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Abstract: There are essentially two different approaches to the axiomatization of
quantum field theory (QFT): algebraic QFT, going back to Haag and Kastler, and func-
torial QFT, going back to Atiyah and Segal. More recently, based on ideas by Baez and
Dolan, the latter is being refined to “extended” functorial QFT by Freed, Hopkins, Lurie
and others. The first approach uses local nets of operator algebras which assign to each
patch an algebra “of observables”, the latter uses n-functors which assign to each patch
a “propagator of states”.

In this note we present an observation about how these two axiom systems are natu-
rally related: we demonstrate under mild assumptions that every 2-dimensional extended
Minkowskian QFT 2-functor (“parallel surface transport”) naturally yields a local net,
whose locality derives from the 2-categorical exchange law, and which is covariant if the
2-functor is equivariant. This is obtained by postcomposing the propagation 2-functor
with an operation that mimics the passage from the Schrödinger picture to the Heisen-
berg picture in quantum mechanics. The argument has a straightforward generalization
to general Lorentzian structure, bare lightcone structure and higher dimensions. It does
not, however, by itself imply anything about the existence of a vacuum state or about
positive energy representations.
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1. Introduction

Out of the numerous tools and concepts that physicists have used for the description of
quantum field theory few are well defined beyond simple toy examples. Still, in many
cases they “work”, often with dramatic success. Axiomatizations of QFT attempt to
extract from the ill-defined symbols that appear in the physics literature those properties
which are actually being used in structural proofs.

• While the path integral itself usually is ill-defined, all that often matters is the assump-
tion that it satisfies the gluing law [58]. Taking this law as an axiom leads to the
Atiyah-Segal formulation of functorial QFT.

• Similarly, while the products of physical field observables are usually ill-defined,
all that often matters is the assumption that they satisfy the locality property [13].
Taking this as an axiom leads to the Haag-Kastler formulation of algebraic QFT.

The power of axiomatizations is that they lead to a more robust and clearer picture.
The danger of axiomatizations is that they fail to capture important phenomena. There-
fore it is especially important to understand how different axiomatizations of the same
situation are related.

AQFT: Nets of local algebras. Nets of local operator algebras have been introduced
[25] (see [26] for a review) in order to formalize the concept of the algebra of local
observables in quantum field theory. One way to think of such a net is as a co-presheaf
on a sub-category of open subsets of a given Lorentzian manifold X with values in alge-
bras. These co-presheaves are required to satisfy a couple of conditions (the first two
mandatory, the third and fourth usually desired but sometimes dropped, the fifth crucial
for real-world physical examples):

1. (Isotony) All co-restriction morphisms are required to be inclusions of sub-alge-
bras—this makes the co-presheaf a net.

2. (Locality/“microcausality”) The inclusions of two algebras assigned to two space-
like separated open subsets into the algebra assigned to a joint superset are required
to commute with each other.

3. (Covariance) The net is covariant with respect to the action of a group G on X (for
instance the Poincaré-group or the conformal group) if there is a family of algebra
isomorphisms between the algebras assigned to any region and its image under the
group action, compatible with the group product and the net structure.

4. (Time slice axiom) The algebra of a subset is equal to that assigned to any neigh-
bourhood of any of its Cauchy surfaces.

5. (Vacuum state and spectrum condition) There is a state (a suitable linear functional)
on the total algebra of the co-presheaf which behaves like a physical vaccum state
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(in that for instance it is translation invariant and induces a positive-energy repre-
sentation of the translation group).

Out of the study of these structures a large subfield of mathematical physics has
developed, which is equivalently addressed as algebraic quantum field theory, or as axi-
omatic quantum field theory or as local quantum field theory, but usually abbreviated as
AQFT. For a review of physical applications see [20].

FQFT: n-functorial cobordism representation. Remarkably, all three of the terms—
algebraic, axiomatic, local—would equally well describe what is probably the main
alternative parallel development: the study of representations of cobordism categories,
i.e. of functors from categories whose objects are (d − 1)-dimensional manifolds and
whose morphism are d-dimensional cobordisms between these to a category of vector
spaces. A pedagogical introduction to this concept is in [4].

Such functors have been introduced to formalize the concept of the quantum propa-
gator acting on the space of quantum states and imagined to arise from an integral kernel
given by a path integral. While this functorial approach did not receive a canonical name
so far, here we shall refer to it as functorial quantum field theory and abbreviate that as
FQFT.

FQFT has most famously been studied in the context of topological QFT, from which
Atiyah originally deduced his sewing axioms [2]. A review is [10]. While topological
FQFT is by far the most tractable and hence the best understood one, FQFT is not
restricted to the topological case: equipping the cobordisms for instance with conformal
structure yields conformal QFT, an observation which is the basis of Segal’s functorial
axiomatization of QFT [53]. Restricting to 2-dimensional conformal cobordisms of
genus 0 this yields the axioms of vertex operator algebras [28], see [35] for review and
generalization. The result in [18] can be regarded as providing examples for Segal’s CFT
axioms (though in that work Atiyah’s formulation of the functoriality axiom is being
referred to).

Similarly, ordinary non-relativistic quantum mechanics ((1+0)-dimensional QFT) is
about (monoidal) representations (i.e. functors to Vect) of the (monoidal) category of
1-dimensional Riemannian cobordisms [55]. Taking this point of view on ordinary quan-
tum mechanics seriously leads to Abramsky-Coecke’s categorical semantics of quantum
protocols [1]. See [15] for an overview.

In this vein, here we shall be concerned with functors on cobordisms with pseudo-
Riemannian structures, and with flat Lorentzian structure (Minkowski structure) in par-
ticular.

In [21,22] it was suggested that the FQFT picture can and should be refined to
an assignment of data of “order n” to codimension n spaces for all n, such that this
assignment respects all possible gluings. Formally this should mean that for d-dimen-
sional quantum field theory the 1-category of cobordisms is refined to a d-category of
cobordisms [14,57] whose k-morphisms are k-dimensional cobordisms between (k−1)-
dimensional cobordisms, and that one considers d-functors from this d-category to a suit-
able codomain d-category. Baez and Dolan began to draw the grand picture emerging
here in [7], which was recently picked up by Hopkins and Lurie [27].

This extended n-functorial description of d-dimensional QFT is only beginning to be
explored. First concrete descriptions of Chern-Simons and Wess-Zumino-Witten theory
in this context appeared in [21,22,55] and in various talks given by Freed and Hop-
kins, aspects of which have recently been made available as [23]. Much progress has
been made with understanding the extended FQFT of finite group Chern-Simons theory
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(Dijkgraaf-Witten theory) [11]. The general idea (for smooth n-groups) is currently best
understood not for quantum but for “classical” propagation, where it describes parallel
transport in n-bundles (� (n − 1)-gerbes) with connection [8,47,49–51].

But there are numerous indications that the picture is correct, useful and compelling.
In [19] we shall demonstrate that the formulation of 2-dimensional CFT and 3-dimen-
sional TFT appearing in [18] (see [46] for a review) is secretly a 2- and 3-FQFT of this
form.

The relation. An obvious question, which does not seem to have been addressed before,
is: What is the relation between the axioms of AQFT and FQFT?

Intuitively it is clear that the locality of local nets captures the same physical aspect
as the n-functoriality of n-FQFTs does: that assignments to larger patches are already
determined by the assignment to their pieces. But the nature of the assignments are dif-
ferent. We shall demonstrate that every FQFT determines an AQFT in the sense of items
1 through 4 of the above list by postcomposing with the higher analog of the functor

End : Vectiso → Algebras

which sends each vector space to its algebra of endomorphisms and each isomorphism
of vector space to the corresponding isomorphism of algebras.

The above functor is held in high esteem, if only implicitly so, in quantum mechanics,
where it encodes the passage from what is called the Schrödinger picture to the Heisen-
berg picture of quantum mechanics: given a unitary morphism of Hilbert spaces of the

form E
eit H

�� E for H some self-adjoint operator, which sends each element
ψ ∈ E to the element eit Hψ , its image under the above functor is the isomorphism of
endomorphism algebras

End : (E eit H
�� E) �→ (End(E)

eit H ◦(−)◦e−i t H
�� End(E) )

which sends any operator A on E to eit H Ae−i t H .
The situation is summarized in Table 1.

Remark. The reader should beware that we do not consider or require in the present
article structure related to Item 5 of the above list of AQFT characteristics, involving
existence and nature of vacuum states on our local nets. In this sense our notion of AQFT
for the purpose of this article is considerably weaker than what is appropriate in the con-
text of concrete physical applications, and in particular some of our examples in Sect.
7 are formal examples in this sense, that will not extend to examples for AQFTs in a
stricter physical sense that demands a suitable vacuum state. On the other hand, nothing
in our discussion precludes the existence of a natural extra condition on FQFTs which
would induce suitable vaccum structure on the corresponding AQFT. But discussion of
this point shall not concern us here.

Plan. We start in Sect. 2 by discussing everything for the very simple case of 1-dimen-
sional QFT (quantum mechanics), which should help to set the scene. Then in Sect. 3 we
quickly review those essentials of AQFT and in Sect. 4 those of FQFT which we need
later on. Here we restrict to d = 2 dimensions for ease of discussion. The generalization
to higher dimensions is relatively obvious and straightforward, we briefly comment on
that in Sect. 8.
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Table 1. The two approaches to the axiomatization of quantum field theory together with their interpretation
and relation as discussed here. The rectangular diagrams are explained in Sects. 3 and 4. The construction of
the AQFT AZ from the extended FQFT Z is our main point, described in Sect. 5

names
algebraic QFT

(also: axiomatic QFT,
local QFT)

functorial QFT

abbreviations AQFT FQFT
assign

algebras (of observables) (time evolution) operators
idea to patches, compatible with

inclusion composition (gluing)
axioms due to Haag, Kastler Atiyah, Segal
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AZ
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Z
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End

(
Z

(
x

y
��
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))

main existing
general theorems

spin-statistics theorem,
PCT theorem

results about
topological invariants

main existing
nontrivial examples chiral 2-d CFT

topological QFTs,
full rational 2-d CFT

Our main definition is Def. 9 in Sect. 5, which gives the prescription for turning an
FQFT 2-functor into a 2-dimensional local net of algebras. Our main result is Theorem
1, which states that this definition works. Theorem 2 says that this construction extends
to a 2-functor from the 2-category of FQFT 2-functors to the category of local nets, and,
similarly, Theorem 3 in Sect. 6 says that the obvious notion of equivariance on FQFT
induces the right notion of covariance in AQFT.

We close by discussing some examples in Sect. 7 and some further issues in Sect. 8.

