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Abstract: We give an intrinsic definition of (affine very) special real manifolds and
realise any such manifold M as a domain in affine space equipped with a metric which is
the Hessian of a cubic polynomial. We prove that the tangent bundle N = T M carries a
canonical structure of (affine) special Kähler manifold. This gives an intrinsic description
of the r -map as the map M �→ N = T M . On the physics side, this map corresponds to
the dimensional reduction of rigid vector multiplets from 5 to 4 space-time dimensions.
We generalise this construction to the case when M is any Hessian manifold.
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Introduction

Projective (or local) very special real geometry is the scalar geometry of five-dimensional
supergravity coupled to vector multiplets [GST,dWvP,ACDV]. We will usually omit
the word “very”. It is locally the geometry of a nondegenerate hypersurface H ⊂ R

n+1

defined by a homogeneous cubic polynomial h. In relation with string compactifications
the polynomial h could be, for instance, the cubic form

h([α]) =
∫

X
α ∧ α ∧ α

on the second cohomology of a Calabi-Yau 3-fold X .
In this paper we are concerned with affine (or rigid) very special real geometry,

which is the scalar geometry of five-dimensional rigid vector multiplets [CMMS1]. The
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Lagrangian of rigid vector multiplets is encoded in a (not necessarily homogeneous)
cubic polynomial and the metric of the scalar manifold is the Hessian of this polynomial.

In the first part of the paper we shall provide an intrinsic definition of the notion of
an affine special real manifold and study, in particular, the geometry of such manifolds:

Definition 1. An affine special real manifold (M, g,∇) is a pseudo-Riemannian man-
ifold (M, g) endowed with a flat torsion-free connection ∇ such that the tensor field
S = ∇g is totally symmetric and ∇-parallel.

We relate the intrinsic definition to the description in the physical literature in terms of a
cubic prepotential. In fact, we show that any simply connected affine special real man-
ifold (M, g,∇) of dimension n admits an affine immersion ψ onto a domain V ⊂ R

n ,
such that g is the pull back of the Hessian of a cubic polynomial h, see Corollary 1. The
pair (V, h) is unique up to affine tranformations of R

n . We calculate the curvature tensor
of a special real manifold (and, more generally, of a Hessian manifold, see Corollary 4)
and find a simple expression in terms of the tensor S. As an application, we obtain that
a special real manifold with a positive definite metric has nonnegative Ricci curvature,
see Corollary 7.

Dimensional reduction of (local/rigid) supersymmetric theories from 5 to 4 space-
time dimensions induces a correspondence between the respective scalar geometries,
which is known as the (local/rigid) r-map [dWvP,CMMS1]. The relevant scalar geom-
etry in 4 space-time dimensions is (projective/affine) special Kähler geometry, see
[C] for a survey. The (local/rigid) r-map associates a (projective/affine) special Käh-
ler manifold to any (projective/affine) special real manifold. The r-map is explicitly
known in terms of the prepotentials, which locally define special real and special Kähler
geometry. In the affine case, for instance, the r-map associates to the real cubic poly-
nomial h(x1, . . . , xn) defining the special real manifold the holomorphic prepotential
F(z1, . . . , zn) = 1

2i h(z1, . . . , zn) defining the corresponding special Kähler manifold in
terms of special holomorphic coordinates z1, . . . , zn [CMMS1]. However, an intrinsic
geometric construction of the affine and projective r-maps is missing. In the second part
of the paper we shall give such a construction in the affine case1.

We show that the tangent bundle N = T M of any (affine) special real manifold
(M, g,∇) carries the structure of an (affine) special Kähler manifold (N , J, gN ,∇N ).

More precisely, the special Kähler structure (J, gN ,∇N ) on N is canonically asso-
ciated to the geometric data (g,∇) on M , see Theorem 2. Recall that a special Kähler
manifold (N , J, gN ,∇N ) is a (pseudo-)Kähler manifold (N , J, gN ) endowed with a
connection ∇N which is special (i.e. ∇N J is symmetric), torsion-free, symplectic (with
respect to the Kähler form) and flat. The map

r : {special real manifolds} → {special Kähler manifolds} (0.1)

(M, g,∇) �→ (N , J, gN ,∇N ),

which associates to the special real manifold (M, g,∇) the special Kähler manifold
(N = T M, J, gN ,∇N ) is our geometric construction of the r-map. As an application,
we prove that there is no compact simply connected special real manifold with a positive
definite metric, see Theorem 5.

