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Abstract: The Nekrasov conjecture predicts a relation between the partition function
for N = 2 supersymmetric Yang–Mills theory and the Seiberg-Witten prepotential. For
instantons on R

4, the conjecture was proved, independently and using different methods,
by Nekrasov-Okounkov and Nakajima-Yoshioka. We prove a generalized version of the
conjecture for instantons on noncompact toric surfaces.
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1. Introduction

1.1. Background. The Nekrasov conjecture [Ne2] predicts a surprising relation between
two seemingly unrelated quantities: the partition function for N = 2 supersymmetric
Yang–Mills theory, defined in terms of instantons on R

4, and the Seiberg-Witten prepo-
tential [SW], defined in terms of period integrals of a family of hyperelliptic curves. For
gauge group U (r), Nekrasov and Okounkov proved the conjecture for a list of gauge
theories (4d pure gauge theory, 4d gauge theory with matter, 5d theory compactified on
a circle) [NO], Nakajima and Yoshioka proved the conjecture for 4d pure gauge theory
[NY1] and for 5d theory compactified on a circle [NY2] (see also Göttsche-Nakajima-
Yoshioka [GNY2]). Braverman and Etingof studied 4d pure gauge theory with arbitrary
gauge groups [Br,BrE].

In this paper we prove a generalized version of the conjecture for instantons on non-
compact toric surfaces. Instantons on toric surfaces have been studied in [Ne3,GNY1,
GNY2].

In field theory terms, Nekrasov’s insight involves a comparison of the infrared and
ultraviolet limits of the SUSY gauge theories, as follows. The vacuum expectation value
of their observables is not sensitive to the energy scale. In the ultraviolet, the theory is
weakly coupled and dominated by instantons; whereas in the infrared, there appears a
relation to the prepotential of the effective theory. In this instance, the physical argument
is accompanied by completely rigorous mathematical definitions, thus allowing us to
prove the conjecture.

1.2. Partition functions for instantons on noncompact toric surfaces. Let X0 = X \ �∞
be an open toric surface that can be compactified to a non-singular projective toric sur-
face X by adding a line at infinity �∞ ∼= P

1 with positive self-intersection number, so
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that Tt = (C∗)2 acts on X0 and on X . Let Mr,d,n(X, �∞) denote the moduli space of
rank r torsion free sheaves over X having Chern classes c1 = d and c2 = n, and framed
over �∞. Then Mr,d,n(X, �∞) is a smooth variety over C, and it admits a Tt × Te-action
with isolated fixed points, where Te ∼= (C∗)r is the maximal torus of the complex gauge
group GL(r, C) which acts on framings. We define

∫
Mr,d,n(X,�∞)

1

by formally applying the Atiyah-Bott localization formula. The above integral is a ratio-
nal function in equivariant parameters ε1, ε2 ∈ H2

Tt
(pt) and a1, . . . , ar ∈ H2

Te
(pt). The

Nekrasov partition function for supersymmetric SU (r) instantons on X0 is defined as

Z inst
X0,d(ε1, ε2, �a;�)

def= �(1−r)d·d ∑
n≥0

�2rn
∫
Mr,d,n(X,�∞)

1,

where � is a formal variable. It lies in the ring Q(ε1, ε2, a1, . . . , ar )[[�]].
In further generality, given two multiplicative classes A, B we define

Z inst
X0,A,B,d(ε1, ε2, �a;�)

def= �(1−r)d·d ∑
n≥0

�2rn
∫
Mr,d,n(X,�∞)

AT̃ (TM)BT̃ (V ),

where TM is the tangent bundle and V is the natural bundle on Mr,d,n(X, �∞) (see
Definition 2.9).

1.3. Seiberg-Witten prepotential. We briefly recall the definition of the Seiberg-
Witten prepotential for 4d pure SU (r) gauge theory. Appendix C contains a more detailed
discussion and definitions for other gauge theories.

Consider the family of hyperelliptic curves parametrized by � and �u =
(u2, u3, . . . , ur ):

C�u : �r
(

w +
1

w

)
= P(z) = zr + u2zr−2 + u3zr−3 + · · · + ur .

The parameter space for �u is called the �u-plane. The Seiberg-Witten differential

d S = 1

2π
√−1

z
dw

w

is a meromorphic differential defined on the total space of this family such that
{
ωp

def=
∂

∂u p
(d S) | p = 2, . . . , r

}
is a basis of holomorphic differentials on the genus (r − 1)

curve C�u . Choose a symplectic basis {Aα, Bβ | α, β = 2, . . . , r} of H1(C�u, Z), and
define

aα =
∫

Aα

d S, aD
β = 2π

√−1
∫

Bβ

d S.
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Then the 1-form
∑r

α=2 aD
α daα is closed, so there exists a locally defined function, the

Seiberg-Witten prepotential F0, such that

r∑
α=2

aD
α daα = dF0, i.e., aD

α = ∂F0

∂aα

.

The above definitions of d S, aα, aD
α are the same as those in [NO], but are

√−1 times
the corresponding definitions in [NY,NY1].

1.4. Nekrasov conjecture. Let q0, q1 be the two Tt fixed points in �∞ ⊂ X , and let
u, v ∈ Zε1 ⊕ Zε2 be the weights of the Tt -action on (N�∞/X )q0 , (N�∞/X )q1 , respec-
tively, where N�∞/X is the normal bundle of �∞ in X . If w is the weight of Tt -action on
Tq0�∞ and k = �∞ · �∞ > 0, then v = u − kw. Define

F inst
X0,A,B,d(ε1, ε2, �a;�)

def= −u(u − kw) log Z inst
X0,A,B,d(ε1, ε2, �a;�).

We now state the prototype statement of the conjecture for toric surfaces, which will
have 8 incarnations.

Main Theorem (Nekrasov conjecture for toric surfaces: prototype statement).

(a) F ···
X0,A,B,d(ε1, ε2, �a, m;�) is analytic in ε1, ε2 near ε1 = ε2 = 0.

(b) lim
ε1,ε2→0

F ···
X0,A,B,d(ε1, ε2, �a;�) = kF ···

0 (�a,�), where F ···
0 (�a,�) is the · · ·part of the

Seiberg-Witten prepotential of matter case A, B, m, and k = �∞ · �∞ > 0 is the
self intersection number of �∞.

The 8 cases we prove are

• Instanton part: Theorem 5.21. With the ··· replaced by inst, we prove the following
cases of the conjecture:
(1) 4d pure gauge theory: A = B = 1, m = ∅.
(2) 4d gauge theory with N f fundamental matter hypermultiplets: A = 1, B =

(E �m)(V ) is the Tm-equivariant Euler class of V ⊗ M , where V is the natural
bundle over the moduli space, M is the fundamental representation of U (N f ),
Tm is the maximal torus of U (N f ), m = (m1, . . . , m N f ).

(3) 4d gauge theory with one adjoint matter hypermultiplet: A = Em(TM) is the
equivariant Euler class of the tangent bundle of the moduli space, B = 1, m = m.

(4) 5d gauge theory compactified on a circle: A = Âβ(TM) is the Âβ genus of the
tangent bundle (the usual Â genus being the case β = 1), B = 1, m = ∅ but F
depends on the additional parameter β.

• Perturbative part: Theorem 6.8. With the ··· replaced by pert, we derive 4 more cases
of the conjecture, with the same restrictions as in the first part:
(1) 4d pure gauge theory.
(2) 4d gauge theory with N f fundamental matter hypermultiplets.
(3) 4d gauge theory with one adjoint matter hypermultiplet.
(4) 5d gauge theory compactified on a circle of circumference β.

The instanton part follows by localization, from known results in the C
2 case. Indeed,

localization calculations yield an expression of the instanton partition function Z inst
X0,A,B,d

over X0 in terms of contributions from vertices (Tt fixed points in X0) and from legs
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(Tt invariant P
1’s in X0). Each vertex contributes one copy of the instanton partition

function of C
2, for which the singularity along ε1 = ε2 = 0 is already known. The

contribution from legs does not introduce more poles along ε1 = ε2 = 0. A priori, the
tangent weights at all Tt fixed points in X0 appear in the denominator, but an argument
similar to that in [Ne3, Sect. 6.1] shows that these poles mostly cancel out, and we are
left with the two normal weights u, u −kw at the Tt fixed points on �∞. The perturbative
part is fairly straightforward.

1.5. Outline of the paper. In Sect. 2, we describe properties of the instanton moduli
spaces. In Sect. 3, we study torus actions on these moduli spaces and the fixed point
sets. In Sect. 4, we introduce a general instanton partition function depending on two
multiplicative classes A, B for noncompact toric surfaces; different choices of A, B give
partition functions of different gauge theories. Section 5 contains localization computa-
tions on instanton moduli spaces, and the proof of the instanton part of the conjecture.
Section 6 contains definitions of the perturbative part of the partition function, and the
proof of the perturbative part of the conjecture.

2. Moduli Spaces of Framed Bundles on Surfaces

We work over C. Let X be a non-singular projective surface. Let �∞ ⊂ X be a smooth
divisor. In this section, we introduce moduli spaces of framed bundles on X , and describe
basic properties of these moduli spaces, generalizing the discussion in [NY1, Sect. 2]
on the case X = P

2. The framed moduli spaces were constructed in much more general
setting by Huybrechts-Lehn [HL].

Given a positive integer r , an integer n, and a cohomology class d ∈ H2(X; Z), let
Mr,d,n(X, �∞) be the moduli space which parametrizes isomorphism classes of pairs
(E,
) such that

(1) E is a torsion free sheaf on X which is locally free in a neighborhood of �∞.
(2) rank(E) = r , c1(E) = d and

∫
X c2(E) = n.

(3) 
 : E |�∞
∼→ O⊕r

�∞ is an isomorphism called “framing at infinity”.

Note that (1) and (2) imply
∫
�∞ d = 0.

2.1. Dimension of the moduli space. Given a divisor D ⊂ X , let E(−D) = E ⊗
OX (−D).

Proposition 2.1. Suppose that �∞ · �∞ > 0.

(a) For any (E,
) ∈ Mr,d,n(X, �∞) we have Ext0
OX

(E, E(−�∞)) = 0.

(b) Assume in addition that �∞ ∼= P
1, then for any (E,
) ∈ Mr,d,n(X, �∞) we have

Ext0
OX

(E, E(−�∞)) = Ext2
OX

(E, E(−�∞)) = 0.

Remark 2.2. If X is a non-singular projective surface which contains a smooth divisor
�∞ ∼= P

1 such that k = �∞ · �∞ > 0. Then TX
∣∣
�∞

∼= OP1(k) ⊕ OP1(2), so X is
rationally connected, or equivalently, X is a rational surface. The arithmetic genus of X
is pa(X) = χ(OX ) − 1 = 0.



666 E. Gasparim, C.-C. M. Liu

Proof of Proposition 2.1. (a) Assuming that �∞ · �∞ > 0, we will show that

HomOX (E, E(−�∞)) = 0.

Let s be a section of OX (�∞) such that its zero locus is �∞. The exact sequence

0 → E(−(m + 1)�∞)
s·→ E(−m�∞) → E(−m�∞) ⊗ OD → 0

induces a long exact sequence

0 → HomOX (E, E(−(m + 1)�∞)) → HomOX (E, E(−m�∞))

→ HomOX (E, E(−m�∞) ⊗ O�∞)

→ Ext1
OX

(E, E(−(m + 1)�∞) → Ext1
OX

(E, E(−m�∞)) → · · · ,

where

HomOX (E, E(−m�∞) ⊗ O�∞) ∼= H0(�∞,OX (−m�∞)|�∞)⊕r2
,

since E |�∞ is trivial. Let k = �∞ · �∞ > 0. Then

H0(�∞,OX (−m�∞)|�∞) ∼= H0(P1,OP1(−mk)) = 0

when m > 0. So, for any positive integer m,

HomOX (E, E(−(m + 1)�∞)) → HomOX (E, E(−m�∞))

is an isomorphism, and

Ext1
OX

(E, E(−(m + 1)�∞)) → Ext1
OX

(E, E(−m�∞))

is injective. As a consequence, any element in HomOX (E, E(−�∞)) restricts to zero in
a formal neighborhood of �∞ in X . So

HomOX (E, E(−�∞)) = 0.

(b) We now assume that �∞·�∞ > 0 and �∞ ∼=P
1. By Serre duality, Ext2

OX
(E, E(−�∞))

is dual to HomOX (E, E(K X + �∞)). We will show that

HomOX (E, E(K X + �∞)) = 0.

