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Abstract: We study the asymptotic behavior of the statistical solutions to the Navier–
Stokes equations using the normalization map [9]. It is then applied to the study of mean
energy, mean dissipation rate of energy, and mean helicity of the spatial periodic flows
driven by potential body forces. The statistical distribution of the asymptotic Beltrami
flows are also investigated. We connect our mathematical analysis with the empirical
theory of decaying turbulence. With appropriate mathematically defined ensemble aver-
ages, the Kolmogorov universal features are shown to be transient in time. We provide
an estimate for the time interval in which those features may still be present.
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1. Introduction

This paper is the continuation of our previous work [5]. In that paper, we study the
asymptotic behavior of the helicity associated with the deterministic solution of the
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Navier–Stokes equations. The current paper is our study of the asymptotic properties
of the statistical distributions of the solutions of the Navier–Stokes equations, including
the asymptotic behavior of the statistical dynamics of the helicity.

In this paper, as in [5], we study the incompressible viscous flows which are periodic
in the space variables and are driven by potential body forces. Then the velocity field
u(x, t), x = (x1, x2, x3) ∈ R

3, satisfies the periodicity condition

u(x, t) = u(x + Le j , t), x ∈ R
3, j = 1, 2, 3, (1.1)

(where L > 0 is the spatial period and {e1, e2, e3} is the standard basis of R
3) as well

as the Navier–Stokes equations

∂u(x, t)

∂t
+ (u · ∇)u(x, t) − ν�u(x, t) = −∇ p(x, t) − ∇ϕ(x, t), (1.2)

∇ · u(x, t) = 0, (1.3)

where ν is the viscosity of the fluid, p is the pressure and ϕ is the potential of the
body force; here we assume that the mass density is equal to one. Using the well-known
remarkable Galilean invariance of the Navier–Stokes equations we also can (by a change
of the reference system) consider only the flows satisfying the following zero space aver-
age condition: ∫

�

u(x, t)dx = 0, � = (−L/2, L/2)3, (1.4)

where dx = dx1dx2dx3 is the usual volume element in R
3.

Recall that the curl of the velocity, i.e. ∇ × u, is usually called the vorticity of the
flow and is denoted by ω. The kinetic energy/mass, the dissipation rate of energy/mass,
and the helicity/mass are defined by

E(t) = 1

2

∫
�

|u(x, t)|2dx, F(t) =
∫

�

|ω(x, t)|2dx (1.5)

and, respectively,

H(t) =
∫

�

u(x, t) · ω(x, t)dx. (1.6)

Above, u · ω is the helicity density of the flow. For the physical importance of the
helicity in fluid dynamics, see the pioneering work by Moffatt [18] and also other surveys
on this topic (e.g. [19]).

In our previous paper [5], we studied mainly the asymptotic behavior of the helicity
and its connections with that of the energy which had been previously determined in
[8–10]. Unlike the latter behavior, the former is quite sensitive to the presence of the
inertial nonlinear terms in the Navier–Stokes equations. In this paper we will present the
asymptotic behavior of the statistical dynamics of all of the above three quantities E(t),
F(t) and H(t) for our type of flows. Our main concern is to identify the asymptotic prop-
erties of e2ν(2π/L)2t 〈E(t)〉, e2ν(2π/L)2t 〈F(t)〉 and e2ν(2π/L)2t 〈H(t)〉, where 〈 · 〉 denotes
some appropriate ensemble averages, whose rigorous mathematical definitions will be
given in Sect. 8. We prove that they all have limits when t → ∞ and that generically
these limits are not zero.

One interesting feature in the numerical simulation of the turbulent flows is their
statistical tendency to approximate Beltrami flows (see, e.g. [1,21]), i.e., the flows whose
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velocity and vorticity are parallel. We show that at least asymptotically this tendency is
not generic.

Our rigorous results confirm the well known empirical and computational evidence
that the Kolmogorov type estimates for the decaying turbulence of the spatially periodic
flows lose validity for large times (even after rescaling of the physical entities in order to
obtain a simulacrum of stationarity). However, as presented in Sect. 8 our methods yield
some estimates of the length of the time interval in which the universal feature may still
present.

In our analysis, we use the mathematically defined statistical solutions of the Navier–
Stokes equations both on the phase space and the trajectory space. Since this is the first
time we develop the asymptotic theory for those statistical solutions, we extend our
studies to both the energy and the energy dissipation rate. Another ingredient of our
method is the use of the normalization map constructed for the regular solutions to the
Navier–Stokes equations in [9,10]. At this stage, we focus on the first rate of decay of
the solutions, hence the first component of that normalization map is used throughout.
Because the natural space to study the statistical solutions is the space of weak solutions,
we extend the definition of that component of normalization map to those solutions. This
newly defined map turns out to be an essential tool in describing the asymptotic behavior
of the statistical solutions of the Navier–Stokes equations. Particularly, it determines the
limits of the ensemble averages referred to above. We also use this map to study the flows
which are asymptotically Beltrami. Moreover, the asymptotic behavior of the mean flows
is connected with the nonlinear manifold M1 ([8–10]) of the initial data u0 such that
the corresponding solution u(t) is regular for all t ≥ 0 and decays exponentially faster
than e−ν(2π/L)2t .

This paper is organized as follows. In Sect. 2, we present the functional settings
of the Navier-Stokes equations, the asymptotic behavior of the deterministic solutions.
The definitions of the statistical solutions both in the phase space and the trajectory
space are recalled as well as their fundamental existence theorem. In Sect. 3, we ex-
tend the definition of the first component of the normalization map to the set of Ler-
ay-Hopf weak solutions. We prove some basic properties of that map. In Sect. 4, we
study the asymptotic behavior of the mean energy, mean energy dissipation rate and
mean helicity using the Vishik-Fursikov statistical solutions. For the latter two mean
quantities, the moving averages in time are used to overcome the lack of regular-
ity of the weak solutions of the Navier–Stokes equations. In Sect. 5, we construct
some initial Gaussian probability measures to show that the asymptotic behavior of
the above three mean quantities are not trivial. In Sect. 6, we focus on the solutions
which are asymptotically Beltrami (see Definition 6.3). Different equivalent condi-
tions for those flows are given. We prove the existence of a Vishik-Fursikov measure
with Gaussian initial data which is not asymptotically Beltrami (see Definition 6.7).
In Sect. 7, we first show the connections between the mean flows which decay faster
than e−ν(2π/L)2t with the above nonlinear manifold M1. We then prove the generic-
ity of the mean flows with non-trivial energy or dissipation rate of energy or helici-
ty, and of the flows which are not asymptotically Beltrami. In Sect. 8, we apply our
study in the previous sections to the conventional theory of decaying turbulence. We
show that the Kolmogorov type estimates are transient in time and estimate the time
interval for which those estimates may still be valid. We obtain in Proposition 8.3 cer-
tain lower and upper bounds for the Kolmogorov quotient (see (8.7)). The Appendix
provides various basic facts on the Navier–Stokes equations which are used in this
paper.
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2. Preliminaries

In this paper, we use the same notation as in [5]. We will briefly recall some of them in
Subsect. 2.1. Subsection 2.2 consists of the definitions of statistical solutions — both in
the phase space and the trajectory space — and their basic existence theorem.

2.1. Deterministic solutions of the Navier–Stokes equations. The initial value problem
for the Navier–Stokes equations in the three-dimensional space R

3 with a potential body
force consists of Eqs. (1.2), (1.3) and the initial condition

u(x, 0) = u0(x), (2.1)

where u0(x) is the known initial velocity field. We consider only solutions u(x, t) that
satisfy the periodicity condition (1.1) and the zero average condition (1.4).

Let V be the set of all L-periodic trigonometric polynomials with values in R
3 which

are divergence-free and have zero average on � (see (1.1), (1.3) and (1.4)). We define
H = closure of V in L2(�)3 and V = closure of V in H1(�)3.

Denote by 〈·, ·〉 and | · | the inner product and norm in L2(�)3. (Note that we also
use | · | for the length of vectors in R

3, but the context will clarify its meaning.)
On V we consider the inner product 〈〈·, ·〉〉 and the norm ‖·‖ defined by

〈〈u, v〉〉 =
3∑

j,k=1

∫
�

∂u j (x)

∂xk

∂v j (x)

∂xk
dx and ‖u‖ = 〈〈u, u〉〉1/2,

for u = u(·) = (u1, u2, u3) and v = v(·) = (v1, v2, v3) in V .
Let A = −� be the Stokes operator on the domain DA = V ∩ H2(�)3.
Let PL denote the orthogonal projector in L2(�)3 onto H .
We define B(u, v) = PL(u · ∇v) for all u, v ∈ DA.

We denote by R the set of all initial value u0 ∈ V such that there is a (unique)
solution u(t), t > 0, satisfying

{
du(t)

dt + Au(t) + B(u(t), u(t)) = 0, t > 0,

u(0) = u0 ∈ V,
(2.2)

where the equation holds in H , and u(t) is continuous from [0,∞) into V . Such u(t) is
called a regular solution of the Navier–Stokes equations.

A classical result (see, e.g., [13–15]) is that for any initial data u0(x) in H there exists
a weak solution u(x, t) defined for all x ∈ R

3 and t > 0 which eventually becomes ana-
lytic in space and time (see also [4,7,11]), hence regular on [t0,∞) for some t0 ≥ 0.

We denote by S(t), t ≥ 0, the semigroup generated by the regular solutions of the
Navier–Stokes equations, i.e., S(t)u0, u0 ∈ R, denotes the regular solution of (2.2).

Throughout this paper, except for Sect. 8, we take L = 2π and ν = 1. The general
case is easily recovered by a change of scales.

Let σ(A) be the spectrum of the Stokes operator A. For n ∈ σ(A) we denote by Rn
the orthogonal projection of H onto the eigenspace of the Stokes operator A associated
to n. Let Rn = 0 for n 
∈ σ(A).

Let C = ∇× be the curl operator mapping V into H . For each n ∈ σ(A) we have

Rn = R+
n + R−

n and Rn H = R+
n H ⊕ R−

n H, (2.3)
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where R+
n , resp. R−

n , is the orthogonal projection of H onto the eigenspace of the curl
operator C associated to

√
n, resp. (−√

n), and

R±
n H = {u ∈ H : Cu = ±√

nu}. (2.4)

It is easy to see that

B(u, u) = 0 if u ∈ R+
n H ∪ R−

n H, n ∈ σ(A). (2.5)

Let us recall some known results on the asymptotic expansion of the regular solutions
to the Navier–Stokes equations and its associated normalization map (see [8–10,12] for
more details). For any u0 ∈ R the regular solution u(t) has the asymptotic expansion

u(t) ∼ q1(t)e
−t + q2(t)e

−2t + q3(t)e
−3t + · · · , (2.6)

where q j (t) is a V-valued polynomial in t . For any N ∈ N and m ∈ N one has

‖u(t) −
N∑

j=1

q j (t)e
− j t‖Hm (�) = O

(
e−(N+ε)t

)
as t → ∞ for some ε = εN ,m > 0.

The normalization map W is defined by W (u0) = W1(u0) ⊕ W2(u0) ⊕ · · · , where
W j (u0) = R j q j (0) for j ∈ N. Then W is an one-to-one analytic mapping from R to the
Frechet space SA = R1 H ⊕ R2 H ⊕ · · · endowed with the component-wise topology.
One has W ′(0) = I d, that is

W ′(0)u0 = R1u0 ⊕ R2u0 ⊕ R3u0 ⊕ · · · . (2.7)

For u0 ∈ R \ {0}, there is an eigenvalue n0 of A such that

lim
t→∞

‖u(t)‖2

|u(t)|2 = n0 and lim
t→∞ u(t)en0t = wn0(u0) ∈ Rn0 H \ {0}. (2.8)

In this case W j (u0) = 0, q j = 0 for j < n0, and qn0 = wn0(u0) = Wn0(u0) 
= 0. In
particular, for n0 = 1, we have the the following limits in V :

W1(u0) = lim
τ→∞ eτ u(τ ) = lim

τ→∞ eτ R1u(τ ). (2.9)

2.2. Statistical solutions of the Navier–Stokes equations.

Definition 2.1. We denote by T the class of test functionals


(u) = φ(〈u, g1〉, 〈u, g2〉, . . . , 〈u, gk〉), u ∈ H,

for some k > 0, where φ is a C1 function on R
k with compact support and g1, g2, . . . , gk

are in V .