2-categories. See [38] for the basics of 2-categories and 2-functors between them. For
the time being we can and will entirely restrict attention to strict 2-categories and strict
2-functors between them. A review of all the basics of strict 2-categories that we need
here can be found for instance in the Appendix of [51]. After we have established our
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construction for strict 2-categories the generalization to arbitrary weak 2-categories is
immediate.

2. The Situation for 1-Dimensional QFT

To put the following construction into perspective, it is useful to indicate what the tran-
sition from FQFT to AQFT that we are after looks like for the simple case where we are
dealing with 1-dimensional quantum field theory, also known as quantum mechanics.

Functorial quantum mechanics—Schrödinger picture. There are some slight variations
on the theme of how to think of ordinary quantum mechanics—and in particular of possi-
bly time dependent quantum mechanics—as a transport functor. These slight variations
will have analogs also in higher dimensions, and hence are worth considering.

Let X = R be the real line, thought of as the worldline of a particle and in particular
thought of as equipped with the obvious trivial Minkowski structure, which regards each
vector as timelike. Let P1(X) be the category of homotopy classes of future-directed
paths in X . Hence the objects of P1(R) are the points of R and there is a unique mor-
phism from x to y whenever x ≤ y. In other words, P1(X) happens to be nothing but R

regarded as a poset.
There is the closely related category, 1CobRiem, whose objects are disjoint unions

of points and whose morphisms are abstract 1-dimensional cobordisms equipped with
a Riemannian structure. If we forget the monoidal structure on 1CobRiem (which is
important, but not for our purposes here) and restrict it to just a single point, then we
find

1CobRiem � BR0,+ =
{

• t �� • | t ∈ [0,∞)

}
,

where on the right we have the one-object category whose space of morphisms is the
non-negative real half-line with composition given by addition of real numbers. There
is a canonical projection functor

P1(R) �� �� 1CobRiem

which sends the path x �� y to the Riemannian cobordism • t=(y−x) �� • of
the same length.

Now, ordinary time-independent quantum mechanics is a functor

Z : 1CobRiem → Vectisos

which sends the single object of 1CobRiem to the space of states, E , and sends the
Riemannian cobordism of length t to an automorphism

Z : (• t �� •) �→ (E
exp(i t H) �� E),

for H some endomorphism of the complex vector space E—the Hamiltonian. Here we
take Vectisos to be the category whose objects are vector space and whose endomor-
phisms are linear isomorphisms.
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By the above, we can understand this as a functor on paths on the worldline, P1(R),
which happens to factor through BR0,+:

P1(R) ��

����

Vectisos

BR0,+
� 1CobRiem

Z

��

.

Using the interpretation of such functors as vector bundles with connection [49], we can
think of this as a vector bundle on the real line obtained from an R0,+-equivariant vector
bundle over the point.

A more general situation is obtained when one considers time dependent quantum
mechanics. Here the space of states and the Hamiltonian is allowed to change. There is
then a 1-parameter family t �→ Et of spaces of states and H is no longer necessarily
constant. This, then, is the case of a general functor P1(R

2) → Vectisos:

( x �� y ) �→ (Ex
P exp(i

∫ y
x H(t) dt)

�� Ey) ,

where the expression on the right denotes the path-ordered exponential, which is nothing
but the parallel transport with respect to the connection 1-form A = H dt . (More on
that in Sect. 7.)

A slightly different but very similar concept plays an important role in [55], where
quantum field theories over a space X are considered, as functors from a category of
cobordisms that come equipped with maps to X : The category 1CobRiem(R) of cobor-
disms equipped with a (smooth, say) map to the real line is not quite the same as P1(R),
but very similar. There is an obvious canonical functor

P1(R) �� 1CobRiem(R)

which sends a path γ in R to the Riemannian cobordism of the same length equipped
with the obvious map to R which coincides with γ .

This way, from every “1-dimensional QFT over R” in the sense of [55],

F : 1CobRiem(R) → Vectisos ,

one obtains an instance of ordinary time-dependent quantum mechanics by pulling back
to P1(R):

P1(R)

		��
���

���
��

Z �� Vectisos

1CobRiem(R)

F



�����������

.

(In [55] Euclidean QFT is considered such that the morphisms assigned by Z are not in
general invertible. While this is of no real relevance for the point of the above discussion,
notice that later on, when we pass from FQFT to AQFT, we make crucial use of the fact
that we assume FQFTs to assign invertible time propagators.)

Depending on the precise details, the functor Z is usually demanded to factor through
vector spaces with suitable extra structure. Topological vector spaces and Hilbert spaces
are common choices. For our current purposes all such extra structure does not add
anything to the aspects that we are interested in here and will be ignored until we come
to concrete examples in Sect. 7.
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Algebraic quantum mechanics—Heisenberg picture. Given such a functor Z , we can
form for each point x ∈ X the endomorphism algebra of the vector space, by sending

x �→ End(Z(x)).

In the case that there is extra structure on our vector spaces we would demand suitable
endomorphisms. In the case of Hilbert spaces one usually demands all endomorphisms
to be bounded operators.

The endomorphism algebras thus obtained is known often as the algebra of observ-
ables. In the present case, we would be tempted to associate this algebra at time x with
the entire future of x .

So let S(X) be the category whose objects are open sets Ox := {x ′ ∈ X |x ′ > x}
and whose morphisms are inclusions Ox ⊂ Oy of open subsets. Of course, due to the
simplicity of the present setup, S(X) is canonically isomorphic to the opposite of P1(X)
itself, hence is itself just the opposite catgeory of R regarded as a poset. But for the
discussions to follow it is useful to think of S(X) as a category of open subsets of X .

The crucial point now is that sending spaces of states to their algebras of endomor-
phisms sends the functor

Z : P1(X) → Vectiso

to a functor AZ defined by

S(X)

Z ��	
		

		
		

		
AZ �� Algebras

Vectiso

End

��











.

The functor AZ sends open subsets in S(X) to the algebras of endomorphisms of the
spaces of states sitting over their boundary, and it sends inclusions of open subsets to the
inclusion of the algebras which is induced from using conjugation with the propagator
that is assigned to the path connecting the respective boundaries. More precisely:

AZ : (Oy ⊂ Ox ) �→ (End(Z(y)) �
�Z(x→y)−1◦(−)◦Z(x→y) �� End(Z(x))).

Of course this means that all inclusions of algebras here are actually isomorphisms. But
this is again just due to the simplicity of the one-dimensional example. In conclusion,
since there is no content in the locality axiom in 1 dimension, this means that AZ is
indeed a net of local monoids.

It is this simple situation which we want to generalize from 1- to 2-dimensional QFT.

3. Nets of Local Monoids

We start by considering a simple version of the relevant axioms of nets of local algebras
on Minkowski space. Compare with Sect. 2.1 of [26]. Various refinements and general-
izations are possible but add no further insight into the main point we want to make here.
In particular, we shall ignore all extra structure that might be present on the algebras that
appear below (such as them being C∗- or von-Neumann algebras) and even be content
with regarding them just as monoids (i.e. forgetting their vector space structure). Our
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Fig. 1. A “causal subset” of 2-dimensional Minkowski space is the interior of a rectangle all of whose sides
are lightlike. Such subsets are entirely fixed in particular by their left and right corners

Fig. 2. The category S(R2) of causal subsets of 2-dimensional Minkowski space. Objects are causal subsets,
morphisms are inclusions of these

main point, that the inclusion and the locality axioms of local nets follow from taking
endomorphisms on n-functors, is entirely independent of all such details. An interesting
question is which extra structure on the n-functor will induce which extra structure on
the local nets. While this shall not be our main concern here, the examples in Sect.7 give
some indications.

So let X = R
2 be thought of as equipped with the standard Minkowski metric on

R
2 of which we will need only the induced lightcone structure on R

2, hence only the
conformal class of the standard Minkowski metric.

By a causal subset of X we shall mean as usual the interior of the intersection of the
future of one point with the past of another.

Definition 1. We denote by S(X) the category whose objects are open causal subsets
V ⊂ X of X and whose morphisms are inclusions V ⊂ V ′.

In order to concentrate just on the properties crucial for our argument, we shall now
talk about nets of local monoids (sets equipped with an associative and unital product).
Write Monoids for the category of monoids and monoid homomorphisms and write
Monoidsincl ↪→ Monoids for the subcategory containing only injections (monomor-
phisms).

Definition 2. Two objects O1, O2 in S(X) are called spacelike separated if all pairs of
points (x1, x2) ∈ O1 × O2 are spacelike separated.

Definition 3. A functor

A : S(R2) → Monoids ,
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Fig. 3. Two spacelike separated causal subsets of R
2

is a net of monoids on 2-dimensional Minkowski if it sends all morphisms in S(R2) to
injections (monomorphisms) of monoids, i.e. if it factors as

S(R2)
A ��

��
���

Monoids

Monoidsincl

� �
��������

,

This is a net of local monoids if for all spacelike separated O1, O2 ⊂ O the corre-
sponding algebras commute with each other in O, i.e.

[A(O1),A(O2)] = 0

as an identity in A(O).
Notice that a monoid (possibly an algebra) A can be regarded as a one-object cate-

gory BA :=
{

• a �� • |a ∈ A
}

(possibly enriched over vector spaces). As such, these

monoids naturally form the 2-category whose objects are monoids, whose morphisms
are homomorphisms and whose 2-morphisms are intertwiners. See also Appendix A.

Definition 4. We write AQFT(R2) for the sub-2-category of the 2-functor 2-category
2Funct(S(R2),Cat) whose objects are local nets A, regarded as functors

S(R2)
A �� Monoids

� � B(−) �� Cat

taking values in one-object categories, whose morphisms are ordinary (as opposed to
lax or pseudo) natural transformations between these, and whose 2- morphisms are
modifications between those.

Monoidal categories of endomorphisms of local nets. From this it is immediate that
for A ∈ AQFT(R2) the endomorphisms EndAQFT(R2)(A) form a monoidal category
(since it arises from a one-object 2-category). This is the monoidal catgegory defined
in Definitions 8.1 and 8.5 in [26] and proven there to be monoidal in Proposition 8.30.
The full subcategory

�(A) ⊂ EndAQFT(R2)(A)
of local (meaning supported on some O ∈ S(R2)) and transportable (meaning inde-
pendent of support region up to isomorphism) endomorphisms is the main entity of
interest in, and maybe in AQFT in general. The famous Doplicher-Roberts reconstruc-
tion theorem was motivated by the study of �(A). This is discussed in great detail in
[26].
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Symmetries, covariance and equivariance. Let G be a group acting on R
2 and preserving

the causal set structure in that the action lifts to a functor

g : S(R2) → S(R2)

for all g ∈ G. For A any local net we write

g∗A : S2(R
2)

g �� S2(R
2)

A �� Monoids

for the pullback of the net along the action of g ∈ G.

