Then (2.3) allows us to conclude that p(β) ≤ −1/n. ��
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Proof for the general environment. The case of the general environment does not differ
very much from the Gaussian case, but one has a different approach for the change
of measure in (4.4). In this proof, we will largely refer to what has been done in the
Gaussian case, whose proof should be read first.

Let K be a large constant. One defines the function fK on R to be

fK (x) = −K 1{x>exp(K 2)}.

Recall the definitions (4.5) and (4.7), and define the gY function of the environment as

gY (ω) = exp

⎛

⎝
m∑

k=1

fK

⎛

⎝
∑

(i,z),( j,z′)∈Bk

V(i,z),( j,z′)ωi,zω j,z′

⎞

⎠

⎞

⎠ .

Multiplying by gY penalizes by a factor exp(−K ) the environment for which there is
too much correlation in one block. This is a way of producing negative correlation in
the environment. For the rest of the proof we use the notation

Uk :=
∑

(i,z),( j,z′)∈Bk

V(i,z),( j,z′)ωi,zω j,z′ . (4.35)

We do a computation similar to (4.4) to get

Q

[ ̂

W θ
(y1,...,ym )

]
≤

(
Q
[
gY (ω)−

θ
1−θ

])1−θ
(

Q

[
gY (ω)

̂

W(y1,...,yn)

])θ

. (4.36)

The block structure of gY allows to express the first term as a power of m,

Q
[
gY (ω)−

θ
1−θ

]
=

(
Q

[
exp

(
− θ

1 − θ
fK (U1)

)])m

. (4.37)

Equation (4.14) says that

VarQ (U1) ≤ 1. (4.38)

So that

P
{

U1 ≥ exp(K 2)
}

≤ exp(−2K 2), (4.39)

and hence

Q

[
exp

(
− θ

1 − θ
fK (U1)

)]

≤ 1 + exp

(
−2K 2 +

θ

1 − θ
K

)
≤ 2, (4.40)

if K is large enough. We are left with estimating the second term

Q

[
gY (ω)

̂

W(y1,...,yn)

]
=P QgY (ω) exp

(
nm∑

i=1

[βωi,Si − λ(β)]
)

1{Skn∈Iyk ,∀k=1...m}.

(4.41)
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For a fixed trajectory of the random walk S, we consider �QS the modified measure on
the environment with density

d �QS

dQ
:= exp

(
nm∑

i=1

[βωi,Si − λ(β)]
)

. (4.42)

Under this measure

�QSωi,z =
{

0 if z �= Si

Qωeβω0,1−λ(β) := m(β) if z = Si .
(4.43)

As ω1,0 has zero-mean and unit variance under Q, (1.4) implies m(β) = β + o(β)

around zero and that Var �QS
ωi,z ≤ 2 for all (i, z) if β is small enough. Moreover �QS is

a product measure, i.e. the ωi,z are independent variables under QS . With this notation
(4.41) becomes

P �QS [gY (ω)] 1{Skn∈Iyk ,∀k=1,...,m}. (4.44)

As in the Gaussian case, one wants to bound this by a product using the block structure.
Similarly to (4.19), we use translation invariance to get the following upper bound:

m∏

k=1

max
x∈I0

Px �QS exp ( fK (U1)) 1{Sn∈Iyk−yk−1 }. (4.45)

Using this in (4.36) with the bound (4.40) we get the inequality

QW θ
N ≤ 2m(1−θ)

⎛

⎝
∑

y∈Z2

[
max
x∈I0

Px �QS exp ( fK (U1)) 1{Sn∈Iy}
]θ

⎞

⎠
m

. (4.46)

Therefore to prove exponential decay of QW θ
N , it is sufficient to show that

∑

y∈Z2

[
max
x∈I0

Px �QS exp ( fK (U1)) 1{Sn∈Iy}
]θ

(4.47)

is small. As seen in the Gaussian case ( cf. (4.23),(4.24)), the contribution of y far from
zero can be controlled and therefore it is sufficient for our purpose to check

max
x∈I0

Px �QS exp ( fK (U1)) ≤ δ, (4.48)

for some small δ. Similarly to (4.26), we force the walk to stay in the zone where the
environment is modified by writing

max
i∈I0

Px �QS exp ( fK (U1)) ≤ P{ max
i∈[0,n] |Si | ≥ (C6 − 1)

√
n}

+max
x∈I0

Px �QS exp ( fK (U1)) 1{|Sn−S0|≤(C6−1)
√

n}.

