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Abstract: The statement of the title is proved. It implies that under physically rea-
sonable conditions, spacetimes which are free from singularities are necessarily stably
causal and hence admit a time function. Read as a singularity theorem it states that if
there is some form of causality violation on spacetime then either it is the worst pos-
sible, namely violation of chronology, or there is a singularity. The analogous result:
“Non-totally vicious spacetimes without lightlike rays are globally hyperbolic” is also
proved, and its physical consequences are explored.

1. Introduction

While the local structure of spacetime is fairly simple to describe, there are still a number
of open problems concerning the causal behavior of the spacetime manifold in the large.
About three decades ago Geroch and Horowitz in the conclusions of their review “Global
structure of spacetimes” [8] identified the problem of giving good physical reasons for
assuming stable causality as one of the most important questions concerning the global
aspects of general relativity together with the proof of the cosmic censorship conjecture.
Indeed, if stable causality holds, then the spacetime does not suffer any pathological
behavior connected with the presence of almost closed causal curves, and, more impor-
tantly, it admits a (non-unique) time function [9], that is a function which is continuous
and increases on every causal curve.

In order to understand the role of stable causality it is useful to recall that most con-
formally invariant properties can be ordered in the so-called causal ladder of spacetimes
(see Fig. 1). If the real Universe were represented by a globally hyperbolic manifold (the
top of the ladder) then a number of mathematically and physically nice properties would
hold. The problem is that, though there is evidence that the spacetime manifold evolves
according to the Einstein equations, it is not clear whether the evolution from physically
reasonable Cauchy data would introduce naked singularities and would eventually pro-
duce a non-globally hyperbolic spacetime. If so, the Cauchy data would be insufficient
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Fig. 1. The causal ladder displaying the new levels considered in Sect. 3. Penrose’s infinite ladder between
A-causality and A∞-causality is omitted [16], as well as the levels of weak distinction and feeble distinction
[19]. For the placement of the non-imprisonment properties the reader is referred to [18]. The arrow C ⇒ D
means that C implies D and there are examples which show that C differs from D. Stable causality implies
K -causality, but it is not known if they coincide. The implications climbing the ladder express the geometrical
content of the theorems proved in this work

for the determination of the spacetime geometry and one would have to take into account
the information coming from infinity. However, Penrose gave arguments which support
the view that the so developed manifold would actually be globally hyperbolic [23]
(strong cosmic censorship).

Some other authors claim that one should only expect that the non-predictable behav-
ior due to singularities be confined behind horizons (weak cosmic censorship). Other
authors note that there is not even compelling reasons for excluding chronologically
violating regions, in fact in some cases they allow one to keep the spacetime non-
singular even in the presence of trapped surfaces [21]. From this point of view chronol-
ogy violating sets should not be discarded a priori, instead they should be considered in
the same footing as naked singularities, a physical possibility which hopefully remains
hidden behind an horizon. These considerations show that the class of mathematically
reasonable spacetimes is rather large, and therefore physicists look for physical argu-
ments which allow to get as close as possible to global hyperbolicity. In short physicists
look for results which allow to climb the causal ladder.
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The first step would be to justify the chronology property. Actually this assumption
is philosophically satisfactory because its violation would raise issues related to the
free will of the generic observer. However, the notion of free will is not modeled in
general relativity, therefore it becomes reasonable to search for other physical mecha-
nisms, perhaps based on quantum mechanics, which prevent the formation or stability
of chronology violating sets. The idea that such a mechanism should indeed exist and
that starting from well behaved initial conditions closed timelike curves can not form
has been referred to by Hawking as the chronology protection conjecture [10]. As I
commented above there is no general consensus on its validity and the evidence coming
from classical general relativity is under investigation [13,28,29,32].

It is natural to separate the remainder of the causal ladder in two parts. That going
from chronology up to stable causality (causality, distinction, strong causality belong
to it), and that going from stable causality up to global hyperbolicity (passing through
causal continuity and causal simplicity). While the former part deals with each time
more demanding conditions conceived to avoid almost closed causal curves, the latter
part presents each time more demanding conditions in order to reduce the effects of
points at infinity on spacetime.