Definition 2.2. A family {µt }t≥0 of Borel probability measures on H is called a statis-
tical solution of the Navier–Stokes equations with the initial data µ0 if

(i) the initial kinetic energy
∫

H |u|2dµ0(u) is finite;
(ii) the function t �→ ∫

H ϕ(u)dµt (u) is measurable for every bounded and continuous
function ϕ on H;
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(iii) the function t �→ ∫
H |u|2dµt (u) belongs to L∞

loc([0,∞));
(iv) the function t �→ ∫

H ‖u‖2dµt (u) belongs to L1
loc([0,∞));

(v) µt satisfies the Liouville equation

∫
H


(u)dµt (u) =
∫

H

(u)dµ0(u) −

∫ t

0

∫
H

〈Au + B(u, u),
′(u)〉dµs(u)ds,

(2.10)

for all t ≥ 0 and 
 ∈ T ;
(vi) the following energy inequality holds:

∫
H

|u|2dµt (u) + 2
∫ t

0

∫
H

‖u‖2dµs(u)ds ≤
∫

H
|u|2dµ0(u). (2.11)

Recall that for each u0 ∈ H , there exists a Leray-Hopf weak solution u(t) of the
Navier–Stokes equations with u(0) = u0 (cf. [4,17,22]). This weak solution satisfies
u ∈ C([0,∞), Hweak) ∩ L∞((0,∞), H) ∩ L2((0,∞), V ). Additionally, let

G = G(u(·)) = {t0 ≥ 0 : lim
τ↘0

|u(t0 + τ) − u(t0)| = 0}, (2.12)

then 0 ∈ G, the Lebesgue measure of [0,∞)\G is zero and for any t0 ∈ G,

|u(t)|2 + 2
∫ t

t0
‖u(s)‖2ds ≤ |u(t0)|2, t ≥ t0. (2.13)

Denote by � the set of the Leray-Hopf weak solutions of the Navier–Stokes equations
on [0,∞). Hence � ⊂ C([0,∞), Hweak).

Definition 2.3. A statistical solution {µt }t≥0 of the Navier–Stokes equations in the
sense of Definition 2.2 is called a Vishik-Fursikov (VF) statistical solution if there is
a Borel probability measure µ̂, called the Vishik-Fursikov (VF) measure, on the space
C([0,∞), Hweak), such that

(i) µ̂(�) = 1;
(ii) for each t ≥ 0, µt is the projection measure Prt µ̂ on H, i.e.

∫
H


(u)dµt (u) =
∫

�


(v(t))dµ̂(v(·)), for all 
 ∈ C(Hweak). (2.14)

For convenience, we also call Pr0µ̂ the initial data of µ̂.
The existence theorems of the statistical solutions are summarized in the following

([2,3,16]).

Theorem 2.4. Let m be a Borel probability measure on H such that
∫

H |u|2dm(u) is
finite. Then there exists a VF statistical solution {µt }t≥0 with µ0 = m.

Note that such VF statistical solution and VF measure in Theorem 2.4 are not neces-
sarily unique.

Remark 2.5. If u(·) ∈ � then the Dirac measure δu(·) is a VF measure. If µ̂ and m̂ are
two VF measures, so is their convex combination (1 − θ)µ̂ + θm̂, for any θ ∈ (0, 1).
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3. Supplementary Properties of the Normalization Map

In this section, we first extend the definition of W1(u0), for u0 ∈ R, to W1(u(·)), for
u(·) ∈ �. This definition is more suitable for our study of the asymptotic behavior of
the statistical solutions to the Navier–Stokes equations. Basic properties of W1(u(·)) are
derived, in particular its relations with the initial value u(0), hence showing the connec-
tions between the asymptotic and the initial values of the Leray-Hopf weak solutions.

First, we prove an invariant property of the first component of the normalization map
which leads to the extension of that component map later.

We recall from (2.9) that for u0 ∈ R,

W1(u0) = lim
τ→∞ eτ u(τ ) = lim

τ→∞ eτ R1u(τ ),

where the limits are in V .

Lemma 3.1. Let u(·) ∈ � and t0 ≥ 0 such that u(t0) ∈ R. Then

et W1(u(t)) = et0 W1(u(t0)), t ≥ t0. (3.1)

Proof. If u(0) = u0 ∈ R then S(t)u0 ∈ R for t ≥ 0,

W1(u0) = lim
τ→∞ et+τ u(t + τ) = et lim

τ→∞ eτ S(τ )S(t)u0 = et W1(S(t)u0). (3.2)

In general, when u0 ∈ H , let t0 ≥ 0 such that u(t0) is small in V and hence belongs to
R. By (3.2), for τ ≥ 0 and t = τ + t0 ≥ t0,

W1(u(t0)) = eτ W1(S(τ )u(t0)) = e−t0 et W1(u(t)), (3.3)

thus proving (3.1). ��
Remark 3.2. For the existence and estimate of the above t0 see, e.g., Lemmas A.1 and
A.2 below.

Definition 3.3. Let u(·) ∈ �. By virtue of Lemma 3.1, we define

W1(u(·)) = et0 W1(u(t0)), (3.4)

where t0 ≥ 0 such that u(t0) ∈ R.

We then have the following equivalent definition of W1(u(·)) which does not involve
t0 explicitly:

W1(u(·)) = et0 W1(u(t0)) = et0 lim
τ→∞ eτ S(τ )u(t0) = lim

t→∞ et u(t), (3.5)

where the limit is taken in V . Similarly, using the second limit in (2.9) we have

W1(u(·)) = lim
t→∞ et R1u(t). (3.6)

Note that if u0 = u(0) ∈ R, then t0 = 0 and W1(u(·)) = W1(u0). Thus W1(u(·)) is
an extension of W1(u0), u0 ∈ R.

The following is a simple bound of W1(u(·)) in terms of the values u(t), t ∈ G(u(·)),
in particular, the initial value u(0).
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Lemma 3.4. Let u(·) ∈ �. Then

|W1(u(·))| ≤ et |u(t)|, t ∈ G(u(·)). (3.7)

In particular,

|W1(u(·))| ≤ |u(0)|. (3.8)

Proof. Let t ∈ G(u(·)) and τ ≥ t . It follows from (A.5) that

eτ |u(τ )| ≤ eτ e−(τ−t)|u(t)| = et |u(t)|.
Hence |W1(u(·))| = limτ→∞ eτ |u(τ )| ≤ et |u(t)|. ��
Remark 3.5. The estimate (3.8) gives an upper bound for |W1(u(·))|/|u(0)|. However,
there is no positive lower bound for the quotient. Indeed, there is a sequence of solutions
un(·) with nonzero W1(un(·)), such that

lim
n→∞

|W1(un(·))|
|un(0)| = 0.

Proof. Let un
0 = ξ1 + nξ4, where ξ j ∈ R j H, j = 1, 4, such that |ξ1| = |ξ4| = 1 and

B(ξ1, ξ1) = B(ξ4, ξ4) = B(ξ1, ξ4) = B(ξ4, ξ1) = 0. For instance, we can take

ξ1 = e2√
2(2π)3

(eie1·x + e−ie1·x), ξ4 = e2√
2(2π)3

(e2ie1·x + e−2ie1·x).

Then un(t) = ξ1e−t +ξ4e−4t , n ∈ N, are the corresponding regular solutions with initial
data un

0. We thus have

|W1(un(·))|
|un(0)| = |ξ1|

|ξ1 + nξ4| = 1√
1 + n2

→ 0, n → ∞.

��
In the case |W1(u(·)| attains its maximum value |u(0)|, we have the following maxi-

mum principle.

Proposition 3.6. Let u(·) ∈ � and u(0) = u0. If |W1(u(·))| = |u0|, then u0 ∈ R,
u0 = W1(u0) and u(t) = u0e−t for all t ≥ 0.

Proof. By Lemma 3.4 and (A.6), we have |u0| = |W1(u(·))| = et |u(t)|, for t ∈ G(u(·)).
Let I = (t0, t0 + s), s ∈ (0,∞] be an interval of regularity of u(·). Then |u(t)|2 =
e−2t |u0|2 for t ∈ I , hence

d|u(t)|2
dt

+ 2|u(t)|2 = 0, t ∈ I.

Comparing with the energy balance equation

d|u(t)|2
dt

+ 2‖u(t)‖2 = 0, t ∈ I,
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we infer that ‖u(t)‖ = |u(t)| for all t ∈ I . Hence u(t) ∈ R1 H in any interval of
regularity. Due to its weak continuity, u(t) ∈ R1 H for all t ∈ [0,∞). Consequently,
one can check that B(u(t), u(t)) ∈ R2 H for all t ∈ [0,∞). In any interval of regularity,

du(t)/dt + Au(t) = −B(u(t), u(t))

which belongs to both R1 H and R2 H . This is possible only if both sides of the equation
are zero. The weak continuity of u(·) now implies that u(t) = u0e−t for all t ≥ 0, hence
W1(u(·)) = u0. ��

Another consequence of Lemma 3.4 is the following.

Corollary 3.7. Let u(·) ∈ �, then for t ≥ 0 and T > 0 we have

|W1(u(·))|2 ≤ 1

T

∫ t+T

t
e2τ |u(τ )|2dτ ≤ |u(0)|2, (3.9)

and

∫ t+T

t
‖u(τ )‖2dτ ≤ e−2t

2
|u(0)|2 − e−2(t+T )

2
|W1(u(·))|2. (3.10)

Proof. The first inequality of (3.9) comes from (3.7) and the fact that G(u(·)) is dense
in [0,∞). The second inequality of (3.9) is from (A.6).

For t0, t ′0 ∈ [t, t +T ]∩G(u(·)) such that t0 < t ′0, we have from the inequalities (2.13),
(A.6) and (3.7) that

∫ t ′0

t0
‖u(τ )‖2dτ ≤ e−2t0

2
|u(0)|2 − e−2t ′0

2
|W1(u(·))|2.

Then (3.10) follows by taking t0 ↘ t and t ′0 ↗ t + T . ��
Note that (3.10) is a slightly better estimate than (A.7).
It follows from (2.7) that the map W1 : R → SA is differentiable at 0 and W ′

1(0)u =
R1u for all u ∈ V . Noting that W1(0) = 0, we then have

|W1(u) − R1u| = o(‖u‖), for ‖u‖ → 0.

The following lemma provides an explicit estimate for |W1(u) − R1u| in terms of
|u|2. This approximation of W1(u) by R1u using the quadratic term |u|2 when |u| → 0
will be exploited in Sects. 4 and 6. But first let us note from (A.3) that

|〈R1 B(u, v), w〉| = |〈B(u, v), R1w〉| = | − 〈B(u, R1w), v〉|
≤ c3|u| |v| |AR1w|1/2 |A3/2 R1w|1/2.

Since |R1w| = |AR1w| = |A3/2 R1w|, we obtain

|R1 B(u, v)| ≤ c3|u| |v|, u ∈ V, v ∈ DA. (3.11)
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Lemma 3.8. Let u(·) ∈ �, then

|R1u(0) − W1(u(·))| ≤ c3|u(0)|2. (3.12)

More generally,

|et R1(u(t)) − W1(u(·))| ≤ c3et |u(t)|2, t ∈ G(u(·)). (3.13)

Consequently, when eventually u(t0) ∈ R then

|R1(u(t)) − W1(u(t))| ≤ c3|u(t)|2, t ≥ t0. (3.14)

Proof. We have

d R1u

dt
+ R1u = −R1 B(u, u),

whence

et R1u(t) = et ′ R1u(t ′) +
∫ t ′

t
eτ R1 B(u(τ ), u(τ ))dτ, t ′ > t ≥ 0.

Let ξ1 = W1(u(·)) and t ∈ G(u(·)). Using (3.11) and (A.6), we derive

|et R1u(t) − ξ1| ≤ |et ′ R1u(t ′) − ξ1| +
∫ t ′

t
eτ c3e−2(τ−t)|u(t)|2dτ

≤ |et ′ R1u(t ′) − ξ1| + c3|u(t)|2e2t (e−t − e−t ′)

≤ |et ′ R1u(t ′) − ξ1| + c3et |u(t)|2.
Letting t ′ → ∞ gives (3.13), by (3.6). Also, when u(t0) ∈ R and t ≥ t0,
ξ1 = et W1(u(t)), hence (3.14) follows. By setting t = 0 in (3.13), we obtain (3.12). ��

According to Remark 3.5, the quotient |W1(u(·))|/|u(0)| is not bounded below by a
positive constant in general. However, Lemma 3.8 immediately shows that this can be
the case for u(0) belonging to some “cones” in H near the origin.