The exact sequence

0 → E(K X −m�∞)
s·→ E(K X +(1 − m)�∞) → E(K X + (1 − m)�∞) ⊗ OD → 0

induces a long exact sequence

0 → HomOX (E, E(K X − m�∞)) → HomOX (E, E(K X + (1 − m)�∞))

→ HomOX (E, E(K X + (1 − m)�∞) ⊗ O�∞)

→ Ext1
OX

(E, E(K X − m�∞) → Ext1
OX

(E, E(K X + (1 − m)�∞)) → · · · .

E |�∞ is trivial and K�∞ = (K X + �∞)|�∞ , so

HomOX (E, E(K X + (1 − m)�∞) ⊗ O�∞) ∼= H0(�∞,O�∞(K�∞)

⊗ OX (−m�∞)|�∞)⊕r2
.
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Note that

H0(�∞,O�∞(K�∞) ⊗ OX (−m�∞)|�∞) ∼= H0(P1,OP1(−2 − mk)) = 0

for all m ≥ 0. So, for any nonnegative integer m,

HomOX (E, E(K X − m�∞) → HomOX (E, E(K X + (1 − m)�∞))

is an isomorphism, and

Ext1
OX

(E, E(K X − m�∞)) → Ext1
OX

(E, E(K X + (1 − m)�∞))

is injective. As a consequence, any element in HomOX (E, E(K X +�∞)) restricts to zero
in a formal neighborhood of �∞ in X , and we conclude that

HomOX (E, E(K X + �∞)) = 0.

�
Corollary 2.3. Let X be a non-singular projective surface, and let �∞ be a smooth
divisor of X such that �∞ · �∞ > 0. Then for any (E,
) in Mr,d,n(X, �∞),

dimC Ext1
OX

(E, E(−�∞)) − dimC Ext2
OX

(E, E(−�∞))

= 2rn + (1 − r)d · d − r2(pa(X) + pa(�∞)),

where d · d = ∫
X d2, pa(X) is the arithmetic genus of X, and pa(�∞) is the arithmetic

genus of �∞.

Proof. Let (E,
) ∈ Mr,d,n(X, �∞) be locally free. By Proposition 2.1 (a),

dimC Ext1
OX

(E, E(−�∞))−dimC Ext2
OX

(E, E(−�∞)) = −χ(End(E) ⊗ OX (−�∞)).

Let ν ∈ H4(X; Z) be the Poincaré dual of [pt] ∈ H0(X; Z), and let e ∈ H2(X; Z) be
the Poincaré dual of [�∞] ∈ H2(X; Z). By Hirzebruch-Riemann-Roch,

χ(End(E) ⊗ OX (−�∞)) = deg (ch(End(E))ch(OX (−�∞))td(TX )) ,

where

ch(End(E)) = ch(E)ch(E∨) = r2 + (r − 1)d2 − 2rnν,

ch(OX (−�∞)) = 1 − e +
e2

2
= 1 − e +

k

2
ν for k = �∞ · �∞ > 0,

td(TX ) = 1 +
1

2
c1(X) +

1

12
(c1(X)2 + c2(X)).

Let N�∞/X be the normal bundle of �∞ in X . Then

∫
X

ec1(X) =
∫

�∞

(
c1(�∞) + c1(N�∞/X )

) = 2 − 2pa(�∞) + k.



668 E. Gasparim, C.-C. M. Liu

Consequently,

deg (ch(End(E))ch(OX (−�∞))td(TX ))

=
∫

X

(
r2

12
(c1(X)2 + c2(X)) − r2

2
ec1(X) + (r − 1)d2 + (

kr2

2
− 2rn)ν

)

= r2

12

∫
X
(c1(X)2 + c2(X)) − r2

2
(k + 2 − 2pa(�∞)) + (r − 1)

∫
X

d2 +
kr2

2
− 2rn

= −2rn + (r − 1)

∫
X

d2 + r2(pa(X) + pa(�∞)).

�
Corollary 2.4. Let X be a non-singular projective rational surface, and let �∞ be a
divisor of X such that �∞ ∼= P

1 and �∞ · �∞ > 0. Then Mr,d,n(X, �∞) is smooth of
(complex) dimension

2rn + (1 − r)d · d,

where d · d = ∫
X d2.

Example 2.5. Let X = P
2, and let

�∞ = {[Z0, Z1, Z2] ∈ P
2 | Z0 = 0} ∼= P

1.

Then �∞·�∞ = 1 > 0. The moduli space Mr,d,n(P2, �∞) is nonempty only if
∫
�∞ d = 0,

which implies d = 0. By Corollary 2.4, the moduli space Mr,0,n(P2, �∞) is smooth of
complex dimension 2rn. (See [NY1, Cor. 2.2]).

Example 2.6. Let X = Fk
def= P(OP1(−k) ⊕ OP1) be the kth Hirzebruch surface, where

k is a positive integer. Let

�0 = P(0 ⊕ OP1) ∼= P
1, �∞ = P(OP1(−k) ⊕ 0) ∼= P

1.

Then �0 · �0 = −k < 0 and �∞ · �∞ = k > 0.
The moduli space Mr,d,n(Fk, �∞) is nonempty only if

∫
�∞ d = 0, which implies

d = m�0 for some m ∈ Z. By Corollary 2.4, the moduli space Mr,m�0,n(Fk, �∞) is
smooth of complex dimension 2rn + (r − 1)km2.

Example 2.7. Let � ⊂ P
2 be a curve of degree 1, and let p1, . . . , pk be k generic

points in P
2 which are disjoint from �. Let π : Bk → P

2 be the blowup of P
2 at

p1, . . . , pk . Let �∞ = π−1(�) ∼= P
1, and let �i = π−1(pi ) be the exceptional divi-

sors. Let e∞, e1, . . . , ek ∈ H2(Bk; Z) be the Poincaré duals of [�∞], [�1], . . . , [�k],
respectively. Then

H2(Bk; Z) = Ze∞ ⊕ Ze1 ⊕ · · · Zek .

The moduli space Mr,d,n(Bk, �∞) is nonempty only if
∫
�∞ d = 0, which implies

d = m1e1 + · · · + mkek, mi ∈ Z.

By Corollary 2.4, the moduli space Mr,m1e1+···+mk ek ,n(Bk, �∞) is smooth of complex
dimension

2rn + (r − 1)(m2
1 + · · · + m2

k).
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2.2. The natural bundle. In this subsection, X is a non-singular projective rational sur-
face, and �∞ is a smooth rational curve in X such that �∞ · �∞ > 0. The proof of the
following proposition is very similar to that of Proposition 2.1.

Proposition 2.8. H0(X, E(−�∞)) = H2(X, E(−�∞)) = 0.

Let E → X ×Mr,d,n(X, �∞) be the universal sheaf. Let p1 : X ×Mr,d,n(X, �∞) →
X and p2 : X ×Mr,d,n(X, �∞) → Mr,d,n(X, �∞) be the projections to the two factors.

Definition 2.9. The natural bundle over Mr,d,n(X, �∞) is

V
def= (R1 p2)∗(E ⊗ p∗

1(OX (−�∞))).

Corollary 2.10. V is a vector bundle of rank

n − 1

2
(d · d + c1(X) · d)

over Mr,d,n(X, �∞).

Proof. We use the notation in the proof of Corollary 2.4. Let (E,
) ∈ Mr,d,n(X, �∞)

be locally free. The rank of V is given by −χ(E(−�∞)). By Hirzebruch-Riemann-Roch,

χ(E(−�∞)) = deg (ch(E)ch(OX (−�∞))td(TX )) ,

where

ch(E) = r + d + (
d2

2
− nν), ch(OX (−�∞)) = 1 − e +

e2

2
= 1 − e +

k

2
ν,

td(TX ) = 1 +
1

2
c1(X) +

1

12
(c1(X)2 + c2(X)).

Consequently,

deg (ch(E)ch(OX (−�∞))td(TX ))

=
∫

X

(
r

12
(c1(X)2 + c2(X)) +

1

2
(d − re)c1(X) +

d2

2
+ (

kr

2
− n)ν

)

= r

12

∫
X
(c1(X)2 + c2(X)) − r

2
(k + 2) +

1

2

∫
X
(d2 + c1(X)d) +

kr

2
− n

= −n +
1

2

∫
X
(d2 + c1(X)d) + r pa(X),

where pa(X) = 0 since X is a rational surface. �

3. Torus Action and Fixed Points

In this section, X is a non-singular projective toric surface. Therefore Tt
def= (C∗)2 acts

on X . We use notation similar to that in [NY1, Sect. 2, 3].
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3.1. Torus action on the surface. We assume that �∞ is a Tt -invariant P
1 in X , and

�∞ · �∞ = k > 0. Then X0 = X \ �∞ is a non-singular, quasi-projective toric surface.
Let � be a graph such that the vertices of � are in one-to-one correspondence with
the Tt fixed points in X0, and two vertices are connected by an edge if and only if the
corresponding fixed points are connected by a Tt -invariant P

1. Then � is a chain, so
#V (�) − #E(�) = 1, and

χ(X0) = #V (�) = χ(X) − 2,

where E(�) is the set of edges in � and V (�) is the set of vertices in �. Let pv be the
Tt fixed point in X0 which corresponds to v ∈ V (�), and let �e be the Tt -invariant P

1

which corresponds to e ∈ E(�). Any Tt -invariant divisor D in X disjoint from �∞ is of
the form

D =
∑

e∈E(�)

me�e ∼= H2(X0; Z),

where me ∈ Z.

3.2. Torus action on moduli spaces. Let Te be the maximal torus of GL(r, C) consisting
of diagonal matrices, and let T̃ = Tt × Te. We define an action of T̃ on Mr,d,n(X, �∞)

as follows: for (t1, t2) ∈ Tt , let Ft1,t2 be the automorphism of X defined by Ft1,t2(x) =
(t1, t2) · x. Given �e = diag(e1, . . . , er ) ∈ Te, let G�e denote the isomorphism of O⊕r

�∞
given by (s1, . . . , sr ) �→ (e1s1, . . . , er sr ). For (E,
) ∈ Mr,d,n(X, �∞), we define

(t1, t2, �e) · (E,
) =
(
(F−1

t1,t2)
∗E,
′) ,

where 
′ is the composite of homomorphisms

(F−1
t1,t2)

∗E |�∞
(F−1

t1,t2
)∗
−−−−−→ (F−1

t1,t2)
∗O⊕r

�∞
φt1,t2−−−→ O⊕r

�∞
G�e−→ O⊕r

�∞ .

Here φt1,t2 is the homomorphism given by the action.

3.3. Torus fixed points in moduli spaces. The fixed points set Mr,d,n(X, �∞)T̃ consists
of (E,
) = (I1(D1),
1) ⊕ · · · ⊕ (I2(Dr ),
r ) such that

(1) Iα(Dα) is a tensor product Iα ⊗ OX (Dα), where Dα is a Tt -invariant divisor which
does not intersect �∞, and Iα is the ideal sheaf of a 0-dimensional subscheme Qα

contained in X0.
(2) 
α is an isomorphism from (Iα)�∞ to the αth factor of O⊕r

�∞ .
(3) Iα is fixed by the action of Tt .

The support of Qα must be contained in X Tt
0 , the Tt fixed points set of X0. Thus Qα

is a union of {Qv
α | v ∈ V (�)}, where Qv

α is a subscheme supported at the Tt - fixed
point pv ∈ X0. If we take a coordinate system (x, y) around pv , then the ideal of Qv

α is
generated by monomials xiy j , So Qv

α corresponds to a Young diagram Y v
α .

Therefore the fixed point set is parametrized by 2r -tuples

(D, Y) = (D1, �Y1, . . . , Dr , �Yr ),
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where

Dα ∈
⊕

e∈E(�)

Z�e ∼= H2(X0; Z), �Yα = {Y v
α | v ∈ V (�)},

and each Y v
α is a Young diagram. Let

| �Yα| =
∑

v∈V (�)

|Y v
α |.

Let d∨ ∈ H2(X; Z) be the Poincaré dual of d ∈ H2(X; Z). Then
∫
�∞ d = 0 implies

d∨ ∈ ⊕
e∈E(�) Z[�e]. The constraints are

∑
α

Dα = d∨, (1)

r∑
α=1

| �Yα| +
∑
α<β

Dα · Dβ = n. (2)

Note that 2r
∑

α<β Dα · Dβ + (1 − r)d∨ · d∨ = −∑
α<β(Dα − Dβ)2, so (2) can be

rewritten as

2r
r∑

α=1

| �Yα| −
∑
α<β

(Dα − Dβ)2 = 2rn + (1 − r)d · d = dimC Mr,d,n(X, �∞). (3)

4. Gauge Theory Partition Functions

We refer to Appendix B for a brief review of equivariant cohomology and integration of
an equivariant cohomology class over a possibly non-compact manifold.