The problem of climbing the causal ladder from chronology up to stable causality
will be considered and solved in this work. It has received less attention than the latter
problem, that is, that of going from stable causality up to global hyperbolicity which is
indeed more closely related to the strong cosmic censorship conjecture [23].

I am going to prove that chronology plus the absence of lightlike lines implies stable
causality (Theorem 6). The theorem is formulated so that every mentioned property is
conformally invariant. It is therefore a theorem on the causal structure of spacetime. In
this respect it is important to use the weaker assumption of absence of lightlike lines
instead of the more common null convergence, null genericity and null completeness
conditions, though these have a more direct physical meaning. If we regard the null
convergence and the null genericity conditions as physically reasonable we can say that
under physically reasonable conditions null completeness implies the absence of light-
like lines (see Sect. 2) and hence, under chronology, it also implies stable causality. Thus
the theorem physically can be interpreted by saying that under chronology, the absence
of singularities implies stable causality and hence the existence of a time function. It is
the first result of this form which reduces the existence of a time function to considerably
less demanding properties. Moreover, note that in the previous statement the required
absence of singularities is more precisely only a null completeness requirement: the
spacetime manifold could still be timelike incomplete in a way compatible with the
singularity theorems (I shall say more on that in Sects. 4 and 6).

Recall that if stable causality holds then the spacetime is free from almost closed
causal curves or other more complex forms of causality violation. Stated in a more pre-
cise way, stable causality implies K -causality [27], which assures that it is impossible to
obtain a closed chain of events pairwisely related by suitable closures and compositions
of the usual causal relation J +.

The theorem can then be regarded as a singularity theorem, indeed, rewritten in the
form non-stably causal spacetimes either are non-chronological or admit lightlike lines
receives the following physical interpretation if there is a form of causality violation
on spacetime then either it is the worst possible, namely violation of chronology, or
the spacetime is singular. Regarded in this way the theorem clarifies the influence of
causality violations on singularities. In fact, if the violation of chronology is regarded
as a sort of singularity then the theorem states that if there is no time function then the
spacetime is singular in this broader sense.
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I refer the reader to [16,20] for most of the conventions used in this work. In particular,
I denote with (M, g) a Cr spacetime (connected, time-oriented Lorentzian manifold),
r ∈ {3, . . . ,∞} of arbitrary dimension n ≥ 2 and signature (−, +, . . . , +). On M × M
the usual product topology is defined. For convenience and generality I often use the
causal relations on M × M in place of the more widespread point based relations I +(x),
J +(x), E+(x) (and past versions). All the causal curves that we shall consider are future
directed (thus also the past rays). The subset symbol ⊂ is reflexive, X ⊂ X . The limit
curve theorem will be repeatedly used. The reader is referred to [15] for a sufficiently
strong formulation which generalizes that contained in [3].

2. Absence of Lightlike Lines

In this section I consider the property of absence of lightlike lines and comment on its
physical meaning.

Two spacetimes belonging to the same conformal class (M, g) share the same light-
like geodesics up to reparametrizations, and the condition of maximality for the lightlike
geodesic γ reads “there is no pair of events x, z ∈ γ , (x, z) ∈ I +”, which makes no
mention of the full metric structure and hence is independent of the representative of
the conformal class. Thus, it is convenient to give the following conformally invariant
definition,

Definition 1. A lightlike line is an achronal inextendible causal curve.

The definition implies, by achronality, that the causal curve is a lightlike geodesic
and that it maximizes the Lorentzian length between any of its points.

It is well known that [22, Chap. 10, Prop. 48]

Proposition 1. If an inextendible lightlike geodesic admits a pair of conjugate events
then it is not a lightlike line.

It can be proved that the notion of conjugate points along a lightlike geodesic is con-
formally invariant [20], thus the previous proposition relates two conformally invariant
properties. In particular note that the requirement every lightlike geodesic has a pair of
conjugate points is stronger than absence of lightlike lines, e.g. 1+1 Minkowski space-
time with x = 0 and x = 1 identified. From the point of view of Lorentzian geometry any
statement should be formulated so as to make its conformal invariance clear. For phys-
ical reasons some authors prefer to mention physically motivated but non-conformally
invariant conditions. The consequence, however, is that several results have been formu-
lated in an unnecessarily weak form as the assumptions of the theorems are not really
used.

