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Abstract: We give a closed form for the correlation functions of ensembles of a class
of asymmetric real matrices in terms of the Pfaffian of an antisymmetric matrix formed
from a 2×2 matrix kernel associated to the ensemble. We apply this result to the real Gin-
ibre ensemble and compute the bulk and edge scaling limits of its correlation functions
as the size of the matrices becomes large.
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1. Introduction

The principal subject of this paper is the Ginibre ensemble of real random matrices —
square real valued matrices with i.i.d. normal entries. Random matrix models have been
very successful in describing various physical phenomena. (See e.g. [17] and references
therein.) Physical applications of the Ginibre ensembles are described in [14,18] and
[13]. Mathematically, the ability to analyze spectra of random matrices is largely based
on determinantal or Pfaffian formulas for spectral correlations that have been derived
for a variety of models. The real Ginibre ensemble is one of the few models for which
such formulas remained unavailable for over 40 years (the model was introduced by
Ginibre in 1965 [15]). The goal of this paper is to prove Pfaffian formulas for all the
correlation functions of the real Ginibre ensemble and to evaluate their bulk and edge
scaling limits.

The algebraic techniques that we use were developed in a recent work of the
second author [22]. Starting from that paper, Forrester and Nagao [13] have indepen-
dently obtained similar Pfaffian formulas for correlations and constructed certain skew-
orthogonal polynomials necessary for the asymptotic analysis. We take the next step
and obtain the asymptotics of the correlation functions using these polynomials. Some
of the results presented here have been independently developed by Sommers [24]—in
particular he produces a Pfaffian formulation for the 2-point correlation functions and
some of their scaling limits in the bulk. Some further results of Sommers and Wieczorek
on the correlations of the real Ginibre ensemble appear in [25].

In the algebraic part of this paper we consider a general class of probability measures
that includes the real Ginibre ensembles and ensembles arising in the study of Mahler
measure of polynomials; the latter are of interest in number theory, see [23]. We show
that the correlation functions for an ensemble from this class can be expressed as the
Pfaffian of a block matrix whose entries are expressed in terms of a 2 × 2 matrix kernel
associated to the ensemble. We find much inspiration from Tracy and Widom’s paper
on correlation and cluster functions of Hermitian and related ensembles [29]. However,
instead of using properties of the Fredholm determinant to calculate the correlation func-
tions via the cluster functions, we use the notion of the Fredholm Pfaffian to determine
the correlation functions directly. A Pfaffian analog of the Cauchy-Binet formula intro-
duced by Rains [21] lies at the heart of our proof. For completeness we will include
Rains’ proof here. In place of the identities of de Bruijn [7] used by Tracy and Widom
we will use an identity of the second author [22] to compute the correlation functions
for ensembles of asymmetric matrices. Rains’ Cauchy-Binet formula has applicability
in a wider context than just the determination of the correlation function for ensembles
of asymmetric matrices, and we will use it to give a simplified proof of the correlation
function of Hermitian ensembles of random matrices when β = 1 and β = 4.

We then apply our theory to the real Ginibre ensemble. It is known (see [2,8,9,16])
that the density functions of real and complex eigenvalues is approximately constant on
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(−√
N ,

√
N ) and the disc of radius

√
N respectively (here N is the size of the matri-

ces). We study the local correlations of eigenvalues in four different regions: near a real
point u

√
N with −1 < u < 1 (real bulk), near ±√

N (real edge), near a (non-real)
complex point u

√
N with |u| < √

N (complex bulk), and near u
√

N with |u| = √
N ,

Im(u) �= 0 (complex edge). Four different limit processes arise, and we compute their
correlation functions explicitly. The complex bulk and edge limits turn out to be the
same as in the case of the much simpler complex Ginibre ensembles. The correlations of
real eigenvalues in the real bulk region were obtained in [13] and the density functions
were computed earlier using different techniques [8,9]. All other results appear to be
new.

The paper is organized as follows. Sect. 2 introduces necessary notation. In Sect. 3,
we introduce a class of ensembles relevant for our study. In Sect. 4 we show that the
real Ginibre ensemble and the ensemble related to Mahler measure fall into this class.
In Sect. 5, we introduce the correlation functions. In Sect. 6 we construct the correlation
kernel, and in Sect. 7 we state how the correlation functions are expressed through that
kernel. Sect. 8 contains statements of asymptotic results as well as the limiting cor-
relation kernels. Sect. 9 contains the proofs. Appendix A shows how to apply Rains’
Cauchy-Binet formula to the β = 1, 4 Hermitian random matrix ensembles. Appendix B
contains the proof of Rains’ formula. In Appendix C we compute the bulk and edge limits
of the complex Ginibre ensemble. (We thank the referee for providing a reference, [11],
for the results in Appendix C—we include them here for completeness.) Appendix D
provides plots of the first and second correlation functions in various limit regimes.

2. Point Processes on the Space of Eigenvalues of R
N×N

We start rather generally since the results in this manuscript can be used to describe not
only the statistics of eigenvalues of ensembles of real matrices but also the statistics of
roots of certain ensembles of real polynomials. We begin with random point processes
on two-component systems.

Let X be the set of finite multisets of the closed upper half plane H ⊂ C. An element
ξ ∈ X is called a configuration, and X is called the configuration space of H . Given
a Borel set A of H , we define the function NA : X → Z

≥0 by specifying that NA(ξ)

be the cardinality (as a multiset) of (ξ ∩ A). We define � to be the sigma-algebra on X
generated by {NA : A ⊆ H Borel}. A probability measure P defined on � is called a
random point process on X .

For each pair of non-negative integers (L ,M) we define X L ,M to be the subset of X
consisting of those configurations ξ which consist of exactly L real points and M points
in the open upper half plane H . That is,

X L ,M := {ξ ∈ X : NR(ξ) = L and NH (ξ) = M} .
Clearly, X L ,M is measurable and X can be written as the disjoint union

X =
⋃

L≥0,M≥0

X L ,M .

Given a point process P on X , we may define the measure PL ,M on X by PL ,M (B) :=
P(B ∩ X L ,M ) for each B ∈ �. The measure PL ,M induces a measure on X L ,M (and we
will also use the symbol PL ,M for this measure).



180 A. Borodin, C. D. Sinclair

Given a matrix Y ∈ R
N×N there must be a pair of non-negative integers (L ,M)

with L + 2M = N such that, counting multiplicities, Y has L real eigenvalues and M
non-real complex conjugate pairs of eigenvalues. By representing each pair of complex
conjugate eigenvalues by its representative in H , we may identify all possible multisets
of eigenvalues of matrices in R

N×N with the disjoint union

X N :=
⋃

(L ,M)
L+2M=N

X L ,M . (2.1)

Similarly, we may identify all possible multisets of roots of degree N real polynomials
with this disjoint union. Thus, when studying the statistics of eigenvalues of ensembles
of asymmetric real matrices (respectively of the roots of degree N real polynomials) we
may restrict ourselves to random point processes on H which are supported on the dis-
joint union given in (2.1). That is, the eigenvalue statistics of an ensemble of real matrices
is determined by a set of finite measures PL ,M on X L ,M for each pair of non-negative
integers (L ,M)with L + 2M = N . In this situation we will say that P is a random point
process on X N associated to the family of finite measures {PL ,M : L + 2M = N }.

From here forward we will assume that L ,M and N are non-negative integers such
that L +2M = N , and a sum indexed over (L ,M)will be taken to be a sum over all pairs
satisfying this condition. Moreover, when we refer to a point process we will always
mean a point process on X N .

3. Point Processes on X N Associated to Weights

In this section we will introduce an important class of point processes associated to
Borel measures on C. We will be particularly interested in measures which are a sum of
two mutually singular measures: one of which is absolutely continuous with respect to
Lebesgue measure on R and one which is absolutely continuous with respect to Lebes-
gue measure on C. The corresponding densities with respect to Lebesgue measure will
allow us to construct a weight function which uniquely determines the associated point
process on X N . Point processes of this sort arise in the study of asymmetric random
matrices and the range of multiplicative functions on polynomials with real coefficients.

It will be useful to distinguish non-real complex numbers and we set C∗ = C\R.
We start rather generally by constructing measures on X L ,M from measures on R

L ×
C

M∗ . The benefit in doing this is that it allows us to express important quantities associated
to point processes (averages, correlation functions, etc.) as rather pedestrian integrals
over R

L × C
M∗ . To each (α,β) ∈ R

L × C
M∗ we associate a configuration in X L ,M given

by

{α,β} := {α1, . . . , αL , β̂1, . . . , β̂M }, where β̂m = {βm, βm} ∩ H.

A given configuration ξ ∈ X L ,M may correspond to several vectors in R
L × C

M∗ and
we will call {(α,β) : {α,β} = ξ} the set of configuration vectors of ξ .

A function F on X L ,M induces a function on R
L × C

M∗ specified by (α,β) 
→
F{α,β}, and given a measure νL ,M on R

L × C
M∗ there exists a unique measure PL ,M

on X L ,M specified by demanding that
∫

X L ,M

F(ξ) dPL ,M (ξ) = 1

L!M !2M

∫

RL×CM∗
F{α,β} dνL ,M (α,β), (3.1)
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for every �-measurable function F on X . The normalization constant L!M !2M arises
since a generic element ξ ∈ X L ,M corresponds to L!M !2M configuration vectors. By
specifying measures νL ,M on R

L × C
M∗ for all pairs (L ,M) and normalizing so that the

total measure of X N is 1, we define a point process on X N .
A very important class of point processes arises when we demand that the various

νL ,M are all related to a single measure on C. Given a measure ν1 on R and a measure ν2
on C∗, we set ν to be the measure ν1 +ν2 on C. We will write νL for the product measure
of ν1 on R

L and ν2M will be the product measure of ν2 on C
M . By combining νL and

ν2M with a certain Vandermonde determinant we will arrive at the desired measures on
R

L × C
M∗ . Given a vector γ ∈ C

N we define V (γ ) to be the N × N matrix whose n, n′
entry is given by γ n′−1

n . We will denote the determinant of V (γ ) by �(γ ), and define
the function � : R

L × C
M → C by

�(α,β) := �(α1, . . . , αL , β1, β1, . . . , βM , βM ).

Using these definitions we set νL ,M to be the measure on R
L × C

M∗ given by

dνL ,M

d(νL × ν2M )
(α,β) = 2M |�(α,β)|, (3.2)

and we will write Pν
L ,M for the measure on X L ,M given specified by νL ,M as in (3.1). If

Pν
L ,M is finite for each pair (L ,M), then we set

Pν := 1

Zν
∑

(L ,M)

Pν
L ,M where Zν :=

∑

(L ,M)

Pν
L ,M (X L ,M ).

We will call Pν the point process on X N associated to the weight measure ν and Zν will
be referred to as the partition function of Pν .

We setλ1 andλ2 to be Lebesgue measures on R and C respectively and letλ := λ1+λ2.
If there exists a function w : C → [0,∞) such that ν = wλ (by which we mean
dν/dλ = w), then we will call w the weight function of Pν . In this situation we set
Pw

L ,M := Pν
L ,M and define Pw and Zw analogously. If Pν has weight function w then

dνL ,M

d(λL × λ2M )
(α,β) = 2M

{
L∏

	=1

w(α	)

M∏

m=1

w(βm)

}
|�(α,β)| , (3.3)

and we define
L ,M : R
L × C

M to be the function given on the right-hand side of (3.3).
The collection {
L ,M : L + 2M = N } plays the role of the joint eigenvalue probability
density function, and we will call 
L ,M the L ,M-partial joint eigenvalue probability
density function of Pw.

4. Examples of Point Processes Associated to Weights

Point processes on X N associated to weights arise in a variety of contexts. It is often the
case that the weight functionw is invariant under complex conjugation. In this situation,
there necessarily exists some function ρ : C → [0,∞) such that

w(γ ) :=
⎧
⎨

⎩

ρ(γ ) if γ ∈ R;
ρ(γ )ρ(γ ) if γ ∈ C∗.
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When it exists, we will call ρ the root or eigenvalue function of Pw (depending on
whether Pw models the roots of random polynomials or eigenvalues of random matri-
ces). The root/eigenvalue function is often a more natural descriptor of Pw than w. In
this situation we will write P [ρ] and Z [ρ] for Pw and Zw.

4.1. The real Ginibre ensemble. In 1965 J. Ginibre introduced three ensembles of ran-
dom matrices whose entries were respectively chosen with Gaussian density from R, C

and Hamilton’s quaternions [15]. The real Ginibre ensemble is given by R
N×N together

with the probability measure η given by

dη(Y) = (2π)−N 2/2e− Tr(YTY)/2 dλN×N (Y),

where λN×N is Lebesgue measure on R
N×N . This ensemble has since been named

GinOE due to certain similarities with the Gaussian Orthogonal Ensemble. Among
Ginibre’s original goals was to produce a formula for the partial joint eigenvalue proba-
bility density functions of GinOE. He was only able to do this for the subset of matrices
with all real eigenvalues. In the 1990s Lehmann and Sommers [19] and later Edelman
[8] proved that the L ,M-partial eigenvalue probability density function of GinOE is
given by 
L ,M for the eigenvalue function

Gin(γ ) := exp(−γ 2/2)
√

erfc(
√

2|Im(γ )|).
Consequently, the investigation of the eigenvalue statistics of GinOE reduces to the study
of P [Gin].

