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Abstract: The Nekrasov conjecture predicts a relation between the partition function
for N = 2 supersymmetric Yang—Mills theory and the Seiberg-Witten prepotential. For
instantons on R?, the conjecture was proved, independently and using different methods,
by Nekrasov-Okounkov and Nakajima- Yoshioka. We prove a generalized version of the
conjecture for instantons on noncompact toric surfaces.
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1. Introduction

1.1. Background. The Nekrasov conjecture [Ne2] predicts a surprising relation between
two seemingly unrelated quantities: the partition function for N = 2 supersymmetric
Yang—Mills theory, defined in terms of instantons on R?, and the Seiberg-Witten prepo-
tential [SW], defined in terms of period integrals of a family of hyperelliptic curves. For
gauge group U (r), Nekrasov and Okounkov proved the conjecture for a list of gauge
theories (4d pure gauge theory, 4d gauge theory with matter, 5d theory compactified on
a circle) [NO], Nakajima and Yoshioka proved the conjecture for 4d pure gauge theory
[NY1] and for 5d theory compactified on a circle [NY2] (see also Gottsche-Nakajima-
Yoshioka [GNY2]). Braverman and Etingof studied 4d pure gauge theory with arbitrary
gauge groups [Br,BrE].

In this paper we prove a generalized version of the conjecture for instantons on non-
compact toric surfaces. Instantons on toric surfaces have been studied in [Ne3,GNY,
GNY2].

In field theory terms, Nekrasov’s insight involves a comparison of the infrared and
ultraviolet limits of the SUSY gauge theories, as follows. The vacuum expectation value
of their observables is not sensitive to the energy scale. In the ultraviolet, the theory is
weakly coupled and dominated by instantons; whereas in the infrared, there appears a
relation to the prepotential of the effective theory. In this instance, the physical argument
is accompanied by completely rigorous mathematical definitions, thus allowing us to
prove the conjecture.

1.2. Partition functions for instantons on noncompact toric surfaces. Let Xg = X \ oo
be an open toric surface that can be compactified to a non-singular projective toric sur-
face X by adding a line at infinity £, = P! with positive self-intersection number, so
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that 7, = (C*)2 acts on X and on X. Let M, 4.n(X, £xo) denote the moduli space of
rank r torsion free sheaves over X having Chern classes ¢; = d and ¢, = n, and framed
over £oo. Then M, 4., (X, £xo) is a smooth variety over C, and it admits a 7; x T,-action
with isolated fixed points, where 7, = (C*)" is the maximal torus of the complex gauge
group G L(r, C) which acts on framings. We define

/ I
mr.d,n(xxeoo)

by formally applying the Atiyah-Bott localization formula. The above 1ntegral is aratio-
nal function in equivariant parameters €1, €2 € Hj 2 -(pY) and ay, ..., ar € H - (pt). The
Nekrasov partition function for supersymmetric S U (r) instantons on Xy is deﬁned as

Z¥ (€1, €2, G; A) &A= ’WZA”"/ 1,
n>0 gjtr.{l,n(Xano)

where A is a formal variable. It lies in the ring Q(eq, €2, ay, ..., a;)[[A]].
In further generality, given two multiplicative classes A, B we define

Z palel. €. A) &A= ”MZA”"/W " )Af(Tm)Bf(V),
n>0 r,d.n stoo

where Tyy is the tangent bundle and V is the natural bundle on I, 4., (X, €so) (se€
Definition 2.9).

1.3. Seiberg-Witten prepotential. We briefly recall the definition of the Seiberg-
Witten prepotential for 4d pure SU (r) gauge theory. Appendix C contains a more detailed
discussion and definitions for other gauge theories.

Consider the family of hyperelliptic curves parametrized by A and u =
(up, uz, ..., u;):

1 _ _
C,;:Ar(u)+5 =P(2) =7 +uzz 2+u3Zr 3+---+ur.

The parameter space for i is called the ii-plane. The Seiberg-Witten differential

1 dw

dS = ——z7—
2ra/—1 w

is a meromorphic differential defined on the total space of this family such that {a) » o

(dS) | p=2,. } is a basis of holomorphic differentials on the genus (r — 1)

curve C;. Choose a symplectlc basis {Aq, Bg | o, B = 2,...,r} of H{(Cj, Z), and
define

aaz/ ds, ag):zm/—l/ ds
« Bp
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Then the 1-form >\, _, alday is closed, so there exists a locally defined function, the
Seiberg-Witten prepotential F, such that

,
0F
> alday = dFy, ie., al ="

a=2

T dag

The above definitions of d S, a,, af are the same as those in [NO], but are /—1 times
the corresponding definitions in [NY,NY1].

1.4. Nekrasov conjecture. Let qq, q1 be the two T; fixed points in £oo C X, and let
u,v € Zey @ Ze; be the weights of the T;-action on (Ny,/x)gq» (New/X)q1» TESPEC-
tively, where Ny, x is the normal bundle of £+ in X. If w is the weight of 7;-action on
Tyoloo and k = £ - £og > 0, then v = u — kw. Define

inst - def inst -
f}?g,A,B,d(elr €2,4d; A) = _M(u - kw) log Zl)I(I(;,A’B’d(EI’ €2,d; A)

We now state the prototype statement of the conjecture for toric surfaces, which will
have 8 incarnations.

Main Theorem (Nekrasov conjecture for toric surfaces: prototype statement).

(a) }"}é;)’A’B’d(el, €, d, m; A) is analytic in €1, €y near €] = €3 = 0.
(b) lim ij{o A B.a(€1, €2, a5 N) = kFy (@, N), where (G, A) is the - - -part of the
€1,60—> e

Seiberg-Witten prepotential of matter case A, B,m, and k = lo - Lo > 0 is the
self intersection number of €.

The 8 cases we prove are
e Instanton part: Theorem 5.21. With the " replaced by st
cases of the conjecture:

(1) 4d pure gauge theory: A =B =1,m = (.

(2) 4d gauge theory with Ny fundamental matter hypermultiplets: A = 1, B =
(E;)(V) is the T,,-equivariant Euler class of V ® M, where V is the natural
bundle over the moduli space, M is the fundamental representation of U (Ny),
T is the maximal torus of U(Ny), m = (my, ..., my;).

(3) 4d gauge theory with one adjoint matter hypermultiplet: A = E,,(Top) is the
equivariant Euler class of the tangent bundle of the moduli space, B = 1, m = m.

(4) 5d gauge theory compactified on a circle: A = A g(Tom) is the A g genus of the
tangent bundle (the usual A genus being thecase B = 1), B =1,m = @ but 7
depends on the additional parameter 3.

o Perturbative part: Theorem 6.8. Withthe " replaced by P, we derive 4 more cases
of the conjecture, with the same restrictions as in the first part:

(1) 4d pure gauge theory.

(2) 4d gauge theory with Ny fundamental matter hypermultiplets.

(3) 4d gauge theory with one adjoint matter hypermultiplet.

(4) 5d gauge theory compactified on a circle of circumference 3.

, we prove the following

The instanton part follows by localization, from known results in the C2 case. Indeed,
localization calculations yield an expression of the instanton partition function Z‘)?gt AB.d

over X in terms of contributions from vertices (7; fixed points in Xp) and from legs
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(T, invariant P’s in X(). Each vertex contributes one copy of the instanton partition
function of C2, for which the singularity along €; = e = 0 is already known. The
contribution from legs does not introduce more poles along €; = €3 = 0. A priori, the
tangent weights at all 7; fixed points in X appear in the denominator, but an argument
similar to that in [Ne3, Sect. 6.1] shows that these poles mostly cancel out, and we are
left with the two normal weights u, u — kw at the T; fixed points on £ . The perturbative
part is fairly straightforward.

1.5. Outline of the paper. In Sect. 2, we describe properties of the instanton moduli
spaces. In Sect. 3, we study torus actions on these moduli spaces and the fixed point
sets. In Sect. 4, we introduce a general instanton partition function depending on two
multiplicative classes A, B for noncompact toric surfaces; different choices of A, B give
partition functions of different gauge theories. Section 5 contains localization computa-
tions on instanton moduli spaces, and the proof of the instanton part of the conjecture.
Section 6 contains definitions of the perturbative part of the partition function, and the
proof of the perturbative part of the conjecture.

2. Moduli Spaces of Framed Bundles on Surfaces

We work over C. Let X be a non-singular projective surface. Let o, C X be a smooth
divisor. In this section, we introduce moduli spaces of framed bundles on X, and describe
basic properties of these moduli spaces, generalizing the discussion in [NY1, Sect. 2]
on the case X = P2, The framed moduli spaces were constructed in much more general
setting by Huybrechts-Lehn [HL].

Given a positive integer r, an integer n, and a cohomology class d € H>(X; Z), let
M,.a.0(X, €o) be the moduli space which parametrizes isomorphism classes of pairs
(E, @) such that

(1) E is atorsion free sheaf on X which is locally free in a neighborhood of €.
(2) rank(E) =r, ci(E) =d and [y c2(E) =n.

3) ®: Ele, = (’)2: is an isomorphism called “framing at infinity”.

Note that (1) and (2) imply fﬁoo d=0.

2.1. Dimension of the moduli space. Given a divisor D C X, let E(—D) = E ®
Ox(—D).

Proposition 2.1. Suppose that £, - Lo > 0.

(a) For any (E, ®) € M, 4.n(X, Loo) we have Ext, (E, E(—Lx)) = 0.

(b) Assume in addition that € = P! then for any (E, ®) € M, 4.,(X, L) we have
Ext), (E, E(—la0)) = Ext}y (E, E(—lx)) =0.

Remark 2.2. If X is a non-singular projective surface which contains a smooth divisor
loo = P! such that k = fo - £oo > 0. Then TX|K = Opi(k) ® Opi1(2), so X is
rationally connected, or equivalently, X is a rational surface. The arithmetic genus of X
is pa(X) = x(Ox) — 1 =0.
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Proof of Proposition 2.1. (a) Assuming that £, - oo > 0, we will show that
Homp, (E, E(—{s)) = 0.
Let s be a section of Ox (£) such that its zero locus is £,. The exact sequence
0— E(—(m+1)log) = E(—mlsy) — E(—mls) @ Op — 0
induces a long exact sequence

0 — Homp, (E, E(—(m + 1){s0)) — Homo, (E, E(—mlog))
— Homp, (E, E(—mls) @ Oy,,)
— Extgy (E, E(—(m + 1)loo) — Exty (E, E(=mlog)) = -+,

where
Homo, (E, E(=mlo) ® Or0) = HO(boo, Ox (—mboo)1,)®"

since E|g, is trivial. Let k = £ - £oo > 0. Then

H(boo, Ox(—mloo)le,) = HO (P!, Opi (—mk)) = 0
when m > 0. So, for any positive integer m,

Homp, (E, E(—(m + 1){)) — Homp, (E, E(—mlx))

is an isomorphism, and

Exty (E, E(=(m + 1)lo0)) — Extly (E, E(~mlo))

is injective. As a consequence, any element in Homp, (E, E(—£)) restricts to zero in
a formal neighborhood of £, in X. So

Homp, (E, E(—£s)) = 0.