Definition 5. An equivariant structure on a local net A is a choice of isomorphisms

A
rg �� g∗A

for all g ∈ G such that for all g1, g2 ∈ G we have

g∗
1A

g∗
1rg2

��







A

rg1

���������� g1g2 �� (g1g2)
∗A .

Remark. This is 1-categorical descent [56] along the nerve of the action groupoid X//G
of the category-valued presheaf Funct(S(−),Monoids).

Remark. In the AQFT literature this equivariant structure is often called a covariant
structure (for instance Assumption 3 on p. 14 of [26]) and is often expressed in terms of
the total algebra colimS(R2)A (compare fact 5.10 on p. 41 of [26]).

4. Extended 2-Dimensional Minkowskian FQFT

Instead of regarding causal subsets as a category under inclusion of subsets, we can think
of them as living in a 2-category under composition (gluing).

Definition 6. Let P2(R
2) be the 2-category whose objects are the points of R

2, whose
morphisms are piecewise lightlike right-moving paths in R

2 and whose 2-morphisms
are generated from the closure of causal bigons

x y

��t

x
��

���� ���
��

��

��
��

�
������

��
��
��
��
��

regarded as 2-morphisms as indicated, under gluing along pieces of joint boundary.
Composition is by gluing along pieces of joint boundary, in the obvious way.
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Fig. 4. A typical 2-morphism in P2(R
2)

Remark. The restriction that 1-morphism have to go “right” and 2-morphisms “down-
wards” simplifies the discussion a bit but is otherwise of no real relevance. Various
generalizations of P2(R

2) can be considered without changing the substance of the
following arguments.

Just as with local nets, there are many variations of definitions of extended quantum
field theories on 2-dimensional Minkowski space which one could consider. We choose
to take the following simple definition. (Compare with the notion of parallel surface
transport [8,50,51].)

Definition 7. For any 2-groupoid C, an extended FQFT on 2-dimensional Minkowski
space is a 2-functor

Z : P2(R
2) → C.

We write FQFT(R2,C) := 2Funct(P2(R
2),C) for the 2-functor 2-category and

FQFTisos(R
2,C) for the maximal strict 2-groupoid inside it.

In concrete application C will usually be a 2-category of 2-vector spaces (which
in general is not strict), as for instance those whose objects are (von Neumann) alge-
bras, whose morphisms are bimodules over these, and whose 2-morphisms are bimodule
homomorphisms [55]. We will see such an example in Sect. 7 based on some construc-
tions summarized in Appendix A.

But for the moment we do not need to make any concrete choice concerning C . The
only necessary requirement for the following is actually that the 2-morphisms in C all
be invertible and that horizontal composition by the images of the 1-morphisms under
Z is injective.

Equivariant structures. Let G be a group acting by diffeomorphisms on R
2 which

respects causal subsets in that the action extends to a functor

g : S2(R
2) → S2(R

2)

with the induced 2-functor (denoted by the same symbol)

g : P2(R
2) → P2(R

2)

for all g ∈ G. There is a canonical notion of what it means for a 2-functor Z : P2(R
2) →

C to be equivariant with respect to this action [47,51]: for g ∈ G denote by

g∗Z : P2(R
2)

g �� P2(R
2)

Z �� C

the pullback of Z along the diffeomorphism G.
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Definition 8. (Equivariance of 2-functors). A G-equivariant structure on Z is choice of
isomorphisms fg of 2-functors (i.e. strictly invertible pseudonatural transformations)

Z
fg

� �� g∗Z

for all g ∈ G, and a choice for all g1, g2 ∈ G of invertible 2-morphisms (i.e. modifica-
tions of pseudonatural transformations)

g∗
1 Z

g∗
1 fg2

��







Z

fg1

����������

fg1g2

�� (g1g2)
∗Z

Fg1,g2�
��

such that for all g1, g2, g3 ∈ G the tetrahedra 2-commute:

g∗
1 Z

g∗
1 fg2 �� (g1g2)

∗Z

(g1g2)
∗ fg3

��
Z

fg1

��

fg1g2g3

��

fg1g2���������

����������

(g1g2g3)
∗Z

Fg1,g2

��
��

��
��

��
��

��

Fg1g2,g3�� �
��
�

��
��

=

g∗
1 Z

g∗
1 fg2 ��

g∗
1 fg2g3

��
��

��
��

���
��

��
��

�

(g1g2)
∗Z

(g1g2)
∗ fg3

��
Z

fg1

��

fg1g2g3

�� (g1g2g3)
∗Z

Fg2,g3�� ��
��
��

��
��
��

Fg1,g2g3 ��
��
��

��
��

.

Remark. In the case that G acts freely, this is nothing but 2-categorical descent [56] along
Y := (X �� �� X/G) with coefficients in the 2-category-valued presheaf
2Funct(P2(−),C) [47]. If G does not act freely it is descent with respect to the nerve
of the action groupoid of G.

5. The Main Point: AQFT from Extended FQFT

We define a map from FQFTs in the sense of Definition 7 to AQFTs in the sense of
Definition 3 and demonstrate, Theorem 1, that it indeed sends 2-functors Z to local
nets of monoids AZ . Then we observe, Theorem 2, that this construction extends to a
2-functor from FQFTs to AQFTs on R

2. We end the section with a discussion of the
properties of AZ in light of the time slice axiom.

Definition 9. Given any extended 2-dimensional FQFT, i.e. a 2-functor

Z : P2(R
2) → C,

we define a functor

AZ : S(R2) → Monoids.

On objects it acts as

AZ :
⎛
⎜⎝ x y

���� ��
��

�

γ
��

��� ����

⎞
⎟⎠ �→ EndC

⎛
⎝Z

⎛
⎝ x y

γ
��

���
������

⎞
⎠

⎞
⎠ ,
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where on the right we form the monoid of 2-endomorphism a in C on the 1-morphism

Z(x
γ→ y) in C that is the past boundary of Ox,y ,

Z(x)

Z(x
γ→y)

��

Z(x
γ→y)

��Z(y)
a

��

.

On morphisms AZ is defined to act as follows.

For any inclusion Ox ′,y′ ⊂ Ox,y ∈ S(R2)

1

��
��

��
��

��
��

��
��

��

x

��
��

��
��

��

������������������
2

��
� y

x ′
����

���
� y′

3

��
��

��
��

� 4

���
5

����������

6

���������

(the numbers here and in the following are just labels for various points in order to help
us navigate these diagrams) we form the pasting diagram

1

����
��

��
��

��
��

��
��

��

x

���
��

��
��

��
�

��������������������
2

���
��

y

x ′

������

���
���

y′

���
��

3

���
��

��
��

��

������
4

�����

f

��

5

������������

6

�����������

in P2(R
2). Here the obvious projections along light-like directions (for instance from x ′

onto x → 6 yielding 3) is used. It is at this point that the light-cone structure crucially
enters the construction.
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Let f ′ be the 2-morphism obtained by whiskering (= horizontal composition with
identity 2-morphisms) the indicated 2-morphism f with the 1-morphisms x → 3 and
5 → y.

f ′ :=

x

���
��

��
��

��
� y

x ′

���
���

y′

���
��

3

���
��

��
��

��

������
4

�����

f

��

5

������������

6

�����������

.

For any a ∈ EndC Z(x ′, 4, y′),

Z(x ′)

Z(x ′→4→y′)

��

Z(x ′→4→y′)

��Z(y
′)a

��

,

let a′ be the corresponding re-whiskering by Z(x, 3, x ′) from the left and by Z(y′, 5, y)
from the right:

Then we obtain an injection

EndC (Z(x ′, 4, y′)) �
� �� EndC (Z(x, 3, 6, 5, y))

by setting

a �→ Z( f ′) ◦ a′ ◦ Z( f ′)−1 ,

i.e.
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Fig. 5. The exchange law in 2-categories, which is the functoriality of horizontal composition on the Hom-
categories, says that the 2-dimensional order of composition of 2-morphisms is irrelevant

Remark. Notice that this prescription is essentially nothing but the one we described
already for the 1-dimensional case in Sect. 2: to open subsets we assign the endo-
morphism algebra of the space of states assigned to one part of their boundary. To an
inclusion of open subsets we then assign the inclusion of such algebras obtained by
parallel transporting the algebra of the inner set into the algebra of the outer set using
conjugation with the propagators that the 2-functor assigns to 2-morphisms in P2(R

2).
The difference to the 1-dimensional case here is that this conjugation operation involves
some (the obvious) re-whiskering. We will see that it is essentially this re-whiskering
and the exchange law in 2-categories which lead to the locality of the net of monoids
obtained this way.

Now we come to our main point.

Theorem 1. The functor AZ is a net of local monoids.

Proof. We need to demonstrate three things:

1. that the above assignment is functorial;
2. that the above assignment satisfies the locality axiom.

The first two properties turn out to be a direct consequence of 2-functoriality of Z and
the exchange law in 2-categories.

To see functoriality, consider a chain of inclusions

Ox ′′,y′′ �
� ��

� �

��	
		

		
		

		
Ox,y

Ox ′,y′
� �

����������

in S(R2) and the corresponding pasting diagram
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x

���
��

��
��

��
��

��
��

1

		��
���

���
���

���
���

� y

x ′

���
��

��
��

��



�����������������

fl

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

2
�� 

  
y′

��




fr

  !
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!

3

��""""""

��#
##

##
##

##
##

##
x ′′

��$$$$

��%
%%%

y′′
��#

##
4

!!&&&&&&&&&&&&&&&

5

���
��

��
��

��

��'''
6

�����

f ′
��

7

��''''''''''

��(
((
((
(

8

���
��

��
��

��
��

��

"")))))
9

�����������

fc

��

10

���������������

11

��*************

in P2(R
2). The composite inclusion

EndC (Z(x
′′ → 6 → y′′)) ↪→ EndC (Z(x

′ → 5 → 9 → 7 → y′))
↪→ EndC (Z(x → 3 → 8 → 11 → 10 → 4 → y))

sends Z(x ′′)

Z(x ′′→6→y′′)

��

Z(x ′′→6→y′′)

��Z(y
′′)a

��

to

The contributions from fl and fr manifestly cancel and we are left with the pasting
diagram for the direct inclusion

EndC (Z(x
′′ → 6 → y′′)) ↪→ EndC (Z(x → 3 → 8 → 11 → 10 → 4 → y)).
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This shows that

AZ (O ′′) �
� ��

	 


##++
+++

+++
++

AZ (O)

AZ (O ′)
� �

������������

commutes, as desired.