(4.49)
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The first term is smaller than δ/6 if C6 is large enough. To control the second term, we
will find an upper bound for

Px �QS exp ( fK (U1)) 1{maxi∈[0,n] |Si −S0|≤(C6−1)
√

n}, (4.50)

which is uniform in x ∈ I0.
What we do is the following: we show that for most trajectories S the term in fK has

a large mean and a small variance with respect to QS so that fK ( . . . ) = −K with large�QS probability. The rest will be easy to control as the term in the expectation is at most
one.

The expectation of U1 under �QS is equal to

m(β)2
∑

1≤i, j≤n

V(i,Si ),( j,S j ). (4.51)

When the walk stays in the block B1 we have (using definition (4.29))

∑

1≤i, j≤n

V(i,Si ),( j,S j ) = 1

100C6C7
X. (4.52)

The distribution of X under Px is the same for all x ∈ I0. It has been shown earlier (cf.
(4.30) and (4.31)), that if C7 is chosen large enough,

P

{
m(β)2

100C6C7
X ≤

√
log n

200C6C7

}
≤ δ

6
. (4.53)

As m(β) ≥ β/2 if β is small, if C5 is large enough (recall n ≥ exp(C5/β
4)), this

together with (4.52) gives

Px

{
m(β)2 �QS (U1) ≤ 2 exp(K 2); max

i∈[0,n] |Si − S0| ≤ (C6 − 1)
√

n

}
≤ δ

6
. (4.54)

To bound the variance of U1 under �QS , we decompose the sum

U1 =
∑

(i,z),( j,z′)∈B1

V(i,z),( j,z′)ωi,zω j,z = m(β)2
∑

1≤i, j≤n

V(i,Si ),( j,S j )

+2m(β)
∑

1≤i≤n
( j,z′)∈B1

V(i,Si ),( j,z′)(ω j,z′ − m(β)1{z′=S j })

+
∑

(i,z),( j,z′)∈B1

V(i,z),( j,z′)(ωi,z − m(β)1{z=Si })(ω j,z − m(β)1{z′=S j }). (4.55)

And hence (using the fact that (x + y)2 ≤ 2x2 + 2y2),

Var �QS
U1≤16m(β)2

∑

( j,z′)∈B1

⎛

⎝
∑

1≤i≤n

V(i,Si ),( j,z′)

⎞

⎠
2

+8
∑

((i,z),( j,z′)∈B1

V 2
(i,z),( j,z′), (4.56)
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where we used that Var �QS
ωi,z ≤ 2 (which is true for β small enough). The last term is

less than 8 thanks to (4.14), so that we just have to control the first one. Independently
of the choice of ( j, z′) we have the bound

∑

1≤i≤n

V(i,Si ),( j,z′) ≤
√

log n

C6C7n
. (4.57)

Moreover it is also easy to check that

∑

( j,z′)∈B1

∑

1≤i≤n

V(i,Si ),( j,z′) ≤ C7n

C6
√

log n
, (4.58)

(these two bounds follow from the definition of V(i,z),( j,z′): (4.7)). Therefore

∑

( j,z′)∈B1

⎛

⎝
∑

1≤i≤n

V(i,Si ),( j,z′)

⎞

⎠
2

≤
⎡

⎣
∑

( j,z′)∈B1

∑

1≤i≤n

V(i,Si ),( j,z′)

⎤

⎦

× max
( j,z)∈B1

∑

1≤i≤n

V(i,Si ),( j,z′) ≤ 1. (4.59)

Injecting this into (4.56) guarantees that for β small enough,

Var �QS
U1 ≤ 10. (4.60)

With Chebyshev inequality, if K has been chosen large enough and

�QSU1 ≥ 2 exp(K 2), (4.61)

we have

�QS

{
U1 ≤ exp(K 2)

}
≤ δ/6. (4.62)

Hence combining (4.62) with (4.54) gives

Px �QS

{
U1 ≤ exp(K 2); max

i∈[0,n] |Si − S0| ≤ (C6 − 1)
√

n

}
≤ δ/3. (4.63)

We use this in (4.49) to get

max
x∈I0

Px �QS exp ( fK (U1)) ≤ δ

2
+ e−K . (4.64)

So our result is proved provided that K has been chosen large enough. ��
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5. Proof of the Lower Bound in Theorem 1.4

In this section we prove the lower bound for the free-energy in dimension 1 in an arbitrary
environment. To do so we apply the second moment method to some quantity related
to the partition function, and combine it with a percolation argument. The idea of the
proof was inspired by a study of a polymer model on a hierarchical lattice [21] where
this type of coarse-graining appears naturally.

