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Abstract: We construct a universal code for a stationary and memoryless classical-
quantum channel as a quantum version of the universal coding by Csiszár and Körner.
Our code is constructed utilizing a combination of irreducible representations, a decoder
introduced through the quantum information spectrum, and the packing lemma.

1. Introduction

How to transmit information via a noisy communication channel is one of the most
important problems for current information network systems. The first big step in this
direction was Shannon’s channel coding theorem [1], in which he proved that there exists
a code enabling reliable communication whose transmission rate is the capacity of the
channel, i.e., the maximum of mutual information between the input and output systems.
In his formulation, Shannon treated the channel as a stochastic matrix.

In the present paper, we consider the ultimate transmission rate for sending classical
messages, when the communication channel is given as a pair of a fixed optical fiber
and a fixed modulator. In this case, the input system is described by a set X of classi-
cal alphabets, and the output system is described by a quantum system. Therefore, the
channel is given as a map from a classical alphabet to a quantum state (i.e., a density
matrix), which is called a classical-quantum channel. In contrast, a stochastic matrix is
called a classical channel. When all output density matrices commute with each other,
the original coding theorem of Shannon can be trivially extended to the quantum case.

However, in the general case, there is a serious non-commutative difficulty for its
quantum extension. Although it is not so difficult to extend the mutual information to this
non-commutative quantum framework, there have been several obstacles to the estab-
lishment of the channel coding theorem, even for the classical-quantum channel. The
crucial obstacle was first resolved by Holevo [2] and Schumacher-Westmoreland [3].
They showed that there exists a reliable code realizing transmission of the maximum
value of quantum mutual information. In contrast, in 1970s studies by Holevo [4,5], it
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was shown that there does not exist a reliable code overcoming the maximum value of
quantum mutual information. The combination of the additivity1 of the maximum of
the mutual information and these results yields the capacity theorem for the classical-
quantum channel. That is, it implies that this maximum value is equal to the maximum
reliable transmission rate, which is called the capacity. After their achievement, Ogawa
and Nagaoka [9] and Hayashi and Nagaoka [10] systematically constructed other codes
which realized capacity transmission using the information spectrum method. However,
since these existing codes depended on the form of the channel, they were not robust
with respect to disagreements between the sender’s and receiver’s coordinate systems.

In the classical system, Csiszár and Körner [11] constructed a universal channel
coding, whose construction does not depend on the channel and depends only on the
mutual information and the ‘type’ of the input system, i.e., the empirical distribution of
code words. (The notion of type will be explained in Sect. 3.) Here, we should remark
that a universal channel code can universally realize not the capacity but the mutual
information because the constructed code is based on an (empirical) distribution on the
input classical system whereas universal data compression can universally realize the
minimum compression rate for both variable-length settings [12,13] and fixed-length
settings [11]. In order to extend Csiszár-Körner’s universal coding to the quantum case,
we have to overcome the non-commutative obstacle.

Concerning the quantum system, Jozsa et al. [14] constructed a universal fixed-length
source coding, which depended only on the compression rate and realized the minimum
compression rate. Hayashi [15] discussed the exponentially decreasing rate of the decod-
ing error. Further, Hayashi and Matsumoto [16] constructed a universal variable-length
source coding for the quantum system. Hence, we can expect to establish a quantum ver-
sion of universal channel coding. For example, even if the receiver cannot synchronize
his coordinate system with the sender’s coordinate system, universal coding guarantees
reliable communication.

In the present paper, we construct a universal coding for a classical-quantum chan-
nel, which enables transmission of the quantum mutual information and which depends
only on the coding rate and the ‘type’ of the input system. Unfortunately, the capacity
cannot be attained universally because its construction depends on the distribution of
the input system. In the proposed construction, the following three factors play essential
roles for resolving the non-commutative obstacle. One is the decoder given by the proof
of the information spectrum method. In the information spectrum method, the decoder
is constructed by the square root measurement of the projectors given by the quantum
analogue of the likelihood ratio between the signal state and the mixture state [10,17].