Definition 2. An inextendible lightlike geodesic γ of the spacetime (M, g) satisfies the
generic condition if at some x ∈ γ the tangent vector n to the curve is a generic vector,
that is, ncndn[a Rb]cd[en f ] �= 0. A spacetime satisfies the null generic condition if every
inextendible lightlike geodesic satisfies the generic condition.

A spacetime can be generic only if n ≥ 3 (see [3, Cor. 2.10]). The precise sense
in which the null generic condition is generic is clarified by [3, Prop. 2.15]. It is usu-
ally assumed on the physical ground that if a lightlike geodesic does not satisfy it then
arbitrarily small metric perturbation in the geodesic path would make it true.
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Definition 3. The spacetime (M, g) satisfies the timelike convergence condition if
R(v, v) ≥ 0 for all timelike, and hence also for all lightlike, vectors v. The space-
time (M, g) satisfies the null convergence condition if R(v, v) ≥ 0 for all lightlike
vectors v (cf. [11, p. 95] [3, Def. 12.8]).

The null convergence condition is a consequence of the positivity of the energy
density [11].

Definition 4. A spacetime (M, g) is null geodesically complete if every inextendible
lightlike geodesic is complete.

Proposition 2. In a spacetime (M, g) of dimension dim M ≥ 3, which satisfies the
null convergence condition, the null generic condition and which is null geodesically
complete, every inextendible lightlike geodesic admits a pair of conjugate events. In
particular (M, g) does not have lightlike lines.

Proof. It follows from the existence of some pair of conjugate points in the lightlike
geodesics according to [11, Prop. 4.4.5] [3, Prop. 12.17]. ��
This proposition has been improved by Tipler [30,31] and Chicone and Ehrlich [6]
(see also Borde [5]) by weakening the null convergence condition to the averaged null
convergence condition. This possibility is important because many quantum fields on
spacetime determine a stress-energy tensor and hence a Ricci tensor which does not com-
ply with the null convergence condition while it satisfies the averaged null convergence
condition.

Proposition 2 implies that the condition of absence of lightlike lines is quite reason-
able from a physical point of view at least if the spacetime is assumed to be non-singular
(see also the discussion in [11, Sect. 4.4]) or just null geodesically complete.

In the next sections I will prove that the assumption of absence of lightlike lines has
the effect of identifying the levels of the causal ladder between chronology and stable
causality. In this respect the hard part will come with the inclusion of stable causality. A
key role will be played by the property of K -causality introduced by Sorkin and Woolgar
[27], and for the last step by a new property which I study in the next section.

3. Compact Stable Causality

Recall that a non-total imprisoning spacetime is a spacetime for which there is no future-
inextendible causal curve totally imprisoned in a compact set (future non-total impris-
onment is equivalent to past non-total imprisonment [2,18]). It is known that every
relatively compact open set in a non-total imprisoning spacetime [18] is stably causal
when regarded as a spacetime with the induced metric [2]. Actually, this property char-
acterizes non-total imprisonment, indeed we have

Theorem 1. A spacetime (M, g) is non-total imprisoning iff for every relatively compact
open set B, (B, g|B) is stably causal.

Proof. The implication to the right was proved by Beem [2]. To the left, assume (M, g)

has a compact subset C in which some curve γ is future imprisoned. In [18] I proved
that there is a lightlike line η contained in C such that η ⊂ Ω f (η), where Ω f (η) is the
set of accumulation points in the future of η (in analogy with the set of ω-limit points
of dynamical systems). Let B be a relatively compact open set such that C ⊂ B. Take
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q ∈ η and, given a convex neighborhood U 	 q, U ⊂ B, take p ∈ η ∩ J−
(U,g|U )(q).