(b) We now assume that £o0 - £oo > 0and £oo ZPL. By Serre duality, Extéx (E,E(—x))
is dual to Homp, (E, E(Kx + £)). We will show that

Homop, (E, E(Kx +{x)) = 0.
The exact sequence
0— E(Kx—mlog) - E(Kx+(1 —m)los) = E(Kx + (1 —m)lo) ® Op — 0
induces a long exact sequence
0 — Homp, (E, E(Kx —mlx)) — Homp, (E, E(Kx + (1 —m){x))
— Homp, (E, E(Kx + (1 = m){x) @ Op)
— Extly (E, E(Kx —mlo) — Extly (E, E(Kx + (1= m)log)) = -+ .
E|q,, is trivial and K¢, = (Kx + £oo) e, SO
Homo, (E, E(Kx + (1 — m)log) ® Op)) = H (boo, O, (Ke,)
® Ox (—mloo)le, ).
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Note that
H (oo, Op, (Ke.,) ® Ox (—miboo)ley,) = HOP', Opi (=2 — mk)) =0
for all m > 0. So, for any nonnegative integer m,
Homp, (E, E(Kx —mly) — Homp, (E, E(Kx + (1 —m){))
is an isomorphism, and
Extéy (E. E(Kx —mls)) = Exty (E, E(Kx + (1 — m)€o0))

isinjective. As a consequence, any element in Homp, (E, E(Kx +{)) restricts to zero
in a formal neighborhood of £, in X, and we conclude that

Homp, (E, E(Kx +{x)) = 0.
O

Corollary 2.3. Let X be a non-singular projective surface, and let £, be a smooth
divisor of X such that Lo - £oo > 0. Then for any (E, ®) in M, 4., (X, £oo),

dimg Extéy (E, E(—o0)) — dime Extg, (E, E(—o0))
=2rn+(1—r)d-d —r*(pa(X) + pa(loo)).

whered - d = fx d?, pa(X) is the arithmetic genus of X, and p,(£so) is the arithmetic
genus of Loo.

Proof. Let (E, ®) € M, 4.,(X, £x) be locally free. By Proposition 2.1 (a),
dime Extyy (E, E(—£oo)) —dimg Extgy (E, E(—Lo0)) = —x (End(E) ® Ox (—Loo)).

Let v € H*(X; Z) be the Poincaré dual of [pt] € Hy(X;Z), and let e € H*(X; Z) be
the Poincaré dual of [€~] € H>(X; Z). By Hirzebruch-Riemann-Roch,

x(End(E) ® Ox (L)) = deg (ch(End(E))ch(Ox (—Loo)td(Tx)) ,
where

ch(End(E)) = ch(E)ch(EY) = r> + (r — 1)d*> — 2rnv,
2
k
ch(Ox (o)) = 1 —e+% =l—c+3vfork =to- b > 0,

1 1
td(Tx) = 1 + Ecl(X) + E(cl(X)2 + e (X)).

Let Ny, x be the normal bundle of £, in X. Then

/X ec1(X) = /{ (c1(Coe) + 1 (New ) = 2 — 2pa(loe) + k.
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Consequently,

deg (ch(End(E))ch(Ox (—€oo))td(Tx))

r2 r2 kr?
=/ —(1(X)? +c2(X) — —ec1(X) + (r — Dd* + (— = 2rn)v
. 12(01( : 5
r2 2 r2 2 kr2
=—/(c1<X) +cz<X))——(k+2—2pa(zoo>)+(r—1)/ &>+ =~ —2rn
12 Jx 2 X 2

— i) / &+ P2 (pa(X) + pa(loo)).
X
O

Corollary 2.4. Let X be a non-singular projective rational surface, and let L, be a
divisor of X such that ls, = P! and bs - loo > 0. Then My.a.n(X, Leo) is smooth of
(complex) dimension

2rn+ (1 —r)d-d,
whered -d = [ d?.
Example 2.5. Let X = P2, and let
loo = {[Z0, Z1, Z2] € P* | Zy = 0} = P,

Then{o-€oo = 1 > 0. The modulispace M, 4., (]P’z, {50) is nonempty only iffeoo d=0,

which implies d = 0. By Corollary 2.4, the moduli space 90,0, (P2, £+) is smooth of
complex dimension 2rn. (See [NY1, Cor. 2.2]).

Example 2.6. Let X = Fy, def P(Op1 (—k) & Op1) be the k™ Hirzebruch surface, where
k is a positive integer. Let
b =PO®Op1) =P, lo =P(Opi(—k) ®0) =P

Then €y - €gp = —k <0and £ - Lo = k > 0.

The moduli space M, 4., (Fx, £o0) is nonempty only if fzw d = 0, which implies
d = mty for some m € Z. By Corollary 2.4, the moduli space M, jey.n (Fi, €oo) is
smooth of complex dimension 2rn + (r — Dkm?.

Example 2.7. Let £ C P2 be a curve of degree 1, and let pi,..., pr be k generic
points in P? which are disjoint from £. Let 7 : By — P2 be the blowup of P? at
Pls--.» Pk Let £og = 71_1(6) =~ P! and let ¢; = n_l(pi) be the exceptional divi-
sors. Let ex, €1, ...,€x € Hz(IB%k; 7)) be the Poincaré duals of [£xo], [£1], ..., [£r],
respectively. Then

H>By; Z) = Zeoo ® Ze1 ® - - - Lex.
The moduli space M, 7., (Bx, £o0) is nonempty only if fﬁoo d = 0, which implies
d=mie+---+myex, m; € 7.

By Corollary 2.4, the moduli space M, ¢ +-tmper,n Bi, £oo) is smooth of complex
dimension

2rn+ (r — 1)(m%+~~+m,%).
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2.2. The natural bundle. In this subsection, X is a non-singular projective rational sur-
face, and €, is a smooth rational curve in X such that £, - oo > 0. The proof of the
following proposition is very similar to that of Proposition 2.1.

Proposition 2.8. H(X, E(—{ls)) = H(X, E(—{s)) = 0.

LetE — X x M, 4.1 (X, €so) be the universal sheaf. Let p1 : X x M, 4.0 (X, €oo) =
Xand p2 : X XM, 4.0 (X, L) = IMya.0(X, £oo) be the projections to the two factors.

Definition 2.9. The natural bundle over M, 4., (X, Loo) is

V& (R 12 (€ ® pHOx(—too))).

Corollary 2.10. V is a vector bundle of rank
1
n— E(d-d+c1(X) -d)

over My g4 2 (X, €oo).

Proof. We use the notation in the proof of Corollary 2.4. Let (E, ®) € M, 4., (X, £xo)
be locally free. The rank of V is given by — x (E(—{~)). By Hirzebruch-Riemann-Roch,

X (E(—tx0)) = deg (ch(E)ch(Ox (—loo))td(Tx)) ,

where

d? &2 k
ch(E) =r+ar+(7 —nv), ch(Ox(—ls)) =1 —e+ o = 1 —e+ v,

1 1
td(Tx) =1+ 561(X) + E(CI(X)Z +c2(X)).
Consequently,

deg (ch(E)ch(Ox (—£€oo))td(Tx))
_ r X2 X ld X d? kr
—/X(E(Cl( )"+ el ))+§( —re)ei( )+7+(7—H)V)
= X2 +er(X) — L+ + 2 [ (@ +ea0a+
‘E/X(“( P+ ea(X) — Sk + )+§/X( +e(X)d) + = —n

=_n+l/(d2+c1(X)d)+rpa(X),
2 Jx

where p,(X) = 0 since X is a rational surface. 0O

3. Torus Action and Fixed Points

. . . . L . def
In this section, X is a non-singular projective toric surface. Therefore 7; = (C*)2 acts
on X. We use notation similar to that in [NY1, Sect. 2, 3].
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3.1. Torus action on the surface. We assume that £, is a T;-invariant P! in X, and
Loo - €oo =k > 0. Then X¢g = X \ £ is a non-singular, quasi-projective toric surface.
Let I be a graph such that the vertices of I" are in one-to-one correspondence with
the 7; fixed points in X, and two vertices are connected by an edge if and only if the
corresponding fixed points are connected by a 7;-invariant P'. Then I is a chain, so
#V(I) —#E[) =1, and

x(Xo) =#V(I") = x(X) -2,

where E(I') is the set of edges in I" and V (I") is the set of vertices in I'. Let p, be the
T; fixed point in X which corresponds to v € V(I'), and let £, be the T;-invariant P!
which corresponds to e € E(I'). Any T;-invariant divisor D in X disjoint from £, is of
the form

D= > mele= Hy(Xo: Z),
ecE()

where m, € Z.

3.2. Torus action on moduli spaces. Let T, be the maximal torus of G L(r, C) consisting
of diagonal matrices, and let T = T; x T,. We define an action of T on Mya.n(X, £oo)
as follows: for (#1, r2) € T, let Fy, 1, be the automorphism of X defined by Fy, ,,(z) =
(t1, 1) - z. Given € = diag(ey, ..., er) € T, let G; denote the isomorphism of (’)E‘Z
given by (s1,...,s:) — (e151, ..., ers:). For (E, ®) € M, 4., (X, €oo), we define

(1,12,8) - (B, @) = ((F 1) E, @),

where @’ is the composite of homomorphisms

—1 \x

(F1,)*® Dry.t G;
—1 \% -2 —1 \*x Dr 1-12 dr e dr
(Ftl,tz) Eley (Fl‘lva) Oﬁoo Oloo - Oioo'

Here ¢y, 1, is the homomorphism given by the action.

3.3. Torus fixed points in moduli spaces. The fixed points set 9, 4., (X, Eoo)f consists
of (E, ®) = (I1(D1), 1) & --- & (I2(D;), ®,) such that

(1) I,(Dy,) is a tensor product Iy, ® Ox (D), where D, is a Ty-invariant divisor which
does not intersect £+, and I, is the ideal sheaf of a O-dimensional subscheme Q,
contained in Xj.

(2) @4 is an isomorphism from (Iy)¢,, to the oM factor of (’)EBV.