To see locality, let Ox,y and Ox ′,y′ be two spacelike separated causal subsets inside
O(3,5′). The relevant pasting diagram in P2(R

2) is of the form

7

���
��

��
7′

��#
##

#

x

$$,,,,,

���
��

��
y

��#
##

##
x ′

��''''

��#
##

# y′

��#
##

#

3

��%
%%

%%
%%

%%
%%

$$,,,,,
8

$$,,,,,

f1

��

5

%%�
��

��
��

��
��

�

f0

��

�������
8′

��''''

f2

��

5′

9

��-----------

��.
..

..
..

..
.. 9′

�������������

10

&&///////////

.

(We are displaying a very symmetric configuration only for notational convenience.

The argument does not depend on that symmetry but just on the fact that Ox,y does not
intersect the past of Ox ′,y′ and vice versa.) Now given any two endomorphisms

Z(x)

Z(x→8→y)

��

Z(x→8→y)

��Z(y)aa

��

and Z(x ′)

Z(x ′→8′→y′)

��

Z(x ′→8′→y′)

��Z(y
′)a′

��

we can either first include

a in EndC (Z(3 → 9 → 10 → 9′ → 5′)) and then a′, or the other way around. Either
way, the total endomorphism in EndC (Z(3 → 9 → 10 → 9′ → 5′)) is
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This means that the inclusions of a and a′ in EndC (Z(3 → 9 → 10 → 9′ → 5′))
commute. ��
Theorem 2. This construction extends to a 2-functor

FQFTisos(R
2,C) → AQFT(R2)

faithful on 1-morphisms and trivial on 2-morphisms.

Proof. The proof is very analogous to the proof of Theorem 3 in the next section, only
slightly simpler. ��

Extension to Cauchy covers and the time slice axiom. The above construction restricts
attention to causal subsets, while the principle underlying the construction is more gen-
eral. We make some remarks on this generalization and its relation to the time slice
axiom.

The category P2(X) from Definition 6—still for X = R
2, for definiteness—con-

tains (as its 2-morphisms) more subsets of R
2 than the category S(X) from Definition 1

contains as objects: the former contains subsets bounded by any two piecewise lightlike

rightbound paths with same source and target point, such as the interior of
�����
��� ���� ��

��
�

��
��

�� ��
��

������

,

while the latter contains only the causal double cones Ox,y := x y

���� ��
��

�

��
��

�
����

, which are

the usual domains considered in AQFT.

Definition 10. (Cauchy neighbourhoods). We write S′(X) for the category whose objects
of these more general open subsets bounded by piecewise lightlike rightbound paths
(morphisms are still inclusions of open subsets).

For the following paragraphs we shall refer to the objects of S′(X) as local convex
causal Cauchy neighbourhoods, or simply as Cauchy neighbourhoods for reasons to be
discussed shortly.
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Notice that we have an obvious inclusion SX
� � �� S′(X) as well as a natural

surjection S′
X

�� �� S(X) (obtained by sending an object U of S′(X) to Os(U ),t (U ),
where s and t are the source and target objects of U when regarded as a 2-morphism in
P2(X)) such that

S(X) �
� σ ��

Id

''S′(X)
p �� �� S(X) .

Definition 11. (Local net on Cauchy neighbourhoods) For Z : P2(X) → C a 2-functor
as before, let A′

Z : S′(X) → Monoids be the functor constructed verbatim as in Defi-
nition 9 but with objects of S(X) generalized everywhere to objects of S′(X).

Everything goes through exactly as before, and in fact our original construction of A
is just the restriction of the construction of A′ to causal subsets. Moreover, one notices
that the endomorphism monoid assigned by A′ to a Cauchy neighbourhood U is equal
to the endomorphism monoid assigned by A to Os(U ),t (U ), since in the definition of
the inclusion morphisms (Definition 9) in the net there is in this case no re-whiskering
involved in translating from the endomorphism monoid of the Cauchy neighbourhood
to that of its double cone causal subset – compare the remark at the end of Definition 9.
We can summarize this by

Proposition 1. AZ equals the restriction of A′
Z along the inclusion σ and A′ is naturally

isomorphic to the pullback of A along the projection p:

S(X)
AZ

##��
���

���
��� 

��
S′(X) A′

Z
��

p
����

Monoids

S(X)
AZ

������������

�
(( 00
00
0

00
00
0

.

To interpret this physically, recall that a Cauchy surface in a globally hyperbolic
Lorentzian manifold is a codimension 1 hypersurface such that every timelike curve
intersects it precisely once. Cauchy surfaces are the supports of initial data for causal
time evolution in globally hyperbolic Lorentzian manifolds. Noticing that the Cauchy
surfaces of causal subsets Ox,y are precisely the spacelike paths in Ox,y connecting x
and y we find that

Observation 1. The objects in the fiber of S′(X)
p �� �� S(X) over an object Ox,y ∈

S(X) are precisely the convex open neighbourhoods U ⊂ Ox,y of Cauchy surfaces in
Ox,y which arise as open covers U = ∪i Oi by causal subsets Oi ↪→ Ox,y .

This justifies the term “Cauchy neighbourhoods” for the objects of S′(X).
In light of this interpretation, Proposition 1 asserts that the local net AZ does (regarded

as a co-presheaf on S′(X)) not actually depend on the full interior of any given causal
subset, but just on that of any of the neighbourhoods of Cauchy surfaces in that causal
subset.



AQFT from n-Functorial QFT 377

There is one sense in which this statement is trivial: given any local net A : S(X) →
Monoids, we can always extend it to a net A′ on Cauchy neighbourhoods simply by

setting A′ : S′(X)
p �� �� S(X)

A �� S′(X) , and this pair (A,A′) will form a com-
muting diagram as in Proposition 1. But what our construction shows is that if A arises
as the endomorphism co-presheaf of a 2-functor, then also this A′ naturally has an
interpretation as an endomorphism copresheaf.

For comparison, we state the usual time slice axiom in a form that exhibits its role in
the context of the diagram appearing in Proposition 1. Recall for that the notion of Kan
extensions of functors along morphisms out of their domain, for instance from Chapter 4
of [33]: the Kan extension is a universal solution to the problem of enlarging the domain
of a functor, such as from S(X) to S′(X).

Definition 12. (Time slice axiom for local nets of monoids) A local net of monoids
A : S(X) → Monoids, regarded as a net of submonoids of Atot = colimS(X)A,
(assumed to exist) to be written A : S(X) → MonoidsAtot satisfies the time slice
axiom if its left Kan extension LanσA along the inclusion of causal subsets into their
Cauchy neighbourhoods coincides with their pullback along the projection from Cauchy
neighbourhoods to causal subsets, i.e. if the lower triangle in

S(X)� 

σ

��

A
		11

111
111

11

S′(X)
p
����

LanσA
�� MonoidsAtot

S(X)
A



����������

)) 2222

commutes.

Proposition 2. We have

• LanσA assigns to each U ∈ S′(X) the monoid ∨σ(O)⊂U A(U ) which is the monoid
generated from all submonoids {A(O)}σ(O)⊂U which correspond to causal subsets
inside U;

• the condition in Definition 12 therefore demands that for {Oi ∈ S(X)}i any max-
imal cover of a Cauchy neighbourhood (U ∈ S′(X)) ⊂ σ(O) of a causal subset
O ∈ S(X) by causal subsets Oi (i.e. by all causal subsets Oi with σ(Oi ) ⊂ U) we
have

A(σ (U )) = ∨iA(Oi ).

Proof. To compute the left Kan extension LanσA notice that we can regard S(X)
and S′(X), being posets, as categories enriched over the discrete monoidal category
V = {∅, {•}} with product the cartesian product of sets (there is either an inclusion
O ↪→ O ′ or not, so all Hom-sets are either empty or the singleton). Moreover, the
category Monoids is tensored over V if we set the product of a monoid with the empty
set to be the trivial monoid. In this case Eq. (4.24) in [33] applies which says that the
left Kan extension is given by the coend

(LanσA)(U ) =
Oi ∈S(X)∫

HomS(σ (Oi ),U ) · A(Oi ) ,
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where HomS(σ (Oi ),U ) is either empty if Oi is not a subset of U , in which case the
expression HomS(σ (Oi ),U ) · A(Oi ) is the trivial monoid, or is the singleton if Oi is a
subset of U , in which case the expression is just A(Oi ) itself. This means that the coend
reduces to the colimit over the A(Oi ) for Oi ⊂ U ,

· · · �
σ(Oi )⊂U∫

A(Oi ) = colimσ(Oi )⊂U A(Oi ) =: ∨iA(Oi ).

��

In summary we have

• the idea expressed by the time slice axiom is that a net on causal subsets extends to a
net on Cauchy neighbourhoods and is then determined on double cones by its value
on any of the double cone’s Cauchy neighbourhoods;

• without further information the only reasonable extension of a net to Cauchy neigh-
bourhoods is by U �→ ∨Oi ⊂U A(Oi ), which we identified with the universal exten-
sion in the sense of Kan extensions of functors;

• but a net arising as the endomorphism co-presheaf of a 2-functor, as described here,
has as such a (possibly different) natural extension obtained by applying the endo-
morphism construction to Cauchy neighbourhoods themselves.

A net arising as an endomorphism co-presheaf AZ may fail the time slice axiom in its
usual form in that AZ (U ) is not the same as ∨Oi ⊂U AZ (Oi ), still its value on any O ,
which is an endomorphism monoid associated to the boundary of O , is isomorphic to
the corresponding endomorphism monoid of any Cauchy neighbourhood U inside O .

6. Covariance/Equivariance

We had seen definitions for equivariance (“covariance”) of local nets and of FQFT
2-functors. The following theorem says that these notions are compatible under our
relation of the two.

Theorem 3. Every G-equivariant structure, Definition 8, on the FQFT Z : P2(R
2) → C

induces a G-equivariant structure, Definition 5, on the AQFT AZ obtained from it
according to Definition 9.

Proof. For any g ∈ G the component map of the pseudonatural transformation fg is

fg : ( x
γ �� y ) �→

Z(x)
Z(γ ) ��

fg(x)

��

Z(y)

fg(y)

��
Z(g(x))

Z(g(γ )) �� Z(g(y))

fg(γ )

** 























































.
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For γ the target boundary of the causal subset O ,

x y

��t

x
��

���� ���
��

��

��
��

�

γ

������

O
��
��
��
��
��

conjugating with the components on the right defines the monoid isomorphism

rg(O) : EndC (Z(γ )) → EndC (Z(g(γ )))

rg(O) :

⎛
⎜⎜⎝Z(x)

Z(γ )
++

Z(γ )

,, Z(y)a��

⎞
⎟⎟⎠ �→

Z(g(x))
Z(g(γ )) ��

fg(x)−1

��
Id

��

Z(g(y))

fg(y)−1

��
Id

--

Z(x)
Z(γ ) ++

Z(γ )
,,

fg(x)

��

Z(y)

fg(y)

��
Z(g(x))

Z(g(γ )) �� Z(g(y))

fg(γ )

** 























































fg(γ )
−1p

** 























































a�� .