1 The projective case is the subject of work in progress.
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We show that our r-map extends naturally to a map

r : {Hessian manifolds} →
{

Kähler manifolds with a torsion-free,
symplectic and special connection

}
(0.2)

(M, g,∇) �→
(

N , J, gN ,∇N
)
.

A Hessian manifold (M, g,∇) is a pseudo-Riemannian manifold such that S = ∇g is
totally symmetric (but not necessarily ∇-parallel). The flatness of the connection ∇N is
lost when the r-map is applied to Hessian manifolds which are not special real. In fact,
∇N is flat if and only if (M, g,∇) is special real. Moreover, the manifold (N , J, gN ,∇N )

associated to a Hessian manifold (M, g,∇) by the r-map is again Hessian if and only if
(M, g,∇) is special real, see Corollary 9.

Finally, we characterise the image of the maps (0.1) and (0.2) in Theorems 3 and 4.
We calculate the curvature tensors of the Levi-Civita connection of the metric gN and
of ∇N , which have a simple expression in terms of the symmetric tensor S = ∇g and
∇S, respectively, see Corollaries 8, 10 and 11.

In particular, it follows from those theorems that a special Kähler manifold (N , J, gN ,

∇N ) of real dimension 2n can be locally obtained from the r-map if and only if it admits
locally n holomorphic2 Killing vector fields which span a Lagrangian distribution and
which are ∇N -parallel along this distribution.

We prove that under some assumptions a simply connected n-dimensional Hessian
manifold admits a canonical realisation as an improper affine hypersphere in R

n+1

equipped with the Blaschke metric and the induced connection.

1. Hessian Geometry and Affine Special Real Geometry

Definition 2. A Hessian manifold (cf. [S]) (M, g,∇) is a pseudo-Riemannian manifold
(M, g)with a flat torsion-free connection ∇ such that S = ∇g is a symmetric three-form
(cubic form). An affine (very) special real manifold (M, g,∇) is a Hessian manifold
(M, g,∇) with ∇-parallel cubic form S.

Example 1. Let h be a smooth function in affine space V ∼= R
n . We will say that h is

nondegenerate at a point x0 ∈ V if the Hessian ∂2h(x0) is nondegenerate, where ∂ is
the flat connection in V . We denote by V (x0) ⊂ V the connected component of x0 in
{det ∂2h �= 0} ⊂ V . The domain V (x0) is equipped with the pseudo-Riemannian metric
g = ∂2h. Then (V (x0), g, ∂) is a Hessian manifold. Indeed S = ∂g = ∂3h is completely
symmetric. It is an affine special real manifold if and only if the cubic form S is constant.

Proposition 1. Any Hessian manifold (respectively, affine special real manifold)
(M, g,∇) is locally isomorphic to a domain (V (x0), g, ∂) associated with a smooth
function h (respectively, cubic polynomial h), as in Example 1. The polynomial is given
by

h = 1

6

∑
Si jk xi x j xk +

1

2
bi j xi x j .

Here xi are ∇-affine coordinates g = ∑
gi j dxi dx j , gi j = ∑

Si jk xk + bi j and S =∑
Si jkdxi dx j dxk . For any Hessian manifold the n linearly independent gradient vec-

tor fields grad(xi ) commute and the coordinate vector fields ∂
∂xi are also commuting

gradient vector fields.

2 Recall that a real vector field X on a complex manifold (N , J ) is called holomorphic if LX J = 0.
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Proof. Since S = ∇g is totally symmetric, there exists locally a smooth function h
such that g = ∇2h. Moreover, if ∇S = 0, then the function h is a cubic polynomial in
affine local coordinates xi . Then ∂2h = ∇2h = g = ∑

gi j dxi dx j and ∂3h = ∇3h =
S = ∑

Si jkdxi dx j dxk , where gi j = ∑
ai jk xk + bi j and Si jk = ai jk . This shows that

h coincides with the above expression up to terms of degree less or equal to 1 in the
coordinates xi , which do not contribute to g and S. Now we check that the vector fields
grad(xi ) = ∑

gi j∂ j commute:

[
gi j∂ j , g

kl∂l

]
= gi j∂ jg

kl∂l − gkl∂lg
i j∂ j = −gi jgkk′

Sk′l ′ jg
l ′l∂l + gklgi i ′ Si ′ j ′lg

j ′ j∂ j

= −Skli∂l + Silk∂l = 0, (1.1)

by the complete symmetry of S. (Here and in later calculations we use the Einstein
summation convention.) The coordinate vector field ∂

∂xi is the gradient of the function
∂h
∂xi . 
�

Corollary 1. Let (M, g,∇) be a simply connected Hessian manifold of dimension n.
Then there exists an affine immersionψ : (M,∇) → (Rn, ∂)onto some domainψ(M) ⊂
R

n, unique up to affine transformations of R
n. The gradients grad(xi ) of the coordinate

functions xi = ψ i span a canonical n-dimensional commutative Lie algebra of vector
fields. Conversely, a pseudo-Riemannian manifold (M, g)with n pointwise linearly inde-
pendent gradient vector fields grad(xi ) is canonically extended to a Hessian manifold
(M, g,∇).

If (M, g,∇) is an affine special real manifold, then, moreover, there exists a unique
cubic polynomial h on R

n without linear and constant terms such that g = ψ∗∂2h.

Proof. Since M is simply connected, there exists a ∇-parallel coframe (ξ1, · · · , ξn).
The one-forms ξ i are closed and, hence, exact, i.e. ξ i = dxi for globally defined func-
tions xi . These functions define an affine immersionψ = (x1, · · · , xn) since ∇dxi = 0.
Given a pseudo-Riemannian manifold (M, g)with n pointwise linearly independent gra-
dient vector fields grad(xi ), there is a unique flat torsion-free connection ∇ such that
∇dxi = 0. Then ∇g is completely symmetric by (1.1).

On any domain U ⊂ M such that ψ |U : U → ψ(U ) is a diffeomorphism there
exists a smooth function hU such that gi j |U = ∂i∂ j hU . The function hU is unique up
to the addition of an affine function in the local coordinates xi . In the special real case
hU is a cubic polynomial, which can be canonically chosen by the requirement that the
linear and constant terms vanish: hU = 1

6 ai jk xi x j xk + 1
2 bi j xi x j . The coefficients ai jk ,

bi j are independent of U , since M is connected and hU = hV on overlaps U ∩ V �= ∅.
Therefore h = 1

6 ai jk xi x j xk + 1
2 bi j xi x j is canonically associated to the immersion ψ

and satisfies g = ψ∗∂2h. 
�
Remark. Shima and Yagi proved that the domainψ(M) is convex if g is positive definite,
see [SY].

Corollary 2. A pseudo-Riemannian manifold (M, g) admits the structure of an affine
special real manifold if it admits an atlas with affine transition functions such that the
metric coefficients gi j = ai jk xk + bi j are affine functions and the coefficients ai jk are
symmetric. Then gi j = ∂i∂ j h, where h = 1

6 ai jk xi x j xk + 1
2 bi j xi x j .
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Corollary 3. Let (M, g,∇) be a simply connected Hessian manifold with transitive
action of G = Aut(M, g,∇). Then the affine immersion ψ : M → ψ(M) ⊂ R

n of
Corollary 1 is a G-equivariant covering M = G/H → ψ(M) = Gx0 = G/Gx0 over
the (open) orbit Gx0 of a point x0 ∈ ψ(M)with respect to an affine action α of G on R

n.
In particular, there is no nonconstant G-invariant function on the domain ψ(M) and
at most one (up to scaling) relative invariant with character χ(a) = (det A)−2, where
α(a)x = Ax + b, a ∈ G. If such a relative invariant δ : ψ(M) → R exists, it is given
(up to a constant factor) by the formula δ ◦ψ = det(gi j ) (which in general defines only
a local relative invariant). For an affine special real manifold, the (globally defined)
relative invariant δ is a polynomial of degree n.

Recall that given a pseudo-Riemannian metric g and a connection ∇ on manifold M ,
the conjugate connection ∇̄ is defined by

Xg(Y, Z) = g(∇X Y, Z) + g(Y, ∇̄X Z),

where X,Y, Z are vector fields on M . Notice that ∇̄X = DX + Ŝ∗
X , where D is the Levi-

Civita connection, Ŝ = D − ∇ and Ŝ∗
X is the metric adjoint of the endomorphism ŜX .