Corollary 3.9. Given θ ∈ (0, 1), there are positive numbers α1 and α2 such that if
u(·) ∈ � satisfies

|u(0)| ≤ α2 and |u(0) − R1u(0)| ≤ α1|u(0)|
then

|W1(u(·))| ≥ θ |u(0)|. (3.15)

Proof. By Lemma 3.8,

|W1(u(·))| ≥ |R1u(0)| − |R1u(0) − W1(u(·))|
≥ |u(0)| − |u(0) − R1u(0)| − c3|u(0)|2
≥ (1 − α1 − c3|u(0)|)|u(0)|.

Then (3.15) follows with α1 < 1 − θ and α2 = (1 − θ − α1)/c3. ��
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The conditions in Corollary 3.9 require small |u(0)|. We show below that the
conclusion in Corollary 3.9 still holds for u in a V -neighborhood of a special unbounded
set B1 in H . Let

B1 = {u ∈ R1 H : u 
= 0, B(u, u) = 0}. (3.16)

By (2.5), the set B1 contains R+
1 H ∪ R−

1 H , hence is not empty. Also, if u ∈ B1, then
e−t u is the regular solution with initial data u, hence W1(u) = u.

Proposition 3.10. Let u∗ ∈ B1 and θ ∈ (0, 1). There exists ε2 = ε2(|u∗|, θ) > 0 such
that if ‖v0‖ ≤ ε2 then u0 = u∗ + v0 ∈ R and

θ |u0| ≤ |W1(u0)| ≤ |u0|. (3.17)

Proof. Let ε(|u∗|) be defined as in Lemma A.3,

ε1 = min

{ |u∗|
2

, ε(|u∗|)
}

and ε2 = min

{
ε1,

(1 − θ)(|u∗| − ε1)

1 + ec3|u∗|

}
, (3.18)

where c3 > 0 is given in the Appendix. Since ‖v0‖ ≤ ε1, we have u0 ∈ R according to
Lemma A.3. Let u(t) = S(t)u0 and v(t) = u(t) − e−t u∗. By (A.12), we obtain

et |u(t)| ≥ |u∗| − et |v(t)| ≥ |u∗| − |v0|ec3|u∗|.

It follows that

|W1(u0)| = lim
t→∞ et |u(t)| ≥ |u∗| − |v0|ec3|u∗|,

and we obtain

|W1(u0)| ≥ |u0| − |v0| − |v0|ec3|u∗| = |u0| − |v0|(1 + ec3|u∗|). (3.19)

Note that |u0| ≥ |u∗| − ε1 > 0, then ‖v0‖ ≤ ε2 implies

|v0| ≤ (1 − θ)|u0|
1 + ec3|u∗| ,

hence (3.19) yields |W1(u0)| ≥ |u0| − (1 − θ)|u0| = θ |u0|. ��
Lemma 3.11. The function F : u(·)∈�→W1(u(·)) is Borel measurable. Consequently,
F is µ̂-measurable for any VF measure µ̂.

Proof. We have for each t ≥ 0 that the function Ft : u(·) ∈ � → et u(t) ∈ H is
weakly continuous, hence Hweak-Borel measurable. Since the Borel sets of Hweak are
the same as those of H , the function Ft is (strongly) Borel measurable. The fact that
W1(u(·)) = limt→∞ et u(t) implies that F is Borel measurable. ��
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4. Asymptotic Behavior of the Mean Flows

In this section, let µ̂ be a VF measure on the trajectory space � (see Definition 2.3) and
let {µt }t≥0 be the family of its projections which is a statistical solution on the phase
space H (see Definition 2.2). Recall that µ0 satisfies the finite initial energy condition:∫

�

|u(0)|2dµ̂(u(·)) =
∫

H
|u|2dµ0(u) < ∞. (4.1)

This condition, (3.8) and the fact that W1(u(·)) ∈ R1 H imply∫
�

‖W1(u(·))‖2dµ̂(u(·)) =
∫

�

|W1(u(·))|2dµ̂(u(·)) ≤
∫

�

|u(0)|2dµ̂(u(·)) < ∞.

We first describe the asymptotic behavior of the mean energy.

Proposition 4.1. We have

lim
t→∞ e2t

∫
H

|u|2dµt (u) =
∫

�

|W1(u(·))|2dµ̂(u(·)). (4.2)

Proof. First, e2t
∫

H |u|2dµt (u) = e2t
∫
�

|u(t)|2dµ̂(u(·)). Since e2t |u(t)|2 ≤ |u(0)|2,
by (A.5), and

∫
�

|u(0)|2dµ̂(u(·)) < ∞, applying Lebesgue’s dominated convergence
theorem gives

lim
t→∞ e2t

∫
H

|u|2dµt (u) =
∫

�

lim
t→∞ e2t |u(t)|2dµ̂(u(·)) =

∫
�

|W1(u(·))|2dµ̂(u(·)).
��

For the mean energy dissipation rate,
∫
�

‖u(t)‖2dµ̂(u(·)) is only defined almost
everywhere on (0,∞). However, by virtue of Lemma A.2, we can study the asymp-
totic behavior of the mean energy dissipation rate on the set of solutions with uniformly
bounded initial values in H . More precisely, we obtain:

Lemma 4.2. For any r > 0, we have

lim
t→∞

∫
{u(·)∈�:|u(0)|<r}

e2t‖u(t)‖2dµ̂(u(·)) =
∫

{u(·)∈�:|u(0)|<r}
‖W1(u(·))‖2dµ̂(u(·))

(4.3)

and

lim
t→∞

∫
{u(·)∈�:|u(0)|<r}

e2tH(u(t))dµ̂(u(·)) =
∫

{u(·)∈�:|u(0)|<r}
H(W1(u(·)))dµ̂(u(·)).

(4.4)

Proof. By virtue of Lemma A.2, there is t (r) > 0 such that for any u(·) ∈ � with
|u(0)| < r we have

u(t) ∈ R and et‖u(t)‖ ≤ 2e|u(0)|, t ≥ t (r).

Note that the integrals on the left-hand sides of (4.4) and (4.4) are well-defined for
t ≥ t (r). Then noting that∫

{u(·)∈�:|u(0)|<r}
|u(0)|2dµ̂(u(·)) ≤

∫
�

|u(0)|2dµ̂(u(·)) < ∞,

we apply Lebesgue’s dominated convergence theorem. ��
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Since
∫

H ‖u‖2dµt (u) is not known to be defined for all t ∈ [t0,∞) for some t0 ≥ 0,
we can not obtain the same result as Proposition 4.1 for the dissipation rate of energy.
However, the energy inequality (2.11) suggests the consideration of the moving average
in time 1

T

∫ t+T
t e2s

∫
H ‖u‖2dµs(u)ds and its limit as t → ∞. We also consider similar

moving averages of the mean energy and helicity.

Proposition 4.3. For any T > 0, we have

lim
t→∞

1

T

∫ t+T

t
e2s

∫
H

|u|2dµs(u)ds =
∫

�

|W1(u(·))|2dµ̂(u(·)), (4.5)

lim
t→∞

1

T

∫ t+T

t
e2s

∫
H

‖u‖2dµs(u)ds =
∫

�

‖W1(u(·))‖2dµ̂(u(·)), (4.6)

and

lim
t→∞

1

T

∫ t+T

t
e2s

∫
H

H(u)dµs(u)ds =
∫

�

H(W1(u(·)))dµ̂(u(·)), (4.7)

where H(u) = 〈Cu, u〉, for u ∈ V .

Proof. Fix T > 0. For the mean energy, (4.5) is a consequence of Proposition 4.1.
We prove (4.6) next. For t ≥ 0 and r > 0, let

I (t) = 1

T

∫ t+T

t

∫
H

e2s‖u‖2dµs(u) = I1(t, r) + I2(t, r),

where

I1(t, r) = 1

T

∫ t+T

t

∫
{u∈H :|u|<r}

e2s‖u‖2dµs(u),

I2(t, r) = 1

T

∫ t+T

t

∫
{u∈H :|u|≥r}

e2s‖u‖2dµs(u).

Also, let

J =
∫

�

‖W1(u(·))‖2dµ̂(u(·)) = J1(r) + J2(r),

where

J1(r) =
∫

{u(·)∈�:|u(0)|<r}
‖W1(u(·))‖2dµ̂(u(·)),

J2(r) =
∫

{u(·)∈�:|u(0)|≥r}
‖W1(u(·))‖2dµ̂(u(·)).

Then

|I (t) − J | ≤ |I1(t, r) − J1(r)| + I2(t, r) + J2(r). (4.8)

First, by Lemma 3.4, we have

J2(r) ≤
∫

{u(·)∈�:|u(0)|≥r}
|u(0)|2dµ̂(u(·)) =

∫
{u∈H :|u|≥r}

|u|2dµ0(u). (4.9)
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Second, by using Fubini’s theorem,

I2(t, r) = 1

T

∫ t+T

t

∫
{u(·)∈�:|u(0)|≥r}

e2s‖u(s)‖2dµ̂(u(·))ds

= 1

T

∫
{u(·)∈�:|u(0)|≥r}

∫ t+T

t
e2s‖u(s)‖2dsdµ̂(u(·))

≤ 1

T

∫
{u(·)∈�:|u(0)|≥r}

e2(t+T )

∫ t+T

t
‖u(s)‖2dsdµ̂(u(·)).

Using (A.7), we continue to estimate

I2(t, r) ≤ e2T

T

∫
{u(·)∈�:|u(0)|≥r}

1

2
|u(0)|2dµ̂(u(·))

= e2T

2T

∫
{u∈H :|u|≥r}

|u|2dµ0(u).

Given ε > 0. By (4.1), there is r = r(ε) > 0 such that

e2T

2T

∫
{u∈H :|u|≥r}

|u|2dµ0(u) < ε/3,

hence

J2(r) < ε/3 and I2(t, r) < ε/3, t ≥ 0. (4.10)

By Lemma 4.2, there is t0 = t0(r) ≥ 0 such that for all s ≥ t0,

∣∣∣∣
∫

{u(·)∈�:|u(0)|<r}
e2s‖u(s)‖2dµ̂(u(·)) − J1(r)

∣∣∣∣ < ε/3.

Hence

|I1(t, r) − J1(r)| ≤ 1

T

∫ t+T

t

∣∣∣∣
∫

{u(·)∈�:|u(0)|<r}
e2s‖u(s)‖2dµ̂(u(·)) − J1(r)

∣∣∣∣ ds

<
1

T

∫ t+T

t
ε/3ds = ε/3. (4.11)

Combining (4.8), (4.10) and (4.11), we have that for all t ≥ t0,

|I (t) − J | < ε/3 + ε/3 + ε/3 = ε,

thus proving (4.6).
For the mean helicity, the proof of (4.7) is similar. ��
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Motivated by the existence of the limits in Proposition 4.3 we now study the following
ensemble averages of the energy, energy dissipation rate and helicity:

1

T

∫ t+T

t

∫
H

|u|2dµs(u)ds,
1

T

∫ t+T

t

∫
H

‖u‖2dµs(u)ds and

1

T

∫ t+T

t

∫
H

H(u)dµs(u)ds.

(4.12)

The following is a direct consequence of Proposition 4.3 and the elementary fact that
if f is a measurable function on some interval (c,∞) such that

lim
t→∞ e2t f (t) = a ∈ R,

then

lim
t→∞

e2t

T

∫ t+T

t
f (s)ds = 1 − e−2T

2T
a (4.13)

for any fixed T > 0.