(3) Iy is fixed by the action of T;. *

The support of Q, must be contained in X g’ , the T; fixed points set of X¢. Thus Q4
is a union of {Q} | v € V(I')}, where Q] is a subscheme supported at the 7;- fixed
point p, € Xo. If we take a coordinate system (x, y) around p,, then the ideal of Q] is
generated by monomials z'y/, So Q;, corresponds to a Young diagram Y.

Therefore the fixed point set is parametrized by 2r-tuples

(D1 Y) = (Dlv )_}17 cee Drv )_}r)a
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where
Duc @ Zt=H(X0:2), Yu=(¥y|veVD)
ecET)

and each Y is a Young diagram. Let

Yol = D V2L

veV(I)

LetdV € Hy(X; 7Z) be the Poincaré dual of d € H>(X; Z). Then fzm d = 0 implies
dv e @eeE(F) Z[£.]. The constraints are

D Da=d", (1)
o

r

> Yal+ D Dy -Dp=n. )
a=1 a<f

Note that 2r Z(Kﬁ Dy -Dg+ (1 —r)d’ -d¥ =— Za<ﬁ(D¢¥ - D,g)z, so (2) can be
rewritten as

,
2r D Yol = D (Do — Dp)* =2rn+ (1 —r)d -d = dimg Myg (X, o). (3)
a=1 a<f
4. Gauge Theory Partition Functions
We refer to Appendix B for a brief review of equivariant cohomology and integration of

an equivariant cohomology class over a possibly non-compact manifold.

4.1. Equivariant parameters. For i = 1,2, let p;: BT; = P® x P® — P be the
projection to the i factor, and let

e =c1(pfO)), 1 = chy(pFO(1)) = €.

Then H;[(pt; Q) = H*(BT;; Q) = Qley, e2]. Similarly, for j = 1,...,r, let g; :
BT, = (P*®°)" — P> be the projection to the j™ factor, and let

aj = ci(gjO(1), e; =chi(gjO1) = .

Then Hi(pt; Q) = H*(BT,; Q) = Qlay,...,a,). We write a = (ay,...,a,) and
e=(er,...,e,) = (e,..., e%).
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4.2. Multiplicative classes of the tangent and natural bundles. Recall that a multiplica-
tive class c is a characteristic class which satisfies c¢(E| & E2) = c¢(E1)c(E3). Such a
class is determined by a formal power series f(x) satisfying c(L) = f(c1(L)) for aline
bundle L and ¢(E) = f(x1) - -- f(xr), where x1, ..., x, are Chern roots of E.

Let A, B be multiplicative classes associated to formal power series f(x), g(x),
respectively. Then

/ " )Af(Tsm)Bf(V) € Qlle1. €2, allm C Q((e1, €2, a)),
d,n (X oo

where Tyy is the tangent bundle of M, 4,(X, ¢x), V is the natural bundle over
My.a.0(X, £oo) defined in Definition 2.9, and Q[[€], €2, @]]lm is the localization of the
ring Q[[e1, €2, al] at the maximal ideal m generated by €1, €2, ay, ..., a,. If f(z) and
g(x) are polynomials, then

/ A (Top) B (V) € Qlet, €2, dlm C Q(er, €2, a).
rd (X, €oo)

Let Xo = X \ £oo. Givend € {y € H*(X;7Z) | foy =0 = H?(Xo; Z),
let d¥ € Hy(X;Z) be its Poincaré dual. (Here H is the compact cohomology.)
ThendV e Decrr) Zle = Ha(Xo; Z). We define

2By pater, 2@ 8) = 3 ATt | A (To) B (V)
nZO EInr.d,n(ngoo)
= AUy e | A7 (Tan) B (V)
YLZO 5)Jltr.d,n(Xaeoo)

- Z A—Za<ﬁ(Da—Dﬂ)2ZAZ‘X\f/a\AT(T(D,Y)mr,d,n(X9goo))Bf(V(D,Y))
e (T, ) My.a,n (X, £oo))

ZDa:dv ?a
= > Zl_I(Af( )>Hg(y,)e@((el,ez,a»[mn
ZDIX—d ?oc

where x; are f—equivariant Chern roots of Tip, y)M;,4,» (X, ) and y; are T—equivari-
ant Chern roots of V(p,v). If f(z), g(x) are polynomials then

Zi, paler e.a A) € Qe e, DIA]L
inst

Sometimes we allow A and B to depend on extra parameters, then Zy°, o , will
depend on extra parameters as well.
Introduce variables {Q, | e € E(I')}. Givend € ch(Xo; Z), define

H lee ‘
ecE)

We define a generating function

inst def d ~inst -
Ze gl e @ A QS D> 1ZP e e d )

deH2(Xo:7Z)

= Z Z QdA(l—r)d.d+2rn / AT(TED?)BT(V)-

deH2(Xo:Z) 120 Thrdon (X boo)
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4.3. 4d pure gauge theory. Nekrasov instanton partition functions of 4d pure gauge
theory are given by

2 e 0@ ) & A0S p2 | L
n>0 9:nr,d.n(xﬁeoo)
i def N
ZP e e.@ A Q)= D QZ (a1 e2.d; A).

deH2(Xo;7)
We have
B?Std(el»fz,a A) = BI(ISTA:LB:M(Q,Q,&; A),
Z¢MN e e.d: A, Q) = Z' 4y gy (€1, €2.d: A, Q).
We define a grading on the ring Q((e1, €2, @))[[A]] by
deg A = dege; = degepr = dega, = 2.

Then Zi}?gfd(el, €,d; A) € Q((e1, €2, a))[[A]] is homogeneous of degree 0.

4.4. 4d gauge theory with N y fundamental matter hypermultiplets. Let T,, be the max-
imal torus of U(Ny). Then H;im (pt) = Qimy, ..., me]. Let M be the fundamental
representation of U(Ny), and write m= (my,...,my f). Let V be the natural vector
bundle as in Definition 2.9; it is a T-equivariant vector bundle over MM, 4 (X, €oo).-

Nekrasov instanton partition functions of 4d gauge theory with Ny fundamental
matter hypermultiplets are given by

L def  (1—r)d
Z (er. €. d@ iy A) = AU ”""ZAZ’”/M o) o, (V@ M)
n>0 r.d,n\A,too
Ny
- A(l—r)d-dZAzm/ TTEnp ),
n>0 ra’n(X loo)f 1

where E; is the multiplicative class associated to f(x) = ¢ + x, so that

E(V)=t"+e;(V)* 440 (V), k =rankcV,
ZPer e d.m AL Q) S D QUZE (e e d s A).

deH2(X0:7Z)

Let E; = H?Iil Ey ;. Then

1nst inst >,
Xo a(€t1, €,d,m; A) = ZXO’Azl,BzE’ﬁ,d(617€2»aaA)a

t inst =
ZB?S (e1, €, a,m; A, Q) = Zys sy p—g. (€1, €2,d; A, Q).
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4.5. 4d gauge theory with one adjoint matter hypermultiplet. Nekrasov instanton par-
tition functions of 4d gauge theory with one adjoint matter hypermultiplet are given
by

11’1§td(61 E2,a m; A) A(l r)ddzAZrn/ (Em)T(Tmt),
n>0 EInr,d,n(xvgoc)

def ins -
Zpten ea,m A, QS D QUZ (er, e,d,m; A).

deH2(Xo:7Z)

We have

nst nst =,
3{0 d(6]9€25a m; A) IXO’A:Em’B:Ld(GlyfzaavA)’

Z¢ e e d.m; A, Q) = Z i p_i(€1. €2, a5 A, Q).

4.6. 5d gauge theory compactified on a circle of circumference 8. Let A g be the mul-
tiplicative class associated to fg(x) = M For a complex vector bundle E,
sinh(Bx/2)
A] (E) = A(E ) is the A- -genus of E. The index of the Dirac operator on a complex
manifold M is given by f M A(TM)
The Nekrasov partition functions of 5d gauge theory compactified on a circle of

circumference § are given by

Z¥ y(er, e, a5 A, B) = AT ZAM/ Ap)i (T
}120 mr,d,n(X’EDC)
1nsl (m)(e1 62,61 A0, 8) = Z QdZi)?gfd(el,Ez, Ei; A, B).

deH2(X0:7)

We have
mst inst -,
Xod(el EZ’a A ﬂ)_ZX()A AﬁB ld(517€2,a,1\),
t t -
ms (611 e,a; A\, 0,8 = Z]}?g A=Ap B 1(61, €, a; A\, Q).

Note that éimo fp(x) =1, so the partition function of 5d gauge theory compactified on

a circle of circumference f specializes to the one of 4d pure gauge theory as 8 — 0,
that is:

lim Zi;?;fd(él, €,a; A, B) = Zi)?gfd(él, €,d; A),

glm Zi8er, €2.d; A, Q, B) = Z¥S (1, €2.a; A, Q).
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4.7. Hirzebruch yx, genus. Let
N N
)7 O a0 (X, Lo)) = D (=) D (=Dchz HI Oy g0 (X, Loo), APT*My4.0(X, £oo))

p=0 q=0

be the T—equivariant Hirzebruch x, genus, where N = dim¢c M, 4.,(X, €o). In
particular,

(XO)T (gﬁr,d,n (X, o)) = X7 (mr,d,n (X, £x0), O).
By Grothendieck-Riemann-Roch,

N
) F Mg (X, L)) = D (—1)” / td7 (M)ch (APT*),

P=0 EI)’zr.d,n(xsgoo)

where 9T = M, 4., (X, £x). Define

Z (er, e, a: A y) = AT AT () 2 (Mg (X, Loo))

n>0

. - d ~inst =,
Zenaan Q= > QUZ3 (e e, d A y).
deH?(X0;7Z)

Then

inst -, inst -
Zxoyd(el , €2, 4, A’ y) = ZAIXO’A:AyyB:]’d(Ela €2,4; A)’

inst > inst -
Zyi(er, €2,a; A, Q,y) = Z‘)‘(‘S,A:A]/‘B:](el, €., ad: A, Q),

where A, is the multiplicative class associated to

a1 —ye™)
fy(x) = —1 —
In particular, fy(x) = [— o=’ fi(x) = x,50 Ag(E) =td(E) and A{(E) = e(E).

4.8. Elliptic genus. Let A, , be the multiplicative class associated to

- (1 —yq" e (1 —y~'q"e")
y l/sz —
(1 —g"le=m)(1 — g"e")

n>1

The T-equivariant elliptic genus of 91 is given by

25 Orgn (X, L), 9, ) = / A,y (Tom).
EI”tr,d,n(Xseoo)
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Define

1nst def

st -,
XO d(€]’€25a A y Q) = ZI)I(I(;’A:Ay'q’B:Ld(G]562’a5 A)

= AN A2y (M n(X Loo), Y- ),

n>0
stt A, def 1nst A,
Xo (€1.€2.a: A, Q.y.9) = ZX] s—p,, p=1(€1. €2.a: A, Q)

= D D QAR (M 4 (X, o). Y. ).

deH2(Xo,Z) n=0

5. The Instanton Part

In this section, we calculate the partition functions defined in Sect. 4.

