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Abstract: Previous results on local asymptotic normality (LAN) for qubits [16,19]
are extended to quantum systems of arbitrary finite dimension d. LAN means that the
quantum statistical model consisting of n identically prepared d-dimensional systems
with joint state ρ⊗n converges as n → ∞ to a statistical model consisting of classical
and quantum Gaussian variables with fixed and known covariance matrix, and unknown
means related to the parameters of the density matrix ρ. Remarkably, the limit model
splits into a product of a classical Gaussian with mean equal to the diagonal parameters,
and independent harmonic oscillators prepared in thermal equilibrium states displaced
by an amount proportional to the off-diagonal elements. As in the qubits case [16], LAN
is the main ingredient in devising a general two step adaptive procedure for the optimal
estimation of completely unknown d-dimensional quantum states. This measurement
strategy shall be described in a forthcoming paper [18].

1. Introduction

Quantum statistics deals with problems of statistical inference arising in quantum mechan-
ics. The first significant results in this area appeared in the seventies and tackled issues
such as quantum Cramér-Rao bounds for unbiased estimators, optimal estimation for
families of states possessing a group symmetry, estimation of Gaussian states, optimal
discrimination between non-commuting states. It is impossible to list all contributions but
the following references may give the flavour of these developments [7,8,27,28,47,48].
The more recent theoretical advances [2,3,6,23,24,35] are closely related to the rapid
development of quantum information and quantum engineering, and are often accom-
panied by practical implementations [1,20,39,40].

An important topic in quantum statistics is that of optimal estimation of an unknown
state using the results of measurements performed on n identically prepared quantum sys-
tems [4,5,9,13,14,25,26,30,32,45]. In the case of two dimensional systems, or qubits,
the problem has been solved explicitly in the Bayesian set-up, in the particular case
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of an invariant prior and figure of merit based on the fidelity distance between states
[5]. However the method used there does not work for more general priors, loss func-
tions, or higher dimensions. In the pointwise approach, Hayashi and Matsumoto [26]
showed that the Holevo bound [28] for the variance of locally unbiased estimators can be
achieved asymptotically, and provided a sequence of measurements with this property.
Their results, building on earlier work [21,22], indicate for the first time the emergence
of a Gaussian limit in the problem of optimal state estimation for qubits. The extension
to d-dimensional case is analysed by Matsumoto in [33].

In [16,19] we performed a detailed analysis of this phenomenon (again for qubits),
and showed that we deal with the quantum generalization of an important concept in
mathematical statistics called local asymptotic normality. As a corollary, we devised
a two steps adaptive measurement strategy for state estimation which is asymptoti-
cally optimal for a large class of loss functions and priors, and could be practically
implemented using continuous-time measurements. In ‘classical statistics’, the idea of
approximating a sequence of statistical models by a family of Gaussian distributions
appeared in [46], and was fully developed by Le Cam [31] who coined the term “local
asymptotic normality”. Among the many applications we mention its role in asymptotic
optimality theory and in proving the asymptotic normality of certain estimators such
as the maximum likelihood estimator. The aim of this paper is to extend the results
of [16,19] to systems of arbitrary dimension d < ∞, and thus provide the main tool
for solving the open problem of optimal state estimation for d-dimensional quantum
systems [18].

Before stating the main result of the paper we shall explain briefly the meaning of
local asymptotic normality for two dimensional systems [16,19]. We are given n qubits
identically prepared in an unknown state ρ. Asymptotic normality means that for large
n we can encode the statistical information contained in the state ρ⊗n into a Gaussian
model consisting of a classical random variable with distribution N (u, I −1), and a quan-
tum harmonic oscillator prepared in a (Gaussian) displaced thermal state φζ . The term
local refers to how ρ is related to the parameters θ = (u, ζ ), as explained below.

For a more precise formulation let us parametrise the qubit states by their Bloch
vectors ρ(−→r ) = 1

2 (1 + −→r −→σ ), where −→σ = (σx , σy, σz) are the Pauli matrices. The
neighbourhood of the state ρ0 with −→r0 = (0, 0, 2µ − 1) and 1/2 < µ < 1, is a three-
dimensional ball parametrised by the deviation u ∈ R of diagonal elements and ζ ∈ C

of the off-diagonal ones,

ρθ =
(
µ + u ζ ∗
ζ 1 − µ− u

)
, θ = (u, ζ ) ∈ R × C. (1.1)

Note that ρ0 is to be considered fixed and known but otherwise arbitrary, and can be
taken to be diagonal without any loss of generality. Consider now n identically prepared
qubits whose individual states are in a neighbourhood of ρ0 of size 1/

√
n, so that their

joint state is ρn
θ :=

[
ρθ/

√
n

]⊗n
for some unknown θ . We would like to understand the

structure of the family (statistical experiment)

Qn := {ρn
θ : ‖θ‖ ≤ C}, (1.2)

as a whole, more precisely what is its asymptotic behavior as n → ∞ ?
For this we consider a quantum harmonic oscillator with position and momentum

operators satisfying the commutation relations [Q,P] = i1. We denote by {|k〉, k ≥ 0}
the eigenbasis of the number operator and define the thermal equilibrium state
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φ = (1 − e−β)
∞∑

k=0

e−kβ |k〉〈k|, e−β = 1 − µ

µ
,

which has centered Gaussian distributions for both Q and P with variance 1/(4µ−2) >
1/2. We define a family of displaced thermal equilibrium states

φζ := Dζ (φ) := W (ζ/
√

2µ− 1) φ W (ζ/
√

2µ− 1)∗, (1.3)

where W (ζ ) := exp(ζa∗ − ζ̄a) is the unitary displacement operator with ζ ∈ C. Addi-
tionally we consider a classical Gaussian shift model consisting of the family of normal
distributions N (u, µ(1 − µ)) with unknown center u and fixed known variance. The
classical-quantum statistical experiment to which we alluded above is defined by the
family of densities

R := {φθ := N (u, µ(1 − µ))⊗ φζ : ‖θ‖ ≤ C}, (1.4)

where the unknown parameters θ = (u, ζ ) ∈ R × C are the same as those of Qn .

Theorem 1.1 [16,19]. Let Qn be the quantum statistical experiment (1.2) and let R be
the classical-quantum experiment (1.4). Then for each n there exist quantum channels
(normalized completely positive maps)

Tn : M
(
(C2)⊗n

)
→ L1(R)⊗ T (L2(R)),

Sn : L1(R)⊗ T (L2(R)) → M
(
(C2)⊗n

)
,

with T (L2(R)) the trace-class operators, such that

lim
n→∞ sup

‖θ‖≤C
‖φθ − Tn

(
ρn
θ

) ‖1 = 0,

lim
n→∞ sup

‖θ‖≤C
‖ρn
θ − Sn (φθ ) ‖1 = 0,

for an arbitrary constant C > 0. The norm of trace class operators is ‖τ‖1 := Tr(|τ |).
The theorem shows that from a statistical point of view the joint qubits states are

asymptotically indistinguishable from the limit Gaussian system. At the first sight one
might object that the local nature of the result prevents us from drawing any conclu-
sions for the original model of a completely unknown state ρ. However this is not a
limitation, but reflects the correct normalisation of the parameters with n → ∞. Indeed
as n grows we have more information about the state which can be pinned down to a
region of size slightly larger than 1/

√
n by performing rough measurements on a small

proportion of the systems. After this ‘localisation’ step, we can use more sophisticated
techniques to better estimate the state within the local neighbourhood of the first step
estimator, and it is here where we use the local asymptotic normality result. Indeed,
since locally the states are uniformly close to displaced Gaussian states we can pull back
the optimal (heterodyne) measurement for estimating the latter to get an asymptotically
optimal measurement for the former. Based on this insight we have proposed a realis-
tic measurement set-up for this purpose using an atom-field interaction and continuous
measurements in the field [16].
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This paper deals with the extension of the previous result to d-dimensional systems.
Like in the two-dimensional case we parametrise the neighbourhood of a fixed (diag-
onal) state ρ0 by a vector �u ∈ R

d−1 of diagonal parameters and d(d − 1)/2 complex
parameters �ζ = (ζ j,k : j < k), one for each off-diagonal matrix element (cf. (4.2) and
(4.4)). We consider the same 1/

√
n−scaling and look at the family

Qn =
{[
ρθ/

√
n

]⊗n : θ = (�u, �ζ ) ∈ �n ⊂ R
d−1 ⊗ C

d(d−1)/2
}
,

where �n is a ball of local parameters whose size is allowed to grow slowly with n.
As in the 2-dimensional case, the limit model is the product of a classical statistical

model depending on the parameters �u and a quantum model depending on �ζ . Moreover
the quantum part splits into a tensor product of displaced thermal states of quantum
oscillators, one for each off-diagonal matrix element ζ j,k with j < k. Thus

φθ = N (�u, I −1
ρ0
)⊗

⊗
j<k

φ
ζ j,k
j,k , θ = (�u, �ζ ).

Here, Iρ0 is the Fisher information matrix of the multinomial model with parameters

(µ1, . . . , µd) described in Example 3.4, and φ
ζ j,k
j,k is the displaced thermal equilibrium

state defined in (4.15) with inverse temperature β = ln(µ j/µk).
Theorem 4.3 is the main result of the paper and shows the convergence of Qn to the

Gaussian model

Rn =
{
φθ : θ ∈ �n ⊂ R

d−1 ⊗ C
d(d−1)/2

}
,

in the spirit of Theorem 1.1. On the technical side, the uniform convergence holds over
local neighbourhoods �n which are allowed to grow with n rather than being fixed
balls. This is essential for constructing the two stage optimal measurement: first localise
within a neighbourhood �n , and then apply the optimal Gaussian measurement. The
details of this construction are similar to the two dimensional case and will be given in
a subsequent paper [18].

Despite the similarity to the two dimensional case, the proof of the d-dimensional
result has additional features which may be responsible for the fact that the optimal esti-
mation problem has remained unsolved until now. The proof is based on the following
observations:

• the n systems space (Cd)⊗n decomposes into a direct sum of irreducible represen-
tations of SU (d), each representation being labelled by a Young diagram λ (cf.
Theorem 4.1);

• the joint state ρ⊗n
θ/

√
n

has the block diagonal form (4.8), the block weights λ → pθ,nλ
depend only on the diagonal parameters �u and are closely related to the multinomial
distribution of Example 3.4. This classical statistical model converges to the (d −1)-
dimensional Gaussian shift model N (�u, I −1

ρ0
);

• there exists an isometry Vλ mapping basis vectors |m, λ〉 of the irreducible repre-
sentation Hλ almost into number vectors |m〉 of the multimode Fock space, where
m = {m j,k : j < k} is the collection of eigenvalues of the number operators for all
oscillators.
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• given a typical λ, the conditional block-state ρθ,nλ can be mapped with Vλ into a mul-

timode state which is close (in trace norm) to the Gaussian product state ⊗ j<kφ
ζ j,k
j,k .

This can be done uniformly over the typical diagrams whose normalised shapes have
1/

√
n fluctuations around (µ1, µ2, . . . , µd), and over parameters θ ∈ �n .

The first item is the well known Weyl duality which is extensively used in quantum statis-
tics for i.i.d. states. The probability distribution of the second point has also been analysed
in the context of large deviations [30] for the estimation of the state eigenvalues. The
third point shows that the basis |m, λ〉 is almost orthogonal for indices m which are not
too big. This basis is obtained by projecting tensors of the form fa := fa(1)⊗· · ·⊗ fa(n)

onto a subspace of (Cd)⊗n which is isomorphic to Hλ (cf. Theorem 5.2). Let us place the
indices {a(i) : i = 1 . . . n} in the boxes of the diagram λ along rows, starting from the
left end of the first row, to obtain a tableau ta. It turns out that we only need to consider
fa for which ta is a semistandard tableau (nondecreasing along rows, increasing along
columns). Then the label m := {mi, j : j > i} is the collection of integers mi, j equal
to the number of j ′s on the row i , and is in one to one correspondence with a. The
following is an example of such semistandard tableau

tm = 1 1 1 1 1 1 1 1 2 2 2 3 3
2 2 2 2 2 3
3 3 3

, with m1,2 = 3,m1,3 = 2,m2,3 = 1.

The relatively large number of i’s in the row i is intentional, since it turns out that the
‘relevant’ vectors, i.e. those carrying the states ρθ,nλ , have indices mi, j small compared
with the length of the rows (λi ≈ nµi for typical representations λ). More precisely, in
Sect. 7.2 we prove the following quasi-orthogonality result which allows us to carry the
block states over to the oscillator space: if m �= l and |l| ≤ |m| ≤ nη, then

|〈m, λ|l, λ〉| = O(n(9η−2)|m−l|/12) −−−→
n→∞ 0 for η < 2/9.

The proof of the fourth point involves a detailed analysis of the state ρθ,nλ through its
coefficients in the basis |m, λ〉 of Hλ. When θ = 0 the state is diagonal and its coeffi-
cients approach uniformly those of the multidimensional thermal state φ�0 = ⊗ j<kφ j,k
as shown in Lemma 6.3. The next step is to apply SU (d) rotations and obtain the states
ρ
θ,n
λ . In Lemmas 6.4 and 6.5 it is shown that the unitary operations Ad[Uλ(ζ/√n)] act

on ρ0,n
λ in the same way as the displacement operator D�ζ acts on the thermal state φ�0. A

remarkable fact is that in the limit the different off-diagonal parameters ‘separate’ into
a product of shift experiments for quantum oscillators, one for each off-diagonal index
( j < k). This could be guessed from the Quantum Central Limit Theorem 4.4 which is
related to the restriction of our result to θ = 0.

Due to the apparent intricacy of the main result, the paper is organised according to
the ‘onion peeling’ principle. We start in Sect. 2 with general classical statistical notions
which motivate our investigation in quantum statistics. In particular we explain the rel-
evance of the Le Cam distance between statistical models as a statistically meaningful
way to describe convergence. Section 3 presents the classical version of local asymptotic
normality with the multinomial model as an example.

In Sect. 4 we introduce the quantum statistical model consisting of n identical quan-
tum systems with joint state ρθ,n described by diagonal and rotation parameters. We
also introduce the multimode Gaussian states appearing in the limit. With this we can
formulate the main result, Theorem 4.3.
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In Sect. 5 we introduce the basis |m, λ〉 and the isometry Vλ allowing us to define
the channels Tn and Sn connecting the two statistical models.

In Sect. 6 we break the proof of the main theorem into manageable lemmas, essen-
tially by using triangle inequalities. Each lemma deals with a different aspect of the
convergence and has an interest in its own.

Finally, the technical proofs are collected in Sect. 7. Notably, Subsect. 7.1 and
Lemma 7.1 contain the combinatorial substance of the paper.

Our investigation relies on the theory of representations of SU (d). We refer to [11,
12,15] for proofs of standard results and more details.

As in the two-dimensional case [16], local asymptotic normality provides a two stage
adaptive measurement strategy which is asymptotically optimal for both Bayesian and
pointwise viewpoints, and for a large range of ‘distances’ on the state space [18].

Our result is derived under the assumption that the density matrixρ0 is strictly positive
and has no degenerate eigenvalues. Although we believe that a limit experiment exists
for all states, the limit model may have a different structure. For example in the case
d = 2, when µ1 = µ2 = 1/2 the limit is a completely classical Gaussian shift experi-
ment as it can be gleaned from the quantum Central Limit Theorem [37] and from the
alternative version of local asymptotic normality based on ‘weak convergence’ [17].
More drastically, when the state ρ0 is pure (but we do not have this information), the
classical Gaussian shift describing the eigenvalue parameter is replaced by a Poisson
experiment and the correct scaling is 1/n. A detailed analysis of these remaining cases
will be pursued in a separate publication.

Throughout, we will use the following symbols: ϕ,ψ for states, φ, ρ for density
matrices, T, S,M for channels (randomisations), E,P,Q for statistical models (experi-
ments), θ, ζ, u for parameters, α, β, γ, δ, ε for positive constants, λ for Young diagrams.

2. Classical and Quantum Statistical Experiments

In this section we introduce some basic notions from classical statistics with the aim of
defining the Le Cam distance between statistical models and local asymptotic normality.
In parallel, we shall define the quantum analogues and point out their relevance in quan-
tum statistics. The reader may find the conceptual framework helpful in understanding
the quantum version of the result.

Let X be a random variable with values in the measure space (X , �X ), and let us
assume that its probability distribution P belongs to some family {Pθ : θ ∈ �} where
the parameter θ is unknown. Statistical inference deals with the question of how to use
the available data X in order to draw conclusions about some property of θ . We shall
call the family

E := {Pθ : θ ∈ �}, (2.1)

a statistical experiment or statistical model over (X , �X ) [31].
In quantum statistics the data is replaced by a quantum system prepared in a state

ϕ which belongs to a family {ϕθ : θ ∈ �} of states over an algebra of observables.
In order to make a statistical inference about θ one first has to measure the system,
and then apply statistical techniques to draw conclusions from the data consisting of
the measurement outcomes. An important difference with the classical case is that the
experimenter has the possibility to choose the measurement set-up M , and each set-up
will lead to a different classical model {P(M)θ : θ ∈ �}, where P(M)θ is the distribution
of outcomes when performing the measurement M on the system prepared in state ϕθ .
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The guiding idea of this paper is to investigate the structure of the family of quantum
states

Q := {ϕθ : θ ∈ �},
which will be called a quantum statistical experiment. We shall show that in an important
asymptotic set-up, namely that of a large number of identically prepared systems, the
joint state can be approximated by a multidimensional quantum Gaussian state, for all
possible preparations of the individual systems. This will bring a drastic simplification
in the problem of optimal estimation for d-dimensional quantum systems, which can
then be solved in the asymptotic framework [18].

2.1. Classical and quantum randomisations. Any statistical decision (e.g. estimator,
test) can be seen as data processing using a Markov kernel. Suppose we are given a
random variable X taking values in (X , �X ) and we want to produce a ‘decision’ y ∈ Y
based on the data X . The space Y may be for example the parameter space � in the
case of estimation, or just the set {0, 1} in the case of testing between two hypotheses.
For every value x ∈ X we choose y randomly with probability distribution given by
Kx (dy). Assuming that K : X × �Y → [0, 1] is measurable with respect to x for all
fixed A ∈ �Y , we can regard K as a map from probability distributions over (X , �X )
to probability distributions over (Y, �Y ) with

K (P)(A) =
∫

Kx (A)P(dx), A ∈ �Y . (2.2)

A statistic S : X → Y is a particular example of such a procedure, where Kx is simply
the delta measure at S(x).

Besides statistical decisions, there is another important reason why one would like
to apply such treatment to the data, namely to summarize it in a more convenient and
informative way for future purposes as illustrated in the following simple example. Con-
sider n independent identically distributed random variables X1, . . . , Xn with values in
{0, 1} and distribution Pθ := (1 − θ, θ) with θ ∈ � := (0, 1). The associated statistical
experiment is En := {Pn

θ : θ ∈ �}.
It is easy to see that X̄n = 1

n

∑n
i=1 Xi is an unbiased estimator of θ and moreover

it is a sufficient statistic for En , i.e. the conditional distribution Pn
θ (·|X̄n = x̄) does not

depend on θ ! In other words the dependence on θ of the total sample (X1, X2, . . . , Xn)

is completely captured by the statistic X̄n which can be used as such for any statistical
decision problem concerning En . If we denote by P̄n

θ the distribution of X̄n then the
experiment Ēn = {P̄n

θ : θ ∈ �}, is statistically equivalent to En .
The Markov kernel K defined in (2.2) maps the experiment E of Eq. (2.1) into the

experiment

F := {Qθ : θ ∈ �},
over (Y, �Y )with Qθ = K (Pθ ). For mathematical convenience it is useful to represent
such transformations in terms of linear maps between linear spaces.