Corollary 4.4. We have for any T > 0 that

lim
t→∞

e2t

T

∫ t+T

t

∫
H

|u|2dµs(u)ds = 1 − e−2T

2T

∫
�

|W1(u(·))|2dµ̂(u(·)), (4.14)

lim
t→∞

e2t

T

∫ t+T

t

∫
H

‖u‖2dµs(u)ds = 1 − e−2T

2T

∫
�

|W1(u(·))|2dµ̂(u(·)), (4.15)

and

lim
t→∞

e2t

T

∫ t+T

t

∫
H

H(u)dµs(u)ds = 1 − e−2T

2T

∫
�

H(W1(u(·)))dµ̂(u(·)). (4.16)

Remark 4.5. The limits in Corollary 4.4 yield the lower and upper bounds for the ensem-
ble averages in (4.12) when t is large. However, we need later bounds valid for all t ≥ 0,
namely,

e−2(t+T )

∫
�

|W1u(·))|2dµ̂(u(·)) ≤ 1

T

∫ t+T

t

∫
H

|u|2dµτ (u)dτ

≤ e−2t
∫

H
|u|2dµ0(u), (4.17)

e−2(t+T )

∫
�

|W1u(·))|2dµ̂(u(·)) ≤ 1

T

∫ t+T

t

∫
H

‖u‖2dµτ (u)dτ

≤ e−2t

2T

∫
H

|u|2dµ0(u)

−e−2(t+T )

2T

∫
�

|W1(u(·))|2dµ̂(u(·)), (4.18)

for T > 0 and t ≥ 0. They follow readily from (3.10) and (3.9).
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According to Proposition 4.1, one can understand the asymptotic behavior of the
mean energy by studying

∫
�

|W1(u(·))|2dµ̂(u(·)). However, there is yet no explicit way
to find W1(u(·)) and µ̂. Fortunately, W1(u(·)) is related to R1u(0) by (3.12). Therefore,
in some cases, we can reduce our study to

∫
H |R1u|2dµ0(u) which only involves the ini-

tial measure µ0 and the finite rank projection R1. Similarly, the study of the asymptotic
behavior of the mean helicity can be reduced to

∫
H H(R1u)dµ0(u).

To start, we derive some bounds for
∫
�

|W1(u(·))|2dµ̂(u(·)) using µ0.

Proposition 4.6. We have
∫

R+
1 H∪R−

1 H
|u|2dµ0(u) ≤

∫
�

|W1(u(·))|2dµ̂(u(·)) ≤
∫

H
|u|2dµ0(u). (4.19)

Proof. The second half of (4.19) follows from (3.8) and (2.14). If u0 belongs to R+
1 H

or R−
1 H , then B(u0, u0) = 0 and hence the corresponding solution is u(t) = u0e−t ,

which implies W (u(·)) = u0. Therefore,
∫

�

|W1(u(·))|2dµ̂(u(·)) ≥
∫

{u(·)∈�:u(0)∈R+
1 H∪R−

1 H}
|W1(u(·))|2dµ̂(u(·))

=
∫

{u(·)∈�:u(0)∈R+
1 H∪R−

1 H}
|u(0)|2dµ̂(u(·))

=
∫

R+
1 H∪R−

1 H
|u|2dµ0(u),

thus yields the first half of (4.19). ��
Next, we want to find some sufficient conditions in order that∫

�

|W1(u(·))|2dµ̂(u(·)) 
= 0 or
∫

�

H(W1(u(·)))dµ̂(u(·)) 
= 0.

Note from Proposition 4.6 that the integral
∫
�

|W1(u(·))|2dµ̂(u(·)) is positive when-
ever

∫
R+

1 H∪R−
1 H |u|2dµ0(u) is positive. However, the latter condition does not hold even

when µ0 is a Gaussian measure on R1 H . Therefore we need to study other criteria which
cover more classes of measures. We turn to a statistical version of (3.12) and its similar
estimate for the helicity.

Lemma 4.7. We have∫
�

|R1u(0) − W1(u(·))|dµ̂(u(·)) ≤ c3

∫
H

|u|2dµ0(u), (4.20)

and for any r > 0,
∫

�

|H(R1u(0)) − H(W1(u(·)))|dµ̂(u(·)) ≤ Ir , (4.21)

where

Ir = 2c3r
∫

{u∈H :|u|<r}
|u|2dµ0(u) + 4

∫
{u∈H :|u|≥r}

|u|2dµ0(u). (4.22)
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Proof. The inequality (4.20) follows directly from (3.12):
∫

�

|R1u(0) − W1(u(·))|dµ̂(u(·)) ≤ c3

∫
�

|u(0)|2dµ̂(u(·)) = c3

∫
H

|u|2dµ0(u).

Note that |CR1u| = ‖R1u‖ = |R1u|. For the helicity,
∫

�

|H(R1u(0)) − H(W1(u(·)))|dµ̂(u(·))

≤
∫

�

|CR1u(0) − CW1(u(·))||R1u(0)|dµ̂(u(·))

+
∫

�

|CW1(u(·))||R1u(0) − W1(u(·))|dµ̂(u(·))

≤ 2
∫

�

|u(0)||R1u(0) − W1(u(·))|dµ̂(u(·))

≤ 2

{∫
{u(·)∈�:|u(0)|<r}

+
∫

{u(·)∈�:|u(0)|≥r}

}
|u(0)||R1u(0) − W1(u(·))|dµ̂(u(·)).

Using (3.12) for the integral on {u(·) ∈ � : |u(0)| < r}, and using (3.8) for the integral
on {u(·) ∈ � : |u(0)| ≥ r}, we obtain

∫
�

|H(R1u(0)) − H(W1(u(·)))|dµ̂(u(·))

≤ 2c3

∫
{u(·)∈�:|u(0)|<r}

|u(0)|3dµ̂(u(·)) + 4
∫

{u(·)∈�:|u(0)|≥r}
|u(0)|2dµ̂(u(·))

≤ 2rc3

∫
{u∈H :|u|<r}

|u|2dµ0(u) + 4
∫

{u∈H :|u|≥r}
|u|2dµ0(u) = Ir .

��
Using Lemma 4.7, we establish some sufficient conditions under which the integral∫

�
|W1(u(·))|dµ̂(u(·)) or

∫
�

H(W1(u(·)))dµ̂(u(·)) does not vanish.

Corollary 4.8. We have the following:

(i) If
∫

H |R1u|dµ0(u) > c3
∫

H |u|2dµ0(u), then
∫
�

|W1(u(·))|dµ̂(u(·)) > 0 and
subsequently,

∫
�

|W1(u(·))|2dµ̂(u(·)) > 0.
(ii) If

∫
H H(R1u)dµ0(u) > Ir , resp.

∫
H H(R1u)dµ0(u) < −Ir , for some r > 0,

where Ir is defined by (4.22), then
∫

�

H(W1(u(·)))dµ̂(u(·)) > 0, resp.
∫

�

H(W1(u(·)))dµ̂(u(·)) < 0.

Proof. By (4.20), we have
∫

�

|W1(u(·))|dµ̂(u(·)) ≥
∫

�

|R1u(0)|dµ̂(u(·)) −
∫

�

|R1u(0) − W1(u(·))|dµ̂(u(·))

≥
∫

H
|R1u|dµ0(u) − c3

∫
H

|u|2dµ0(u),
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hence obtaining (i). The proof of (ii) follows from (4.21) and the following triangular
inequalities:

∫
�

H(W1(u(·)))dµ̂(u(·)) ≥
∫

�

H(R1u(0))dµ̂(u(·))

−
∫

�

|H(R1u(0)) − H(W1(u(·)))|dµ̂(u(·)),
∫

�

H(W1(u(·)))dµ̂(u(·)) ≤
∫

�

H(R1u(0))dµ̂(u(·))

+
∫

�

|H(W1(u(·))) − H(R1u(0))|dµ̂(u(·)).

��

5. Statistical Solutions with Initial Gaussian Measures

In this section, we focus on VF statistical solutions of the Navier–Stokes equations with
initial Gaussian probability measures. In particular, we will construct some Gaussian
measures on H to which we can apply Corollary 4.8 to obtain

∫
�

|W1(u(·))|2dµ̂(u(·)) > 0 or
∫

�

H(W1(u(·)))2dµ̂(u(·)) 
= 0

for any VF measure µ̂ having one of those Gaussian measures as the initial data.

Example 5.1. Let N1(= 12) be the dimension of R1 H and {w j , j = 1, . . . , N1} be an
orthonormal basis in R1 H and {wn, n > N1} be an orthonormal basis in (I − R1)H .
For each u of H , we write

u =
∞∑
j=1

x jw j . (5.1)

Let µ be a Gaussian probability measure on H such that the density of the distribution

of the random variable x j is given by 1√
2πσ j

exp

(
− x2

j

2σ 2
j

)
, with σ j > 0 for all j ∈ N

and the random variable x j , j ∈ N, are independent, (see e.g. [23]). Of course, the σ j
must satisfy the condition

∞∑
j=1

σ 2
j < ∞.

The variance of µ is

σ 2 =
∫

H
|u|2dµ(u) =

∞∑
j=1

σ 2
j . (5.2)

This measure satisfies the following:
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Lemma 5.2. For every r > 0, we have
∫

{u∈H :|u|≥r}
|u|2dµ(u) ≤

∫
{u∈H :|R1u|≥r/2}

|R1u|2dµ(u) +
4σ 2σ 2

r2 + σ 2, (5.3)

where σ 2 = ∑N1
j=1 σ 2

j and σ 2 = σ 2 − σ 2.

Proof. Note that∫
{u∈H :|u|≥r}

|u|2dµ(u) ≤
∫

{u∈H :|u|≥r}
|R1u|2dµ(u) +

∫
H

|(I − R1)u|2dµ(u)

≤
∫

{u∈H :|R1u|≥r/2}
|R1u|2dµ(u) +

∫
{u∈H :|(I−R1)u|≥r/2}

|R1u|2dµ(u) + σ 2

and ∫
{u∈H :|(I−R1)u|≥r/2}

|R1u|2dµ(u)

≤
[∫

H
|R1u|2dµ(u)

]
µ({u ∈ H : |(I − R1)u| ≥ r/2})

≤ σ 2

∫
{u∈H :|(I−R1)u|≥r/2} |(I − R1)u|2dµ(u)

(r/2)2 ≤ 4σ 2σ 2

r2 .

Thus (5.3) follows. ��
Proposition 5.3. Let 0 < ε < 1/(c3

√
2π N1) and µ be the Gaussian probability mea-

sure defined in Example 5.1 with σ j = ε, j = 1, . . . , N1, and σ 2 = 2N1ε
2. For any VF

measure µ̂ with initial data µ, we have
∫
�

|W1(u(·))|2dµ̂(u(·)) > 0.

Proof. From (5.2), we have ∫
H

|u|2dµ(u) = 2N1ε
2. (5.4)

Also, ∫
H

|R1u|dµ(u) ≥ 1√
N1

∫
RN1

(|x1| + |x2| + · · · + |xN1 |)

×
N1∏
j=1

1√
2πσ j

exp

(
− x2

j

2σ 2
j

)
dx1 . . . dxN1

=
√

2√
π N1

N1∑
j=1

σ j . (5.5)

Hence
∫

H
|R1u|dµ(u) ≥

√
2√

π N1
N1ε =

√
2N1√
π

ε. (5.6)

Thus,
∫

H |R1u|dµ(u) > c3
∫

H |u|2dµ(u). Then we apply Corollary 4.8. ��
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If the upper bound of ε is slightly smaller, we obtain a lower bound for the integral∫
�

|W1(u(·))|2dµ̂(u(·)) which is comparable with the initial kinetic energy.

Corollary 5.4. Letµand µ̂be the measures in Proposition 5.3. If 0< ε < 1/(2c3
√

2π N1),
then

1

4π

∫
H

|u|2dµ(u) <

∫
�

|W1(u(·))|2dµ̂(u(·)) ≤
∫

H
|u|2dµ(u). (5.7)

Proof. The second inequality of (5.7) is from Proposition 4.6. For the first inequality,
we use (4.20), (5.6) and (5.4) to have

∫
�

|W1(u(·))|2dµ̂(u(·)) ≥
[∫

�

|W1(u(·))|dµ̂(u(·))
]2

≥
[∫

H
|R1u|dµ(u) − c3

∫
H

|u|2dµ(u)

]2

≥
[

2
√

N 1√
2π

ε − 2N1c3ε
2

]2

> ε2 N1

2π
= 1

4π

∫
H

|u|2dµ(u).