Here fg(γ )
−1p denotes the inverse of the 2-cell fg(γ ) with respect to vertical pasting

(which is the ordinary inverse up to a re-whiskering).
We need to check that this construction

1. yields a morphism of nets in that it makes for all O ′ ⊂ O the naturality squares

AZ (O ′)
rg(O ′)��

� 

��

AZ (g(O ′))� 

��
AZ (O)

rg(O) �� AZ (g(O))

commute;
2. produces the commuting triangles in Definition 5.

This can be seen as follows:
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1. The pseudo-naturality condition on the components of fg

Z(x)

Z(γ ′)

��
Z(γ ) ��

fg(x)

��

Z(y)

fg(y)

��
Z(g(x))

Z(g(γ )) �� Z(g(y))

fg(γ )

** 























































Z(O)
��

=

Z(x)
Z(γ ′) ��

fg(x)

��

Z(y)

fg(y)

��
Z(g(x)) Z(g(γ ′)) ��

Z(g(γ ))

��Z(g(y))

fg(γ
′)

** 























































Z(g(O))
��

for all O implies precisely the condition rg(O)|A(O ′) = rg(O ′) when applied to our
Definition 9 of the inclusion map A(O ′) ↪→ A(O): that inclusion was obtained by
conjugating with

Z(x)

�� 
  

  
  

  
  

Z(y)

Z(x ′)
��


Z(y′)

��


Z(3)

		33
333

333
333

3

��""""
Z(4)

��""""

Z( f )

��

Z(5)

��$$$$$$$$$$$

Z(6)



������������

.

Following this by the action of rg(O) amounts to conjugating with

Z(x)

��4
44

44
44

44
44

4

fg(x)

��

Z(y)

fg(y)

��

Z(x ′)
		��

���
Z(y′)

		��
���

Z(3)

		��
���

���
���

���
�



55555

fg(3)

��

Z(4)



55555

Z( f )

��

Z(5)

��������������

fg(5)

��

Z(g(x))

���
��

��
��

��
��

� Z(g(y))

Z(6)



555555555555555

fg(6)

��

Z(g(3))

��
���

���
���

��
Z(g(5))

��������������

Z(g(6))

��6666666666666

fg(x→3)
���
����
�

.. ��
����

fg(3→6)















** 











fg(6→5)
77
77
77
77
77

77
77
77
77
77

// 77
77
77
77
77

77
77
77
77
77

fg(5→y)
��
��
��
��
��
�

��
��
��
��
��
�

�� �
��
��
��
��
�

��
��
��
��
��
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By pseudonaturality of fg this equals conjugation with

Z(x)

%%4
44

44
44

44
44

4

fg(x)

��

Z(y)

fg(y)

��

Z(x ′)
0033

333

fg(x ′)

��

Z(y′)
0033

333

fg(y′)

��

Z(3)

11�����

fg(3)

��

Z(4)

11�����

fg(4)

��

Z(5)

&&������������

fg(5)

��

Z(g(x))

%%4
44

44
44

44
44

4 Z(g(y))

Z(g(x ′))
0033

333
Z(g(y′))

0033
333

Z(g(3))

88
888

888
888

888

11�����
Z(g(4))

11�����

Z(g( f ))

��

Z(g(5))

&&������������

Z(g(6))

��99999999999999

fg(x→3)
��
���
�

22 �����
� fg(5→y)

��
��
��
��
��

��
��
��
��
��

�� �
��
��
��
��
�

��
��
��
��
��fg(3→x ′)

::
::
::
:

::
::
::
:

  :
::
::
::

::
::
::
:

fg(x ′→4)
::
::
:

::
::
:

  :
::
:

::
::

fg(4→y′)
::
::
::
:

::
::
::
:

  :
::
::
::

::
::
::
:

fg(y′→5)
::
::
:

::
::
:

  :
::
:

::
::

Since the endomorphism a to be conjugated is localized on Z(x ′) → Z(y′),

Z(x) �� Z(3) �� Z(x ′)

Z(x ′)→Z(4)→Z(y′)

��

Z(x ′)→Z(4)→Z(y′)

��Z(y
′) �� Z(5) �� Z(y)a

��

,

both fg(x → 3 → x ′) and fg(y′ → 5 → y) drop out when conjugating and only
conjugation with fg(x → 4 → y′) acts nontrivially. But that precisely amounts to
first applying rg(O ′) and then injecting into O .

2. The equivariance triangle condition in Definition 8 says precisely that rg(O) makes
the required covariance triangle in Definition 5 commute: To see this it is convenient
to equivalently rewrite the previous equation for rg(O) as

Z(x)

Z(γ )

��
Z(γ ) ��

fg(x)

��

Z(y)

fg(y)

��
Z(g(x))

Z(g(γ )) �� Z(g(y))

fg(γ )

** 























































a
��

=

Z(x)
Z(γ ) ��

fg(x)

��

Z(y)

fg(y)

��
Z(g(x)) Z(g(γ )) ��

Z(g(γ ))

��Z(g(y))

fg(γ )

** 























































rg(O)(a)

��
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for all a ∈ End(Z(γ )). Accordingly, we have for the composition of two transfor-
mations

for all a ∈ End(Z(γ )). Using now the triangle of pseudonatural transformations in
Definition 8 this is equivalent to

Z(x)

Z(γ )

��
Z(γ ) ��

fg1 (x)
--
--
--
-

(3--
--
--
-

fg1g2 (x)

��

Z(y)

fg1 (y)
;;

;;
;;

;

��;
;;

;;
;;

fg1g2 (y)

��

Z(g1(x))

fg2 (g1(x))
;;

;;
;;

;

��;
;;

;;
;;

Z(g1(y))

fg2 (g1(y))

(3--
--
--
--
--
--
--
--
-

Z((g1g2)(x))
Z(g1g2)(γ ) �� Z((g1g2)(y))

Fg1,g2 (y)
�����
�

34 ���
�

fg1g2 (γ )
,,
,,
,,
,,
,,
,,
,,
,

,,
,,
,,
,,
,,
,,
,,
,

4- ,,
,,
,,
,,
,,
,,
,,

,,
,,
,,
,,
,,
,,
,,

a
��

Fg1,g2 (x)
−1�����
�

34 ����

=
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Z(x) Z(γ ) ��

fg1 (x)
--
--
--
-

(3--
--
--
-

fg1g2 (x)

��

Z(y)

fg1 (y)
;;

;;
;;

;

��;
;;

;;
;;

fg1g2 (y)

��

Z(g1(x))

fg2 (g1(x))
;;

;;
;;

;

��;
;;

;;
;;

Z(g1(y))

fg2 (g1(y))

(3--
--
--
--
--
--
--
--
-

Z((g1g2)(x)) Z(g1g2)(γ )
��

Z(g1g2)(γ )

$$Z((g1g2)(y))

Fg1,g2 (y)
�����
�

34 ���
�

fg1g2 (γ )
,,
,,
,,
,,
,,
,,
,,
,

,,
,,
,,
,,
,,
,,
,,
,

4- ,,
,,
,,
,,
,,
,,
,,

,,
,,
,,
,,
,,
,,
,,

rg2 (g1(O))◦gg1 (O)a

��

Fg1,g2 (x)
−1�����
�

34 ����

.

But in this equation we can cancel the F·,· on both sides to obtain

Z(x)

Z(γ )

55
Z(γ ) ��

fg1g2 (x)

��

Z(y)

fg1g2 (y)

��
Z((g1g2)(x))

Z(g1g2)(γ ) �� Z((g1g2)(y))

fg1g2 (γ )
00
00
00
00
00
00
00

00
00
00
00
00
00
00

4- 00
00
00
00
00
00
0

00
00
00
00
00
00
0

a

��

=

Z(x) Z(γ ) ��

fg1g2 (x)

��

Z(y)

fg1g2 (y)

��
Z((g1g2)(x)) Z(g1g2)(γ )

��

Z(g1g2)(γ )

66Z((g1g2)(y))

fg1g2 (γ )
00
00
00
00
00
00
00

00
00
00
00
00
00
00

4- 00
00
00
00
00
00
0

00
00
00
00
00
00
0

rg2 (g1(O))◦gg1 (O)a

��

.

This shows that rg2(g1(O)) ◦ rg1(O)(a) = rg1g2(O)(a). ��

7. Examples

7.1. 1-dimensional case. Before looking at concrete examples for 2-FQFTs on
Minkowski space it is again helpful to first recall some simple facts in the 1-dimen-
sional case from our perspective.

We can regard ordinary quantum mechanics as given by an associated U (E)-bundle
with connection on the real line (the “worldline”) for E some Hilbert space. This bundle
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is necessarily trivializable. After picking a trivialization its globally defined Lie(U (E))-
valued connection 1-form is

A = i Hdt ∈ �1(R1, u(E))

with t the canonical coordinate and H a self-adjoint operator on E : the Hamilton oper-
ator. The quantum time evolution operator

Z : ( t0 �� t1 ) �→ ( E
P exp(

∫
[t0,t1] A)

�� E )

is nothing but the parallel transport with respect to A (see for instance [49]).
In general H depends on t , in which case one speaks of time dependent quantum

mechanics and the above formula, with its “path ordered exponential” on the right, is
what is usually referred to as the Dyson formula in quantum mechanics textbooks. In
that case there is no translational invariance on the worldline.

If however H is constant we have time independent quantum mechanics. In that case
the quantum time evolution propagator reads

Z : ( t0 �� t1 ) �→ ( E
P exp(

∫
[t0,t1] A)

�� E ) = ( E
exp(i(t1−t0)H) �� E ).

In either case, there is a canonical equivariant structure, Definition 8, on Z with respect
to the action of R on R by translations: for a ∈ R the components of the natural trans-
formation

Z
ft �� a∗Z

are simply

fa : x �→ ( Ex
Z(x→x+a) �� Ex+a ).

Naturality of ft and commutativity of the equivariance coherence triangle both follow
directly from the functoriality of Z . The equivariant structure on the net AZ induced
by this according to Sect. 6 is that which acts on each local algebra AZ (Ox ) by the
Heisenberg propagation rule a �→ Z(x → x + a) ◦ a ◦ Z(x → x + a)−1.