Definition 2.1. A positive linear map

T∗ : L1(X , �X , P) → L1(Y, �Y , Q)
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is called a stochastic operator or transition if ‖T∗(g)‖1 = ‖g‖1 for every g ∈ L1
+(X ).

A positive linear map

T : L∞(Y, �Y , Q) → L∞(X , �X , P)

is called a Markov operator if T 1 = 1, and if for any fn ↓ 0 in L∞(Y)we have T fn ↓ 0.

A pair (T∗, T ) as above is called a dual pair if∫
f T (g)d P =

∫
T∗( f )gd Q,

for all f ∈ L1(X , �X , P) and g ∈ L∞(Y, �Y , Q). It is a theorem that for any stochastic
operator T∗ there exists a unique dual Markov operator T and vice versa.

What is the relation between Markov operators and Markov kernels ? Roughly speak-
ing, any Markov kernel defines a Markov operator when we restrict to families of dom-
inated probability measures. Let us assume that all distributions Pθ of the experiment
E defined in (2.1) are absolutely continuous with respect to a fixed probability distribu-
tion P , such that there exist densities pθ := d Pθ /d P : X → R+. Such an experiment
is called dominated and in concrete situations this condition is usually satisfied. Let
Kx (dy) be a Markov kernel (2.2) such that Qθ = K (Pθ ), then we define associated
Markov operator (T ( f ))(x) := ∫

f (y)kx (dy) and have

Qθ = Pθ ◦ T, ∀θ. (2.3)

When the probability distributions of two experiments are related to each other as in (2.3),
we say that F is a randomisation of E . From the duality between T and T∗ we obtain an
equivalent characterization in terms of the stochastic operator T∗ : L1(X , �X , P) →
L1(Y, �Y , Q) such that

T∗(d Pθ /d P) = d Qθ /d Q, ∀θ .
The concept of randomisation is weaker than that of Markov kernel transformation, but
under the additional condition that (Y, �Y ) is locally compact space with countable
base and Borel σ -field, it can be shown that any randomisation can be implemented by
a Markov kernel [41].

What is the analogue of randomisations in the quantum case ? In the language of oper-
ator algebras L∞(X , �X , P) is a commutative von Neumann algebra and L1(X , �X , P)
is the space of (densities of) normal linear functionals on it. The stochastic operator T∗
is the classical version of quantum channel, i.e. a completely positive normalized (trace-
preserving) map

T∗ : A∗ → B∗,

where A∗,B∗ are the spaces of normal states on the von Neumann algebra A and respec-
tively B. Any normal state ϕ on A has a density ρ with respect to the trace such that
ϕ(A) = Tr(ρA) for all A ∈ A. The dual of T∗ is

T : B → A,

which is a unital completely positive map and has the property that T∗(ϕ)(b) = ϕ(T (b))
for all b ∈ B and ϕ ∈ A∗. We interpret such quantum channels as possible physical
transformations from input to output states.
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A particular class of channels is that of measurements. In this case the input is the
state of a quantum system described by an algebra A, and the output is a probability
distribution over the space of outcomes (X , �X ). Any measurement is described by a
positive linear map

M : L∞(X , �X , P) → A,

which is completely specified by the image of characteristic functions of measurable
sets, also called positive operator valued measure (POVM).

The corresponding channel acting on states is a positive map M∗ : A∗ →
L1(X , �X , P) given by

M∗(ϕ)(A) = ϕ(M(A)) = Tr(ρM(A)),

where ρ is the density matrix of ϕ. By applying the channel M to the quantum statistical
experiment consisting of the family of states Q = {ϕθ : θ ∈ �} on A we obtain a
classical statistical experiment

QM := {M∗(ϕθ ) : θ ∈ �},
over the outcomes space (X , �X ).

As in the classical case, quantum channels can be seen as ways to compare quantum
experiments. The first steps in this direction were made by Petz [34,36,38] who devel-
oped the theory of quantum sufficiency dealing with the problem of characterizing when
a sub-algebra of observables contains the same statistical information about a family of
states, as the original algebra. More generally, two experiments Q := {A, ϕθ : θ ∈ �}
and R := {B, ψθ : θ ∈ �} are called statistically equivalent if there exist channels
T : A → B and S : B → A such that

ψθ ◦ T = ϕθ and ϕθ ◦ S = ψθ ∀θ.
As consequence, for any measurement M : L∞(X , �X , P) → A there exists a mea-
surement T ◦ M : L∞(X , �X , P) → B such that the resulting classical experiments
coincide QM = RT ◦M . Thus for any statistical problem, and any procedure concerning
the experiment Q there exists a procedure for R with the same risk (average error), and
vice versa.

2.2. The Le Cam distance and its statistical meaning. We have seen that two experi-
ments are statistically equivalent when they can be transformed into each other by means
of quantum channels. When this cannot be done exactly, we would like to have a measure
of how close the two experiments are when we allow any channel transformation. We
define the deficiency of R with respect to Q as

δ(R,Q) = inf
T

sup
θ

‖ϕθ − ψθ ◦ T ‖, (2.4)

where the infimum is taken over all channels T : A → B. The norm distance between
two states on A is defined as

‖ϕ1 − ϕ2‖ := sup{|ϕ1(a)− ϕ2(a)| : a ∈ A, ‖a‖ ≤ 1},
and for A = B(H) it is equal to ‖ρ1 − ρ2‖1 := Tr(|ρ1 − ρ2|), where ρi is the density
matrix of the state ϕi . When δ(R,Q) = 0 we say that R is more informative than
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Q. Note that δ(R,Q) is not symmetric but satisfies a triangle inequality of the form
δ(R,Q) + δ(Q, T ) ≥ δ(R, T ). By symmetrizing we obtain a proper distance over the
space of equivalence classes of experiments, called Le Cam’s distance [31],

�(Q,R) := max (δ(Q,R) , δ(R,Q)) . (2.5)

What is the statistical meaning of the Le Cam distance ? We shall show that if δ(R,Q) ≤
ε, then for any statistical decision problem with loss function between 0 and 1, any mea-
surement procedure for Q can be matched by a measurement procedure for R whose
risk will be at most ε larger than the previous one.

A decision problem is specified by a decision space (X , �X ) and a loss function
Wθ : X → [0, 1] for each θ ∈ �. We are given a quantum system prepared in the state
ϕθ ∈ A∗ with unknown parameter θ ∈ � and would like to perform a measurement
with outcomes in X such that the expected value of the loss function Wθ is small. Let

M : L∞(X , �X , P) → A,

be such a measurement, and P(M)θ = ϕθ ◦ M , then the risk at θ is

R(M, θ) :=
∫
X

Wθ (x)P
(M)
θ (dx).

Since the point θ is unknown one would like to obtain a small risk over all possible
realizations

Rmax (M) = sup
θ∈�

R(M, θ).

The minimax risk is then Rminmax := inf M Rmax (M).
Coming back to the experiments Q and R we shall compare their achievable risks for a

given decision problem as above. Consider the measurement N : L∞(X , �X , P) → B
given by N = T ◦ M , where T : A → B is the channel which achieves the infimum in
(2.4). Then

R(N , θ) =
∫
X

Wθ (x)P
(N )
θ (dx) = ψθ(T ◦ M(Wθ ))

≤ ‖ψθ ◦ T − ϕθ‖ + ϕθ (M(Wθ )) ≤ δ(R,Q) + R(M, θ),

where we have used the fact that 0 ≤ Wθ ≤ 1.

Lemma 2.2. For every achievable risk R(M, θ) for Q there exists a measurement N :
L∞(X , �X , P) → B for R such that

R(N , θ) ≤ R(M, θ) + δ(R,Q).

As a consequence,

Rminmax (R) ≤ Rminmax (Q) + δ(R,Q).

A similar inequality holds in the Bayesian framework where one optimises the average
risk with respect to a prior distribution π over �: Rπ (M) = ∫

�
R(M, θ)π(dθ).
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3. Local Asymptotic Normality in Statistics

In this section we describe the notion of local asymptotic normality and its significance
in statistics [31,41–43]. Suppose that we observe X1, . . . , Xn , where Xi take values in a
measurable space (X , �X ) and are independent, identically distributed with distribution
Pθ indexed by a parameter θ belonging to an open subset� ⊂ R

m . The full sample is a
single observation from the product Pn

θ of n copies of Pθ on the sample space (�n, �n).
Local asymptotic normality means that for large n such statistical experiments can be
approximated by Gaussian experiments after a suitable reparametrisation. Let θ0 be a
fixed point and define a local parameter u = √

n(θ−θ0) characterizing points in a small
neighbourhood of θ0, and rewrite Pn

θ as Pn
θ0+u/

√
n

seen as a distribution depending on
the parameter u. Local asymptotic normality means that for large n the experiments{

Pn
θ0+u/

√
n : u ∈ R

m
}

and
{

N (u, I −1
θ0
) : u ∈ R

m
}
,

have the same statistical properties when the models θ �→ Pθ are sufficiently ‘smooth’.
The point of this result is that while the original experiment may be difficult to analyse,
the limit one is a tractable Gaussian shift experiment in which we observe a single sample
from the normal distribution with unknown mean u and fixed variance matrix I −1

θ0
. Here,[

Iθ0

]
i j = Eθ0

[
�θ0,i�θ0, j

]
is the Fisher information matrix at θ0, with �θ,i := ∂ log pθ /∂θi

the score function and pθ is the density of Pθ with respect to a reference probability
distribution P .

There exist two formulations of the result depending on the notion of convergence
which one uses. In this paper we only discuss the strong version based on convergence
with respect to the Le Cam distance, and we refer to [43] for another formulation using
the so-called weak convergence (convergence in distribution of finite dimensional mar-
ginals of the likelihood ratio process), and to [17] for its generalization to quantum
statistical experiments.

Before formulating the theorem, we explain what sufficiently smooth means. The
least restrictive condition is that pθ is differentiable in quadratic mean, i.e. there exists
a measurable function �θ : X → R such that

lim
u→0

∫ [
p1/2
θ+u − p1/2

θ − ut�θ p1/2
θ

]2
d P = 0.

Note that �θ must still be interpreted as a score function since under some regularity
conditions we have ∂p1/2

θ /∂θi = 1
2 (∂ log pθ /∂θi )p

1/2
θ .

Theorem 3.1. Let E := {Pθ : θ ∈ �} be a statistical experiment with � ⊂ R
d and

Pθ � P such that the map θ → pθ is differentiable in quadratic mean. Define

En = {Pn
θ0+u/

√
n : ‖u‖ ≤ C}, F = {N (u, I −1

θ0
) : ‖u‖ ≤ C},

with Iθ0 the Fisher information matrix of E at point θ0, and C a positive constant. Then
�(En,F) → 0. In other words, there exist sequences of randomisations Tn and Sn such
that:

lim
n→∞ sup

‖u‖≤C
‖Tn(P

n
θ0+u/

√
n)− N (u, I −1

θ0
)‖ = 0,

lim
n→∞ sup

‖u‖≤C
‖Pn

θ0+u/
√

n − Sn(N (u, I −1
θ0
))‖ = 0.
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Remark 3.2. Note that the statement of the theorem is not of Central Limit type which
typically involves convergence in distribution to a Gaussian distribution at a single point
θ0. Local asymptotic normality states that the convergence is uniform in a 1/sqrtn-
neighbourhood of θ0, and moreover the variance of the limit Gaussian is fixed whereas
the variance obtained from the Central Limit Theorem depends on the point θ . Addition-
ally, the randomisation transforming the data (X1, . . . , Xn) into the Gaussian variable
is the same for all θ = θ0 + u/

√
n and thus does not require a priori the knowledge of θ .

Remark 3.3. Local asymptotic normality is the basis of many important results in asymp-
totic optimality theory and explains the asymptotic normality of certain estimators such
as the maximum likelihood estimator. The quantum version introduced in the next sec-
tion plays a similar role for the case of the quantum statistical model. An asymptotically
optimal estimation strategy based on local asymptotic normality was derived in [16] for
two-dimensional systems.

Example 3.4. Let Pµ = (µ1, . . . , µd) be a probability distribution with unknown param-
eters (µ1, . . . , µd−1) ∈ R

d−1
+ satisfying µi > 0 and

∑
i≤d−1 µi < 1. The Fisher

information at a point µ is

I (µ)i j =
d−1∑
k=1

µk(δikµ
−1
i · δ jkµ

−1
j )+(1 −

d−1∑
l=1

µl)
−1 = δi jµ

−1
i +(1 −

d−1∑
l=1

µl)
−1, (3.1)

and its inverse is

V (µ)i j := [I (µ)−1]i j = δi jµi − µiµ j . (3.2)

The multinomial experiment Pn
µ consisting of n i.i.d. date with distribution Pµ converges

locally to F := (N (u, V (µ)) : u ∈ R
d−1, ‖u‖ ≤ C).

The experiment F will appear again in Theorem 4.3, as the classical part of the limit
Gaussian shift experiment.

4. Local Asymptotic Normality in Quantum Statistics

In this section we present the main result of the paper. Local asymptotic normality
for d-dimensional quantum systems means roughly the following: the sequence Qn
of experiments consisting of joint states ρ⊗n of n identical quantum systems prepared
independently in the same stateρ, converges to a limit experiment R which is a quantum-
classical Gaussian model involving displaced thermal equilibrium states of d(d − 1)/2
oscillators and a (d − 1)-dimensional classical Gaussian shift model. As in the clas-
sical case, the result has a local nature reflecting the 1/

√
n rate of convergence of

state estimation. A neighbourhood of a fixed diagonal state ρ0 = Diag(µ1, . . . , µd)

is parametrised by (changes in the) diagonal parameters �u ∈ R
d−1 and off-diagonal

parameters �ζ ∈ C
d(d−1)/2. The latter can be implemented by small unitary rotations.

The limit Gaussian model has a classical part N (�u, V (µ)) with fixed known variance

V (µ), and a quantum part ⊗ j<kφ
ζ j,k
j,k with each φ

ζ j,k
j,k being a thermal equilibrium state

with β j,k = ln(µ j/µk), displaced in phase space by an amount proportional to ζ j,k .
The reason for choosing the above parametrisation is twofold. Firstly, it unveils the

important separation between ‘classical’ and ‘quantum’ parameters, and the further sep-
aration among the different off-diagonal parameters. Secondly, it is very convenient for
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the proof. However as we shall see in Sect. 4.5, the limit experiment can be formulated
in a ‘coordinate-free’ way in terms of quasifree states on a CC R-algebra. Although it
is not needed in the main theorem, we include this formulation linking our result to the
Quantum Central Limit Theorem. We stress again that local asymptotic normality is not
a consequence of the Central Limit Theorem, indeed the latter is not even an ingredient
in the proof but gives an indication as to what is the limit state when all parameters are
zero.

4.1. The n-tuple of d-dimensional systems. As explained in Sect. 3 for the classical case,
our theory will be local in nature, so we shall be interested in a (shrinking) neighbourhood
of an arbitrary but fixed faithful state with density given by the diagonal matrix

ρ0 = Diag(µ1, µ2, . . . , µd) with µ1 > µ2 > · · · > µd > 0. (4.1)

A sufficiently small neighbourhood of ρ0 in the state space can be parametrised by
θ := (�u, �ζ ) as follows:

ρ̃θ :=

⎡
⎢⎢⎢⎢⎣

µ1 + u1 ζ ∗
1,2 . . . ζ ∗

1,d

ζ1,2 µ2 + u2
. . .

...
...

. . .
. . . ζ ∗

d−1,d

ζ1,d . . . ζd−1,d µd −∑d−1
i=1 ui

⎤
⎥⎥⎥⎥⎦ , ui ∈ R, ζ j,k ∈ C. (4.2)

Indeed, note that if θ is small enough then ρ̃θ is a density matrix.
Let δ := inf1≤i≤d µi −µi+1, with µd+1 = 0, be the minimal separation between the

eigenvalues. Throughout the paper we restrict to states satisfying (4.1), for which the
minimal separation δ is strictly positive.

In the first order in θ/
√
δ, the family ρ̃θ is obtained by first perturbing the diagonal

elements of ρ0 with �u and then performing a small unitary transformation with

U (�ζ ) := exp

⎡
⎣i

⎛
⎝ ∑

1≤ j<k≤d

Re(ζ j,k)Tj,k + Im(ζ j,k)Tk, j√
µ j − µk

⎞
⎠
⎤
⎦ , (4.3)

where Tj,k are generators of the Lie algebra of SU (d) defined in (7.2). The advantage of
the latter parametrisation is that we can fully exploit the machinery of irreducible group
representations. For this reason, in all subsequent computations we shall work with the
‘unitary’ family

ρθ :=U (�ζ )Diag

(
µ1 + u1, µ2 + u2, . . . , µd −

d−1∑
i=1

ui

)
U∗(�ζ ), ui ∈ R, ζ j,k ∈ C.

(4.4)

but we keep in mind the relationship with (4.2).
As in the classical case, the parameter θ will be scaled by the factor 1/

√
n meaning

that we zoom in around ρ0 with the rate equal to the typical estimation rate based on n
samples. Let ρθ,n := ρ⊗n

θ/
√

n
and let Qn be the sequence of statistical experiments

Qn := {
ρθ,n : θ ∈ �n

}
, (4.5)
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consisting of n systems, each one prepared in a state ρθ/√n situated in a local neigh-

bourhood of ρ0. The local parameter θ = (
−→u ,−→ζ ) belongs to a neighbourhood �n of

the origin of R
d−1 × C

d(d−1)/2 which is allowed to grow slowly with n in a way that
will be made precise later.

One of the principal tools in our result is the representation theory of the special
unitary group SU (d). Due to lack of space we shall not include any proofs and refer
to [11,12,15] for details. In particular we shall be working with the well known tensor
representation which will be analysed in increasing depth across the following sections.

The space (Cd)⊗n carries two commuting group representations: that of SU (d) given
by

πn(U ) : f1 ⊗ · · · ⊗ fn �→ U f1 ⊗ · · · ⊗ U fn, U ∈ SU (d), (4.6)

and that of the permutation group S(n) given by

π̃d(τ ) : f1 ⊗ · · · ⊗ fn �→ fτ−1(1) ⊗ · · · ⊗ fτ−1(n), τ ∈ S(n). (4.7)

Since the two group representations commute with each other, the representation space
decomposes into a direct sum of tensor products of irreducible representations. It turns
out that the irreducible representations of SU (d) and S(n) are indexed by Young dia-
grams with d rows for the former and n boxes for the latter. A Young diagram is defined
by a tuple of ordered integers λ = (λ1 ≥ λ2 · · · ≥ λk) with λi the number of boxes on
row i (see Fig. 1). As we shall see later this pictorial representation will be very useful
in understanding the structure of the irreducible representations (Hλ, πλ) of SU (d).

The following theorem called Schur-Weyl duality shows that the only tensor prod-
ucts appearing in the above mentioned direct sum are those of irreducible representations
indexed by the same λ, and in particular the algebras generated byπn(u) and respectively
π̃d(τ ) are each other’s commutant!