4.2. The range of Mahler measure. The Mahler measure of a polynomial

f (x) =
N∑

n=0

an x N−n = a0

N∏

n=1

(x − γn) (4.1)

is given by

µ( f ) = exp

{∫ 1

0
log

∣∣∣ f (e2π iθ )

∣∣∣ dθ

}
= |a0|

N∏

n=1

max{1, |γn|}.

The second equality comes from Jensen’s formula. Mahler measure arises in a number
of contexts, i.e. ergodic theory, potential theory and Diophantine geometry and approx-
imation (a good reference covering the many aspects of Mahler measure is [10]). One
problem in the context of the geometry of numbers is to estimate the number of degree
N integer polynomials with Mahler measure bounded by T > 0 as T → ∞. Chern and
Vaaler produced such an estimate in [6] using the general principal that the number of
lattice points in a ‘reasonable’ domain in R

N+1 is roughly equal to the volume (Lebesgue
measure) of the domain. That is, if we identify degree N polynomials with their vector
of coefficients in R

N+1 and use the approximation,

#{g(x) ∈ Z[x] : deg g = N , µ(g) ≤ T } ≈ λN+1{g(x) ∈ R[x] : deg g = N , µ(g)≤T }
=T N+1λN+1{g(x)∈R[x] : deg g = N , µ(g)≤1},



Ginibre Ensemble of Random Matrices and its Scaling Limits 183

then the main term in the asymptotic estimate Chern and Vaaler were interested in can
be expressed in terms of the volume of the degree N star body of Mahler measure,

UN = {g(x) ∈ R[x] : deg g = N , µ(g) ≤ 1}. (4.2)

The volume of this set is given by

2

N + 1
Z [ψ], (4.3)

where ψ(γ ) = max{1, |γ |}−N−1 [6]. Consequently, the volume of the star body which
leads to an asymptotic estimate of interest in Diophantine geometry essentially equals
the partition function for the random point process P [ψ].

4.3. The range of other multiplicative functions on polynomials. We can generalize the
Mahler measure by replacing the function γ 
→ max{1, |γ |} with other functions of γ .
Given a continuous function φ : C → (0,∞) which satisfies the asymptotic formula,

φ(γ ) ∼ |γ | as |γ | → ∞, (4.4)

we define the function � : C[x] → [0,∞) by

� : a0

N∏

n=1

(x − γn) 
→ |a0|
N∏

n=1

φ(γn).

The function � is known as a multiplicative distance function (so named because it
is a distance function in the sense of the geometry of numbers on finite dimensional
subspaces of C[x]). The asymptotic condition in (4.4) ensures that � is continuous on
finite dimensional subspaces of C[x] (one of the axioms of a distance functions).

We define the degree N starbody of � in analogy with (4.2):

UN (�) = {g(x) ∈ R[x] : deg g = N ,�(g) ≤ 1}.
In this situation the volume of UN (�) equals

λN+1(UN (�)) = 2

N + 1
Z [ψ], where ψ(γ ) = φ(γ )−N−1.

We may discover further information about the range of values � takes on degree
N real polynomials by considering the point process on X N corresponding to the root
functionψ(γ ) = φ(γ )−σ for σ > N . The partition function of P [ψ] is therefore a func-
tion of σ , and Z [ψ](σ ) is known as the degree N moment function of�. In fact, we may
extend the domain of real moment functions to a function of a complex variable s on the
half-plane Re(s) > N . Moreover, in this domain Z [ψ](s) is analytic. Any analytic con-
tinuation beyond this half-plane gives information about the range of values of� which
may not be realizable by other methods. For instance, when ψ(γ ) = max{1, |γ |}−s ,
Chern and Vaaler discovered that Z [ψ](s) has an analytic continuation to a rational
function of s with rational coefficients and poles at positive integers ≤ N [6]. Similar
results have been found for moment functions of other multiplicative distance functions;
see [23].
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5. Correlation Measures and Functions

Suppose 	 and m are non-negative integers, not both equal to 0. Then, given a function
f : R

	 × C
m∗ → C, we define the function F f : X N → C by

F f (ξ) =
∑

{x,z}⊆ξ
f (x, z),

where the sum is over all (x, z) ∈ R
	 × C

m∗ such that {x, z} ⊆ ξ . We take an empty sum
to equal 0, and thus if ξ ∈ X L ,M with L ≤ 	 or M ≤ m, then F f (ξ) = 0.

Given a point process P on X N , if there exists a measure ρ	,m on R
	 × C

m∗ such that
for all Borel measurable functions f ,

∫

R	×C
m∗

f (x, z) dρ	,m(x, z) =
∫

X N

F f (ξ) dP(ξ), (5.1)

then we call ρ	,m the (	,m)–correlation measure of P . Furthermore, if ρ	,m has a density
with respect to λ	 × λ2m , then we will call this density the 	,m–correlation function of
P and denote it by R	,m . By convention we will take R0,0 to be the constant 1.

Proposition 1. dρ	,m
d(ν	×ν2m )

(x, z) equals

2m

Zν
∑

(L ,M)
L≥	,M≥m

1

(L − 	)!(M − m)!
∫

RL−	

∫

CM−m

|�(x∨α, z∨β)| dνL−	(α) dν2(M−m)(β),

where x ∨ α ∈ R
L is the vector formed by concatenating the vectors x ∈ R

	 and
α ∈ R

L−	 (and similarly for z∨β ∈ C
M ).

Corollary 2. If ν = wλ, then R	,m(x, z) equals

1

Zw
∑

(L ,M)
L≥	,M≥m

1

(L − 	)!(M − m)!2M−m

×
∫

RL−	

∫

CM−m


L ,M (x∨α, z∨β) dλL−	(α) dλ2(M−m)(β).

Proof of Proposition 1. Assume that L ≥ 	 and M ≥ m, from (3.1) and (3.2),
∫

X L ,M

F f (ξ) dPν
L ,M (ξ)=

1

L!M !
∫

RL

∫

CM∗
F f {α,β} |�(α,β)| dνL(α) dν2M (β). (5.2)

The function (α,β) 
→ |�(α,β)| is invariant under any permutation of the coor-
dinates of α and β, since such a permutation merely permutes the columns of the
Vandermonde matrix. Similarly, replacing any of the coordinates of β with their com-
plex conjugates merely transposes pairs of columns of the Vandermonde matrix. That
is, if (α,β) and (α′,β ′) are elements in R

L × C
M∗ such that {α,β} = {α′,β ′}, then

|�(α,β)| = |�(α′,β ′)|. Moreover, if any of the β are real, then the Vandermonde
matrix has two identical columns and is therefore zero. We may thus replace the domain
of integration on the right-hand side of (5.2) with R

L × C
M . In fact, we may assume
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that the domain of integration on the right-hand side is over the subset of R
L × C

M

consisting of those vectors with distinct coordinates.
Now,

F f {α,β} =
∑

{x,z}⊆{α,β}
f (x, z).

Assuming that the coordinates of (α,β) are distinct, and if (x, z) ∈ R
	×C

m is such that
{x, z} ⊆ {α,β} we may find a vector (a,b) ∈ R

L−	 × C
M−m such that (x ∨ a, z ∨ b)

is given by permuting the coordinates of (α,β). Clearly |�(α,β)| = |�(x ∨ a, z ∨ b)|
and

dνL(α) dν2M (β) = dν	(x) dνL−	(a) dνm(z) dνM−m(b).

These observations together with an application of Fubini’s Theorem imply that (5.2)
can be written as

1

L!M !
∫

R	

∫

Cm

∑

{x,z}
f (x, z)

×

⎧
⎪⎨

⎪⎩

∫

RL−	

∫

CM−m

|�(x∨a, z∨b)| dνL−	(a) dνM−m(b)

⎫
⎪⎬

⎪⎭
dν	(x) dνm(z).

Now, it is easily seen that there are

2m
(

L

	

)
	!
(

M

m

)
m!

vectors corresponding to each {x, z}, and thus we find

∫

X L ,M

F f (ξ) dPν
L ,M (ξ) =

∫

R	

∫

Cm
f (x, z)

×

⎧
⎪⎨

⎪⎩
2m

(L−	)!(M−m)!
∫

RL−	

∫

CM−m

|�(x∨a, z∨b)| dνL−	(a) dνM−m(b)

⎫
⎪⎬

⎪⎭
dν	(x) dνm(z).

The proposition follows since

∫

X
F f (ξ) dPν(ξ) = 1

Zν
∑

(L ,M)

∫

X L ,M

F f (ξ) dPν
L ,M (ξ).

��
From here forward, and unless otherwise stated, (	,m)will represent an ordered pair

of non-negative integers such that 	 + 2m ≤ N .
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6. A Matrix Kernel for Point Processes on X N

From here forward we will assume that N is even.
Let Pν be the point process on X N associated to the weight w, and as before let

ν = ν1 + ν2. We define the operator εν on the Hilbert space L2(ν) by

ενg(γ ) :=

⎧
⎪⎨

⎪⎩

1

2

∫

R

g(y) sgn(y − γ ) dν1(y) if γ ∈ R,

ig(γ ) sgn(Im(γ )) if γ ∈ C∗,

and we use this to define the skew-symmetric bilinear form on L2(ν) given by 〈·|·〉ν

〈g|h〉ν :=
∫

C

g(γ )ενh(γ )− ενg(γ )h(γ ) dν(γ ).

If ν = wλ then 〈g|h〉ν = 〈g̃|̃h〉λ where, for instance, h̃(γ ) := h(γ )w(γ ).

Theorem 3. Let q = {q0(γ ), q2(γ ), . . . , qN−1(γ )} ⊆ R[γ ] be such that each qn is
monic and deg qn = n. Then,

Zν = Pf Uνq, (6.1)

the Pfaffian of Uνq, where

Uνq := [〈qn|qn′ 〉ν]; n, n′ = 0, 1, . . . , N − 1.

We will call q a complete family of monic polynomials.

Remark. It is at this point that it is necessary that N be even, since the Pfaffian is only
defined for antisymmetric matrices with an even number of rows and columns. A similar
formula to (6.1) exists for Zν in the case when N is odd; see [22]. However, we have not
pursued the subsequent analysis necessary to recover the correlation functions in this
case.

Theorem 3 follows from results proved in [22]. In fact, [22] gives a formula for the
average of a multiplicative class function over the point process on X N determined by the
weight function of the real Ginibre ensemble. However, the combinatorics necessary to
arrive at such averages is independent of any specific feature of Gin(γ ) and the measure
on C specified by Gin(γ )dλ(γ ) can formally be replaced by any measure ν.

In order to express the correlation functions for the point process Pw associated to the
weight w we will define η to be a measure on C given by a linear combination of point
masses, and then use the definition of the partition function and properties of Pfaffians
to expand both sides of the equation

Zw(λ+η)

Zw
= 1

Zw
Pf Uw(λ+η)

q . (6.2)

The coefficients in the linear combination defining η appear again in terms on both sides
of the expanded equation, and after identifying like coefficients on both sides of the
expanded equation we will be able to read off a closed form for the correlation functions
in terms of the Pfaffian of a matrix whose entries depend on a 2 × 2 matrix kernel.
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In order to define the 2 × 2 matrix kernel for Pw, we let q be a complete family of
monic polynomials, and we define

q̃n(γ ) := qn(γ )w(γ ) n = 0, 1, . . . , N − 1. (6.3)

We then define

SN (γ, γ
′) := 2

N−1∑

n=0

N−1∑

n′=0

µn,n′ q̃n(γ ) ελq̃n′(γ ′),

where we define µn,n′ to be the n, n′ entry of (Uwq )
−T. Similarly we define,

I SN (γ, γ
′) := 2

N−1∑

n=0

N−1∑

n′=0

µn,n′ ελq̃n(γ ) ελq̃n′(γ ′),

and

DSN (γ, γ
′) := 2

N−1∑

n=0

N−1∑

n′=0

µn,n′ q̃n(γ ) q̃n′(γ ′).

Remark. The functions SN , I SN and DSN can be shown to be independent of the family
q. By setting q to be skew-orthogonal with respect to the bilinear form 〈·|·〉λ we arrive
at particularly simple representations for these expressions.

Finally, in order to define the matrix kernel Pw we define the function E : C
2 → {− 1

2 ,

0, 1
2 } by

E(γ, γ ′) :=

⎧
⎪⎨

⎪⎩

1

2
sgn(γ − γ ′) if γ, γ ′ ∈ R;

0 otherwise.

The matrix kernel of Pw is then given by

KN (γ, γ
′) :=

[
DSN (γ, γ

′) SN (γ, γ
′)

−SN (γ
′, γ ) I SN (γ, γ

′) + E(γ, γ ′)

]
. (6.4)

Remark. The explicit N -dependence of KN and its constituents is traditional, since one
is often interested in the N → ∞ asymptotics of KN .

7. Correlation Functions in Terms of the Matrix Kernel

We may state one of the main results of this manuscript.

Theorem 4. The 	,m–correlation function of Pw is given by

R	,m(x, z) = Pf

[
KN (x j , x j ′) KN (x j , zk′)
KN (zk, x j ′) KN (zk, zk′)

]
; j, j ′ = 1, 2, . . . , 	;

k, k′ = 1, 2, . . . ,m.
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Remark. The matrix on the right-hand side of this expression is composed of 2 × 2
blocks, so that, for instance, the first row of 2 × 2 blocks is given by

[KN (x1, x1) . . . KN (x1, x	) KN (x1, z1) . . . KN (x1, zm)] .