4.1. Equivariant parameters. For i = 1, 2, let pi : BTt ∼= P
∞ × P

∞ → P
∞ be the

projection to the i th factor, and let

εi = c1(p∗
i O(1)), ti = ch1(p∗

i O(1)) = eεi .

Then H∗
Tt

(pt; Q) = H∗(BTt ; Q) = Q[ε1, ε2]. Similarly, for j = 1, . . . , r , let q j :
BTe ∼= (P∞)r → P

∞ be the projection to the j th factor, and let

a j = c1(q
∗
j O(1)), e j = ch1(q

∗
j O(1)) = ea j .

Then H∗
Te

(pt; Q) = H∗(BTe; Q) = Q[a1, . . . , ar ]. We write �a = (a1, . . . , ar ) and
�e = (e1, . . . , er ) = (ea1 , . . . , ear ).
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4.2. Multiplicative classes of the tangent and natural bundles. Recall that a multiplica-
tive class c is a characteristic class which satisfies c(E1 ⊕ E2) = c(E1)c(E2). Such a
class is determined by a formal power series f (x) satisfying c(L) = f (c1(L)) for a line
bundle L and c(E) = f (x1) · · · f (xr ), where x1, . . . ,xr are Chern roots of E .

Let A, B be multiplicative classes associated to formal power series f (x), g(x),
respectively. Then∫

Mr,d,n(X,�∞)

AT̃ (TM)BT̃ (V ) ∈ Q[[ε1, ε2, �a]]m ⊂ Q((ε1, ε2, �a)),

where TM is the tangent bundle of Mr,d,n(X, �∞), V is the natural bundle over
Mr,d,n(X, �∞) defined in Definition 2.9, and Q[[ε1, ε2, �a]]m is the localization of the
ring Q[[ε1, ε2, �a]] at the maximal ideal m generated by ε1, ε2, a1, . . . , ar . If f (x) and
g(x) are polynomials, then∫

Mr,d,n(X,�∞)

AT̃ (TM)BT̃ (V ) ∈ Q[ε1, ε2, �a]m ⊂ Q(ε1, ε2, �a).

Let X0 = X \ �∞. Given d ∈ {γ ∈ H2(X; Z) | ∫
�∞ γ = 0} ∼= H2

c (X0; Z),
let d∨ ∈ H2(X; Z) be its Poincaré dual. (Here H∗

c is the compact cohomology.)
Then d∨ ∈ ⊕

e∈E(�) Z�e ∼= H2(X0; Z). We define

Z inst
X0,A,B,d(ε1, ε2, �a;�) =

∑
n≥0

�dimC Mr,d,n(X,�∞)

∫
Mr,d,n(X,�∞)

AT̃ (TM)BT̃ (V )

= �(1−r)d·d ∑
n≥0

�2rn
∫
Mr,d,n(X,�∞)

AT̃ (TM)BT̃ (V )

=
∑

∑
Dα=d∨

�
−∑

α<β(Dα−Dβ)2 ∑
�Yα

�
∑

α | �Yα | AT̃ (T(D,Y)Mr,d,n(X, �∞))BT̃ (V(D,Y))

eT̃ (T(D,Y)Mr,d,n(X, �∞))

=
∑

∑
Dα=d∨

∑
�Yα

∏
(�

f (xi )

xi
)
∏

g(y j ) ∈ Q((ε1, ε2, �a))[[�]],

where xi are T̃ -equivariant Chern roots of T(D,Y)Mr,d,n(X, �∞) and y j are T̃ -equivari-
ant Chern roots of V(D,Y). If f (x), g(x) are polynomials then

Z inst
X0,A,B,d(ε1, ε2, �a;�) ∈ Q(ε1, ε2, �a)[[�]].

Sometimes we allow A and B to depend on extra parameters, then Z inst
X,A,B,d will

depend on extra parameters as well.
Introduce variables {Qe | e ∈ E(�)}. Given d ∈ H2

c (X0; Z), define

Qd =
∏

e∈E(�)

Q
∫
�e

d
e .

We define a generating function

Z inst
X0,A,B(ε1, ε2, �a;�, Q)

def=
∑

d∈H2
c (X0;Z)

Qd Z inst
X0,A,B,d(ε1, ε2, �a;�)

=
∑

d∈H2
c (X0;Z)

∑
n≥0

Qd�(1−r)d·d+2rn
∫
Mr,d,n(X,�∞)

AT̃ (TM)BT̃ (V ).
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4.3. 4d pure gauge theory. Nekrasov instanton partition functions of 4d pure gauge
theory are given by

Z inst
X0,d(ε1, ε2, �a;�)

def= �(1−r)d·d ∑
n≥0

�2rn
∫
Mr,d,n(X,�∞)

1,

Z inst
X0

(ε1, ε2, �a;�, Q)
def=

∑
d∈H2

c (X0;Z)

Qd Z inst
X0,d(ε1, ε2, �a;�).

We have

Z inst
X0,d(ε1, ε2, �a;�) = Z inst

X0,A=1,B=1,d(ε1, ε2, �a;�),

Z inst
X0

(ε1, ε2, �a;�, Q) = Z inst
X0,A=1,B=1(ε1, ε2, �a;�, Q).

We define a grading on the ring Q((ε1, ε2, �a))[[�]] by

deg � = deg ε1 = deg ε2 = deg aα = 2.

Then Z inst
X0,d(ε1, ε2, �a;�) ∈ Q((ε1, ε2, �a))[[�]] is homogeneous of degree 0.

4.4. 4d gauge theory with N f fundamental matter hypermultiplets. Let Tm be the max-
imal torus of U (N f ). Then H∗

Tm
(pt) ∼= Q[m1, . . . , m N f ]. Let M be the fundamental

representation of U (N f ), and write �m = (m1, . . . , m N f ). Let V be the natural vector

bundle as in Definition 2.9; it is a T̃ -equivariant vector bundle over Mr,d,n(X, �∞).
Nekrasov instanton partition functions of 4d gauge theory with N f fundamental

matter hypermultiplets are given by

Z inst
X0,d(ε1, ε2, �a, �m;�)

def= �(1−r)d·d ∑
n≥0

�2rn
∫
Mr,d,n(X,�∞)

(ctop)T̃ ×Tm
(V ⊗ M)

= �(1−r)d·d ∑
n≥0

�2rn
∫
Mr,d,n(X,�∞)

N f∏
f =1

(Em f )T̃ (V ),

where Et is the multiplicative class associated to f (x) = t + x, so that

Et (V ) = tk + c1(V )tk−1 + · · · + cn(V ), k = rankCV,

Z inst
X0

(ε1, ε2, �a, �m;�, Q)
def=

∑
d∈H2

c (X0;Z)

Qd Z inst
X0,d(ε1, ε2, �a, �m;�).

Let E �m = ∏N f
f =1 Em f . Then

Z inst
X0,d(ε1, ε2, �a, �m;�) = Z inst

X0,A=1,B=E �m ,d(ε1, ε2, �a;�),

Z inst
X0

(ε1, ε2, �a, �m;�, Q) = Z inst
X0,A=1,B=E �m (ε1, ε2, �a;�, Q).
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4.5. 4d gauge theory with one adjoint matter hypermultiplet. Nekrasov instanton par-
tition functions of 4d gauge theory with one adjoint matter hypermultiplet are given
by

Z inst
X0,d(ε1, ε2, �a, m;�)

def= �(1−r)d·d ∑
n≥0

�2rn
∫
Mr,d,n(X,�∞)

(Em)T̃ (TM),

Z inst
X0

(ε1, ε2, �a, m;�, Q)
def=

∑
d∈H2

c (X0;Z)

Qd Z inst
X0,d(ε1, ε2, �a, m;�).

We have

Z inst
X0,d(ε1, ε2, �a, m;�) = Z inst

X0,A=Em ,B=1,d(ε1, ε2, �a;�),

Z inst
X0

(ε1, ε2, �a, m;�, Q) = Z inst
X0,A=Em ,B=1(ε1, ε2, �a;�, Q).

4.6. 5d gauge theory compactified on a circle of circumference β. Let Âβ be the mul-

tiplicative class associated to fβ(x) = βx/2

sinh(βx/2)
. For a complex vector bundle E ,

Â1(E) = Â(E) is the Â-genus of E . The index of the Dirac operator on a complex
manifold M is given by

∫
M Â(TM ).

The Nekrasov partition functions of 5d gauge theory compactified on a circle of
circumference β are given by

Z inst
X0,d(ε1, ε2, �a;�,β) = �(1−r)d·d ∑

n≥0

�2rn
∫
Mr,d,n(X,�∞)

( Âβ)T̃ (TM),

Z inst,(m)
X0

(ε1, ε2, �a;�, Q, β) =
∑

d∈H2
c (X0;Z)

Qd Z inst
X0,d(ε1, ε2, �a;�,β).

We have

Z inst
X0,d(ε1, ε2, �a;�,β) = Z inst

X0,A= Âβ ,B=1,d
(ε1, ε2, �a;�),

Z inst
X0

(ε1, ε2, �a;�, Q, β) = Z inst
X0,A= Âβ ,B=1

(ε1, ε2, �a;�, Q).

Note that lim
β→0

fβ(x) = 1, so the partition function of 5d gauge theory compactified on

a circle of circumference β specializes to the one of 4d pure gauge theory as β → 0,
that is:

lim
β→0

Z inst
X0,d(ε1, ε2, �a;�,β) = Z inst

X0,d(ε1, ε2, �a;�),

lim
β→0

Z inst
X0

(ε1, ε2, �a;�, Q, β) = Z inst
X0

(ε1, ε2, �a;�, Q).



The Nekrasov Conjecture for Toric Surfaces 675

4.7. Hirzebruch χy genus. Let

(χy)T̃ (Mr,d,n(X, �∞)) =
N∑

p=0

(−y)p
N∑

q=0

(−1)q chT̃ Hq (Mr,d,n(X, �∞), �pT ∗Mr,d,n(X, �∞))

be the T̃ -equivariant Hirzebruch χy genus, where N = dimC Mr,d,n(X, �∞). In
particular,

(χ0)T̃ (Mr,d,n(X, �∞)) = χT̃ (Mr,d,n(X, �∞),O).

By Grothendieck-Riemann-Roch,

(χy)T̃ (Mr,d,n(X, �∞)) =
N∑

p=0

(−y)p
∫
Mr,d,n(X,�∞)

tdT̃ (M)chT̃ (�pT ∗M),

where M = Mr,d,n(X, �∞). Define

Z inst
X0,d(ε1, ε2, �a;�, y) = �(1−r)d·d ∑

n≥0

�2rn(χy)T̃ (Mr,d,n(X, �∞)),

Z inst
X0

(ε1, ε2, �a;�, Q, y) =
∑

d∈H2
c (X0;Z)

Qd Z inst
X0,d(ε1, ε2, �a;�, y).

Then

Z inst
X0,d(ε1, ε2, �a;�, y) = Z inst

X0,A=Ay,B=1,d(ε1, ε2, �a;�),

Z inst
X0

(ε1, ε2, �a;�, Q, y) = Z inst
X0,A=Ay,B=1(ε1, ε2, �a;�, Q),

where Ay is the multiplicative class associated to

fy(x) = x(1 − ye−x)

1 − e−x
.

In particular, f0(x) = x

1 − e−x
, f1(x) = x, so A0(E) = td(E) and A1(E) = e(E).

4.8. Elliptic genus. Let Ay,q be the multiplicative class associated to

y−1/2x
∏
n≥1

(1 − yqn−1e−x)(1 − y−1qnex)

(1 − qn−1e−x)(1 − qnex)
.

The T̃ -equivariant elliptic genus of M is given by

χT̃ (Mr,d,n(X, �∞), y, q) =
∫
Mr,d,n(X,�∞)

Ay,q(TM).
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Define

Z inst
X0,d(ε1, ε2, �a;�, y, q)

def= Z inst
X0,A=Ay,q ,B=1,d(ε1, ε2, �a;�)

= �(1−r)d·d ∑
n≥0

�2rnχT̃ (Mr,d,n(X, �∞), y, q),

Z inst
X0

(ε1, ε2, �a;�, Q, y, q)
def= Z inst

X0,A=Ay,q ,B=1(ε1, ε2, �a;�, Q)

=
∑

d∈H2
c (X0,Z)

∑
n≥0

Qd�(1−r)d·d+2rnχT̃ (Mr,d,n(X, �∞), y, q).