Theorem 4.1. Let πn and π̃d be the representations of SU (d) and respectively S(n) on
(Cd)⊗n. Then the representation space decomposes into a direct sum of tensor products
of irreducible representations of SU (d) and S(n) indexed by Young diagrams with d
lines and n boxes:

(Cd)⊗n ∼=
⊕
λ

Hλ ⊗ Kλ,

πn ≡
⊕
λ

πλ ⊗ 1Kλ
, π̃d ≡

⊕
λ

1Hλ
⊗ π̃λ.

In particular ρθ,n = ρ⊗n
θ/

√
n

and π̃d(τ ) commute for all τ . Hence we have the block
diagonal form for the joint states

ρθ,n =
⊕
λ

pθ,nλ ρ
θ,n
λ ⊗ 1Kλ

Mn(λ)
, (4.8)

Fig. 1. Young diagram with λ = (5, 3, 3, 2)
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where Mn(λ) is the dimension of Kλ, pθ,nλ is a probability distribution over the Young
diagrams, and ρθ,nλ is a density matrix on Hλ. From (4.4) and the Schur-Weyl duality,
we get the expression of the block states

ρ
θ,n
λ = Uλ(�ζ/√n) ρu,0,n

λ Uλ(�ζ/√n)∗. (4.9)

We interpret the decomposition (4.8) as follows: by doing a ‘which block’ measurement
we obtain information about θ through the probability density pθ,nλ . In fact it is easy

to see that pθ,nλ does not depend on �ζ , so it only gives information about the diago-
nal parameters �u. Later on we shall see that the model pθ,n has the same limit as the
classical multinomial model described in Example 3.4. Once this information has been
obtained, one still possesses a conditional quantum state ρθ,nλ . It turns out that this state
carries information about the rotation parameters �ζ , and we shall show that the statistical
model described by the conditional state converges to a ‘purely quantum’ Gaussian shift
experiment.

4.2. Displaced thermal equilibrium states of a harmonic oscillator. The ground state of
a quantum harmonic oscillator or the laser state of a monochromatic light pulse are well
known examples of quantum Gaussian states. Both physical systems are described by
the same algebra of observables generated by the canonical ‘position’ and ‘momentum’
observables Q and P satisfying the Heisenberg commutation relation: QP − PQ = i1.
These observables can be represented on the Hilbert space L2(R) as

(Q f )(x) = x f (x), (P f )(x) = −i
d f

dx
(x), f ∈ L2(R). (4.10)

The space L2(R) has a special orthonormal basis {|0〉 , |1〉 , . . . } with the vector |m〉
given by

Hm(x)e
−x2/2/(

√
π2mm!)1/2,

where Hm are the Hermite polynomials [10]. These are the eigenvectors of the number
operator N := 1

2 (Q
2 + P2 − 1) counting the number of ‘excitations’ of the oscillator or

the number of photons in the case of the light beam, such that N |m〉 = m |m〉.
The creation and annihilation operators a∗ := (Q − iP)/

√
2 and respectively

a := (Q + iP)/
√

2, satisfy [a, a∗] = 1 and act as ‘ladder’ operators on the number
basis:

a |m〉 = √
m |m − 1〉 , a∗ |m〉 = √

m + 1 |m + 1〉 .
It can be easily checked that both Q and P have Gaussian distribution with respect to
the vacuum state |0〉. In fact they are ‘jointly Gaussian’

〈0| exp(iuQ + ivP)| |0〉 = exp

(
−1

4
(u2 + v2)

)
.

We shall often use the complex form of the unitary Weyl operators

W (z) := exp(za∗ − z̄a) = exp(i p0Q − iq0P), z = (q0 + i p0)/
√

2 ∈ C,
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which satisfy the Weyl relations W (z)∗W (z′)W (z) = exp
(
2iIm(z̄′z)

)
W (z′). The

coherent (vector) states |z〉 are obtained by displacing the vacuum state with Weyl oper-
ators

|z〉 := W (z) |0〉 = exp(−|z|2/2)
∞∑

m=0

zm

√
m! |m〉 . (4.11)

They are Gaussian states with the same variance as the vacuum, and means 〈z| Q |z〉 =√
2Re(z) and 〈z| P |z〉 = √

2Im(z):

〈z| W (z′) |z〉 = exp

(
−1

2
|z − z′|2 + 2iIm(z̄′z)

)
.

Besides, coherent states, an important role in our discussion will be played by the thermal
equilibrium states. For every β > 0 we define the Gaussian state

ϕβ(W (z)) = exp

(
− |z|2

2 tanh(β/2)

)
. (4.12)

Its density matrix consists of a mixture of k-photon states with geometrical weights

φβ = (1 − e−β)
∞∑

k=0

e−kβ |k〉 〈k| , (4.13)

and can also be obtained by ‘smearing’ the coherent states with a Gaussian kernel:

φβ = eβ − 1

π

∫
C

exp
(
−(eβ − 1)|z|2

)
|z〉 〈z| dz. (4.14)

The thermal equilibrium states can be shifted in ‘phase space’ by means of displacement
operations Dz which act by adjoining with unitaries W (z), i.e. Dz(·) := Ad[W (z)](·) =
W (z)∗ · W (z). The result is a Gaussian state ϕz

β with the same variance as ϕβ and the
same means as |z〉〈z|:

ϕz
β(W (z′)) := exp

(
− |z|2

2 tanh(β/2)
+ 2iIm(z̄′z)

)
,

φz
β := Dz(φβ) := W (z)∗φβW (z). (4.15)

4.3. The multimode Fock space and the limit Gaussian shift experiment. We now con-
sider d(d − 1)/2 commuting harmonic oscillators, with a joint state consisting of inde-
pendent Gaussian states. Let us define the multimode Fock space,

F :=
⊗

1≤ j<k≤d

L2(R),

in which we identify the number basis

|m〉 =
⊗
j<k

∣∣m j,k
〉
, m = {

m j,k ∈ N : j < k
}
. (4.16)
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For each of the oscillators we define the thermal equilibrium state φ j,k := φβ j,k , where
β j,k = ln(µ j/µk), and {µ1, . . . , µd} are the eigenvalues of the density matrix ρ0 (cf.
(4.1)). We now use the Weyl operators to displace these states by an amount proportional
to the off-diagonal elements ζ j,k of ρθ (cf. (4.2) and (4.4))

φ
ζ j,k
j,k := W

(
ζ j,k

2
√
µ j − µk

)∗
φ j,k W

(
ζ j,k

2
√
µ j − µk

)
.

Next we define the joint state ϕ�ζ of the oscillators with density matrix

φ
�ζ =

⊗
j<k

φ
ζ j,k
j,k ∈ T1(F), (4.17)

where T1(F) is the space of trace-class operators on F .
The states φ�ζ form the quantum part of the limit Gaussian experiment. The classi-

cal part is identical to the (d − 1)-dimensional Gaussian shift model N (�u, V (µ)) of
Example 3.4, where µ = {µ1, . . . , µd}.
Definition 4.2. On the algebra L∞(Rd−1)⊗B(F)we define normal stateϕθ with density

φθ := N (�u, V (µ))⊗ φ
�ζ ∈ L1(Rd−1)⊗ T1(F), (4.18)

where N (�u, V (µ)) is the Gaussian density of Example 3.4. The quantum-classical
Gaussian experiment R is defined by

R = {φθ : θ = (�u, �ζ ) ∈ R
d−1 × C

d(d−1)/2}.

4.4. The main theorem. We are now ready to formulate the main result of the paper.
In view of subsequent application to optimal state estimation, it is essential to consider
(slowly) growing domains of the local parameters. For given β, γ > 0 we define

�n,β,γ =
{
(�ζ , �u) : ‖�ζ‖∞ ≤ nβ, ‖�u‖∞ ≤ nγ

}
.

Recall that δ is the separation between the eigenvalues of ρ0 given by Eq. (4.1). Though
we use parametrisation (4.4) for density matrices ρθ , recall that in the first order this is
approximated by ρ̃θ defined in (4.2). In fact it can be shown that the same theorem holds
for the latter parametrisation.

Theorem 4.3. Let δ > 0, let β < 1/9 and γ < 1/4. Let the quantum experiments

Qn = {
ρθ,n : θ ∈ �n,β,γ

}
, Rn = {

φθ : θ ∈ �n,β,γ
}
,

where ρθ,n = ρ⊗n
θ/

√
n

is the state on M
(
(Cd)⊗n

)
given by Eq. (4.4), and φθ is given by

(4.18).
Then, there exist channels (completely positive, normalised maps)

Tn : M(Cd)⊗n → L1(Rd−1)⊗ T1(F), (4.19)

Sn : L1(Rd−1)⊗ T1(F) → M(Cd)⊗n (4.20)
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with T1(F) the space of trace-class operators on F , such that

sup
θ∈�n,β,γ

∥∥φθ − Tn(ρ
θ,n)

∥∥
1 = O(n−κ ), (4.21)

sup
θ∈�n,β,γ

∥∥Sn(φ
θ )− ρθ,n

∥∥
1 = O(n−κ), (4.22)

where κ > 0 depends only on δ, β and γ . In particular we have

lim
n→∞�(Qn,Rn) = 0,

where �(·, ·) is the Le Cam distance defined in (2.5).

In other words, we get polynomial speed of convergence of the approximation, which
is enough to build two-step evaluation strategies in the finite experiments globally asymp-
totically equivalent to strategies in the limit experiment [18]. The main steps of the proof
are given in a sequence of lemmas in Sect. 6 assembled into Theorem 6.7. The bound
(4.22) follows easily from (4.21) as shown in Sect. 6.2.

4.5. The relation between LAN and CLT. One way to think of local asymptotic nor-
mality is the following: we would like to understand the asymptotic behaviour of the
collective (fluctuation) observables (4.25) with respect to a whole neighbourhood of the
state ρ, how the limit distribution changes as we change the reference state ρ⊗n .

The quantum Central Limit Theorem [37] describes the asymptotic behaviour of the
same observables with respect to a fixed state, and is one of the ingredients in the proof
of a different version of LAN based on weak convergence [17]. However, in the case of
strong convergence, which is the object of this paper, CLT does not play any role since
we are interested in convergence in norm rather than in distribution, and uniformly over
a range of parameters.

The purpose of the section is to derive a ‘coordinate free’ version of the limit Gaussian
experiment using the Central Limit Theorem and the notion of symmetric logarithmic
derivative. The reader interested in the proof of the main theorem may skip the following
pages and continue with Sect. 5.

Let ρ be the density matrix of a fixed faithful state on M(Cd). To ρ we associate an
algebra of canonical commutation relations carrying a Gaussian state ϕ. The Quantum
Central Limit Theorem [37] says that ϕ is the limit distribution of certain multi-particle
observables with respect to product states ρ⊗n .

Let

(A, B)ρ := Tr(ρ A ◦ B), where A ◦ B := AB + B A

2
,

be a positive inner product on the real linear space of selfadjoint operators M(Cd)sa .
We define the Hilbert space with inner product (·, ·)ρ ,

L2(ρ) := {A ∈ M(Cd)sa : Tr(Aρ) = 0}.
Let σ be the symplectic form on L2(ρ),

σ(A, B) := i

2
Tr(ρ [A, B]).
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The C∗-algebra of canonical commutation relations CC R(L2(ρ), σ ) is generated by the
Weyl operators W (A) satisfying the relations

W (A)∗ = W (−A), W (A)W (B) = W (A + B) exp(−iσ(A, B)), A, B ∈ L2(ρ).

On CC R(L2(ρ), σ ) we define the Gaussian (quasifree) state

ϕ(W (A)) := exp

(
−1

2
‖A‖2

ρ

)
, ‖A‖2

ρ = (A, A)ρ. (4.23)

The state ϕ is regular, i.e. there exists a representation (π,H) of the algebra
CC R(L2(ρ), σ ) such that the one parameter family t �→ π(W (t A)) is weakly con-
tinuous and ϕ extends to a normal state on the von Neumann algebra generated by
π(CC R(L2(ρ), σ )). This means that there exist selfadjoint ‘field operators’ B(A) such
that π(W (t A)) = exp(i t B(A)), and there exists a density matrix φπ ∈ T1(H) such that

ϕ(W (A)) = Tr (exp(i B(A))φπ) , A ∈ L2(ρ).

The representation (π,H) can be obtained through the GNS construction, or by ‘diag-
onalising’ the CCR algebra as we shall see in a moment. From (4.23) we deduce that
the distribution of B(A) with respect to ϕ is a centred normal distribution with variance
‖A‖2

ρ . From the Weyl relations it follows that the fields satisfy the following canonical
commutation relations [B(A), B(C)] = 2iσ(A,C)1.

Consider now the tensor product
⊗n

k=1 M(Cd) which is generated by elements of
the form

A(k) = 1 ⊗ · · · ⊗ A ⊗ · · · ⊗ 1, (4.24)

with A acting on the kth position of the Hilbert space tensor product
(
C

d
)⊗n

. We are
interested in the asymptotics as n → ∞ of the joint distribution under the state ρ⊗n , of
‘fluctuation’ elements of the form

Fn(A) := 1√
n

n∑
k=1

A(k). (4.25)

Theorem 4.4 [Quantum CLT]. Let A1, . . . , As ∈ L2(ρ). Then the following holds:

lim
n→∞ Tr

(
ρ⊗n

(
s∏

l=1

Fn(Al)

))
= ϕ

(
s∏

l=1

(B(Al))

)
,

lim
n→∞ Tr

(
ρ⊗n

(
s∏

l=1

exp(i Fn(Al))

))
= ϕ

(
s∏

l=1

W (Al)

)
.

Although the algebra CC R(L2(ρ), σ )may look rather abstract, its structure can be eas-
ily understood by ‘diagonalising’ it. Let us assume that ρ is a diagonal matrix ρ0 =
Diag(µ1, . . . , µd). The Hilbert space L2(ρ0) decomposes as direct sum of orthogonal
subspaces Hρ0 ⊕ H⊥

ρ0
, where

Hρ0 := Lin{A : [A, ρ0] = 0,Tr(Aρ0) = 0}, and H⊥
ρ0

= Lin{Tj,k, j �= k}, (4.26)

with Tj,k the generators of the su(d) algebra defined in (7.2).
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The elements W (A) with A ∈ Hρ0 generate the center of the algebra which is
isomorphic to the algebra of bounded continuous functions Cb(R

d−1). Explicitly, we
identify the coordinates in R

d−1 with the basis {di = −µ1 + Ei,i : i = 1, . . . d − 1}
of Hρ0 , (see (7.2) for the definition of Ei,i ). Then the covariance matrix for the basis
vectors is

(di , d j )ρ0 = Tr(ρ0di d j ) = δi, jµi − µiµ j = [V (µ)]i, j ,

where Vµ is the covariance matrix (3.2). Moreover

t j,k := Tj,k/

√
2(µ j − µk), j �= k, (4.27)

form an orthogonal and symplectic basis of H⊥
ρ0

, i.e.

σ(t j,k, tk, j ) = −1/2, j < k, and σ(t j,k, tl,m) = 0 for { j, k} �= {l,m},
which means that {t j,k, tk, j } generate isomorphic algebras of quantum harmonic oscil-
lator which we denote by CC R(C). From

‖t j,k‖2
ρ0

= Tr(ρ0t2
j,k) = µ j + µk

2(µ j − µk)

and (4.12) we conclude that each of the oscillators is prepared independently in the
thermal equilibrium state ϕ j,k = ϕβ j,k with β j,k = ln(µ j/µk).

Based on the discussion of Sects. 4.2 and 4.3 we can choose H := L2(Rd−1)⊗F and
define the regular representationπ of CC R(L2(ρ0), σ ) on this space in a straightforward
way and its von Neumann completion is L∞(Rd−1)⊗ B(F). The state ϕ decomposes
as

ϕ ∼= N (0, Vµ)⊗
⊗
j<k

ϕ j,k, (4.28)

which is precisely the state ϕθ for θ = (�u, �ζ ) = (�0, �0), defined in (4.18).

Remark. The family of states ϕθ of the experiment R is obtained by shifting ϕ0 with
the help of symmetric logarithmic derivatives. Since this falls outside the scope of this
paper we refer the reader to [26] for more details.

5. Explicit Form of the Channels and First Steps of the Proof

5.1. Second look at the irreducible representations of SU (d). Before explaining the
steps involved in the proof, let us take a closer look at the block states (4.9). Recall that
we have the decomposition of Theorem 4.1 over Young diagrams with n boxes and

ρθ,n =
⊕
λ

ρ
θ,n
λ ⊗ 1Kλ

Mn(λ)
.

Let { f1, . . . , fd} be the eigenvectors of ρ0, i.e. the standard basis vectors of C
d . Then

the eigenvectors of ρ⊗n
0 = ρ0,n are tensor products

fa := fa(1) ⊗ fa(2) ⊗ · · · ⊗ fa(n),

and the eigenvalues
∏

k λa(k) do not depend on the order of the vectors in the product.
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5.1.1. Projecting onto a copy ofHλ. Our aim is to ‘project’ to an irreducible representation
Hλ and obtain an explicit expression for the eigenvectors of the block components ρθ,nλ .
Such a projection is not unique, in fact for any rank one operator |v〉〈u| ∈ B(Kλ) with
〈u|v〉 = 1 we can define a (not necessarily orthogonal) projection y = y2 on a copy of
Hλ,

yλ(u, v) := 1Hλ
⊗ |v〉〈u| : (Cd)⊗n → Hλ ⊗ |v〉.

However the action of yλ(u, v) on basis vectors fa depends on a particular identification
between (Cd)⊗n and the direct sum in Theorem 4.1. Therefore we need a direct way of
defining such a projection and the key observation is that yλ(u, v) is a minimal projection
in the algebra Alg(π̃d(τ ) : τ ∈ S(n)), i.e. it cannot be decomposed into a sum of non-
zero projections, and vice-versa any minimal projection is of this form. The following
recipe (given without proof) shows how to construct minimal projections in the S(n)
group algebra. We recall that the group ∗-algebra A(S(n)) is the linear space spanned
by the group elements endowed with a product stemming from the group product

a =
∑
τ∈S(n)

a(τ )τ, b =
∑
�∈S(n)

b(�)� �⇒ ab =
∑

τ,�∈S(n)

a(τ )b(�)τ�

=
∑
σ∈S(n)

⎛
⎝ ∑

s∈S(n)

a(σ s−1)b(s)

⎞
⎠ σ,

and with adjoint a∗ = ∑
τ∈S(n) a(τ )τ−1.

Let λ be a Young diagram with n boxes and consider the (standard) Young tableau t
in which the boxes are filled with the numbers {1, . . . , n} in increasing order from left to
right along rows, starting with the top row and down columns, as shown in the left-side
tableau of Fig. 2.

Define the group algebra elements

Pλ =
∑
σ∈Rλ

σ, Qλ =
∑
τ∈Cλ

sgn(τ )τ,

where Rλ is the S(n)-subgroup of permutation leaving the rows of t invariant, and Cλ is
the subgroup of permutations leaving the columns of t invariant. Note that Pλ and Qλ

are self-adjoint elements of the S(n) group algebra satisfying

PλPλ = |Rλ|Pλ = (

d∏
i=1

λi !)Pλ, QλQλ = |C(λ)|Qλ = (

d∏
i=1

iλi −λi+1)Qλ. (5.1)

The Young symmetriser is defined as

Yλ := QλPλ.

