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Abstract: In this paper we study the relation between pyramid partitions with a general
empty room configuration (ERC) and the BPS states of D-branes on the resolved con-
ifold. We find that the generating function for pyramid partitions with a length n ERC
is exactly the same as the D6/D2/D0 BPS partition function on the resolved conifold
in particular Kähler chambers. We define a new type of pyramid partition with a finite
ERC that counts the BPS degeneracies in certain other chambers.

The D6/D2/D0 partition functions in different chambers were obtained by applying
the wall crossing formula. On the other hand, the pyramid partitions describe T 3 fixed
points of the moduli space of a quiver quantum mechanics. This quiver arises after we
apply Seiberg dualities to the D6/D2/D0 system on the conifold and choose a particular
set of FI parameters. The arrow structure of the dual quiver is confirmed by computation
of the Ext group between the sheaves. We show that the superpotential and the stability
condition of the dual quiver with this choice of the FI parameters give rise to the rules
specifying pyramid partitions with length n ERC.

1. Introduction

One of the most fruitful areas of overlap between string theory and mathematics has been
in the applications of topological field theories and string theories to questions involving
integration over various moduli spaces of interesting geometrical objects. One exam-
ple is that the topological sector of the worldvolume theory of a D6 brane wrapping a
Calabi-Yau 3-fold has been identified with Donaldson-Thomas theory. The bound states
of D2 and D0 branes to a D6 brane can be regarded as instantons in the topologically
twisted N = 2 U (1) Yang-Mills theory in six dimensions. These instantons turn out to
correspond to ideal sheaves on the 3-fold. Moreover, Donaldson-Thomas theory involves
integration of a virtual fundamental class over the moduli space of such ideal sheaves.

There has recently been tremendous progress in understanding the Kähler mod-
uli dependence of the index of BPS bound states of D-branes wrapping cycles in a
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Calabi-Yau 3-fold [1]. On the mathematical side, various generalizations of Donaldson-
Thomas theory have been proposed [2], in which ideal sheaves are replaced by more
general stable objects in the derived category. These invariants will thus also have a
dependence on the background Kähler moduli, as encoded in a stability condition.

Much work has been done on Donaldson-Thomas theory in toric Calabi-Yau man-
ifolds, which are of necessity noncompact. In particular, using toric localizations, the
theory can be solved exactly [3,4]. In this work we will focus on the particular exam-
ple of the resolved conifold. More recently, there was some extremely interesting work
[5,6], in which the Donaldson-Thomas invariants on a noncommutative resolution of
the conifold were determined. In that case, the torus fixed points of the moduli space
of noncommutative ideal sheaves were identified with pyramid partitions in a length 1
ERC.

In [7], these results were reproduced using the physical techniques resulting from the
supergravity description of such bound states as multi-centered black holes in IIA string
theory compactified on a Calabi-Yau manifold. The Donaldson-Thomas partition func-
tion of the commutative and noncommutative resolutions of the conifold were shown
to arise as special cases in the moduli space of asymptotic Kähler parameters. More-
over, the D6/D2/D0 partition function was determined in all chambers of a certain real
three parameter moduli space that captured the relevant universal behavior as a compact
Calabi-Yau threefold degenerated to the noncompact resolved conifold.1

In this work, we will demonstrate an intriguing relationship between the pyramid
partitions in a length n ERC and the D6/D2/D0 partition function in various chambers.
In other chambers, we will give evidence that the torus fixed points of the moduli space
of BPS states are in one to one correspondence with a new type of pyramid partitions in
a finite region.

It is possible to find a basis of D-brane charges which is both primitive (i.e. it gen-
erates the entire lattice) and rigid (i.e. the basis branes have no moduli) for D6/D2/D0
branes in the resolved conifold. Note that this is never possible in compact Calabi-Yau.
Thus the BPS bound states are completely described by the topological quiver quan-
tum mechanics, whose fields are the open strings stretched between the basis branes.
The quiver that describes D2/D0 in the conifold is in fact the famous U (N ) × U (M)

Klebanov-Witten quiver [8], viewed as a 0-dimensional theory in our context.
The new ingredient that we introduce is an extended quiver that also includes a U (1)

node associated to the D6 brane, in analogy with the case of D6/D0 bound states in C
3

studied in [9]. We determine the spectrum of bifundamental strings by computing the
appropriate Ext groups. One beautiful feature of this system is that the SU (2)× SU (2)

symmetry of the conifold completely fixes the superpotential, SW , up to field redef-
inition, so we do not need to compute it directly. The moduli space of vacua of this
quiver theory depends on the background Kähler moduli through the Fayet-Iliopoulos
parameters.