7.2. Examples from parallel 2-transport. The above shows that the dynamics of quan-
tum mechanics (1+0-dimensional QFT) can be entirely thought of as a vector bundle (or
Hilbert bundle, rather) with connection on the “worldline” R.

Similarly, 2-vector 2-bundles [9,59] (� gerbes) with connection [8,47,50,51] on the
“worldsheet” R

2 can be regarded as giving the dynamics of (1+1)-dimensional QFT.
Indeed, every parallel transport 2-functor on R

2 as in [8,50,51] gives an example of a
2-FQFT in the sense of Definition 7, simply by restricting it from all 2-paths in R

2 to
those contained in P2(R

2). From each such 2-functor one obtains, by Theorem 1, a local
net of monoids. Whether this local net of monoids has any covariance depends, according
to Proposition 3, or whether or not the 2-functor has any equivariant structure. Whether
the net of monoids obtained from the 2-functor is actually a net of algebras with certain
extra structure (in particular C∗, von Neumann) depends on what precisely the 2-func-
tor takes values in over 1-morphisms, because that determines what the endomorphism
monoids are like.
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While not every 2-bundle on 2-dimensional base space is necessarily trivializable,
we here want to restrict attention to the case that the 2-bundle is trivializable. (If not,
global effects such as described in [19] will play a role, too.) Then we can assume its
parallel transport 2-functor to come from globally defined differential form data. If we
require the 2-functor to be strict and to take values in a 2-groupoid with a single object,
which we shall denote BG, then Theorem 2.20 in [50] says that it comes precisely from
a pair consisting of a 1-form and a 2-form

A ∈ �1(R2, g), B ∈ �2(R2, h)

with values in Lie algebras g and h which form a differential crossed module

( h
t �� g α �� der(g) ) such that

FA + t∗ ◦ B = 0 ,

where FA ∈ �2(R2, g) is the curvature 2-form of A. We write

Z(A,B) : P2(R
2) → BG

for the 2-functor obtained this way. The local net AZ(A,B) obtained from this by Theorem
1 is a local net of groups.

We get proper nets of local algebras by passing instead to an associated parallel
2-transport functor [51], which is induced by a 2-representation of G on 2-vector space,
i.e. a 2-functor

ρ : BG → 2Vect ,

where 2Vect denotes a 2-category of 2-vector spaces. In particular, [48], there are large
classes of 2-representations which factor through the bicategory of bimodules

BG

��	
		

		
		

		
ρ �� 2Vect

Bimod

�����������

.

More details on this are summarized in Appendix A and in [51].
The corresponding associated 2-FQFT functor

Zρ(A,B) : P2(R
2)

Z(A,B) �� BG �� Bimod �� 2Vect

sends each edge to a bimodule over some algebra. 2-Functors of this form and interpreted
as 2-FQFTs have in particular been considered in [55].

Therefore the corresponding local net AZρ(A,B) sends each O ∈ S(R2) to an algebra
of bimodule endomorphisms. This is reminiscent of various other constructions that have
been considered in the context of AQFT. But a more detailed discussion will have to be
given elsewhere.

As in the 1-dimensional case, we canonically have an equivariant structure on Z and
on AZ with respect to any 1-parameter group of translations which respects the light-
cone structure. Let in particular R act by translation along the canonical time coordinate
on R

2. Then for a ∈ R the component of the pseudonatural transformation

Z
fa �� a∗Z
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Fig. 6. 2-Vector transport coming from a 2-connection (A, B) ∈ �•(R2, (h → g)) with values in the strict
Lie 2-algebra (h → g) and the canonical representation ρ of the corresponding strict Lie 2-group G(2) on
2-vector spaces. The 2-FQFT obtained this way assigns algebras to points, bimodules to paths and bimodule
homomorphisms to surfaces. The corresponding local net AZ(A,B) assigns algebras of bimodule endomor-
phisms

is

fa :

⎛
⎜⎜⎝

x

���
��

��
��

� z

y

��'''''''

⎞
⎟⎟⎠ �→

Z(x)

		11
111

111
11

��

Z(z)

��

Z(y)



����������

Z(x + a)

		11
111

111
11

Z(z + a)

Z(y + a)



����������

Z(	(x,y,z,a))

77 7
77
77
77
77
77
77
77
77
77
77
77

77
77
77
77
77
77
77
77
77
77
77
7

,

where 	(x, y, z, a) denotes the surface swept out by the path x → y → z when trans-
lating it continuously to (x + a) → (y + a) → (z + a). This surface is not part of P2(R

2)

the way we have defined it, but is a more general 2-path in R
2 on which we can evaluate

our 2-functor Z , by assumption.
Pseudonaturality and coherence of the assignment fa for all a ∈ R is a direct conse-

quence of the 2-functoriality of Z , very similar to the 1-dimensional case. The induced
equivariant structure on the net AZ is the local Heisenberg picture time propagation.

7.3. 2-Functors constant on one object. A simple class of examples worth looking at
to get a feeling for the situation are those FQFT 2-functors Z on P2(R

2) which assign
a fixed object V ∈ Obj(C) to each point of R

2, send all paths to the identity morphism
on that object and all surfaces to the identity 2-morphism on this identity 1-morphism.

The local net AZ obtained from such a 2-functor is constant. It assigns the same
monoid to all causal subsets:

AZ : O �→ End(IdV ).

For this to be a local net, it must be true that End(IdV ) is a commutative monoid. And
indeed it is: this is the Eckmann-Hilton argument which holds in general for 2-endomor-
phisms of identity 1-functors. The argument is entirely analogous (and that is of course
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no coincidence) to that which shows that the second homotopy group of any space is
abelian.

In [24] the endomorphisms of the identity on an object V in a 2-category C is inter-
preted as the trace of the identity on V , which in turn is interpreted in [11] as the
dimension of V :

AZ (O) = End(IdV ) =: Tr(IdV ) =: dim(V ).

For instance (see [11]) if V = Rep(H) is the category of representations of some group
or groupoid H , regarded as a 2-vector space, then dim(V ) = Z(C(H)) is the center of
the group ring of H .

Another example, [24]: if C is the bicategory of bimodules, C = Bimod, and V
is any algebra, then dim(V ) is the 0th Hochschild cohomology of V . Full Hochschild
cohomology is obtained by taking the derived category of bimodules.

Of particular interest are objects V with a representation (meaning: 2-representa-
tion!) of the Poincaré group G in two dimensions, or some related group, on them.
2-Representations of the Poincaré group have been examined for instance in [16]. The
constant FQFT 2-functor on such an object canonically carries a nontrivial G-equivariant
structure in the sense of Sect. 6, hence induces a covariant structure on the corresponding
local net.

7.4. Nets from wedge algebras. A special case of interest of the constructions in Sect.
7.2 is the following:

Denote by W := {(x0, x1) ∈ R
2| x1 ≤ −|x0|} ⊂ R

2 the standard left wedge in
2-dimensional Minkowski space. Let FW : R

2 → Algebras ↓ AW be a family of sub-
algebras of a fixed algebra AW – to be called the wedge algebra—over 2-dimensional
Minkowski space with the special property that every algebra in a wedge y + W is a
subalgebra of that at y:

∀x, y ∈ R
2 : (x − y ∈ W ⇒ Ax ↪→ Ay).

Wedge algebras of this general form are well known in algebraic quantum field theory:
for instance, following [52], they play a major role in [37] (see Definition 2.1.1, where
of course they are equipped with more structure than considered for our purposes here).

Notice that the data of a wedge algebra naturally defines a 2-functor Z FW : P2(R
2) →

Algebras with values in the strict 2-category of algebras, algebra homomorphisms and
intertwiners by the assignment

Z FW : x y

���� ���
��

��

��
��

�
������

��
��
��
��
�� �→ FW (x)

� � ��
� � ��FW (y)Id

��

for all causal subsets between x and y as indicated. The reader may find it useful to
think of this after the further inclusion Algebras → Bimod (see also Appendix A) under
which the right hand becomes

· · · �→ FW (x)

FW (y)

��

FW (y)

��FW (y)Id
��
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with FW (y) regarded as an FW (x)-FW (y)-bimodule in the obvious way. In either case,
the endomorphism algebra of the image under Z FW of any 1-morphism ( x �� y ) ∈
P2(R

2) is seen to be a relative commutant in that

End(Z FW ( x �� y )) = (FW (x))
′ ∩ FW (y) ,

where (FW (y))′ ⊂ AW denotes the commutant of FW (y) in AW , the algebra of elements
of AW that commute with all elements of FW (y). Hence the local net AZ FW

obtained
from this 2-functor assigns

AZ FW
: x yO

���� ��
��

�

��
��

�
����

�→ (FW (x))
′ ∩ FW (y).

Local nets of this form obtained from wedge algebras are discussed for instance in [37]
(there, again, equipped with more structure than considered here, see Eq. (2.18) in view
of Eq. (2.1.3b)).

7.5. Lattice models. All our definitions and constructions make sense for S(R2) and
P2(R

2) replaced by their restrictions S(Z2) and P2(Z
2) along that embedding Z

2 ↪→ R
2

which makes addition of (1, 0) a lightlike translation. This allows to see a class of impor-
tant examples without the need to worry about weak 2-categories and issues in functional
analysis.

Let

C := BVect =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

•

V

��

W

�� •φ

��
|( V

φ �� W ) ∈ Vect

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

be the strict 2-category obtained from the strict monoidal category of finite-dimensional
vector spaces: it has a single object, its 1-morphisms are finite dimensional vector spaces
with composition of morphisms being the tensor product of vector spaces, and 2-mor-

phisms are linear maps V
φ �� W between vector spaces.

Pick a fixed finite dimensional vector space V and consider the two 2-FQFT 2-func-
tors

Z‖ : P2(Z
2) → BVect

and

Z× : P2(Z
2) → BVect

which assign V to every elementary 1-morphism in P2(Z
2) and which assign to every

elementary square the linear map
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Z‖

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y

���
��

��
��

�

��

x

��$$$$$$$$

��#
##

##
##

z

y′

��'''''''

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

:=

•
V

�� 
  

  
  

•
V

��$$$$$$$

V �� 
  

  
  

•

•
V

��$$$$$$$

Id
��

Id
��

= •

V ⊗V

��

V ⊗V

�� •Id

��

and

Z×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y

���
��

��
��

�

��

x

��$$$$$$$$

��#
##

##
##

z

y′

��'''''''

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

:=

•
V

�� 
  

  
  

•
V

��$$$$$$$

V �� 
  

  
  

•

•
V

��$$$$$$$

Id

8%
��

��
��

�� Id

34 ��
��

��
�� = •

V ⊗V

��

V ⊗V

�� •θV,V

��
,

respectively, where V ⊗ W
θV,W �� W ⊗ V denotes the canonical symmetric braiding

isomorphism in Vect.
The monoids assigned by the corresponding local nets AZ‖ and AZ× are algebras of

the form End(V ⊗n), where n is the total number of elementary edges in the respective
boundary of a region.