The second factor is the irreducible decomposition of the dual representation of the
special unitary group and the permutation group, which is known as Schur-duality. The
method of irreducible decomposition provides the universal protocols in the quantum
setting [14,16,18–22]. However, even in the classical case, the universal channel coding
requires the conditional type as well as the type [11]. In the present paper, we introduce a
quantum analogue of the conditional type, which is the most essential part of the present
paper.

1 Holevo [5] mentioned this type of additivity, whose proof is written in Fujiwara and Nagaoka [6] (Lemma
3) and Holevo [7]. While Fujiwara and Nagaoka [6] treats the case when the input set X is given as the set
of density matrices of the input quantum system, their proof is valid even when the input set is given as an
arbitrary finite set. This is because the key point is essentially shown by the chain rule of classical mutual
information. Holevo [7] shows this kind of additivity in a more general setting, in which, he regards this kind
of channel as a special case of a channel with a quantum input system.
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The third factor is the packing lemma, which yields a suitable combination of the
signal states independent of the form of the channel in the classical case [11]. This
method plays the same role in the present paper.

An independent work, Bjelakovic and Boche [28], treats a code for a classical-
quantum channel that universally realizes transmission of quantum mutual information.
However, the result [28] is different from the present paper with respect to the follow-
ing points. Firstly, the present paper explicitly gives the pair of the encoder and the
decoder that universally attains transmission of maximal mutual information. Secondly,
the present paper provides an upper bound (26) for the average error probability whose
decreasing speed is exponential, whereas the paper [28] does not give such an upper
bound. Thirdly, the present paper makes use of Schur-duality, which can be regarded
as a kind of quantum extension of the method of type by Csiszár and Körner. This fact
suggests that the proposed method can be applied to another topic in Csiszár and Körner.

Further, our construction of encoder does not depend on the dimension of the output
system. Only the decoder depends on the dimension of the output system. Note that
Csiszár and Körner’s construction and Bjelakovic et al’s construction depend on the
output system. The present paper employs Packing lemma in the construction of encoder
as well as Csiszár and Körner. However, the present paper uses this lemma in a way dif-
ferent from Csiszár and Körner. Hence, even if the obtained result is restricted to the
classical case, it contains a new result in this point.

The remainder of the present paper is organized as follows. In Sect. 2, we explain the
notation used herein and the main result including the existence of a universal coding for
a classical-quantum channel. In this section, we present the exponential decreasing rate
of the error probability of our universal code. In Sect. 3, the notation for group repre-
sentation theory is presented and a quantum analogue of conditional type is introduced.
In Sect. 4, we provide a code that works well universally. In Sect. 5, the exponentially
decreasing rate mentioned in Sect. 2 is proven by using the property given in Sect. 3.

2. Main Result

For the classical-quantum channel (see Fig. 1), we focus on the set of input alphabets
X := {1, . . . , k} and the representation space H of the output system, whose dimension
is d. Then, a classical-quantum channel is given as a map from X to the set of density
matrices on H of the form i �→ W (i). The n-fold discrete memoryless extension is
given as the map from X n to the set of density matrices on the nth tensor product sys-
tem H⊗n . That is, this extension maps the input sequence i = (i1, . . . , in) to the state
Wn(in) := W (i1)⊗· · ·⊗ W (in). Sending the message {1, . . . , Mn} requires an encoder
and a decoder. The encoder is given as a map ϕn from the set of messages {1, . . . , Mn}
to the set of alphabets X n , and the decoder is given by a POVM Y n = {Y n

i }Mn
i=1. Thus,
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Fig. 1. Figure of classical-quantum channel
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the triplet �n := (Mn, ϕn, Y n) is called a code. Its performance is evaluated by the size
|�n| := Mn and the average error probability, given by

ε[�n, W ] := 1

Mn

Mn∑

i=1

Tr Wn(ϕn(i))(I − Y n
i ).

The following theorem is known as the classical-quantum channel coding theorem. The
optimal reliable transmission rate is equal to the capacity

max
p

I ( p, W ),

where the mutual information I ( p, W ) is defined for p = {pi }k
i=1 on the set of input

alphabets X := {1, . . . , k} as

I ( p, W ) :=
k∑

i=1

pi Tr W (i)(log W (i) − log W p),

W p :=
k∑

i=1

pi W (i).