This moduli space is obtained by imposing the F-term equations, ∂W = 0, on the
Kähler quotient of the space of fields (here a finite dimensional space of matrices with
ranks determined by the D-brane charges) by the U (N )×U (M)×U (1) gauge group. The
Kähler quotient is equivalent to the quotient by the complexified gauge group, together
with an algebraic stability condition that depends on the FI parameters [10].

In each chamber of the Kähler moduli space of the resolved conifold found in [7], we
identify a pair of primitive sheaves carrying D2/D0 charge that become mutually BPS
at the boundary of the Kähler cone, in that chamber. In particular, along the boundary

1 These partition functions were also derived first in [18] using a different approach.
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of the Kähler cone in the chamber Cn = [W−1
n W−1

n−1], in the notation of [7] for n > 0,
the central charges of OC (−n − 1)[1] and OC (−n) become aligned. In the chamber
C̃n = [W1

n−1W1
n ], it is OC (−n) and OC (−n + 1)[1] which become mutually BPS at the

boundary of the Kähler cone.
Therefore in that chamber, we choose those sheaves, together with the pure D6 brane,

OX , as our basis objects, and construct the quiver theory, as explained above. Note that
all of the above pairs for different n are related to each other by application of Seiberg
duality. We will denote the quivers resulting from the choice of basis branes above as Qn

and Q̃n respectively. The fact that the central charges become aligned in that chamber
implies that the bifundamental strings between them are massless at tree level, hence the
FI parameters, θ , for the two D2/D0 nodes must be equal for those values of the Kähler
moduli.

It is easy to check that θOX [1] > 0, θOC (−n−1)[1] < 0, and θOC (−n) < 0 is a single
chamber, and includes the locus where θOC (−n−1)[1] = θOC (−n). Therefore we can iden-
tify that chamber in the space of FI parameters for the quiver Qn with the chamber Cn
in the space of background Kähler moduli.

We show that with that choice of FI parameters, the King stability condition becomes
equivalent to a simple cyclicity - the quiver representations must be generated by a vec-
tor in the C

1 associated to the D6 brane U (1) node. The relations obtained from the
superpotential are used to see that the torus fixed points of the moduli space of stable
representations in this chamber are exactly the pyramid partitions in a length n ERC
defined in [5]! Similarly, for the chambers C̃n , we demonstrate that the torus fixed points
are in one to one correspondence with pyramid partitions in a certain finite empty room
configuration that we introduce.

The generating functions for pyramid partition in a length n ERC was determined in
[5,6], and we check that it agrees with the D6/D2/D0 partition function in the resolved
conifold in the appropriate chamber found in [7,18,19]. This requires correctly changing
variables to take into account the D2/D0 charges of the basis sheaves used in the con-
struction of the quivers. We explicitly check a few examples of the finite type pyramid
partitions as well.

Thus we have been able to reproduce the D6/D2/D0 partition function on the resolved
conifold, in a given chamber in the space of background Kähler moduli, by judiciously
choosing a particular Seiberg dual version of the associated three node quiver in which
the FI parameters corresponding to the Kähler moduli are of a special simple form.

The paper is organized as follows. In Sect. 2 we give a review of wall crossing for-
mulae and the D6/D2/D0 partition function on the resolved conifold based on [1,7].
In Sect. 3, we introduce the relation between the pyramid partition function and the
D6/D2/D0 BPS partition function. In Sect. 4 we derive the Seiberg dual quiver and then
compute its superpotentials and arrow structures. Next the discussion is on the stability
condition and the rules of pyramid partitions. Some future directions will be presented
in the conclusion part.

2. Wall Crossing Formula and D6/D2/D0 BPS Partition Function
on the Resolved Conifold

The index of BPS states with a given total charge is an integer, and thus is a piecewise
constant function of the background values of the Kähler moduli. Moreover, the fact that
it is a supersymmetric index implies that it can only jump when a state goes to infinity in
the moduli space of BPS states, that is when the asymptotics of the potential change. The
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only known way this can happen for the case of BPS bound states of D-branes wrapping
a Calabi-Yau manifold is that the physical size of a multi-centered Denef black hole
solution diverges at some value of the Kähler parameters [11]. This occurs exactly at
(real codimension 1) walls of marginal stability, when the central charges, Z1 and Z2,
of the two constituents, �1 and �2, of the multi-centered supergravity solution become
aligned.

At such a wall of marginal stability t = tms corresponding to a decay � → �1 + �2,
the BPS index will have a discrete jump given by

��(�, t) = (−1)〈�1,�2〉−1 |〈�1, �2〉| �(�1, tms)�(�2, tms), (2.1)

where �1 and �2 are primitive. A semi-primitive wall crossing formula is also given
in [1],

�(�1) +
∑

N

��(�1 + N�2)q
N = �(�1)

∏

k>0

(1 − (−1)k〈�1,�2〉qk)k|〈�1,�2〉|�(k�2).