Proposition 2. Let (M, g,∇) be a Hessian manifold with cubic form S = ∇g. Then
ŜX = 1

2g−1 ◦ SX = Ŝ∗
X . The conjugate connection is flat and torsion-free and we have

the following formulas:

∇̄X = DX + ŜX ,

∇X = DX − ŜX .

Proof. The connection ∇ + 1
2g−1 ◦ S is torsion-free, by the symmetry of S. We check

that it preserves the metric g:

∇Xg +
1

2
(g−1 ◦ SX ) · g = SX − 1

2
g(g−1 ◦ SX ·, ·)− 1

2
g(·, g−1 ◦ SX ·) = SX − SX = 0.

This shows that ∇+ 1
2g−1◦S is the Levi-Civita connection D =∇+ Ŝ. Hence 1

2g−1◦SX =
ŜX = Ŝ∗

X . It is clear that the conjugate connection ∇̄X = DX + ŜX has zero torsion. It
remains to calculate its curvature R̄. For this we write ∇̄ = ∇ + 2Ŝ and compute:

R̄(X,Y ) = R∇(X,Y ) + 2d∇ Ŝ(X,Y ) + 4[ŜX , ŜY ]
= 2(d∇ Ŝ(X,Y ) + 2[ŜX , ŜY ]),

∇X Ŝ = 1

2
∇X (g

−1 ◦ S) = −1

2
g−1 ◦ SXg−1 ◦ S +

1

2
g−1 ◦ ∇X S

= −2ŜX Ŝ +
1

2
g−1 ◦ ∇X S. (1.2)

Therefore

d∇ Ŝ(X,Y ) = (∇X Ŝ)Y − (∇Y Ŝ)X = −2[ŜX ŜY ],
since ∇S is symmetric. Thus R̄ = 0. 
�
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Corollary 4. Under the assumptions of the proposition, the following formulas are sat-
isfied:

RD(X,Y ) = −[ŜX , ŜY ], d D Ŝ = 0, d∇ Ŝ + 2[Ŝ, Ŝ] = 0.

Proof. The first two equations are obtained by taking the sum and difference of the
equations

0 = R̄ = RD + d D Ŝ + [Ŝ, Ŝ],
0 = R∇ = RD − d D Ŝ + [Ŝ, Ŝ].

The third equation follows from ∇̄ = ∇ + 2Ŝ:

0 = R̄ = R∇ + 2d∇ Ŝ + 4[Ŝ, Ŝ] = 2(d∇ Ŝ + 2[Ŝ, Ŝ]).

�

The following results are analogues of the corresponding results in special Kähler
geometry, see [BC1].

Theorem 1. Let (M, g,∇) be a simply connected Hessian manifold such that ∇ pre-
serves the metric volume form. Then there exists a realisation of (M, g,∇)as an improper
affine hypersphere ϕ : M → R

n+1, unique up to unimodular affine transformations.
Moreover, any automorphism of (M, g,∇) has a unique extension to a unimodular
affine transformation of R

n+1 preserving ϕ(M).

Proof. By the fundamental theorem of affine geometry a simply connected pseudo-
Riemannian manifold (M, g,∇) with a torsion-free connection ∇ admits a Blaschke
immersion ϕ : M → R

n+1 as a hypersurface with Blaschke metric g and induced con-
nection ∇ if and only if the conjugate connection ∇̄ is torsion-free and projectively
flat, and if the metric volume form is ∇-parallel, see [DNV]. Moreover, the Blaschke
immersion is unique up to unimodular affine transformations and is an improper affine
hypersphere if and only if the connection ∇ is flat. The assumptions of the fundamen-
tal theorem are satisfied in virtue of Proposition 2 and ∇ is flat by Definition 2. If
ψ : M → M is an automorphism, then, due to the unicity statement in the fundamental
theorem, there exists a unimodular affine transformation α : R

n+1 → R
n+1 such that

α ◦ ϕ = ϕ ◦ ψ . It is unique since any affine transformation which fixes an affine frame
is the identity and an affine frame in R

n+1 is determined by a frame in Tϕ(p)M and the
affine normal which is invariant under unimodular affine tranformations. 
�
Corollary 5. If G = Aut (M, g,∇) acts transitively on a simply connected Hessian
manifold (M, g,∇) and ∇ preserves the metric volume form, then the Blaschke immer-
sion ϕ : (M, g,∇) → R

n+1 is a covering M = G/H → ϕ(M) = Gx0 = G/Gx0

over the orbit Gx0 of a point x0 ∈ ϕ(M) with respect to an affine action of G on R
n+1.