Take g′ > g in B (g′ need not be defined on BC ) then p ∈ I −
(U,g′|U )

(q), but recall that
p ∈ Ω f (η) is an accumulation point for the future-inextendible g′-timelike curve given
by the portion of η which starts from q. Thus since I −

(U,g′|U )
(q) is open it is possible to

construct a closed g′-timelike curve contained in B. The argument holds for any choice
of g′, thus it is not true that for every relatively compact open set B, (B, g|B) is stably
causal. ��

Note that non-total imprisonment is a quite weak property (it is implied by weak dis-
tinction [18]). A related problem is that of establishing if, given an arbitrary compact set
on spacetime, the metric can be widened in it without introducing closed causal curves
in the whole spacetime. If this is possible the spacetime satisfies a condition which is
stronger than non-total imprisonment. We can define a new property

Definition 5. A spacetime (M, g) is compactly stably causal if for every relatively com-
pact open set B there is a metric gB ≥ g such that gB > g on B, gB = g on BC and
(M, gB) is causal.

Remark 1. There are some equivalent definitions, for instance: (M, g) is compactly sta-
bly causal if for every compact set C there is gC ≥ g such that gC > g on C and
(M, gC ) is causal. In order to prove the equivalence one has to take appropriate convex
combinations of metrics with smooth coefficients.

Some natural questions arise, among them the placement of compact stable causality
in the causal ladder of spacetimes. Before considering this question let me recall some
notation and terminology [16]. Following Woodhouse [1,33] I denote with A+ the clo-
sure of the causal relation, that is A+ = J̄ +, where, as usual for a subset of M × M ,
the closure is with respect to the topology of M × M . A spacetime is A∞-causal if
there is no finite cyclic chain of distinct A+-related events. This property is equivalent
to the antisymmetry of the relation A+∞ = ∪+∞

i=1(A+)i , which is the smallest transitive
relation containing A+. Analogously, a spacetime is A∞-causal if the relation A+∞ is
antisymmetric. The relation K + is the smallest closed and transitive relation containing
J +, and the spacetime is K -causal if the relation K + is antisymmetric [27]. It is known
that stable causality implies K -causality, although it is not known if these two conditions
coincide [17]. We have

Theorem 2. K -causality implies A∞-causality.

Proof. Since J + ⊂ K +, any causal relation obtained from J + by taking closures or
by making the relation transitive through the replacement R+ → ∪+∞

i=1(R+)i , is still
contained in K +. Since A+∞ has this form A+∞ ⊂ K +, thus K -causality implies A∞-
causality. ��
Remark 2. Given a relation R+ the two involutive operations given by (a) closure: R+ →
R̄+, and (b) transitivization: R+ → R+∞ = ∪+∞

i=1(R+)i , once alternatively applied to
J + generate a chain of relations all contained in K + whose first members are J +, A+,
A+∞, A+∞, . . .. By demanding the antisymmetry one obtains a ladder of causal proper-
ties whose first members are causality, A-causality, A∞-causality and A∞-causality, all
necessarily weaker than K -causality. If at a certain point two adjacent relations coincide
then they coincide with K + as they are both closed and transitive and they are certainly
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the smallest relations with this property. In this case the mentioned ladder of relations
finishes there where this coincidence occurs. As we shall see, the mentioned first lev-
els are all different but it is not known if from some point on the levels would start to
coincide, that is, if after a finite number of operations of closure and transitivization one
would get K + and K -causality. Examples support the view that this coincidence occurs
at a level which increases with the dimensionality of the spacetime.

Lemma 1. Let ◦ denote the composition of relations, then J +◦ A+⊂A+ and A+◦ J +⊂A+.