5. The Instanton Part

In this section, we calculate the partition functions defined in Sect. 4.

5.1. The tangent bundle: adjoint representation. Let (E,
) ∈ Mr,d,n(X, �∞) be a
fixed point of T̃ -action corresponding to (D, Y) = (D1, �Y1, . . . , Dr , �Yr ). We want to
compute

chT̃ T(E,
)Mr,d,n(X, �∞) = chT̃ Ext1
OX

(E, E(−�∞)) = −chT̃ Ext∗OX
(E, E(−�∞)).

Recall that E = I1(D1) ⊕ · · · ⊕ Ir (Dr ) (see Sect. 3.3), so

−chT̃ Ext∗OX
(E, E(−�∞)) = −

∑
α,β

chT̃ Ext∗OX
(Iα(Dα), Iβ(Dβ − �∞))

= −
∑
α,β

eaβ−aα chTt Ext∗OX
(Iα(Dα), Iβ(Dβ − �∞)).

Let

Lα,β(t1, t2) = −chTt Ext∗OX
(OX (Dα),OX (Dβ − �∞))

= −χTt (X,OX (Dβ − Dα − �∞)),

Mα,β(t1, t2) = chTt Ext∗OX
(OX (Dα),OX (Dβ − �∞))

−chTt Ext∗OX
(Iα(Dα), Iβ(Dβ − �∞)).

Then

chT̃ T(E,
)Mr,d,n(X, �∞) =
r∑

α,β=1

eaβ−aα
(
Mα,β(t1, t2) + Lα,β(t1, t2)

)
. (4)

So it remains to compute Mα,β(t1, t2) and Lα,β(t1, t2).
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5.1.1. Mα,β(t1, t2) Let χv
Dα

∈ HomOX (Tt , C
∗) be the characters of the Tt -equivariant

line bundle OX (Dα) at the Tt fixed point pv ∈ X0, and let χv
1 , χv

2 ∈ HomOX (Tt , C
∗)

be the characters of Tpv X . Then χv
Dα

, χv
1 , χv

2 are monomials in t1, t2.
Let tt be the Lie algebra of Tt . Define weights wv

Dα
, wv

1 , wv
2 ∈ HomOX (tt , C) = t∨t

by

ewv
Dα = χv

Dα
, ewv

1 = χv
1 , ewv

2 = χv
2 .

Given a partition (Young diagram) S and a box s ∈ S, let aS(s) and lS(s) be the
arm-length and leg-length of s (see e.g. [NY, Fig. 2]). Given two partitions S, T , let

MS,T (t1, t2) =
∑
s∈S

t−lT (s)
1 taS(s)+1

2 +
∑
t∈T

tlS(t)+1
1 t−aT (t)

2 , (5)

NS,T (ε1, ε2)
def= MS,T (eε1 , eε2) =

∑
s∈S

e−lT (s)ε1+(aS(s)+1)ε2 +
∑
t∈T

e(lS(t)+1)ε1−aT (t)ε2 .

(6)

The expression (5) was introduced in [FP, Eq. (4.45)]. (See also [EG, Lemma 3.2] and
[NY1, Theorem 2.1].)

Proposition 5.1 (Vertex contribution to the tangent bundle).

Mα,β(t1, t2) =
∑

v∈V (�)

χv
Dβ

(t1, t2)

χv
Dα

(t1, t2)
MY v

α ,Y v
β
(χv

1 (t1, t2), χ
v
2 (t1, t2))

=
∑

v∈V (�)

e
wv

Dβ
−wv

Dα NY v
α ,Y v

β
(wv

1 , wv
2),

where wv
1 = wv

1(ε1, ε2), wv
2 = wv

2(ε1, ε2), t1 = eε1 , t2 = eε2 .

Proof.

Mα,β(t1, t2) = chTt Ext∗OX
(OX (Dα),OX (Dβ − �∞))

−chTt Ext∗OX
(Iα(Dα), Iβ(Dβ − �∞)). (7)

We will compute the two terms on the right-hand side of (7) using the method in [MNOP1,
Sect. 4]. For j ≥ 0 and 1 ≤ α, β ≤ r , define

E j
α,β

def= Ext j (Iα(Dα), Iβ(Dβ − �∞)).

Then

Ext∗OX
(Iα(Dα), Iβ(Dβ −�∞)) =

∑
i, j≥0

(−1)i+ j H i (X, E j
α,β) =

∑
i, j≥0

(−1)i+ jCi (X, E j
α,β),

where Ci denote the Čech cochain groups. More explicitly, let {pa | a = 1, . . . , χ(X)}
be the Tt -fixed points in X , where χ(X) is the Euler characteristic of X . Let Ua be the
C

2 coordinate chart with origin at pa , and let Uab = Ua ∩ Ub, etc. Then
∑
i≥0

(−1)iCi (X, E j
αβ) =

⊕
a

�(Ua, E j
αβ) −

⊕
a,b

�(Uab, E j
αβ) +

⊕
a,b,c

�(Uabc, E j
αβ) · · · .
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Note that Iα|Ua1 ...ai
= OX |Ua1 ...ai

unless i = 1 and pa1 ∈ X0. Define

O j
αβ

def= Ext j (OX (Dα),OX (Dβ − �∞)).

Then

Ext∗OX
(OX (Dα),OX (Dβ − �∞)) − Ext∗OX

(Iα(Dα), Iα(Dβ − �∞))

=
⊕

v∈V (�)

2∑
j=0

(−1) j�(Uv,O j
αβ) −

⊕
v∈V (�)

2∑
j=0

(−1) j�(Uv, E j
αβ),

where Uv is the C
2 chart centered at pv .

Given a partition (Young diagram) Y and a box x ∈ Y , let a′(x) and l ′(x) be the arm-
colength and leg-colength of x, respectively (see e.g. [NY, Sect. 3.1]). Given a partition
Y , we define

QY (s1, s2) =
∑
x∈Y

sl ′(x)
1 sa′(x)

2 .

We have

chT̃

2∑
j=0

(−1) j�(Uv,O j
αβ) − chT̃

2∑
j=0

(−1) j�(Uv, E j
αβ) =

χv
Dβ

χv
Dα

· MY v
α ,Y v

β
(χv

1 , χv
2 ),

where

MS,T (t1, t2) = QS(t1, t2)t1t2 + QT (t−1
1 , t−1

2 ) − QS(t1, t2)QT (t−1
1 , t−1

2 )(1−t1)(1−t2).

We now compare our expression of MY v
α ,Y v

β
(t1, t2) with the notation in the proof of [NY1,

Theorem 2.11]. The correspondence is

t1t2HomOX (Vα, Wβ) = QY v
α
(t1, t2)t1t2 , HomOX (Wα, Vβ) = QY v

β
(t−1

1 , t−1
2 ) ,

(t1 + t2 − 1 − t1t2)HomOX (Vα, Vβ) = −QY v
α
(t1, t2)QY v

β
(t−1

1 , t−1
2 )(1 − t1)(1 − t2).

So MS,T (t1, t2) can be rewritten as (5). �

5.1.2. Lα,β(t1, t2)

Lemma 5.2. If Dα = Dβ , then Lα,β(t1, t2) = 0. In particular, Lα,α(t1, t2) = 0.

Proof.

Lα,β(t1, t2) = −χTt (X,OX (−�∞))

which can be identified with the tangent space of M1,0,0(X, �∞) at the trivial line bundle
OX . By Proposition 2.1,

H0(X,OX (−�∞)) = H2(X,OX (−�∞)) = 0.

By Corollary 2.4 (here r = 1, d = 0, n = 0), H1(X,OX (−�∞)) = 0. �
By Proposition 2.8 and Corollary 2.10, we have
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Lemma 5.3. Suppose that D · �∞ = 0. Then

H0(X,OX (D − �∞)) = H2(X,OX (D − �∞)) = 0,

and

dimC H1(X,OX (D − �∞)) = −1

2

(
D2 + c1(X) · D

)
.

In particular, for any D such that D · �∞ = 0 we have

D2 = − dimC H1(X,OX (D − �∞)) − dimC H1(X,OX (−D − �∞)) ≤ 0.

Notation 5.4. Let q0, q1 be the two Tt fixed points on �∞. Let w (resp. u) ∈ Hom(T, C
∗)

be the tangent weight (resp. normal weight) at q0, i.e., the weight of the Tt -action on
Tq0�∞ (resp. (N�∞/X )q0 ). Then the tangent weight (resp. normal weight) at q1, i.e., the
weight of the Tt -action on Tq1�∞ (resp. (N�∞/X )q1 ), must be given by −w (resp. u−kw),
where k = �∞ · �∞ > 0.

Note that the normal weights at q0 and q1 are the restrictions of the equivariant first
Chern class (c1)Tt (OX (�∞)) to the Tt fixed points q0 and q1, respectively:

(c1)Tt (OX (�∞))

∣∣∣
q0

= u, (c1)Tt (OX (�∞))

∣∣∣
q1

= u − kw.

Proposition 5.5. (Edge contribution to the tangent bundle)

Lα,β(t1, t2)=
∑

v∈V (�)

−e
wv

Dβ
−wv

Dα

(1 − e−wv
1 )(1 − e−wv

2 )
+

(
1

(1 − e−w)(1 − eu)
+

1

(1 − ew)(1 − eu−kw)

)
.

Proof. Recall that Lα,β(t1, t2) = −χTt (X,OX (Dβ − Dα − �∞)). By Grothendieck-
Riemann-Roch,

χTt (X,OX (Dβ − Dα − �∞)) =
∫

X
tdTt (TX )chTt (OX (Dβ − Dα − �∞))

=
∑

v∈V (�)

e
wv

Dβ
−wv

Dα

(1 − e−wv
1 )(1 − e−wv

2 )
+

(
e−u

(1−e−w)(1−e−u)
+

e−u+kw

(1 − ew)(1 − e−u+kw)

)
.

�
Example 5.6. Let X = Fk , �0, �∞ be as in Example 2.6, with the following Tt -action:

Tp1�0 (N�0/X )p1 Tp2�0 (N�0/X )p2 Tp3�∞ (N�∞/X )p3 Tp4�∞ (N�∞/X )p4

ε1 ε2 −ε1 ε2 + kε1 −ε1 −ε2 − kε1 ε1 −ε2

Hence, here w = ε1 and u = −ε2, and we have Dα = dα�0 for some dα ∈ Z. Then

Lα,β(t1, t2) = −e(dβ−dα)ε2

(1 − e−ε1)(1 − e−ε2)
+

−e(dβ−dα)(ε2+kε1)

(1 − eε1)(1 − e−ε2−kε1)

+
1

(1 − e−ε1)(1 − e−ε2)
+

1

(1 − eε1)(1 − e−ε2−kε1)

= 1 − t
dβ−dα

2

(1 − t−1
1 )(1 − t−1

2 )
+

1 − (tk
1 t2)dβ−dα

(1 − t1)(1 − t−k
1 t−1

2 )
,
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and we have

Lα,β(t1, t2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dα−dβ−1∑
j=0

k j∑
i=0

t−i
1 t− j

2 if dα > dβ,

dβ−dα∑
j=1

k j−1∑
i=1

t i
1t j

2 if dα < dβ,

0 if dα = dβ.

5.2. The natural bundle: fundamental representation. Let (E,
) ∈ Mr,d,n(X, �∞) be
a fixed point of the T̃ -action corresponding to (D, Y) = (D1, �Y1, . . . , Dr , �Yr ). We want
to compute

chT̃ V(E,
) = chT̃ H1(X, E(−�∞)) = −χT̃ (X, E(−�∞)).

Recall that E = I1(D1) ⊕ · · · ⊕ Ir (Dr ) (see Sect. 3.3), so

−χT̃ (X, E(−�∞)) = −
∑
β

χT̃ (X, Iβ(Dβ − �∞)) = −
∑
β

eaβ χTt (X, Iβ(Dβ − �∞)).

Let

Lβ(t1, t2) = −χTt (X,OX (Dβ − �∞)),

Mβ(t1, t2) = χTt (X,OX (Dβ − �∞)) − χTt (X, Iβ(Dβ − �∞)).