Moreover, ϕ(M) ⊂ R
n+1 is an improper affine hypersphere.

Corollary 6. Let (M, g,∇) be a Hessian manifold with complete and positive definite
metric g and such that ∇ preserves the metric volume form. Then g is flat and D = ∇. In
particular, any homogeneous Hessian manifold with positive definite metric and volume
preserving connection ∇ is finitely covered by the product of a flat torus and a Euclidean
space.



Geometric Construction of the r-Map 585

Proof. By the previous theorem, the universal covering of (M, g,∇) can be realised as
an improper affine hypersphere with complete and positive definite Blaschke metric. By
the Calabi-Pogerelov theorem, see [NS] and references therein, such a hypersurface is
a paraboloid and the Blaschke metric is flat. Now the existence of the finite covering
follows from Bieberbach’s theorem. 
�

2. Geometric Structures on the Tangent Bundle

Now we show that the tangent bundle π : N = T M → M of a Hessian (pseudo-)
Riemannian manifold (M, g,∇) has a natural (pseudo-) Kähler structure and the tan-
gent bundle of an affine special real manifold has a natural special (pseudo-) Kähler
structure. We recall that an (affine) special (pseudo-) Kähler structure (g, J,∇) on a
manifold N is given by a (pseudo-) Kähler structure (g, J ) and a flat torsion-free sym-
plectic (∇ω = ∇g ◦ J = 0) connection such that ∇ J is a symmetric (1,2)-tensor, see
[C] and references therein.

Let T N = T h N ⊕T vN be the decomposition of the tangent bundle of N = T M into
vertical and horizontal subbundles with respect to the flat connection ∇ on the Hessian
manifold (M, g,∇). We have a canonical isomorphism

Tξ N = T h
ξ ⊕ T vξ ∼= Tπ(ξ)M ⊕ Tπ(ξ)M.

Local affine coordinates xi on M induce canonical coordinates (xi , ui ) on N such that
any vector ξ ∈ T M is written as ξ = ui ∂

∂xi . Then ∂i := ∂
∂xi , ∂i ′ := ∂

∂ui forms a local

frame of T h and T v , respectively. For a vector field X = Xi ∂
∂xi on M we denote by

Xh = Xi ∂
∂xi , Xv = Xi ∂

∂ui the horizontal and vertical lifts of X , respectively. Then we
have the formulas:

[Xh,Y h] = [X,Y ]h, [Xv,Y v] = 0, [Xh,Y v] = (∇X Y )v.

The canonical isomorphism 1 = ∂
∂ui ⊗ dxi : T h

ξ
∼= Tπ(ξ)M ∼= T vξ defines the

complex structure

J :=
(

0 −1
1 0

)
,

which is integrable since it has constant coefficients in the coordinates (xi , ui ). We
define a natural extension of the metric by

gN :=
(

g 0
0 g

)
.

Proposition 3 (cf. [S0]). For any Hessian (pseudo-) Riemannian manifold (M, g,∇)
the pair (gN , J ) is a (pseudo-) Kähler structure on N = T M.

Proof. It is sufficient to check that the 2-form

ω = gN ◦ J =
(

0 −g
g 0

)
= −gik(x)dxi ∧ duk

is closed. Indeed,

dω = ∂gik

∂x j
dxi ∧ dx j ∧ duk = 0

due to the total symmetry of ∇g = ∂g. 
�
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Proposition 4. With respect to the coordinates x I = (xi , ui ′), the Christoffel symbols

I = (
K

I J ) of the metric gN are given by


i =
(

Ŝi 0
0 Ŝi

)
, 
i ′ =

(
0 −Ŝi

Ŝi 0

)
= J
i .