As stated in the following main theorem, there exists a reliable code that depends only
on the coding rate R and the distribution p on the input system when the coding rate R is
smaller than the mutual information I ( p, W ). Note that this theorem does not imply the
universal achievement of the capacity max p I ( p, W ) because our construction depends
on the input distribution p.

Theorem 1. For any distribution p = {pi }k
i=1 on the set of input alphabets

X := {1, . . . , k} and any real number R, there is a sequence of codes {�n}∞n=1 such that

lim
n→∞

−1

n
log ε[�n, W ] ≥ max

0≤t≤1

φW, p(t) − t R

1 + t
,

lim
n→∞

1

n
log |�n| = R

for any classical-quantum channel W , where φW, p(t) is given by

φW, p(t) := −(1 − t) log Tr

(
k∑

i=1

pi W (i)1−t

) 1
1−t

.

Note that the code {�n}∞n=1 does not depend on the channel W , and depends only on the
distribution p and the coding rate R.

The derivative of φW, p(t) is given as

φ′
W, p(0) = I ( p, W ).

When the transmission rate R is smaller than the mutual information I ( p, W ),

max
0≤t≤1

φW, p(t) − t R

1 + t
> 0
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because there exists a parameter t ∈ (0, 1) such that φW, p(t) − t R > 0. That is, the
average error probability ε[�n, W ] goes to zero.

This fact implies that without knowledge of the channel W we can mathemati-
cally construct a reliable code based only on the input distribution p when the coding
rate R is smaller than the mutual information I ( p, W ). Therefore, in order to con-
struct a code attaining the capacity max p I ( p, W ), we need to know only the value
of argmax p I ( p, W ). We do not require complete knowledge of the classical-quantum
channel i �→ W (i). For example, we may not be able to identify the coordinates of
the output system, i.e., we cannot identify only the unitary U in the classical-quan-
tum channel i �→ U W (i)U †; however we are able to identify the maximizing input
distribution argmax p I ( p, W ). In this case, we can construct a code that realizes the
capacity max p I ( p, W ). Furthermore, the proposed code is robust with respect to small
disturbances, in other words, our evaluation (26) of the average error probability guaran-
tees reliable communication under the proposed code even if the true channel is a little
different from the estimated channel.

3. Group Representation Theory

In this section, we focus on the dual representation of the n-fold tensor product space
by the special unitary group SU(d) and the nth symmetric group Sn .2 For this pur-
pose, we focus on the Young diagram and the ‘type’. The former is a key concept in
group representation theory and the latter is the corresponding notion in information
theory [11]. When the vector of integers n = (n1, n2, · · · , nd) satisfies the condition
n1 ≥ n2 ≥ · · · ≥ nd ≥ 0 and

∑d
i=1 ni = n, the vector n is called a Young diagram

(frame) of size n and depth d; the set of such vectors is denoted as Y d
n . When the vector

of integers n satisfies the condition ni ≥ 0 and
∑d

i=1 ni = n, the vector p = n
n is called

a ‘type’ of size n; the set of these vectors is denoted as T d
n . Further, for p ∈ T d

n , a subset
of X n is defined by:

Tp := {x ∈ X n|The empirical distribution of x is equal to p}.
The cardinalities of these sets are constrained as follows:

|Y d
n | ≤ |T d

n | ≤ (n + 1)d−1, (1)

(n + 1)−denH( p) ≤ |Tp|, (2)

where H( p) := −∑d
i=1 pi log pi [11]. Using the Young diagram, the irreducible

decomposition of the above representation can be characterized as follows:

H⊗n =
⊕

n∈Y d
n

Un ⊗ Vn, (3)

where Un is the irreducible representation space of SU(d) characterized by n, and Vn
is the irreducible representation space of nth symmetric group Sn characterized by n.
Here, the representation of the nth symmetric group Sn is denoted as V : s ∈ Sn �→ Vs .
Hence, Eq. (3) gives the irreducible decomposition of the representation of the group

2 Christandl [23] contains a good survey of representation theory for quantum information.
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SU(d)× Sn , which is called Schur-duality. For n ∈ Y d
n , the dimension of Un is evaluated

by

dim Un ≤ n
d(d−1)

2 . (4)

Then, denoting the projection to the subspace Un ⊗ Vn as In, we define the following:

ρn := 1

dim Un ⊗ Vn
In, (5)

ρU,n :=
∑

n∈Y d
n

1

|Y d
n |ρn. (6)

Any state ρ and any Young diagram n ∈ Y d
n satisfy the following:

dim Unρn ≥ Inρ⊗n In.