��
Remark 5.5. It is already known that∫

H
|u|2dµt (u) ≤ e−2t

∫
H

|u|2dµ0(u), t ≥ 0. (5.8)

If µ0 = µ is a measure satisfying the conditions in Corollary 5.4, then Proposition 4.1
and Corollary 5.4 now imply that∫

H
|u|2dµt (u) ≥ 1

4π
e−2t

∫
H

|u|2dµ0(u), t ≥ t0, (5.9)

for some t0 ≥ 0.

Example 5.6. We consider the Gaussian measure µ defined in Example 5.1. To find
µ0 = µ that satisfies the condition in Corollary 4.8, we will be more specific in choos-
ing the orthonormal system w1, w2, . . . , wN1 in R1 H .

First we recall that R+
1 , resp. R−

1 , is the orthogonal projection of H onto the eigenspace
of the curl operator C corresponding to the eigenvalue 1, resp. (−1). Since dim R+

1 H =
dim R−

1 H = N = N1/2 = 6, we choose {w1, . . . , wN } to be an orthonormal basis in
R+

1 H and {wN+1, . . . , w2N } to be one in R−
1 H . Then

∫
H

H(R1u)dµ(u) =
∫

H
|R+

1 u|2dµ(u) −
∫

H
|R−

1 u|2dµ(u) = σ 2
+ − σ 2−, (5.10)

where σ 2
+ = ∑N

j=1 σ 2
j and σ 2− = ∑2N

j=N+1 σ 2
j .

We will find a Gaussian measure that satisfies part (ii) of Corollary 4.8. For that
purpose, we need to estimate the quantity Ir defined by (4.22).
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Lemma 5.7. Let r > 0, δ ∈ (0, 1) and µ be the measure constructed in Example 5.1
with 0 < σ j ≤ r/(2N1 Mδ), j = 1, 2, . . . , N1, where Mδ > 0 satisfies

1√
2π

∫
{t∈R:|t |≥Mδ}

t2e−t2/2dt = δ. (5.11)

Let Ir be defined by (4.22) with µ0 = µ. Then

Ir ≤ σ 2
(

2c3r + 4δ +
16σ 2

r2

)
+ (2c3r + 4)σ 2. (5.12)

Proof. Recall that, for r > 0,

Ir = 2c3r
∫

{u∈H :|u|<r}
|u|2dµ(u) + 4

∫
{u∈H :|u|≥r}

|u|2dµ(u).

By the change of variable t = x j/σ j , we have

∫
{x j ∈R:|x j |≥r/(2N1)}

|x j |2 1√
2πσ j

exp

(
− x2

j

2σ 2
j

)
dx j

= 1√
2π

∫
{|t |≥r/(2N1σ j )}

σ 2
j |t |2e−|t |2/2dt ≤ 1√

2π

∫
{|t |≥Mδ}

σ 2
j |t |2e−|t |2/2dt ≤ δσ 2

j .

Hence

∫
{u∈H :|R1u|≥r/2}

|R1u|2dµ(u) =
∫

{x∈RN1 :|x |≥r/2}
|x |2

N1∏
j=1

1√
2πσ j

exp

(
− x2

j

2σ 2
j

)
dx

≤
N1∑
j=1

∫
{x j ∈R:|x j |≥r/(2N1)}

|x j |2 1√
2πσ j

exp

(
− x2

j

2σ 2
j

)
dx j

≤ δσ 2.

Applying Lemma 5.2, we obtain

∫
{u∈H :|u|≥r}

|u|2dµ(u) ≤ δσ 2 +
4σ 2σ 2

r2 + σ 2.

Since 2c3r
∫
{u∈H :|u|<r} |u|2dµ(u) ≤ 2c3rσ 2, we have

Ir ≤ 2c3r
(
σ 2 + σ 2

)
+ 4

(
4σ 2σ 2

r2 + σ 2 + δσ 2
)

,

and (5.12) follows. ��
Now, the condition in the second statement of Corollary 4.8 can be fulfilled by some

explicit Gaussian measures.
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Proposition 5.8. There exists a Gaussian probability measure µ0,+, resp. µ0,−, as
defined in Example 5.6 such that any VF measure µ̂+, resp. µ̂−, with initial data µ0,+,
resp. µ0,−, satisfies

∫
�

H(W1(u(·)))dµ̂+(u(·)) > 0, (5.13)

resp. ∫
�

H(W1(u(·)))dµ̂−(u(·)) < 0. (5.14)

Proof. Let σ j = ε+ for j = 1, . . . , N , and σ j = ε− for j = N + 1, . . . , 2N .
For (5.13), we take ε+ = √

2ε and ε− = ε, for some ε > 0. By (5.10), we have∫
H

H(R1u)dµ(u) = N (ε2
+ − ε2−) = Nε2. (5.15)

Note that σ 2 = 3Nε2. In addition, if

2c3r <
1

18
, 0 < 4δ <

1

18
, 0 < ε <

r

4
√

2N1 Mδ

,
16σ 2

r2 <
1

18
and (

1

18
+ 4)σ 2 <

ε2 N

2
,

where Mδ is defined in (5.11), then it follows from Lemma 5.7 that

Ir ≤ 3Nε2(2c3r + 4δ +
16σ 2

r2 ) + (2c3r + 4)σ 2

< 3Nε2(
1

18
+

1

18
+

1

18
) +

ε2 N

2

= Nε2 =
∫

H
H(R1u)dµ(u).

Then applying Corollary 4.8 (ii), we obtain (5.13).
For (5.14), we choose ε− = √

2ε and ε+ = ε, then the sum ε2
+ + ε2− is still 3Nε2,

hence Ir remains less than Nε2. However,
∫

H H(R1u)dµ(u) = −Nε2 and therefore∫
H H(R1u)dµ(u) < −Ir . Again, (5.14) follows from Corollary 4.8 (ii). ��

Next, we construct Gaussian measures µ’s such that for the corresponding VF mea-
sures µ̂’s the integrals

∫
�

|W1(u(·))|2dµ̂(u(·)) are arbitrarily large.

Proposition 5.9. For any M > 0, there exists a VF measure µ̂ such that its initial data
is a Gaussian probability measure and∫

�

|W1(u(·))|2dµ̂(u(·)) ≥ M. (5.16)

Proof. Let µ be a Gaussian measure as in Example 5.6 and let µ̂ be a VF measure with
initial data µ. Fix M > 0 and θ ∈ (0, 1). Take σ+ > 0 such that θ5σ 2

+ ≥ M . Since
limK→∞

∫
{u∈H :1/K≤|R+

1 u|≤K } |R+
1 u|2dµ(u) = σ 2

+ , we can choose K sufficiently large
so that ∫

{u∈H :1/K≤|R+
1 u|≤K }

|R+
1 u|2dµ(u) ≥ θσ 2

+ . (5.17)
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Let B1(θ) = {u + v : u ∈ B1, ‖v‖ < ε2(|u|, θ)}, where B1 is defined by (3.16) and
ε2(|u|, θ) is in (3.18). By virtue of Proposition 3.10, (3.18) and (A.14), there is ε > 0
depending on K and θ such that

B±
1 (K , θ)

def== {u + v : u ∈ R±
1 H, 1/K ≤ |u| ≤ K , ‖v‖ ≤ 2ε} ⊂ B1(θ).

According to Proposition 3.10, |W1(u)| ≥ θ |u| for u ∈ B±
1 (K , θ). Thus we have

∫
�

|W1(u(·))|2dµ̂(u(·)) ≥
∫

{u(·)∈�:u(0)∈B1(θ)}
θ2|u(0)|2dµ̂(u(·))

= θ2
∫

{u∈H :u∈B1(θ)}
|u|2dµ(u)

≥ θ2
∫
B+

1 (K ,θ)

|u|2dµ(u)

≥ θ2
∫
⎧⎨
⎩

u∈H :1/K≤|R+
1 u|≤K ,|R−

1 u|≤ε,

‖(I−R1)u‖≤ε

⎫⎬
⎭

|R+
1 u|2dµ(u)

= θ2

{∫
{u∈H :1/K≤|R+

1 u|≤K }
|R+

1 u|2dµ(u)

}
µ({u ∈ H : |R−

1 u| ≤ ε})

×µ({u ∈ H : ‖(I − R1)u‖ ≤ ε}). (5.18)

Assume for the moment that there are σ j , for j > N , such that

µ({u ∈ H : |R−
1 u| ≤ ε}) ≥ θ, (5.19)

µ({u ∈ H : ‖(I − R1)u‖ ≤ ε}) ≥ θ. (5.20)

Then combining (5.17), (5.18), (5.19) and (5.20) we obtain∫
�

|W1(u(·))|2dµ̂(u(·)) ≥ θ2(θσ 2
+ )θ2 = θ5σ 2

+ ≥ M, (5.21)

hence (5.16). It remains to verify (5.19) and (5.20).
Verification of (5.19). We have

µ({u ∈ H : |R−
1 u| ≤ ε}) =

∫
{x∈RN :|x |≤ε}

N∏
j=1

1√
2πσN+ j

e
− x2

j

2σ2
N+ j dx

≥
N∏

j=1

∫
{|x j |≤ε/N }

1√
2πσN+ j

e
− x2

j

2σ2
N+ j dx j

=
N∏

j=1

∫ ε/(NσN+ j )

−ε/(NσN+ j )

1√
2π

e− y2
j

2 dy j .

For δ ∈ (0, 1), let m(δ) be the positive number such that
∫ m(δ)

−m(δ)

1√
2π

e− t2
2 dt = δ.
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Let σN+ j = ε− ≤ ε/(Nm(θ1/N )) for j = 1, . . . , N . We then obtain

µ({u ∈ H : |R−
1 u| ≤ ε}) ≥

(∫ m(θ1/N )

−m(θ1/N )

1√
2π

e− t2
2 dt

)N

= θ.

Verification of (5.20). We will determine σ j for j > N1 such that (5.20) holds. Suppose
Aw j = λ jw j , where (λ j )

∞
j=1 is the increasing sequence of eigenvalues of the Stokes

operator. For w = ∑∞
j=N1+1 x jw j ∈ (I − R1)H , we have ‖w‖2 = ∑∞

j=N1+1 λ j |x j |2.
Note that

{
∞∑

j=N1+1

x jw j : |x j | ≤ 2N ε

2 j/2λ
1/2
j

} ⊂ {w ∈ (I − R1)H : ‖w‖ ≤ ε}.

For j > N1, let σ j > 0 be sufficiently small such that

2N ε

2 j/2λ
1/2
j σ j

≥ m(θ2N1/2 j
).

We obtain

µ({u ∈ H : ‖(I − R1)u‖ ≤ ε}) ≥
∞∏

j=N1+1

∫
{|x j |≤ ε

2 j/2λ
1/2
j

}
1√

2πσ j
e
− x2

j

2σ2
j dx j

≥
∞∏

j=N1+1

∫ m(θ2N1/2 j
)

−m(θ2N1/2 j
)

1√
2π

e− t2
2 dt

=
∞∏

j=N1+1

θ2N1/2 j = θ,

hence (5.20) is satisfied. The proof is complete. ��
Remark 5.10. In the above proof, if σ 2−, σ 2 ≤ 1 and σ 2

+ ≥ 2α, where α = θ/(1 − θ),
then σ 2

+ ≥ α(σ 2− + σ 2) and

σ 2
+ ≥ ασ 2/(1 + α) = θσ 2. (5.22)

From (5.22) and (5.21), we have∫
�

|W1(u(·))|2dµ̂(u(·)) ≥ θ6
∫

H
|u|2dµ(u).

Hence we have proved that for any given M > 0 and θ ∈ (0, 1), there exists a VF
measure µ̂ with Gaussian initial data µ such that∫

H
|u|2dµ(u) ≥ M (5.23)

and

θ

∫
H

|u|2dµ(u) ≤
∫

�

|W1(u(·))|2dµ̂(u(·)) ≤
∫

H
|u|2dµ(u). (5.24)
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6. Asymptotic Beltrami Flows

A C1 vector field u(x) in R
3 is a said to be Beltrami if

∇ × u(x) = α(x)u(x), x ∈ R
3, some α(x) ∈ R. (6.1)

Note that if u = u(·) is an eigenfunction of the curl operator C, then (6.1) holds with
α ≡ ±√

n, for some n ∈ σ(A). The converse is considered in the following:

Lemma 6.1. ([1]) Let u = u(·) ∈ Rn H \{0}, where n ∈ σ(A). If ∇ × u(x) = α(x)u(x)

a.e., for some α(·) ∈ R, then u is an eigenfunction of the curl operator, i.e., Cu = √
nu

or Cu = −√
nu.