If (M, g,∇) is special real, that is ∇S = 0, then the curvature RN of the Levi Civita
connection DN is given by

RN (Xh,Y h) = RN (Xv,Y v)

=
(

RD(X,Y ) 0
0 RD(X,Y )

)
= −

( [ŜX , ŜY ] 0
0 [ŜX , ŜY ]

)
, (2.1)

RN (Xh,Y v) =
(

0 {ŜX , ŜY }
−{ŜX , ŜY } 0

)
. (2.2)

Corollary 7. Let (M, g,∇) be an affine special real manifold. Then the Ricci curvature
of the (pseudo-) Kähler manifold (N , gN , J ) is given by

ric(Xh + Y v, Xh + Y v) = 2tr Ŝ2
X + 2tr Ŝ2

Y .

If the metric g is Riemannian then the Riemannian metric gN has nonnegative Ricci
curvature. The Ricci curvature is strictly positive if and only if the map X �→ S(X, ·, ·)
has trivial kernel.

Proof. Since the Ricci form of any Kähler manifold is given byρ(X,Y ) = ric(J X,Y ) =
1
2 tr J R(X,Y ) the formulas for the Ricci curvature follow from the previous proposition.

Since ŜX is symmetric with respect to g, tr Ŝ2
X ≥ 0 if g is definite. 
�

Now we extend the (1,2)-tensor field Ŝ on M considered as tensor on T h
ξ N ∼= Tπ(ξ)M

to a (1,2)-tensor ŜN on N such that

ŜN
J = ŜN J = −J ŜN .

Then it is given by

ŜN
Xh =

(
ŜX 0
0 −ŜX

)
, ŜN

Xv =
(

0 −ŜX

−ŜX 0

)
. (2.3)

We define a connection ∇N on N by

∇N = DN − ŜN .

Lemma 1. Let (N , gN , J ) be the Kähler manifold associated to a Hessian manifold
(M, g,∇). Then the above connection ∇N has the following Christoffel symbols with
respect to the coordinates x I = (xi , ui ′):


i =
(

0 0
0 2Ŝi

)
, 
i ′ =

(
0 0

2Ŝi 0

)
.
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Theorem 2. Let (M, g,∇ = D − Ŝ) be an affine special real manifold. Then
(
N , gN , J,

∇N = DN − ŜN
)

is an affine special (pseudo-) Kähler manifold.

Proof. Due to Proposition 3 it suffices to show that the connection ∇N is a) torsion-free,
b) symplectic, c) special (i.e. ∇N J is symmetric) and d) flat. The properties a), b) and c)
are valid for any Hessian manifold (M, g,∇). Indeed the Levi Civita connection DN is
torsion-free and preserves ω and J . Therefore:

a) follows from the symmetry ŜN
X Y = ŜN

Y X for X,Y ∈ T N .
b) follows from the symmetry ω(ŜN

X Y, Z) = ω(ŜN
X Z ,Y ) for all X,Y, Z ∈ T N .

c) follows from the symmetry of ŜN
X Y , since ∇N J = [ŜN

X , J ] = −2J ŜN
X .

Now we check that the curvature

RI J = ∂I
J − ∂J
I + [
I , 
J ]
of ∇N vanishes. Using the formula (1.2) with ∇S = 0 and the previous lemma we get:

∂i
 j =
(

0 0
0 −4Ŝi Ŝ j

)
, ∂i
 j ′ =

(
0 0

−4Ŝi Ŝ j 0

)
, ∂i ′
J = ∂

∂ui

J = 0.

Now it is easy to check that RI J = 0. 
�
The same calculation shows:

Corollary 8. The curvature of the connection ∇N of the Kähler manifold (N , gN , J )
associated to a Hessian manifold (M, g,∇) is given by:

R(Xh,Y h) =
(

0 0
0 PX,Y − PY,X

)
, R(Xv,Y v) = 0, R(Xh,Y v) =

(
0 0

PX,Y 0

)
,

where PX,Y Z = g−1(∇X S)(Y, Z , ·). The Ricci curvature of ∇N is given by:

ric(Xh,Y h) = −tr PX,Y , ric(Xv,Y v) = ric(Xh,Y v) = 0.

Corollary 9. Let (gN , J,∇N ) be the geometric structures on N = T M associated to a
Hessian manifold (M, g,∇). Then the following are equivalent:

(i) ∇N is flat.
(ii)

(
N , gN ,∇N

)
is Hessian.