Then

chT̃ V(E,
) =
r∑

β=1

eaβ
(
Mβ(t1, t2) + Lβ(t1, t2)

)
. (8)

So it remains to compute Mβ(t1, t2) and Lβ(t1, t2).
Let wv

Dα
, wv

1 , wv
2 be defined as in Sect. 5.1.1. Given a partition S, let

MS(t1, t2) =
∑
s∈S

t−l ′(s)
1 t−a′(s)

2 , (9)

NS(ε1, ε2)
def= MS(eε1 , eε2) =

∑
s∈S

e−l ′(s)ε1−a′(s)ε2 . (10)

Proposition 5.7. (Vertex contribution to the natural bundle).

Mβ(t1, t2)=
∑

v∈V (�)

χv
Dβ

(t1, t2)MY v
β
(χv

1 (t1, t2), χ
v
2 (t1, t2)) =

∑
v∈V (�)

e
wv

Dβ NY v
β
(wv

1 , wv
2).

Proof. Let Dα = 0 in Proposition 5.1. �
Proposition 5.8. (Edge contribution to the natural bundle).

Lβ(t1, t2)=
∑

v∈V (�)

−e
wv

Dβ

(1 − e−wv
1 )(1 − e−wv

2 )
+

(
1

(1 − e−w)(1 − eu)
+

1

(1 − ew)(1 − eu−kw)

)
.
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Proof. Let Dα = 0 in Proposition 5.5. �
Example 5.9. Let X = Fk , �0, �∞ be as in Example 2.6, with the Tt -action as in Exam-
ple 5.6. Then

Lβ(t1, t2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−dβ−1∑
j=0

k j∑
i=0

t−i
1 t− j

2 if dβ < 0,

dβ∑
j=1

k j−1∑
i=1

t i
1t j

2 if dβ > 0,

0 if dβ = 0.

5.3. Formula for instanton partition functions. Given �Y = (Y1, . . . , Yr ), where each Yα

is a Young diagram, and a multiplicative class A associated to f (x), define

m
�Y
A,α,β(ε1, ε2, �a)

def=
∏

s∈Yα

f (aβ − aα − lYβ (s)ε1 + (aYα (s) + 1)ε2)

·
∏
t∈Yβ

f (aβ − aα + (lYα (t) + 1)ε1 − aYβ (t)ε2), (11)

m
�Y
A,β(ε1, ε2, �a)

def=
∏

t∈Y β

f (aβ − l ′Yβ
(t)ε1 − a′

Yβ
(t)ε2). (12)

In particular,

m
�Y
ctop,α,β(ε1, ε2, �a) =

∏
s∈Yα

(aβ − aα − lYβ (s)ε1 + (aYα (s) + 1)ε2)

·
∏
t∈Yβ

(aβ − aα + (lYα (t) + 1)ε1 − aYβ (t)ε2). (13)

Let Z inst
C2,A,B

= Z inst
C2,A,B,0

, and let | �Y | = ∑r
α=1 |Yα|. In this case, all Dβ = 0, so the

leg contribution is zero (see Lemma 5.2, Lemma 5.3):

Lα,β = 0, Lβ = 0.

By (4), Proposition 5.1, (8), Proposition 5.7, and above definitions (11), (12), (13), we
have:

Proposition 5.10. (Instanton partition functions for C
2)

Z inst
C2,A,B(ε1, ε2, �a;�) =

∑
�Y

�2r | �Y | ∏
α,β

m �Y
A,α,β(ε1, ε2, �a)

m �Y
ctop,α,β(ε1, ε2, �a)

r∏
β=1

m
�Y
B,β(ε1, ε2, �a).
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Given �D = (D1, . . . , Dr ), where each Dα ∈ ⊕e∈E(�)Z�e ∼= H2(X0; Z), and a
multiplicative class A, define

l
�D
A,α,β(ε1, ε2, �a) = AT̃ H1(X,OX (Dβ − Dα − �∞)). (14)

Then l �D
A,α,β(ε1, ε2; �a) = 1 if Dα = Dβ . In particular, l �D

A,α,α(ε1, ε2; �a) = 1. Let

l
�D
A,β(ε1, ε2, �a) = AT̃ H1(X,OX (Dβ − �∞)). (15)

Let

| �D|2 = −1

2

∑
α �=β

(Dα − Dβ)2 ≥ 0.

By Eqs. (4), (8) and Propositions 5.1, 5.5, 5.7, 5.8, 5.10, we have the following
analogue of the “master formula” in [Ne3, Sect. 6].

Proposition 5.11. (Master formula for instanton partition functions)

Z inst
X0,A,B,d(ε1, ε2, �a;�) =

∑
∑

Dα=d

�| �D|2 ∏
α �=β

l �D
A,α,β(ε1, ε2, �a)

l �D
ctop,α,β(ε1, ε2, �a)

r∏
β=1

l
�D

B,β(ε1, ε2, �a)

·
∏

v∈V (�)

Z inst
C2,A,B(wv

1 , wv
2 , �a + �Dv;�),

where �Dv = (wv
D1

, . . . , wv
Dr

).

Z inst
X0,A,B(ε1, ε2, �a;�, Q) =

∑
Dα∈H2

c (X;Z)

Q
∑

α Dα�| �D|2 ∏
α �=β

l �D
A,α,β(ε1, ε2, �a)

l �D
ctop,α,β(ε1, ε2, �a)

·
r∏

β=1

l
�D

B,β(ε1, ε2, �a) ·
∏

v∈V (�)

Z inst
C2,A,B(wv

1 , wv
2 , �a + �Dv;�).

In the rank 1 case, Z inst
X0,A,B does not depend on �a.

Corollary 5.12. (Rank 1, B = 1 case)

Z inst
X0,A,B=1,d(ε1, ε2;�) =

∏
v∈V (�)

Z inst
C2,A,B=1(w

v
1 , wv

2;�),

Z inst
X0,A,B=1(ε1, ε2;�, Q) =

∑
d∈H2

c (X;Z)

Qd
∏

v∈V (�)

Z inst
C2,A,B=1(w

v
1 , wv

2;�).

Note that Corollary 5.12 is applicable to the following cases: 4d pure gauge theory
(Sect. 4.3), 4d gauge theory with one adjoint matter hypermultiplet (Sect. 4.5), 5d gauge
theory compactified on a circle (Sect. 4.6), Hirzebruch genus (Sect. 4.7), elliptic genus
(Sect. 4.8).
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5.4. Nekrasov conjecture for C
2: instanton part.

Definition 5.13. (Instanton prepotential for C
2). Define

F inst
C2,A,B(ε1, ε2, �a;�)

def= −ε1ε2 log Z inst
C2,A,B(ε1, ε2, �a;�).

There are several versions of Nekrasov conjecture which correspond to the following
special cases:

(1) 4d pure gauge theory (see Sect. 4.3):

F inst
C2 (ε1, ε2, �a;�) = F inst

C2,A=1,B=1(ε1, ε2, �a;�).

(2) 4d gauge theory with N f fundamental matter hypermultiplets (see Sect. 4.4):

F inst
C2 (ε1, ε2, �a, �m;�) = F inst

C2,A=1,B=E �m (ε1, ε2, �a;�).

(3) 4d gauge theory with one adjoint matter hypermultiplet (see Sect. 4.5):

F inst
C2 (ε1, ε2, �a, m;�) = F inst

C2,A=Em ,B=1(ε1, ε2, �a, m;�).

(4) 5d gauge theory compactified on a circle of circumference β (see Sect. 4.6):

F inst
C2 (ε1, ε2, �a;�,β) = F inst

C2,A= Âβ ,B=1
(ε1, ε2, �a, m;�).

The above definitions of F inst
C2 are the same as those in [NO]; the definition in case

(1) above is the negative of the definition in [NY,NY1].
In Theorem 5.14 below, we summarize the various versions of the Nekrasov conjec-

ture proved by Nakajima-Yoshioka [NY1,NY2], Nekrasov-Okounkov [NO], Göttsche-
Nakajima-Yoshioka [GNY2]. See also Braverman [Br] and Braverman-Etingof [BrE],
who consider the case 4d pure gauge theory with arbitrary gauge groups. We refer to
Appendix C for the definitions of the corresponding versions of the Seiberg-Witten
prepotential in Theorem 5.14.

Theorem 5.14. (Nekrasov conjecture for C
2: instanton part)

(1) 4d pure gauge theory [NO,NY1,BrE]:
(a) F inst

C2 (ε1, ε2, �a;�) is analytic in ε1, ε2 near ε1 = ε2 = 0.

(b) lim
ε1,ε2→0

F inst
C2 (ε1, ε2, �a;�) = F inst

0 (�a,�), where F inst
0 (�a,�) is the instanton part

of the Seiberg-Witten prepotential of 4d pure gauge theory.
(2) 4d gauge theory with N f fundamental matter hypermultiplets [NO]:

(a) F inst
C2 (ε1, ε2, �a, �m;�) is analytic in ε1, ε2 near ε1 = ε2 = 0.

(b) lim
ε1,ε2→0

F inst
C2 (ε1, ε2, �a, �m;�) = F inst

0 (�a, �m,�), where F inst
0 (�a, �m,�) is the inst-

anton part of the Seiberg-Witten prepotential of 4d gauge theory with N f funda-
mental matter hypermultiplets.

(3) 4d gauge theory with one adjoint matter hypermultiplet [NO]:
(a) F inst

C2 (ε1, ε2, �a, m;�) is analytic in ε1, ε2 near ε1 = ε2 = 0.

(b) lim
ε1,ε2→0

F inst
C2 (ε1, ε2, �a, m;�) = F inst

0 (�a, m,�), where F inst
0 (�a, m,�) is the inst-

anton part of the Seiberg-Witten prepotential of 4d gauge theory with one adjoint
matter hypermultiplet.
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(4) 5d gauge theory compactified on a circle of circumference β [NO,NY2,GNY2]:
(a) F inst

C2 (ε1, ε2, �a;�,β) is analytic in ε1, ε2 near ε1 = ε2 = 0.

(b) lim
ε1,ε2→0

F inst
C2 (ε1, ε2, �a;�,β) = F inst

0 (�a,�, β), where F inst
0 (�a,�, β) is the inst-

anton part of the Seiberg-Witten prepotential of 5d gauge theory compactified
on a circle of circumference β.

5.5. Nekrasov conjecture for toric surfaces: instanton part. The expression of the mas-
ter formula (Proposition 5.11) contains two parts.

• Leg contribution:

∏
α �=β

l �D
A,α,β(ε1, ε2, �a)

l �D
ctop,α,β(ε1, ε2, �a)

r∏
β=1

l
�D
β (ε1, ε2, �a)

is analytic in ε1, ε2 near ε1, ε2 = 0, and

lim
ε1,ε2→0

∏
α �=β

l �D
A,α,β(ε1, ε2, �a)

l �D
ctop,α,β(ε1, ε2, �a)

r∏
β=1

l
�D
β (ε1, ε2, �a)

=
∏
α �=β

(
f (aβ − aα)

aβ − aα

)− 1
2 ((Dβ−Dα)2+c1(X)(Dβ−Dα)) r∏

β=1

g(aβ)
− 1

2 (D2
β+c1(X)·Dβ)

.

• Vertex contribution:

∏
v∈V (�)

Z inst
C2,A,B(wv

1 , wv
2 , �a+ �Dv;�)=exp

⎛
⎝−

∑
v∈V (�)

F inst
C2,A,B

(wv
1 , wv

2 , �a + �Dv;�)

wv
1wv

2

⎞
⎠ .

Definition 5.15. Given �D = (D1, . . . , Dr ), where each Dα ∈
⊕

e∈E(�)

Z�e = H2(X0; Z),

define

F inst
X0,A,B, �D(ε1, ε2, �a;�) =

∑
v∈V (�)

F inst
C2,A,B

(wv
1 , wv

2 , �a + �Dv;�)

wv
1wv

2

+
F inst

C2,A,B
(w, u, �a;�)

wu
+

F inst
C2,A,B

(−w, u − kw, �a;�)

−w(u − kw)
.

Lemma 5.16. Assume that F inst
C2,A,B

(ε1, ε2, �a;�) is analytic in ε1, ε2 near ε1 = ε2 = 0.

Then F inst
X0,A,B, �D(ε1, ε2, �a;�) is analytic in ε1, ε2 near ε1 = ε2 = 0 for all �D.