5.1. The tangent bundle: adjoint representation. Let (E, d>) € ‘)ﬂrd 2 (X, lx) be a

fixed point of T-action corresponding to (D, Y) = (Dy, Yl, ..., D, Y ). We want to
compute

ch; T(g )My a0 (X, Loo) = cthxth(E, E(—1x)) = —cthxthX(E, E(—1x)).
Recall that E = I1(D1) @ --- @ I, (D;) (see Sect. 3.3), so

—ch;Extyy (E., E(—lxo)) = — D chzExth (Ia(Da). I5(Dp — o))

o, B
= Ze“ﬁ_““chTtExt’(‘QX (Ie(Dg), 15(Dg — €x0)).
a.p
Let
Lo,g(t1, 1) = —chp,Exty (Ox(Da), Ox(Dp — £eo))
= —x1,(X, Ox(Dg — Dy — £x)),
Ma (11, 1) = chr,Exty, (Ox(Dq), Ox(Dg — Loo))
—chTtEXtZBX (Ia(Dy), Ig(Dg — £o0)).
Then
.
h-T, m X, L = ap—da (M, L 4
ch: T, o) My d,n (X, €oo) e (Map(t1,12) + Lo g(11, 1)) - “4)
«o,p=1

So it remains to compute My g(t1,#2) and Ly g (11, 12).
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5.1.1. My p(t1, o) Let le)a € Homg, (T3, C*) be the characters of the T;-equivariant
line bundle Ox (Dy) at the T; fixed point p, € X, and let x, x; € Homp, (T;, C*)
be the characters of 7,, X. Then Xga, x1{» x5 are monomials in #1, 7.

Let t; be the Lie algebra of 7;. Define weights wp, , wy, w;y € Homop, (t;, C) = 194
by
ehu = yxb . "=y, "=y

Given a partition (Young diagram) S and a box s € §, let as(s) and Ig(s) be the
arm-length and leg-length of s (see e.g. [NY, Fig. 2]). Given two partitions S, T, let

Msr(t, 1) = Zt;lr(s)tgs(s)ﬂ + ZtiS(t)+lt;aT(t)’ 5)
seS teT
Ns.r(€1, €2) def Ms (e, e?) = Ze—IT(S)GH(as(S)H)ez + Ze(ls(t)ﬂ)fl—ar(l)q.
seS teT
(0)

The expression (5) was introduced in [FP, Eq. (4.45)]. (See also [EG, Lemma 3.2] and
[NY1, Theorem 2.1].)

Proposition 5.1 (Vertex contribution to the tangent bundle).

XD, (11, 12)

Meplto = 2 5
D, U1

veV (D)

wl. —w?
Dg WD, v
= E e P QNY;,Yﬁ”(wlvwz),
veV(I)

vpvy O (1, 1), x3 (11, 12)

where w{ = wi (€1, €2), wy = wj (€1, €2), ) = €', 1 = .
Proof.
Mo (11, 1) = chExty, (Ox(Dq), Ox(Dg — £oo))
_ChTtEXt*OX (U4 (Dg), 1g(Dg — £oo)). @)

We will compute the two terms on the right-hand side of (7) using the method in [MNOPI,
Sect. 4].For j > 0and 1 <, 8 <r, define

def

& & Eatl (1,(Du), I5(Dg — o).
Then
Bxtp, (a(Da). I (Dp—toe) = D D H'(X. &5 ) = D~ (X&),

i,j=0 i,j=0

where ¢ denote the Cech cochain groups. More explicitly, let {p, | a =1, ..., x(X)}
be the T;-fixed points in X, where x (X) is the Euler characteristic of X. Let U, be the
C? coordinate chart with origin at p,, and let Uy, = U, N Uy, etc. Then

DX, EL) = P T War &) — DT Wan. 1) + D T Wave- EL) -+ -
a a,b

i>0 a,b,c
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Note that Iy|v,, .. = Oxlu,, ,, unlessi =1and ps, € Xo. Define

Ol S Eat! (Ox(Da), Ox(Dg = o).

Then
Ext, (Ox (Do), Ox(Dg — £oo)) — Extiy, (Ia(Da), 1o (D — £oo))

2 2
= P Dnrw,. ol - P DDIrWwn.El.

veV () j=0 veV (') j=0

where U, is the CZ chart centered at Do-

Given a partition (Young diagram) Y and abox x € Y, let a’(x) and I’ (x) be the arm-
colength and leg-colength of x, respectively (see e.g. [NY, Sect. 3.1]). Given a partition
Y, we define

I'(z) a'(x
Oy (s1,9) = > 5y sy @,

zeY
We have
2 . . 2 ) , xXh
chy D (=1)/T(Uy, Olp) —chz D (=1)/T(U,, Elp) = X—“ - Myy vy (i 13D
j=0 j=0 De
where

Ms1(t,0) = Qs(ti, )i+ Or(t; ' 151 — Os(t1, ) Or (17 L, 15 H(1—1) (1—12).

We now compare our expression of M v.vy (t1, tp) with the notation in the proof of [NY 1,
Theorem 2.11]. The correspondence is

nnHomoy (Vo, W) = Qv (t1, )11tz ,  Home, (Wy, Vp) = ng(tl_l, lz_l) ,
(t1 + 12 — 1 —nin)Homp, (Vy, V) = —Oyp (11, tz)Qyﬂ”(fl_l, 5 DA =1 —1).

So Ms (1, t2) can be rewritten as (5). O

5.1.2. Lo g(t1, 1)
Lemma 5.2. If D, = Dg, then Ly g(t1, 12) = 0. In particular, Ly (11, 12) = 0.
Proof.

Lyg(t1, ) = —x1,(X, Ox (L))

which can be identified with the tangent space of 21 0,0(X, £~ ) at the trivial line bundle
Ox. By Proposition 2.1,

HO(X. Ox(~tso)) = H*(X, Ox(~to0) = 0.
By Corollary 2.4 (here r = 1,d = 0,n = 0), H' (X, Ox(—£x)) =0. O

By Proposition 2.8 and Corollary 2.10, we have
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Lemma 5.3. Suppose that D - £, = 0. Then
H(X, Ox(D — l)) = H*(X, Ox(D — o)) =0,

and
dime H' (X, Ox (D — £oo)) = —% (1)2 +er(X) - D) .
In particular, for any D such that D - £, = 0 we have
D? = —dimc H' (X, Ox(D — {s)) — dimg H' (X, Ox (=D — €4)) < 0.

Notation 5.4. Let g, g1 be the two T; fixed points on €. Let w (resp. u) € Hom(T, C*)
be the tangent weight (resp. normal weight) at qo, i.e., the weight of the T;-action on
Tyoloo (resp. (Ney,/x)gy)- Then the tangent weight (resp. normal weight) at g1, i.e., the
weight of the T;-action on Ty, £ (resp. (Ne,,/x)q, ), must be given by —w (resp. u —kw),
where k = oo - £oo > O.

Note that the normal weights at go and g are the restrictions of the equivariant first
Chern class (c1)7,(Ox (£0)) to the T; fixed points go and g1, respectively:

(CI)T,(OX(EOO))LO =u, (c)7,(Ox(e)) o kw.

Proposition 5.5. (Edge contribution to the tangent bundle)

i ~ _ wnﬂ wp, 1 1
a,ﬂ(fla n)= Z - e_w'lj)(l _ e—w§)+((1 —eW)(1 — et) + (1 —ew)(1 — eufkw)) :

veV(T)

Proof. Recall that Ly g(11, 1) = —x1,(X, Ox(Dg — Do — £oo)). By Grothendieck-
Riemann-Roch,

x1,(X, Ox(Dg — Dy — £o)) = / tdr, (Tx)chy, (Ox(Dg — Dy — £x0))
X
evaﬂ_wB“ e e

—u —u+kw
-3 U v+( e, _ )
(I—e ™) (1 —e2) \(I—e™®)(I—e™) (1 —e®)(l — e uthw)

veV (D)

O

Example 5.6. Let X = Ty, £y, £ be as in Example 2.6, with the following T;-action:

Tpi o | Newx)p1 | Tolo | (NeosxX)py | Tpsboo | New/x)ps | Tpuloo | (New/x)pa

€] ‘ € ‘ —€] ‘ € + ke ‘ —€] ‘ —ey — ke ‘ €] ‘ —€)
Hence, here w = ¢ and u = —¢5, and we have D, = d,£( for some d, € Z. Then
—eldp—da)ea —eldp—da)(eatker)
L f, ) = +
wp (10 = T e ey T T — e — et
1 1
+ +
(1 —e )1 —e2) (1 —e1)(1 —e2ker)
-y 1 — (tf1) s e

T U—ha-5h  d—md -ty
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and we have
doy—dg—1 kj
—i 7]' .
> Dy ifdy > dg,
j=0 =0

Lo g(ty, 1) = §dp—dakj=t

> > if dy < dp,
j=1 i=1

0 if dy = dg.

5.2. The natural bundle: fundamental representation. Let (E D) e M, 4, n(X £oo) be

a fixed point of the T-action corresponding to (D, Y) = (Dq, Y1, ..., Dy, Y ). We want
to compute

ch; Vig o) = chz H' (X, E(—ls0)) = —x7 (X, E(—Loo)).
Recall that E = I1(D1) & - - - & I, (D;) (see Sect. 3.3), so

X7 (X, E(—lo)) = = D x7(X. I(Dp — £oo)) = — D e* x7,(X. I(Dp — L))

B B
Let

Lgti, 1) = —x1,(X, Ox(Dg — £oo)),

Mg(t1,12) = x1,(X, Ox(Dp — £xo)) — x1,(X, Ig(Dp — €x0)).
Then

.
chiVig,o) = e (Mp(t1. ) + Lp(t1. 12)) . (8)
p=1

So it remains to compute Mg(t1, 12) and Lg(tq, 12).
Let w;’)a, wY, wj be defined as in Sect. 5.1.1. Given a partition S, let

_l/ K _ ! S
Ms(n, 1) = Ztl @y, €))
ses
Ns(er,e2) € Ms(efl, e?) = D e I Oa-dte, (10)
seS

Proposition 5.7. (Vertex contribution to the natural bundle).
wU
Mg, )= D xp, (1 )Mys O (1, 02), x3 (1, 12)) = D e P Nyy(w, ).
veV(I) veV (D)
Proof. Let D, = 0 in Proposition 5.1. O

Proposition 5.8. (Edge contribution to the natural bundle).