Proposition 5.1. There exists a constant C such that for all β ≤ 1 we have

p(β) ≥ −Cβ4((log β)2 + 1). (5.1)

We use two technical lemmas to prove the result. The first is just a statement about
scaling of the random walk, the second is more specific to our problem.

Lemma 5.2. There exists a constant cRW such that for large even squared integers n,

P{Sn = √
n, 0 < Si <

√
n for 0 < i < n} = cRW n−3/2 + o(n−3/2). (5.2)

Lemma 5.3. For any ε > 0 we can find a constant cε and β0 such that for all β ≤ β0,
for every even squared integer n ≤ cε/(β

4| log β|) we have

VarQ

[
P

(
exp

(
n−1∑

i=1

(
βωi,Si − λ(β)

)
) ∣∣∣∣ Sn =√

n, 0< Si <
√

n for 0< i < n

)]
< ε.

(5.3)

Proof of Proposition 5.1 from Lemma 5.2 and 5.3. Let n be some fixed integer and define

�W := P exp

(
n−1∑

i=1

(
βωi,Si − λ(β)

)
)

1{Sn=√
n,0<Si <

√
n for 0<i<n}, (5.4)

which corresponds to the contribution to the partition function Wn of paths with fixed
end point

√
n staying within a cell of width

√
n, with the specification the environment

on the last site is not taken into account. �W depends only on the value of the environment
ω in this cell (see Fig. 3).

One also defines the following quantities for (i, y) ∈ N × Z:

�W (y,y+1)
i := P√

ny

[
e
∑n−1

k=1

[
βωin+k,Sk −λ(β)

]
1{Sn=√

(y+1)n,0<Si −y
√

n<
√

n for 0<i<n}
]
,

�W (y,y−1)
i := P√

ny

[
e
∑n−1

k=1

[
βωin+k,Sk −λ(β)

]
1{Sn=(y−1)

√
n,−√

n<Si −y
√

n<0 for 0<i<n}
]
,

(5.5)

which are random variables that have the same law as �W . Moreover because of inde-
pendence of the environment in different cells, one can see that

(�W (y,y±1)
i ; (i, y) ∈ N × Z such that i − y is even

)
,

is a family of independent variables.
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Fig. 3. We consider a resticted partition function �W by considering only paths going from one to the other
corner of the cell, without going out. This restriction will give us the independence of a random variable
corresponding to different cells which will be crucial to make the proof work

Let N = nm be a large integer. We define � = �N as the set of path

� := {S : ∀i ∈ [1, m], |Sin − S(i−1)n| = √
n, ∀ j ∈ [1, n − 1],

S(i−1)n+ j ∈ (
S(i−1)n, Sin

)},
(5.6)

where the interval
(
Si(n−1), Sin

)
is to be seen as

(
Sin, Si(n−1)

)
if Sin < Si(n−1), and

S :=
{

s =(s0, s1, . . . , sm) ∈ Z
m+1 : s0 =0 and |si − si−1|=1, ∀i ∈ [1, m]

}
. (5.7)

We use the trivial bound

WN ≥ P

[
exp

(
nm∑

i=1

(βωi,Si − λ(β))

)
1{S∈�}

]
, (5.8)

to get that

WN ≥
∑

s∈S

m−1∏

i=0

�W (si ,si+1)
i exp

(
βω(i+1)n,si+1

√
n − λ(β)

)
(5.9)

(the exponential term is due to the fact that �W does not take into account the site in the
top corner of each cell).

The idea of the proof is to find a value of n (depending on β) such that we are sure that
for any value of m we can find a path s such that along the path the values of ( �W (si ,si+1)

i )

are not too low (i.e. close to the expectation of �W ) and to do so, it seems natural to seek
for a percolation argument.