Proof. F inst
C2,A,B

(ε1, ε2, �a;�) is symmetric in ε1, ε2, so it is a function of s1 = ε1 + ε2,
s2 = ε1ε2, �a, and �. For fixed �a,�, let

gA,B(s1, s2, d1, . . . , dr , �a;�) = F inst
C2,A,B(ε1, ε2, a1 + d1, . . . , ar + dr ;�).
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Then gA,B(s1, s2, d1, . . . , dr , �a;�) is analytic in s1, s2, d1, . . . , dr near s1 = s2 = d1 =
· · · = dr = 0, so it has a power series expansion. Let Lα be the Tt -equivariant line
bundle OX (Dα). Then

IA,B, �D(ε1, ε2, �a; �)
def=

∫
X

gA,B
(
(c1)Tt (TX ), (c2)Tt (TX ), (c1)Tt (L1), . . . , (c1)Tt (Lr ), �a; �

)

(16)

is analytic in ε1, ε2 near ε1 = ε2 = 0, and

lim
ε1,ε2→0

IA,B, �D(ε1, ε2; �a,�) =
∫

X
gA,B (c1(TX ), c2(TX ), c1(L1), . . . , c1(Lr ), �a;�) .

(17)

The integral IA,B, �D(ε1, ε2, �a;�) is computed by the localization formula as follows:

IA,B, �D(ε1, ε2, �a;�) =
∑

v∈V (�)

F inst
C2,A,B

(wv
1 , wv

2 , �a + �Dv;�)

wv
1wv

2

+
F inst

C2,A,B
(w, u, �a;�)

wu
+

F inst
C2,A,B

(−w, u − kw, �a;�)

−w(u − kw)

= F inst
X0,A,B, �D(ε1, ε2, �a;�).

�
Definition 5.17. Assume that F inst

C2,A,B
(ε1, ε2, �a;�) is analytic in ε1, ε2 near ε1 =

ε2 = 0. Define

FX0,A,B, �D(�a;�)
def= lim

ε1,ε2→0
F inst

X0,A,B, �D(ε1, ε2, �a;�),

where the limit exists by Lemma 5.16.

Lemma 5.18. If F inst
C2,A,B

(ε1, ε2, �a;�) is analytic in ε1, ε2 near ε1 = ε2 = 0, then

log
(

Z inst
X0,A,B,d(ε1, ε2; �a;�)Z inst

C2,A,B(w, u, �a;�)Z inst
C2,A,B(−w, u − kw, �a;�)

)

is analytic in ε1, ε2 near ε1 = ε2 = 0.

Proof. We have

Z inst
X0,A,B,d(ε1, ε2; �a;�)Z inst

C2,A,B(w, u, �a;�)Z inst
C2,A,B(−w, u − kw, �a;�)

=
∑

∑
Dα=d

�| �D|2 h �D(ε1, ε2, �a;�),

where

h �D(ε1, ε2, �a;�)=
∏
α �=β

l �D
A,α,β(ε1, ε2, �a)

l �D
ctop,α,β(ε1, ε2, �a)

r∏
β=1

l
�D
β (ε1, ε2, �a) exp

(
−F inst

X,A,B, �D(ε1, ε2, �a;�)
)

.
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h �D(ε1, ε2, �a;�) is analytic in ε1, ε2 near ε1 = ε2 = 0, and

lim
ε1,ε2→0

h �D(ε1, ε2, �a;�) =
∏
α �=β

(
f (aβ − aα)

aβ − aα

)− 1
2 ((Dβ−Dα)2+c1(X)(Dβ−Dα))

·
r∏

β=1

g(aβ)
− 1

2 (D2
β+c1(X)·Dβ) exp(−FX0,A,B, �D(�a;�)).

Therefore

log

⎛
⎝ ∑

∑
Dα=d

�| �D|2 h �D(ε1, ε2, �a;�)

⎞
⎠

is analytic in ε1, ε2 near ε1 = ε2 = 0. �
By Lemma 5.18, the pole of log Z inst

X0,A,B,d along ε1 = ε2 = 0 is the same as that of

− log Z inst
C2,A,B(w, u, �a;�) − log Z inst

C2,A,B(−w, u − kw, �a;�)

=
F inst

C2,A,B
(w, u, �a;�)

wu
+

F inst
C2,A,B

(−w, u − kw, �a;�)

−w(u − kw)
.

Definition 5.19. (Logarithm of the instanton part) Define

F inst
X0,d(ε1, ε2, �a;�) = −u(u − kw) log Z inst

X0,d(ε1, ε2, �a;�).

Theorem 5.20. If F inst
C2,A,B

(ε1, ε2, �a;�) is analytic in ε1, ε2 near ε1 = ε2 = 0, then

(a) F inst
X0,A,B,d(ε1, ε2, �a;�) is analytic in ε1, ε2 near ε1 = ε2 = 0,

(b) lim
ε1,ε2→0

F inst
X0,A,B,d(ε1, ε2, �a;�) = k lim

ε1,ε2→0
F inst

C2,A,B(ε1, ε2, �a;�).

Proof. Let

gk(w, u, �a;�)=−u(u−kw)

(F inst
C2,A,B

(w, u, �a;�)

wu
+

F inst
C2,A,B

(−w, u − kw, �a;�)

−w(u − kw)

)
.

Note that (w, u) and (ε1, ε2) are related by a coordinate transformation in GL(2, Z). By
Lemma 5.18, it suffices to show that

(a)’ gk(w, u, �a;�) is analytic in w, u near w = u = 0,
(b)’ lim

w,u→0
gk(w, u, �a;�) = k lim

ε1,ε2→0
F inst

C2,A,B(ε1, ε2, �a,�).

We have

F inst
C2 (−w, u − kw, �a;�) − F inst

C2,A,B(w, u, �a;�) = wHk(w, u, �a;�),

where Hk(w, u, �a;�) is analytic in w, u near w = u = 0. So

gk(w, u, �a;�) = kF inst
C2,A,B(w, u, �a,�) + u Hk(w, u, �a;�). (18)

(a)’ and (b)’ are immediate consequences of (18). �
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Theorem 5.14 and Theorem 5.20 imply:

Theorem 5.21. (Nekrasov conjecture for toric surfaces: instanton part)

(1) 4d pure gauge theory:
(a) F inst

X0,d
(ε1, ε2, �a;�) is analytic in ε1, ε2 near ε1 = ε2 = 0.

(b) lim
ε1,ε2→0

F inst
X0,d(ε1, ε2, �a;�) = kF inst

0 (�a,�), where F inst
0 (�a,�) is the instanton

part of the Seiberg-Witten prepotential of 4d pure gauge theory.
(2) 4d gauge theory with N f fundamental matter hypermultiplets:

(a) F inst
X0,d

(ε1, ε2, �a, �m;�) is analytic in ε1, ε2 near ε1 = ε2 = 0.

(b) lim
ε1,ε2→0

F inst
X0,d(ε1, ε2, �a, �m;�) = kF inst

0 (�a, �m,�), where F inst
0 (�a, �m,�) is the

instanton part of the Seiberg-Witten prepotential of 4d gauge theory with N f
fundamental matter hypermultiplets.

(3) 4d gauge theory with one adjoint matter hypermultiplet:
(a) F inst

X0,d
(ε1, ε2, �a, m;�) is analytic in ε1, ε2 near ε1 = ε2 = 0.

(b) lim
ε1,ε2→0

F inst
X0,d(ε1, ε2, �a, m;�) = kF inst

0 (�a, m,�), where F inst
0 (�a, m,�) is the

instanton part of the Seiberg-Witten prepotential of 4d gauge theory with one
adjoint matter hypermultiplet.

(4) 5d gauge theory compactified on a circle of circumference β:
(a) F inst

X0,d
(ε1, ε2, �a;�,β) is analytic in ε1, ε2 near ε1 = ε2 = 0.

(b) lim
ε1,ε2→0

F inst
X0,d(ε1, ε2, �a;�,β) = kF inst

0 (�a,�, β), where F inst
0 (�a,�, β) is the

instanton part of the Seiberg-Witten prepotential of 5d gauge theory compacti-
fied on a circle of circumference β.

6. The Perturbative Part

In this section we prove the perturbative parts of the conjecture, of which instanton coun-
terparts were proved in Theorem 5.21. The perturbative part comes from the difference
between framed instantons on the compact toric surface X and unframed instantons on
the noncompact toric surface X0, so we must consider the virtual tangent and natural
bundles of the moduli space of unframed instantons on X0. Evaluating the required
multiplicative classes at such bundles gives rise to infinite products which need to be
regularised. Following [NO] we use zeta-function regularization (Definition 6.3).

6.1. The virtual tangent bundle of Mr,d,n(X0). Given (E,
) ∈ Mr,d,n(X, �∞), we
may look at E |X0 as representing a point in the moduli space Mr,d,n(X0) of unframed
instantons on the noncompact surface X0. We have

chT̃ T vir
E |X0

Mr,d,n(X0) = −chT̃ Ext∗OX0
(E |X0 , E |X0)

=
∑
α,β

eaβ−aα
∑

v∈V (�)

e
wv

Dβ
−wv

Dα

(
NY v

α ,Y v
β
(wv

1 , wv
2) − 1

(1 − e−wv
1 )(1 − e−wv

2 )

)

=
∑
v∈�

∑
α,β

e
(aβ+wv

Dβ
)−(aα+wv

Dα
)
(

NY v
α ,Y v

β
(wv

1 , wv
2) − 1

(1 − e−wv
1 )(1 − e−wv

2 )

)
.
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The perturbative part of the T̃ -equivariant Chern character of the tangent bundle is
given by

chT̃ T pert
E |X0

def= chT̃ T vir
E |X0

Mr,d,n(X0) − chT̃ T(E,
)Mr,d,n(X, �∞)

= −
∑
α,β

eaβ−aα

(
1

(1 − e−w)(1 − eu)
+

1

(1 − ew)(1 − eu−kw)

)

= −∑
α,β eaβ−aα

(1 − eu)(1 − eu−kw)

⎛
⎝1 +

k−1∑
j=1

eu− jw

⎞
⎠ .

Example 6.1. X = P
2, X0 = C

2.

chT̃ T pert
(E,
) = −

∑
α,β

eaβ−aα

(
1

(1 − eε2−ε1)(1 − e−ε2)
+

1

(1 − eε1−ε2)(1 − e−ε1)

)

= −∑
α,β eaβ−aα

(1 − e−ε1)(1 − e−ε2)
.

Let A be a multiplicative class defined by a formal power series f (x). Formally,
evaluating A on the tangent bundle produces the following perturbative part:

AT̃ (T pert
(E,
)) = 1∏∞

i, j=0 f (aβ − aα − iw + ju)
∏∞

i, j=0 f (aβ − aα + iw + j (u − kw))
.

(19)

The infinite product on the right-hand side requires regularization.

6.2. The natural virtual bundle. Given (E,
) ∈ Mr,d,n(X, �∞), once again looking at
E |X0 as representing a point in Mr,d,n(X0), we have

chT̃ V vir
E |X0

= −χT̃ Ext∗OX0
E

=
∑
β

eaβ
∑

v∈V (�)

e
wv

Dβ

(
NY v

β
(wv

1 , wv
2) − 1

(1 − e−wv
1 )(1 − e−wv

2 )

)

=
∑
v∈�

∑
β

e
(aβ+wv

Dβ
)
(

NY v
β
(wv

1 , wv
2) − 1

(1 − e−wv
1 )(1 − e−wv

2 )

)
.

The perturbative part of the T̃ -equivariant Chern character of the natural bundle is given
by

chT̃ V pert
E |X0

def= chT̃ V vir
E |X0

− chT̃ V(E,
)

= −
∑
α,β

eaβ

(
1

(1 − e−w)(1 − eu)
+

1

(1 − ew)(1 − eu−kw)

)

= −∑
β eaβ

(1 − eu)(1 − eu−kw)

⎛
⎝1 +

k−1∑
j=1

eu− jw

⎞
⎠ .
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Example 6.2. X = P
2, X0 = C

2.

chT̃ V pert
E |X0

= −
∑
β

eaβ

(
1

(1 − eε2−ε1)(1 − e−ε2)
+

1

(1 − eε1−ε2)(1 − e−ε1)

)

= −∑
β eaβ

(1 − e−ε1)(1 − e−ε2)
.

Let B be a multiplicative class defined by a formal power series g(x). Formally,
evaluating B on the natural bundle produces the following perturbative part:

BT̃ (V pert
E |X0

) = 1∏∞
i, j=0 g(aβ − iw + ju)

∏∞
i, j=0 g(aβ + iw + j (u − kw))

. (20)

The infinite product on the right hand side requires regularization.