Proof. Let us consider the latter case, the former being analogous. Let (x, y) ∈ J + and
(y, z) ∈ A+, and let γn be a sequence of causal curves of endpoints (yn, zn) → (y, z).
Take xk ∈ I −(x), xk → x , so that xk � y and for sufficiently large n, xk � yn ≤ zn ,
thus (xk, zn(k)) ∈ I + and in the limit (x, z) ∈ A+. ��
Remark 3. In the next proof and in the proof of Lemma 3 we shall consider a sequence
σn of gn-causal curves, where the metrics in the sequence gn may differ, g ≤ gn+1 ≤ gn ,
and gn → g pointwisely. In this circumstance it is possible to apply the usual limit
curve theorem [15, Theorem 3.1] originally formulated for the case gn = g provided
the following idea is taken into account (see also [15, Corollary 2.9 and Remark 2.10]).
Any such sequence σn is also, for any chosen k, and for sufficiently large n, a sequence
of gk-causal curves. Let the curve σn be parametrized with respect to the arc-length of
a complete Riemannian metric h on M . Let us start with k = 1. Under the assumptions
of the limit curve theorem [15, Theorem 3.1] for the spacetime (M, g1) it is possible to
infer the existence of a subsequence σs which converges uniformly on compact subsets
to a parametrized g1-causal curve σ (whether it is inextendible or not depends on the
case). Choosing k > 1, this same subsequence σs is made of gk-causal curves provided
s is taken sufficiently large, thus by the same limit curve theorem there is a further
subsequence σr which converges uniformly on compact subsets to a gk-causal curve σ ′.
But clearly the parametrized curves σ and σ ′ are the same because the sequence σr
converges uniformly on compact subsets to both of them. Thus σ is gk-causal for every
k > 1 and hence it is g-causal, as gk → g. In conclusion, it is possible to apply the
limit curve theorem [15, Theorem 3.1] suitably generalized to include the case in which
the converging sequence is made of curves which are causal with respect to different
metrics.

Theorem 3. A∞-causality implies compact stable causality.

Proof. In this proof, where some different metrics are introduced, the relations J +, A+,
A+∞, and A+∞ with no subscript are always understood with respect to the metric g.

Suppose (M, g) is A∞-causal but non-compactly stably causal, then there is a rel-
atively compact open set B such that for every g′ ≥ g, g′ > g on B, g′ = g on BC ,
(M, g′) is not causal. Let gn be a sequence of metrics gn ≥ g, gn > g on B, gn = g
on BC , gn+1 ≤ gn , and gn → g pointwisely on the appropriate tensor bundle. For every
choice of n, (M, gn) is not causal, and since (M, g) is causal there must be a closed
gn-causal curve γn intersecting B (see Fig. 2). Let p0

n ∈ γn ∩ B and parametrize the
curves with respect to a complete Riemannian metric h so that p0

n = γn(0) and the
domain of the curves is R (that is, following the parametrization the curve winds over
its own image).

Assume an infinite number of γn is entirely contained in B̄. Beem [2] has shown
that there would be an inextendible g-causal limit curve contained in B̄ in contradiction
with the non-total imprisoning property of the spacetime (recall that A-causality implies



808 E. Minguzzi

Fig. 2. The argument of the proof that A∞-causality implies compact stable causality

distinction which implies the non-total imprisoning property). Thus without loss of gen-
erality we can assume that none of the γn is entirely contained in B̄. We conclude that
γn intersects Ḃ at least once to enter BC . Without loss of generality we can also assume
that p0

n → p0 ∈ B̄.
Using the limit curve theorem [15, Theorem 3.1], through p0 there passes a future

inextendible (hence its h-length parameter has domain (−∞, +∞)) g-causal curve γ 0

which can’t pass through p0 twice as it would imply a violation of causality for (M, g).
In particular since (M, g) is non-partial imprisoning it escapes B̄ at a last point q0 ∈ Ḃ
never to reenter B̄. Let γ 0

n be a subsequence of γn which converges to γ 0 uniformly
on compact subsets and let s0 be the value of the parameter such that q0 = γ 0(s0).
Since γ 0

n (s0 + 2) → γ 0(s0 + 2) /∈ B̄ pass to a subsequence denoted in the same way
so that γ 0

n (s0 + 2) /∈ B̄. Let (s̄0
n , t1

n ) 	 s0 + 2 be the largest open connected interval
so that γ 0

n ((s̄0
n , t1

n )) ⊂ (B̄)C . Define q̄0
n , p1

n ∈ Ḃ as q̄0
n = γ 0

n (s̄0
n ) and p1

n = γ 0
n (t1

n ).
Let p1 ∈ Ḃ be an accumulation point for p1

n ; without loss of generality we can assume
p1

n → p1. Note that the segment γ 0
n |[s̄0

n ,tn
1 ] is entirely contained in BC and hence it is

g-causal. Since s̄0
n ∈ [0, s0 + 2], without loss of generality we can assume s̄0