Let pc be the critical exponent for directed percolation in dimension 1 + 1 (for
an account on directed percolation see [17, Sect. 12.8] and references therein). From
Lemma 5.3 and the Chebyshev inequality, one can find a constant C8 and β0 such that
for all n ≤ C8

β4| log β| and β ≤ β0,

Q{ �W ≥ Q �W/2} ≥ pc + 1

2
. (5.10)
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Fig. 4. This figure illustrates the percolation argument used in the proof. To each cell is naturally associated a

random variable �W y,y±1
i , and these random variables are i.i.d. When �W y,y±1

i ≥ 1/2Q �W we open the edge
in the corresponding cell (thick edges on the picture). As this happens with a probability strictly superior to
pc , we have a positive probability to have an infinite path linking 0 to infinity

We choose n to be the biggest squared even integer that is less than C8
β4| log β| . (In particular

n ≥ C8
2β4| log β| if β is small enough.)

As shown in Fig. 4, we associate to our system the following directed percolation
picture. For all (i, y) ∈ N × Z such that i − y is even:

• If �W (y,y±1)
i ≥ (1/2)Q �W , we say that the edge linking the opposite corners of the

corresponding cell is open.
• If �W (y,y±1)

i < (1/2)Q �W , we say that the same edge is closed.

Equation (5.10) and the fact the considered random variables are independent assures
that with positive probability there exists an infinite directed path starting from zero.

When there exists an infinite open path linking zero to infinity, we can define the
highest open path in an obvious way. Let (si )

m
i=1 denote this highest path. If m is large

enough, by law of large numbers we have that with a probability close to one,

m∑

i=1

[
βωni,

√
nsi

− λ(β)
]

≥ −2mλ(β). (5.11)

Using this and the percolation argument with (5.9) we finally get that with a positive
probability which does not depend on m we have

Wnm ≥
[
(1/2)e−2λ(β)Q �W

]m
. (5.12)

Taking the log and making m tend to infinity this implies that

p(β) ≥ 1

n

[−2λ(β) − log 2 + log Q �W ] ≥ − c

n
log n. (5.13)

For some constant c, if n is large enough (we used Lemma 5.2 to get the last inequality.
The result follows by replacing n by its value. ��
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Proof of Lemma 5.2. Let n be square and even. Tk , k ∈ Z denote the first hitting time
of k by the random walk S (when k = 0 it denotes the return time to zero). We have

P{Sn = √
n, 0 < Si <

√
n, for all 1 < i < n}

=
n−1∑

k=1

P{T√
n/2 = k, S j > 0 for all j < n and T√

n = n} (5.14)

= P{T√
n/2 < n, S j <

√
n for all j < n and T0 = n)},

where the second equality is obtained with the strong Markov property used for
T = T√

n/2, and the reflexion principle for the random walk. The last line is equal to

P{ max
k∈[0,n] Sk ∈ [√n/2,

√
n)|T0 = n}P{T0 = n}. (5.15)

We use here a variant of Donsker’s Theorem, for a proof see [20, Theorem 2.6].

Lemma 5.4. The process

t �→
{

S
nt�√
n

∣∣∣∣ T0 = n

}
, t ∈ [0, 1] (5.16)

converges in distribution to the normalized Brownian excursion in the space D([0, 1], R).

We also know that (see for example [13, Prop. A.10]) for n even P(T0 = n) =√
2/πn−3/2 + o(n−3/2). Therefore, from (5.15) we have

P{Sn = √
n, 0 < Si <

√
n, for all 1 < i < n}

= √
2/πn−3/2

P

[
max

t∈[0,1] et ∈ (1/2, 1)

]
+ o(n−3/2), (5.17)

where e denotes the normalized Brownian excursion, and P its law. ��
Proof of Lemma 5.3. Let β be fixed and small enough, and n be some squared even inte-
ger which is less than cε/(β

4| log β|). We will fix the value cε independently of β later
in the proof, and always consider that β is sufficiently small. By a direct computation
the variance of

P

[
exp

(
n−1∑

i=1

[βωi,Si − λ(β)]
) ∣∣∣∣ Sn = √

n, 0 < Si <
√

n for 0 < i < n

]
(5.18)

is equal to

P⊗2

[
exp

(
n−1∑

i=1

γ (β)1{S(1)
i =S(2)

i }

) ∣∣∣∣ An

]
− 1, (5.19)

where

An =
{

S( j)
n = √

n, 0 < S( j)
i <

√
n for 0 < i < n, j = 1, 2

}
, (5.20)

and γ (β) = λ(2β) − 2λ(β) (recall that λ(β) = log Q exp(βω(1,0))), and S( j)
n , j = 1, 2

denotes two independent random walks with law denoted by P⊗2. From this it follows
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that if n is small the result is quite straightforward. We will therefore only be interested
in the case of large n (i.e. bounded away from zero by a large fixed constant).