We define the measure δ on C to be the measure with unit point mass at 0. Given
U real numbers x1, x2, . . . , xU and V non-real complex numbers, z1, z2, . . . , zV , we
define the measure η by

dη(γ ) :=
U∑

u=1

au dδ(γ − xu) +
V∑

v=1

bv (dδ(γ − zv) + dδ(γ − zv)) ,

where a1, a2, . . . , aU and b1, b2, . . . , bV are indeterminants. It does no harm to assume
that U and V are both greater than N . By reordering and renaming the x, z, a and b we
will also write

dη(γ ) :=
T∑

t=1

ct d δ̂(γ − yt ),

where we define

d δ̂(γ − y) =
⎧
⎨

⎩

dδ(γ − y) if y ∈ R;
dδ(γ − y) + dδ(γ − y) if y ∈ C∗.

Clearly T = U + V .
As we alluded to previously, the proof of Theorem 4 relies on expanding Zw(λ+η)/Zw

in two different ways and then equating the coefficients of certain products of c1, c2, . . . ,

cT . One of the expansions of Zw(λ+η)/Zw comes from Theorem 3, while the other comes
directly from the definition of the partition function.

Proposition 5.

Zw(λ+η)

Zw
= Pf

(
J +

[√
ct ct ′ KN (yt , yt ′)

]) ; t, t ′ = 1, 2, . . . , T, (7.1)

where J is defined to be the 2T × 2T matrix consisting of 2 × 2 blocks given by

J :=
[
δt,t ′

[
0 1

−1 0

]]
; t, t = 1, 2, . . . , T .

Remark. The Pfaffian which appears in (7.1) is an example of a Fredholm Pfaffian. This
is the Pfaffian formulation of the notion of a Fredholm determinant and is discussed in
[21].

We defer the proof of Proposition 5 and Proposition 6 until Sect. 9.
For each (	,m) and (L ,M) we define the 	,m, L ,M-partial correlation function of

Pw to be R	,m,L ,M : R
	 × C

m → [0,∞), where

R	,m,L ,M (x, z) :=
1

(L−	)!(M−m)!2M−m

∫

RL−	

∫

CM−m


L ,M (x ∨ α, z ∨ β) dλL−	(α) dλ2(M−m)(β).
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When 	 = m = 0, we take x ∨ α = α and z ∨ β = β, so that R0,0,L ,M is a constant
equal to PL ,M (X L ,M ). The partial correlation functions are related to the correlations
functions by the formula

R	,m(x, z) = 1

Zw
∑

(L ,M)
L≥	,M≥m

R	,m,L ,M (x, z), (7.2)

and thus the partial correlation functions are one path to the correlation functions. Equa-
tion (7.2) is still valid when 	 = m = 0, though the constituent correlation ‘functions’
are actually constants.

The partial correlation functions of P [Gin] of the special forms RL ,M,0,M and R0,N ,0,n
have been studied by Akemann and Kanzieper in [1 and 18]. For general weight func-
tion w, the partial correlation functions of the form RN ,0,n,0 are (up to normalization)
equal to the correlation functions of the β = 1 Hermitian ensemble with weightw. This
connection will be exploited in A.

Before stating the next proposition we need a bit of notation. Given non-negative
integers n and W , we define IW

n to be the set of increasing functions from {1, 2, . . . , n}
into {1, 2, . . . ,W }. Clearly if W < n then IW

n is empty. Given a vector a ∈ C
W and an

element u ∈ IW
n , we define the vector au ∈ C

n by au = {au(1), au(2), . . . , au(n)}.
Proposition 6. For each pair (L ,M),

1

L!M !2M

∫

RL

∫

CM

L ,M (α,β) d(λ + η)L(α) d(λ + η)2M (β)

=
L∑

	=0

M∑

m=0

∑

u∈IU
	

∑

v∈IV
m

⎧
⎨

⎩

	∏

j=1

au( j)

m∏

k=1

bv(k)

⎫
⎬

⎭ R	,m,L ,M (xu, zv).

Remark. We will use the convention that

∑

u∈IU
0

0∏

j=1

au( j) =
∑

v∈IV
0

0∏

k=1

bv(k) = 1.

This will allow us to keep from having to deal with the pathological correlation ‘func-
tions’ R0,0,L ,M and R0,0 separately.

Proposition 7. Suppose K : {1, 2, . . . , T } × {1, 2, . . . , T } → R
2×2 is such that

K (t, t ′) = −K (t ′, t)T,

and define K to be the 2T × 2T block antisymmetric matrix whose t, t ′ entry is given
by K (t, t ′). Then,

Pf[J + K] = 1 +
T∑

S=1

∑

t∈IT
S

Pf Kt, (7.3)

where for each t ∈ IT
S , Kt is the 2S × 2S antisymmetric matrix given by

Kt = [K (t(s), t(s′))]; s, s′ = 1, 2, . . . , S.
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Proof. This is a special case of the formula for the Pfaffian of the sum of two antisym-
metric matrices. See [23 or 26] for a proof. ��

Using these lemmas we may complete the proof of Theorem 4. First notice that
Proposition 6 and (7.2) imply that

Zw(λ+η)

Zw
=

∑

(l,m)

∑

u∈IU
	

∑

v∈IV
m

⎧
⎨

⎩

	∏

j=1

au( j)

m∏

k=1

bv(k)

⎫
⎬

⎭ R	,m(xu, zv). (7.4)

This follows by summing both sides of the expression in Proposition 7 over all (L ,M)
and then reorganizing the sums over (L ,M), 	 and m.

Given u ∈ IU
	 and v ∈ IV

m we define (u :v) to be the element in IU+V
	+m given by

(u ∨ v)(n) :=
{

u(n) if n ≤ 	

	 + v(n) if n > 	.

Notice that each t ∈ IT
S is equal to (u∨v) for some u ∈ IU

	 and v ∈ IV
m with 	+ m = S.

(This does not preclude the possibility that either U or V equals 0, in which case t = v
or t = u.) It follows that we can rewrite (7.3) as

Pf(J + K) =
∑

(	,m)
	+m≤T

∑

u∈IU
	

∑

v∈IV
m

Pf K(u∨v).

If we set K (t, t ′) = √
ct ct ′ KN (yt , yt ′), then

Pf K(u∨v) =
⎧
⎨

⎩

	∏

j=1

au( j)

m∏

k=1

bv(k)

⎫
⎬

⎭ Pf

[
KN (xu(k), xu(k′)) KN (xu(k), zv(n′))
KN (zv(n), xu(k′)) KN (zv(n), zv(n′))

]
,

where k and k′ are indices that run from 1 to 	 and n and n′ are indices which run from
1 to m. Thus, Pf(J + K) equals

∑

(	,m)
	+m≤T

∑

u∈IU
	

∑

v∈IV
m

⎧
⎨

⎩

	∏

j=1

au( j)

m∏

k=1

bv(k)

⎫
⎬

⎭Pf

[
KN (xu(k), xu(k′)) KN (xu(k), zv(n′))
KN (zv(n), xu(k′)) KN (zv(n), zv(n′))

]
, (7.5)

and Theorem 4 follows by equating the coefficients of
∏	

j=1 a j
∏m

k=1 bk in (7.4) and
(7.5).

8. Limiting Correlation Functions for the Real Ginibre Ensemble

We now turn to the large N asymptotics of the matrix kernel for the Ginibre ensemble
of real matrices. In fact, we maintain our restriction to the case where N = 2M is even,
and consider the asymptotics of K2M as M → ∞. Throughout this section we will take
φ to be the function given by

φ(γ ) = exp(−γ 2/4 − γ 2/4)

√
erfc

(√
2|Im(γ )|

)
.

Notice that, since erfc(0) = 1, when γ ∈ R this reduces to exp(−γ 2/2).
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The skew-orthogonal polynomials for this weight are reported in [13] to be

π2m(γ ) = γ 2m π2m+1(γ ) = γ 2m+1 − 2mγ 2m−1

with normalization 〈π2m |π2m+1〉ν = 2
√

2π(2m)!. A detailed account of the derivation
of these skew-orthogonal polynomials will appear in [12].

The skew-orthogonality of these polynomials and formulas from Sect. 6 imply that

S2M (γ, γ
′) = 1√

2π

M−1∑

m=0

π̃2m(γ )ελπ̃2m+1(γ
′)− π̃2m+1(γ )ελπ̃2m(γ

′)
(2m)! , (8.1)

DS2M (γ, γ
′) = 1√

2π

M−1∑

m=0

π̃2m(γ )π̃2m+1(γ
′)− π̃2m+1(γ )π̃2m(γ

′)
(2m)! , (8.2)

I S2M (γ, γ
′) = 1√

2π

M−1∑

m=0

ελπ̃2m(γ )ελπ̃2m+1(γ
′)− ελπ̃2m+1(γ )ελπ̃2m(γ

′)
(2m)! . (8.3)

The correlation functions are all of the form Pf K for an appropriate matrix K whose
entries are given in terms of (8.1), (8.2) and (8.3). If D is a square matrix such that the
product DKDT makes sense, then Pf(DKDT) = Pf K · det D. And thus, if det D = 1 we
have Pf K = Pf(DKDT). That is, we may alter (and potentially simplify) the presenta-
tion of the Pfaffian representation of the correlation functions by modifying K in this
manner by a matrix with determinant 1. When D is diagonal, the process of modifying
K by D preserves the block structure of K. That is, the effect of modifying K by D
affects changes at the kernel level and the correlation functions can be represented as
the Pfaffian of a block matrix (cf. Theorem 4) with respect to a new matrix kernel K̃N
dependent on KN and D. This will allow us to write the correlation functions of the real
Ginibre ensemble in the simplest manner possible by ‘factoring’ unnecessary terms out
of the kernel.

It will be convenient to define cM , sM and eM to be the degree 2M − 2 Taylor
polynomials for cosh, sinh and exp respectively. Explicitly,

cM (γ ) :=
M−1∑

m=0

γ 2m

(2m)! , sM (γ ) :=
M−1∑

m=1

γ 2m−1

(2m − 1)!
and

eM (γ ) := cM (γ ) + sM (γ ) =
2M−2∑

m=0

γm

m! .

Theorem 8. The 	,m–correlation function of the real Ginibre ensemble of 2M × 2M
matrices is given by

R	,m(x, z) = Pf

[
K̃2M (x j , x j ′) K̃2M (x j , zk′)
K̃2M (zk, x j ′) K̃2M (zk, zk′)

]
; j, j ′ = 1, 2, . . . , 	;

k, k′ = 1, 2, . . . ,m,

where

K̃2M (γ, γ
′) =

[
D̃S2M (γ, γ

′) S̃2M (γ, γ
′)

−S̃2M (γ
′, γ ) Ĩ S2M (γ, γ

′) + E(γ, γ ′)

]

is given as follows. Let x, x ′ ∈ R and z, z′ ∈ C
∗, then:
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1. The entries in the real/real kernel, K̃2M (x, x ′), are given by

• S̃2M (x, x ′) = e− 1
2 (x−x ′)2√

2π
e−xx ′

eM (xx ′) + rM (x, x ′), where

rM (z, x)

=e−z2/2

√
2π

√
erfc

(√
2Im(z)

) 2M−3/2

(2M−2)! sgn(x)z2M−1 · γ
(

M−1

2
,

x2

2

)
, (8.4)

and γ is the lower incomplete gamma function;

• D̃S2M (x, x ′) = e− 1
2 (x−x ′)2√

2π
(x ′ − x)e−xx ′

eM (xx ′);
• Ĩ S2M (x, x ′) =

e−x2/2

2
√
π

sgn(x ′)
∫ x ′2/2

0

e−t

√
t

cM (x
√

2t) dt− e−x ′2/2

2
√
π

sgn(x)
∫ x2/2

0

e−t

√
t

cM (x
′√2t) dt.

2. The entries in the complex/complex kernel, K̃2M (z, z′), are given by

• S̃2M (z, z′) = ie− 1
2 (z−z′)2√

2π
(z′ − z)

√
erfc

(√
2Im(z)

)
erfc

(√
2Im(z′)

)
e−zz′

eM (zz′);

• D̃S2M (z, z′)= e− 1
2 (z−z′)2√

2π
(z′ − z)

√
erfc

(√
2Im(z)

)
erfc

(√
2Im(z′)

)
e−zz′

eM (zz′);

• Ĩ S2M (z, z′)=− e− 1
2 (z−z′)2√

2π
(z′− z)

√
erfc

(√
2Im(z)

)
erfc

(√
2Im(z′)

)
e−zz′

eM (zz′).

3. The entries in the real/complex kernel, K̃2M (x, z), are given by

• S̃2M (x, z) = ie− 1
2 (x−z)2√

2π
(z − x)

√
erfc

(√
2Im(z)

)
e−xzeM (xz);

• S̃2M (z, x) = e− 1
2 (x−z)2√

2π

√
erfc

(√
2Im(z)

)
e−xzeM (xz) + rM (z, x).

• D̃S2M (x, z) = e− 1
2 (x−z)2√

2π
(z − x)

√
erfc

(√
2Im(z)

)
e−xzeM (xz);

• Ĩ S2M (x, z) = − ie− 1
2 (x−z)2√

2π

√
erfc

(√
2Im(z)

)
e−xzeM (xz)− irM (z, x).