L1, )= e + ! + 1
p= 2 GG e (<l—e—w)(1—e") (l—eW)(l—e"-M)‘

veV(I)
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Proof. Let D, = 0 in Proposition 5.5. O

Example 5.9. Let X = Fy, £o, £ be as in Example 2.6, with the T;-action as in Exam-
ple 5.6. Then

—dg—1 kj .
> D 'y itdg <0,
j=0 i=0

Lg(t1, 1) = { % kizl

> > it if dg > 0,

j=1 i=1

0 ifdg = 0.

5.3. Formula for instanton partition functions. Given Y = (Y1, ...,Y), whereeach Yy

is a Young diagram, and a multiplicative class A associated to f(z), define

% . def
m} g1, €.8) E || flap — aa — lys(s)er + (ay,(s) + De)

seYy
T r@p —ao+ tr, )+ Vet —ay, e, (11
teYg

mh pler.e2.a) € [ flap 1y, (er - ay, (e, (12)
teyp

In particular,

m!  eplered) = [ (ap —daa — Iy, ($)er + (ay, (s) + Dea)

Ctop &
SEYy
: H(aﬂ —ag + (ly, (1) + Dep — ayy(1)e€2). (13)
teYp
Let Z(‘é‘ZS‘A 2= ZE‘S‘A 5o and let [Y] = > —1 Yel. In this case, all Dg = 0, so the

leg contribution is zero (see Lemma 5.2, Lemma 5.3):
Lypg=0, Lg=0.

By (4), Proposition 5.1, (8), Proposition 5.7, and above definitions (11), (12), (13), we
have:

Proposition 5.10. (Instanton partition functions for C?)

mAa/g(El €,a)

ZlnStA B(ElaGZ’Q A) ZAZMY‘H HmB ﬁ(E]aEZaa)

aﬂ Cm aﬂ(51,627a),3 1
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Given D = (D1, ..., D;), where each Dy € @ecpayZle = Hy(Xo;Z), and a
multiplicative class A, define

10 pler.€2.a) = Az H' (X, Ox(Dg — Dy — £o0)). (14)
Then l/?’a’ﬂ(el, €2;a) = 1 if Dy = Dg. In particular, l/?’a’a(el, €;d) = 1. Let

17 g1, €2,a) = Az H' (X, Ox(Dp — £oo)). (15)

Let

- 1
DI’ = =2 > (Do = Dp)* 2 0.
aFEp

By Egs. (4), (8) and Propositions 5.1, 5.5, 5.7, 5.8, 5.10, we have the following
analogue of the “master formula” in [Ne3, Sect. 6].

Proposition 5.11. (Master formula for instanton partition functions)

- lﬁ (e1,62,a) . =
inst - D|? A, pr-1 =2 D -
ZXoaaler, e,a; A) = E AlP! I I —_— | IlB,ﬂ(El,Ez,a)

D -
> Dy=d a#p lcmp,a,ﬂ(él . €2,0) B=1
T 2, phugas 5
veV ()
DU _ (1), v
where DV = (wD], wDr).

. - 1D (e1, €, a)
inst R _ > Do A ID]? Aoa,pr10
ZXO,A,B(61762761,A7Q)— E 0 A | | —15

Dy eH2(X:7) aB Lergp.a.p (€15 €2, @)

,
1B stereay- [] 25, sl wy @+ D% A).
B=1 veV ()

In the rank 1 case, Zl)?;‘ 4. does not depend on a.

Corollary 5.12. (Rank 1, B = 1 case)

inst . inst .
ZXo.a.8=1,4(€1, €25 A) = H Zey p gy (WT, was A),
veV(I)

ins ) d ins .
Zapmien e A 0= > 00 [Tz, po i wiip).
deHX(X;Z) veV (')

Note that Corollary 5.12 is applicable to the following cases: 4d pure gauge theory
(Sect. 4.3), 4d gauge theory with one adjoint matter hypermultiplet (Sect. 4.5), 5d gauge
theory compactified on a circle (Sect. 4.6), Hirzebruch genus (Sect. 4.7), elliptic genus
(Sect. 4.8).
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5.4. Nekrasov conjecture for C2: instanton part.

Definition 5.13. (Instanton prepotential for C?). Define
flmtA (€1, €,a A E —eie logZé‘z ap€1 €2.d; A).

There are several versions of Nekrasov conjecture which correspond to the following
special cases:

(1) 4d pure gauge theory (see Sect. 4.3):
F& e, €2,d;8) = FB' | 5 (€1, €2,d5 A),

(2) 4d gauge theory with Ny fundamental matter hypermultiplets (see Sect. 4.4):

1nst

t
1ns (6176270 m A) 2 A=1,B= Ej; (61 62,(1 A)

(3) 4d gauge theory with one adjoint matter hypermultiplet (see Sect. 4.5):
mst(ﬂ €,d,m; A) = f(%lzsz:Em’B:l(el, €, d,m; A).
(4) 5d gauge theory compactified on a circle of circumference B (see Sect. 4.6):

FiS(er,e2,a5 A, B) = F', Aypoi (€15 € dmi A,

The above definitions of F 1% inst are the same as those in [NOJ; the definition in case
(1) above is the negative of the deflnition in [NY,NY1].

In Theorem 5.14 below, we summarize the various versions of the Nekrasov conjec-
ture proved by Nakajima-Yoshioka [NY1,NY2], Nekrasov-Okounkov [NO], Gottsche-
Nakajima-Yoshioka [GNY?2]. See also Braverman [Br] and Braverman-Etingof [BrE],
who consider the case 4d pure gauge theory with arbitrary gauge groups. We refer to
Appendix C for the definitions of the corresponding versions of the Seiberg-Witten
prepotential in Theorem 5.14.

Theorem 5.14. (Nekrasov conjecture for C?: instanton part)

(1) 4d pure gauge theory [NO,NY1,BrE]:

(a) fé‘;t(el, €, ad; N) is analytic in €1, € near €] = €y = 0.

(b) . leim mSt(el ,€,a; N) = ]-"(i)nSt (a, A), where ]-’6““ (@, A) is the instanton part
olftzhe Seiberg-Witten prepotential of 4d pure gauge theory.

(2) 4d gauge theory with Ny fundamental matter hypermultiplets [NOJ:

(a) ]—"mSt(e], €, a, m; A) is analytic in €1, €3 near €| = €3 = 0.

(b) . 16111 ]—""“t(el ,€,d,m; A) = ln(‘t(a m, A), where féns‘(a, m, A) is the inst-
a]ntzon part of the Seiberg-Witten prepotential of 4d gauge theory with N y funda-
mental matter hypermultiplets.

(3) 4d gauge theory with one adjoint matter hypermultiplet [NOJ:

(a) ]—""St(el €, ad, m; N) is analytic in €1, €3 near €] = €3 = 0.

(b) . l€1m fmSt (e1,€,a,m; A) = fénSt (@, m, A\), where f(l)n“(a, m, A) is the inst-
alntim part of the Seiberg-Witten prepotential of 4d gauge theory with one adjoint
matter hypermultiplet.
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(4) 5d gauge theory compactified on a circle of circumference 8 [NO,NY2,GNY2]:
(a) f(‘élft(el, €, a; A, B) is analytic in €1, €2 near €] = €3 = 0.
(b) lim Ofg;‘(el ,€2,d; A, B) = FSU@, A, B), where Fi™'(@, A, B) is the inst-
€],62—>
anton part of the Seiberg-Witten prepotential of 5d gauge theory compactified
on a circle of circumference B.

5.5. Nekrasov conjecture for toric surfaces: instanton part. The expression of the mas-
ter formula (Proposition 5.11) contains two parts.

e Leg contribution:

5 o
H 1;4)0(’/3(61762761) Hlﬂﬁ(el € a)

a#B lgap,a,ﬂ(el, €,d) B=1

is analytic in €1, € near €1, €3 = 0, and

1D (€1,€2,a) L& =
lim ;“ﬂ— H 19 (e1. €2.d)
61’62_)001;&;3 lCmp,a’ﬂ(El, €,a) p=1

— L (Dp—Dy)*+c1 (X)(Dsg—Dy
_ H (f(aﬁ —aa)) 3 ((Dg—Dg)*+c1(X)(Dp—Da)) li[g(aﬁ)f%(ngm(x).m)_

B=1
e Vertex contribution:
JFinst (w, wl,a+ DY A)

. R 2
H ZESTA’B(U)'{, wy,a+D%; A)=exp | — Z L*A.B
veV () veV(I)

v v
wyw,

Definition 5.15. Given D = (D1 ..., D,), where each Dy € () Zt, = Hy(Xo; Z),
ecE()
define

Finst (w?, w? &'+5v. A)
PR N (Cz A.B 1° 20 ’
Fot e e, d A= Y ——=

Xo,A,B,D wbw?
veV () 172
Fumst o (w,u,a; A) FBU o (—w,u —kw,d; A)
+ CLAB +_CLAB
wu —w(u — kw)
Lemma 5.16. Assume that Fé‘ftA B(el, €, a; A) is analytic in €1, €3 near €] = €3 = 0.
Then f;?;tA 3 ﬁ(el , €2,4d; N) is analytic in €1, € near €] = €y = 0 for all D.

Proof. ]:E‘;tA B(el , €2, d; A) is symmetric in €1, €3, so it is a function of 51 = €1 + €3,

s = €1€2, a, and A. For fixed a, A, let

. inst .
gA,B(Slas2v dl, ~“7dr’as A) ZIE];’A’B(613 621 al +d1a "-7ar +dr1 A)
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Then ga g (s1, $2,d1, ..., dr, a; A)isanalyticin sy, s3,dy, ..., d, nears; = sy = dj =
- = d, = 0, so it has a power series expansion. Let L, be the T;-equivariant line
bundle Ox (Dy). Then

- def -
I, g pler, ea,a; A) é/ 9a.8((c)1,(Tx), ()1, (Tx), (c1)7,(L1), ..., (c1)7,(Lr), d; A)
X
(16)
is analytic in €1, €; near €] = €3 = 0, and
lim 1, p (e, €:a, A) =/ ga.B (c1(Tx), c2(Tx), c1(L1), ..., c1(Ly),a; A).
€1,60—0 T X
(17)
The integral 1, , 5 (€1, €2, a; A) is computed by the localization formula as follows:

fgzsz (WY, wy,d+ DV A)

I pplenedA)= D

v v
w¥w
veV(I) )
inst = 1nst _ _ >,
+fC2’A’B(wvu5a7A) +F(C2,A,B( w, u kw,a,A)
wu —w(u — kw)
__ rinst =
- fXO,A,B,D(Gl’ 627 a; A)'
O
Definition 5.17. Assume that f(iC“ZStA B(El, €, a; A) is analytic in €1, €y near €; =
€3 = 0. Define
b def . 1 >
F =(a;A) = lim F™' (e, e, a; ),
X(),A,B,D( ) 61,62—)0 X(),A,B,D( 1 2 )

where the limit exists by Lemma 5.16.