We define τ = (τk)k≥0 = {S(1)
i = S(2)

i , i ≥ 0} the set where the walks meet (it can
be written as an increasing sequence of integers). By the Markov property, the random
variables τk+1 − τk are i.i.d. , and we say that τ is a renewal sequence.

We want to bound the probability that the renewal sequence τ has too many returns
before times n−1, in order to estimate (5.19). To do so, we make the usual computations
with the Laplace transform.

From [11, p. 577] , we know that

1 − P⊗2 exp(−xτ1) = 1
∑

n∈N
exp(−xn)P{S(1)

n = S(2)
n }

. (5.21)

Thanks to the local central limit theorem for the simple random walk, we know that for
large n,

P{S(1)
n = S(2)

n } = 1√
πn

+ o(n−1/2). (5.22)

So we can get from (5.21) that when x is close to zero,

log P⊗2 exp(−xτ1) = −√
x + o(

√
x). (5.23)

We fix x0 such that log P exp(−xτ1) ≤ √
x/2 for all x ≤ x0. For any k ≤ n we have

P⊗2{|τ ∩ [1, n − 1]| ≥ k} = P⊗2{τk ≤ n − 1} ≤ exp((n − 1)x)P⊗2 exp(−τk x)

≤ exp
[
nx + k log P⊗2 exp(−xτ1)

]
.

(5.24)

For any k ≤ ⌊
4n

√
x0
⌋ = k0 one can choose x = (k/4n)2 ≤ x0 in the above and use the

definition of x0 to get that

P⊗2{|τ ∩ [1, n − 1]| ≥ k} ≤ exp
(
−k2/(32n)

)
. (5.25)

In the case where k > k0 we simply bound the quantity by

P⊗2{|τ ∩ [1, n − 1]| ≥ k} ≤ exp
(

k2
0/(32n)

)
≤ exp (−nx0/4) . (5.26)

By Lemma (5.2), if n is large enough,

P⊗ An ≥ 1/2c2
RW n−3. (5.27)

A trivial bound on the conditioning gives us

P⊗2 (|τ ∩ [1, n − 1]| ≥ k
∣∣ An

) ≤ min
(

1, 2c−2
RW n3 exp

(
−k2/(32n)

))
if k ≤ k0,

P⊗2 (|τ ∩ [1, n − 1]| ≥ k
∣∣ An

) ≤ 2c−2
RW n3 exp (−nx0/4) otherwise.

(5.28)
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We define k1 := 
16π

√
n log(2c−2

RW n3)�. The above implies that for n large enough we
have

P⊗2 (|τ ∩ [1, n − 1]| ≥ k
∣∣ An

) ≤ 1 if k ≤ k1,

P⊗2 (|τ ∩ [1, n − 1]| ≥ k
∣∣ An

) ≤ exp
(
−k2/(64n)

)
if k1 ≤ k ≤ k0, (5.29)

P⊗2 (|τ ∩ [1, n − 1]| ≥ k
∣∣ An

) ≤ exp (−nx0/8) otherwise.

Now we are ready to bound (5.19). Integration by part gives,

P⊗2 [exp (γβ|τ ∩ [1, n − 1]|) ∣∣ An
] − 1

= γ (β)

∫ ∞

0
exp(γ (β)x)P⊗2 (|τ ∩ [1, n − 1]| ≥ x

∣∣ An
)

dx .
(5.30)

We split the right-hand side in three parts corresponding to the three different bounds
we have in (5.28): x ∈ [0, k1], x ∈ [k1, k0] and x ∈ [k0, n]. It suffices to show that each
part is less than ε/3 to finish the proof. The first part is

γ (β)

∫ k1

0
exp(γ (β)x)P⊗2 (|τ ∩ [1, n−1]|≥ x

∣∣ An
)

dx ≤γ (β)k1 exp(γ (β)k1).

(5.31)

One uses that n ≤ cε

β4| log β| and γ (β) = β2 + o(β2) to get that for β small enough and
n large enough if cε is well chosen we have

k1γ (β) ≤ 100β2
√

n log n ≤ ε/4, (5.32)

so that γ (β)k1 exp(γ (β)k1) ≤ ε/3.
We use our bound for the second part of the integral to get

γ (β)

∫ k0

k1

exp(γ (β)x)P⊗2 (|τ ∩ [1, n − 1]| ≥ x
∣∣ An

)
dx

≤ γ (β)

∫ ∞

0
exp

(
γ (β)x − x2/(64n)

)
dx =

∫ ∞

0
exp

(
x − x2

64nγ (β)2

)
dx .