Corollary 6.2. Let u ∈ Rn H \{0}, where n ∈ σ(A). Then u is Beltrami if and only if u
is an eigenfunction of the curl operator, i.e., Cu = √

nu or Cu = −√
nu.

Let u(·) ∈ � be such that there is t0 ≥ 0, u(t0) ∈ R \ {0}. Then

n = lim
τ→∞

‖u(t0 + τ)‖2

|u(t0 + τ)|2 = lim
t→∞

‖u(t)‖2

|u(t)|2
is an eigenvalue of the Stokes operator A.

Note that the eigenvalue n above depends on the asymptotic behavior of the solution
but not on the value of t0. Therefore we define

n∗(u(·)) = lim
t→∞

‖u(t)‖2

|u(t)|2 . (6.2)

Denote n∗ = n∗(u(·)). Define

W∗(u(·)) = lim
t→∞ en∗t u(t), (6.3)

and

W ∗(u(·)) = W∗(u(·))
|W∗(u(·))| = lim

t→∞
u(t)

|u(t)| , (6.4)

where the limits in both (6.3) and (6.4) are taken in either H or V . Recall that both
W∗(u(·)) and W ∗(u(·)) belong to Rn∗ H \ {0}.

Since u(t0) ∈ R, we have

lim
t→∞ en∗t u(t) = en∗t0 lim

τ→∞ en∗τ u(t0 + τ) = en∗t0 Wn∗(u(t0)),

hence

W∗(u(·)) = en∗t0 Wn∗(u(t0)). (6.5)

In particular, if t0 = 0, i.e., u0 = u(0) ∈ R, then W∗(u(·)) = Wn∗(u0).
In the case u(t0) = 0 for some t0 ≥ 0, we let

n∗(u(·)) = ∞ and W∗(u(·)) = 0. (6.6)

Denote n∗ = n∗(u(·)) and ξn∗ = W∗(u(·)), ξn∗ = W ∗(u(·)). Recall that

u(t)

|u(t)| → ξn∗ in H and V , t → ∞, (6.7)
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and hence

Cu(t)

|u(t)| → Cξn∗ in H , t → ∞. (6.8)

It is known (e.g. [12]) that en∗t u(t) → ξn∗ , for t → ∞, in any Hm(�) norm, m ∈ N,
consequently, in sup norm. Hence for x ∈ R

3,

lim
t→∞ en∗t u(t, x) = ξn∗(x) and lim

t→∞ en∗t∇ × u(t, x) = ∇ × ξn∗(x). (6.9)

Since ξn∗(x) is analytic, we have

lim
t→∞ en∗t |u(t, x)| = |ξn∗(x)| 
= 0, a.e. (6.10)

Definition 6.3. We say that a time dependent vector field u(x, t) is asymptotically
Beltrami if there are α(x, t) ∈ R such that

lim
t→∞

∇ × u(x, t) − α(x, t)u(x, t)

|u(x, t)| = 0, a.e. on R
3. (6.11)

Remark 6.4. The limit in (6.11) requires that a.e. on R
3, u(x, t) 
= 0, for all t ≥ t0(x).

We obtain the following equivalent conditions for a Leray-Hopf solution to be asymp-
totically Beltrami.

Theorem 6.5. Let u(·) ∈ � such that u(t0) ∈ R\{0}, for some t0 > 0. The following
are equivalent:

(i) u(·) is asymptotically Beltrami.
(ii) There is a subsequence tk ↗ ∞ and α(x, tk) ∈ R such that

lim
k→∞

∇ × u(x, tk) − α(x, tk)u(x, tk)

|u(x, tk)| = 0, a.e. on R
3. (6.12)

(iii) W∗(u(·)) is a Beltrami vector field.
(iv) For n∗ = n∗(u(·)),

lim
t→∞

|Cu(t) − ε
√

n∗u(t)|
|u(t)| = 0, (6.13)

where ε = 1 or −1.

Proof. Assume (i). Of course, (ii) follows.
Assume (ii). From (6.7) and (6.8) we can assume, without loss of generality, that

lim
k→∞ u(x, tk)/|u(tk)| = ξn∗(x) 
= 0, a.e., (6.14)

lim
k→∞ ∇ × u(x, tk)/|u(tk)| = Cξn∗(x), a.e. (6.15)

Thus from (6.14),

lim
k→∞ |u(x, tk)|/|u(tk)| = |ξn∗(x)| 
= 0, a.e., (6.16)
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and together with (6.12),

lim
k→∞

∇ × u(x, tk) − α(x, tk)u(x, tk)

|u(tk)| = 0, a.e. (6.17)

From (6.15) and (6.17), it follows that

lim
k→∞ α(x, tk)

u(x, tk)

|u(tk)| = Cξn∗(x), a.e., (6.18)

and hence limk→∞ α(x, tk) = α(x) exists a.e. on R
3 and Cξn∗(x) = α(x)ξn∗(x) a.e. on

R
3. By Lemma 6.2, ξn∗ is an eigenfunction of the curl operator C. Hence ξn∗ is Beltrami,

so is W∗(u(·)), and we have (iii).
Assume (iii). Then Cξn∗ = ε

√
n∗ξn∗ , where ε = 1 or −1. By (6.7) and (6.8),

lim
t→∞

[
Cu(t)

|u(t)| − ε
√

n∗
u(t)

|u(t)|
]

= Cξn∗ − ε
√

n∗ξn∗ = 0,

where the limit is taken in H , thus proving (iv).
Assume (iv). The limit in (iv) is |Cξn∗ − ε

√
n∗ξn∗ |, hence Cξn∗ = ε

√
n∗ξn∗ and

∇ × ξn∗(x) = ε
√

n∗ξn∗(x), x ∈ R
3. (6.19)

By (6.9) and (6.10),

lim
t→∞

∇ × u(x, t) − ε
√

n∗u(x, t)

|u(x, t)| = ∇ × ξ(x) − ε
√

n∗ξn∗(x)

|ξn∗(x)| , a.e..

This limit is zero by (6.19), hence (6.11) holds with α(x, t) ≡ ε
√

n∗. ��
Corollary 6.6. Let u(·) ∈ � be not identically zero in (t0,∞), for some t0 > 0. If u(t) is
asymptotically Beltrami then CW∗(u(·)) = ε

√
n∗(u(·))W∗(u(·)), with ε = 1 or ε = −1,

and (6.11) holds with α = ε
√

n∗(u(·)).
We now turn to the statistical study of the asymptotically Beltrami flows using the

statistical solutions of the Navier–Stokes equations.

Definition 6.7. Let µ̂ be a VF measure on � as in Definition 2.3. We say that the µ̂ is
asymptotically Beltrami if almost surely every solution u(·) in � is asymptotic Beltrami;
more precisely,

µ̂({u(·) ∈ � : u(·) is asymptotically Beltrami}) = 1. (6.20)

We infer from Theorem 6.5 and Corollary 6.2 that if a Leray-Hopf solution u(·) is
asymptotically Beltrami then

CW1(u(·)) = W1(u(·)) or CW1(u(·)) = −W1(u(·))
(this trivially holds if W1(u(·)) = 0), or equivalently,

R−
1 W1(u(·)) = 0 or R+

1 W1(u(·)) = 0.

Therefore, the necessary condition for µ̂ to be asymptotically Beltrami is that

µ̂({u(·) ∈ � : |R+
1 W1(u(·))| |R−

1 W1(u(·))| = 0}) = 1, (6.21)
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or equivalently,

∫
�

|R+
1 W1(u(·))| |R−

1 W1(u(·))|dµ̂(u(·)) = 0. (6.22)

Another alternative interpretation of (6.22) is the following. Since R+
1 u and R−

1 u are
orthogonal, we have that

|R+
1 u||R−

1 u| = 0 if and only if |R+
1 u| + |R−

1 u| − |R1u| = 0.

Therefore, the necessary condition (6.22) for µ̂ to be asymptotically Beltrami is equiv-
alent to

∫
�

[|R+
1 W1(u(·))| + |R−

1 W1(u(·))| − |W1(u(·))|] dµ̂(u(·)) = 0. (6.23)

Proposition 6.8. If µ̂ is a VF measure with initial data µ satisfying

∫
H

[|R+
1 u| + |R−

1 u| − |R1u|] dµ(u) > 3c3

∫
H

|u|2dµ(u), (6.24)

then µ̂ is not asymptotically Beltrami.

Proof. Suppose (6.24) holds. Using (4.20) with µ0 = µ, one can show that (6.23) does
not hold. ��
Theorem 6.9. There exists a VF measure µ̂ with initial Gaussian probability measure
such that µ̂ is not asymptotically Beltrami.

Proof. Let µ be a Gaussian measure as in Example 5.6 and µ̂ be a VF measure with initial
data µ. Let σ j = ε > 0 for j = 1, . . . , 2N . Let ωn be the area of the (n−1)-dimensional
unit sphere in R

n , n ≥ 2. We have

∫
Rn

|z|e−|z|2/(2ε2)

(2π)n/2εn
dz = 1

(2π)n/2εn

∫ ∞

0
re−r2/(2ε2)ωnrn−1dr, y = r√

2ε

= ωn
√

2ε

πn/2

∫ ∞

0
yne−y2

dy

= αnε.

Condition (6.24) is now equivalent to

(2αN − α2N )ε > 3c3(Nε2 + Nε2 + σ 2). (6.25)

Since 2αN − α2N > 0, condition (6.25) is satisfied with

σ 2 = Nε2 and ε < (2αN − α2N )/(9Nc3).

��
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Remark 6.10. In Proposition 6.8, we can use (6.22) instead of (6.23) to replace (6.24)
with the following condition:∫

H
|R+

1 u| |R−
1 u|dµ(u) > Ir , (6.26)

for some r > 0, where Ir is defined by (4.22) with µ0 = µ. Also one can adjust the
construction of µ in the proof of Theorem 6.9 such that µ should satisfy (6.26), hence∫

�

|R+
1 W1(u(·))| |R−

1 W1(u(·))|dµ̂(u(·)) > 0

and µ̂ is not asymptotically Beltrami.

7. Some Generic Properties of VF Measures

First we will show that ∫
�

|W1(u(·))|2dµ̂(u(·)) > 0 (7.1)

is a generic property for a VF measure µ̂. For this we will give a useful characterization
of a VF measure with that property.

Let

�1 = {u(·) ∈ � : W1(u(·)) = 0}. (7.2)

It is easy to see that

�1 = {u(·) ∈ � : u(t) ∈ M1, for all t ≥ t0 = t0(u(·))}, (7.3)

where M1 = {u ∈ R : W1(u) = 0} (see [8]). It is worth mentioning that M1 is a
manifold in V . For our convenience, we will also define

�1,t = {u(·) ∈ � : u(t) ∈ M1}. (7.4)

Then �1,t ⊂ �1,t ′ for t ≤ t ′ and �1 = ∪t≥0�1,t .

Proposition 7.1. Relation (7.1) holds if and only if µ̂(�1) < 1.

Proof. Suppose (7.1) does not hold. Let r > 0. According to Lemma A.2, there is
t1 = t1(r) > 0 such that u(t1) ∈ R whenever |u(0)| < r . Then

0 =
∫

{u(·)∈�:|u(0)|<r}
|W1(u(·))|2dµ̂(u(·))

=
∫

{u(·)∈�:|u(0)|<r}
et1 |W1(u(t1))|2dµ̂(u(·)).

Hence W1(u(t1)) = 0 µ̂-a.e. on {u(·) ∈ � : |u(0)| < r}. Thus

1 ≥ µ̂(�1) ≥ µ̂({u(·) ∈ � : |u(0)| < r, u(t1(r)) ∈ M1})
= µ̂({u(·) ∈ � : |u(0)| < r, W1(u(t1(r))) = 0})
= µ̂({u(·) ∈ � : |u(0)| < r}).