Lemma 5.18. Iff(ianStA g€l €, d; A) is analytic in €1, €3 near €| = € = 0, then

log (Zi)?ng,B,d(le €2 a’ A)chnng’B(w3 u, C_i, A)Z(ISSTA’B(_w’ u— kw, Eiv A))

is analytic in €1, €3 near €1 = €3 = 0.
Proof. We have
inst .2 inst =, inst i
ZXO’A’B’d(Gl , €2, 45 A)ZCZ,A,B(w’ u,a; A)Z(ICZ’A’B(_w’ u— kw’ a; A)

= Z AlD‘zh[)(él,éz,a:A),
S Da—d

where

. 1Raplere,d) o = . st .
hi(er, e,a: M)=]] D ez [ 1. e2.ayexp (_IX’AVBJ)(GL €,4; A)) :
a#p Cmp,a,ﬁ(e] ,€2,a) B=1
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hp(€r, €2, a; A) is analytic in €1, €; near €] = ¢ = 0, and

Dﬁ Dy )( 0())
f(a; a ) 2(( ) c1 (X Dﬂ D,
hln hD(61$€27a 1‘) | I (

€1,62— ag — dy
afp ~ P

;
—YD2+e;(X).D >

T 9tap) 2 PO exp(—Fy 5@ A)).

B=1

Therefore

log( > APPhzeee.d:A)
> Dy=d

is analyticin €], ex neare; = e =0. 0O
By Lemma 5.18, the pole of log Z”mA p.q along €1 = €2 = 0 is the same as that of

—log ‘“SIA p(w,u,d; A) —log mStA p(—w,u —kw,d; A)

fgS‘A pw,u, a3 A) fg;tA p(—w.u —kw, a; A)
wu —w(u — kw)

Definition 5.19. (Logarithm of the instanton part) Define

inst

m“t (€1, e,d; A) = —u(u — kw)log Z>' s (€1, €2, @; A).

Theorem 5.20. I]‘]:(E‘ZS‘A €1, e, a; A) is analytic in €1, € near €] = €3 = 0, then

1 t . . . .
(a) .7-";?05 A.B d(el,ez, a; N) is analytic in €1, €y near €] = €3 = 0,

(b) Ellei;‘n f;IOtA B, d(els 627 Cl A) = k611€1m fg;tA B(elv €2a Zis A)

Proof. Let

t = t =,
0001, 5 ) =t —k) f(glzsA B(w, u,a; ) f(‘anSA B( w, u —kw,a; A)
B wu —w(u — kw)

Note that (w, u) and (€1, €>) are related by a coordinate transformation in GL(2, Z). By
Lemma 5.18, it suffices to show that

(@) gk(w,u,a; A) is analytic in w, u near w = u = 0,
(b)’ hm gk(w w,da; A) =k lim FBU  (e1,e,d, A).

€1,62—0 C2.A.B
We have
nSt( w,u —kw,a; A) — flnStA pw,u,d; A) = wHy(w, u, a; A),
where Hy(w, u, a; A) is analytic in w, u near w = u = 0. So

g(w,u,a; A) = k.?’-"”gt pw u,d, A) +uHg(w, u, d; A). (18)

(a)’ and (b)’ are immediate consequences of (18). O
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Theorem 5.14 and Theorem 5.20 imply:
Theorem 5.21. (Nekrasov conjecture for toric surfaces: instanton part)

(1) 4d pure gauge theory:
(a) f}é‘;fd(el , €2, a; N) is analytic in €1, €3 near €] = €3 = 0.

(b) lim Ofi?(ftd(el, €,d; N) = k]-'(i)nSt(Zi, A), where Fi™W(a, A) is the instanton
€1,62—> ’

part of the Seiberg-Witten prepotential of 4d pure gauge theory.
(2) 4d gauge theory with Ny fundamental matter hypermultiplets:
(a) ]—'}}‘;fd(el, €, a,m; A) is analytic in €1, €3 near €| = €, = 0.
(b) lim Ofgygtd(el, €,d,m; A) = kFy™a@, m, ), where Fi™' (@, m, A) is the
€1,62—> ’
instanton part of the Seiberg-Witten prepotential of 4d gauge theory with Ny
fundamental matter hypermultiplets.
(3) 4d gauge theory Yith one adjoint matter hypermultiplet:
(a) fg‘;fd(el, €,a,m; N) is analytic in €1, €y near €; = €3 = 0.
(b) lim Fy(e1,€2,d,m; A) = kFg™ @, m, A), where F§™ @, m, A) is the
€1,62—> ’
instanton part of the Seiberg-Witten prepotential of 4d gauge theory with one
adjoint matter hypermultiplet.
(4) 5d gauge theory compactified on a circle of circumference B:
(a) ]—'}?()Std(el, €, a; A, B) is analytic in €1, €2 near €| = €3 = 0.

(b) lim Of}?;‘d(el,ez,a; A, B) = kF™@, A, B), where Fi™'(@, A, B) is the
€1,62— ’

instanton part of the Seiberg-Witten prepotential of 5d gauge theory compacti-
fied on a circle of circumference B.

6. The Perturbative Part

In this section we prove the perturbative parts of the conjecture, of which instanton coun-
terparts were proved in Theorem 5.21. The perturbative part comes from the difference
between framed instantons on the compact toric surface X and unframed instantons on
the noncompact toric surface Xy, so we must consider the virtual tangent and natural
bundles of the moduli space of unframed instantons on Xy. Evaluating the required
multiplicative classes at such bundles gives rise to infinite products which need to be
regularised. Following [NO] we use zeta-function regularization (Definition 6.3).

6.1. The virtual tangent bundle of M, 4.,(Xo). Given (E, ®) € M, 4.,(X, lxo), We
may look at E|y, as representing a point in the moduli space M, 4 ,(Xo) of unframed
instantons on the noncompact surface X(. We have

Chf Tg};omr,d,n(x()) = _CthXt*OxO (E|X0’ E|X°)

v v 1
— eaﬁfaa ewpﬂ Why (N v U(U)U, wv) _ . . )
% Z Yo Xp R0 T2 (1 —e ¥1)(1 — e ¥2)

veV(D)

(ag+twY, )—(ag+w?, ) 1
=ZZ€ B Dg Dy (Nyg’yfl;)(wll),wg)— — — )
(1—e D1 —e ™)

vell o,
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The perturbative part of the T—equivariant Chern character of the tangent bundle is
given by
def i
chTE S chyTE Mg n(Xo) — ch Tie,a)Mrd.n (X, Loo)

1 1

= —Zeaﬁ_aa ( — + - )
“ (I—e )1 —e) (I —ev)(1— ety

_ Za P 4~ k—1 '
= . 1+ ) 7%
(1 —et)(1 — en—Fkw) JZ:;

Example 6.1. X = P?, X = C2.

1 1
_pert ap—ay
ChTT(E,<I>) - O[Zﬂ:e ((1 — e27€1)(] — e—€2) * (1 —es1—€2)(1 — eq))

_ _Za,ﬁ eaﬁ—aa
(I—e)(1 —e2)

Let A be a multiplicative class defined by a formal power series f(x). Formally,
evaluating A on the tangent bundle produces the following perturbative part:

A~(Tpert ) _ 1
PHEDT TN flap —ag —iw + ju) [[7520 fap — ag +iw + j (u — kw))
(19)

The infinite product on the right-hand side requires regularization.

6.2. The natural virtual bundle. Given (E, ®) € M, 4., (X, £x), once again looking at
E|x, as representing a point in 90, 4 ,(Xo), we have

Chf Vgllrxo = —XfEXt?QXO E
v 1
= eaﬁ ewDﬂ (NYU (U)?, w;) - v v )
; veg(:m ! (I —e™)(1 —e™™)

(ap+wp, ) v v 1 )
= e B~ Nyv(wy, wy) — v v |-
ZZ ( Yﬂ( 1 2) (1 _ e_wl)(l _ e—w2)

vell B

The perturbative part of the T -equivariant Chern character of the natural bundle is given
by
chs VP &L cpoyir _chy,
T Elx, — “"TVElx, T V(E,®)

== ( : + : k )
wp (I—em)(1 —e*) (1 —e”)(I—e""")

_ ag k—1
= zﬁ ¢ 1+ Z e“_jw
(1 —e")(1 — eLhkw)
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Example 6.2. X = P2, X, = C2.

1 1
pert ag
chy VEIx Zﬁ:e ((1 — e2€1)(] — ¢—€2) + (1 — e€1—e2)(1 — eel))

— > e
S (I—em)(1—e )’

Let B be a multiplicative class defined by a formal power series g(x). Formally,
evaluating B on the natural bundle produces the following perturbative part:

1
Bi(VEY ) = — —— . (0)
Elxo™ T 15520 9lag — iw + ju) [175—0 g(ap +iw + j(u — kw))

The infinite product on the right hand side requires regularization.

6.3. Regularization. Following [NO, App. A], we introduce the following functions.

Definition 6.3. (Zeta-regularization)

def d A © dt e
A —1* , 21
Vae @A) =0T r e — e — 1) D
e 1 B 1 ’
Vereo(® | B A) = a6 (—g (x+§(61 +62)) + 27 log(BA)
—ﬁnz

+Z n (eBrer — 1)(ePre2 — 1) 22)

exp(Ye, e, (x; A)) is a regularization of the infinite product

= A
H x—iel — jeo
i,j=0 1—Jje

n
For a very nice explanation of this regularization scheme see [Ok]. Let Liy (z) = Z Z—s
n

n=
be the polylogarithm function. The functions e, ¢, (x; A) and ye, e, (x | B; A) satisfy
the following properties (see [NO, App. A]):

Fact 6.4. (1) €1€2V¢,.¢,(z; A) is analytic in €1, €x near €] = €3 = 0;
1 3

2) lim €€ T A ——2%1lo z2.