(5.33)

Replacing n by its value, we see that the term that goes with x2 in the exponential can
be made arbitrarily large, provided that cε is small enough. In particular we can make
the left-hand side less than ε/3.

Finally, we estimate the last part

γ (β)

∫ n

k0

exp(γ (β)2x)P⊗2 (|τ ∩ [1, n − 1]| ≥ x
∣∣ An

)
dx

≤ γ (β)

∫ n

0
exp(γ (β)x − nx0/8) dx = n exp(−[γ (β) − x0/8]n).

(5.34)

This is clearly less than ε/3 if n is large and β is small. ��
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6. Proof of the Lower Bound of Theorem 1.5

In this section we use the method of replica-coupling that is used for the disordered
pinning model in [24] to derive a lower bound on the free energy. The proof here is an
adaptation of the argument used there to prove disorder irrelevance.

The main idea is the following: Let WN (β) denote the renormalized partition function
for inverse temperature β. A simple Gaussian computation gives

dQ log WN (
√

t)

dt

∣∣∣∣
t=0

= −1

2
P⊗2

N∑

i=1

1{S(1)
i =S(2)

i }, (6.1)

where S(1) and S(2) are two independent random walks under the law P⊗2. This implies
that for small values of β (by the equality of derivative at t = 0),

Q log WN (β) ≈ − log P⊗2 exp

(
β2/2

N∑

i=1

1{S(1)
N =S(2)

N }

)
. (6.2)

This tends to make us believe that

p(β) = − lim
N→∞ log P⊗2 exp

(
β2/2

N∑

i=1

1{S(1)
N =S(2)

N }

)
. (6.3)

However, things are not that simple because (6.2) is only valid for fixed N , and one
needs some more work to get something valid when N tends to infinity. The proofs aim
to use a convexity argument and simple inequalities to be able to get the inequality

p(β) ≥ − lim
N→∞ log P⊗2 exp

(
2β2

N∑

i=1

1{S(1)
N =S(2)

N }

)
. (6.4)

The fact that convexity is used in a crucial way makes it quite hopeless to get the other
inequality using this method.

Proof. Let us define for β fixed and t ∈ [0, 1],

�N (t, β) := 1

N
Q log P exp

(
N∑

i=1

[√
tβωi,Si − tβ2

2

])
, (6.5)

and for λ ≥ 0,

�N (t, λ, β) := 1

2N
Q log P⊗2 exp

(
N∑

i=1

[√
tβ(ω

i,S(1)
i

+ω
i,S(2)

i
)−tβ2 +λβ21{S(1)

i =S(2)
i }

])
.

(6.6)

One can notice that �N (0, β) = 0 and �N (1, β) = pN (β) (recall the definition of
pN (1.11)), so that �N is an interpolation function. Via the Gaussian integration by par
formula,

Qω f (ω) = Q f ′(ω), (6.7)
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valid (if ω is a centered standard Gaussian variable) for every differentiable functions
such that lim|x |→∞ exp(−x2/2) f (x) = 0, one finds

d

dt
�N (t, β) = − β2

2N

N∑

j=1

∑

z∈Z

Q

⎛

⎝
P exp

(∑N
i=1

[√
tβωi,Si − tβ2

2

])
1{S j =z}

P exp
(∑N

i=1

[√
tβωi,Si − tβ2

2

])

⎞

⎠
2

= − β2

2N
Q
(
µ(

√
tβ)

n

)⊗2
[

N∑

i=1

1{S(1)
i =S(2)

i }

]
. (6.8)

This is (up to the negative multiplicative constant −β2/2) the expected overlap fraction
of two independent replicas of the random–walk under the polymer measure for the
inverse temperature

√
tβ. This result has been using the Itô formula in [4, Sect. 7].