Theorem 8 allows us to derive the M → ∞ limit of K̃2M .

Corollary 9. (Limit at the origin) Let x and x ′ be real numbers, and suppose z and z′
are complex numbers in the open upper half plane. We define K = lim

M→∞ K̃2M . Then,

the limit exists, and

1. The limiting real/real kernel, K (x, x ′), is given by

K (x, x ′) =
⎡

⎣
1√
2π
(x ′ − x)e− 1

2 (x−x ′)2 1√
2π

e− 1
2 (x−x ′)2

− 1√
2π

e− 1
2 (x−x ′)2 1

2 sgn(x − x ′) erfc
( |x−x ′|√

2

)

⎤

⎦ .
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2. The limiting complex/complex kernel, K (z, z′), is given by

K (z, z′) = 1√
2π

√
erfc

(√
2Im(z)

)
erfc

(√
2Im(z′)

)

×
[
(z′ − z)e− 1

2 (z−z′)2 i(z′ − z)e− 1
2 (z−z′)2

i(z′ − z)e− 1
2 (z−z′)2 −(z′ − z)e− 1

2 (z−z′)2

]
.

3. The limiting real/complex kernel, K (x, z), is given by

K (x, z) = 1√
2π

√
erfc

(√
2Im(z)

)[
(z − x)e− 1

2 (x−z)2 i(z − x)e− 1
2 (x−z)2

−e− 1
2 (x−z)2 −ie− 1

2 (x−z)2

]
.

Remark. Observe that all blocks of the kernel are invariant with respect to real shifts.
That is, if c ∈ R and γ, γ ′ are in C then

K (γ + c, γ ′ + c) = K (γ, γ ′).

8.1. In the bulk. The circular law for N × N matrices with i.i.d Gaussian entries says
that, when normalized by N−1/2 the density of eigenvalues becomes uniform on the unit
disk as N → ∞ (See [16] for a proof of this fact when the entries are i.i.d. Gaussian,
and [2 and 27] for more general results.) This gives us the appropriate scaling when con-
sidering the matrix kernel in the bulk. Specifically, in this section we will be interested
in the large M limit of K̃2M (u

√
2M + s, u

√
2M + s′), where u is a point in the open unit

disk, and s and s′ are complex numbers.
When u is real we expect that the limiting kernel under this scaling should yield

K̃ (s, s′); indeed this is the case. When u is nonreal a different kernel arises.

Theorem 10. Let −1 < u < 1 be a real number, let r1, r2, . . . , r	 ∈ R and s1, s2, . . . , sm
be in the open upper half plane. Set,

x j = u
√

2M + r j j = 1, 2, . . . , 	; and zk = u
√

2M + sk k = 1, 2, . . . ,m.

Then,

lim
M→∞ R	,m(x, z) = Pf

[
K (r j , r j ′) K (r j , sk′)
K (sk, r j ′) K (sk, sk′)

]
; j, j ′ = 1, 2, . . . , 	;

k, k′ = 1, 2, . . . ,m,

where K is given as in Corollary 9.

Theorem 11. Let u be in the open upper half plane such that |u| < 1 and suppose
s1, s2, . . . , sm ∈ C. Set,

zk = u
√

2M + sk k = 1, 2, . . . ,m.

Then,

lim
M→∞ R0,m(−, z) = det

[
1

π
exp

(
−|sk |2

2
− |sk′ |2

2
+ sksk′

)]m

k,k′=1
.

Remark. The limiting correlation functions in the complex bulk are invariant with respect
to any complex shift.
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Remark. The function

(s, s′) 
→ 1

π
exp

(
−|s|2

2
− |s′|2

2
+ ss′

)

is, up to a factor of 1/2, the limiting (scalar) kernel of the complex Ginibre ensemble.
Thus, the limiting correlation functions in the bulk of the real Ginibre ensemble off
the real line is almost identical to the limiting correlation functions in the bulk of the
complex Ginibre ensemble. See Ginibre’s original paper [15], or [20, Sect. 15.1], for
the derivation of the finite N correlation functions for the complex Ginibre complex
ensemble. We derive the large N asymptotics of the correlation functions of Ginibre’s
complex ensemble in Appendix C.

8.2. At the edge. At the edge of the spectrum new kernels emerge.

Theorem 12. Let u = ±1, let r1, r2, . . . , r	 ∈ R and s1, s2, . . . , sm be in the open upper
half plane. Set

x j = u
√

2M + r j j = 1, 2, . . . , 	; and zk = u
√

2M + sk k = 1, 2, . . . ,m.

Then,

lim
M→∞ R	,m(x, z) = Pf

[
Kedge(r j , r j ′) Kedge(r j , sk′)
Kedge(sk, r j ′) Kedge(sk, sk′)

]
; j, j ′ = 1, 2, . . . , 	;

k, k′ = 1, 2, . . . ,m,

where

Kedge(γ, γ
′) =

[
DSedge(γ, γ

′) Sedge(γ, γ
′)

−Sedge(γ
′, γ ) I Sedge(γ, γ

′)

]
,

and:

1. The real/real kernel at the real edge, Kedge(r, r ′), is given by

• Sedge(r, r ′) = 1
2
√

2π
e− 1

2 (r−r ′)2 erfc
(

u (r+r ′)√
2

)
+ 1

4
√
π

e−r2
erfc(−ur ′);

• DSedge(r, r ′) = 1
2
√

2π
(r ′ − r)e− 1

2 (r−r ′)2 erfc
(

u (r+r ′)√
2

)
;

• I Sedge(r, r ′) = 1
2 sgn(r − r ′) erfc

( |r−r ′|√
2

)
.

2. The complex/complex kernel at the real edge, Kedge(s, s′), is given by

• Sedge(s, s′) = i
2
√

2π

√
erfc

(√
2Im(s)

)
erfc

(√
2Im(s′)

)

× (s′ − s)e− 1
2 (s−s′)2 erfc

(
u
(s + s′)√

2

)
;

• DSedge(s, s′) = 1
2
√

2π

√
erfc

(√
2Im(s)

)
erfc

(√
2Im(s′)

)

× (s′ − s)e− 1
2 (s−s′)2 erfc

(
u
(s + s′)√

2

)
;
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• I Sedge(s, s′) = − 1
2
√

2π

√
erfc

(√
2Im(s)

)
erfc

(√
2Im(s′)

)

× (s′ − s)e− 1
2 (s−s′)2 erfc

(
u
(s + s′)√

2

)
.

3. The real/complex kernel at the real edge, Kedge(r, s), is given by

• Sedge(r, s) = i
2
√

2π
e− 1

2 (r−s)2
√

erfc
(√

2Im(s)
)
(s − r) erfc

(
u (r+s)√

2

)
;

• Sedge(s, r) = 1
2
√

2π
e− 1

2 (r−s)2
√

erfc
(√

2Im(s)
)

erfc
(

u (r+s)√
2

)

+
1

4
√
π

e−s2
erfc(−ur);

• DSedge(r, s) = 1
2
√

2π
e− 1

2 (r−s)2
√

erfc
(√

2Im(s)
)
(s − r) erfc

(
u (r+s)√

2

)
;

• I Sedge(r, s) = −i
2
√

2π
e− 1

2 (r−s)2
√

erfc
(√

2Im(s)
)

erfc
(

u (r+s)√
2

)

− i

4
√
π

e−s2
erfc(−ur).

Remark. The kernel when u = −1 is the image of the kernel at u = 1 under the
involution on the closed upper half plane given by z 
→ −z.

At the complex edge we have the following:

Theorem 13. Let u be in the open upper half plane such that |u| = 1 and suppose
s1, s2, . . . , sm ∈ C. Set,

zk = u
√

2M + sk k = 1, 2, . . . ,m.

Then,

lim
M→∞ R0,m(−, z)

= det

[
1

π
exp

(
−|sk |2

2
− |sk′ |2

2
+ sksk′

)
erfc

(
sku + sk′u√

2

)]m

k,k′=1
.

Remark. The kernel at the complex edge are identical to that of the kernel at the edge
of the complex Ginibre complex ensemble.

9. Proofs

9.1. The proofs of Proposition 5 and Proposition A.3. In the case of the real asymmetric
ensembles Y = C and b = 1. In the case of the Hermitian ensembles Y = R and
b = √

β. We start with

〈qn|qn′ 〉w(λ+η) = 〈̃qn |̃qn′ 〉λ+η =
∫

Y

(
q̃n(γ ) ελ+ηq̃n′(γ )

− ελ+ηq̃n(γ ) q̃n′(γ )
)

d(λ + η)(γ ).
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An easy calculation reveals that this is equal to

〈qn|qn′ 〉wλ +
2

b

T∑

t=1

ct (q̃n(yt )ελq̃n′(yt )− q̃n′(yt )ελq̃n(yt ))

−2

b

T∑

t=1

T∑

t ′=1

ct ct ′ q̃n(yt )q̃n′(yt ′) E(yt , yt ′).

Next we define A to be the Nb × 2T matrix given by

A :=
[√

2ct

b
q̃n(yt )

√
2ct

b
ελq̃n(yt )

]
; n = 0, 1, . . . , Nb − 1

and t = 1, 2, . . . T,

and the 2T × 2T matrix B,

B := −J +

[√
ct ct ′ E(yt , yt ′) 0

0 0

]
; t, t ′ = 1, 2, . . . , T .

We define C to be the Nb × Nb matrix given by C = (Uwλq )−T; the n, n′ entry of C is
µn,n′ . A bit of matrix algebra reveals that

Zw(λ+η)

Zw
= Pf(C−T − ABAT)

Pf(C−T)
= Pf(B−T − ATCA)

Pf(B−T)
, (9.1)

where the second equality comes from the Pfaffian Cauchy-Binet formula (see B). Notice
that

B−T = −J −
[

0 0
0

√
ct ct ′ E(yt , yt ′)

]
; t, t ′ = 1, 2, . . . , T .

And from Proposition 7, Pf(B)T = Pf(−J) = (−1)T . A bit more matrix algebra reveals,

ATCA =
[√

ct ct ′ DSN (yt , yt ′)
√

ct ct ′ SN (yt , yt ′)
−√

ct ct ′ SN (yt ′ , yt )
√

ct ct ′ I SN (yt , yt ′)

]
; t, t ′ = 1, 2, . . . T .

Using these facts and simplifying (9.1) we find

Zw(λ+η)

Zw
= (−1)T Pf

(−J − [√ct ct ′ KN (yt , yt ′)]
) ; t, t ′ = 1, 2, . . . , T,

and the lemma follows by using the fact that if E is an antisymmetric 2T × 2T matrix,
then Pf(−E) = (−1)T Pf(E).
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9.2. The proofs of Proposition 6 and Proposition A.4. We start with

1

L!M !2M

∫

RL

∫

CM

L ,M (α,β) d(λ + η)L(α) d(λ + η)2M (β). (9.2)

Notice that in the case of the Hermitian ensembles that this is equal to Zw(λ+η) when
L = N and M = 0, and the proof of Proposition A.4 follows from the proof recorded
here by setting every instance of M to 0.

First we write

d(λ + η)L(α) =
L∏

j=1

(
dλ1(α j ) + dη1(α j )

) =
L∑

	=0

∑

u∈IL
	

dη	(αu)dλL−	(αu′), (9.3)

where given t ∈ IW
n , we define t′ to be the unique element in IW

W−n whose range is
disjoint from t. Notice that since u′ appears in the summand on the right-hand side of
(9.3), the inner sum is not actually empty when 	 = 0; in this situation the summand is
equal to dλL(α).

Similarly,

d(λ + η)2M (β) =
M∑

m=0

∑

v∈IM
m

dη2m(βv)dλ2(M−m)(βv′).

Thus, (9.2) equals

L∑

	=0

M∑

m=0

∑

u∈IL
	

∑

v∈IM
m

1

L!M !2M

×
∫

RL

∫

CM


L ,M (α,β)dη	(αu)dλL−	(αu′) dη2m(βv)dλ2(M−m)(βv′).

We can relabel the α and β in the integrand in any manner we wish, and in particular
we may make the integrand independent of u and v. In particular, if we set i ∈ IW

n to
be the identity function on {1, 2, . . . , n}, and since the cardinality of IW

n is
(W

n

)
, we find

that (9.2) is equal to

L∑

	=0

M∑

m=0

1

	!(L − 	)!m!(M − m)!2M

×
∫

RL−	

∫

CM−m

{∫

R	

∫

Cm

L ,M (α,β) dη	(αi) dη2m(βi)

}
dλL−	(αi′) dλ2(M−m)(βi′).

(9.4)

Now,

dη	(αi) =
	∏

j=1

η1(α j ) =
	∏

j=1

U∑

u=1

au dδ(α j − xu).
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We may exchange the sum and the integral on the right-hand side of this expressions by
using the set, FU

	 of all functions from {1, 2, . . . , 	} into {1, 2, . . . ,U }. Specifically,

dη	(αi) =
∑

u∈FU
	

⎧
⎨

⎩

	∏

j=1

au( j) dδ(α j − xu( j))

⎫
⎬

⎭ ,

and similarly,

dη2m(βi) =
∑

v∈FV
m

{
m∏

k=1

bv(k) d δ̂(βk − zv(k))

}
.