2 L 1€2Vey,e0 (T3 A) = 233 g A 4

Fact 6.5. (1) €1€2V¢;,,(x | B; A) is analytic in €1, €3 near 61 =¢e =0;
2
. x B
@ lim c1erre.a@ | A) =5 log(BA) — 5+ @Lu(e pa),
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6.4. Nekrasov conjecture: perturbative part. Applying zeta-regularization to (19) and
(20), we obtain the following definitions:

Definition 6.6. (Perturbative part of the partition function)
(1) 4d pure gauge theory:

pert -,
‘FXO,A:I,B:I(EI’ €,d; N)

def
= u( —kw) - [ D w,—ulap = aai A) + y-u,—uskw(ap — da’ A))
a’ﬂ
_7_-pert (61 & Zi A)
pert 7 def Xo,A=1,B=1\%1> 2, &>
Zx,.A=1.p=1(€1,€2,a; N) = exp( T ’

(2) 4d gauge theory with Ny fundamental matter hypermultiplets:
f;;’ii[A:l,B:E,;, (€1, €2,a; A)

d;f u(u — kw) - Z (Vw,—u (Clﬁ — Aoy N) + Vo, —uthw (Clﬂ — dgy; A)

a’ﬁ

> (Vw—ulag +mpi A) + y_w —uskw(ap +mys, A))
¥

pert -
on,A=1,B=E,;, (€1, €2,a; A)
—u(u — kw) ’

pert - def
ZXQ,A:LB:E,;, (€1,€2,a; A) = exp

(3) 4d gauge theory with one adjoint matter hypermultiplet:
f;ir,tA:Em,le(elv €,d; A)

def
= u(u — kw) - Z (Vw,—u(aﬂ —dg; A) — Yw,—u(m +ag —aq; A)

a.p
+Y—w, —utkw (aﬁ — o N) — V—w,—urkw (m +ag —ag; A))

pert >,
‘}—XO,A:E,,,,B:I (€1, €2, a; A))

X09A=EM7B=

zbert €1, 6, a; A & ex
(€1, € ) p —u(u — kw)

(4) 5d gauge theory compactified at a circle of circumference B:

pert -
FXO,A:X,,,B:1(61’€2’“’ A)
def
= u(u —kw) D (Vu—u(ap — ag; B, A) +Y-u —urkw(@p — ag; B, A)
p.q
pert -

~ €1,€2,a; A

pert def '7:X0,A=Aﬂ,3=1(1 2 )

(€1, €2, a; A) = exp

Xo,A=Ag,B=1 —u(u — kw)
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Example 6.7. X = P?, X = C2.
(1) 4d pure gauge theory:

pert =, .
:F(CZ,A=1,B=1(€1’ €2,4d; A) = €1€2 z J/E],Gz(aﬁ — dg; A)v
o,p

(2) 4d gauge theory with Ny fundamental matter hypermultiplets:

pert -,
fCZ,A:LB:E,ﬁ (Elv €2,4d; A)

=& | D Vaalap —awi A) = D Vepelag +mypi A) |,
a.p B.f

(3) 4d gauge theory with one adjoint matter hypermultiplet:

t -
fEZfA:Em,le(el,ez,a; A)
=162 ) (Ver.(ap — aui A) = Vey.er (M +ap — ag; A)) ,
wp

(4) 5d gauge theory compactified at a circle of circumference B:
FGo sy o (€1 €28 D) = 162 D Ve er(@p —ag | B3 D).
P
Theorem 6.8. (Nekrasov conjecture: perturbative part)
(1) 4d pure gauge theory:

. pert - pert -
lim fX(),A:l,B=1(€1’ €,a; N) =kFy (a,A),

€1,60—0
where
- 1 — 3
]—'gert(a, A) = Z#/:g (_E(a“ — a,g)zlog (aa X aﬂ) + Z(aa — a,g)2)
o

is the perturbative part of the Seiberg-Witten prepotential of 4d pure gauge theory.
(2) 4d gauge theory with Ny fundamental matter hypermultiplets:

i pert >, _, ppert,» o
61}:2nl>0‘7_-X0,A:1,B:E’ﬁ (€1, €2, d; A) = kFy (@, m, A),

where

Lo 1 Ay — a 3
]—'gen(a, m,\) = E (_E(a“ — aﬁ)zlog( ad X ﬂ) + Z(a“ _ aﬁ)z)
aFp

1 ag+m 3
+Z (E(aﬁ + mf)2 log (%) — Z(a,g + mf)z)
B.f

is the perturbative part of the Seiberg-Witten prepotential of 4d gauge theory with
Ny fundamental matter hypermultiplets.
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(3) 4d gauge theory with one adjoint matter hypermultiplet:

. pert - _ pert ,—
el}elgofXO’A:Em’le(el’ €2,4d; A) - k]:() (a7m7 A)7

where

R 1 ay — a 3
f(‘)’“‘(a,m, A) = Z (-5(% - aﬁ)210g (aTﬁ) + Z(aa - aﬁ)2
a#p

1 —ag+ 3
+§(aa —ag +m)2 log (W) — Z(ao, —ag +m)2))

1 - 1
= E —=(aq — a;;)zlog da — 95 . ~(ag —ap +m)?
2 A 2
a#p

ag —ag+m 3m?

is the perturbative part of the Seiberg-Witten prepotential of 4d gauge theory with
one adjoint matter hypermultiplets.
(4) 5d gauge theory compactified at a circle of circumference B:

: Tt - pert ,—
lim F% ~ €1,6x,a; N)=kF; (a, A, B),
€1,62—>0 XOsA=Aﬁ’B=1( e ) 0 ( 2

where

ert - 1 L. —B(a,—a
FP t(a,A,ﬁ):Z(E(ap—aq)zlog(ﬁA)—%(ap—aq)3+EL13(e Plap q)))
P#q

is the perturbative part of the Seiberg-Witten prepotential of 5d gauge theory com-
pactified on a circle.

Proof. We prove (1), (2), (3). The proof of (4) is similar, except that we use Fact 6.5
instead Fact 6.4.
Define

S, w, 23 A) = u(u — kw)(Vw,—u (@5 A) + Yo urkw (@5 A)).

By Definition 6.6 (definition of FPe™), it suffices to show that

1 r 3
li iA) =k (—=x?log =~ +>a? ).
u»;}rgofk(u,w,x, ) k( 2.’L‘ ogA+4J;)

Let g(e1, €2, x5 A) = €1€2V¢;,6, (x; A). Then by Fact 6.4,

(i) g(e1, €2, z; A) is analytic in €], €3 near €] = €3 =0,
r 3

i) lim e, e, A) = ——a’log = + ~a°.

(i1) 61’62_)09( 1, €2 ) 5 ety
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By (i), we have
g(—w, —u +kw, x; A) — g(w, —u, x; A) = whi(u, w, x; A),

where Ay (1, w, x; A) is analytic in w, # near w = u = 0. We have

DAY — B gw, —u, x; A)  g(—w, —u+kw; A)
fr(u, w, z; A) = u(u — kw) ( r— o w+ w) )

=kg(w, —u, z; A) +uhi(u, w, x; A).

Therefore

lim / ( I\) =k lim g(E € A) =k ——1 lo —x + —
u,w,x, N , X, x T .
k 1, €2 2 g A

u,w— €1,60— 4

Appendix A: Kobayashi-Hitchin Correspondence and Existence of Instantons

In this section we recall some results relating instantons in pure gauge theory to holomor-
phic bundles. The Kobayashi—Hitchin correspondence predicts an equivalence between
instantons and holomorphic bundles in various settings, see [LT]. For an SU (n) bundle
E over compact Kihler surface X this correspondence was proved by Donaldson [Dol]:
The moduli space of irreducible anti-self-dual connections on E is naturally identified
with the set of equivalence classes of stable holomorphic SL(n, C) bundles which are
topologically equivalent to E (see [DoK] Corollary 6.1.6 for a proof of the rank 2 case).
Note that here stability is taken with respect to the Kihler class. Under this correspon-
dence the topological charge of the instanton corresponds to the second Chern number
of the bundle.

To obtain a Kobayashi—Hitchin correspondence over a non-compact Kihler manifold
(X, w) one must impose some conditions on the behaviour of holomorphic bundles at
infinity. The instanton charge is obtained by integration of the curvature of the connec-
tion over X, and the mildest constraint that guarantees finiteness of this integral is to
demand that the curvature decays as 1/r2. B

For a manifold X that can be compactified to X = X U D by adding a smooth divi-
sor D with positive normal bundle, Bando [Ba] defined a notion on U (r) flatness and
proved the following: There is a correspondence between the moduli space of Hermitian—
Einstein holomorphic vector bundles on (X, w) whose curvature decays faster than 1/ r_2
with trivial holonomy at infinity and the moduli space of holomorphic vector bundles X
whose restriction to D are U (r)—flat.

Alternatively, one can study non-compact Kobayashi-Hitchin correspondence
between instantons and framed bundles, that is, holomorphic bundles that are trivialized
at infinity. See Donaldson [Do2] for the first non-compact instance of the correspon-
dence, namely instantons on C?; then King [Ki] for instantons on the blow-up of C?;
and Gasparim—Koppe—Majumdar [GKM] for instantons on Z; := TotOp1 (—k).

We remark that these correspondences refer to classical instantons, and correspond-
ing non-compactified moduli spaces of holomorphic vector bundles (i.e. locally free
sheaves) having ¢; = 0, whereas in the supersymmetric case the vocabulary instanton
moduli refers to the much more general notion of (partially) compactified moduli spaces
of torsion free sheaves. In particular, existence of instantons with a prescribed charge in
supersymmetric gauge theories can be obtained simply by considering non-locally free
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sheaves. Thus, existence results for supersymmetric instantons contrast with existence of
classical instantons, cf. [GKM] Theorem 6.8, which says that the minimal local charge
of a nontrivial SU (2)-instanton on Z; is k — 1.

Appendix B: Equivariant Cohomology

Let ET be a contractible space on which 7 = (C*)¥ acts freely, and let BT = ET/T.
(For example, ET = (C® — {0})* and BT = (P*®).) Then ET — BT is a universal
principal T -bundle.

Suppose that T = (C*)¥ acts on an m-dimensional complex manifold M. The
T -equivariant cohomology of M is defined to be

Hi(M; Q) < H*(Mr: Q),

where M7 = M x7 ET. There is a fibration My — BT = ET/T with fiber M. Let
iy : M — My be the inclusion of fiber. This induces a ring homomorphism

iy : HH(M; Q) — H*(M:; Q).
In particular, when M is a point, the map
% HU Q) = Qlur, ... ] — H*(pt; Q) = Q

is given by p(uy, ..., ux) = p(0, ..., 0), where uy, ..., u; € H%(pt; Q).

B.1: Integral: Now suppose that M is compact. Then integration along the fiber gives
Q-linear maps

/M L HY(M: Q) — H*(pt: Q), (23)

/MZH?(M; Q) = H*Mr; Q) — Hy(pt; Q) = H*(BT; Q), (24)

such that

6) fMa =0ifa € HI(M;Q), g < 2m.
(i) [, € HO(p) = Qifa € H*™(M; Q).
(iii) [}, 0 =0ifa € H{(M;Q),q < 2m.
(@iv) fMot € H?_zm (pt; Q) if o € H}] (M; Q), g > 2m. Note that Hg_zm (pt; Q) =
0 when ¢ is odd, and H¥—2m (pt; Q) consists of homogeneous polynomials in
ui, ..., u of degree g /2 — m when g is even.