6.3. Regularization. Following [NO, App. A], we introduce the following functions.

Definition 6.3. (Zeta-regularization)

γε1,ε2(x;�)
def= d

ds

∣∣∣
s=0

�

�(s)

∫ ∞

0

dt

t
t s e−tx

(eε1t − 1)(eε2t − 1)
, (21)

γε1,ε2(x | β;�)
def= 1

2ε1ε2

(
−β

6

(
x +

1

2
(ε1 + ε2)

)3

+ x2 log(β�)

)

+
∞∑

n=1

1

n

e−βnx

(eβnε1 − 1)(eβnε2 − 1)
. (22)

exp(γε1,ε2(x;�)) is a regularization of the infinite product

∞∏
i, j=0

�

x − iε1 − jε2
.

For a very nice explanation of this regularization scheme see [Ok]. Let Lis(z) =
∞∑

n=1

zn

ns

be the polylogarithm function. The functions γε1,ε2(x;�) and γε1,ε2(x | β;�) satisfy
the following properties (see [NO, App. A]):

Fact 6.4. (1) ε1ε2γε1,ε2(x;�) is analytic in ε1, ε2 near ε1 = ε2 = 0;

(2) lim
ε1,ε2→0

ε1ε2γε1,ε2(x;�) = −1

2
x2 log

x

�
+

3

4
x2.

Fact 6.5. (1) ε1ε2γε1,ε2(x | β;�) is analytic in ε1, ε2 near ε1 = ε2 = 0;

(2) lim
ε1,ε2→0

ε1ε2γε1,ε2(x | β;�) = x2

2
log(β�) − β

12
x3 +

1

β2 Li3(e
−βx).
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6.4. Nekrasov conjecture: perturbative part. Applying zeta-regularization to (19) and
(20), we obtain the following definitions:

Definition 6.6. (Perturbative part of the partition function)

(1) 4d pure gauge theory:

Fpert
X0,A=1,B=1(ε1, ε2, �a;�)

def= u(u − kw) ·
⎛
⎝∑

α,β

(γw,−u(aβ − aα;�) + γ−w,−u+kw(aβ − aα;�))

⎞
⎠

Zpert
X0,A=1,B=1(ε1, ε2, �a;�)

def= exp

(Fpert
X0,A=1,B=1(ε1, ε2, �a;�)

−u(u − kw)

)
,

(2) 4d gauge theory with N f fundamental matter hypermultiplets:

Fpert
X0,A=1,B=E �m (ε1, ε2, �a;�)

def= u(u − kw) ·
⎛
⎝∑

α,β

(
γw,−u(aβ − aα;�) + γ−w,−u+kw

(
aβ − aα;�

)

−
∑
β, f

(
γw,−u(aβ + m f ;�) + γ−w,−u+kw(aβ + m f ,�)

)
⎞
⎠

Zpert
X0,A=1,B=E �m (ε1, ε2, �a;�)

def= exp

(Fpert
X0,A=1,B=E �m (ε1, ε2, �a;�)

−u(u − kw)

)
,

(3) 4d gauge theory with one adjoint matter hypermultiplet:

Fpert
X0,A=Em ,B=1(ε1, ε2, �a;�)

def= u(u − kw) ·
⎛
⎝∑

α,β

(
γw,−u(aβ − aα;�) − γw,−u(m + aβ − aα;�)

+γ−w,−u+kw(aβ − aα;�) − γ−w,−u+kw

(
m + aβ − aα;�

))

Zpert
X0,A=Em ,B=1(ε1, ε2, �a;�)

def= exp

(Fpert
X0,A=Em ,B=1(ε1, ε2, �a;�)

−u(u − kw)

)
,

(4) 5d gauge theory compactified at a circle of circumference β:

Fpert
X0,A= Âβ ,B=1

(ε1, ε2, �a;�)

def= u(u − kw)
∑
p,q

(γw,−u(ap − aq;β,�) + γ−w,−u+kw(ap − aq;β,�)

Zpert
X0,A= Âβ ,B=1

(ε1, ε2, �a;�)
def= exp

⎛
⎝Fpert

X0,A= Âβ ,B=1
(ε1, ε2, �a;�)

−u(u − kw)

⎞
⎠ .
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Example 6.7. X = P
2, X0 = C

2.

(1) 4d pure gauge theory:

Fpert
C2,A=1,B=1

(ε1, ε2, �a;�) = ε1ε2

∑
α,β

γε1,ε2(aβ − aα;�),

(2) 4d gauge theory with N f fundamental matter hypermultiplets:

Fpert
C2,A=1,B=E �m

(ε1, ε2, �a;�)

= ε1ε2

⎛
⎝∑

α,β

γε1,ε2(aβ − aα;�) −
∑
β, f

γε1,ε2(aβ + m f ;�)

⎞
⎠ ,

(3) 4d gauge theory with one adjoint matter hypermultiplet:

Fpert
C2,A=Em ,B=1

(ε1, ε2, �a;�)

= ε1ε2

∑
α,β

(
γε1,ε2(aβ − aα;�) − γε1,ε2

(
m + aβ − aα;�

))
,

(4) 5d gauge theory compactified at a circle of circumference β:

Fpert
C2,A= Âβ ,B=1

(ε1, ε2, �a;�) = ε1ε2

∑
p,q

γε1,ε2(ap − aq | β;�).

Theorem 6.8. (Nekrasov conjecture: perturbative part)

(1) 4d pure gauge theory:

lim
ε1,ε2→0

Fpert
X0,A=1,B=1(ε1, ε2, �a;�) = kFpert

0 (�a,�),

where

Fpert
0 (�a,�) =

∑
α �=β

(
−1

2
(aα − aβ)2 log

(
aα − aβ

�

)
+

3

4
(aα − aβ)2

)

is the perturbative part of the Seiberg-Witten prepotential of 4d pure gauge theory.
(2) 4d gauge theory with N f fundamental matter hypermultiplets:

lim
ε1,ε2→0

Fpert
X0,A=1,B=E �m (ε1, ε2, �a;�) = kFpert

0 (�a, �m,�),

where

Fpert
0 (�a, �m,�) =

∑
α �=β

(
−1

2
(aα − aβ)2 log

(
aα − aβ

�

)
+

3

4
(aα − aβ)2

)

+
∑
β, f

(
1

2
(aβ + m f )

2 log
(aβ + m f

�

)
− 3

4
(aβ + m f )

2
)

is the perturbative part of the Seiberg-Witten prepotential of 4d gauge theory with
N f fundamental matter hypermultiplets.
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(3) 4d gauge theory with one adjoint matter hypermultiplet:

lim
ε1,ε2→0

Fpert
X0,A=Em ,B=1(ε1, ε2, �a;�) = kFpert

0 (�a, m,�),

where

Fpert
0 (�a, m,�) =

∑
α �=β

(
−1

2
(aα − aβ)2 log

(
aα − aβ

�

)
+

3

4
(aα − aβ)2

+
1

2
(aα − aβ + m)2 log

(
aα − aβ + m

�

)
− 3

4
(aα − aβ + m)2

))

=
∑
α �=β

(
−1

2
(aα − aβ)2 log

(
aα − aβ

�

)
+

1

2
(aα − aβ + m)2

× log

(
aα − aβ + m

�

)
− 3m2

4

)

is the perturbative part of the Seiberg-Witten prepotential of 4d gauge theory with
one adjoint matter hypermultiplets.

(4) 5d gauge theory compactified at a circle of circumference β:

lim
ε1,ε2→0

Fpert
X0,A= Âβ ,B=1

(ε1, ε2, �a;�) = kFpert
0 (�a,�, β),

where

Fpert
0 (�a,�, β)=

∑
p �=q

(
1

2
(ap−aq)2 log(β�)− β

12
(ap − aq)3+

1

β2 Li3(e
−β(ap−aq ))

)

is the perturbative part of the Seiberg-Witten prepotential of 5d gauge theory com-
pactified on a circle.

Proof. We prove (1), (2), (3). The proof of (4) is similar, except that we use Fact 6.5
instead Fact 6.4.

Define

fk(u, w,x;�) = u(u − kw)(γw,−u(x;�) + γ−w,u+kw(x;�)).

By Definition 6.6 (definition of Fpert), it suffices to show that

lim
u,w→0

fk(u, w,x;�) = k

(
−1

2
x2 log

x

�
+

3

4
x2

)
.

Let g(ε1, ε2,x;�) = ε1ε2γε1,ε2(x;�). Then by Fact 6.4,

(i) g(ε1, ε2,x;�) is analytic in ε1, ε2 near ε1 = ε2 = 0,

(ii) lim
ε1,ε2→0

g(ε1, ε2,x;�) = −1

2
x2 log

x

�
+

3

4
x2.
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By (i), we have

g(−w,−u + kw,x;�) − g(w,−u,x;�) = whk(u, w,x;�),

where hk(u, w,x;�) is analytic in w, u near w = u = 0. We have

fk(u, w,x;�) = u(u − kw)

(
g(w,−u,x;�)

w(−u)
+

g(−w,−u + kw;�)

−w(−u + kw)

)

= kg(w,−u,x;�) + uhk(u, w,x;�).

Therefore

lim
u,w→0

fk(u, w,x;�) = k lim
ε1,ε2→0

g(ε1, ε2,x;�) = k

(
−1

2
x2 log

x

�
+

3

4
x2

)
.

�

Appendix A: Kobayashi–Hitchin Correspondence and Existence of Instantons

In this section we recall some results relating instantons in pure gauge theory to holomor-
phic bundles. The Kobayashi–Hitchin correspondence predicts an equivalence between
instantons and holomorphic bundles in various settings, see [LT]. For an SU (n) bundle
E over compact Kähler surface X this correspondence was proved by Donaldson [Do1]:
The moduli space of irreducible anti-self-dual connections on E is naturally identified
with the set of equivalence classes of stable holomorphic SL(n, C) bundles which are
topologically equivalent to E (see [DoK] Corollary 6.1.6 for a proof of the rank 2 case).
Note that here stability is taken with respect to the Kähler class. Under this correspon-
dence the topological charge of the instanton corresponds to the second Chern number
of the bundle.

To obtain a Kobayashi–Hitchin correspondence over a non-compact Kähler manifold
(X, ω) one must impose some conditions on the behaviour of holomorphic bundles at
infinity. The instanton charge is obtained by integration of the curvature of the connec-
tion over X , and the mildest constraint that guarantees finiteness of this integral is to
demand that the curvature decays as 1/r2.

For a manifold X that can be compactified to X̄ = X ∪ D by adding a smooth divi-
sor D with positive normal bundle, Bando [Ba] defined a notion on U (r) flatness and
proved the following: There is a correspondence between the moduli space of Hermitian–
Einstein holomorphic vector bundles on (X, ω) whose curvature decays faster than 1/r2

with trivial holonomy at infinity and the moduli space of holomorphic vector bundles X̄
whose restriction to D are U (r)−flat.

Alternatively, one can study non-compact Kobayashi-Hitchin correspondence
between instantons and framed bundles, that is, holomorphic bundles that are trivialized
at infinity. See Donaldson [Do2] for the first non-compact instance of the correspon-
dence, namely instantons on C

2; then King [Ki] for instantons on the blow-up of C
2;

and Gasparim–Köppe–Majumdar [GKM] for instantons on Zk := TotOP1(−k).

We remark that these correspondences refer to classical instantons, and correspond-
ing non-compactified moduli spaces of holomorphic vector bundles (i.e. locally free
sheaves) having c1 = 0, whereas in the supersymmetric case the vocabulary instanton
moduli refers to the much more general notion of (partially) compactified moduli spaces
of torsion free sheaves. In particular, existence of instantons with a prescribed charge in
supersymmetric gauge theories can be obtained simply by considering non-locally free
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sheaves. Thus, existence results for supersymmetric instantons contrast with existence of
classical instantons, cf. [GKM] Theorem 6.8, which says that the minimal local charge
of a nontrivial SU (2)-instanton on Zk is k − 1.

Appendix B: Equivariant Cohomology

Let ET be a contractible space on which T = (C∗)k acts freely, and let BT = ET/T .
(For example, ET = (C∞ − {0})k and BT = (P∞)k .) Then ET → BT is a universal
principal T -bundle.

Suppose that T = (C∗)k acts on an m-dimensional complex manifold M . The
T -equivariant cohomology of M is defined to be

H∗
T (M; Q)

def= H∗(MT ; Q),

where MT = M ×T ET . There is a fibration MT → BT = ET/T with fiber M . Let
iM : M → MT be the inclusion of fiber. This induces a ring homomorphism

i∗M : H∗
T (M; Q) → H∗(M; Q).