Fig. 2. Left: a standard Young tableaux. Right: a semi-standard Young tableau for d = 3
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Theorem 5.1. Up to a scalar normalising factor, the Young symmetriser Yλ is minimal
projection in A(S(n)) and yλ := qλ pλ = π̃d(Qλ)π̃d(Pλ) projects onto a copy of
Hλ ⊂ (Cd)⊗n.

The action of the Young symmetriser yλ on basis vectors fa ∈ (Cd)⊗n follows easily
from the definition of Yλ. For each fa we fill the boxes of λ with the indices a(k) going
along rows from left to right, starting with the top row and finishing with the bottom
one. For example, if λ = and fa = f2 ⊗ f2 ⊗ f1 ⊗ f2 ⊗ f1 then ta = 2 2 1

2 1 .
S(n) has an obvious action on the set of tableaux by permuting the content of the boxes
which are numbered from 1 to n in the standard way as in Fig. 2. The action of the
Young symmetriser yλ = qλ pλ on fa is deduced from the action on the tableau ta :
one first symmetrises with respect to components which are in the same row, and then
antisymmetrises with respect to components in the same column. For example if λ =
then

yλ( f2 ⊗ f1 ⊗ f3) = f2 ⊗ f1 ⊗ f3 + f1 ⊗ f2 ⊗ f3 − f3 ⊗ f1 ⊗ f2 − f3 ⊗ f2 ⊗ f1.

5.1.2. Finding a basis in Hλ. By the previous theorem the vectors yλ fa span Hλ, but
are not linearly independent. We show now how to select a basis (subset of linearly
independent vectors spanning Hλ). A semistandard Young tableau is a diagram filled
with numbers in {1, . . . , d} such that the entries are non-decreasing along rows from left
to right and increasing along columns from top to bottom, as in the right-side of Fig. 2.

Theorem 5.2. The vectors yλ fa for which ta is a semistandard Young tableau form a
(non-orthogonal) basis of the irreducible representation (πλ,Hλ).

Since the values in the rows are nondecreasing, there is a one-to-one correspondence
between Young tableaux ta and vectors m = (mi, j )1≤i< j≤d , where mi, j is the num-
ber of j’s appearing in line i of the Young tableau ta. Note that we need only con-
sider mi, j for j > i , as there is no j in line i if j < i (the columns are increasing),

and the number of i in line i is λi − ∑d
j=i+1 mi, j . For example, if ta = 1 1 2 3 3

2 3
3

then
m = {m1,2 = 1,m1,3 = 2,m2,3 = 1}.

By a slight abuse of notation we shall denote the corresponding vectors by yλ fm and
the normalised vectors

|m, λ〉 := N (m, λ)yλ fm, (5.2)

where N (m, λ) = 1/‖yλ fm‖ . This constant is in general not easy to compute but we
shall describe its asymptotic properties in Sect. 7.3.

Using (5.1) we have

〈yλ fa|yλ fb〉 = 〈qλ pλ fa|qλ pλ fb〉 = 〈pλ fa|q2
λ pλ fb〉 = (

d∏
i=1

iλi −λi+1)〈pλ fa|yλ fb〉.

(5.3)

In order to get further simplifications, we examine some special vector states, that we
shall call by analogy with the Fock spaces finite-dimensional coherent states.

The first is the special vector |0, λ〉, the highest weight vector of the representation
(πλ,Hλ), which later on will play the role of the finite-dimensional vacuum. This vector,
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as we have seen, corresponds to the semi-standard Young tableau where all the entries
in row i are i . An immediate consequence is that

pλ| f0〉 = (

d∏
i=1

λi !)| f0〉. (5.4)

Moreover 〈 f0|qλ f0〉 = 1 since any column permutation produces a vector orthogonal
to f0. Thus the normalised vector is:

|0, λ〉 = 1∏d
i=1 λi !

√
iλi −λi+1

yλ| f0〉. (5.5)

The finite-dimensional coherent states are defined as πλ(U )|0λ〉 for U ∈ SU (d). From
[pλ, πλ(U )] = 0 and (5.4), we get pλπλ(U )|0λ〉 = (

∏d
i=1 λi !)U |0λ〉, thus

〈yλ fm|πλ(U )|0, λ〉 =
√√√√ d∏

i=1

iλi −λi+1〈pλ fm|qλπλ(U ) f0〉. (5.6)

The latter expression holds for any linear combination of fm on the left-hand side, in
particular πλ(V ) f0 for another unitary operator V . In Lemma 7.1, we shall examine
asymptotics of (5.6) for specific sequences of unitaries U when n → ∞. One of the
main tools will be formula (7.6).

The following expressions of the dimensions of Kλ and Hλ are given without proof:
Let gl,m be the hook length of the box (l,m), defined as one plus the number of boxes
under plus the number of boxes to the right. For example the diagram (5, 3, 3) has the

hook lengths :
7 6 5 2 1
4 3 2
3 2 1

.

The dimension Mn(λ) of Kλ is

Mn(λ) = n!∏
l=1...d

m=1...λl

gl,m
,

and can be rewritten in the following form which is more adapted to our needs:

Mn(λ) =
(

n

λ1, . . . , λd

) ∏
l=1...d

k=l+1...d

λl − λk + k − l

λl + k − l
. (5.7)

To summarise, we have defined a non-orthonormal basis {|m, λ〉} of Hλ such that |m, λ〉
are eigenvectors of ρ�0,�u,n for all λ, with eigenvalues:

〈m, λ|ρ�0,�u,n|m, λ〉 =
d∏

i=1

(µ
�u,n
i )λi

d∏
j=i+1

(
µ

�u,n
j

µ
�u,n
i

)mi, j

, (5.8)

where µ�u,n
i = µi + ui/

√
n for 1 ≤ i ≤ (d − 1) and µ�u,n

d = µd − (
∑

i ui )/
√

n.
The next step is to take into account the action of the unitary U (�ζ ). We define the

automorphism

�
�ζ ,n : M((Cd)⊗n) → M((Cd)⊗n),
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by

τ �→ �
�ζ ,n(τ ) = Ad[U (�ζ , n)](τ ) := U (�ζ/√n)⊗n τ U∗(�ζ/√n)⊗n . (5.9)

Then we have ρ�ζ ,�u,n = �
�ζ ,n(ρ�0,�u,n). By Theorem 4.1 and using the decomposition

(4.8), we get the blockwise action on irreducible components

�
�ζ ,n(ρ⊗n) =

⊕
λ

�
�ζ ,n
λ (ρλ)⊗ 1Kλ

,

where �
�ζ ,n
λ = Ad[Uλ(�ζ , n)]. In particular we have

ρ
�ζ ,�u,n
λ = �

�ζ ,n
λ (ρ

�0,�u,n
λ ). (5.10)

With these notations, we can set about building the channels Tn .

5.2. Description of Tn. We look for channels

Tn : M((Cd)⊗n) → L1(Rd−1)⊗ T1(F)

of the form:

Tn : ρθ,n �−→
∑
λ

pθ,nλ τ n
λ ⊗

(
Vλρ

θ,n
λ V ∗

λ

)
. (5.11)

Here, Vλ is an isometry from Hλ to F , i.e. V ∗
λ Vλ = 1Hλ

. On the classical side, τ n
λ is

a probability law on R
d−1. We may view τ n as a Markov kernel (2.2) from the set of

diagrams λ to R
d−1.

The channel Tn can be described by the following sequence of operations. We first
perform a ‘which block’ measurement over the irreducible representations and get a
result λ. Then, on the one hand, we apply a classical randomisation to λ, and on the
other hand we apply a channel depending on our result λ to the conditional state ρλ.

The underlying ideas are the following:
1) The probability distribution pθ,nλ is essentially a multinomial depending only on �u, as
it can be deduced from (5.8) and (5.7). As we have seen in Example 3.4, this converges
(in Le Cam sense) to a classical Gaussian shift experiment. Here, in order to obtain the
strong norm convergence we need to smooth the discrete distribution into a continuous
one with respect to the Lebesgue measure. We choose a particular smoothing distribution
that will ensure the uniform L1 convergence to the Gaussian model (Lemma 6.1).

Definition 5.3. Let τ n
λ be the probability density on R

d−1 defined for all λ such that∑
λi = n, by:

τ n
λ (dx) = τ n

λ (x)dx = dx n(d−1)/2χ(Aλ,n), (5.12)

where Aλ,n = {x ∈ R
d−1 : |n1/2xi + nµi − λi | ≤ 1/2, 1 ≤ i ≤ d − 1}. We further

denote

bθ,nλ = pθ,nλ τ n
λ ,

depending on θ only through �u.
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2) For the quantum part, we map the ‘finite-dimensional vacuum’ |0, λ〉 to the Fock
space vacuum |0〉, and the basis vectors |m, λ〉 of Hλ ‘near’ the basis vectors |m〉 of the
Fock space F (cf. Definitions (5.2) and respectively (4.16)). Here we need to tackle the
problem that {|m, λ〉} is not an orthonormal basis but only becomes so asymptotically.
The following lemma provides the isometry Vλ appearing in (5.11).

Lemma 5.4. Let η < 2/9. Suppose that λi − λi+1 ≥ δn for all 1 ≤ i ≤ d, with the
convention λd+1 = 0. Then for n > n0(η, δ, d) there exists an isometry Vλ : Hλ → F
such that, V |0, λ〉 = |0〉 and for 0 < |m| ≤ nη,

〈m| Vλ = 1√
1 + (C̃n)(9η−2)/12/δ1/3

〈m, λ| ,

where C̃ = C̃(η, d) is a constant. More precisely, n0 can be taken of the form
(C(d)/δ2)1/(1−3η).

Proof. See Sect. 7.2. The main tool is Lemma 7.3. ��
For Young diagrams which do not satisfy the assumption of the previous lemma, the

isometry Vλ can be defined arbitrarily. The reason is that those blocks have vanishing
collective weight and can be neglected altogether (cf. Lemma 6.2).

From this operational description we conclude that Tn is a proper channel since τ n

is a Markov kernel and Vλ is an isometry. We then want to prove that Tλ(ρ
�0,�u,n
λ ) is close

to φ0 and that the finite-dimensional operations�
�ζ ,n
λ have almost the same action as the

displacement operators Dζ of the Fock space, cf. (4.15). Finite-dimensional coherent
states and formula (4.14) will be the stepping stone to those results.

6. Main Steps of the Proof

6.1. Why Tn does the work. We shall break (4.21) in small manageable pieces. The
result and brief explanatory remarks, repeating those in the derivation, are given from
(6.3) on.

We introduce first a few shorthand notations: the restriction of Tn to the block λ is

Tλ : ρθ,nλ �→ Vλρ
θ,n
λ V ∗

λ ,

so that

Tn : ρθ,n �→
∑
λ

pθ,nλ τ n
λ ⊗ Tλ(ρ

θ,n
λ ) =

∑
λ

bθ,nλ ⊗ φ
θ,n
λ .

We also define T ∗
λ : φ �→ V ∗

λ φVλ. and note that T ∗
λ Tλ = IdHλ

.
We expand (5.11) as

Tn(ρ
θ,n) =

∑
λ

bθ,nλ ⊗ φ
θ,n
λ

= N (�u, Vµ)⊗ φ
�ζ − (N (�u, Vµ)−

∑
λ

bθ,nλ )⊗ φ
�ζ −

∑
λ

bθ,nλ ⊗ φ
�ζ − φ

θ,n
λ .
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Proving (4.21) then amounts to proving

sup
θ∈�n,ε

‖(N (�u, Vµ)−
∑
λ

bθ,nλ )⊗ φ
�ζ +

∑
λ

bθ,nλ ⊗ (φ
�ζ − φ

θ,n
λ )‖1 ≤ Cn−ε/δ.

We now use the triangle inequality to upper bound this norm by a sum of “elementary”
terms to be treated separately in the following sections:

‖(N (�u, Vµ)−
∑
λ

bθ,nλ )⊗ φ
�ζ +

∑
λ

bθ,nλ ⊗ (φ
�ζ − φ

θ,n
λ )‖1

≤ ‖(N (�u, Vµ)−
∑
λ

bθ,nλ )⊗ φ
�ζ‖1 +

∑
λ

‖bθ,nλ ⊗ (φ
�ζ − φ

θ,n
λ )‖1

≤ ‖φ�ζ‖1‖(N (�u, Vµ)−
∑
λ

bθ,nλ )‖1 +
∑
λ

‖bθ,nλ ‖1‖(φ�ζ − φ
θ,n
λ )‖1.

Since ‖φ�ζ‖1 = ‖N (�u, Vµ)‖1 = ‖φθ,nλ ‖ = 1, we have ‖φ�ζ − φ
θ,n
λ ‖1 ≤ 2. Similarly∑

λ ‖bθ,nλ ‖1 = 1 because ‖bθ,nλ ‖1 = pθ,nλ . We split the sum over λ in two parts, one for

which it is expected that ‖φ�ζ − φ
θ,n
λ ‖1 is small, and the other on which the sum of all

‖bθ,nλ ‖1 is small. Specifically, define the set of typical Young diagrams,

�n,α := {λ : |λi − nµi | ≤ nα, 1 ≤ i ≤ d}, for α > 1/2, (6.1)

then

‖Tn(ρ
θ,n)− N (�u, Vµ)⊗ φ

�ζ‖
≤ ‖N (�u, Vµ)−

∑
λ

bθ,nλ ‖1 + sup
λ∈�n,α

‖φ�ζ − φ
θ,n
λ ‖1 + 2

∑
λ�∈�n,α

‖bθ,nλ ‖1. (6.2)

The first term corresponds to the convergence of the classical experiment in the Le Cam
sense. If the second term is small, then on �n,α , the (purely quantum) family ρθ,nλ is

near the family φ�ζ . The last term is small due to the concentration of pθ,nλ around the
representations with shape λi = nµi . In other words, the only representations that matter
are those in �n,α .

The hardest term to dominate (notice that the two others are classical) is the second.
We transform it until we reach tractable fragments:

‖φ�ζ − φ
θ,n
λ ‖1 = ‖φ�ζ − Tλ(ρ

θ,n
λ )‖1

= ‖D
�ζ (φ�0)− [Tλ��ζ ,n

λ T ∗
λ ](Tλ(ρ�0,�u,n

λ ))‖1

= ‖D
�ζ (φ�0)− D

�ζ (Tλ(ρ
�0,�u,n
λ )) + D

�ζ (Tλ(ρ
�0,�u,n
λ ))− [Tλ��ζ ,n

λ T ∗
λ ](Tλ(ρ�0,�u,n

λ ))‖1

≤ ‖D
�ζ (φ�0)− D

�ζ (Tλ(ρ
�0,�u,n
λ ))‖1 + ‖[D

�ζ − Tλ�
�ζ ,n
λ T ∗

λ ](Tλ(ρ�0,�u,n
λ )− φ

�0)‖1

+‖[D
�ζ − Tλ�

�ζ ,n
λ T ∗

λ ](φ�0)‖1

≤ 3‖Tλ(ρ
�0,�u,n
λ )− φ

�0‖1 + ‖[D
�ζ − Tλ�

�ζ ,n
λ T ∗

λ ](φ�0)‖1,

where in the last inequality we have used the fact that the displacement operators are
isometries.
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Note that the first term does not depend on �ζ and the second term is small if the

displacement operators �
�ζ ,n
λ and D�ζ have ‘similar action’ on an appropriate domain.

Using the integral formula (4.14) for gaussian states φβ and the fact that φ�0 is a tensor
product of such states (cf. (4.18)), we bound the second term by

‖[D
�ζ − Tλ�

�ζ ,n
λ T ∗

λ ](φ�0)‖1 ≤
∫

Cd(d−1)/2
f (�z)‖[D

�ζ − Tλ�
�ζ ,n
λ T ∗

λ ](|�z〉 〈�z|)‖1d�z,

where

f (�z) =
∏
i< j

µi − µ j

πµ j
exp

(
−µi − µ j

µ j
|zi, j |2

)
,

and |�z〉 〈�z| = D�z(|0〉 〈0|) is the multimode coherent state, so

[D
�ζ − Tλ�

�ζ ,n
λ T ∗

λ ](|�z〉 〈�z|) = [D
�ζ D�z − Tλ�

�ζ ,n
λ T ∗

λ D�z](|0〉 〈0|).

Now, f is a probability density, and the norm in the integrand is dominated by two. By
splitting the integral we obtain

‖[D
�ζ − Tλ�

�ζ ,n
λ T ∗

λ ](φ�0)‖1 ≤ 2
∫

‖�z‖>nβ
f (�z)d�z + sup

‖�z‖≤nβ
‖[D

�ζ D�z

−Tλ�
�ζ ,n
λ T ∗

λ D�z](|0〉 〈0|)‖1.

By adding and subtracting additional terms

D
�ζ D�z − Tλ�

�ζ ,n
λ T ∗

λ D�z = D
�ζ+�z − Tλ�

�ζ+�z,n
λ T ∗

λ

+Tλ�
�ζ+�z,n
λ T ∗

λ − Tλ�
�ζ ,n
λ �

�z,n
λ T ∗

λ

+Tλ�
�ζ ,n
λ �

�z,n
λ T ∗

λ − Tλ�
�ζ ,n
λ T ∗

λ D�z,

we deduce that

‖[D
�ζ − Tλ�

�ζ ,n
λ T ∗

λ ](|�z〉 〈�z|)‖1 ≤ ‖[D
�ζ+�z − Tλ�

�ζ+�z,n
λ T ∗

λ ](|0〉 〈0|)‖1

+‖[��ζ+�z,n
λ −�

�ζ ,n
λ �

�z,n
λ ](|0, λ〉〈0, λ|)‖1

+‖[��z,n
λ T ∗

λ − T ∗
λ D�z](|0〉 〈0|)‖1,

where the last two terms on the right side have been simplified using properties of

Tλ, T ∗
λ ,�

�ζ ,n
λ . Notice that the first and third norms are essentially the same and the three

terms are small if the action of�
�ζ
λ is mapped into that of the displacement operators D�ζ .
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Putting all this together, our ‘expanded’ form for (4.21) is

sup
θ∈�n,β,γ

‖Tn(ρ
θ,n)− φ

�ζ ⊗ N (�u, Vµ)‖1 (6.3)

≤ sup
θ∈�n,β,γ

‖N (�u, Vµ)−
∑
λ

bθ,nλ ‖1 (6.4)

+ 2 sup
θ∈�n,β,γ

∑
λ�∈�n,α

‖bθ,nλ ‖1 (6.5)

+ 3 sup
θ∈�n,β,γ

sup
λ∈�n,α

‖φ�0 − Tλ(ρ
�0,�u,n
λ )‖1 (6.6)

+ sup
‖�z‖≤nβ

sup
θ∈�n,β,γ

sup
λ∈�n,α

‖[D
�ζ+�z − Tλ�

�ζ+�z,n
λ T ∗

λ ](|0〉 〈0|)‖1 (6.7)

+ sup
‖�z‖≤nβ

sup
θ∈�n,β,γ

sup
λ∈�n,α

‖[D�z − Tλ�
�z,n
λ T ∗

λ ](|0〉 〈0|)‖1 (6.8)

+ sup
‖�z‖≤nβ

sup
θ∈�n,β,γ

sup
λ∈�n,α

‖[��ζ+�z,n
λ −�

�ζ ,n
λ �

�z,n
λ ](|0, λ〉 〈0, λ|)‖1 (6.9)

+ 2
∫

‖�z‖≥nβ
f (�z)d�z. (6.10)

The last Gaussian tail term is less than C exp(−δn2β), where C depends only on the
dimension d. Under the hypothesis n2β > 2/δ, this can be bounded again by O(n−2β).