W) i% fya=[yine e H@p:Q) =Qfora e Hf(M; Q).
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B.2: Localization: Let MT denote the set of T-fixed points in M. Suppose that each
connected component of M7 is a compact complex submanifold of M, so that M7
has a normal bundle N which is a complex vector bundle. Note that N might have
different ranks on different connected components of M7 . T acts on M7 trivially, so
(MT)r = MT x BT and

Hif(M"; Q) = H*M"; Q) ®g Hr (pt: Q).
The T-equivariant Euler class e7(N) € Hj(M . Q) is invertible in

H*M";Q) ®g Qlut, ..., uk]m,

where Q[u1, ..., ur]m is the localization of the ring Q[u1, . . ., ux] at the maximal ideal
m generated by u1, ..., ux. The Atiyah-Bott localization formula says

25
/M /MT er(N)’ )

where o € H}(M; Q), and i* : Hj(M; Q) — Hj (MT; Q) is induced by the inclusion
i:MT — M.In particular, if M T consists of isolated points pi, ..., pn, then

26
/ z eT(Tle) (26)

where i*j  Hi(M; Q) — H7(pj; Q) = Qluy, ..., ux] is induced by the inclusion

12

p
ip;:pj—> M.

Now suppose that M is non-compact. Then (23) and (24) are not defined. However,
when M7 is compact, we may define (24) by the right hand side of (25). Now (i), (ii),
(v) are irrelevant, and (iii), (iv) do not hold: given o € H;(M; Q), we have fM a = 0if
g is odd, and |, ) @ is arational function in i, . . ., ux homogeneous of degree ¢ /2 —m
(the degree can be negative).

Example B.1. Let T, = (C*)* act on P2 by (11, 1) - [Zo. Z1, Z2] = [Zo. 1 Z1, 12 2]
We have Hy (pt; Q) = Qle1, e2],

/ = L =+ 1 + 1 =
P2 €1e2  (—€)(—€1+e) (=€)l —e)

B.3: Characteristic classes: Let ¢ be a characteristic class for complex vector bundles.
Given a T -equivariant complex vector bundle V over M, Vr = V xr ET is a vector
bundle over M7 = M x7 ET. The T-equivariant characteristic class cr is defined by

cr(E) Y ¢(Er) € H*(Mr: Q) = Hi (M Q).
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Appendix C: Seiberg-Witten Prepotential

We present a brief description of the Seiberg—Witten prepotential, which is described
in detail in the seminal work [SW], where Seiberg and Witten gave an exact solution to
N = 2 supersymmetric Yang—Mills in 4 dimensions with group SU (2). For more details
see also [NY and D]. For gauge theory with matter see [DW and BFMT]. The subject of
5d gauge theories compactified on a circle and the corresponding Seiberg-Witten curves
were introduced in [Nel].

C.1: SU(2) case: The constraints of N = 2 SUSY imply that the quantum moduli
space is the same as the classical one as an algebraic variety. Basic quantities are then
the coordinates u of the moduli space and the electric charge a, which in the classical
theory are related simply by u = a?/2; in the quantum theory this relation holds approx-
imately for u — oo by asymptotic freedom, but for finite u# the relation is much more
intricate and encodes fundamental geometric and physical information. The description
of the theory via the low energy effective Lagrangian presents measurable quantities as
functions of the coordinates u of the moduli space, and in particular the electric charge
a = a(u). Moreover, Seiberg [Se] shows that the magic of supersymmetry allows the
effective Lagrangian to be expressed in terms of a single locally defined meromorphic
function: the prepotential Fo; all remaining quantities in the theory are expressible as
functions of F¢ and a. An appropriate incarnation of Montonen—Olive duality accounts
for the appearance of the dual variable

W0 = o
da

whose physical meaning is of the dual, that is, magnetic charge. The defining relations
giving
daP p d(—a)
T=—1, 1T =—7F
da daP

which imply that the duality transformation is ” = —7(a)~! and specializes to the

Montonen—Olive transformation g = ¢g~! when the phase angle & = 0, but not other-
wise. The moduli space then acquires expressions for a Kéhler metric

ds* = Im(tdada)
with Kihler potential dd—];"c"z, where 7 is the matrix of periods

d*Fo  daP
T=— = —.
da? da
0 4mi

For SU (2) the low-energy effective values of this coupling are given by t = 5 + =5,

where 6 is is defined only modulo 27 Z; consequently 7 is defined only modulo Z and

. . . . . D .
there is a second transformation fixing a and taking 7 +— 7 + 1. Since 7 = ddLa, it

follows that a® + a® + a. This pair of transformations acts as multiplication on the

2—vector (a?, a) by the matrices

(% 0) = o)
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and fractional-linearly on 7, thus generating an SL(2, Z) action. The upshot is that what
lives intrinsically over a point « in the moduli space is not the electric charge a(u) but
the unimodular lattice Za (u) + Za® (u) of all electric and magnetic charges. As u varies
we obtain a Z? local system V over the moduli space, which Seiberg and Witten showed
to have as simple as possible behaviour, thus having only 3 singularities at =1 and oo.
Fixing a section of V determines the prepotential up to a constant. From a careful anal-
ysis of the monodromies at the singular points, it follows that the local system itself can
be identified with the fiber cohomology of the elliptic curve

E.:y? = (@+ Dz — D@ —u).

The complexification V¢ can be globally trivialized in terms of a holomorphic 1-form
A= 51179” and a residueless meromorphic form A, = %. One then chooses a homology

basis consisting of a loop y around the branch points 1, —1 and a loop y? around 1, u;
and using such a basis, the correct geometric solution for the period is

fyn Al
T, = .
$, i

In this solution, a and a” appear as the periods of y and y © of the meromorphic 1-form

- ydv  (z—u)dr

= = A2 — UA].
- ” 2 — UAl

C.2: Higher rank case: The Seiberg-Witten solution is sometimes presented in reverse
order, starting directly with the family of curves parametrized by u as we just described.
For instance, the solution for the group SU (r) then appears as follows. Let ¢ be an
SU (r) gauge field. Then

det(zl —¢) =" +Usa’ 2 — Uz 3+ +(=1)'U,,

where Uy is the elementary symmetric polynomial of the eigenvalues of ¢, with Uy = 0
because ¢ takes values in SU (r). These are gauge invariant operators, so their vacuum
expectation values u; = (Uy) serve as coordinates of the classical moduli space. These
are the coordinates on the u-space: us, ..., u,, which generalises the so-called u-plane
in the SU (2) case.

In case of added matter, then the duality transformations take a different form,
e.g.adding N y fundamental matter hypermultiplets, the duality transformation becomes:

D b\ M D
a a n;
— R + 1 ]
() ()2 ()
where R € Sp(2(r — 1), Z), the m; are the masses of the N s particles added, and n;, nlp
are integral r x r matrices. Correspondingly, on the total space of the family of curves,

there are then Ny divisors D; along which the meromorphic differential A acquires a
pole with constant residue —— . Here again the charges a, a” can be recovered as the

2mA/—1"
periods of A over y and y .

We now describe the Seiberg-Witten prepotential in various gauge theories with gauge
group SU (r), starting directly with the Seiberg—Witten curves. Consider the family of
curves parametrized by A, # = (ua, ..., u,), and possibly some extra parameters, in
the following cases:
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(1) 4d pure gauge theory (see e.g. [NO, (4.5)]):

C; A (w+%) =P@) =7 +wi *+ - +u,.
(2) 4dgaugetheorywith N y fundamental matter hypermultiplets (see e.g. [Ne2, (1.10)]):

AN Q(2)
Cim W+ — =
w

Ny
P@). 0@ =[[G+mp.
f=1

(3) 4d gauge theory with adjoint matter hypermultiplets (see e.g. [NO, (6.32)]): in this
case the SW curve is the spectral curve of the elliptic Calogero—-Moser system,

Ciim : Dety (L(zw) — 2) =0,

where
Lin(w) =8 ( +—" log(6 (w))’)
I.n =O0n\ Pn 27_[\/_—1 g2(o11
% — 6. (0
4 m (1= 8,) 1@ +q — qn) 11( )
2/—1 011 (@)011(qr — gn)

142 1 1
011 (w: 7) = Zeﬂﬁt(n+i) +27r\/—71(w'+§)(n+§)'
nez

(4) 5d gauge theory compactified at a circle of circumference B (see e.g. [NO, (7.19)]):
1
Cip: (BN (w+—)=X"?P(X), X=¢"
w

The Seiberg-Witten differential is
1 dw 1 7P (2)dz
= 77— = .
2wa/—1 w 2mwA/—1 Y

Let{Ay, Bg | o, B =2, ..., r}beasymplectic basis of H;(Cj, Z). Define functions
ag, aé) on the u-plane by

ds

Ay :f ds, ao? =2n+/—1 das.
Ag

Bg
Then
_ 1 7' Pdz
/=1y

form a basis of holomorphic differentials on Cj;. The period matrix T = (tug) is given
by

p=2,...,r

@Wp

1 9ap

Taﬂ = —27[ ,__1 8aﬁ .
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Note that a change of symplectic basis corresponds to an element in Sp(2(r — 1), Z),
the group of duality acting on the period matrix T = (7yg). In the SU(2) or U (2) cases,
we have r = 2, so the group of duality is Sp(2, Z) = SL(2, Z) and the SW curve is an
elliptic curve.

The Seiberg-Witten prepotential is a locally defined function satisfying

D_afo

Ay

" day
Therefore the Seiberg-Witten prepotential and the period matrix are related by

1 82 F
Ty = ————.
op 274/ —1 aaaaaﬂ

The full Seiberg—Witten prepotential is expressed as a sum
Fo=Fo + Ft

where fg s the perturbative part and ]—"(i)n“ is the instanton part. The explicit expres-

sions of the perturbative parts .7-'8 " of the SW prepotentials in gauge theories (1), (2),
(3), (4) on the previous page are given in (1), (2), (3), (4) of Theorem 6.8, respectively;
they have logarithm singularities along A = 0. The instanton part 7)™ of the SW
prepotential is a power series in A%

f-(i)nstz O(Azr)=f1A2r+f2A4r+"'+an2nr+"’~

The coefficient f, coming from the n-instanton moduli space is called the n'" instanton
correction to the prepotential.
For further details we refer to [DW,GNY2,Nel,NO], and [NY, Sect. 2].
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