Given the inclusion of regions Oa,b ⊂ Ox,x ′

c
��%

%%

Oa,b

��
x

��<
<<

a

�����

��=
==

b
���

�� x ′

y

55<
<<

$$000
d

�����

f

��

y′
��'''

z
���

�� z′
�����

w

��$$$

we get, according to Definition 9, inclusions

AZ‖ , AZ× : End(V ⊗2) ↪→ End(V ⊗6)

of endomorphism algebras given by

AZ‖ :
(

A B
C D

)
�→

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 A B 0 0
0 0 C D 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ ; AZ× :

(
A B
C D

)
�→

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 A 0 0 B 0
0 0 1 0 0 0
0 0 0 1 0 0
0 C 0 0 D 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ ,

where each entry in these matrices is an endomorphism of V .
The locality of the net AZ‖ is manifest. The algebras assigned to two elementary

regions clearly commute if and only if the two regions are spacelike separated. For AZ×
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the algebras of course also commute if the regions are spacelike separated, but here they
also commute if the two regions are timelike separated. Only if two elementary regions
are lightlike separated do the inclusions of algebras due to AZ× not commute.

There are various variations of this example. In particular for Z× one would want
to consider the case where two different vector spaces Vl and Vr and two nontrivial
automorphisms Ul : Vl → Vl and Ur : VR → Vr are assigned to elementary causal
subsets as follows:

Z×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y

���
��

��
��

�

��

x

��$$$$$$$$

��#
##

##
##

z

y′

��'''''''

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

:=

•
Vr

�� 
  

  
  

•

Vl

��$$$$$$$

Vr �� 
  

  
  

•

•
Vl

��$$$$$$$

Ul

8%
��

��
��

��Ur

34 ��
����
�� = •

Vl⊗Vr

��

Vr ⊗Vl

�� •θVl ,Vr ◦Ul⊗Ur

��
.

Denote by

c : End(Vr )⊗ End(Vl) ↪→ End(Vr ⊗ Vl)

the canonical inclusion of algebras and by

c∗AZ×
� � �� AZ×

the local sub-net of AZ× obtained by restricting along c everywhere. Then c∗AZ× is
what is called a chiral AQFT. Its structure is encoded entirely in the two independent
projections onto two orthogonal lightlike curves.

c∗AZ× :

y

���
��

��
��

�

��

x

��$$$$$$$$

��#
##

##
##

z

y′

��'''''''

�→ Al

⎛
⎜⎜⎜⎝

z

y′

��'''''''

⎞
⎟⎟⎟⎠ ⊗ Ar

⎛
⎜⎜⎜⎝

x

���
��

��
��

y′

⎞
⎟⎟⎟⎠

= End(Vl)⊗ End(Vr ).

Restricting attention to just one of these and then “compactifying” that to a circle leads
to the models [30,32] of 2-dimensional (conformal) field theories as local nets on the
circle.

This important example is further expanded on in Sect. 7.6.

7.6. Boundary FQFT and boundary AQFT. AQFT on spaces with boundary has been
introduced in [40] for the case of the Minkowski half-plane X = R

2
<. Here we briefly

indicate how boundary conditions are formulated for FQFT and how we recover the
picture in [40] from this point of view.
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We obtain the poset of causal subsets on the half plane, S(R2
<), by starting with

S(R2) and intersecting everything with R
2
<. We form P2(R

2
<) by first restricting to 2-

paths that run entirely within R
2
< and then throwing in new boundary generators for 1-

and 2-morphisms of the form

(0, t + x)

��

(x, t)

��










##++
++

++
++

+

(0, t − x)

98 >
>>
>>
>>
>

>>
>>
>>
>>

From examples of classical parallel n-transport [47] and from the 2-functorial descrip-
tion of rational CFT [19] it is known that boundary conditions for n-functors Z corre-
spond to choices of morphism from some trivial n-functor I into the restriction of the
given one to the boundary:

I �� Z |∂X .

We illustrate this in the context of the last example, Z× : P2(R
2) → BVect, from Sect. 7,

which lead to the discussion of chiral nets i∗AZ× ⊂ AZ× .
For that purpose, let I be the 2-functor I : P2(R

2) → BVect which is constant on

the single object of BVect and consider 2-functors Z<× : P2(R
2
<)

�� BVect which
coincide with our Z× in the bulk. Then we have the simple but important.

Proposition 3. If a morphism

b : I → Z<×|∂R2
<

exists and is time independent in that its component map is constant on objects (but not
the 0 dimensional vector space), then Z<× assigns the identity to all boundary paths.

Proof. The components of the morphism, which is a pseudonatural transformation of
2-functors, are 2-cells in BVect of the form

• Id ��

b(t)

��

•

b(t ′)

��•
Z<×((0,t)→(0,t ′))

�� •

�
:9 $$
$$
$$
$$
$$
$$
$$

$$
$$
$$
$$
$$
$$
$$

.

By assumption of time independence of the boundary condition we have b(t) = b(t ′) =
b(0). This means that Z<×((0, t) → (0, t ′))must be a vector space such that there exists
an isomorphism of vector spaces

b(0)⊗ Z<×((0, t) → (0, t ′)) � b(0).

��
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Fig. 7. The image under the boundary FQFT 2-functor Z<× of a spacelike wedge on the left Minkowski half
plane

So in this case the 2-functor Z<× will specify identifications of the vector spaces Vl
and Vr at the boundary

Z<× :

(0, t + x)

��

(x, t)

��










##++
++

++
++

+

(0, t − x)

98 >
>>
>>
>>
>

>>
>>
>>
>>

�→

•

Id

��

•

Vl

��$$$$$$$

Vr �� 
  

  
  

•

�
((

.

By taking endomorphisms this defines a net of algebras on the boundary, which
entirely encodes the chiral part c∗AZ<× of AZ<× . This way we arrive at the picture of
boundary AQFT given in [40]. Further details should be discussed elsewhere.

7.7. 2-C∗-category codomains. In most applications to physics one wants the algebras
in a local net to be C∗-algebras. A natural type of 2-category in which endomorphism
algebras of 1-morphisms are C∗-algebras is that of 2-C∗-categories: categories enriched
in C∗-categories.

Definition 13. A C∗-category (or C∗-algebroid: the many-object version of a C∗-alge-
bra) is a category C enriched in complex Banach spaces (meaning that for all objects
ρ, σ, τ of C we have that C(ρ, σ ) is a complex Banach space and that composition

◦ρ,σ,τ : C(ρ, σ )× C(σ, τ ) → C(ρ, τ )

is a morphism of complex Banach spaces) which is equipped with an involutive antilinear
functor

(·)∗ : C → Cop

that satisfies the C∗-condition

∀ρ, σ ∈ Obj(C) : ∀S ∈ C(a, b) :
{

S∗ ◦ S is positive in C(ρ, ρ)
‖S∗ ◦ S‖ = ‖S‖2 ,

where ‖ · ‖ : C(ρ, σ ) → C is the Banach norm.
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A C∗-algebra A is precisely the endomorphism algebra of an object ρ in a C∗-category,
A = C(ρ, ρ). We write BA for the one object C∗-category whose single endomorphism
algebra is A.

C∗-categories form a strict monoidal 2-category (C∗Cat,×) whose morphisms are
Banach space functors (continuous on each Hom-space). Therefore one can enrich in
C∗-categories themselves:

Definition 14. A (strict) 2-C∗-category is a category enriched in C∗Cat.

A discussion of aspects of 2-C∗-categories can be found in [60].
The canonical example of a strict 2-C∗-category is AmpliC∗ ⊂ BimodC∗ , the 2-

category whose objects are unital C∗-algebras, whose morphisms are amplimorphisms
between these and whose 2-morphisms are intertwiners between those. BimodC∗ is very
similar, but is not strict. See [39] and Sect. 2 of [60].

So we have

Observation 2. For Z : P2(X) → C a transport 2-functor with values in a 2-C∗-cate-
gory C, the corresponding local net AZ is a net of C∗-algebras.

7.8. Hopf spin chain models. Recall the description of lattice models with boundary
from Sect. 7.6. Consider the extreme case where there is a left and right boundary which
are separated only by a single lattice spacing:

a

ρ
��

�

���
��

Id

��

b

Id

��

a

ρ���

�����

Id

��

ρ
��

�

���
��

b

a

ρ���

�����

��

��

��

,

where for simplicity we are concentrating on the case that Z sends each edge to one and
the same morphism ρ : a → b in C.

Physically, we can think of this as a lattice model for an open string stretching from
a brane of type a to a brane of type b. It is a crude lattice model, consisting of a single
“string bit”.

Consider another such strip, labeled by another morphism ρ̄ : b → a
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a

Id

��

b

ρ̄���

�����

ρ̄
��

�

���
��

Id

��

a

Id

��

b

ρ̄���

�����

ρ̄
%%

%

��%
%%

%

��

��

;:

.

As the notation suggests, we want to think of ρ̄ to be conjugate to ρ, meaning that ρ
and ρ̄ form an ambidextrous adjunction [36] between a and b such that the unit of the
left-handed adjunction is the ∗-adjoint of the counit of the right-handed adjunction, and
vice versa (see p. 8 of [60]).

Then it makes sense to think of this as a lattice model for an open string, or rather
a “string bit”, as before, but now with that string taken to stretch from the b-type brane
to the a-type brane. We can then consider lattice models built from the above building
blocks by gluing the above strip-wise 2-functors horizontally:

a

ρ
��

�

���
��

Id

��

a

Id

��

b

ρ̄���

�����

ρ̄
��

�

���
��

a

ρ���

�����

Id

��

ρ
��

�

���
��

a

Id

��

b

ρ̄���

�����

ρ̄
��

�

���
��

a

ρ���

�����

a

��

��

��

��

��

��

,

a

ρ
��

�

���
��

Id

��

a

ρ
��

�

���
��

b

ρ̄���

�����

ρ̄
��

�

���
��

b

Id

��

a

ρ���

�����

Id

��

ρ
��

�

���
��

a

ρ���

�����

ρ
��

�

���
��

b

ρ̄���

�����

ρ̄
��

�

���
��

b

a

ρ���

�����

a

ρ���

�����

��

��

��

��

��

��

��

��

��

, · · ·

The algebras assigned by the corresponding net AZ to the elementary causal bigon Oρ,ρ̄
and Oρ̄,ρ are

AZ (Oρ,ρ̄) = EndC(ρ̄ ◦ ρ)
and

AZ (Oρ̄,ρ) = EndC(ρ ◦ ρ̄).
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If C is a 2-C∗-category and ρ is an “irreducible 1-morphism generating a 2-C∗-category
of depth two” as in Sect. 4 of 7, then these are C∗-Hopf algebras H and Ĥ which are
duals of each other [41,60]. Due to the fact that the 2-morphisms in the above diagrams
do not mix ρ and ρ̄, we can understand the nature of the net AZ obtained from the
above 2-functor Z already by concentrating on the endomorphism algebras assigned to
a horizontal zig-zag

a

ρ
��

�

���
��

a

ρ
��

�

���
��

a

ρ
��

�

���
��

b

ρ̄���

�����

b

ρ̄���

�����

b

| | | | | |

.