Thus, (1), (4), and (6) yield the inequality

n
d(d−1)

2 |Y d
n |ρU,n ≥ ρ⊗n . (7)

Next, we focus on two systems X and Y = {1, . . . , l}. When the distribution of X is
given by a probability distribution p = (p1, . . . , pd) on {1, . . . , d}, and the conditional
distribution on Y with the condition on X is given by V , we denote the joint distribution
on X × Y by pV and the distribution on Y by p · V . When the empirical distribution
of x ∈ X n is ( n1

n , . . . ,
nd
n ), the sequence of types V = (v1, . . . , vd) ∈ T l

n1
× · · · × T l

nd
is called a conditional type for x [11]. We denote the set of conditional types for x by
V (x,Y). For any conditional type V for x, we define the subset of Yn :

TV (x) :=
{

y ∈ Yn
∣∣∣∣
The empirical distribution of
((x1, y1), . . . , (xn, yn)) is equal to pV .

}
,

where p is the empirical distribution of x.
We define the state ρx for x ∈ X n . For this purpose, we consider a special element

x′ = (1, . . . , 1︸ ︷︷ ︸
m1

, 2, . . . , 2︸ ︷︷ ︸
m2

, . . . , k, . . . , k︸ ︷︷ ︸
mk

). The state ρx′ is defined as ρx′ := ρU,m1 ⊗

ρU,m2 ⊗ · · · ⊗ ρU,mk . For a general element x ∈ X n , we choose a permutation s ∈ Sn

such that x = sx′. Then, we define a state ρx by ρx := Usρx′U †
s , where Us is the

unitary representation of Sn . This state plays a similar role to the conditional type in the
classical case. Using the inequality (7), we have

n
kd(d−1)

2 |Y d
n |kρx ≥ Wn(x). (8)

As is shown here, the density matrix ρx′ := ρU,m1 ⊗ρU,m2 ⊗· · ·⊗ρU,mk commutes
with ρU,n . For simplicity, we show commutativity between ρU,m1 ⊗ρU,m2 and ρU,m1+m2 ,
first. In order to prove this fact, it is sufficient to show the existence of a resolution of
the identity by the projections {Ei }i such that

∃{ai }, ρU,m1 ⊗ ρU,m2 =
∑

i

ai Ei , (9)

∃{bi }, ρU,m1+m2 =
∑

i

bi Ei . (10)
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When the resolution {E1
i } of the identity is given as projections to the irreducible spaces

of the representation of the group SU(d) × Sm1+m2 , the resolution {E1
i } satisfies the

condition (10) because of the construction of ρU,m1+m2 . Similarly, the resolution {E2
i }

of the identity is given as projections to the irreducible spaces of the representation of
the group SU(d) × SU(d) × Sm1 × Sm2 = (SU(d) × Sm1) × (SU(d) × Sm2), and the
resolution {E2

i } satisfies the condition (9). The group SU(d) × Sm1 × Sm2 is a sub-
group of SU(d) × Sm1+m2 , and it is also a subgroup of SU(d) × SU(d) × Sm1 × Sm2

via the correspondence (g, s1, s2) �→ (g, g, s1, s2). Now, the resolution {E3
j } j∈J of the

identity is given as projections to the irreducible spaces of the representation of the
group SU(d) × Sm1 × Sm2 . For any E1

i ∈ {E1
i }, there is a subset Ji of J such that

E1
i = ∑

j∈Ji
E3

j . The same fact holds for {E2
i }. Therefore, the resolution {E3

j } j∈J sat-
isfies (10) and (9). Thus, the density matrix ρU,m1 ⊗ ρU,m2 commutes with ρU,m1+m2 .
Applying the same discussion to the group SU(d) × Sm1 × Sm2 × · · · × Smk , we can
show that ρx′ := ρU,m1 ⊗ ρU,m2 ⊗ · · · ⊗ ρU,mk commutes with ρU,n . This property is
essential for the construction of the proposed decoder.