(2.2)

This formula gives a powerful way to construct the D6/D2/D0 BPS generating func-
tion on the resolved conifold from the Donaldson-Thomas generating function [7]. The
absence of higher genus Gopakumar-Vafa invariants in the resolved conifold implies
that only the pure D6 brane exists as a single centered solution. Thus in the core region
of the Kähler moduli space, the D6/D2/D0 partition function is just Z = 1.

The position of the relevant walls of marginal stability was determined in [7], and
using the wall crossing formula for a single D6 bound arbitrary numbers of D2/D0 frag-
ments, the partition function was then computed throughout the moduli space. The wall
of marginal stability for � = 1 − m′β + n′dV with �h = −mhβ + nhdV in a compact
Calabi-Yau manifold, X , was shown have a well defined limit as the geometry approached
that of the noncompact resolved conifold. Moreover, the walls are independent of m′
and n′, and separate chambers in a real three dimensional space parameterized by the
Kähler size, z, of the local P

1, and a real variable ϕ = 1
3 arg(V olX ) that characterizes

the strength of the B-field along the noncompact directions in units of the Kähler form.
The wall of marginal stability for the fragment �h was denoted by Wmh

nh . The final
result for the index of D6/D2/D0 bound states found in [7] was that in the chamber
between W1

n and W1
n+1, the generating function is

Z(u, v; [W1
n W1

n+1]) =
n∏

j=1

(
1 − (−u) jv

) j
. (2.3)

Similarly, in the chambers where negative D2 charges appear,

Z(u, v; [W−1
n+1W−1

n ]) =
∏

j>0

(
1 − (−u) j

)−2 j (
1 − (−u) jv

) j ∏

k>n

(
1 − (−u)kv−1

)k
.

(2.4)

In the extreme case, n = 0, of the latter they found agreement with the results of Szendrői,
who calculated the same partition function at the conifold point using equivariant tech-
niques to find the Euler character of a moduli space of noncommutative sheaves. The
n → ∞ limit of (2.4), one obtains the usual “large radius” Donaldson-Thomas theory
that was determined in [3], again using equivariant localization.



Wall Crossing of BPS States on the Conifold 289

Fig. 1. This figure illustrates the length 2 ERC of the pyramid partition, from the zeroth layer to the 2nd layer

3. Pyramid Partition and BPS Partition Function on Resolved Conifold

In this section we will first discuss the relation between the pyramid partition generating
function with length n empty room configuration (ERC) and the D6/D2/D0 BPS state
partition function. Afterwards we will discuss how the pyramid partition arises when
we look at the torus fixed points on the moduli space Mv of representations of the
Calabi-Yau algebra A for the conifold quiver.

3.1. Pyramid partition generating function. The use of pyramid partitions in this con-
text first arose in [5]. Consider the arrangement of stones of two different colors (white
and grey) as in Fig. 1. For a generic ERC with length n, there will be n white stones on
the zeroth layer.2 On layer 2i , there are (n + i)(1 + i) white stones, while on layer 2i + 1
there are (n + i + 1)(1 + i) grey stones. When we write generating functions, the number
of white stones will be counted the power of q0, and the grey stones by q1.

A finite subset � of the ERC is a pyramid partition, if for every stone in �, the stones
directly above it are also in �. Denote as w0 and w1 the number of white and grey stones
in the partition. Also denote by Pn the set of all possible pyramid partitions for the ERC
of length n.

The generating function is defined combinatorially as

Z pyramid(n; q0, q1) =
∑

�∈Pn

qw0
0 (−q1)

w1 . (3.1)

This function can be computed by some dimer shuffling techniques; we refer the inter-
ested reader to [6] for details. Here we just quote the result for the generating function
for general n ERC,

Z pyramid(n; q0, q1) = M(1,−q0q1)
2
∏

k≥1

(1 + qk
0 (−q1)

k−1)k+n−1

×
∏

k≥1

(1 + qk
0 (−q1)

k+1)max(k−n+1,0), (3.2)

2 We count the layers as the zeroth, 1st, 2nd, and so on.
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Fig. 2. This is the ERC for the fintie type pyramid partition with length 3

where M(x, q) is the MacMahon function

M(x, q) =
∏

n=1

(
1

1 − xqn
)n . (3.3)

Notice that the exponents of the two terms in the product formula start from n and 1
respectively. This function turns out to be exactly the D6/D2/D0 BPS partition function
on the resolved conifold found in [7,18,19] in certain chambers after performing the
following (n-dependent) parameter identifications:

u = −q0q1; v = (−q0)
n−1qn

1 . (3.4)

Now we have

Z pyramid(n; q0, q1) = Z D6/D2/D0(u, v; Cn)

= M(1,−u)
∏

k≥1

(1 − (−u)kv)k
∏

k≥n

(1 − (−u)kv−1)k . (3.5)

The upshot is that the pyramid partition for a general empty room configuration
counts the number of D6/D2/D0 BPS bound states at a certain value of the background
modulus! More precisely, this chamber sits between the conifold point and the large
radius limit; Cn = [W−1

n W−1
n−1] in the notation of [7].