Thus,
∫

R	

∫

Cm

L ,M (α,β) dη	(αi) dη2m(βi)

=
∑

u∈FU
	

∑

v∈FV
m

∫

R	

∫

Cm

L ,M (α,β)

×
⎧
⎨

⎩

	∏

j=1

au( j) dδ(α j − xu( j))

⎫
⎬

⎭

{
m∏

k=1

bv(k) d δ̂(βk − zv(k))

}

=
∑

u∈FU
	

∑

v∈FV
m

⎧
⎨

⎩

	∏

j=1

au( j)

m∏

k=1

bv(k)

⎫
⎬

⎭ 2m
L ,M (xu ∨ αi′ , zv ∨ βi′). (9.5)

Notice that ifuorv is not one-to-one then |�(xu∨αi, zv∨βi)| = 0. We may consequently
replace the sums over FU

	 and FV
k with their respective subsets of one-to-one functions.

Moreover, since 
L ,M is symmetric in the coordinates of each of its arguments, we
may replace each one-to-one function in these sums with the increasing function with
the same range so long as we compensate by multiplying by 	! and m!. Proposition 6
follows from the definition of R	,m,L ,M by substituting (9.5) into (9.4). Proposition A.4
follows from the fact that Rn = Rn,0,N ,0/Zw.

9.3. The proofs of Theorem 8 and Corollary 9. It shall be convenient to introduce the
following variants of S2M and DS2M :

Ŝ2M (γ, γ
′) :=

M−1∑

m=0

π2m(γ )ελπ̃2m+1(γ
′)− π2m+1(γ )ελπ̃2m(γ

′)
(2m)! ,

and

D̂S2M (γ, γ
′) :=

M−1∑

m=0

π2m(γ )π2m+1(γ
′)− π2m+1(γ )π2m(γ

′)
(2m)! .

The following lemma gives a closed form for these functions.
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Lemma 9.1. Let x be a real number, and suppose z and z′ are complex numbers.

1. Ŝ2M (z, x) = φ(x)eM (zx) + 2M−3/2

(2M−2)! sgn(x)z2M−1 · γ
(

M − 1
2 ,

x2

2

)
.

2. D̂S2M (z, z′) = (z′ − z)eM (zz′).

Proof. First we compute ελπ̃2m and ελπ̃2m+1. We start by noticing,

ελg̃(x) = 1

2

∫ ∞

∞
g(y) sgn(y − x) dy = −1

2

∫ x

−∞
g(y) dy +

1

2

∫ ∞

x
g(y) dy.

When g(y) = e−y2/2 yn , we may evaluate the latter two integrals in terms of the incom-
plete gamma functions,

ελg̃(x) =

⎧
⎪⎪⎨

⎪⎪⎩

−2(n−1)/2 sgn(x) · γ
(

n+1
2 ,

x2

2

)
if n is even;

2(n−1)/2�
(

n+1
2 ,

x2

2

)
if n is odd.

We immediately conclude that

ελπ̃2m(x) = −2m−1/2 sgn(x) · γ
(

m +
1

2
,

x2

2

)
, (9.6)

and

ελπ̃2m+1(x) = 2m
[
�

(
m + 1,

x2

2

)
− m�

(
m,

x2

2

)]
= x2me−x2/2, (9.7)

where in the second equality we used the fact that �(a + 1, x) = a�(a, x) + xae−x .
Using (9.6) and (9.7), we may write

Ŝ2M (z, x) = φ(x)cM (zx)

+ sgn(x)

{
M−1∑

m=0

2m−1/2

(2m)! z2m+1γ

(
m+

1

2
,

x2

2

)
−

M−1∑

m=1

2m−1/2

(2m−1)! z2m−1γ

(
m+

1

2
,

x2

2

)}
.

Next, we use the fact that

γ (a + 1, x) = aγ (a, x)− xae−x , (9.8)

so that the second sum in this expression becomes

−
M−1∑

m=1

2(m−1)−1/2

(2(m − 1))! z2(m−1)+1γ

(
(m − 1) +

1

2
,

x2

2

)
+ φ(x)

M−1∑

m=1

z2m−1|x |2m−1

(2m − 1)! .

Consequently,

Ŝ2M (z, x) = φ(x) (cM (zx) + sgn(x)sM (z|x |))
+

2M−3/2

(2M − 2)! sgn(x)z2M−1 γ

(
M − 1

2
,

x2

2

)

= φ(x)eM (zx) +
2M−3/2

(2M − 2)! sgn(x)z2M−1 γ

(
M − 1

2
,

x2

2

)
.
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Turning to D̂S2M ,

D̂S2M (z, z′) =
M−1∑

m=0

z2m(z′2m+1 − 2mz′2m−1)− (z2m+1 − 2mz2m−1)z′2m

(2m)!

=
M−1∑

m=0

z2m z′2m+1 − z2m+1z′2m

(2m)! +
M−1∑

m=1

z2m−1z′2m − z2m z′2m−1

(2m − 1)!

= (z′ − z)

{
M−1∑

m=0

z2m z′2m

(2m)! +
M−1∑

m=1

z2m−1z′2m−1

(2m − 1)!

}

= (z′ − z)eM (z
′z).

��
With a closed form for Ŝ2M and D̂S2M in hand, we are ready to prove Theorem 8.

Proof of Theorem 8. From Lemma 9.1 we have that

S2M (x, x ′) = φ(x)√
2π

Ŝ2M (x, x ′) = φ(x)φ(x ′)√
2π

eM (xx ′) + rM (x, x ′)

and

DS2m(x, x ′) = φ(x)φ(x ′)√
2π

D̂S2M (x, x ′) = φ(x)φ(x ′)√
2π

(x ′ − x)eM (xx ′).

Now,

φ(x)φ(x ′) = e− 1
2 (x

2+x ′2) = e− 1
2 (x−x ′)2 e−xx ′

,

and therefore,

S2M (x, x ′) = e− 1
2 (x−x ′)2
√

2π
e−xx ′

eM (xx ′) + rM (x, x ′),

and

DS2M (x, x ′) = e− 1
2 (x−x ′)2
√

2π
(x ′ − x)e−xx ′

eM (xx ′).

The computation of I S2M (x, x ′) is a bit more involved. From (8.3), (9.6) and (9.7),
we see

I S2M (x, x ′) = 1

2
√
π

M−1∑

m=0

2m

(2m)! · γ
(

m +
1

2
,

x ′2

2

)
sgn(x ′)x2me−x2/2

− 1

2
√
π

M−1∑

m=0

2m

(2m)! · γ
(

m +
1

2
,

x2

2

)
sgn(x)x ′2me−x ′2/2.
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I S2M (x, x ′) is clearly skew-symmetric in its arguments; looking at the first sum in this
expression we thus find,

1

2
√
π

M−1∑

m=0

2m

(2m)! sgn(x ′)x2me−x2/2
∫ x ′2/2

0
tm−1/2e−t dt

= 1

2
√
π

e−x2/2 sgn(x ′)
∫ x ′2/2

0

e−t

√
t

{
M−1∑

m=0

2m

(2m)! tm x2m

}
dt,

where on the left-hand side we have replaced the lower incomplete gamma function with
its integral definition, and on the right-hand side we have exploited the linearity of the
integral. The sum on the right-hand side of this equation is equal to cM (x

√
2t), and thus

I S2M (x, x ′) =
e−x2/2

2
√
π

sgn(x ′)
∫ x ′2/2

0

e−t

√
t

cM (x
√

2t) dt− e−x ′2/2

2
√
π

sgn(x)
∫ x2/2

0

e−t

√
t

cM (x
′√2t) dt.

Turning to the complex/complex entries of K2M , if z is assumed to be in the open upper
half plane then ελπn(z) = iπn(z). From this we see that S2M (z, z′) = iφ(z)φ(z′)D̂S2M
(z, z′), DS2M (z, z′) = φ(z)φ(z′)D̂S2M (z, z′) and I S2M (z, z′) = −φ(z)φ(z′)D̂S2M
(z, z′).

Next, we define

ψ(z) = e
1
4 (z

2−z2).

Notice that

e− 1
4 (z

2+z2)e− 1
4 (z

′2+z′2) = ψ(z)ψ(z′)e− 1
2 (z−z′)2 e−zz′

,

and thus

φ(z)φ(z′) = ψ(z)ψ(z′)e− 1
2 (z−z′)2

√
erfc

(√
2 Im(z)

)
erfc

(√
2 Im(z)′

)
e−zz′

.

Using this and Lemma 9.1, we conclude that

S2M (z, z′)

= ψ(z)ψ(z′) ie
− 1

2 (z−z′)2
√

2π
(z′ − z)

√
erfc

(√
2Im(z)

)
erfc

(√
2Im(z)′

)
e−zz′

eM (zz′),

DS2M (z, z′)

= ψ(z)ψ(z′)e− 1
2 (z−z′)2
√

2π
(z′ − z)

√
erfc

(√
2Im(z)

)
erfc

(√
2Im(z)′

)
e−zz′

eM (zz′),

and

S2M (z, z′)

= ψ(z)ψ(z′)−e− 1
2 (z−z′)2

√
2π

(z′ − z)

√
erfc

(√
2Im(z)

)
erfc

(√
2Im(z)′

)
e−zz′

eM (zz′).
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Lastly we look at the real/complex entries of K2M . As in all other cases,

DS2M (x, z) = φ(x)φ(z)√
2π

D̂S2M (x, z),

and it is easily verified that

φ(x)φ(z) = ψ(z)e− 1
2 (x−z)2

√
erfc

(√
2 Im(z)

)
e−xz .

Thus,

DS2M (x, z) = ψ(z)
e− 1

2 (x−z)2

√
2π

(z − x)

√
erfc

(√
2 Im(z)

)
e−xzeM (xz).

Since

S2M (x, z) = i
φ(x)φ(z)√

2π
D̂S2M (x, z), S2M (z, x) = φ(z)√

2π
Ŝ2M (z, x),

and

I S2M (x, z) = −i
φ(z)√

2π
Ŝ2M (z, x).

It follows that

S2M (x, z) = ψ(z)
ie− 1

2 (x−z)2

√
2π

(z − x)

√
erfc

(√
2Im(z)

)
e−xzeM (xz),

S2M (z, x) = ψ(z)

{
e− 1

2 (x−z)2

√
2π

√
erfc

(√
2Im(z)

)
e−xzeM (xz) + rM (z, x)

}
,

and

I S2M (x, z) = −iψ(z)

{
e− 1

2 (x−z)2

√
2π

√
erfc

(√
2Im(z)

)
e−xzeM (xz) + rM (z, x)

}
.

Clearly, ψ(x) = ψ(x ′) = 1, and thus we find that

KN (γ, γ
′) =

[
ψ(γ ) 0

0 ψ(γ )

]
K̃N (γ, γ

′)
[
ψ(γ ′) 0

0 ψ(γ ′)

]
.

It follows that, if we define K to be the matrix

K =
[

K̃N (x j , x j ′) K̃N (x j , zk′)
K̃N (zk, x j ′) K̃N (zk, zk′)

]
; j, j ′ = 1, 2, . . . , 	;

k, k′ = 1, 2, . . . ,m,

and D to be the diagonal matrix

D = diag (ψ(x1), ψ(x1), . . . , ψ(x	), ψ(x	), ψ(z1), ψ(z1) . . . , ψ(zm), ψ(zm)) ,

then

R	,m(x, z) = Pf(DKD).

But, since ψ(z) = ψ(z)−1, we have that det D = 1, and R	,m(x, z) = Pf K as claimed.
��
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Proof of Corollary 9. We first make use of the fact that

lim
M→∞ eM (z) = ez

pointwise on C. This simplifies all terms in the kernel except the I S2M term. It remains
to show that rM (z, x) → 0 as M → ∞, and that

1

2
sgn(x − x ′) + lim

M→∞ I S2M (x, x ′) = 1

2
sgn(x − x ′) erfc

( |x − x ′|√
2

)
. (9.9)

The first of these facts is easily seen by noting that γ (M − 1/2, x2/2) < �(M − 1/2),
and by Legendre’s duplication formula,

|z|2M−1 2M−3/2 �(M − 1/2)

�(2M − 1)
= |z|2M−1 2−M+3/2 √

π �(2M − 2)

�(2M − 1)�(M − 1)
.

Thus,

|rM (z, x)| < e− 1
2 Re(z2)

√
erfc

(√
2Im(z)

) |z|2M−1

2M�(M)
,

and it is easy to see that this goes to 0 as M → ∞, independent of the value of z.
To establish (9.9) we start with

IM (x, x ′) :=
∫ x ′2/2

0

e−t

√
t

cM (x
√

2t) dt. (9.10)

Since the terms in cM are all positive, from the Monotone Convergence Theorem,

I (x, x ′) := lim
M→∞ IM (x, x ′) =

∫ x ′2/2

0

e−t

√
t

cosh(x
√

2t) dt

=
√
π

2
ex ′2/2

[
erf

( |x ′| + x√
2

)
− erf

( |x ′| − x√
2

)]
. (9.11)

The latter equality follows from the fact that
∫ x

0

e−t

√
t

cosh(a
√

t) dt =
√
π

2
ea2/4

[
erf

(a

2
+

√
x
)

− erf
(a

2
− √

x
)]
,

which can be verified via differentiation.
Now,

lim
M→∞ I S2M (x, x ′) = 1

2
√
π

{
e−x2/2 sgn(x ′)I (x, x ′)− e−x ′2/2 sgn(x)I (x ′, x)

}

= 1

4

[
sgn(x ′) erf

( |x ′| + x√
2

)
− sgn(x ′) erf

( |x ′| − x√
2

)

− sgn(x) erf

(
x ′ + |x |√

2

)
+ sgn(x) erf

(
x ′ − |x |√

2

)]

= −1

2
erf

(
x − x ′
√

2

)
.
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It follows that (9.9) can be written as

1

2
sgn(x − x ′)− 1

2
erf

(
x − x ′
√

2

)
= 1

2
sgn(x − x ′)− 1

2
sgn(x − x ′) erf

( |x − x ′|√
2

)
,

where we have exploited the fact that erf is an odd function. We arrive at the form for
I S2M stated in the corollary using the fact that erfc = 1 − erf. ��

9.4. The proofs of Theorem 10 and Theorem 11. In order to prove Theorems 10 and
11, it is necessary to investigate the asymptotics of the partial sums and the exponential
function.