4. Construction of the Code

According to Csiszár and Körner [11], the proposed code is constructed as follows. The
main point of this section is to establish that Csiszár-Körner’s Packing lemma provides a
code whose performance is essentially equivalent to the average performance of random
coding in the sense of (12). In the following discussion, we treat the conditional type in
the case when the system Y coincides with the other system X .

Lemma 1. For a positive number δ > 0, a type p ∈ T d
n , and a real positive number

R < H( p), there exist Mn := en(R−δ) distinct elements Mn := {x1, . . . , xMn } ⊂ Tp
such that their empirical distributions are p and

|TV (x) ∩ (Mn \ {x})| ≤ |TV (x)|e−n(H( p)−R)

for x ∈ Mn ⊂ Tp and V ∈ V (x,X ).

This lemma can be shown by substituting the identical map into V̂ in Lemma 5.1 in
Csiszár and Körner [11], which is known as the Packing lemma. Since Csiszár and
Körner proved Lemma 5.1 using the random coding method, we can replace δ by 1√

n
.

That is, there exist Mn := en R−√
n distinct elements Mn := {x1, . . . , xMn } ⊂ Tp such

that their empirical distributions are p and

|TV (x) ∩ (Mn \ {x})| ≤ |TV (x)|e−n(H( p)−R) (11)

for x ∈ Mn ⊂ Tp and V ∈ V (x,X ). Note that this encoder Mn does not depend on the
output system because the employed Packing lemma treats the conditional types from
the input system to the input system. Now, we transform the property (11) to a more
useful form.

Using the encoder Mn , we can define the distribution PMn as

pMn (x) =
{ 1

|Mn | x ∈ Mn

0 x /∈ Mn .
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For any x ∈ X n , we define an invariant subgroup Sx ⊂ Sn :

Sx := {s ∈ Sn|s(x) = x}.
Since x′ ∈ Tp implies that

pn(x′) = e−nH( p),

any element x′ ∈ TV (x) ∩ Mn ⊂ Tp satisfies

∑

s∈Sx

1

|Sx | pMn ◦ s(x′) = |TV (x) ∩ Mn|
|TV (x)| · 1

|Mn| = |TV (x) ∩ (Mn \ {x})|
|TV (x)||Mn|

≤ e−nH( p)e
√

n = pn(x′)e
√

n (12)

when the conditional type V is not identical. Relation (12) holds for any x′( �= x) ∈ Mn
because there exists a conditional type V such that x′ ∈ TV (x) and V is not identical.

Next, for any x ∈ X n and any real number Cn , we define the projection

P(x) := {ρx − CnρU,n ≥ 0},
where {X ≥ 0} presents the projection

∑
i :xi ≥0 Ei for a Hermitian matrix X with the

diagonalization X = ∑
i xi Ei . Remember that the density matrix ρx commutes with

the other density matrix ρU,n . Using the projection P(x), we define the decoder:

Yx′ :=
√ ∑

x∈Mn

P(x)

−1

P(x′)
√ ∑

x∈Mn

P(x)

−1

.

In the following, the above-constructed code (en R−√
n,Mn, {Yx}x∈Mn ) is denoted by

�U,n( p, R).

5. Exponential Evaluation

Hayashi and Nagaoka [10] showed that

I − Yx′ ≤ 2(I − P(x′)) + 4
∑

x( �=x′)∈Mn

P(x).