We will explain that this is no coincidence, after we perform a Seiberg duality on the
original D6/D2/D0 quiver theory. Moreover, the rules of specifying a pyramid partition
encode the stability condition for these BPS states.

In the chamber C̃n = [W1
n−1W1

n ], the D6/D2/D0 BPS states partition function is
given by

Z D6/D2/D0(u, v, C̃n) =
n−1∏

k=1

(1 − (−u)−kv)k . (3.6)

We conjecture that the partition function in these chambers can be described by some
finite type pyramid partitions with length (n − 1) ERC (see Fig. 2 for length 3 example),
after a change of variables.
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For the finite type pyramid partition with length n, there are n × 1 white stones on
the zeroth layer, (n − 1) × 1 grey stones on the first layer, (n − 1) × 2 white stones on
the second, (n −2)×2 grey stones on the third, and so on until we reach 1×n. The way
of counting is the same. We count the finite subsets � of the ERC in which, for every
stone in �, the stones directly above it are also in �.

The change of variables is given by

u = −q0q1, v = −qn
0 qn−1

1 . (3.7)

Let us consider length 2 ERC as an example to illustrate the correspondence between
the BPS states partition function in chambers C̃n and the finite type pyramid partition,

Zn=2 E RC = 1 + 2q0 + q2
0 + q2

0 q1 + 2q3
0 q1 + q4

0 q1

= (1 + q2
0 q1)(1 + q0)

2 = (1 − (−u)−1v)(1 − (−u)−2v)2

= Z(u−1, v, C̃3). (3.8)

3.2. Conifold quiver and pyramid partitions. This section is a review of [5]. Consider
the conifold quiver Q = {V, E}, with two vertices V = {0, 1}, and four oriented edges
E = {A1, A2 : 0 → 1, B1, B2 : 1 → 0}. The F-term relations come from the quartic
superpotential W = A1 B1 A2 B2 − A1 B2 A2 B1.[8]

The quiver algebra A contains the idempotent ring C[ f0, f1] and can be given by
generators and relations as

A = C[ f0, f1]〈A1, A2, B1, B2〉/〈B1 Ai B2 − B2 Ai B1, A1 Bi A2 − A2 Bi A1, i = 1, 2〉.
(3.9)

A is a smooth Calabi-Yau algebra of dimension three [12] and a crepant non-commutative
resolution of the singularity Spec (C[x1, x2, x3, x4]/(x1x2 − x3x4)).

Consider the rank two torus action TW on the moduli space MV of framed cyclic
A-modules 3. It has been shown by Szendrői [5] that the TW -fixed points on the moduli
space MV are all isolated and have a one-to-one correspondence with pyramid partitions
� ∈ P1 of weight (w0, w1). This weight vector is the same as the rank vector of the
corresponding quiver.

Moreover, given a pyramid partition � ∈ P1, we can obtain the precise framed cyclic
module Mπ defined by it from looking at the pyramid partition. First, we draw A1 and
A2 fields in the perpendicular direction out of the center of the white stones and draw B1
and B2 fields in the horizontal direction out of grey stones. The superpotential F-term
relations require that we get the same result if we follow the arrows of opposite directions
of the Ai or Bi fields down to the three lower layers.

The cyclicity property of the module turns into the rule that for every stone in �,
the stones directly above it are also in �. The module is generated by the stones on the
zeroth layer. We show in Sect. 5 that the cyclicity condition is equivalent to the King
stability condition in a particular chamber of the quiver (Fig. 4) obtained by introducing
a new node for the D6 brane to the Klebanov-Witten quiver discussed in [5].

In [5], Szendrői generalized the notion of pyramid partitions to length n ERC, and
his conjecture for the resulting generating function was proven in [6]. We shall show

3 The torus action fixing the superpotential is a rank three torus TFW , described by (A1, A2, B1, B2) →
(µa A1, µb A2, µc B1, µ−a−b−c B2). And TW is the quotient of TFW by the C∗ action (µ, µ, µ−1, µ−1).
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Fig. 3. This figure illustrates how to define a framed cyclic module from a pyramid partition

that these partitions arise as torus fixed points of the moduli space of King stable repre-
sentations of the quiver Qn . For now, note that in the case of general length n ERC, the
n stones on the zeroth layer will still play the roles of the framing vectors of the quiver
and generate the whole module.