Lemma 9.2. Let u �= ±1 be a complex number, and let (vm)
∞
m=1 be a sequence of

complex numbers satisfying

vM = u2 + O
(

M−1/2
)

as M → ∞.

Then, as M → ∞,

e−2MvM eM (2MvM ) ∼ 1 − e−2(1−u2)

2πu2(1 − u2)
· e2M(1−u2)u4M

√
M

.

In particular, when u is real and 0 < |u| < 1,

lim
M→∞ e−2MvM eM (2MvM ) = 1.

Proof. Set v = vM . We start by writing 2Mv = v(2M − 2) + 2v. Thus,

e−2MveM (2Mv)=exp

(
−(2M − 2)

(
v+

v

M − 1

))
eM

(
(2M − 2)

(
v+

v

M − 1

))
.

We write

w = wM = v +
v

M − 1
.

Clearly wM = u2 + O(M−1/2). Under this hypothesis, and since u2 �= 1 , Eqs. (2.9),
(2.15) and (1.7) of [5] imply that

e−(2M−2)weM ((2M − 2)w) ∼ 1 − e−2(1−u2)

2πu2(1 − u2)
· e2M(1−u2)u4M

√
M

.

The second statement of the lemma follows from the fact that if u is real and 0 < |u| < 1,
then

e2M(1−u2)u4M = e2M(1−u2+2 log |u|),

and 1 − u2 + 2 log |u| is negative when u is in (−1, 1). ��
We are ready to prove Theorem 11.
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Proof of Theorem 11. Let u be a point in the open upper half plane with modulus less
than 1, and suppose s and s′ are complex numbers. For all but finitely many values of
M , z = u

√
2M + s and z′ = u

√
2M + s′ are in C∗. Thus, in this case, we need only

consider the asymptotics of the complex/complex kernel under these substitutions.
We will make use of the fact that if x is a real number,

erfc(x) = 1√
π
�

(
1

2
, x2

)
∼ e−x2

√
π |x | .

Consequently,

√
erfc

(√
2Im(u

√
2M + s)

)
∼

exp
(
−2MIm(u)2 − 2

√
2MIm(u)Im(s)− Im(s)2

)

√
2Im(u) 4

√
Mπ

.

(9.12)

Now, by Theorem 8,

D̃S2M (u
√

2M + s, u
√

2M + s′) = (s′ − s)√
2π

e− 1
2 (s−s′)2

×
√

erfc
(√

2Im(u
√

2M + s)
)

erfc
(√

2Im(u
√

2M + s′)
)

× exp
(
−2Mu2 − u

√
2M(s + s′)− ss′) eM

(
2Mu2 + u

√
2M(s + s′) + ss′).

Therefore, by Lemma 9.2 and (9.12),

D̃S2M (u
√

2M + s, u
√

2M + s′) ∼ (s′ − s)√
2π

e− 1
2 (s−s′)2

×e−4MIm(u)2 e−2
√

2MIm(u)(Im(s)+Im(s′))e−Im(s)2−Im(s′)2

2Im(u)
√

Mπ

×
(

1 − e−2(1−u2)

2πu2(1 − u2)
· e2M(1−u2)u4M

√
M

)
.

It is easily seen that

lim
M→∞

e−4MIm(u)2 e−2
√

2MIm(u)(Im(s)+Im(s′))

2Im(u)
√

Mπ
= 0,

and,
∣∣∣e−4MIm(u)2 e2M(1−u2)u4M

∣∣∣ = e2M(1−|u|2+2 log |u|).

Since |u| < 1, we have 1 − |u|2 + 2 log |u| < 0, and therefore

lim
M→∞ e−2

√
2MIm(u)(Im(s)+Im(s′))

∣∣∣e−4MIm(u)2 e2M(1−u2)u4M
∣∣∣ = 0.

We conclude that

lim
M→∞ D̃S2M (u

√
2M + s, u

√
2M + s′) = 0.
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And, since Ĩ S2M (z, z′) = −D̃S2M (z, z′),

lim
M→∞ Ĩ S2M (u

√
2M + s, u

√
2M + s′) = 0.

Turning to S̃2M (u
√

2M + s, u
√

2M + s′), we set

ηM (s) = exp
(
−2i

√
2MIm(u)Re(s)

)
.

From Theorem 8, we have

ηM (s)ηM (−s′)S̃2M (u
√

2M + s, u
√

2M + s′) = −i√
2π

[
2i

√
2MIm(u) + (s − s′)

]

× exp
(

2i
√

2MIm(u)Re(s)
)

exp
(
−2i

√
2MIm(u)Re(s′)

)

× exp

(
4M(Im(u))2 − 2i

√
2MIm(u)(s − s′)− 1

2
(s − s′)2

)

×
√

erfc
∣∣∣2

√
MIm(u) +

√
2Im(s)

∣∣∣ erfc
∣∣∣2

√
MIm(u) +

√
2Im(s′)

∣∣∣

× exp
(
−2M |u|2 − (su + s′u)

√
2M−ss′) eM

(
2M |u|2 + (su + s′u)

√
2M + ss′).

Using (9.12), we see

ηM (s)ηM (−s′)S̃2M (u
√

2M + s, u
√

2M + s′)

∼ 1

π
exp

(
−1

2
(s − s′)2 − Im(s)2 − Im(s′)2

)

×exp
(
−2M |u|2 − (su + s′u)

√
2M−ss′) eM

(
2M |u|2 + (su+s′u)

√
2M + ss′).

And thus, by Lemma 9.2,

ηM (s)ηM (−s′)S̃2M (u
√

2M + s, u
√

2M + s′)

∼ 1

π
exp

(
−1

2
(s − s′)2 − Im(s)2 − Im(s′)2

)

= 1

π
exp

(
−|s|2

2
− |s′|2

2
+ ss′

)
.

Next, we set DM to be the 2m × 2m diagonal matrix given by

DM = diag (ηM (s1), ηM (−s1), . . . , ηM (sm), η(−sm)),

noting that det DM = 1. It follows that

lim
M→∞ R0,m(−, z) = lim

M→∞ Pf
(

DM
[
K̃2M (sk, sk′)

]m
k,k′=1 D−1

M

)

= Pf

⎡

⎣ 0 1
π

exp
(
−|sk |2

2 − |sk′ |2
2 + sksk′

)

− 1
π

exp
(
−|sk |2

2 − |sk′ |2
2 + sksk′

)
0

⎤

⎦
m

k,k′=1

= det

[
1

π
exp

(
−|sk |2

2
− |sk′ |2

2
+ sksk′

)]m

k,k′=1
,

where the last equation follows from Sect. 4.6 of [22]. ��
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In order to prove Theorem 10 we also need to analyze the large M asymptotics of
rM (u

√
2M + s, u

√
2M + r), where r and u are real numbers with 0 < |u| < 1 and s is

a complex number.

Lemma 9.3. Let r and u be real numbers with 0 < |u| < 1 and let s be a complex
number in the closed upper half plane. Then,

lim
M→∞ rM (u

√
2M + s, u

√
2M + r) = 0.

Proof.

rM (u
√

2M + s, u
√

2M + r) = sgn(u
√

2M + r)
e−s2/2

√
2π

· 2M−3/2e−Mu2

�(2M − 1)
e−us

√
2M

×(u√
2M + s)2M−1 · γ

(
M − 1

2
,Mu2 + u

√
2Mr +

r2

2

)
.

We simplify this using Legendre’s duplication formula for �(2M − 1) and by setting
P(a, x) = γ (a, x)/�(a),

rM (u
√

2M + s, u
√

2M + r) = sgn(u
√

2M + r)
e−s2/2

√
2

e−u
√

2Ms
(

1 +
s

u
√

2M

)2M−1

× M M+1/2e−Mu2
u2M−1

M ! · P

(
M − 1

2
,Mu2 + u

√
2Mr +

r2

2

)
.

Next we use Stirling’s approximation for M ! in the denominator to show that

rM (u
√

2M + s, u
√

2M + r) ∼ sgn(u)
e−s2/2

2u
√
π

e−u
√

2Ms
(

1 +
s

u
√

2M

)2M−1

× exp
(

M(1 − u2 + 2 log |u|)
)

· P

(
M − 1

2
,Mu2 + u

√
2Mr +

r2

2

)
.

Using the fact that

(
1 +

s

u
√

2M

)2M−1

∼ es
√

2M/ue−s2/2u2
,

we find

rM (u
√

2M + s, u
√

2M + r)

∼ sgn(u)

2u
√
π

exp

(
− s2

2

(
1 + u2

u2

))
exp

(
s
√

2M

(
1 − u2

u

))

× exp
(

M(1 − u2 + 2 log |u|)
)

· P

(
M − 1

2
,Mu2 + u

√
2Mr +

r2

2

)
. (9.13)

Finally, we notice that if 0 < |u| < 1 then 1 − u2 + 2 log |u| < 0. It follows that

lim
M→∞ exp

(
s
√

2M(1/u − u)
)

exp
(

M(1 − u2 + 2 log |u|)
)

= 0,
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and the lemma follows since

0 < P

(
M − 1

2
,Mu2 + u

√
2Mr +

r2

2

)
< 1.

��
Proof of Theorem 10. First we consider the case where s and s′ are both in the open
upper half plane. From Theorem 8,

S̃2M (u
√

2M +s, u
√

2M +s′)=ie− 1
2 (s−s′)2

√
2π

(s′ − s)

√
erfc

(√
2Im(s)

)
erfc

(√
2Im(s′)

)

× exp
(
−2Mu2 − u

√
2M(s + s′)− ss′) eM

(
2Mu2 + u

√
2M(s + s′) + ss′),

D̃S2M (u
√

2M +s, u
√

2M +s′)=e− 1
2 (s−s′)2
√

2π
(s′−s)

√
erfc

(√
2Im(s)

)
erfc

(√
2Im(s′)

)

× exp
(
−2Mu2 − u

√
2M(s + s′)− ss′) eM

(
2Mu2 + u

√
2M(s + s′) + ss′),

and

Ĩ S2M (u
√

2M +s, u
√

2M +s′)=−e− 1
2 (s−s′)2

√
2π

(s′−s)

√
erfc

(√
2Im(s)

)
erfc

(√
2Im(s′)

)

× exp
(
−2Mu2 − u

√
2M(s + s′)− ss′) eM

(
2Mu2 + u

√
2M(s + s′) + ss′).

By Lemma 9.2, these converge to the appropriate entries of the complex/complex kernel
K (s, s′) as M → ∞.

Next we turn to the case where u and r are real, and s is in the open upper half plane.
In this case, Theorem 8 yields,

S̃2M (u
√

2M + r, u
√

2M + s) = ie− 1
2 (r−s)2

√
2π

(s − r)

√
erfc

(√
2Im(s)

)

× exp
(
−2Mu2 − u

√
2M(r + s)− rs

)
eM

(
2Mu2 + u

√
2M(r + s) + rs

)
,

S̃2M (u
√

2M + s, u
√

2M + r) = e− 1
2 (r−s)2

√
2π

√
erfc

(√
2Im(s)

)

× exp
(
−2Mu2 − u

√
2M(r + s)− rs

)
eM

(
2Mu2 + u

√
2M(r + s) + rs

)
,

+ rM (u
√

2M + r, u
√

2M + s),

and thus, by Lemmas 9.2 and 9.3,

lim
M→∞ S̃2M (u

√
2M + r, u

√
2M + s) = ie− 1

2 (r−s)2

√
2π

(s − r)

√
erfc

(√
2Im(s)

)
,

and

lim
M→∞ S̃2M (u

√
2M + s, u

√
2M + r) = e− 1

2 (r−s)2

√
2π

√
erfc

(√
2Im(s)

)
.
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The limiting values for D̃S2M (u
√

2M +r, u
√

2M +s) and Ĩ S2M (u
√

2M +r, u
√

2M +s)
follow from this as well, since

D̃S2M (z, z′) = −i S̃2M (z, z′) and Ĩ S2M (z, z′) = i S̃2M (z
′, z).