The following lemmas provide upper bounds for each of the terms. Before each lemma
we remind the reader what is the significance of the bound. The proofs are gathered in
Sect. 7.

The classical part of the channel is a Markov kernel τ (see Definition 5.3) mapping
the ‘which block’ distribution pθ,nλ into the density bθ,nλ on R

d−1 which approaches
uniformly the gaussian shift experiment (6.4). Recall that bθ,nλ depends only on �u and
not on �ζ , so that we have the same parameter set for the two classical experiments.

Lemma 6.1. With the above definitions, for any ε, we have

sup
θ∈�n,β,γ

‖N (�u, Vµ)−
∑
λ

bθ,nλ ‖1 = O(n−1/4+ε/δ, n−1/2+γ /δ).

The next lemma deals with (6.5) by showing concentration around Young diagrams
λ in the ‘typical subset’ (6.1). This allows we to restrict to this set of diagrams in further
estimates.

Lemma 6.2. Let α − γ − 1/2 > 0. Then, with the above definitions we have

sup
θ∈�n,β,γ

∑
λ�∈�n,α

‖bθ,nλ ‖1 = O
(

nd2
exp(−n2α−1/2)

)
,

with the O(·) term converging to zero.

The term (6.6) shows that when the rotation parameter is zero, the block states ρ
�0,�u,n
λ

are essentially thermal equilibrium states, as one would expect from the quantum Central
Limit Theorem 4.4. However the convergence here is in norm rather than in distribution,
and uniform over the various parameters.
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Lemma 6.3. Let 0 < η < 2/9. With the above definitions, we have

sup
θ∈�n,β,γ

sup
λ∈�n,α

‖φ�0 − Tλ(ρ
�0,�u,n
λ )‖1 = O(n−1/2+γ+η/δ, n(9η−2)/24/δ1/6, exp(−δnη)).

The terms (6.7) and (6.8) show that the ‘finite dimensional coherent states’ obtained
by performing small rotations on the ‘finite-dimensional vacuum’ are uniformly close
to their infinite dimensional counterparts, thus justifying the coherent state terminology.

Lemma 6.4. Let ε > 0 be such that 2β + ε ≤ η < 2/9. Then,

sup
‖�z‖≤nβ

sup
‖�ξ‖≤n−1/2+2β/δ

sup
θ∈�n,β,γ

sup
λ∈�n,α

‖[D
�ζ+�z − Tλ�

�ζ+�z,�ξ,n
λ T ∗

λ ](|0〉 〈0|)‖1 = R(n)

with

R(n)2 = O(n(9η−2)/12δ−1/3, n−1+2β+ηδ−1, n−1/2+3β+2εδ−3/2, n−1+α+2βδ−1,

n−1+α+ηδ−1, n−1+3ηδ−1, n−β). (6.11)

For estimating the terms (6.7, 6.8), the case when �ξ = �0 is sufficient. This more gen-
eral form is useful for the proof of Lemma 6.5. The unitary operation is defined as

�
�ζ ,ξ,n
λ := Ad[Uλ(�ζ , ξ, n)] with U (�ζ , ξ, n)) the general SU (d) element of (7.1).

Finally (6.9) shows that the ‘finite-dimensional’ displacement operators multiply as
the corresponding displacement operators when acting on the vacuum.

Lemma 6.5. With the above definitions, under the same hypotheses as in Lemma 6.4,
we have

sup
‖�z‖≤nβ

sup
θ∈�n,β,γ

sup
λ∈�n,α

‖[��ζ+�z,n
λ −�

�ζ ,n
λ �

�z,n
λ ](|0, λ〉〈0, λ|)‖1 = R(n)

with R(n) given by Eq. (6.11).

From the last three lemmas, together with the bound on the remainder integral (6.10)
we obtain the following lemma which can be plugged into the bound (6.2):

Lemma 6.6. With the above notations under the same hypotheses as in Lemma 6.4, we
have

sup
θ∈�n,β,γ

sup
λ∈�n,α

‖φ�ζ − φ
θ,n
λ ‖ = R(n) + O(n−1/2+γ+η/δ)

with R(n) given by Eq. (6.11).

Gathering all these results and using the inequalities α − γ − 1/2 > 0, 2β + ε ≤
η < 2/9 we get the following relations between the error terms: n−1/2+β+η/2/δ1/2 =
o(n−1/2+3η/2/δ1/2) and n−1/2+α/2+β/δ1/2 = o(n−1/2+α/2+η/2/δ1/2).

This yields the next theorem which provides the bound (4.21).
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Theorem 6.7. For any δ > 0, 0 < γ < 1/4, ε > 0, 1/2 + γ < α < 1, η < 2/9,
0 < β < (η − ε)/2, the sequence of channels Tn satisfies

sup
θ∈�n,β,γ

∥∥Tn(ρ
θ,n)− φ

∥∥
1 = O(n−1/4+3β/2+εδ−3/2 + n−1/2+α/2+η/2δ−1/2

+ n−1/2+3η/2δ−1/2 + n−β/2 + n−1/2+γ+η/δ

+ n(9η−2)/24/δ1/6 + exp(−δnη)). (6.12)

For any given 0 < δ < 1, β < 1/9 and γ < 1/4, we can choose α, η, ε satisfying the
above conditions, such that the right side is of order O(n−κ ), with κ > 0 depending on
β, γ, δ.

6.2. Definition of Sn and proof of its efficiency. The channel Sn is essentially the inverse
of Tn and as we shall see, (4.22) can be deduced from (4.21).

On the classical side we need a Markov kernel completing the equivalence between
the family p�u,n

λ and N (�u, Vµ). Let σ n be defined by

σ n : x ∈ R
d−1 �→ δλx , (6.13)

where λx is the Young diagram such that
∑d

1 λi = n, and |n1/2xi + nµi − λi | < 1/2,
for 2 ≤ i ≤ d. No such diagram exists, we set λx to any admissible value, for example
(n, 0, . . . , 0). Notice that with (5.12), σ n ◦ τ n ◦ σ n = σ n . Moreover any probability on
the λ such that

∑d
1 λi = n is in the image of σ n , so that σ n ◦ τ n(pθ,n) = pθ,n .

Lemma 6.8. With the above definitions, for any ε, we have

sup
‖�u‖≤nγ

∥∥∥σ nN (�u, Vµ)− p�u,n
∥∥∥

1
= O(n−1/2+ε/δ, n−1/4+γ /δ).

Proof. See the end of Sect. 7.5. ��
The channel Sn is given by the following sequence of operations acting on the two

spaces of the product L1(Rd−1)⊗T1(F) . Given a sample from the probability distribu-
tion N (�u, Vµ), we use the Markov kernel σ n to produce a Young diagram λ. Conditional
on λ we send the quantum part through the channel

Sλ : φ �→ S̃λ(φ)⊗ 1Kλ

Mn(λ)

with

S̃λ : φ �→ T ∗
λ φ + (1 − Tr(T ∗

λ (φ)))|0, λ〉〈0, λ|.
The second term is rather arbitrary and ensures that S̃λ is trace preserving map. What is
important is that for any density operator ρλ on the block λ, the operator S̃λ reverts the
action of Tλ:

S̃λTλ(ρλ) = T ∗
λ Tλ(ρλ) + (1 − Tr(T ∗

λ Tλ(ρλ)))|0, λ〉〈0, λ|
= ρλ + (1 − Tr(ρλ))|0, λ〉〈0, λ| = ρλ.
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Now

Sn(N (�u, Vµ)⊗ φ
�ζ ) =

⊕
λ

[σ nN (�u, Vµ)](λ)S̃λ(φ�ζ )⊗ 1Kλ

Mn(λ)
,

and with the notation σ nN �u
λ := [σ nN (�u, Vµ))](λ) and q �u,n

λ := min(σ nN �u
λ , p�u,n

λ ) we
have

Sn(φ
�ζ ⊗ N (�u, Vµ))− ρθ,n =

⊕
λ

{
q �u,n
λ (S̃λ(φ

�ζ )− ρ
θ,n
λ ) + (σ nN �u

λ − q �u,n
λ )S̃λ(φ

�ζ )

− (p�u,n
λ − q �u,n

λ )ρ
θ,n
λ

}
⊗ 1Kλ

Mn(λ)
.

Taking L1 norms, and using that all φ’s and ρ’s have trace 1 and that channels (such as
S̃λ) are trace preserving, we get the bound:

‖Sn(φ
�ζ ⊗ N (�u, Vµ))− ρθ,n‖1 ≤

∑
λ

‖q �u,n
λ (S̃λ(φ

�ζ )− ρ
θ,n
λ )‖1 +

∑
λ

|σN �u
λ − p�u,n

λ |

≤ 2
∑
λ�∈�n,α

q �u,n
λ + sup

λ∈�n,α

‖S̃λ(φ
�ζ )− ρ

θ,n
λ ‖1 + ‖σ nN (�u, Vµ)− p�u,n‖1

≤ 2
∑
λ�∈�n,α

q �u,n
λ + sup

λ∈�n,α

‖φ�ζ − Tλ(ρ
θ,n
λ )‖1 + ‖σ nN (�u, Vµ)− p�u,n‖1.

Now the first term is smaller than the remainder term of the gaussian outside a ball whose
radius is nα . Hence this term is going to zero faster than any polynomial, independently
on δ and �u for ‖�u‖ ≤ nγ . The second term is treated in Lemma 6.6 (recalling that
φ
θ,n
λ = Tλ(ρ

θ,n
λ )), and the third term is treated in Lemma 6.8. This ends the proof of

(4.22). ��

7. Technical Proofs

7.1. Combinatorial and representation theoretical tools. Here we continue the analysis
of the SU (d) irreducible representations (πλ,Hλ) started in Sect. 5.1. The purpose of
this section is to provide good estimates of quantities of the type 〈m, λ | πλ(U ) | l, λ〉
which will be needed in the proofs of Lemmas 7.3 and 6.4.

We shall use the following form of a general SU (d) element and the shorthand
notations:

U (�ζ , �ξ) := exp

⎡
⎣i

⎛
⎝d−1∑

i=1

ξi Hi +
∑

1≤ j<k≤d

Re(ζ j,k)Tj,k + Im(ζ j,k)Tk, j√
µ j − µk

⎞
⎠
⎤
⎦ ,

(7.1)
U (�ζ , �ξ, n) := U (�ζ/√n, �ξ/√n), U (�ζ ) := U (�ζ , �0), U (�ζ , n) := U (�ζ/√n),

where Hi and Ti, j are the generators of SU (d) defined by

Hj = E j, j − E j+1, j+1 for j ≤ d − 1,

Tj,k = i E j,k − i Ek, j for 1 ≤ j < k ≤ d, (7.2)

Tk, j = E j,k + Ek, j for 1 ≤ j < k ≤ d,

with Ei, j the matrix with entry (i, j) equal to 1, and all others equal to 0.
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We first introduce some new notations and remind the reader about the already existing
ones:

1) We write l(c) for the length of the column c in the Young diagram λ. There are then
λi − λi+1 columns such that l(c) = i . An alternative definition is l(c) = inf{i :
λi ≥ c}.

2) Recall that we denote by fa the basis vectors fa(1)⊗ · · ·⊗ fa(n), and to each vector
we associate a Young tableau ta, where the indices a(i) fill the boxes of a dia-
gram λ in a particular way. We denote by tc

a the column c of ta, i.e. the function
tc
a : {1, . . . , l(c)} → {1, . . . , d} that associates to the row number r the value of the

entry of that Young tableau in column c, row r . For example, if ta = 2 2 1
2 1 we get

the values:

t1
a (1) = 2, t1

a (2) = 2, t2
a (1) = 2, t2

a (2) = 1, t3
a (1) = 1.

We shall often be interested in the image tc
a ({1, . . . , l(c)}) as an unordered set, or

compare tc
a to Idc, the identity function on the integers {1, . . . , l(c)}.

3) Recall also that Hλ is spanned by the vectors yλ fa for which ta is a semistandard
Young tableau, and yλ = qλ pλ is the Young symmetriser (cf. Theorem 5.2). If ta
is semistandard then we can use the alternative notation fm for fa since a is in
one-to-one correspondence with m = {mi, j : 1 ≤ i < j ≤ d}, where mi, j is the
number of j’s in the row i of ta. The normalised vectors are

|m, λ〉 := yλ fm/‖yλ fm‖.
4) Let Oλ(m) be the orbit of fm under the subgroup Rλ of row permutations. This

consists of vectors fb which have exactly mi, j boxes with j in row i , and the rest are
i . In particular, row i has no entries smaller than i . Since the action of permutations
is transitive, we have

pλ fm =
∑
σ∈Rλ

fa◦σ =
∑

fb∈Oλ(m)

#Rλ

#Oλ(m)
fb. (7.3)

5) Since we antisymmetrize with qλ, we are only interested in the ta (not necessar-
ily semistandard) which do not have two equal entries in the same column. Such
tableaux ta (or vectors fa) shall be called admissible and their set is denoted V .

6) For any fa ∈ Oλ(m) we define

�( fa) := |m| − #{1 ≤ c ≤ λ1 : tc
a �= Idc},

and denote by V�(m) the set of vectors fa ∈ Oλ(m)
⋂

V with �( fa) = �. Then
we have

Oλ(m)
⋂

V =
⋃
�∈N

V�(m).

Note that �( fa) ≥ 0 and is zero if and only if each column tc
a is either Idc or of the

form tc
a (r) = jδr=i + rδr �=i for some i ≤ l(c) < j . A tc

a of this form will be called an
(i, j)-substitution.

The following ‘algorithm’ shows how to build all the possible fa ∈ V�(m), thus
enabling us to estimate the size of V�(m).
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Algorithm. Let (m, λ) be fixed but otherwise arbitrary. In order to generate a particular
admissible fa ∈ Oλ(m) we need to select the mi, j boxes on row i which are filled with
j , for all i < j . The rest of the boxes are filled automatically with i’s. The constraint is
that no column should have two boxes filled with the same number.

Generating a diagram can be described intuitively as follows. We start with the ‘vac-
uum’ vector (tableau) f0 := fm=0 (row i is filled exclusively with i’s), and with a set of
|m| bricks containing mi, j identical bricks labelled (i, j), for each pair i < j . To change
the content of a box from i into j we place an (i, j)-brick in that box. This procedure is
repeated until all bricks have been used, each box being modified at most once.

At this stage each column c may contain several bricks placed in the appropriate
boxes, so that its configuration is uniquely defined by the set of bricks κ which shall be
called a column-modifier. For example if κ = {(i, j), ( f, l)}, then the column has entries

tc
a (k) =

⎧⎨
⎩

j if k = i;
l if k = f ;
k otherwise.

Note that a column-modifier is not an arbitrary collection of bricks but one that can be
used to produce a column with different entries. In the previous example, if i < f this
means either ( j �= f and j, l > l(c)) or ( j = f and l > l(c)). The elementary one-
brick column-modifier denoted κ(i, j) can only be used in a column with i ≤ l(c) < j ,
otherwise the entry j would appear twice.

Now, since the length of a column is at most d and all entries must be different, there
are less than d! different types of column-modifiers. Another important remark is that
a column-modifier always increases the value of the modified cells, so that in this case
tc
a ({1, . . . , l(c)}) �= {1, . . . , l(c)}.

Alternatively to the above scenario where the bricks are inserted sequentially, we can
first cluster them into |m| − � column-modifiers, and then apply each column-modifier
to a particular column. A given collection of column-modifiers is uniquely determined
by {mκ : κ}, where mκ is the multiplicity of κ . This procedure is detailed in the following
3 stages:

I. Choose � bricks among our |m|. As we have d(d − 1)/2 different types of bricks
(recall that i > j), and we do not distinguish between identical bricks, there are
at most [d(d − 1)/2]� possibilities. For � = 0, we have only one choice.

II. Consider the remaining bricks as a set of elementary column-modifiers. Starting
from these, we sequentially add each of the � bricks selected in the first stage,
to one of these elementary column-modifiers to form non-elementary ones. At
each step we have at most d! different types of column modifiers to which we can
attach the new brick. Note that we do not distinguish between column modifiers
of the same type, but rather consider them as an unordered set. Hence, we have
less than (d!)� possibilities. If � = 0 there is only one possibility.
Note that at the end of Stage II at least max{0, |m|−2�} of the column-modifiers
are elementary, and that mκ(i, j) ≤ mi, j .

III. Apply the column-modifiers to the columns of f0, so that no two modifiers are
applied to the same column and the resulting fa ∈ Oλ(m) is admissible. By
construction �( fa) = � and all admissible tableaux can be generated in this way.

For counting the number of possibilities for the third stage we apply the column mod-
ifiers sequentially, but since some of them may be identical we need to divide by the
combinatorial factor

∏
κ mκ !, where mκ is the number of column modifiers of type κ .
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We distinguish between elementary column modifiers of type κ(i, j) and composite
ones. There are less than n possibilities of inserting a composite column-modifier κ . An
elementary one of type κ(i, j) can only be inserted in a column with at least i rows,
and since the resulting vector has to be admissible, the column cannot contain another
j , so its length is smaller than j . There are λi − λ j such columns. Hence the number of
possibilities at stage three of the algorithm is upper bounded by

∏
κ �=κ(i, j)

nmκ

mκ ! ·
∏
i< j

(λi − λ j )
mκ(i, j)

mκ(i, j)! . (7.4)

When � = 0, for each elementary column modifier κ(i, j) the number of available col-
umns is at least (λi −λ j −|m|)+ := max{0, λi −λ j −|m|}. Thus we have the following
lower bound:

∏
i< j

(λi − λ j − |m|)mi, j
+

mi, j ! . (7.5)

Note that the upper bound (7.4) depends on the set of multiplicities {mκ}.
We now return to our list of notations and definitions:

7) To each column of ta we associated a column modifier which completely determines
its content. If ma

κ is the number of columns with column-modifer κ , we collect all
multiplicities in E := {ma

κ : κ}. In particular � is a function of E ,

�( fa) = |m| −
∑
κ

ma
κ .

Vectors for which �( fa) = 0 have the same multiplicity set E0, where mκ(i, j) = mi, j

for all i < j and the other mκ = 0. Similarly to V�(m), we denote by V E (m) the set of
tableaux in Oλ(m)

⋂
V with E( fa) = E , in particular

V�(m) =
⋃

E :�(E)=�
V E (m).

8) To each column c of ta we associate two disjoint sets: the added entries {tc
a (1), . . . ,

tc
a (l(c))} \ {1, . . . , l(c)} and the deleted entries {1, . . . , l(c)} \ {tc

a (1), . . . , tc
a (l(c))}.

This data is placed into a single set by attaching a ± sign to each entry, indicating
if it is added or deleted. It is easy to verify that if ta is admissible, the set of added
and deleted entries is uniquely determined by the column-modifer κ associated to c,
and hence shall be denoted by S(κ). For example S(κ(i, j)) = {(i,−), ( j,+)} and
for κ = {(i, j), ( j, k)} we have S(κ) = {(i,−), (k,+)}. We define the multiplicities
ma

S = ∑
κ:S(κ)=S ma

κ and F( fa) := {ma
S : S} . To summarise, we have defined the

maps fa �−→ E( fa) �−→ F( fa).