For notational convenience, we define

HN (t, λ, S(1), S(2)) =
N∑

i=1

[√
tβ(ω

i,S(1)
i

+ ω
i,S(2)

i
) − tβ2 + λβ21{

S(1)
i =S(2)

i

}
]

. (6.9)

We use Gaussian integration by part again, for �N :

d

dt
�N (t, λ, β) = β2

2N

N∑

j=1

Q
P⊗2 exp

(
HN (t, λ, S(1), S(2))

)
1{S(1)

j =S(2)
j }

P⊗2 exp
(
HN (t, λ, S(1), S(2))

)

− β2

4N

N∑

j=1

∑

z∈Z

Q

⎛

⎜⎜⎝

P⊗2
(

1{S(1)
j =z} + 1{S(2)

j =z}

)
exp

(
HN (t, λ, S(1), S(2))

)

P⊗2 exp
(
HN (t, λ, S(1), S(2))

)

⎞

⎟⎟⎠

2

≤ β2

2N

N∑

j=1

Q
P⊗2 exp

(
HN (t, λ, S(1), S(2))

)
1{S(1)

j =S(2)
j }

P⊗2 exp
(
HN (t, λ, S(1), S(2))

)

= d

dλ
�N (t, λ, β). (6.10)

The above implies that for every t ∈ [0, 1] and λ ≥ 0,

�N (t, λ, β) ≤ �N (0, λ + t, β). (6.11)

Comparing (6.8) and (6.10), and using convexity and monotonicity of �N (t, λ, β) with
respect to λ, and the fact that �N (t, 0, β) = �N (t, β) one gets

− d

dt
φN (t, β) = d

dλ
�N (t, λ, β)

∣∣∣∣
λ=0

≤ �N (t, 2 − t, β) − �N (t, β)

2 − t
≤ �N (0, 2, β) − �N (t, β), (6.12)

where in the last inequality we used (2 − t) ≥ 1 and (6.11). Integrating this inequality
between 0 and 1 and recalling �N (1, β) = pN (β) we get

pN (β) ≥ (1 − e)�N (0, 2, β). (6.13)
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On the right-hand side of the above we recognize something related to pinning mod-
els. More precisely

�N (0, 2, β) = 1

2N
log YN , (6.14)

where

YN = P⊗2 exp

(
2β2

N∑

i=1

1{
S(1)

N =S(2)
N

}

)
(6.15)

is the partition function of a homogeneous pinning system of size N and parameter 2β2

with underlying renewal process the sets of zero of the random walk S(2) − S(1). This is
a well known result in the study of the pinning model (we refer to [13, Sect. 1.2] for an
overview and the results we cite here) that

lim
N→∞

1

N
log YN = f(2β2), (6.16)

where f denotes the free energy of the pinning model. Moreover, it is also stated

f(h)
h→0+∼ h2/2. (6.17)

Then passing to the limit in (6.14) ends the proof of the result for any constant strictly
bigger than 4. ��

7. Proof the Lower Bound in Theorem 1.6

The technique used in the two previous sections could be adapted here to prove the
results but in fact it is not necessary. Because of the nature of the bound we want to
prove in dimension 2 (we do not really track the best possible constant in the exponen-
tial), it will be sufficient here to control the variance of Wn up to some value, and then
the concentration properties of log Wn to get the result. The reader can check than using
the same method in dimension 1 does not give the right power of β.

First we prove a technical result to control the variance of Wn which is the analog of
(5.3) in dimension 1. Recall that γ (β) :=λ(2β)−2λ(β) with λ(β) := log Q exp(βω(1,0)).

Lemma 7.1. For any ε < 0, one can find a constant cε > 0 and β0 > 0 such that for
any β ≤ β0, for any n ≤ exp

(
cε/β

2
)

we have

VarQ Wn ≤ ε. (7.1)

Proof. A straightforward computation shows that the the variance of Wn is given by

VarQ Wn = P⊗2 exp

(
γ (β)

n∑

i=1

1{S(1)
i =S(2)

i }

)
− 1, (7.2)

where S(i), i = 1, 2 are two independent 2–dimensional random walks.
As the above quantity is increasing in n, it will be enough to prove the result for n

large. For technical convenience we choose to prove the result for n = exp(−cε/γ (β))
(recallγ (β) = λ(2β)−2λ(β)) which does not change the result sinceγ (β) = β2+o(β2).
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The result we want to prove seems natural since we know that (
∑n

i=1 1{S(1)
i =S(2)

i })/ log n

converges to an exponential variable (see e.g. [12]), and γ (β) ∼ cε log n. However, con-
vergence of the right–hand side of (7.2) requires the use of the Dominated Convergence
Theorem, and the proof of the domination hypothesis is not straightforward. It could be
extracted from the proof of the large deviation result in [12], however we include a full
proof of convergence here for the sake of completeness.