Finally, we turn to the case where u, r and r ′ are all real. Here, Theorem 8 implies
that

S̃2M (u
√

2M + r, u
√

2M + r ′) = 1√
2π

e− 1
2 (r−r ′)2

× exp
(
−2Mu2 − u

√
2M(r + r ′)− rr ′) eM

(
2Mu2 + u

√
2M(r + r ′) + rr ′)

+rM (u
√

2M + r, u
√

2M + r ′),

and

D̃S2M (u
√

2M + r, u
√

2M + r ′) = (r ′ − r)√
2π

e− 1
2 (r−r ′)2

× exp
(
−2Mu2 − u

√
2M(r + r ′)− rr ′) eM

(
2Mu2 + u

√
2M(r + r ′) + rr ′).

From Lemmas 9.2 and 9.3, we see that

lim
M→∞ S̃2M (u

√
2M + r, u

√
2M + r ′) = 1√

2π
e− 1

2 (r−r ′)2 ,

and

lim
M→∞ D̃S2M (u

√
2M + r, u

√
2M + r ′) = (r ′ − r)√

2π
e− 1

2 (r−r ′)2 .

All that remains to show is

lim
M→∞ Ĩ S2M (u

√
2M + r, u

√
2M + r ′) = 1

2
sgn(r ′ − r) erfc

( |r − r ′|√
2

)
.

First we write

Ĩ S2M (x, x ′) = e−x2/2

2
√
π

sgn(x ′)
{

I (x, x ′)−
∫ x ′2/2

0

e−t

√
t

CM (x
√

2t) dt

}

−e−x ′2/2

2
√
π

sgn(x)

{
I (x ′, x)−

∫ x2/2

0

e−t

√
t

CM (x
′√2t) dt

}
,

where I (x, x ′) is given as in (9.11) and CM = cosh −cM . That is,

Ĩ S2M (x, x ′) = e−x2/2

2
√
π

sgn(x ′)I (x, x ′)− e−x ′2/2

2
√
π

sgn(x)I (x ′, x)

+
e−x ′2/2

2
√
π

sgn(x)
∫ x2/2

0

e−t

√
t

CM (x
′√2t) dt

−e−x2/2

2
√
π

sgn(x ′)
∫ x ′2/2

0

e−t

√
t

CM (x
√

2t) dt. (9.14)
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Making the substitutions x = u
√

2M + r and x ′ = u
√

2M + r ′, and assuming that M is
sufficiently large, (9.11) yields

sgn(x ′)
2
√
π

I (x, x ′) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ex2/2

4
erfc

(
r − r ′
√

2

)
if u > 0;

−ex2/2

4
erfc

(
r ′ − r√

2

)
if u < 0.

Consequently,

lim
M→∞

{
e−x2/2

2
√
π

sgn(x ′)I (x, x ′)− e−x ′2/2

2
√
π

sgn(x)I (x ′, x)

}

= 1

4
erfc

(
r − r ′
√

2

)
− 1

4
erfc

(
r ′ − r√

2

)

= −1

2
erf

(
r − r ′
√

2

)
.

Thus, if we can show that the second line of (9.14) goes to 0 as M → ∞, we will have

lim
M→∞

{
1

2
sgn(x − x ′) + I S2M (x, x ′)

}
= 1

2
sgn(r − r ′)− 1

2
erf

(
r − r ′
√

2

)

= 1

2
sgn(r − r ′) erfc

( |r − r ′|√
2

)

as desired.
We thus consider

e−x ′2/2

2
√
π

sgn(x)
∫ x2/2

0

e−t

√
t

CM (x
′√2t) dt.

For any v > 0,

CM (v) ≤
∞∑

m=2M

vm

m! = P(2M, v)ev,

where P(2M, v) = γ (2M, v)/�(2M). Among other things, this implies that CM (v) ≤
ev and

e−x ′2/2

2
√
π

∫ x2/2

0

e−t

√
t

CM (x
′√2t) dt ≤ 1√

π

∫ (x−x ′)/
√

2

−x ′2/2
e−t2

P
(

2M, x ′(x ′ +
√

2t)
)

dt.

Under the substitutions x = u
√

2M + r and x ′ = u
√

2M + r ′, the right-hand side of this
is less than or equal to

1√
π

∫ (r−r ′)/
√

2

−∞
e−t2

P

(
2M, 2M

[
u2+

u√
2M

(2r ′+
√

2t

)
+

1

2M

(
r ′2+

√
2tr ′)

])
dt.

(9.15)
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In [28], Temme gives the uniform asymptotic expansion for P(a, x) when a > 0 and
x ∈ R:

P(a, x) ∼ 1

2
erfc

(
sgn(1 − λ)

√
a(λ− 1 − log λ)

)
; λ = x

a
. (9.16)

In our situation,

λ = u2 +
u√
2M

(2r ′ +
√

2t
)

+
1

2M

(
r ′2 +

√
2tr ′),

which implies that

λ− 1 − log λ = u2 − 1 − 2 log |u| + O(M−1/2)

and

sgn(1 − λ) = sgn
(
1 − u2 + O(M−1/2)

) = 1 as M → ∞.

Since, for |u| < 1, u2 − 1 − 2 log |u| > 0, we conclude that

sgn(1 − λ)
√

2M(λ− 1 − log λ) → ∞ as M → ∞.

Temme’s asymptotic for P(a, x) gives that,

lim
M→∞ P

(
2M, 2M

[
u2 +

u√
2M

(2r ′ +
√

2t

)
+

1

2M

(
r ′2 +

√
2tr ′)

])
= 0.

Thus, by applying the Dominated Convergence Theorem to (9.15) (which we may do
since 0 < P(a, x) < 1), we must have that

lim
M→∞

e−x ′2/2

2
√
π

sgn(x)
∫ x2/2

0

e−t

√
t

CM (x
′√2t) dt = 0,

and the lemma is proved. ��

9.5. The proofs of Theorem 12 and Theorem 13. In order to prove Theorem 12 we need
analogs of Lemmas 9.2 and 9.3 for the case where u2 = 1.

Lemma 9.4. Suppose a is a complex number and

vM = 1 +
a√
2M

+ O(M−1).

Then,

lim
M→∞ e−2MvM eM (2MvM ) = 1

2
erfc

(
a√
2

)
.
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Proof. As in the proof of Lemma 9.2 we set v = vM and write

w = wM = v +
v

M − 1
,

so that

e−2MveM (2Mv) = e−(2M−2)weM ((2M − 2)w).

We are now in position to use a result of Bleher and Mallison [3, Theorem B.1],
which shows that

e−(2M−2)weM ((2M − 2)w) ∼ 1

2
erfc

(
ξ(w)

√
(2M − 2)

)
, (9.17)

where

ξ(w) = (w − 1)√
2

− (w − 1)2

6
√

2
+
(w − 1)3

36
√

2
+ · · · .

In our case,

ξ(w) = a

2
√

M
+ O(M−1), (9.18)

and the lemma now follows from (9.17) and (9.18). ��
Lemma 9.5. Let u = ±1, r ∈ R and let s be in the closed upper half plane. Then,

lim
M→∞ rM (u

√
2M + s, u

√
2M + r) = 1

4
√
π

e−s2
erfc(−ur).

Proof. From (9.13) we have that

rM (u
√

2M + s, u
√

2M + r) = 1

2
√
π

e−s2
P

(
M − 1

2
,M + u

√
2Mr +

r2

2

)
. (9.19)

Using Temme’s asymptotic for P(a, x) given in (9.16),

λ =
1 + ur

√
2√
M

+ r2

2M

1 − 1
2M

= 1 +
ur

√
2√

M
+ O(M−1).

It follows that, as M → ∞, sgn(1 − λ) → −u sgn(r), and

λ− 1 − log λ = r2

M
+ O(M−3/2).

Thus,

P

(
M − 1

2
,M + u

√
2Mr +

r2

2

)
∼ 1

2
erfc (−ur),

and the lemma follows from (9.19). ��
Proof of Theorem 12. The proof of Theorem 12 is the same, mutatis mutandis, as that of
Theorem 10 replacing the asymptotics in Lemmas 9.2 and 9.3 with those in Lemmas 9.4
and 9.5. ��
Proof of Theorem 13. The proof of Theorem 13 is the same, mutatis mutandis, as that
of Theorem 11 replacing the asymptotics in Lemmas 9.2 with those in Lemmas 9.4. ��
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Appendices

A. Correlation Functions for β = 1 and β = 4 Hermitian Ensembles

In this appendix we will use the Pfaffian Cauchy-Binet Formula (see B) in order to derive
the correlation functions of the β = 1 and β = 4 Hermitian ensembles. We will keep the
exposition brief, but will introduce all notation necessary for this appendix to be read
independently from the main body of the paper. We reuse much of the notation from the
main body of the paper so that we may also reuse the same proofs. For convenience, N
will be a fixed even integer; similar results are true for odd integers.

Given a Borel measure ν on R we define the associated partition function to be

Zν := 1

N !
∫

RN
|�(γ )| dνN (γ ),

where�(γ ) is the Vandermonde determinant in the variablesγ1, γ2, . . . , γN and νN is the
product measure of ν on R

N . When β = 1 we define the function E : R
2 → {− 1

2 , 0, 1
2 }

and the operator εν on L2(ν) by

E(γ, γ ′) := 1

2
sgn(γ − γ ′) and ενg(γ ) :=

∫

R

g(y)E(y, γ ) dν(y).

When β = 4 we define E(γ, γ ′) := 0 and ενg(y) := g′(y). We use εν to define the
skew-symmetric bilinear form 〈·|·〉ν on L2(ν) given by

〈g|h〉ν :=
∫

R

(g(γ )ενh(γ )− ενg(γ )h(γ )) dν(γ ).

Theorem A.1. Let b := √
β, and let q be a family of Nb monic polynomials such that

deg qn = n. Then,

Zν = bN Pf Uνq,

where Uνq = [〈qn|qn′ 〉ν]; n, n′ = 0, 1, . . . , Nb − 1.

This theorem follows from de Bruijn’s identities [7].
We set λ to be Lebesgue measure on R. If there is some Borel measurable function

w : R → [0,∞) so that ν = wλ (that is, dν/dλ = w) then we define Zw := Zν .
Clearly,

Zw = 1

N !
∫

RN

N (γ ) dλN (γ ) where 
N (γ ) :=

{
N∏

n=1

w(γn)

}
|�(γ )|β.

We may specify an ensemble of Hermitian matrices by demanding that its joint proba-
bility density function is given by 
N . The nth correlation function of this ensemble is
then defined to be Rn : R

n → [0,∞), where

Rn(y) := 1

Zw
· 1

(N − n)!
∫

RN−n

N (y ∨ γ ) dλN−n(γ ), (A.1)

where y ∨ γ ∈ R
N is the vector formed by concatenating the vectors y ∈ R

n and
γ ∈ R

N−n . By definition, R0 = 1. Here we take (A.1) as the definition of the nth corre-
lation function; one can use the point process formalism to show that this definition is
consistent with the definition derived in that manner. See [4] for details.
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We set µn,n′ to be the n, n′ entry of (Uwλq )−T, and we define q̃n := wqn and

ελq̃n(γ ) :=

⎧
⎪⎨

⎪⎩

∫

R

w(y)qn(y)E(y, γ ) dλ(y) if β = 1;

w(γ )q ′
n(γ ) if β = 4.

(In the case of β = 4 this contradicts the earlier definition of εν , but it has the benefit of
allowing us to treat the β = 1 and β = 4 cases simultaneously.) Using this notation we
define the functions SN , I SN and DSN : R

2 → R by

SN (γ, γ
′) := 2

b

Nb−1∑

n,n′=0

µn,n′ q̃n(γ ) ελq̃n′(γ ′),

I SN (γ, γ
′) := 2

b

Nb−1∑

n,n′=0

µn,n′ ελq̃n(γ ) ελq̃n′(γ ′)

and

DSN (γ, γ
′) := 2

b

Nb−1∑

n,n′=0

µn,n′ q̃n(γ ) q̃n′(γ ′).

The matrix kernel of our ensemble is then defined to be

KN (γ, γ
′) :=

[
DSN (γ, γ

′) SN (γ, γ
′)

−SN (γ
′, γ ) I SN (γ, γ

′) + E(γ, γ ′).

]

Theorem A.2.

Rn(y) = Pf
[
KN (y j , yj′)

] ; j, j ′ = 1, 2, . . . , n.

Our proof of this theorem begins by setting η to be the measure on R given by

dη(γ ) =
T∑

t=1

ct dδ(γ − yt ),

where y1, y2, . . . , yT are real numbers and c1, c2, . . . , cT are indeterminants and δ is
the probability measure on R with point mass at 0. We will assume that T ≥ N . As with
Theorem 4 in the main body of this paper, we will prove Theorem A.2 by expanding
Zw(λ+η)/Zw in two different ways and then equating the coefficients of certain products
of c1, c2, . . . , cT .

Proposition A.3.

Zw(λ+η)

Zw
= Pf

(
J +

[√
ct ct ′ KN (yt , yt ′)

]); t, t ′ = 1, 2, . . . , T,

where J is defined to be the 2T × 2T matrix consisting of 2 × 2 blocks given by

J :=
[
δt,t ′

[
0 1

−1 0

]]
; t, t = 1, 2, . . . , T .

Proposition A.3 is proved in Sect. 9.1.



Ginibre Ensemble of Random Matrices and its Scaling Limits 215

For each N ≥ 0 we define IT
n to be the set of increasing functions from {1, 2, . . . , n}

into {1, 2, . . . , T }. Given a vector y ∈ R
T and an element t ∈ IT

n , we define the vector
yt ∈ R

n by yt = {yt(1), yt(2), . . . , yt(n)}.
Proposition A.4.