We now state our estimates. The first point of the following lemma is an exact formula
serving as the main tool to prove some of the bounds below.

Lemma 7.1. 1. For any unitary operator U ∈ M(Cd), for any basis vectors fa and fb,
we have

〈 fa|qλU⊗n fb〉 = ∏
1≤c≤λ1

det(U tc
a ,t

c
b ), (7.6)
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where U tc
a ,t

c
b is the l(c)× l(c) minor of U given by [U tc

a ,t
c
b ]i, j = Utc

a (i),t
c
b( j).

Under the assumptions

|m| ≤ nη, λ ∈ �n,α
inf i |µi − µi+1| ≥ δ, µd ≥ δ

‖�ζ‖1 ≤ Cnβ, ‖�ξ‖1 ≤ n−1/2+2β/δ,

β ≤ 1/2 n >
(
2δ−1

)1/(1−α)

⎫⎪⎪⎬
⎪⎪⎭

(7.7)

we have the following estimates with remainder terms uniform in the eigenvalues µ•:

2. The number of admissible fa ∈ Oλ(m) with �( fa) = 0 is

#V0(m) =
∏
j>i

(λi − λ j )
mi, j

mi, j ! (1 + O(n−1+2η/δ)). (7.8)

3. Let E := {mκ : κ} with �(E) = �. The number of admissible fa ∈ Oλ(m) with
E( fa) = E is bounded by:

#V E (m) ≤ n−�+
∑

i< j (mi, j −mκ(i, j))
∏
j>i

(λi − λ j )
mκ(i, j)

mκ(i, j)! . (7.9)

4. The number of admissible fa ∈ Oλ(m) with �( fa) = � is bounded by:

#V�(m) ≤ C�n−�δ−2�|m|2�
∏
j>i

(λi − λ j )
mi, j

mi, j ! , (7.10)

for a constant C = C(d).
5. Let fa ∈ V�a

(l), and consider V�b
(m) ⊂ Oλ(m) for some fixed �b. Then:

|〈 fa|qλ
∑

fb∈V�b
(m)

fb〉| ≤
{

0 if �b �= |m| − |l| + �a

(C |m|)�b
otherwise

, (7.11)

with C = C(d).
6. If fa ∈ V0(m), then

〈 fa|qλ
∑

fb∈Oλ(m)

fb〉 = 1. (7.12)

7. If fa ∈ V0(m) so that its set of elementary column-modifiers is E0 = {mκ(i, j) =
mi, j }, then

〈 fa|qλU (�ζ , �ξ, n)⊗n f0〉=exp

(
iφ− ‖�ζ‖2

2

2

)∏
i< j

(
ζi, j√

n
√
µi − µ j

)mi, j

r(n),

(7.13)

with the phase and error factor

φ = √
n

d−1∑
i=1

(µi − µi+1)ξi ,

r(n) = 1 + O
(

n−1+2β+ηδ−1, n−1/2+2βδ−1, n−1+2β+αδ−1
)
.
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8. If fa ∈ V E (m), so that its set of column-modifiers is E = {mκ : κ} and �(E) = �,
then∣∣∣〈 fa|qλU (�ζ , �ξ, n)⊗n f0〉

∣∣∣

≤ exp

(
−‖�ζ‖2

2

2

)(
C‖�ζ‖√

nδ

)−�+
∑

i< j (mi, j −mκ(i, j))∏
i< j

(
ζi, j√

n
√
µi − µ j

)mκ(i, j)

r(n),

(7.14)

with C = C(d) a constant and r(n) as in point 7 above.
9. Under the further hypotheses that ‖�z‖ ≤ nβ , mi, j ≤ 2|ζi, j + zi, j |nβ+ε for some

ε > 0, we have:

〈
∑

fa∈Oλ(m)

fa|qλU (�ζ + �z, �ξ, n) f0〉

= exp

(
iφ − ‖�ζ + �z‖2

2

2

)∏
i< j

(
(ζi, j + zi, j )(

√
n
√
µi − µ j )

)mi, j

mi, j ! r(n),

(7.15)

with

r(n) = 1

+ O
(
n−1+2β+ηδ−1, n−1+2β+αδ−1, n−1+2ηδ−1, n−1+α+ηδ−1, δ−3/2n−1/2+3β+2ε).

10. Under the further hypotheses that |l| ≤ |m| and n1−3η > 2C/δ2, where C = C(d),

|〈
∑

fa∈Oλ(l)

fa|qλ
∑

fb∈Oλ(m)

fb〉|

≤ (C |m|)|m|−|l|∏
i< j

(λi − λ j )
li, j

li, j !
(

C |l|2|m|
nδ2

)�a
min(l,m)

(7.16)

with

�a
min(l,m) ≥ (|l − m| + 3|l| − 3|m|)+

6
. (7.17)

11. We have

〈
∑

fa∈Oλ(m)

fa|qλ
∑

fb∈Oλ(m)

fb〉 = ∏
i< j

(λi −λ j )
mi, j

mi, j !
(
1 + O(n3η−1/δ)

)
. (7.18)

Proof of (7.6). We first express 〈 fa|U⊗n fb〉 as a product of matrix entries of U :

〈 fa|U⊗n fb〉 =
∏

1≤c≤λ1

∏
1≤r≤l(c)

〈 ftc
a (r)|U ftc

b(r)
〉

=
∏

1≤c≤λ1

∏
1≤r≤l(c)

Utc
a (r),t

c
b(r)
.
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Since the subgroup of column permutations Cλ is the product of the permutation groups
of each column, each σ ∈ Cλ is σ = s1 . . . sλ1 with sc a permutation of column c which
transforms tc

b(r) into tc
b(sc(r)). Then

〈 fa|qλU⊗n fb〉 = 〈 fa|U⊗nqλ fb〉 =
∑
σ∈Cλ

ε(σ )
∏

1≤c≤λ1

∏
1≤r≤l(c)

Utc
a (r),t

c
b(sc(r))

=
∏

1≤c≤λ1

∑
sc∈Sc

ε(sc)
∏

1≤r≤l(c)

Utc
a (r),t

c
b(sc(r))

=
∏

1≤c≤λ1

det(U tc
a ,t

c
b ).

��
Proof of (7.8). The number of admissible fa such that �( fa) = 0 is given by the prod-
ucts of the possibilities at each stage of the algorithm. For the first two stages, there is
exactly one possibility when � = 0. Hence #V0 is the number of possibilities at the
third stage. Here the upper bound (7.4) reads: as

∏
j>i (λi − λ j )

mi, j /mi, j !. On the other
hand, we may use (7.5) as a lower bound, recalling that λi − λ j ≥ δn/2 and |m| ≤ nη

(cf. (7.7)). This yields the result (7.8). ��
Proof of (7.9). The number of fa in V E is given by the third stage of the algorithm
(the two first stages yield a particular E). We then obtain (7.9) by applying (7.4) and
neglecting the mκ ! factors, while noticing that

∑
κ mκ = |m| − �. ��

Proof of (7.10). The set V� is the union of all V E with �(E) = �. Now the first two
stages of the algorithm imply that there are at most C� different E with the latter property,
with C = C(d). ��

Now we use (7.9) to upper-bound V E as follows. Since
∑

mκ(i, j) ≥ |m| − 2�,
we may write

∏
κ mκ(i, j)! ≥ ∏

i< j mi, j ! supi< j m−2�
i, j . Moreover λi − λ j ≥ δn/2. By

putting together we obtain

#V E ≤ n−�δ−2�|m|2�
∏
j>i

(λi − λ j )
mi, j

mi, j ! , ∀E with �(E) = �.

Multiplying by the number of possible E yields the result.

Proof of (7.11). We are applying (7.6) with U = 1. Since both fa and fb are products
of basis vectors, the scalar product 〈 fa | qλ fb〉 is equal to −1 or 1 if tc

a ([1, l(c)]) =
tc
b([1, l(c)]) for all columns, and 0 otherwise. Here we denote by tc

a ([1, l(c)]) the set of
entries {tc

a (1), . . . , tc
a (l(c))}.

Now, since a modified column cannot satisfy tc
a ([1, l(c)]) = [1, l(c)] (and the same for

b), the vectors fa and fb are orthogonal unless they have the same number of modified
columns. Finally, that number is |l|−�a for fa and |m|−�b for fb. This yields the first
line of (7.11). ��

We now concentrate on the case when �b = |m| − |l| +�a . Since |〈 fa | qλ fb〉| ≤ 1,
we can bound the sum of scalar products by the number of non-zero inner products. The
question is how many diagrams fb have the same content (seen as an unordered set) in
each column as fa: tc

a ([1, l(c)]) = tc
b([1, l(c)]), or equivalently S(κc

a) = S(κc
b).
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For building the relevant fb, we can follow the algorithm with the further condition
that, at stage three, all the column-modifiers are applied in such a way that the unordered
column content is identical to that of fa.

The first two stages of the algorithm are the same so they yield a C�b
factor. We now

have a collection {mκ } of column modifiers which have to be placed so that they match the
column content of fa. For each S we identify the column modifiers κ1, . . . , κr(S) such that
S(κi ) = S for all 1 ≤ i ≤ r(S). The total number of such objects is mS := ∑

i≤r(S) mκi

and the number of ways in which they can be inserted to produce distinct diagrams is
(

mS
mκ1 . . .mκr(S)

)
.

Recall that the number of elementary column-modifiers
∑

i< j mκ(i, j) is at least |m| −
2�b. Moreover, each elementary column-modifier κ(i, j) corresponds to a different
S(κ(i, j)) = {(i,−), ( j,+)}. Thus

|m| − 2�b ≤
∑
i< j

mκ(i, j) ≤
∑

S

max
κ:S(κ)=S

mκ .

Since ∑
S

mS =
∑
κ

mκ = |m| − �b,

we obtain

∑
S

(
mS − max

κ:S(κ)=S
mκ

)
≤ �b.

This implies

∏
S

(
mS

mκ1 . . .mκr(S)

)
≤ |m|�b

.

Multiplying by the C�b
of the first stages, we get (7.11).

Proof of (7.12). As shown above the only non-zero contributions come from fb ∈ V0 ⊂
Oλ(m).
Since �b = 0, the constant from the two first stages of the algorithm is 1, mS = mi, j =
mκ(i, j) for all S corresponding to an elementary column-modifier, and 0 otherwise. So
the combinatorial factor is again one: we do not have any choice in our placement of
column-modifiers. In other words, the only fb such that 〈 fa | qλ fb〉 �= 0 is fa. Finally,
〈 fa | qλ fa〉 = 1. ��
Proof of (7.13). From (7.6) we deduce

〈 fa|qλU (�ζ , �ξ, n)⊗n f0〉 =
∏

1≤c≤λ1

det(U tc
a ,Id

c
), U = U (�ζ , �ξ, n).

We shall use the Taylor expansion of the unitary U (�ζ , �ξ, n) to estimate the above deter-
minants. ��
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Entry-wise, for all 1 ≤ i ≤ d on the first line, and all 1 ≤ i < j ≤ d on the second
and third lines:

Ui,i (�ζ , �ξ, n) = 1 + i
ξiδi �=d − ξi−1δi �=1√

n
− 1

2n

∑
j �=i

|ζi, j |2
|µi − µ j |

+ O(‖�ζ‖3n−3/2δ−3/2, ‖�ζ‖‖�ξ‖n−1δ−1/2, ‖�ξ‖2n−1);
Ui, j (�ζ , �ξ, n) = − 1√

n

ζ ∗
i, j√

µi − µ j
+ O(‖�ζ‖2n−1δ−1, ‖�ζ‖‖�ξ‖n−1δ−1/2);

U j,i (�ζ , �ξ, n) = 1√
n

ζi, j√
µi − µ j

+ O(‖�ζ‖2n−1δ−1, ‖�ζ‖‖�ξ‖n−1δ−1/2).

If �ζ = O(nβ), ‖�ξ‖ ≤ n−1/2+2β/δ, and β < 1/2, the remainder terms are
O(n−3/2+3βδ−3/2) for the first line and O(n−1+2βδ−1) for the last two lines.

Therefore, when our parameters are in this range, we can give precise enough evalu-
ations of the determinants. The idea is to find the dominating terms in the expansion of
the determinant

det A =
∑
σ

∏
i

ε(σ )Ai,σ (i).

Note that we can use the above Taylor expansions inside the determinant since the
number of terms in the product is at most d.

Since fa ∈ V0, all tc
a are either Idc, or an (i, j)-substitution. If tc

a = Idc, the summands
with more than two non-diagonal terms are of the same order as the remainder term, so
that only the identity and the transpositions count in

∑
σ

∏
i Ai,σ (i). Let l = l(c), then

υ(l) := det(U Idc,Idc
(�ζ , �ξ, n)) = 1 + i

ξl√
n

− 1

2n

∑
1≤i≤l

l+1≤ j≤d

|ζi, j |2
µi − µ j

+ O(n−3/2+3βδ−3/2).

Note that for l = d, we get the usual determinant of U (�ζ , �ξ, n) which is 1.
Consider now the case tc

a �= Idc. Since tc
a (r) ≥ r for all r , there exists a whole column

of U tc
a ,Id

c
whose entries are smaller in modulus than O(‖�ζ‖/√nδ) = O(n−1/2+βδ−1).

In particular if tc
a is an (i, j)-substitution, then the only summand that is of this order

comes from the identity. So that

υ(i, j) := det(U tc
a ,Id

c
(�ζ , �ξ, n)) = ζi, j√

n
√
µi − µ j

+ O(n−1+2βδ−1). (7.19)

Note that this approximation does not depend on l(c), but only on i and j .
We now put together the estimated determinants in the product (7.6). For each i < j

there are mi, j columns of the type (i, j)-substitution. Out of the λl − λl+1 columns of
length l = l(c) there are λl − λl+1 − Rl of the type Idc, with 0 ≤ Rl ≤ |m|.

Hence:

〈 fa|qλU (�ζ , �ξ, n)⊗n f0〉=
d∏

l=1

(υ(l)))λl−λl+1
∏

1≤i< j≤d

(υ(i, j))mi, j

d∏
l=1

(υ(l))−Rl .

(7.20)
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Now υ(l) = 1 + O(n−1+2βδ−1) and Rl ≤ |m| ≤ nη, so the last product is 1 +
O(n−1+2β+ηδ−1). Similarly, since λ ∈ �n,α we have λl −λl+1 = n(µl −µl+1)+ O(nα),
and we can use Lemma 7.2 given at the end of this section to estimate the first product
as follows:

d∏
l=1

υ(l)λl−λl+1 =
d∏

l=1

exp

⎛
⎜⎜⎝iφl − 1

2

∑
1≤i≤l

l+1≤ j≤d

|ζi, j |2µl − µl+1

µi − µ j

⎞
⎟⎟⎠ r(n)

= exp

(
iφ − ‖�ζ‖2

2

2

)
r(n),

with

r̃(n) = 1 + O(n−1+α+2βδ−1, n−1/2+2βδ−1),

φl = δl �=d
√

n(µl − µl+1)ξl ,

φ = √
n

d−1∑
l=1

(µl − µl+1)ξl .

We now turn our attention to the middle product on the right side of (7.20),

υ(i, j)mi, j =
(

ζi, j√
n
√
µi − µ j

)mi, j (
1 + O

(
n−1+2β+ηδ−1

))
,

where we have used that |m| ≤ nη. Inserting into (7.20) yields (7.13).
Note that 〈 fa|qλU (�ζ , �ξ, n)⊗n f0〉 = 0 if there exist i < j such that ζi, j = 0 and

mi, j �= 0 .

Proof of (7.14). We may write, much like in (7.20),

〈 fa|qλU (�ζ , �ξ, n)⊗n f0〉 =
d∏

l=1

(υ(l)))λl−λl+1
∏
κ

(υ(κ))mκ

d∏
l=1

(υ(l))−Rl ,

where 0 ≤ Rl ≤ |m| − � and υ(κ) is the determinant of the minor of U corresponding
to having applied the column-modifier κ . We can further split the column-modifers into
elementary ones κ(i, j) and non-elementary ones κ ′. ��

Then 〈 fa|qλU (�ζ , �ξ, n)⊗n f0〉 can be written as

d∏
l=1

(υ(l)))λl−λl+1
∏
i< j

(υ(i, j))mκ(i, j)

d∏
l=1

(υ(l))−Rl
∏
κ ′

(
υ(κ ′)

)mκ′ .

The first three products on the right side can be treated as above. For the fourth product
we give a rough upper bound based on the following observation. If the entries in the
column have been modified in an admissible way, then tc

a (i) = j > l(c) for some i , so
that |υ(κ)| ≤ C‖�ζ‖/√nδ for any κ , with some constant C = C(d).



Local Asymptotic Normality for Finite Dimensional Quantum Systems 637

Thus by using the previous point∣∣∣〈 fa|qλU (�ζ , �ξ, n)⊗n f0〉
∣∣∣

≤ exp

(
−‖�ζ‖2

2

2

)(
C‖�ζ‖√

nδ

)∑
κ′ mκ′ ∏

i< j

( |ζi, j |√
n
√
µi − µ j

)mκ(i, j)

r(n). (7.21)

We obtain (7.14) by noting that the number of non-elementary modifiers is∑
κ ′

mκ ′ = −� +
∑
i< j

(mi, j − mκ(i, j)).

Proof of (7.15). Note that only admissible vectors in Oλ(m) can bring non-zero con-
tributions. We shall split the sum into sub-sums using Oλ(m)

⋂
V = ⋃

E V E (m), and

compare each sub-sum against the benchmark V0 = V E0
.

From the bounds on �ζ and �z we obtain ‖�ζ + �z‖ = O(nβ), so we can apply the previous
points with �ζ + �z instead of �ζ .

Using (7.8) and (7.13) and recalling that λ ∈ �n,α , we get:

〈
∑

fa∈V0

fa|qλU (�ζ + �z, �ξ, n)⊗n f0〉

= exp
(

iφ − ‖�ζ + �z‖2
2/2

)∏
i< j

(
(ζi, j + zi, j )

√
n
√
µi − µ j

)mi, j

mi, j ! r(n)

with error factor

r(n) = 1 + O
(

n−1+2β+ηδ−1, n−1/2+2βδ−1, n−1+2β+αδ−1, n−1+2ηδ−1, n−1+α+ηδ−1
)
.

For E �= E0 we combine (7.14) and (7.9) to obtain

|〈
∑

fa∈V E

fa|qλU (�ζ + �z, �ξ, n) f0〉| · |〈
∑

fa∈V0

fa|qλU (�ζ + �z, �ξ, n) f0〉|−1

≤ n−�∏
i< j

(
λi − λ j

n

)mκ(i, j)−mi, j mi, j !
mκ(i, j)!

(
‖�ζ + �z‖√

δn

)−�

×
∏
i< j

( √
δn|ζi, j + zi, j |

‖�ζ + z‖√n
√
µi − µ j

)mκ(i, j)−mi, j

r(n)

≤ O(n−�(1/2+β))δ−�/2
∏

i< j :mi, j �=0

(
|ζi, j + zi, j |√µi − µ j

mi, j‖�ζ + �z‖

)mκ(i, j)−mi, j

≤ O
(
(2δ−3/2n−1/2+3β+2ε)�

)
,

with O(·) uniform in �. In the second inequality we used

mi, j !/mκ(i, j)! ≤ m
mi, j −mκ(i, j)
i, j ,

∑
i< j

(mκ(i, j) − mi, j ) ≥ −2�, λ ∈ �n,α,
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and in the third inequality we used

mi, j ≤ 2|ζi, j + zi, j |nβ+ε,
|ζi, j + zi, j |√µi − µ j

mi, j‖�ζ + �z‖ ≤ 1.