There are also new (n −1) relations for n > 1, if we follow the arrows from the layer
zero to layer one, which read:

A1q2 = A2q1, A1q3 = A2q2, . . . , A1qn = A2qn−1, (3.10)

where q1 . . . qn are the framing nodes on the layer zero. Later we will see that these
relations arise from certain cubic terms in the superpotential which are not present for
n = 1.

4. Deriving the Quivers via Seiberg Duality

Recall that a standard choice of the sheaves representing the conifold quiver is as follows
[13]:

OX [1], OC , OC (−1)[1]. (4.1)

The arrow structure of this quiver is determined by the Ext group,4

Ext1(OC ,O(−1)[1]) ∼= Ext1(O(−1)[1],OC ) ∼= C
2. (4.2)

So if we take the rank vector to be (1, M + N , M), the system will have charges
(D6, D2, D0) = (1, M, N ). Now we are going to show that this quiver at certain FI
parameters leads to the pyramid partition after performing Seiberg dualities.

First of all we know that in the pyramid partition there are n marked framing nodes,
which are the most top nodes q1 · · · qn and n − 1 relations:

A1q2 = A2q1, A1q3 = A2q2, . . . , A1qn = A2qn−1. (4.3)

This implies that we want to find a quiver representation with the following arrow struc-
ture. (See Fig. 4.)

For this purpose we choose the basis to be

OX , OC (−n − 1), OC (−n)[−1]. (4.4)

4 We will use Ext and Ext to denote the global and local Ext respectively.
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Fig. 4. The n q fields gives n marked points in the quiver, which generates the whole module, and the (n − 1)

p fields will give (n − 1) relation via superpotential. The sheaves representing the nodes are to be determined

Fig. 5. This shows the arrow structure of the quiver Q̃n−1

Or equivalently, by an overall shift,5

OX [1], OC (−n − 1)[1], OC (−n) : Qn . (4.5)

The quiver with this basis will be called Qn .
Now let us try to find the sheaves corresponding to the finite type pyramid partition

with length n −1. There are n −1 framing nodes on the top and n relations coming from
the zeroth layer. So what we have to do is simply to reverse the directions of the p and
q fields in Fig. 4. The basis of the quiver is given by

OX [1], OC (−n − 1), OC (−n)[1] : Q̃n−1. (4.6)

In the following section we will summarize the brane charges of the Seiberg dual
quivers Qn and then confirm the F-term relations imposed by superpotential and the
arrow structures of the proposed quivers with Ext group computation. The Ext group
computation for the quiver Q̃n simply follows from the computation for Qn ; therefore
we only focus on Qn from now on.

5 In order to make contact with the convention in [13].
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Table 1. Sheaves, ranks, and charges. Here we have taken into account the induced D0 charge of OC . The
total charge of the system is M D2 and N D0

Sheaves Ranks Charge FI parameters

OX [1] 1 D6 or D̄6 θ1
OC (−n − 1)[1] N + (n − 1)M D̄2, nD0 θ2
OC (−n) N + nM D2, (n − 1)D̄0 θ3

4.1. Brane charges of the quiver. The Chern character of the charges of the primitive
objects in the derived category that we used as a basis in the quiver Qn can be computed
as

[OC (−n)] = −β + (1 − n)dV, [OC (−n − 1)[1]] = +β + ndV, (4.7)

in the conventions of [1].
In the original D6/D2/D0 system, powers u and v count the D0 and D2 charges

respectively. Suppose we have a bound state with 1 D6, M D2 and N D0 charges; this
will be represented by a quiver with ranks determined by the following computation:

(−u)N vM = (q0q1)
N ((−q0)

n−1qn
1 )M = (−1)n−1q N+(n−1)M

0 q N+nM
1 . (4.8)

Recall that q0 are the number of white stones. Thus the ranks of the node OC (−n −1)[1]
and OC (−n) are N + (n −1)M and N +nM respectively. This combination indeed gives
the right total charges we are aiming at. We summarize the result in the following table.
(See Table 1.)

4.2. OX → OC (−n − 1). We now proceed to determine the number of bifundamental
fields that appear in the quiver, by computing the Ext groups between the basis sheaves.
First of all, since OX is projective (thus free), we have

Exti (OX ,OC ) = 0, i > 0. (4.9)

And we also have Ext0(OX ,OC (−n − 1)) = 0 when n ≥ 0 since Ext0(OX , ) is the
global section functor. As for Ext1(OX ,OC (−n − 1)), we need to use the following:

dim Hn(Pn,O(m)) =
( −m − 1

−n − m − 1

)
. (4.10)

Therefore,

Ext1(OX ,OC (−n − 1)) = H1(X,OC (−n − 1)) ∼= C
n, (4.11)