If we to restrict to evaluating the net AZ on zig-zags of even length, this gives rise
to a net on the latticized real axis with the property that algebras AZ (I1) and AZ (I2)

commute if the intervals I1 and I2 are not just disjoint but differ by at least one lattice
spacing. Precisely these kind of 1-dimensional nets are considered in [42], where they
are addressed as Hopf spin chain models.

8. Further Issues

There are various immediate further questions to be addressed. We shall be content here
with just briefly commenting on the following.

Continuum limits of lattice models and von Neumann algebra valued nets. We have
shown that 2-functorial FQFTs very generally give rise to local nets of monoids and
observed that 2-functors with values in 2-C∗-categories give rise to local nets of C∗-
algebras. One would want to identify concretely those 2-functors which induce the
celebrated local nets of von Neumann algebra factors. It is to be expected that many
local nets of von Neumann algebras can be obtained from taking continuum limits of
lattice models. By considering in this continuum limit the relation between lattice AQFT
and lattice FQFT discussed in Sect. 7, one should be able to construct examples of the
desired 2-functors.

But while the idea of obtaining AQFT nets from continuum limits of lattice models
seems to be straightforward and of considerable relevance, there exist to date apparently
no published studies of this problem. A discussion of the problem of 2-functorial FQFT
corresponding to local nets of von Neumann algebra factors will therefore have to be
given elsewhere.

General Lorentzian structure. AQFT was originally conceived entirely in its applica-
tion to quantum field theories on Minkowski space, which is the case we have been
concentrating on above. A generalization of Poincaré-covariant nets on causal subsets
in Minkowski space to nets on globally hyperbolic Lorentzian spaces has later been
proposed in [12].

The possibly most natural and immediate generalization to AQFT on a fixed general
Lorentzian space was indicated in [44]: on a Lorentzian manifold X an AQFT net should
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be locally local: the locality axiom should hold after restriction of the net to any globally
hyperbolic subspace of X . The same should be true for the time slice axiom.

No guesswork is required for generalizing the concept of Minkowskian FQFT 2-
functors to general Lorentzian 2-functors: the concept of the 2-functor itself makes
unambiguous sense for any choice of 2-path 2-category in X . So we can use our con-
struction of local nets from 2-functors to derive locality properties of nets on Lorentzian
spaces. Doing so confirms the idea of [44]:

Let (X, g) be any 2-dimensional oriented and time-oriented Lorentzian manifold.
In generalization of Definition 1 consider

Definition 15. A causal subset O ⊂ X is a subset of a globally hyperbolic subset of
X which is the interior of a non-empty intersection of the future of one point with the
past of another. Write S(X) for the category with such causal subsets as objects and
inclusion of subsets as morphisms.

In generalization of Definition 6 consider

Definition 16. Let P2(X) be the strict 2-category whose objects are the points in X,
whose 1-morphisms are piecewise lightlike and right-moving paths (with respect to the
chosen orientation and time-orientation of X) and whose 2-morphisms are generated
under gluing along common boundaries from closures of causal subsets.

Our construction in Definition 9 immediately generalizes to a construction of a net
AZ : S(X) → Monoids from a 2-functor Z : P2(X) → C . All the arguments need to be
done within globally hyperbolic subsets of X , where they go through literally as before.
We can read off from the result of this construction the locality properties of AZ :

Proposition 4. The net AZ : S(X) → Monoids obtained from any 2-functor Z :
P2(X) → C is locally local and satisfies the local time slice axiom: for any inclusion

i : Y ↪→ X

with Y globally hyperbolic we have that i∗AZ is a local net satisfying the time slice
axiom.

This concept of local locality is compatible with [12] but does not presuppose any
covariance condition on the net.

Higher dimensional QFT. We had considered, for ease of discussion, in Definition 4
the 2-category P2(X) whose 2-morphisms are generated from gluing the closures of
2-dimensional causal subsets along common boundaries. But nothing in our construc-
tions crucially depends on gluing of causal subsets, and in fact gluing of causal subsets
becomes less natural in higher dimensions. As the examples we presented in Sect. 7,
where we obtained FQFT 2-functors by restricting 2-functors on a larger 2-category
of 2-paths to P2(X), clearly indicate, the 2-category P2(X) can be replaced by any
2-category of 2-paths in X which is large enough that every causal subset in X can be
regarded as a 2-morphism in there, so that every FQFT 2-functor can be evaluated on
causal subsets. And this statement then immediately generalizes to higher dimensions.

For X a d-dimensional Lorentzian manifold, we should take the category S(X) to be
that whose objects are causal subsets in X , which are those subsets that arise within any
globally hyperbolic subset of X as the interior of the future of one point with the past of
another point. Morphisms are inclusions.
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Fig. 8. A 3-morphism in a 3-path 3-category: a volume V , cobounding two surfaces 	1 and 	2, which each
cobound two paths γ1 and γ2 which each cobound two points x and y

The d-category Pd(X) used to describe Lorentzian FQFT on X can be any sub-d-
groupoid of the path d-groupoid [47] which is large enough so that every causal subset
in X comes from a d-morphism in Pd(X) and such that the obvious higher dimensional
generalizations of the diagrams in Sect. 5 exist in Pd(X). In particular, one can always
use the full path d-groupoid.

With such a setup, all our constructions here should have essentially straightforward
generalizations to higher dimensions, leading to a construction of local nets on X from
any FQFT d-functor on X . In such a context the spatial separation of two causal subsets
would manifest itself not in the position of endomorphisms in a 1-dimensional string of
products, but in their position in a higher dimensional algebra.

A. 2-Vector Spaces and the Canonical 2-Representation

In Sect. 7 we obtained examples of FQFT 2-functors from differential form data and
a choice of 2-representation. Here we briefly indicate a bit of background concerning
these 2-representations.

For our purposes here a 2-vector space is an abelian module category, i.e an abelian
category equipped with an action by a monoidal category. Notice that the category of
k-vector spaces is the category of k-modules

Vectk = k − Mod.

Accordingly we write

2Vect = VectVect = Vect − Mod

for the 2-category of abelian categories equipped with a (left, say) (Vect,⊗)-action.
Since Vect is symmetric monoidal, one can keep going this way and in principle define
recursively the n-category

nVect = (n − 1)Vect − Mod.

Notice in particular that then 0Vect = k.
There are other monoidal categories over which one may want to consider 2-vector

spaces. For instance if we denote by Disc(k) the discrete category over the ground field
(the ground field as its objects and only identity morphisms), then

Disc(k)− Mod � Cat(Vect)
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is the 2-category of categories internal to vector spaces, which in turn is equivalent to
chain complexes concentrated in degree 0 and 1. These are the 2-vector spaces consid-
ered in [5]. Disc(k)-modules are the “right” notion for 2-vector space for higher Lie
theory, but probably not [3] as models for fibers of interesting 2-vector bundles.

The entirety of the 2-category of all Vect-modules is quite untractable. What is more
accessible and more useful is the 2-category of 2-vector space that “have a basis”.
Noticing that an ordinary vector space V has a basis if there is a set S such that V �
HomSet(S, k), we should define a basis for a 2-vector space V to be a category S such
that V � Hom(S,Vect). If S is itself Vect-enriched this says that V is a category of
algebroid modules. We shall restrict attention to S having a single object, in which case
we are left with modules for ordinary algebras.

This way we find the bicategory Bimod of algebras, bimodules and bimodule homo-
morphisms sitting inside 2Vect as a sub-2-category of 2-vector spaces with basis:

Bimod
� � �� 2Vect

A

N

55

N ′

66Bφ

��

�→ ModA

−⊗A N

��

−⊗A N ′

��ModB−⊗Aφ

��

.

Notice how ModA is a category of modules which is itself a module category over Vect.
The 2-category of Kapranov-Voevodsky 2-vector spaces [29] is the full sub 2-category
of Bimod on all algebras of the form k⊕n for n ∈ N,

KV2Vect ↪→ Bimod.

While Bimod is not a strict 2-category, it is a framed bicategory in the sense of
[54]: there is the strict 2-category Algebras of algebras, algebra homomorphisms and
intertwiners (the obvious 2-category for algebras regarded as one-object Vect-enriched
categories), and the obvious inclusion

Algebras � � �� Bimod

is full and faithful on all Hom-categories. Noticing that similarly groups, when regarded
as one-object groupoids, live in the 2-category Groups of groups, group homomorphisms
and inner automorphisms, we get a strict 2-functor

Groups �� Algebras

induced from forming for each group its group algebra. For each group H there is the
2-group AUT(H) := AutGroups(H) and the canonical inclusion

BAUT(H) � � �� Groups

induces, combined with the above discussion, the canonical 2-representation of AUT(H)
given by

ρcan : BAUT(H) �� Groups �� Algebras �� Bimod �� 2Vect .
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The logic of this construction generalizes to arbitrary strict 2-groups G(2) coming from

crossed modules of groups (H
t→ G

α→ Aut(G)) (see for instance [50] for a review)
and algebras obtained from a representation of H :

Proposition 5. Forρ : BH → Vect a representation of H such that the action of G on H
extends to algebra automorphisms of the representation algebra 〈ρ(H)〉, the assignment

ρ̃ : B(H → G) → Algebras

given by

•

g

��

g′

��•h

��

�→ 〈ρ(H)〉

α(g)

��

α(g′)

��〈ρ(H)〉ρ(h)

��

is a strict 2-functor.

Accordingly we obtain a 2-representation

B(H → G)
ρ̃ �� Algebras �� Bimod �� 2Vect .

All this should go through when the vector spaces here are equipped with more structure.
In particular, for G a compact, simple and simply connected group, for ρ : B�̂G → Hilb
a positive-energy representation of the weight 1 central extension of its loop group and
for vNBimod the bicategory of vonNeumann algebras and their bimodules composed
under Connes-fusion, [55] the above should extend to a 2-representation

BString(G) → vNBimod

of the strict String 2-group [6].
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