Furthermore, for a given �, there are at most C� different E such that �(E) = �,
corresponding to the possible choices in the first two stages of the algorithm, where
C = C(d). Hence, if n is large enough, so that 2Cδ−3/2n−1/2+3β+2ε < 1, we have:

〈
∑

fa∈Oλ(m)

fa|qλU (�ζ + z, �ξ, n) f0〉 =
∑
�

〈
∑

fa∈V�
fa|qλU (�ζ + z, �ξ, n) f0〉

=
(

1 + O(δ−3/2n−1/2+3β+2ε)
)

exp
(

iφ − ‖�ζ + z‖2
2/2

)

×
∏
i< j

(
(�ζ + z)i, j (

√
n
√
µi − µ j )

)mi, j

mi, j ! r(n)

= exp
(

iφ − ‖�ζ + z‖2
2/2

)∏
i< j

(
(�ζ + z)i, j (

√
n
√
µi − µ j )

)mi, j

mi, j ! r2(n),

where the sum over � was bounded using a geometric series and

r2(n) = 1

+O
(

n−1+2β+ηδ−1, n−1+α+βδ−1, n−1+2ηδ−1, n−1+α+ηδ−1, δ−3/2n−1/2+3β+2ε
)
.

This is exactly (7.15). ��
Proof of (7.16). We choose �a and �b satisfying the condition �b − �a = |m| − |l|
under which the inner products in (7.11) are non-zero. By multiplying (7.10) and (7.11),
we see that:

|〈
∑

fa∈V�a
(l)

fa|qλ
∑

fb∈V�b
(m)

fb〉| ≤ (C |m|)�b∏
i< j

(λi − λ j )
li, j

li, j !
(

C |l|2
nδ2

)�a

= (C |m|)|m|−|l|∏
i< j

(λi − λ j )
li, j

li, j !
(

C |l|2|m|
nδ2

)�a

.

(7.22)

It remains to sum up the upper bounds over all relevant pairs (�a, �b). If n1−3η > 2C/δ2,
the dominating term in the sum of bounds is that corresponding to the smallest possible
�a . The question is, what is the smallest possible value of �a leading to non-zero inner
products?

A necessary condition for fa not to be orthogonal to fb is that for each set S of
suppressed and added values, the two vectors have the same multiplicities ma

S = mb
S .

The following argument provides a lower bound for �( fa) + �( fb). The idea is to
count the minimum number of ‘horizontal box shuffling’ operations necessary in order
to transform a Young tableau ta′ ∈ Oλ(m) into the tableau ta. Since |m| ≤ nη and
λd ≥ δn + O(nα), the tableau ta′ can be chosen to have at most one modified box per
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column (thus �( fa′) = 0), and such that each of the modified columns of ta are also
modified in ta′ . We also choose tb′ in a similar fashion.

Now at each step we horizontally move one elementary column modifier κ(i, j) of
ta′ (or tb′ ) into an already modified column, with the aim of constructing ta (or tb).

Each such operation increases �( fa′) + �( fb′) by one. On the other hand the opera-
tion has the following effect on the ma′

S (or mb′
S ): the multiplicities m{(i,−),( j,+)} and mS0

decrease by one, and mS0+{(i,−),( j,+)} increases by one. Here S0 is the signature of the
column to which the box (i, j) is moved. Hence the distance

∑
S |ma′

S − mb′
S | decreases

by at most three. Since initially this quantity was equal to
∑

i< j |li, j − mi, j |, we need

at least
∑

i< j |li, j − mi, j |/3 such operations before reaching our goal ma
S = mb

S . This
means that �( fa) + �( fb) ≥ |l − m|/3.

Together with �b −�a = |m|− |l|, this result yields �a ≥ (|l − m| + 3|l|− 3|m|)/6.
Moreover �a is non-negative.

Replacing in the above equation yields (7.16). ��
Proof of (7.18). Since l = m, Eqs. (7.8) and (7.12) prove that the bound (7.22) is satu-
rated when �a = 0, up to the error factor

(
1 + O(n−1+2η/δ)

)
. Hence the remainder term

due to the other � consist in a geometric series with factor
(

C|m|3
nδ2

)
= O(n1−3η/δ2).

��
Above we used the following lemma whose proof can be found in [29]:

Lemma 7.2. If xn = O(n1/2−ε), then
(

1 +
xn

n

)n = exp(xn)(1 + O(n−ε)).

7.2. Proof of Lemma 5.4 and non-orthogonality issues.

Lemma 7.3. Let (m, λ) and (l, λ) be semistandard Young tableaux with diagram λ and
define |m| := ∑

i< j mi j and |l − m| := ∑
i< j |li, j − mi j |. If

∑
j>i

mi, j −
∑
j<i

m j,i �=
∑
j>i

li, j −
∑
j<i

l j,i

for some 1 ≤ i ≤ d, then

〈m, λ|l, λ〉 = 0.

Otherwise, we derive an upper bound under the following conditions. We assume that
λi − λi+1 > δn for all 1 ≤ i ≤ d − 1 and λd > δn, for some δ > 0. Furthermore we
assume |l| ≤ |m| ≤ nη for some η < 1/3 and that Cn3η−1/δ2 < 1, where C = C(d) is
a constant. Then:

|〈m, λ|l, λ〉| ≤ (C ′n)−η(|m|−|l|)/4 (C ′n)(9η−2)|m−l|/12 δ(|m|−|l|)/2−|m−l|/3

×(1 + O(n−1+3η/δ)), (7.23)

where C ′ = C ′(d, η) and the constant in the remainder term depends only on d. The
right side is of order less than n(9η−2)|m−l|/12 and converges to zero for η < 2/9 when
n → ∞.
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Proof. We know that |m, λ〉 is a linear combination of n-tensor product vectors in which
the basis vector fi appears exactly λi −∑

j>i mi, j +
∑

j<i m j,i times. As two tensor
basis vectors are orthogonal if they do not have the same number of fi in the decompo-
sition, we get that 〈m, λ|l, λ〉 = 0 if

∑
j>i mi, j +

∑
j<i m j,i �= ∑

j>i li, j +
∑

j<i l j,i
for any 1 ≤ i ≤ d.

In the general case,

〈m, λ|l, λ〉 = 〈qλ pλ fm|qλ pλ fl〉√〈qλ pλ fm|qλ pλ fm〉〈qλ pλ fl|qλ pλ fl〉 . (7.24)

We use the fact that qλ is a projection, up to a constant factor (cf. (5.1),(5.3)), and erase
the qλ at the left of each scalar product, and we decompose pλ fm and pλ fl on orbits as
in (7.3). Since the multiplicity of the elements in the orbits are the same in numerator
and denominator, we end up with:

〈m, λ|l, λ〉
= 〈∑ fa∈Oλ(m) fa|qλ∑ fb∈Oλ(l) fb〉

〈∑ fa∈Oλ(m) fa|qλ∑ fa′ ∈Oλ(m) fa′ 〉 · 〈∑ fb∈Oλ(l) fb|qλ∑ fb′ ∈Oλ(l) fb′ 〉 .
(7.25)

We use (7.18) for the denominator:

〈
∑

fa∈Oλ(m)

fa|qλ
∑

fa′ ∈Oλ(m)

fa′ 〉 · 〈
∑

fb∈Oλ(l)

fb|qλ
∑

fb′ ∈Oλ(l)

fb′ 〉

=
∏

1≤i< j≤d

(λi − λ j )
(mi, j +li, j )/2√

mi, j ! li, j !
(1 + O(n3η−1/δ))),

and the numerator is bounded as in (7.16). Then, under the assumption |m| ≥ |l| we
have

|〈m, λ|l, λ〉| ≤ (C |m|)|m|−|l|
(

C |m|3
δ2n

)�min

·
∏
i< j

(λi − λ j )
(li, j −mi, j )/2

√
mi, j !
li, j ! ·

×
(

1 +
(

O(n3η−1/δ)
))
,

where �min = ((|l − m| + 3|l| − 3|m|)/6) ∧ 0. The factorials can be bounded as

∏
i< j

√
mi, j !
li, j ! ≤ |m|

∑
(mi, j −li, j )+/2 = |m|(|m−l|+|m|−|l|)/4.

Since |m| ≤ nη and Cn3η−1/δ2 < 1, we have

(
C |m|3
δ2n

)�min

≤
(

Cn3η−1

δ2

)(|l−m|+3|l|−3|m|)/6
.

Since λi − λ j > nδ we have
∏

1≤i< j≤d

(λi − λ j )
(li, j −mi, j )/2 ≤ (nδ)(|l|−|m|)/2.
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The constant C = C(d) can be replaced by another constant C ′ = C ′(d, η) such that
all powers of n appear in the form (C ′n)γ . Putting the bounds together we get

|〈m, λ|l, λ〉| ≤ δ(|m|−|l|)/2−|m−l|/3(C ′n)−η(|m|−|l|)/4(C ′n)(9η−2)|m−l|/12

×(1 + O(n−1+3η/δ)).

��
Corollary 7.4. Let η < 2/9 and let (m, λ) be such that |m| ≤ nη. Assume as in
Lemma 7.3 that λi − λi+1 > δn for all 1 ≤ i ≤ d − 1 and λd > δn, for some
δ > 0, and that Cn3η−1/δ2 < 1, where C = C(d) is a constant.
Then there exists a constant C ′′ = C ′′(d, η) such that

∑
|l|≤nη
l �=m

|〈m, λ|l, λ〉| ≤ (C ′′n)(9η−2)/12δ−1/3. (7.26)

Proof. Recall that the bound (7.23) is given for |m| ≥ |l|. If on the contrary |l| > |m|,
we must change all the |m − l| into |l−m|, so that these terms are always positive. Now,
they are always in exponents of values less than one. We shall therefore neglect all those
terms.

Hence the expression on the left side of (7.26) is bounded from above by

2
∑
k≥1

N (k)
[
(C ′n)(9η−2)/12δ−1/3

]k
,

where N (k) is the number of l’s for which |m − l| = k.
Since there are d(d − 1)/2 pairs 1 ≤ i < j ≤ d, there are at most (k + 1)d(d−1)/2

different choices for the values {|li, j − mi, j | : i < j} satisfying
∑ |li, j − mi, j | = k.

Moreover, there are 2d(d−1)/2 sign choices which fix l = {li, j } completely. Thus N (k) ≤
(2(k + 1))d(d−1)/2 ≤ ck for some constant c which can be incorporated in the geometric
series starting at k = 1, hence the desired estimate. ��

We use this quasi-orthogonality to build an isometry Vλ : Hλ → F which maps the
relevant finite-dimensional vectors |m, λ〉 ‘close’ to their Fock counterparts |m〉. This is
the aim of Lemma 5.4.

Lemma 7.5. Let A be a contraction (i.e. A∗ A ≤ 1) from a finite space H to an infinite
space K. Then there is an R : H → K such that A + R is an isometry and Range(A) ⊥
Range(R). As a consequence, for any unit vector f , we have ‖R f ‖2 = 1 − ‖A f ‖2.

Proof. As K is infinite-dimensional, we may consider a subspace H′ of K, orthogonal
to Range(A), and the same dimension as H, so that we can find an isomorphism I from
H to H′. We then take R = I

√
1 − A∗ A. ��

Proof of Lemma 5.4. Let Aλ : Hλ → F be defined by

Aλ := 1√
1 + (Cn)(9η−2)/12/δ1/3

∑
|l|≤nη

|l〉 〈l, λ| .
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Then,

A∗
λAλ = 1

1 + (Cn)(9η−2)/12/δ1/3

∑
|l|≤nη

|l, λ〉 〈l, λ| ≤ 1Hλ
.

where the last inequality follows from Corollary 7.4 and the following argument. It is
enough to show that all eigenvalues of A∗

λAλ are smaller than 1. Let
∑

m cm |m, λ〉
be an eigenvector of A∗

λAλ, and a the corresponding eigenvalue. Then by the linear
independence of |m, λ〉 we get that for each l,

1

1 + (Cn)(9η−2)/12/δ1/3

∑
|m|≤nη

〈l, λ|m, λ〉 cm = acl.

If l0 is an index for which |cl| is maximum, then by taking absolute values on both sides
we obtain

a ≤ 1

1 + (Cn)(9η−2)/12/δ1/3

∑
|m|≤nη

|〈l, λ|m, λ〉| ≤ 1.

Now we may apply Lemma 7.5, and find an Rλ such that Aλ + Rλ is an isometry, and
Range(Rλ) ⊥ Range(A), so that 〈m| Rλ = 0. We define Vλ := Aλ + Rλ. Then

〈m| Vλ = 〈m| (Aλ + Rλ) = 〈m| Aλ

= 1√
1 + (Cn)(9η−2)/12/δ1/3

〈m|
∑

|l|≤nη
|l〉 〈l, λ|

= 1√
1 + (Cn)(9η−2)/12/δ1/3

〈m, λ| .

��
Recall By Lemma 7.3 we have 〈m, λ|l, λ〉 = 0 if mi �= li for some i , where mi in the
total number of i in m (cf. (7.38)). In particular, |0, λ〉 is orthogonal on all other basis
vectors. This means that we can choose the isometry Vλ to satisfy Vλ|0, λ〉 = |0〉, and
such that the relation above holds for all 0 < |m| ≤ nη.

7.3. Proof of Lemma 6.4 on mapping rotations into displacements. We first recall a few
definitions and notations. We denote by D�z the displacement operation (super-operator)
acting on observables in the multimode Fock space F as

D�z(W (�y)) := Ad[W (�z)] (W (�y)) = e2iσ(�y,�z) W (�z + �y), �y, �z ∈ C
d(d−1)/2.

The operation acts as displacement on coherent states, in particular

D
�ζ+�z(|0〉〈0|) = |�ζ + �z〉〈�ζ + �z|.

Similarly, on the finite dimensional space
(
C

d
)⊗n

we have the action (cf. (7.1))

�
�ζ ,�ξ,n(A) = Ad[U (�ζ , �ξ, n)](A) := U (�ζ/√n, �ξ/√n)⊗n A U∗(�ζ/√n, �ξ/√n)⊗n,

whose restriction to the block λ is �
�ζ ,�ξ,n
λ = Ad[Uλ(�ζ , �ξ, n)].
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The isometric embedding Tλ(·) := Vλ · V ∗
λ and its ‘adjoint’ T ∗

λ (·) := V ∗
λ · Vλ satisfy

Tλ�
�ζ+�z,�ξ,n
λ T ∗

λ (|0〉 〈0|) = Vλ|�ζ + �z, �ξ, λ〉〈�ζ + �z, �ξ, λ|V ∗
λ ,

where |�ζ + �z, �ξ, λ〉 := Uλ(�ζ + �z, �ξ, n) |0, λ〉 are the ‘finite dimensional coherent states’.
According to Lemma 5.4, the coordinates of Vλ|�ζ + �z, �ξ, λ〉 in the Fock basis are

described by:

〈m|Vλ|�ζ + �z, �ξ, λ〉=
{〈m, λ|Uλ(�ζ + �z, �ξ, n)|0, λ〉(1 + O(n(9η−2)/12δ−1/3)) if |m|≤nη;

something not important if |m| > nη.

(7.27)

Using the relation ‖| f 〉〈 f | − | f ′〉〈 f ′|‖1 = 2
√

1 − |〈 f | f ′〉|2, which holds for unital
vectors f, f ′, the statement of the lemma is equivalent to

sup
‖�z‖≤nβ

sup
�ζ∈�n,β

sup
‖�ξ‖≤n−1/2+2β/δ

sup
λ∈�n,α

1 −
∣∣∣〈�z + �ζ |Vλ|�ζ + �z, �ξ, λ〉

∣∣∣ = R(n)2, (7.28)

with R(n) the original remainder term.
We shall prove formula (7.28) by decomposing these vectors in the Fock basis, that

is

〈�ζ + �z|Vλ|�ζ + �z, �ξ, λ〉 =
∑

m

〈�ζ + �z|m〉〈m|Vλ|�ζ + �z, �ξ, λ〉. (7.29)

The estimates are based on the following observations.

1) The coherent states have significant coefficients 〈�ζ + �z|m〉 only for ‘small’ m’s, i.e.
those in the set

M := {m : mi, j ≤ |(�ζ + �z)i, j |2nε, i < j}. (7.30)

In particular, since 2β + ε < η we have M ⊂ {m : |m| ≤ nη}.
2) The coefficients 〈m|Vλ|�ζ + �z, �ξ, λ〉 are uniformly close to exp(iφ)〈�ζ + �z|m〉, where

φ is a fixed real phase, in particular uniformly over m ∈ M.
3) If am and bm are the two sets of coefficients, such that

∑
m |am|2 = ∑

m |bm|2 = 1,
then

1 −
∣∣∣∣∣
∑

m

ambm

∣∣∣∣∣ ≤ 1 −
∣∣∣∣∣
∑

m∈M
ambm

∣∣∣∣∣ +

∣∣∣∣∣
∑

m/∈M
ambm

∣∣∣∣∣
≤ 2

(
1 −

∣∣∣∣∣
∑

m∈M
ambm

∣∣∣∣∣
)
. (7.31)

The precise statement in point 1) is

∑
m �∈M

|〈�ζ + �z|m〉|2 ≤ d2n−β. (7.32)
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Indeed, the inner products can be written as a product over the (i, j) oscillators and we
have the bound

∑
m �∈M

|〈�ζ + �z|m〉|2 ≤
∑
i< j

exp(−xi, j )
∑

k>xi, j nε

xk
i j

k! , xi, j = |(�ζ + �z)i, j |2.

Each of the terms in the sum is a tail of Poisson distribution and is bounded by n−εnβ if
xi, j ≥ 1 and by n−β if xi, j < 1.

We turn now to point 2). From the third line of (7.27) we get

〈m|VλUλ(�ζ + �z, �ξ, n)|0, λ〉 = 〈yλ fm|yλU (�ζ + �z, �ξ, n)| f0〉√〈yλ f0|yλ f0〉√〈yλ fm|yλ fm〉 (1 + O(n(9η−2)/12δ−1/3))

= 〈pλ fm|qλU (�ζ + �z, �ξ, n) f0〉√〈pλ fm|qλ pλ fm〉 (1 + O(n(9η−2)/12δ−1/3)),

where we have used (5.3) and (5.6).
We recall that Oλ(m) is the orbit in (Cd)⊗n of fm under Rλ and that we have the

decomposition

pλ fm =
∑

fa∈Oλ(m)

#Rλ

#Oλ(m)
fa.