Zw(λ+η)

Zw
= 1 +

N∑

n=1

∑

t∈IT
n

⎧
⎨

⎩

n∏

j=1

ct( j)

⎫
⎬

⎭ Rn(yt). (A.2)

The proof of Proposition A.4 is given in Sect. 9.2.
Finally, we set K to be the 2T × 2T block matrix given by

K := [√
ct ct ′ KN (yt , yt ′)

] ; t, t ′ = 1, 2, . . . , T .

From the formula for the Pfaffian of the sum of two antisymmetric matrices (see Prop-
osition 7) and Proposition A.3 we have that

Zw(λ+η)

Zw
= Pf[J + K] = 1 +

T∑

n=1

∑

t∈IT
n

Pf Kt, (A.3)

where for each t ∈ IT
n , Kt is the 2n × 2n antisymmetric matrix given by

Kt = [√ct( j)ct( j ′)KN (yt( j), yt( j ′))]; j, j ′ = 1, 2, . . . , S.

Finally,

Pf Kt =
⎧
⎨

⎩

n∏

j=1

ct( j)

⎫
⎬

⎭Pf[KN (yt( j), yt( j ′))]; j, j ′ = 1, 2, . . . , n,

and Theorem A.2 follows from Proposition A.4 by comparing coefficients of c1c2 · · · cn
in (A.2) and (A.3).

B. The Pfaffian Cauchy-Binet Formula

Theorem B.1. (Rains) Suppose B and C are respectively 2J × 2J and 2K × 2K anti-
symmetric matrices with non-zero Pfaffians. Then, given any 2J × 2K matrix A,

Pf(C−T − ATBA)

Pf(C−T)
= Pf(B−T − ACAT)

Pf(B−T)
.

Proof. Let I2K and I2J be respectively the 2K ×2K and 2J ×2J identity matrices, and
let O be the 2J × 2K matrix whose entries are all 0. Then, an easy calculation shows
that

[
I2J O

ATB I2K

] [
B−T −A
AT C−T

] [
I2J −BA
OT I2K

]
=
[

B−T O
OT C−T − ATBA

]
,

and similarly
[

I2J −AC
OT I2K

] [
B−T −A
AT C−T

] [
I2J O

CAT I2K

]
=
[

B−T − ACAT O
OT C−T

]
.
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Now, if D and E are 2N × 2N matrices and D is antisymmetric, then it is well known
that Pf(EDET) = Pf D · det E, from which we conclude that

Pf

[
B−T O
OT C−T − ATBA

]
= Pf

[
B−T − ACAT O

OT C−T

]
.

The theorem follows since the Pfaffian of the direct sum of two even rank antisymmetric
matrices is the product of the Pfaffians of the two matrices. That is

Pf(B−T)Pf(C−T − ATBA) = Pf(B−T − ACAT)Pf(C−T).

��

C. Limiting Correlation Functions for the Complex Ginibre Ensemble

The complex Ginibre ensemble consists of N × N complex matrices with i.i.d. normal
entries. In this section we derive the scaling limits of the correlation functions of the
Ginibre complex ensemble in the bulk and at the edge. As the quantities of interest
are similar to those in the main body of the paper we will reuse much of our previous
notation for the analogous quantities.

In his original paper on the subject, [15], Ginibre showed that the joint density of
eigenvalues is given by


N (γ ) = 1

Z

{
N∏

n=1

w(γn)

}
|�(γ )|2,

where w(γ ) = e−|γ |2 ,�(γ ) is the Vandermonde determinant whose columns are given
in terms of γ1, γ2, . . . , γN , and

Z = 1

N !
∫

CN

N (γ ) dλ2N (γ ).

We may take the nth correlation function of this ensemble to be the function Rn : C
n →

[0,∞) given by

Rn(z) := 1

Z
· 1

(N − n)!
∫

CN−n

N (z ∨ γ ) dλ2(N−n)(γ ).

The correlation functions can also be defined as densities with respect to Lebesgue
measure which satisfy an identity analogous to (5.1).

Ginibre gave a closed form for Rn in terms of a scalar kernel. Specifically, he showed
that

Rn(z) = det [KN (zk, zk′)]n
k,k′=1 ,

where

KN (z, z′) = 1

2π
exp

(
−|z|2

2
− |z′|2

2

)
eM (zz′).
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Clearly then,

lim
N→∞ Rn(z) = det

[
1

2π
exp

(
−|zk |2

2
− |zk′ |2

2
+ zk zk′

)]n

k,k′=1
.

This is the limiting correlation function of the complex Ginibre ensemble at the origin.
Notice that an almost identical expression appears in Theorem 11.

Like the real Ginibre ensemble, the complex Ginibre ensemble satisfies the circular
law. We therefore expect that limiting correlation functions will emerge after scaling
eigenvalues by a factor of

√
N .

Theorem C.1. Let u be in the closed unit disk, and suppose s1, s2, . . . , sn are complex
numbers. Set

zk = u
√

N + sk k = 1, 2, . . . , n.

Then:

1. Limiting correlation functions in the bulk. If |u| < 1,

lim
N→∞ Rn(z) = det

[
1

2π
exp

(
−|sk |2

2
− |sk′ |2

2
+ sksk′

)]n

k,k′=1
.

2. Limiting correlation functions at the edge. If |u| = 1,

lim
N→∞ Rn(z) = det

[
1

2π
exp

(
−|sk |2

2
− |sk′ |2

2
+ sksk′

)
erfc

(
sku + sk′u√

2

)]n

k,k′=1
.

Remark. These results appear in [11]. We present them here for completeness, and
since these scaling limits follow easily from some of the asymptotics employed in the
derivation of the scaling limits for the real Ginibre ensemble.

Proof. Let N = 2M ,

ψM (s) = exp

(
(su − su)√

2

√
M

)

and define D to be the n ×n matrix given by D = diag (ψM (s1), ψM (s2), . . . , ψ(sn)). It
is easily seen that |ψM (s)| = 1 and det D = 1. We also define K to be the n × n matrix
given by

K =
[

1

2π
exp

(
−|sk |2

2
− |sk′ |2

2
+ sksk′

)
erfc

(
sku + sk′u√

2

)]n

k,k′=1
.

Then,

lim
M→∞ Rn(z) = lim

M→∞ det
(

DKD−1
)
. (C.1)
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The k, k′ entry of K can be computed to be

1

2π
exp

(
−2M |u|2 − (sku + sk′u)√

2

√
M − (sku + sk′u)√

2

√
M − |sk |2

2
− |sk′ |2

2

)

×eM

(
2M |u|2 + (sku + sk′u)

√
2M + sksk′

)

= 1

2π
exp

(
−2M |u|2 − (sku + sk′u)

√
2M − sksk′

)
exp

(
−|sk |2

2
− |sk′ |2

2
+ sksk′

)

× exp

(
(sku − sku)√

2

√
M

)
exp

(−(sk′u − sk′u)√
2

√
M

)

×eM

(
2M |u|2 + (sku + sk′u)

√
2M + sksk′

)
.

It follows that the k, k′ entry of DKD−1 is given by

1

2π
exp

(
−|sk |2

2
− |sk′ |2

2
+ sksk′

)
exp

(
−2M |u|2 − (sku + sk′u)

√
2M − sksk′

)

×eM

(
2M |u|2 + (sku + sk′u)

√
2M + sksk′

)
.

Statement 1 of the theorem now follows from (C.1) and Lemma 9.2. Statement 2 follows
from (C.1) and Lemma 9.4. ��

D. Plots of Correlation Functions for the Real Ginibre Ensemble

This appendix contains various visualizations of the limiting correlation functions of the
real Ginibre ensemble.

As usual, H (respectively H ) is the open (closed) upper half plane. Given a point
u ∈ H with |u| ≤ 1, r1, r2, . . . , r	 ∈ R and s1, s2, . . . , sm ∈ Hm , we set

x j = u
√

2M + r j j =1, 2, . . . , 	; and zk =u
√

2M + sk k =1, 2, . . . ,m.

We will use the notation

Ru
	,m(r1, . . . , r	, s1, . . . , sm) = lim

M→∞ R	,m(x, z),

where R	,m(x, z) is the 	,m correlation function of the real Ginibre ensemble of
2M × 2M matrices.

D.1. The real bulk. Let u be a point in the real bulk. The local density of real eigen-
values is constant (equal to 1/

√
2π ). The limiting correlation function, Ru

2,0(r1, r2) is
invariant under real shifts, and hence Ru

2,0(r1, r2) = Ru
2,0(r1 − r2, 0).We may therefore

plot this correlation function as a function of a r1 − r2. As |r1 − r2| → ∞, this quantity
approaches (2π)−1—the square of the density of real eigenvalues. See Fig. 1.

The local density of complex eigenvalues in the real bulk is given by Ru
0,1(s). Due to

the invariance of the correlations functions with respect to real shifts, this is a function
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2 2
r1 r2

1

2
.16

R2,0
u r1,r2

Fig. 1. Ru
2,0(r1, r2) in the real bulk as a function of r1 − r2

2
Im s

1

p
.32

R0,1
u s

Fig. 2. The density of complex eigenvalues in the real bulk as a function of Im(s)

of Im(s) only. As Im(s) → ∞ this density tends toward the density of eigenvalues in
the complex bulk. Specifically,

lim
Im(s)→∞ Ru

0,1(s) = 1

π
.

See Fig. 2.
The correlation function Ru

1,1(r, s) is invariant under real shifts, and thus can be
plotted as a function of r − Re(s) and Im(s). As Im(s) → ∞, Ru

1,1(r, s) approaches
2−1/2π−3/2—the product of the density of real eigenvalues in the real bulk and the
density of eigenvalues in the complex bulk. See Fig. 3.

D.2. The complex bulk. When u is in the complex bulk; that is u ∈ H and |u| < 1,
the density of eigenvalues is constant (equal to 1/π ). The only non-trivial correlation
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2

0

2

r Re s
0

2

4

Im s

0

1

2 p3 2
.13

R1,1
u r,s

Fig. 3. Ru
1,1(r, s) in the real bulk as a function of r − Re(s) and Im(s)

2 2
s s

1

p2
.10

R0,2
u s,s'

Fig. 4. A plot of Ru
0,2(s, s′) in the complex bulk as a function of s − s′

function we can visualize is Ru
0,2(s, s′). This function is invariant under both real and

imaginary shifts. That is, we may plot Ru
0,2(s, s′) as a function of s−s′. As |s−s′| → ∞,

Ru
0,2(s, s′) approaches 1/π2—the square of the density of eigenvalues in the complex

bulk. See Fig. 4

D.3. The real edge. For concreteness we will concentrate on the real edge correspond-
ing to u = 1. At the real edge the local density of real eigenvalues is no longer constant.
Here the density is given by R1

1,0(r). As r → −∞ we expect the local density of eigen-

values to approach the density of real eigenvalues in the real bulk, 1/
√

2π . Indeed, this
is the case. As r → ∞ the local density of eigenvalues decreases to 0. See Fig. 5.
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2 2
r

1

2 p
.40

R1,0
1 r

Fig. 5. The density of real eigenvalues at the real edge as a function of r

2

0

2

Re s
0

2

4

Im s

0

1

p
.32

R0,1
1 s

Fig. 6. The density of complex eigenvalues at the real edge as a function of Re(s) and Im(s)

The local density of complex eigenvalues at the real edge is given by R1
0,1(s). This

can be plotted as a function of Re(s) and Im(s). If s ‘moves’ in the direction of the
complex bulk (loosely speaking, Re(s) → −∞ while simultaneously, Im(s) → ∞)
then R1

0,1(s) approaches 1/π—the density of eigenvalues in the complex bulk. Since

the real axis repels complex roots, R1
0,1(s) approaches 0 with Im(s). See Fig. 6.

We may also plot R1
2(r, r

′). Here we expect that if r → −∞ and r ′ → ∞ and
|r − r ′| → ∞, then R1

2(r, r
′) should approach the square of the density of real eigen-

values in the real bulk, (2π)−1. If r − r ′ approaches 0, then the repulsion of eigenvalues
implies that R1

2(r, r
′) → 0. Similarly, if either r or r ′ is large and positive, then we are
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3

0

3

r
3

0

3

r

0

1

2 p
.16

R2,0
1 r,r'

Fig. 7. A plot of R1
2,0(r, r

′) at the real edge as a function of r and r ′

2 2
Im s

2

p
.64

R0,1
i s

Fig. 8. The radial density of eigenvalues (represented here as Ri
0,1(s)) as a function of the radius (given here

by Im(s)) at the complex edge

looking at the local correlation of involving a real eigenvalue away from the bulk, and
therefore R1

2(r, r
′) is small. See Fig. 7

D.4. The complex edge. The limiting kernel at the complex edge, when u is on the unit
circle, is invariant under shifts in the direction of the tangent line of the unit circle at
u. For simplicity we take u = i , so that, for instance, the local density of complex
eigenvalues is invariant under real shifts. This density is given by Ri

0,1(s) which is a
function of Im(s) only. As Im(s) → ∞ we are moving away from the bulk and thus
Ri

0,1(s) → 0. If Im(s) → −∞ then Ri
0,1(s) approaches 2/π , the density of complex

eigenvalues in the bulk. See Fig. 8.
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