Ext2(OX ,OC (−n − 1)) = Ext3(OX ,OC (−n − 1)) = 0. (4.12)

4.3. OC (−n)[−1] → OX . According to Chap. 5.3 in [14], the local sheaves
Extk(OC ,OX ) are all trivial except for k = 2,

Ext2(OC ,OX ) ∼= ι∗KC = ι∗OC (−2), (4.13)

where KC is the canonical bundle over P1.
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Fig. 6. The quiver diagram for the pyramid partition with length n ERC

Twisting the sheaf by OX (n), we have

Ext2(OC (n),OX ) ∼= ι∗KC (−n) = ι∗OC (−2 − n). (4.14)

There is a local to global spectral sequence which we can apply to get the Ext group.
However, if n is large, we can simply apply Property 6.9 in [15] to get the Ext group we
want.

The property says, if OX (1) is a very ample invertible sheaf and E and F are coherent
sheaves on X , there exist an integer n0, depending on E , F and i , such that for n > n0,

Exti (E,F(n)) = �(X, Exti (E,F(n))). (4.15)

So for n >> 0, we have

Ext1(OC (−n),OX ) = �(X, Ext1(OC ,OX (n))) = 0, (4.16)

Ext2(OC (−n),OX ) = �(X, Ext2(OC ,OX (n))) = �(X, ι∗OC (n − 2)) ∼= C
n−1,

(4.17)

Ext1(OC (−n)[−1],OX ) ∼= C
n−1. (4.18)

Now we sum up the computation in a quiver diagram, in which we actually apply an
overall shift. (See Fig. 6.)

4.4. Superpotential. In principle, the computation of the superpotential of this quiver
quantum mechanics would require evaluating the B-model disk amplitude with bound-
ary conditions determined given by the basis B-branes. Luckily that has already been
done for the sheaves OC (n) and OC (m)[−1] by [13], resulting in the Klebanov-Witten
superpotential,

W = T r(A1 B1 A2 B2 − A1 B2 A2 B1).

Furthermore, it will turn out that the SU (2)× SU (2) symmetry of the resolved conifold
will completely fix the superpotential terms involving the p and q fields, up to field
redefinition.
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Recall that the projective coordinates of the resolved conifold,

(x1, x2, y1, y2) ≡ (λx1, λx2, λ
−1 y1, λ

−1 y2),

transform with (x1, x2) in the doublet of SU (2)1 and (y1, y2) in the doublet of SU (2)2.
In the above derivation of the Ext groups, it was clear that the n q and (n − 1) p fields
live in various cohomology groups of the P

1. These groups carry an induced action of
the SU (2)1 symmetry, which must be realized as a global symmetry group of the quiver
quantum mechanics.

Therefore we conclude that q and p are in the (n̄) and (n − 1) representation of the
global SU (2)1, under which A1 and A2 form a fundamental representation. There is
a unique cubic superpotential that is invariant under this SU (2), up to field definition,
essentially because there is a single copy of the trivial representation in the tensor prod-
uct (n̄) ⊗ (n − 1) ⊗ (2). We first can construct from A and p a combination which is
(n) under SU (2). This is basically the same as constructing angular momentum states
|l + 1

2 , m + 1
2 〉 from |l, m〉 and | 1

2 ,± 1
2 〉, where 2l + 1 = n − 1.

By using the following relation:

|l +
1

2
, m +

1

2
〉 =

√
l + m + 1

2l + 1
|l, m〉|1

2
,

1

2
〉 +

√
l − m

2l + 1
|l, m + 1〉|1

2
,
−1

2
〉, (4.19)

we can write down explicitly the form of superpotential (ignoring the color trace and
index structure and just focusing on the invariance of the SU (2))

W ∼ p1 A2q1 + (

√
n − 2

n − 1
p2 A2 +

√
1

n − 1
p1 A1)q2

+ (

√
n − 3

n − 1
p3 A2 +

√
2

n − 1
p2 A1)q3 + · · · . (4.20)

We should perform the following field redefinitions:

q̃1 = q1, q̃2 = −
√

1

n − 1
q2, q̃3 =

√
2

(n − 1)(n − 2)
q3,

= q̃4 −
√

3!
(n − 1)(n − 2)(n − 3)

q4, . . . . (4.21)

The relations implied by superpotential become

A1q̃2 = A2q̃1, A1q̃3 = A2q̃2, . . . , A1q̃n = A2q̃n−1. (4.22)

Although these field redefinitions are not unitary and will spoil the D-terms, King’s
stability condition will not change under these redefinitions. The moduli space of solu-
tions to the F-flatness and D-flatness conditions, modded out by the U (N ) × U (M)

gauge symmetry is equivalent to the GL(N , C) × GL(M, C) quotient of the holomor-
phic F-term constraint, together with the King stability condition. Therefore, we can
always bring the superpotential to the form we want, so that (4.3) holds.
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4.5. Seiberg duality. Note that given one of the above quivers, all others can be con-
structed from it simply by repeated application of the rules developed by Berenstein
and Douglas [16] for generalized Seiberg dualities. Suppose we begin with quiver Qn .
Then dualizing the OC (−n − 1)[1] node reverses the directions of all arrows through
that node. In addition, between the other two nodes there will be 2n new mesonic fields
Mai = Aaqi for a = 1, 2, i = 1, . . . , n.