Letting r → ∞, we obtain µ̂(�1) = 1.
We now assume that µ̂(�1) = 1. Since W1(�1) = {0}, we have W1(u(·)) = 0 µ̂-a.e.

on �, thus (7.1) fails. ��
For the initial data µ0 of µ̂ we obtain the following.
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Corollary 7.2. Let

N1 = {u0 ∈ H : ∃u(·) ∈ �, u(0) = u0, and u(t) ∈ M1, t ≥ t0 = t0(u(·))}.
If µ0(N1) < 1 then (7.1) holds.

Proof. Since N1 = Pr0�1, we have

1 > µ0(N1) = µ̂(Pr−1
0 N1) ≥ µ̂(�1).

Hence (7.1) holds, by virtue of Proposition 7.1. ��
Remark 7.3. We do not know if µ0(N1) = 1 implies µ̂(�1) = 1.

Definition 7.4. Let µ̂ and µ̃ be two Borel measures on �. We define d1(µ̂, µ̃) by the
total variation of the measure µ̂ − µ̃, that is,

d1(µ̂, µ̃) = sup

⎧⎨
⎩

N∑
j=1

|µ̂(E j ) − µ̃(E j )|
⎫⎬
⎭ , (7.5)

where the supremum is taken over all Borel partitions {E1, E2, . . . , EN }, N ∈ N, of �.
It is known that the space of finite Borel measures on � with metric d1 is complete.

For our study, it is more suitable to let M be the set of all VF measures and define
the following metric for µ̂ and µ̃ in M:

d(µ̂, µ̃) = d1(µ̂, µ̃) +
∫

�

|u(0)|2d|µ̂ − µ̃|(u(·)), (7.6)

where |µ̂ − µ̃| is the total variation measure of the signed measure (µ̂ − µ̃).
We have:

Proposition 7.5. The metric space (M, d) is complete.

Proof. Let (µ̂n)∞n=1 be a Cauchy sequence in (M, d). Then (µ̂n)∞n=1 is a Cauchy sequence
with respect to d1. Therefore there is a Borel measure µ̂on� such that limn→∞ d1(µ̂

n, µ̂)

= 0. Obviously, µ̂ is a probability measure on �. For r > 0, let

B�(r; 0) = {u(·) ∈ � : |u(0)| < r}.
We have the function u(·) ∈ B�(r; 0) → Pku(0) is continuous for r > 0, k ∈ N. Given
ε > 0, there is N > 0 such that for n′ > n > N , we have∫

B�(r;0)

|Pku(0)|2d|µ̂n − µ̂n′ |(u(·)) < ε,

for any r > 0 and k ∈ N. Letting n′ → ∞ and then r → ∞, k → ∞, we obtain
∫

�

|u(0)|2d|µ̂n − µ̂|(u(·)) ≤ ε.

Thus limn→∞ d(µ̂n, µ̂) = 0. Since
∫
�

|u(0)|2dµ̂n(u(·)) is finite for each n, it fol-
lows that

∫
�

|u(0)|2dµ̂(u(·)) is finite. Hence µ̂ is a VF measure. Therefore (M, d) is
complete. ��
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In what follows, M is considered as a metric space with metric d. A property P(µ̂)

of a VF measure µ̂ is called generic if the set of all VF measures µ̂ enjoying the property
P(µ̂) contains an intersection of dense open sets in M.

Lemma 7.6. Let µ̂, m̂ ∈ M, ε ∈ (0, 1) and µ̃ = (1 − ε)µ̂ + εm̂. Then µ̃ ∈ M and

d(µ̃, µ̂) ≤ 2ε + ε

{∫
�

|u(0)|2dµ̂(u(·)) +
∫

�

|u(0)|2dm̂(u(·))
}

. (7.7)

Proof. The fact that µ̃ ∈ M follows from Remark 2.5. For any Borel partition {E j , j =
1, . . . , N }, some N ∈ N, of �, we have

N∑
j=1

|µ̃(E j ) − µ̂(E j )| = ε

N∑
j=1

{
µ̂(E j ) + m̂(E j )

} ≤ 2ε,

thus yielding d1(µ̂, µ̃) ≤ 2ε. Moreover,
∫

�

|u(0)|2d|µ̃ − µ̂|(u(·)) =
∫

�

|u(0)|2d|εm̂ − εµ̂|(u(·))

≤ ε

∫
�

|u(0)|2dµ̂(u(·)) + ε

∫
�

|u(0)|2dm̂(u(·)).

Hence (7.7) follows. ��
Theorem 7.7. The set ME of all µ̂ ∈ M such that (7.1) holds is open and dense in M.
Subsequently, (7.1) is generic.

Proof. For the density, suppose µ̂ ∈ M\ME and ε ∈ (0, 1). Denote M = ∫
�

|u(0)|2d
µ̂(u(·)). Let u0 ∈ R1 H \{0} such that Cu0 = u0 and |u0| = 1. Then S(t)u0 = u0(t) =
e−t u0, for all t ≥ 0. Clearly, u0 ∈ R, W1(u0) = u0 and W1(u0(·)) = u0, by Definition
3.3. Set µ̃ = (1 − ε)µ̂ + εδu0(·). Then µ̃ ∈ M and

∫
�

|W1(u(·))|2dµ̃(u(·)) = (1 − ε)

∫
�

|W1(u(·))|2dµ̂(u(·)) + ε|W1(u0(·))|2

= 0 + ε|u0|2 
= 0,

hence µ̃ ∈ ME . By Lemma 7.6, we have d(µ̂, µ̃) ≤ ε(M + 3). Therefore ME is dense
in M.

Now suppose µ̂ ∈ ME . By Proposition 7.1, we have µ̂(�1) < 1, hence δ = µ̂(�

\ �1) > 0. Assume µ̃ ∈ M satisfies d(µ̃, µ̂) < δ. We have

µ̃(�1) ≤ µ̂(�1) + d1(µ̃, µ̂) < µ̂(�1) + δ = 1,

thus µ̃ ∈ ME thanks to Proposition 7.1 again. Thus ME is open. ��
We now study the genericity of the following property:

∫
�

H(W1(u(·)))dµ̂(u(·)) 
= 0. (7.8)
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For that purpose, we denote by MH the set of all µ̂ ∈ M such that (7.8), holds. Note
that MH = M+

H ∪ M−
H , where

M+
H = {

µ̂ ∈ M :
∫

�

H(W1(u(·)))dµ̂(u(·)) > 0
}
, (7.9)

M−
H = {

µ̂ ∈ M :
∫

�

H(W1(u(·)))dµ̂(u(·)) < 0
}
. (7.10)

Theorem 7.8. The set MH is open and dense in M. Subsequently, (7.8) is generic.

Proof. First, let µ̂ ∈ M\MH and ε ∈ (0, 1). Let u0(·), µ̃ and M be as in Theorem 7.7.
Above we proved d(µ̃, µ) ≤ ε(3 + M). Also∫

�

H(W1(u(·)))dµ̃(u(·)) = (1 − ε)

∫
�

H(W1(u(·)))dµ̂(u(·)) + εH(W1(u0(·)))
= ε〈Cu0, u0〉 = ε|u0|2 > 0,

hence µ̃ ∈ MH . Thus MH is dense in M.
Second, let µ̂ ∈ M+

H such that
∫

�

H(W1(u(·)))dµ̂(u(·)) = δ > 0.

Suppose µ̃ ∈ M satisfies d(µ̃, µ̂) < δ. Then we have∣∣∣∣
∫

�

H(W1(u(·)))dµ̃(u(·)) −
∫

�

H(W1(u(·)))dµ̂(u(·))
∣∣∣∣

≤
∫

�

|H(W1(u(·)))|d|µ̃ − µ̂|(u(·)) ≤
∫

�

|u(0)|2d|µ̃ − µ̂|(u(·)) < δ.

Thus
∫
�

H(W1(u(·)))dµ̃(u(·)) > 0 or µ̃ ∈ M+
H . Therefore M+

H is open. Similarly, M−
H

is open and hence so is MH . The proof is complete. ��
We now discuss the genericity of the VF measures which are asymptotically Beltrami

(see Definition 6.7). We let

MB = {µ̂ ∈ M : µ̂ is asymptotically Beltrami}. (7.11)

Proposition 7.9. M\MB contains an open and dense subset of M. Consequently, the
property “µ̂ is not asymptotically Beltrami” for a VF measure µ̂ is generic.

Proof. Let

NB =
{
µ̂ ∈ M :

∫
�

|R+
1 W1(u(·))| |R−

1 W1(u(·))|dµ̂(u(·)) > 0

}
.

We know from the necessary condition (6.22) that NB is a subset of M\MB . Similar to
Theorem 7.8, one can easily prove that NB is open. It suffices to show that NB is dense.

Suppose µ̂ ∈ M\NB . Let m̂ be inMhaving initial dataµ0 as in Remark 6.10. We have∫
�

|R+
1 W1(u(·))| |R−

1 W1(u(·))|dm̂(u(·)) > 0. Given ε ∈ (0, 1), let µ̃ = (1 − ε)µ̂ + εm̂.
Then∫

�

|R+
1 W1(u(·))| |R−

1 W1(u(·))|dµ̃(u(·)) = ε

∫
�

|R+
1 W1(u(·))| |R−

1 W1(u(·))|dm̂(u(·)) ,
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which is positive, hence µ̃ ∈ NB . Also, it follows from Lemma 7.6 that

d(µ̃, µ̂) < ε(M + 2) where M =
∫

�

|u(0)|2dµ̂(u(·)) +
∫

�

|u(0)|2dm̂(u(·)).

Therefore NB is dense. The proof is complete. ��

8. A Connection to the Empirical Theory of Turbulence

In this section, we connect our analytic study of the statistical solutions of the Navier–
Stokes equations to the empirical theory of decaying turbulence. However, unlike the
preceding sections which are based on rigorous mathematical arguments, our following
discussion involves also heuristic inferences. Here x , L , t , ν are the dimensional spa-
tial variable, period, time and viscosity. To apply the results established in the previous
sections, we use the following change of scales:

x = x ′
√

λ1
, t = 1

λ1ν
t ′,

where λ1 = (2π/L)2 denotes the first eigenvalue of the Stokes operator. Then x ′ and t ′
play the roles of corresponding adimensional variables of the previous sections.

Let us recall the basic features of Kolmogorov’s empirical theory of turbulence. In
that theory, the following quantities are essential:

U 2 = 1

L3 〈
∫

[0,L]3
|u(x, t)|2dx〉 and ε = ν

L3 〈
∫

[0,L]3
|∇ × u(x, t)|2dx〉,

where 〈 · 〉 denotes an “adequate” ensemble average. Note that U 2 is twice the mean
energy/mass and ε is the mean energy dissipation rate/mass. These two quantities are
connected by

U 2 ∼
∫ kd

ki

S(k)dk, ε ∼ ν

∫ kd

ki

k2S(k)dk,

where S(k) is the energy spectrum and [ki , kd ] is called the “inertial range” of the tur-
bulent flows. Assume ki ∼ k0 = √

λ1 = 2π/L , kd ∼ (ε/ν3)1/4 and S(k) ∼ ε2/3k−5/3

(based on the dimensional analysis), we obtain

U 2 ∼ ε2/3
∫ kd

ki

k−5/3dk ∼ ε2/3k−2/3
i ∼ (Lε)2/3. (8.1)

In the empirical theory of turbulence, both quantities U 2 and ε are often consid-
ered time-independent. However, in our study, the body force is potential hence they
decay exponentially. We propose the following seemingly suitable candidates for these
quantities based on our mathematical studies in the previous sections.

Let (µt )t≥0 be a VF statistical solution to the Navier–Stokes equations with the VF
measure µ̂ and T > 0. We define for t ≥ 0,

U 2
t = λ

3/2
1

1

T

∫ t+T

t

∫
H

|u|2dµτ (u)dτ, (8.2)
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and

εt = νλ
3/2
1

1

T

∫ t+T

t

∫
H

‖u‖2dµτ (u)dτ, (8.3)

where we recall that |u| denotes the L2-norm on � = (−L/2, L/2)3 and ‖u‖ = |∇u| =
|∇ × u|. For our asymptotic study, the first component of the normalization map is
defined now by

W1(u(·)) = lim
t→∞ eνλ1t u(t), (8.4)

where the limit is taken in any Sobolev norms. We also let

α2
0 = λ

3/2
1

∫
H

|u|2dµ0(u) and α2
1 = λ

3/2
1

∫
�

|W1(u(·))|2dµ̂(u(·)).