Then, the average error probability of �U,n( p, R) is evaluated by

1

|Mn|
∑

x′∈Mn

Tr Wn(x′)(I − Yx′)

≤ 2

|Mn|
∑

x′∈Mn

Tr Wn(x′)(I − P(x′)) +
4

|Mn|
∑

x′∈Mn

Tr Wn(x′)
∑

x( �=x′)∈Mn

P(x)

= 2

|Mn|
∑

x∈Mn

Tr Wn(x)(I − P(x))

+ 4 Tr

⎡

⎣
∑

x∈Mn

P(x)

⎛

⎝ 1

|Mn|
∑

x′( �=x)∈Mn

Wn(x′)

⎞

⎠

⎤

⎦ . (13)
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Since the density matrix ρx commutes with the density matrix ρU,n , we have

(I − P(x)) = {ρx − CnρU,n < 0} ≤ ρ−t
x Ct

nρt
U,n (14)

for 0 ≤ t ≤ 1. Since the density matrix ρx commutes with the density matrix Wn(x),
Wn(x)ρ−t

x is a Hermite matrix and (8) implies that

Wn(x)ρ−t
x ≤ n

ktd(d−1)
2 |Y d

n |kt Wn(x)1−t . (15)

Using (14) and (15), we have

Tr Wn(x)(I − P(x)) ≤ Tr Wn(x)ρ−t
x ρt

U,nCt
n

≤ n
ktd(d−1)

2 |Y d
n |kt Ct

n Tr Wn(x)1−tρt
U,n . (16)

Since the quantity Tr Wn(x)(I − P(x)) is invariant with respect to the action of the
permutation and the relation (2) implies that

pn(x) = e−nH( p) ≥ (n + 1)−d

|Tp| (17)

for x ∈ Tp, we obtain

Tr Wn(x)(I − P(x)) = 1

|Tp|
∑

x′∈Tp

Tr Wn(x′)(I − P(x′))

≤ (n + 1)d
∑

x′∈X n

pn(x′) Tr Wn(x′)(I − P(x′)) (18)

≤ (n + 1)dn
ktd(d−1)

2 |Y d
n |kt Ct

n Tr(
∑

x′∈X n

pn(x′)Wn(x′)1−t )ρt
U,n (19)

≤ (n + 1)d+ ktd(d−1)
2 |Y d

n |kt Ct
n max

σ
Tr

[
∑

x∈X
p(x)Wn(x)1−t

]⊗n

σ t

≤ (n + 1)d+ ktd(d−1)
2 |Y d

n |kt Ct
n

⎛

⎜⎝Tr

([
∑

x∈X
p(x)Wn(x)1−t

]⊗n) 1
1−t

⎞

⎟⎠

1−t

(20)

= (n + 1)d+ ktd(d−1)
2 |Y d

n |kt Ct
n

⎛

⎝Tr

(
∑

x∈X
p(x)Wn(x)1−t

) 1
1−t

⎞

⎠
n(1−t)

= (n + 1)d+ ktd(d−1)
2 |Y d

n |kt Ct
ne−nφW, p(t), (21)

where (18) and (19) follow from (17) and (16), respectively. The inequality (20) can be
checked in the following way: When X is a positive semi-definite matrix, σ is a density
matrix, 0 ≤ t ≤ 1, p = 1/(1 − t), and q = 1/t , the Hölder inequality implies that

Tr Xσ t ≤ Tr |Xσ t | ≤ (Tr X p)
1
p (Tr σ tq)

1
q = (Tr X

1
1−t )1−t

because 1
p + 1

q = 1. This inequality yields (20).
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Next, we evaluate the second term of (13) using the invariant property of Sx :

Tr

⎡

⎣P(x)

⎛

⎝ 1

|Mn|
∑

x′( �=x)∈Mn

Wn(x′)

⎞

⎠

⎤

⎦

= Tr

⎡

⎣P(x)
∑

x′( �=x)∈Mn

pMn (x′)Wn(x′)

⎤

⎦

= Tr

⎡

⎣P(x)
∑

s∈Sx

1

|Sx |
∑

x′( �=x)∈Mn

pMn (x′)Vs Wn(x′)V ∗
s

⎤

⎦

= Tr

⎡

⎣P(x)
∑

x′( �=x)∈Mn

∑

s∈Sx

1

|Sx | pMn ◦ s−1(x′)Wn(x′)