In particular, when M is a point, the map

i∗pt : H∗
T (pt; Q) ∼= Q[u1, . . . , uk] → H∗(pt; Q) ∼= Q

is given by p(u1, . . . , uk) �→ p(0, ..., 0), where u1, . . . , uk ∈ H2
T (pt; Q).

B.1: Integral: Now suppose that M is compact. Then integration along the fiber gives
Q-linear maps

∫
M

: H∗(M; Q) → H∗(pt; Q), (23)

∫
M

: H∗
T (M; Q) = H∗(MT ; Q) → H∗

T (pt; Q) = H∗(BT ; Q), (24)

such that

(i)
∫

M α = 0 if α ∈ Hq(M; Q), q < 2m.
(ii)

∫
M α ∈ H0(pt) ∼= Q if α ∈ H2m(M; Q).

(iii)
∫

M α = 0 if α ∈ Hq
T (M; Q), q < 2m.

(iv)
∫

M α ∈ Hq−2m
T (pt; Q) if α ∈ Hq

T (M; Q), q ≥ 2m. Note that Hq−2m
T (pt; Q) =

0 when q is odd, and Hq−2m
T (pt; Q) consists of homogeneous polynomials in

u1, . . . , uk of degree q/2 − m when q is even.
(v) i∗pt

∫
M α = ∫

M i∗Mα ∈ H0(pt; Q) ∼= Q for α ∈ H∗
T (M; Q).
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B.2: Localization: Let MT denote the set of T -fixed points in M . Suppose that each
connected component of MT is a compact complex submanifold of M , so that MT

has a normal bundle N which is a complex vector bundle. Note that N might have
different ranks on different connected components of MT . T acts on MT trivially, so
(MT )T = MT × BT and

H∗
T (MT ; Q) ∼= H∗(MT ; Q) ⊗Q HT (pt; Q).

The T -equivariant Euler class eT (N ) ∈ H∗
T (MT ; Q) is invertible in

H∗(MT ; Q) ⊗Q Q[u1, . . . , uk]m,

where Q[u1, . . . , uk]m is the localization of the ring Q[u1, . . . , uk] at the maximal ideal
m generated by u1, ..., uk . The Atiyah-Bott localization formula says

∫
M

α =
∫

MT

i∗α
eT (N )

, (25)

where α ∈ H∗
T (M; Q), and i∗ : H∗

T (M; Q) → H∗
T (MT ; Q) is induced by the inclusion

i : MT → M . In particular, if MT consists of isolated points p1, . . . , pN , then

∫
M

α =
N∑

j=1

i∗p j
α

eT (Tpi M)
, (26)

where i∗p j
: H∗

T (M; Q) → H∗
T (p j ; Q) ∼= Q[u1, . . . , uk] is induced by the inclusion

i p j : p j → M .
Now suppose that M is non-compact. Then (23) and (24) are not defined. However,

when MT is compact, we may define (24) by the right hand side of (25). Now (i), (ii),
(v) are irrelevant, and (iii), (iv) do not hold: given α ∈ Hq

T (M; Q), we have
∫

M α = 0 if
q is odd, and

∫
M α is a rational function in u1, . . . , uk homogeneous of degree q/2 − m

(the degree can be negative).

Example B.1. Let Tt = (C∗)2 act on P
2 by (t1, t2) · [Z0, Z1, Z2] = [Z0, t1 Z1, t2 Z2].

We have H∗
Tt

(pt; Q) = Q[ε1, ε2],
∫

P2
1 = 1

ε1ε2
+

1

(−ε1)(−ε1 + ε2)
+

1

(−ε2)(ε1 − ε2)
= 0,

∫
C2

1 = 1

ε1ε2
.

B.3: Characteristic classes: Let c be a characteristic class for complex vector bundles.
Given a T -equivariant complex vector bundle V over M , VT = V ×T ET is a vector
bundle over MT = M ×T ET . The T -equivariant characteristic class cT is defined by

cT (E)
def= c(ET ) ∈ H∗(MT ; Q) = H∗

T (M; Q).
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Appendix C: Seiberg-Witten Prepotential

We present a brief description of the Seiberg–Witten prepotential, which is described
in detail in the seminal work [SW], where Seiberg and Witten gave an exact solution to
N = 2 supersymmetric Yang–Mills in 4 dimensions with group SU (2). For more details
see also [NY and D]. For gauge theory with matter see [DW and BFMT]. The subject of
5d gauge theories compactified on a circle and the corresponding Seiberg-Witten curves
were introduced in [Ne1].

C.1: SU (2) case: The constraints of N = 2 SUSY imply that the quantum moduli
space is the same as the classical one as an algebraic variety. Basic quantities are then
the coordinates u of the moduli space and the electric charge a, which in the classical
theory are related simply by u = a2/2; in the quantum theory this relation holds approx-
imately for u → ∞ by asymptotic freedom, but for finite u the relation is much more
intricate and encodes fundamental geometric and physical information. The description
of the theory via the low energy effective Lagrangian presents measurable quantities as
functions of the coordinates u of the moduli space, and in particular the electric charge
a = a(u). Moreover, Seiberg [Se] shows that the magic of supersymmetry allows the
effective Lagrangian to be expressed in terms of a single locally defined meromorphic
function: the prepotential F0; all remaining quantities in the theory are expressible as
functions of F0 and a. An appropriate incarnation of Montonen–Olive duality accounts
for the appearance of the dual variable

aD = dF0

da
,

whose physical meaning is of the dual, that is, magnetic charge. The defining relations
giving

τ = daD

da
, τ D = d(−a)

daD
,

which imply that the duality transformation is τ D = −τ(a)−1 and specializes to the
Montonen–Olive transformation gD = g−1 when the phase angle θ = 0, but not other-
wise. The moduli space then acquires expressions for a Kähler metric

ds2 = I m(τdadā)

with Kähler potential dF0
da ā, where τ is the matrix of periods

τ = d2F0

da2 = daD

da
.

For SU (2) the low-energy effective values of this coupling are given by τ = θ
2π

+ 4π i
g2 ,

where θ is is defined only modulo 2πZ; consequently τ is defined only modulo Z and

there is a second transformation fixing a and taking τ �→ τ + 1. Since τ = daD

da , it
follows that aD �→ aD + a. This pair of transformations acts as multiplication on the
2−vector (aD, a) by the matrices

(
0 1

−1 0

)
and

(
1 1
0 1

)
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and fractional-linearly on τ , thus generating an SL(2, Z) action. The upshot is that what
lives intrinsically over a point u in the moduli space is not the electric charge a(u) but
the unimodular lattice Za(u) + ZaD(u) of all electric and magnetic charges. As u varies
we obtain a Z

2 local system V over the moduli space, which Seiberg and Witten showed
to have as simple as possible behaviour, thus having only 3 singularities at ±1 and ∞.

Fixing a section of V determines the prepotential up to a constant. From a careful anal-
ysis of the monodromies at the singular points, it follows that the local system itself can
be identified with the fiber cohomology of the elliptic curve

Eu : y2 = (x + 1)(x − 1)(x − u).

The complexification VC can be globally trivialized in terms of a holomorphic 1-form
λ1 = dx

y and a residueless meromorphic form λ2 = xdx
y . One then chooses a homology

basis consisting of a loop γ around the branch points 1,−1 and a loop γ D around 1, u;
and using such a basis, the correct geometric solution for the period is

τu =
∮
γ D λ1∮
γ

λ1
.

In this solution, a and aD appear as the periods of γ and γ D of the meromorphic 1-form

λ = ydx

x2 − 1
= (x − u)dx

y
= λ2 − uλ1.

C.2: Higher rank case: The Seiberg-Witten solution is sometimes presented in reverse
order, starting directly with the family of curves parametrized by u as we just described.
For instance, the solution for the group SU (r) then appears as follows. Let φ be an
SU (r) gauge field. Then

det(xI − φ) = xr + U2x
r−2 − U3x

r−3 + · · · + (−1)r Ur ,

where Uk is the elementary symmetric polynomial of the eigenvalues of φ, with U1 = 0
because φ takes values in SU (r). These are gauge invariant operators, so their vacuum
expectation values uk = 〈Uk〉 serve as coordinates of the classical moduli space. These
are the coordinates on the �u-space: u2, . . . , ur , which generalises the so-called u-plane
in the SU (2) case.

In case of added matter, then the duality transformations take a different form,
e.g. adding N f fundamental matter hypermultiplets, the duality transformation becomes:

(
aD

a

)
�→ R

(
aD

a

)
+

N f∑
i=1

mi

(
nD

i

ni

)
,

where R ∈ Sp(2(r −1), Z), the mi are the masses of the N f particles added, and ni , nD
i

are integral r × r matrices. Correspondingly, on the total space of the family of curves,
there are then N f divisors Di along which the meromorphic differential λ acquires a
pole with constant residue mi

2π
√−1

. Here again the charges a, aD can be recovered as the

periods of λ over γ and γ D.

We now describe the Seiberg-Witten prepotential in various gauge theories with gauge
group SU (r), starting directly with the Seiberg–Witten curves. Consider the family of
curves parametrized by �, �u = (u2, . . . , ur ), and possibly some extra parameters, in
the following cases:
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(1) 4d pure gauge theory (see e.g. [NO, (4.5)]):

C�u : �r
(

w +
1

w

)
= P(z) = zr + u2zr−2 + · · · + ur .

(2) 4d gauge theory with N f fundamental matter hypermultiplets (see e.g. [Ne2, (1.10)]):

C�u, �m : w +
�2r−N f Q(z)

w
= P(z), Q(z) =

N f∏
f =1

(z + m f ).

(3) 4d gauge theory with adjoint matter hypermultiplets (see e.g. [NO, (6.32)]): in this
case the SW curve is the spectral curve of the elliptic Calogero–Moser system,

C�u,m : Detl,n(L(�) − z) = 0,

where

Ll,n(�) = δln

(
pn +

m

2π
√−1

log(θ11(�))′
)

+
m

2π
√−1

(1 − δln)
θ11(� + ql − qn)θ ′

11(0)

θ11(�)θ11(ql − qn)
,

θ11(� ; τ) =
∑
n∈Z

eπ
√−1τ(n+ 1

2 )2+2π
√−1(�+ 1

2 )(n+ 1
2 ).

(4) 5d gauge theory compactified at a circle of circumference β (see e.g. [NO, (7.19)]):

C�u,β : (β�)r (w +
1

w
) = X−r/2 P(X), X = eβz .

The Seiberg-Witten differential is

d S = 1

2π
√−1

z
dw

w
= 1

2π
√−1

z P ′(z)dz

y
.

Let {Aα, Bβ | α, β = 2, . . . , r} be a symplectic basis of H1(C�u, Z). Define functions
aα , aD

β on the �u-plane by

aα =
∮

Aα

d S, aD
α = 2π

√−1
∮

Bβ

d S.

Then

ωp = 1

2π
√−1

zr−pdz

y
, p = 2, . . . , r

form a basis of holomorphic differentials on C�u . The period matrix τ = (ταβ) is given
by

ταβ = 1

2π
√−1

∂aD
α

∂aβ

.
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Note that a change of symplectic basis corresponds to an element in Sp(2(r − 1), Z),
the group of duality acting on the period matrix τ = (ταβ). In the SU (2) or U (2) cases,
we have r = 2, so the group of duality is Sp(2, Z) = SL(2, Z) and the SW curve is an
elliptic curve.

The Seiberg-Witten prepotential is a locally defined function satisfying

aD
α = ∂F0

∂aα

.

Therefore the Seiberg-Witten prepotential and the period matrix are related by

ταβ = 1

2π
√−1

∂2F0

∂aα∂aβ

.

The full Seiberg–Witten prepotential is expressed as a sum

F0 = Fpert
0 + F inst

0 ,

where Fpert
0 is the perturbative part and F inst

0 is the instanton part. The explicit expres-

sions of the perturbative parts Fpert
0 of the SW prepotentials in gauge theories (1), (2),

(3), (4) on the previous page are given in (1), (2), (3), (4) of Theorem 6.8, respectively;
they have logarithm singularities along � = 0. The instanton part F inst

0 of the SW
prepotential is a power series in �2r :

F inst
0 = O(�2r ) = f1�

2r + f2�
4r + · · · + fn�2nr + · · · .

The coefficient fn coming from the n-instanton moduli space is called the nth instanton
correction to the prepotential.

For further details we refer to [DW,GNY2,Ne1,NO], and [NY, Sect. 2].
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