For the long time dynamics of U 2
t and εt , we have the following dimensional version

of the related results in Corollary 4.4.

Proposition 8.1. We have for each T > 0 that

lim
t→∞ e2νλ1tU 2

t = 1 − e−2T

2T
α2

1, (8.5)

lim
t→∞ e2νλ1tεt = 1 − e−2T

2T
α2

1 . (8.6)

If (8.1) applies to U 2
t and εt then there are absolute positive constants cK and CK

such that

cK ≤ U 2
t

(L/2π)2/3ε
2/3
t

= λ
1/3
1 U 2

t

ε
2/3
t

≤ CK . (8.7)

By virtue of Proposition 8.1, relation (8.7) will not hold when t is sufficiently large
and α2

1 > 0. (The case α2
1 > 0 is, in fact, generic according to our study in Sect. 7.) We

will estimate the time interval when (8.7) may still be valid, hence the universal features
of the turbulent flows may only be observed on that interval of time. Furthermore, we
find rigorous lower and upper bounds for the quotient λ

1/3
1 U 2

t /ε
2/3
t .

To start, we restate the inequalities in Remark 4.5 in their dimensional forms.

Lemma 8.2. We have for T > 0 and t ≥ 0 that

e−2νλ1(t+T )α2
1 ≤ U 2

t ≤ e−2νλ1tα2
0, (8.8)

νλ1U 2
t ≤ εt ≤ e−2νλ1t

2T
(α2

0 − e−2νλ1T α2
1). (8.9)

Proposition 8.3. Let Q = α2
1/α2

0 . We have for t ≥ 0 that

Q

{
2νλ1T e−2νλ1T

1 − e−2νλ1T Q

}2/3 {
e−2νλ1tα2

0

λ1ν2

}1/3

≤ λ
1/3
1 U 2

t

ε
2/3
t

≤
{

e−2νλ1tα2
0

λ1ν2

}1/3

, (8.10)

or, equivalently,

{
2νλ1T

Q−1e2νλ1T − 1

}2/3
{

e−2νλ1tα2
1

λ1ν2

}1/3

≤ λ
1/3
1 U 2

t

ε
2/3
t

≤
{

e−2νλ1tα2
0

λ1ν2

}1/3

. (8.11)
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Proof. For the upper bound of λ
1/3
1 U 2

t /ε
2/3
t , we have from Lemma 8.2,

λ
1/3
1 U 2

t

ε
2/3
t

≤ λ
1/3
1 U 2

t

(λ1νU 2
t )2/3

= U 2/3
t

λ
1/3
1 ν2/3

≤
{
e−2νλ1tα2

0

}1/3

λ
1/3
1 ν2/3

.

For the lower bound:

λ
1/3
1 U 2

t

ε
2/3
t

≥ λ
1/3
1 e−2νλ1(t+T )Qα2

0{
e−2νλ1 t

2T (α2
0 − e−2νλ1T α2

1)
}2/3

= Q

{
e−2νλ1tα2

0

λ1ν2

}1/3 {
2νλ1T e−2νλ1T

1 − e−2νλ1T Q

}2/3

.

Hence we obtain (8.10). The estimates in (8.11) follow immediately. ��
Corollary 8.4. The relation (8.1) may only be valid on the time interval [tK , TK ] where

tK = 1

2νλ1

(
log

α2
1

λ1ν2 − 3 log CK − 2 log
Q−1e2νλ1T − 1

2νλ1T

)
, (8.12)

TK = 1

2νλ1

(
log

α2
0

λ1ν2 − 3 log cK

)
. (8.13)

Proof. For t ≥ 0 such that (8.1) holds, it follows from (8.8) that

cK ≤ λ
1/3
1 U 2

t

ε
2/3
t

≤
{
e−2νλ1tα2

0

}1/3

λ
1/3
1 ν2/3

,

thus yielding t ≤ TK . Similarly, using (8.9), we have
{

2νλ1T

Q−1e2νλ1T − 1

}2/3
{

e−2νλ1tα2
1

λ1ν2

}1/3

≤ CK ,

hence we obtain t ≥ tK . ��
Example 8.5. Let L = 2π (λ1 = 1), ν = 1 and µ̂ be the VF measure in Corollary 5.4.
We have (4π)−1 ≤ Q ≤ 1. It follows from Proposition 8.3 that

(
1

4π

)1/3 ( 2T

4πe2T − 1

)2/3

(e−2tα2
0)1/3 ≤ λ

1/3
1 U 2

t

ε
2/3
t

≤ (e−2tα2
0)1/3,

for all t ≥ 0. Also, by Corollary 8.4, we derive

TK = 1

2
{log(α2

0) − 3 log cK },

tK ≥ 1

2

{
log

α2
0

4π
− 3 log CK − 2 log

4πe2T − 1

2T

}
.

Now, if we let M > 0, θ ∈ (0, 1) and µ̂ be a VF measure satisfying (5.23) and (5.24),
then α2

0 ≥ M and θ ≤ Q ≤ 1 and tK in (8.12) can be bounded below by

tK ≥ 1

2

(
log M − 3 log CK − 2 log

θ−1e2T − 1

2T

)
.
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Appendix A

In this paper we need several well-known estimates for the non-linear term B(u, u) in
the Navier–Stokes equations (2.2). For the convenience of the reader, we list them below.
There are positive constants c j , j = 1, 2, 3, such that

|〈B(u, v), w〉| ≤ c1‖u‖‖v‖1/2|Av|1/2 |w|, (A.1)

|〈B(u, v), w〉| ≤ c2‖u‖1/2|Au|1/2‖v‖ |w|, (A.2)

|〈B(u, v), w〉| ≤ c3|u||Av|1/2|A3/2v|1/2 |w|. (A.3)

The numbering of the constants is done in order to indicate the estimate in which the
constant c j appears. Thus

|B(u, v)| ≤ min{c1‖u‖‖v‖1/2|Av|1/2, c2‖u‖1/2|Au|1/2‖v‖,
c3|u||Av|1/2|A3/2v|1/2}. (A.4)

Let u(·) be a Leray-Hopf solution on [0,∞) and G = G(u(·)) be defined by (2.12).
It is known that for t0 ∈ G, we have

|u(t)| ≤ e−(t−t0)|u(t0)|, t ≥ t0. (A.5)

In particular, 0 ∈ G and

|u(t)| ≤ e−t |u(0)|, t ≥ 0. (A.6)

For t ′ > t ≥ 0, let t0 ∈ [t, t ′) ∩ G, then by (2.13)

2
∫ t ′

t0
‖u(s)‖ds ≤ |u(t0)|2 ≤ e−2t0 |u(0)|2.

Letting t0 → t , we obtain
∫ t ′

t
‖u(s)‖2ds ≤ e−2t

2
|u(0)|2, t ′ > t ≥ 0. (A.7)

Lemma A.1. There is ε0 > 0 such that if ‖u0‖ ≤ ε0 then u0 ∈ R and

‖u(t)‖ ≤ 2e−t‖u0‖, t > 0. (A.8)

Proof. Though this is a consequence of the convergence of the asymptotic expansion
of the regular solution when the initial data is small (cf. [6]), we present below an ele-
mentary proof to make our paper self-contained. The calculations are formal but can be
made rigorous using the Galerkin approximations.

Let C0 = min{c1, c2}. It follows from (2.2) and (A.4) that

1

2

d

dt
‖u‖2 + |Au|2 ≤ |〈B(u, u), Au〉| ≤ C0|Au|3/2‖u‖3/2 ≤ 1

2
|Au|2 + 2C4

0‖u‖6.

Let C1 = 1/(2C0
4
√

2) and ‖u0‖ < C1. By the standard small initial data argu-
ment, we have u0 ∈ R and ‖u(t)‖ ≤ e−t/2‖u0‖. Now, using interpolating inequality
‖u‖2 ≤ |u||Au|, we obtain

1

2

d

dt
‖u‖2 + |Au|2 ≤ C0|Au|3/2‖u‖3/2 ≤ C0|Au|2|u|1/2‖u‖1/2,
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hence

1

2

d

dt
‖u‖2 + (1 − C0|u|1/2‖u‖1/2)|Au|2 ≤ 0.

Using |u| ≤ ‖u‖ ≤ |Au| and ‖u(t)‖ ≤ ‖u0‖ ≤ C1, we derive

‖u(t)‖2 ≤ e−2
∫ t

0 (1−C0|u(τ )|1/2‖u(τ )‖1/2)dτ‖u0‖2 ≤ e2C0
∫∞

0 ‖u(τ )‖2dτ e−2t‖u0‖2

≤ e2C0
∫∞

0 e−τ/2‖u0‖dτ e−2t‖u0‖2 ≤ e4C0‖u0‖e−2t‖u0‖2.

Thus (A.8) holds for

ε0 = min

{
C1,

log 2

2C0

}
> 0. (A.9)

��
We give an estimate of t0 for which u(t0) ∈ R in terms of |u0| and ε0 defined in

(A.9).

Lemma A.2. Let u(·) ∈ �, then there is t0 ∈ [0, log+(|u(0)|/ε0)+1) such that u(t0) ∈ R
and

‖u(t)‖ ≤ 2e|u(0)|e−t , t ≥ t0. (A.10)

(Above log+ α = log(max{1, α}), for α ∈ R.)

Proof. Let u0 = u(0). Take t∗ = log+(|u0|/ε0). By (A.7),

2
∫ t∗+1

t∗
‖u(s)‖2ds ≤ e−2t∗ |u0|2. (A.11)

This implies that the Lebesgue measure of {s : ‖u(s)‖2 ≤ e−2t∗ |u0|2} is greater or equal
to 1/2. Hence there is t0 ∈ (t∗, t∗ + 1) such that ‖u(t0)‖ ≤ e−t∗ |u0| ≤ ε0. Applying
Lemma A.1 to u(t0) gives

‖u(t)‖ ≤ 2e−(t−t0)‖u(t0)‖ ≤ 2e−t et∗+1e−t∗ |u0| = 2e−t+1|u0|, t ≥ t0,

thus proving (A.10). ��
Concerning the perturbation problem for the Navier–Stokes equations when the ini-

tial data u0 is in a neighborhood of a fixed u∗
0 ∈ R, we have the following result which

is similar to but much simpler than that in [20]. For our purpose, we focus on the case
u∗

0 belonging to the set B1 consisting of u ∈ R1 H \{0} such that B(u, u) = 0.

Lemma A.3. Let u∗
0 ∈ B1, there is ε = ε(|u∗

0|) such that if ‖v0‖ ≤ ε then
u0 = u∗

0 + v0 ∈ R and

|S(t)u0 − e−t u∗
0| ≤ |v0|ec3|u∗

0|e−t , t > 0. (A.12)
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Proof. Let u∗(t) = S(t)u∗
0 = e−t u∗

0 and v(t) = S(t)u0 − u∗(t). The equation for v(t)
is

dv

dt
+ Av + B(v, v) + B(u∗, v) + B(v, u∗) = 0. (A.13)

Using (A.4) and the fact that u∗ ∈ R1 H , we have

1

2

d|v|2
dt

+ ‖v‖2 ≤ |〈B(v, u∗), v〉| ≤ c3|v|2|u∗| ≤ c3|v|2|u∗
0|e−t .

Hence

|v(t)|2 ≤ |v0|2e−2t e2c3|u∗
0| ∫ t

0 e−τ dτ ≤ |v0|2e2c3|u∗
0|e−2t ,

thus yielding (A.12). We also have

1

2

d‖v‖2

dt
+ |Av|2 ≤ C0|Av|3/2‖v‖3/2 + c2|Av|‖v‖|u∗| + c3|Av||v||u∗|

≤ C0|Av|3/2‖v‖3/2 + c2|Av|3/2|v|1/2|u∗| + c3|Av||v||u∗|
≤ 1

2
|Av|2 + C2‖v‖6 + C3|v|2|u∗|2(1 + |u∗|2)

≤ 1

2
|Av|2 + C2‖v‖6 + C3|v0|2e2c3|u∗

0||u∗
0|2(1 + |u∗

0|2)e−2t ,

where C2, C3 > 0. Take ε > 0 satisfying

C2ε
4 + C3ε

2e2c3|u∗
0||u∗

0|2(1 + |u∗
0|2) <

1

4
. (A.14)

The argument becomes standard now and we omit the details. ��
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