The superpotential calculated above implies that there is a mass term Mai p j , where
the indices are contracted as described above to be consistent with the SU (2) flavor
symmetry. This lifts all p j and a corresponding n − 1 of the mesons from the massless
spectrum. Therefore, we obtain exactly the field content of the quiver Qn+1! This result
had to be true, given the previous calculation of the quiver directly from the new basis
of objects in the derived category.

5. θ Stability and Cyclicity

The moduli space of supersymmetric Higgs branch vacua of the quiver quantum mechan-
ics6 describing the D6/D2/D0 bound states is given by the U (N )×U (M)×U (1) Kähler
quotient of the solution of the F-flatness conditions. The background values of the Kähler
moduli are encoded in the values of the FI parameters in the Kähler quotient.

In general, it is a very difficult problem to determine the Euler character of the result-
ing moduli space, even by using the toric action to reduce to fixed points. We will find
that for a particular choice of FI parameters the situation is dramatically simpler. This
motivates us to choose a convenient basis of branes (that is, a particular mutation, Qn ,
of the quiver) for which the FI parameters are of this simple type in a given chamber in
the background Kähler moduli space.

It was shown by King [10] that is it possible to replace the D-term equation appearing
in the Kähler quotient by a purely holomorphic algebraic condition, called θ -stability.
Let (θv)v∈V be the FI parameters, a set of real numbers assigned to the nodes of the
quiver, such that θ(N) = ∑

Nvθv = 0 for a given dimension vector N. Then a repre-
sentation R is called θ -stable if for every proper subrepresentation R̃ with dimension
vector Ñ, θ(Ñ) is smaller than θ(N).

Consider the chamber in the space of FI parameters given by

θ1 > 0, θ2 < 0, θ3 < 0, for Qn;
θ1 > 0, θ2 < 0, θ3 < 0, for Q̃n . (5.1)

Our interest is in bound states with one unit of D6 charge, thus we have that N1 = 1.
Then King stability is equivalent to cyclicity, in the sense that the entire representation is
generated by a vector in C, the node associated to OX [1]. Firstly, any such representation
is King stable for this choice of FI parameters, since any subrepresentation that includes
this node must be the entire representation, and thus the proper subrepresentations all
have θ(Ñ) = Ñ2θ2 + Ñ3θ3 < 0.

Moreover, suppose that R is a King stable representation with N1 = 1. Then consider
the subrepresentation, R̃, generated by the vector space C of the D6 node. If it is not all
of R, then Ñ2 < N2 or Ñ3 < N3, and one has that θ(R̃) = θ1 + Ñ2θ2 + Ñ3θ3 > 0, and
the representation R must be unstable.

6 Note that our quiver must be understood as a quantum mechanics, describing the BPS configurations of
a point-like object in the R3,1, rather than a 3 + 1 field theory, as it would then be anomalous. This is obvious
from the presence of a Calabi-Yau wrapping brane.
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6. The Big Picture: Connecting the Dots

We would like to put together every piece of the story in this section. First of all, we
observe that the D6/D2/D0 BPS partition function at a certain chamber, Cn in the Kähler
moduli space is the same as the pyramid partition generating function for length n ERC,
after the parameter identification (3.4),

Z D6/D2/D0(u, v, Cn) = Z pyramid(n; q0, q1). (6.1)

By empirically checking the finite type pyramid partition, we also conjecture that the
BPS states partition function is identical to the finite type pyramid partition generating
function:

Z D6/D2/D0(u, v, C̃n) = Z f ini te(n; q0, q1). (6.2)

Physically, given a set of brane charges, we should be able to use the quiver theory to
compute the Euler character of the moduli space. In order to do that, we need to know
how to translate the data of chamber Cn or C̃n into the FI parameters of the corresponding
quiver. This, in general, is a very difficult task.