(iii) (M, g,∇) is special real.

Proof. The equivalence of (i) and (iii) follows from the previous corollary and it is clear
that (ii) implies (i). It remains to check that (i) implies (ii). The complete symmetry of
the tensor field ∇N gN follows from the symmetry ŜN

X Y = ŜN
Y X , since

(
∇N

X gN
)
(Y, Z) = −

(
ŜN

X · gN
)
(Y, Z) = gN

(
ŜN

X Y, Z
)

+ gN
(

Y, ŜN
X Z

)

= gN
(

ŜN
X Y, Z

)
− ωN

(
J N Y, ŜN

X Z
)

= gN
(

ŜN
X Y, Z

)
− ωN

(
J N ŜN

X Y, Z
)

= 2gN
(

ŜN
X Y, Z

)
.


�
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Corollary 10. Under the assumptions of Theorem 2 the exterior covariant derivatives
of the endomorphism valued one-form ŜN are given by:

d∇N
ŜN (Xh,Y h) = d∇N

ŜN (Xv,Y v) = −2

( [ŜX , ŜY ] 0
0 [ŜX , ŜY ]

)
,

d∇N
ŜN (Xh,Y v) = 2

(
0 {ŜX , ŜY }

−{ŜX , ŜY } 0

)
,

d DN
ŜN = 0. (2.4)

Proof. The proof follows from (2.1)–(2.3), R∇N = 0 and the formulas

d∇N
ŜN = RN − R∇N − [ŜN , ŜN ],

d DN
ŜN = RN − R∇N

+ [ŜN , ŜN ].

�

Corollary 11. Under the assumptions of Theorem 2 the curvature of the Levi-Civita
connection of gN is given by

RN = −[ŜN , ŜN ].
Definition 3. The map which to any affine special real manifold (M, g,∇) associates
the affine special Kähler manifold r(M) := (N , gN , J,∇N ) is called the (affine) r-map.

Corollary 12. Let (M, g,∇) be a special real manifold which locally admits a homo-
geneous Hesse potential h = 1

6 Si jk xi x j xk . Then the Kähler manifold r(M) is not flat.

Proof. By (2.1) RN = 0 is equivalent to ŜX ŜY = 0 for all X,Y ∈ T M . This is impossi-
ble since, by Proposition 1, locally we can identify the Hessian manifold with a domain
(V (x0), g, ∂) and 2g ◦ ŜX = S(X, ·, ·) = ∂2h(X) = gX is invertible for all X ∈ V (x0).


�
Flat special Kähler manifolds were classified in [BC2]. By the corollary, they cannot

be obtained from a homogeneous cubic polynomial by the r-map.

Theorem 3. Let (M, g,∇) be a Hessian manifold of dimension n and (N = T M, gN ,

J,∇N ) the corresponding (pseudo-) Kähler manifold with the connection defined above.
Then

(i) The decomposition T N = T v + T h = T v + J T v is a decomposition into two
orthogonal integrable Lagrangian distributions which are totally geodesic and
flat with respect to ∇N . The horizontal distribution is also totally geodesic with
respect to DN .

(ii) For any leaf L = M(ξ), ξ ∈ N, of the horizontal distribution there exists an invo-
lution σ = σL ∈ Aut(N , gN , J,∇N ) which preserves the vertical and horizontal
foliations and such that L = Nσ .

(iii) The group generated by products σL ◦ σL ′ preserves each fiber Tp M, p ∈ M, and
acts as the translation group of the fiber Tp M.
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Proof. (i) follows from the formulas for the Christoffel symbols and curvature of DN and
∇N and from the formulas for gN = gi j (x)(dxi dx j +dui du j ), J andω = gN ◦J . In each
coordinate domain one can check directly that the reflectionσU : (x, u) �→ (x,−u+2u0)

with respect to an open domain U = {u = u0} ⊂ L in a leaf L has the properties claimed
in (ii). The reflections σU coincide on overlaps and, hence, define the global reflection
σL . (iii) follows from the fact that the product of two central symmetries in the affine
space Tp M is a parallel translation. 
�

The converse can be stated as follows.