Then, by employing formulas (7.15) and (7.18), we can write

〈m|VλUλ(�ζ + �z, �ξ, n)|0, λ〉

=
∑

fa∈Oλ(m)〈 fa|qλU (�ζ + �z, �ξ, n) f0〉√∑
fa, fb∈Oλ(m)〈 fa|qλ fb〉

(1 + O(n(9η−2)/12δ−1/3)

= eiφ−‖�ζ+�z‖2
2/2
∏
i≤ j

(�ζ + �z)mi, j
i, j√

mi, j !
(

n(µi − µ j )

λi − λ j

)mi, j /2

r(n). (7.33)

The corresponding remainder term is

r(n) = 1 + O
(

n(9η−2)/12δ−1/3, n−1+2β+ηδ−1, n−1/2+3β+2εδ−3/2, n−1+α+2βδ−1,

n−1+α+ηδ−1, n−1+3ηδ−1
)

and the phase is:

φ = √
n

d−1∑
i=1

(µi − µi+1)ξi .

Since λ ∈ �n,α and the eigenvalues are separated by δ we have
(

n(µi −µ j )

λi −λ j

)mi, j /2 =
1 + O(nα−1+η/δ) and the error can be absorbed in r(n).

In conclusion, for m satisfying (7.30), we have:

〈m|VλU (�ζ + �z, �ξ, n)|0, λ〉 = exp(iφ)〈m|�ζ + �z〉r(n).
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Inserting this result into (7.29), and using (7.31) and (7.32), we get

1 −
∣∣∣〈�z + �ζ |VλU (�ζ + �z, �ξ, n)|0, λ〉

∣∣∣ = O

⎛
⎝1 − r(n),

∑
m �∈M

|〈m|�ζ + �z〉|2
⎞
⎠ = R2(n),

with

R2(n) = O
(

n(9η−2)/12δ−1/3, n−1+2β+ηδ−1, n−1/2+3β+2εδ−3/2, n−1+α+2βδ−1,

n−1+α+ηδ−1, n−1+3ηδ−1, n−β).
Through expression (7.28), noticing that R2(n) = R(n)2, we see that we have proved
the lemma. ��

7.4. Proof of Lemma 6.2 on typical Young diagrams. Recall that the state ρθ,n := ρ⊗n
θ/

√
n

has the decomposition over ‘blocks’ λ given by (4.8). The probability distribution over

Young diagrams p
�ζ ,�u,n
λ depends only on the diagonal parameters �u and is given by

p
�ζ ,�u,n
λ = cλn

∑
m∈λ

d∏
i=1

(µ
�u,n
i )λi

d∏
j=i+1

(
µ

�u,n
j

µ
�u,n
i

)mi, j

,

with

cλn =
(

n

λ1, λ2, . . . , λd

) d∏
l=1

λl !∏d
k=l+1(λl − λk + k − l)

(λl + d − l)! .

The above formula can be understood as follows. By invariance under rotations we can
take �ζ = 0 and the state is diagonal in the standard basis

(
C

d
)⊗n

formed by the vector

fa. Each eigenprojector carries a weight
∏d

i=1(µ
�u,n)mi , where mi is the multiplicity of

the vector fi in the tensor product fa. Thus, we only need to add all multiplicities over
vectors that are ‘inside’ the block λ. Since the irreducible representation has basis fm
labelled by semistandard Young tableaux, we get a factor

d∏
i=1

(µ
�u,n
i )mi =

d∏
i=1

(µ
�u,n
i )λi

d∏
j=i+1

(
µ

�u,n
j

µ
�u,n
i

)mi, j

.

The additional factor cλn is the dimension of Kλ, on which the state is proportional to the
identity.

Recall that µ�u,n
i = µi + ui/

√
n for 1 ≤ i ≤ (d − 1) and µ�u,n

d = µd − (
∑

i ui )/
√

n.

If δ ≥ 2dnα−1 ≥ 2dnγ−1/2, then µ�u,n
j /µ

�u,n
i ≤ 1 for all ‖�u‖ ≤ nγ . Moreover mi, j ≤ n

for all (i, j), so the total number of m’s is smaller than nd2
. Thus

∑
m

∏
i< j

(µ�u,n)λi

(
µ

�u,n
j

µ
�u,n
i

)mi, j

≤ nd2
.
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On the other hand m = 0 is always in the set of possible m, so that

∑
m

∏
i< j

(
µ

�u,n
j

µ
�u,n
i

)mi, j

≥ 1.

One can easily verify that

1 ≥
d∏

l=1

λl !∏d
k=l+1(λl − λk + k − l)

(λl + d − l)! ≥ 1

(n + d)d2 .

The remaining factor is the multinomial law. We now show that this is the dominating
part. Let us write (Y1, . . . ,Yd) for the multinomial random variable. Then we have

P[|Yi − nµ�u,n
i | ≥ x] ≤ 2 exp

(
−2x2

n

)
. (7.34)

Indeed each Yi is a sum of independent Bernoulli variables X1, . . . , Xn with P(Xk =
1) = µ

�u,n
i and P(Xk = 0) = 1 − µ

�u,n
i , and by Hoeffding’s inequality [44],

P[|
n∑

k=1

Xk − E[Xk]| ≥ x] ≤ 2 exp

(
−2x2

n

)
.

By definition, for any λ /∈ �n,α there exists an i such that |λi − nµi | ≥ nα , which
implies |λi − nµ�u,n

i | ≥ nα − dnγ+1/2. With nα−γ−1/2 > 2d, the upper bound is simply
nα/2 and we have

∑
λ/∈�n,α

‖bθ,nλ ‖1 = P[λ �∈ �n,α] ≤ nd2
d∑

i=1

P[|Yi − nµ�u,n
i | ≥ nα/2]

≤ 2dnd2
exp(−n2α−1/2).

��
7.5. Proof of Lemma 6.1 and Lemma 6.8 on classical LAN. We shall use multinomials
as an intermediate step. Recalling that bθ,nλ = pθ,nλ τ n

λ , we can write:

‖N (�u, Vµ)−
∑
λ

bθ,nλ ‖1 ≤ ‖pθ,n − Mn
µ

�u,n
1 ,...,µ

�u,n
d

‖1 + ‖N (�u, Vµ)

−
∑
λ

Mn
µ

�u,n
1 ,...,µ

�u,n
d

(λ)τ n
λ ‖1, (7.35)

where Mn
µ

�u,n
1 ,...,µ

�u,n
d

is the d-multinomial with coefficients µ�u,n
i .

Concisely, what we really prove in this lemma is the asymptotic equivalence of the
following classical experiments, together with an explicit rate:

Pn =
{

p�u,n, ‖�u‖ ≤ nγ
}
,

Mn =
{

Mn
µ

�u,n
1 ,...,µ

�u,n
d

, ‖�u‖ ≤ nγ
}
,

Gn = {
N (�u, Vµ), ‖�u‖ ≤ nγ

}
.
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The equivalence of Mn and Gn is well known [31] and that of Pn and Mn can be treated
similarly to the d = 2 case [16]. Complete details of the calculations leading to the
desired rate of convergence for Lemma 6.1 can be found in [29].

From here, proving Lemma 6.8 (that is the inverse direction) is easy enough. Indeed,
recall that σ nτ n pθ,n = pθ,n and that σ n is a contraction. Then

‖σ nN (�u, Vµ)− p
�ζ ,�u,n‖1 = ‖σ nN (�u, Vµ)− σ nτ n p

�ζ ,�u,n‖1

≤ ‖N (�u, Vµ)− τ n p
�ζ ,�u,n‖1.

Thus we have the same speed and conditions as those of Lemma 6.1. ��

7.6. Proof of Lemma 6.3 on convergence to the thermal equilibrium state. We recall
that the state φ on CC R(L2(ρ), σ )was defined in (4.28) and is the product of a classical
Gaussian distribution and d(d −1)/2 Gaussian states φi, j of quantum harmonic oscilla-
tors, one for each pair i < j . φi, j are thermal equilibrium states with inverse temperature

β = ln(µi/µ j ) (cf. (4.14)). The joint state φ�0 := ⊗
i< j φi, j is then displaced to obtain

φ
�ζ but Lemma 6.3 is only concerned with φ�0.

It is well known that thermal equilibrium states are diagonal in the number basis and
in our case

φ
�0 =

∑
m∈Nd(d−1)/2

∏
i< j

µi − µ j

µi

(
µ j

µi

)mi, j

|m〉〈m|. (7.36)

As shown in (5.8), a similar formula holds for the finite dimensional block states ρ
�0,�u,n
λ :

〈m, λ|ρ�0,�u,n
λ |m, λ〉 = C �u

λ

d∏
i< j

(
µ

�u,n
j

µ
�u,n
i

)mi, j

, (7.37)

where C �u
λ is a normalisation constant, µ�u,n

i = µi + ui/
√

n for 1 ≤ i ≤ (d − 1) and

µ
�u,n
d = µd − (

∑
i ui )/

√
n.

However there is a caveat: although |m, λ〉 are eigenvectors of ρ
�0,�u,n
λ , they are not

orthogonal to each other so we cannot directly use |m, λ〉 〈m, λ| as eigenprojectors in
the spectral decomposition. However, Lemma 5.4 gives us an estimate of the error that
we incur by doing just that.

Note first that the eigenvalues of ρ
�0,�u,n
λ are labelled by the total multiplicities mi of

the index i in the semistandard Young tableaux:

mi := λi −
∑
j>i

mi, j +
∑
j<i

m j,i . (7.38)

By Lemma 7.3 we have that 〈m, λ|l, λ〉 = 0 if |m| �= |l|. This allows us to split Hλ into
a direct sum of orthogonal subspaces

Hλ,η := Lin{|m, λ〉 : |m| ≤ nη}, and H⊥
λ,η := Lin{|l, λ〉 : |l| > nη},
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and similarly for the Fock space F = Fη⊕F⊥
η . Note the hidden dependence on n in the

definition of the subspaces. Asymptotically, the state ρ
�0,�u,n
λ and φ�0 concentrate on the

‘low excitations’ spaces Hλ,η and Fη with corresponding orthogonal projections Pλ,η
and Pη, respectively. More precisely,

‖Tλ(ρ
�0,�u,n
λ )− φ

�0‖1 = ‖Tλ(Pλ,ηρ
�0,�u,n
λ Pλ,η)− Pηφ

�0 Pη‖1 + ‖Tλ(P
⊥
λ,ηρ

�0,�u,n
λ P⊥

λ,η)

−P⊥
η φ

�0 P⊥
η ‖1

≤ 2‖Tλ(Pλ,ηρ
�0,�u,n
λ Pλ,η)− Pηφ

�0 Pη‖1 + 2‖P⊥
η φ

�0 P⊥
η ‖1.

(7.39)

From Definition 4.17 of φ�0 and that of thermal states (4.13) we see that the second term
on the right side of order max j<k(µk/µ j )

nη = O(exp(−δnη)). For the rest of the proof
we shall deal with the first term on the right side.

Let us denote by H({mi }) = Lin{|l : λ〉, li = mi } the eigenspace of ρ
�0,�u,n
λ and

P({mi }) the corresponding eigenprojection. Then

ρ
�0,�u,n
λ = C �u

λ

∑
{mi }

d∏
i=1

(µ
�u,n
i )mi −λi P({mi }).

As in Lemma 5.4 we have that for |m| ≤ nη,

P({mi }) = 1

1 + Cn(9η−2)/12δ−1/3

∑
m:{mi }

|m, λ〉 〈m, λ| + E({mi }),

where the sum runs over those m with total multiplicities {mi }. The (positive) remainder
has trace norm

Tr(E({mi })) = O(n(9η−2)/12δ−1/3) · dim(H({mi })).
By summing over all {mi } satisfying |m| ≤ nη we get

Pλ,ηρ
�0,�u,n
λ Pλ,η = 1

1 + Cn(9η−2)/12δ−1/3
ρ̃

�0,�u,n
λ + C �u

λ

∑
{mi }

d∏
i=1

(µ
�u,n
i )mi −λi E({mi }),

where ρ̃
�0,�u,n
λ is the approximate state

ρ̃
�0,�u,n
λ := C �u

λ

∑
{mi }

d∏
i=1

(µ
�u,n
i )mi −λi

∑
m:{mi }

|m, λ〉 〈m, λ|.

The error term has trace norm of the order

O(n(9η−2)/12δ−1/3) · C �u
λ

∑
{mi }

d∏
i=1

(µ
�u,n
i )mi −λi dim(H({mi })) = O(n(9η−2)/12δ−1/3),

where we have used the normalisation of the block state ρ
�0,�u,n
λ .
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In conclusion

‖Pλ,ηρ
�0,�u,n
λ Pλ,η − ρ̃

�0,�u,n
λ ‖1 = O(n(9η−2)/12δ−1/3). (7.40)

The next step is to show that the block states ρ̃
�0,�u,n
λ are mapped by Tλ close to Pηφ

�0 Pη.
Using (5.8), we can write

Tλ(ρ̃
�0,�u,n
λ ) = C �u

λ

∑
m∈λ

∏
i< j

(
µ

�u,n
j

µ
�u,n
i

)mi, j

Tλ(|m, λ〉〈m, λ|). (7.41)

If nα−1 ≤ δ/2 and α > 1/2 > η, we know that all m such that |m| ≤ nη ‘fit into’ λ.
Since µ�u,n

i = µi + O(n−1/2+γ ), when |m| ≤ nη,

(
µ

�u,n
j

µ
�u,n
i

)mi, j

=
(
µ j

µi

)mi, j

(1 + O(n−1/2+γ+η/δ)). (7.42)

For the normalisation constant we can write:

(C �u
λ)

−1 =
∑

|m|≤nη

∏
i< j

(
µ

�u,n
j

µ
�u,n
i

)mi, j

+
∑

m∈λ:|m|≥nη

∏
i< j

(
µ

�u,n
j

µ
�u,n
i

)mi, j

.

If 2dnγ−1/2 < δ/2 then the second part is less than nd2
(1 − δ/2)n

η
which is negligible

compared to the other error terms. Hence:

(C �u
λ)

−1 =
∑

|m|≤nη

∏
i< j

(
µ j

µi

)mi, j

(1 + O(n−1/2+γ+η/δ))

=
∑

m∈Nd(d−1)/2

∏
i< j

(
µ j

µi

)mi, j

(1 + O(n−1/2+γ+η/δ)

=
∏
i< j

µi

µi − µ j
(1 + O(n−1/2+γ+η/δ)). (7.43)

We then recall that for unit vectors, we have ‖| f 〉〈 f | − | f ′〉〈 f ′|‖1 = 2
√

1 − |〈 f | f ′〉|2.
So that, using Lemma 5.4, we get that for |m| ≤ nη,

‖Tλ(|m, λ〉〈m, λ|)− |m〉〈m|‖1 = ‖Vλ|m, λ〉〈m, λ|V ∗
λ − |m〉〈m|‖1

= O(n(9η−2)/24/δ1/6). (7.44)

Putting the estimates (7.42), (7.43), (7.44) back into formula (7.41), we obtain Tλ(ρ̃
�0,�u,n
λ ),

so that

Tλ(ρ̃
�0,�u,n
λ ) =

∑
|m|≤nη

∏
i< j

µi − µ j

µi

(
µ j

µi

)mi, j

|m〉〈m|

+O(n−1/2+γ+η/δ, n(9η−2)/24/δ1/6). (7.45)

Comparing with (7.36), and using (7.39) and (7.40) we get the desired result. ��
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7.7. Proof of Lemma 6.5 on local linearity of SU (d). The key is to notice that, as we
are dealing with a group, there is an r such that

U−1(�ζ + �z, �0, n)U (�ζ , �0, n)U (�z, �0, n) = U (−�ζ − �z, �0, n)U (�ζ , �0, n)U (�z, �0, n)

= U (�r , �s, n),

and similarly for the operation �. We shall prove below that under the condition that
both �ζ and �z are smaller than nβ , then ‖�r‖ + ‖�s‖ = O(n−1/2+2β/δ). Let us call this the
domination hypothesis for further reference.

Now, as the actions are unitary, we may rewrite the norm in Lemma as 6.5:

A = ‖[��ζ+�z,n
λ −�

�ζ ,n
λ �

�z,n
λ ](|0, λ〉〈0, λ|)‖1

= ‖�−(�ζ+�z),n
λ [��ζ+�z,n

λ −�
�ζ ,n
λ �

�z,n
λ ](|0, λ〉〈0, λ|)‖1

= ‖[Id −�
�r ,�s,n
λ ](|0, λ〉〈0, λ|)‖1.

As Tλ is an isometry, we may also let it act on the left and T ∗
λ on the right and get:

A = ‖Tλ(|0, λ〉 〈0, λ|)− Tλ�
�r ,�s,n
λ T ∗

λ (|0〉 〈0|)‖1

≤ ‖ |0〉 〈0| − |�r〉 〈�r | ‖1

+‖ |�r〉 〈�r | − Tλ�
�r ,�s,n
λ T ∗

λ (|0〉 〈0|)‖1 + ‖Tλ(|0, λ〉 〈0, λ|)− |0〉 〈0| ‖1.

By the domination hypothesis, the norm of �r is smaller than n−1/2+2β/δ, hence 〈�r |0〉 =
1− O(n−1+4β/δ2). Using ‖| f 〉〈 f |− | f ′〉〈 f ′|‖1 = 2

√
1 − |〈 f | f ′〉|2 we get that the first

term on the right side of the inequality is O(n−1/2+2β/δ). Notice that this is dominated
by R(n) given in Eq. (6.11) since η > 2β.

For the second term, we apply Lemma 6.4, with �z = 0. By the domination hypothesis,
‖�s‖ ≤ n−1/2+2β/δ, so we may apply Lemma 6.4, and the remainder is given by R(n) in
Eq. (6.11).

The last term is O(n(9η−2)/24/δ1/6) as shown in (7.44) which is dominated by R(n).
We finish the proof of the lemma, and simultaneously that of Theorem 4.3, by proving

the domination hypothesis. Recall that an arbitrary element in SU (d) can be written in
the exponential form

U (�r , �s) := exp

⎡
⎣i

⎛
⎝d−1∑

i=1

si Hi +
∑

1≤ j<k≤d

Re(r j,k)Tj,k + Im(r j,k)Tk, j√
µ j − µk

⎞
⎠
⎤
⎦ ,

where (�r , �s) ∈ C
d(d−1)/2 × R

d−1, and Ti, j , Hi are the generators of SU (d) defined in
(7.2). A special case of this is U (�r) := U (�r , �0). In general, the map (�r , �s) �→ U (�r , �s)
is not injective but becomes so if we restrict to a small enough neighbourhood C of the
origin (0, 0) ∈ C

d(d−1)/2 × R
d−1. On this neighbourhood it makes sense to define the

inverse as a sort of ‘logarithm’ log U (�r , �s) := (�r , �s), which is a C∞ function.
By continuity of the product, if �x, �y ∈ C

d(d−1)/2 are small enough, then U (−�x −
�y)U (�x)U (�y) ∈ C. Since‖�ζ‖+‖�z‖/√n ≤ nβ−1/2/δ, we can apply this to �x = �ζ/√n, �y =
�z/√n for n > (C/δ)

1
1/2−β with the constant C depending only on the dimension, and

get

(�r/√n, �s/√n) = f (�ζ/√n, �z/√n) := log
[
U (−(�ζ + �z)/√n)U (�ζ/√n)U (�z/√n)

]
.
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Since f is a C∞ function we can expand in Taylor series and it is easy to show that
f (�0, �0) = (�0, �0), the first order partial derivatives are zero as well, and the second order
derivatives are uniformly bounded in a neighbourhood of the origin. Thus we get

�r = √
n O

( ‖zi, j‖2

n(µi − µ j )
,

‖ζi, j‖2

n(µi − µ j )

)
= O(n−1/2+2β/δ).
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