⎤

⎦

≤ Tr

⎡

⎣P(x)
∑

x′( �=x)∈Mn

pn(x′)e
√

nWn(x′)

⎤

⎦ (22)

= e
√

n Tr
[

P(x)W ⊗n
p

]

≤ e
√

n Tr
[

P(x)n
d(d−1)

2 |Y d
n |ρU,n

]
(23)

≤ e
√

n Tr
[

P(x)n
d(d−1)

2 |Y d
n |C−1

n ρx

]
(24)

≤ e
√

n Tr
[
n

d(d−1)
2 |Y d

n |C−1
n ρx

]
= e

√
nn

d(d−1)
2 |Y d

n |C−1
n , (25)

where (22), (23), and (24) follow from (12), (7), and the inequality P(x)(ρU,n −
C−1

n ρx) ≤ 0.
For any t ∈ (0, 1) and R > 0, we choose |Mn| := en R−√

n , Cn := en(R+r(t)), and

r(t) := φW, p(t)−t R
1+t . Since r(t) = φW, p(t) − t (R + r(t)), from (13), (21) and (25), the

average error probability can be evaluated as

ε(�U,n( p, R), W )

≤ 2(n + 1)d+ ktd(d−1)
2 |Y d

n |kt e−n(φW, p(t)−t (R+r(t))) + 4n
d(d−1)

2 |Y d
n |e−nr(t). (26)

Then, its exponentially decreasing rate is characterized by

lim
n→∞

−1

n
log ε(�U,n( p, R), W ) ≥ min{φW, p(t) − t (R + r(t)), r(t)} = φW, p(t) − t R

1 + t
.

That is, when we choose t0 := argmaxt∈(0,1)
φW, p(t)−t R

1+t , |Mn| := en R−√
n , and

Cn := en(R+r(t0)), we obtain

lim
n→∞

−1

n
log ε(�U,n( p, R), W ) ≥ max

t∈(0,1)

φW, p(t) − t R

1 + t

for any channel W . Therefore, we obtain Theorem 1.
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6. Discussion

We have constructed a universal code realizing the transmission of quantum mutual
information by combining the information spectrum method with group representation
theory and using the Packing lemma. The code that we have developed works well
because any tensor product state ρ⊗n is close to the state ρU,n . Indeed, Krattenthaler
and Slater [24] demonstrated the existence of a state σn such that 1

n D(ρ⊗n‖σn) → 0
for any state ρ in the qubit system as a quantum analogue of Clarke and Barron’s result
[25]. Its d-dimensional extension is discussed in another paper [26].

Further, Hayashi [27] derived another exponentially decreasing rate of error probabil-
ity for a classical-quantum channel, which is maxt :0≤t≤1 −(log

∑
i pi Tr[W (i)1−t W t

p])−
t R. Since

e− φW, p(t)−t (R+r(t))
1+t = e−(φW, p(t)−t (R+r(t))) = et (R+r(t)) max

σ
Tr(

∑

i

pi W (i)1−t )σ t

≥ et R Tr(
∑

i

pi W (i)1−t )(
∑

i

pi W (i))t = e−(−(log
∑

i pi Tr[W (i)1−t W t
p])−t R),

we obtain

max
t :0≤t≤1

−(log
∑

i

pi Tr[W (i)1−t W t
p]) − t R ≥ max

t :0≤t≤1

φW, p(t) − t R

1 + t
.

That is, the obtained exponentially decreasing rate is smaller than that of Hayashi [27].
However, according to Csiszár and Körner [11], the exponentially decreasing rate of the
universal coding is the same as the optimal exponentially decreasing rate in the classical
case when the rate is close to the capacity. Hence, if a more sophisticated analysis were
to be applied, a better exponentially decreasing rate could be expected. Such an analysis
is left as a future problem.

The proposed encoder does not depend on the output system. Such a construction is
realized by employing the Packing lemma in a way different from that of Csiszár and
Körner. In the present paper, the Packing lemma treats the conditional types from the
input system to the input system. We hope that such a style of application of the Packing
lemma yields another new result on information theory in the future.
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