We define τ = (τk)k≥0 = {S(1)
i = S(2)

i , i ≥ 0} the set where the walks meet (it can
be written as an increasing sequence). By the Markov property, the random variables
τk+1 − τk are i.i.d.

To prove the result, we compute bounds on the probability of having too many points
before n in the renewal τ . As in the 1 dimensional case, we use the Laplace transform
to do so. From [11, p. 577] , we know that

1 − P⊗2 exp(−xτ1) = 1
∑

n∈N
exp(−xn)P{S(1)

n = S(2)
n }

. (7.3)

The local central limit theorem says that for large n,

P⊗2{S(1)
n = S(2)

n } ∼ 1

πn
. (7.4)

Using this in (7.3) we get that when x is close to zero,

log P⊗2 exp(−xτ1) ∼ − π

| log x | . (7.5)

We use the following estimate:

P⊗2{|τ ∩ [1, n]| ≥ k} = P⊗2{τk ≤ n} ≤ exp(nx)P⊗2 exp(−τk x)

= exp
[
nx + k log P⊗2 exp(−xτ1)

]
.

(7.6)

Let x0 be such that for any x ≤ x0, log P⊗2 exp(−xτ1) ≥ −3/| log x |. For k such that
k/(n log(n/k)) ≤ x0, we replace x by k/(n log(n/k)) in (7.6) to get

P⊗2{|τ ∩ [1, n]| ≥ k} ≤ exp

(
k

log(n/k)
− 3k

log
[
k/(n log n/k)

]
)

≤ exp

(
− k

log(n/k)

)
, (7.7)

where the last inequality holds if k/n is small enough. We fix k0 = δn for some small
δ. We get that

P⊗2{|τ ∩ [1, n]| ≥ k} ≤ exp

(
− k

log(n/k)

)
if k ≤ k0,

P⊗2{|τ ∩ [1, n]| ≥ k} ≤ exp

(
− k0

log(n/k0)

)
= exp

(
− δn

log(1/δ)

)
if k ≥ k0.

(7.8)

We are ready to bound (7.2). We remark that using integration by part we obtain

P exp (γ (β)|τ ∩ [1, n]|) − 1 =
∫ n

0
γ (β) exp(γ (β)x)P⊗2(τ ∩ [1, n]| ≥ x) dx .

(7.9)
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To bound the right–hand side, we use the bounds we have concerning τ : (7.8). We have
to split the integral in three parts.

The integral between 0 and 1 can easily be made less than ε/3 by choosing β small.
Using n ≤ exp(cε/γ (β)), we get that

∫ δn

1
γ (β) exp(γ (β)x)P⊗2(τ ∩ [1, n]|≥ x) dx≤

∫ δn

1
γ (β) exp

(
γ (β)x− x

log(n/x)

)
dx

≤
∫ δn

1
γ (β) exp

(
γ (β)x − γ (β)βx

cε

)

≤ cε

1 − cε

. (7.10)

This is less than ε/3 if cε is chosen appropriately. The last part to bound is
∫ n

δn
γ (β) exp(γ (β)x)P⊗2(τ ∩ [1, n]|≥ x)≤nγ (β) exp

(
γ (β)n− δn

log 1/δ

)
≤ε/3,

(7.11)

where the last inequality holds if n is large enough, and β is small enough. ��
Proof of the lower bound in Theorem 1.6. By a martingale method that one can find a
constant c9 such that

VarQ log Wn ≤ C9n, ∀n ≥ 0,∀β ≤ 1. (7.12)

(See [6, Prop. 2.5] and its proof for more details).
Therefore Chebyshev inequality gives

Q

{∣∣∣∣
1

n
log Wn − 1

n
Q log Wn

∣∣∣∣ ≥ n−1/4
}

≤ C9n−1/2. (7.13)

Using Lemma 7.1 and Chebyshev inequality again, we can find a constant C10 such that
for small β and n = 
exp(C10/β

2)� we have

Q {Wn < 1/2} ≤ 1/2. (7.14)

This combined with (7.13) implies that

− log 2

n
≤ n−1/4 + Q

1

n
log Wn ≤ n−1/4 + p(β). (7.15)

Replacing n by its value we get

p(β) ≥ −n−1/4 − log 2

n
≥ − exp(−C10/5β2). (7.16)

��
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