Theorem 4. Let (N , J, gN ) be a 2n-dimensional pseudo-Kähler manifold which
admits a free holomorphic and isometric action of the vector group R

n with (metrically)
nondegenerate Lagrangian orbits such that the projection π : N → N/Rn = M is
a trivial (principal) bundle. Then there exists an induced pseudo-Riemannian metric g
and flat connection ∇ on M such that (M, g,∇) is Hessian and N is identified with T M
with the pseudo-Kähler structure (J, gN ) induced from (M, g,∇) by Proposition 3. If
moreover (N , J, gN ,∇N ) is special Kähler and the Killing vector fields Ui of the above
action are ∇N -parallel along the Lagrangian orbits, then (M = N/Rn, g,∇) is special
real and (N , J, gN ,∇N ) is obtained from (M = N/Rn, g,∇) by the r-map.

Proof. We denote by Ui the commuting vector fields on N which are the generators of the
action of R

n . The holomorphicity of the Ui implies that the vector fields Ui , X j = −JU j
commute. They are linearly independent since the distribution T vN := span{Ui |i =
1, · · · , n} is nondegenerate and Lagrangian. There exist local coordinates (xi , u j ) such
that Ui = ∂

∂ui and X j = ∂
∂x j . In these coordinates

gN = gi j

(
dxi dx j + dui du j

)
,

where the functions gi j = gi j (x) depend only on the xi , since the Ui are Killing vector
fields. Since Ui is a holomorphic Killing vector field, it is also symplectic with respect
to the Kähler form. This implies that Xi = −JUi is a gradient vector field, hence
the one-form g(Xi , ·) is closed and ∂

∂xi g jk is completely symmetric. This shows that
(M, g,∇) is a Hessian manifold, where g = (gi j (x)) is the metric on M which makes
N → M a pseudo-Riemannian submersion and ∇ is the flat connection induced by
the flat connection on the leaves of the distribution T h := J T v with parallel vector
fields ∂

∂xi . Identifying M with a section of the trivial bundle N → M we can identify

N with T M . It is clear that the pseudo-Kähler structure on N = T M is obtained by
Proposition 3 from the Hessian manifold (M, g,∇).

In the special Kähler case the assumption ∇N
Ui

U j = 0 implies

∇N
JUi
(JU j ) =

(
∇N

JUi
J
)

U j + J∇N
JUi

U j = −J
(
∇N

U j
J
)

Ui + J
(
∇N

U j
J
)

Ui = 0.

Using the fact that for a special Kähler manifold ŜN := DN − ∇N = − 1
2 J∇N J , one

can easily check that ∇N is the connection from Lemma 1. Now Corollary 8 shows
that ∇S = 0, i.e. (M, g,∇) is special real. As an application we prove the following
non-existence result. 
�
Theorem 5. There is no compact simply connected special real manifold of positive
dimension.
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Proof. Let (M, g,∇) be a compact simply connected special real manifold. We first
prove that the metric of the special Kähler manifold (N = T M, gN , J,∇N ) is complete.
As in the proof of Corollary 1, we have a ∇ parallel coframe ξ i = dxi , i = 1, . . . , n. We
denote by ∂i the dual global frame on M and by ui the corresponding globally defined
functions on N = T M , which are the coordinates of a vector with respect to the frame ∂i .
There exists a free isometric action of R

n on N = T M given by ui �→ ui + ci , whose
orbits are the tangent spaces. The quotient of (N , gN ) by the lattice of integral transla-
tions is a compact, hence, complete Riemannian manifold. Thus (N , gN ) is complete as
the universal covering of a complete Riemannian manifold.

By [BC1], (N , gN ,∇N ) can be realised as an improper affine hypersphere with com-
plete Riemannian metric. In fact, one can check that the integrability conditions3 for
the existence of an affine hypersphere immersion ϕ : N → R

2n+1 follow from the
properties of a special Kähler manifold. By the Calabi-Pogorelov theorem, see [NS] and
references therein, the metric gN admits a quadratic Hesse potential and the Levi-Ci-
vita connection of gN coincides with ∇N . Using the formulas (2.3), this implies that
the Levi-Civita connection of the special real manifold coincides with ∇ and, hence, is
flat. Since there is no compact simply connected flat Riemannian manifold of positive
dimension we obtain the theorem. 
�
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