In the conifold case, we are in luck because we have the answer from pyramid
partition. We showed that pyramid partitions with length n ERC, as well as those of
finite type, are torus fixed points in the moduli space of vacua of a certain quiver.
Using this answer, we noticed that this quiver is Seiberg dual to the quiver with basis
{OX [1],OC ,OC (−1)[1]}. And in the Seiberg dual quiver, Qn , we can determine the FI
parameters to reproduce the cyclicity property. So we should keep in mind the following
relation:

Z D6/D2/D0(u, v, Cn) = Z Q0
quiver (u, v, θ

Q0
i )

= Z Qn
quiver (u, v, θ

Qn
1 > 0, θ

Qn
2 < 0, θ

Qn
3 < 0), (6.3)

Z D6/D2/D0(u, v, C̃n) = Z Q0
quiver (u, v, θ̃

Q0
i )

= Z Q̃n
quiver (u, v, θ

Q̃n
1 > 0, θ

Q̃n
2 < 0, θ

Q̃n
3 < 0). (6.4)

The quivers Qn and Q̃n are Seiberg dual to the quiver Q0, which has basis

{OX [1], OC , OC (−1)[1]}.
Presumably, we should be able to find the mapping:

Cn ↔ θ
Q0
i ↔ θ

Qn
i , C̃n ↔ θ̃

Q0
i ↔ θ

Q̃n
i . (6.5)

For Qn , the θ stability condition for {θ Qn
1 > 0, θ

Qn
2 < 0, θ

Qn
3 < 0} gives exactly

the rules for constructing the pyramid partition in length n ERC. On the other hand,

the θ stability of the quiver Q̃n with {θ Q̃n
1 > 0, θ

Q̃n
2 < 0, θ

Q̃n
3 < 0} gives the rules for

constructing the finite type pyramid partition.
It is also possible to obtain the mapping (6.5) between the chambers in the space of

Kähler moduli and the FI parameters before matching the answers. Consider the cham-
ber [W1

n W1
n+1], which we checked corresponds to the simple choice of FI parameters

for the quiver Q̃n . This contains the locus I m(z) = 0, −n − 1 < Re(z) < −n along the
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Fig. 7. The quiver Q+
n and Q̃−

n

Fig. 8. The quiver Q−
n and Q̃+

n

boundary of the Kähler cone for π/3 < ϕ < 2π/3. The D2/D0 branes associated to the
sheaves OC (−n − 1)[1] and OC (−n − 2) have charges −β + ndV and +β − (n + 1)dV .

When their central charges Z(−β + ndV ; t) = −z − n and Z(+β − (n + 1)dV ; t) =
z + n + 1 are aligned, then the bifundamental strings stretched between these two branes
must become massless (at tree level) in the quiver quantum mechanics. Referring to the
form of the bosonic potential, we see this occurs precisely when the FI parameters for
those nodes are equal. Therefore we are in the chamber expected. This provides an a
priori derivation of the partition function of D6/D2/D0 bound states in each chamber.

One last thing to notice is that we can flip the signs of the θs and the directions of
the arrows of the quiver at the same time, without causing any change to the partition
function of the quiver theory. The reason is that in this way we do not change the D-term
conditions at all. Therefore, we have:

Z Q+
n
(u, v) = Z Q̃−

n−1
(u−1, v), Z Q−

n
(u, v) = Z Q̃+

n−1
(u−1, v) , (6.6)

where we simplify our notation by specifying the signs of θ1 in the quiver by putting a
superscript on the Qn or Q̃n .
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7. Conclusion

In this paper we have studied the relation between the pyramid partition generating func-
tion and the D6/D2/D0 BPS state partition function on the resolved conifold. We found
that the generating function of the pyramid partition with length n ERC is equivalent to
D6/D2/D0 BPS state partition functions in certain chambers in the Kähler moduli space.
More precisely, we have the following relation:

Z D6/D2/D0(u, v, Cn) = Z pyramid(n; q0, q1), Cn = [W−1
n W−1

n−1], (7.1)

Z D6/D2/D0(u, v, C̃n) = Z f ini te(n; q0, q1), C̃n = [W1
n−1W1

n ], (7.2)

where the chambers [W−1
n W−1

n−1] and [W1
n−1W1

n ] are defined in [7].
From the rules specifying pyramid partitions (of both infinite and finite type), we

constructed the corresponding quivers, the θs parameters, and the superpotentials. We
gave the underlying basis of sheaves and verified that they are Seiberg dual to the original
D6/D2/D0 systems. The arrow structures of the quivers are also verified by computing
Ext groups. The θ parameters in these particular basis are simple and the superpoten-
tials are quartic, so that the rules of pyramid partition emerge. We also noted that the
cyclicity condition on quiver representations is the same as the King stability condition
in the region of (5.1).

It would also be interesting to see if there is a similar story for the BPS partition func-
tion in the chambers other than [W−1

n W−1
n−1] and [W1

n−1W1
n ]. We also note that pyramid

partitions with more colors have been developed in [17], and we suspect a similar story
will emerge in the case of the orbifold Donaldson-Thomas partition function.
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