n → s̄0 for
some s̄0. Now, s̄0 ≤ s0 indeed if s̄0 > s0 then q̄0

n ∈ B̄ converges to γ 0(s̄0), a point that
does not belong to B̄, which is impossible. In particular, it is possible to find a sequence
s0

n , s̄0
n < s0

n < s0 + 2, such that s0
n → s0. Then q0

n = γ 0
n (s0

n ) /∈ B̄ converges to q0

and the g-causal sequence of curves γ 0
n |[s0

n ,tn
1 ] has endpoints (q0

n , p1
n) ∈ J + such that

(q0
n , p1

n) → (q0, p1), i.e. (q0, p1) ∈ A+. Note that (p0, q0) ∈ J + as both points belong
to γ 0, hence (p0, p1) ∈ A+.

The limit curve theorem [15] states that t1
n → +∞, indeed otherwise we can assume

that t1
n converges to some finite t1 ≥ s0 + 2, so that p1 would belong to the prolongation

of γ 0, p1 = γ 0(t1), which is impossible since q0 = γ 0(s0) is the last point of γ 0 in
B̄. There is no compact set containing all the segments γ 0

n |[s̄0
n ,tn

1 ] because γ 0 escapes
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every compact set never to return and for every k > 0, γ 0
n (s0

n + k) → γ 0(s0 + k) because
t1
n → +∞. As a consequence the pair (p0, p1) ∈ A+ can be regarded as the limit of the

pairs of endpoints of g-causal segments which are not all contained in a compact set.
(In order to construct these segments take p̄0

k ∈ I −(p0), p̄0
k → p0 so that q0 ∈ I +( p̄0

k ),
and hence since I + is open q0

n(k) ∈ I +( p̄0
k ) for a sufficiently large n(k). Next follow

the g-causal segment γ 0
n |[s0

n ,tn
1 ] which is not all contained in a compact set, finally rede-

fine the parametrization of the sequence p̄0
k and pass if necessary to a subsequence so

that ( p̄0
n, q0

n ) ∈ I + and hence ( p̄0
n, p1

n) ∈ J + with ( p̄0
n, p1

n) → (p0, p1).) In particular,
p0 �= p1 since the spacetime is strongly causal.

Now, translate all the parametrizations of γ 0
n so that t1

n gets replaced by 0. Repeat
the previous steps where now p1 plays the role of p0 and the found sequence γ 1

n is a
reparametrized subsequence of γ 0

n .
Continue in this way, defining at each step analogous subsequences and events so

that pk ∈ B̄, (pk, pk+1) ∈ A+, pk �= pk+1, and for each k there is a sequence of g-causal
curves, not all contained in a compact set, so that the endpoints of the sequence converge
to (pk, pk+1). Note that for every pair of positive integers a < b, pa �= pb, otherwise
there would be a closed chain of A+ related events in contradiction with A∞-causality,
and (pa, pb) ∈ A+∞.

Since B̄ × B̄ is compact, there is a subsequence denoted (pks , pks +1) such that
(pks , pks +1) → (x, z) as s → +∞. Moreover, x �= z because otherwise for every
relatively compact causally convex neighborhood U 	 x , for sufficiently large s,
(pks , pks +1) ∈ U , and the sequence of g-causal curves not all contained in a compact set,
whose endpoints converge to (pks , pks +1) would contradict the causal convexity of U .
Since A+ is closed, (x, z) ∈ A+ and x �= z. Since pks is a subsequence of pk , for every
s, ks + 1 ≤ ks+1, thus (pks +1, pks+1) ∈ A+∞ and in the limit s → +∞, (z, x) ∈ A+∞.
As a consequence (M, g) is not A∞-causal which is the desired contradiction. ��
Theorem 4. Compact stable causality implies A∞-causality.

Proof. Assume the spacetime is compactly stably causal, and suppose it is not A∞-causal
then there is a finite closed chain of A+-related events (xi , xi+1) ∈ A+, i = 1, . . . , n,
xn+1 = x1.

Consider a relatively compact open set B which contains all xi , i = 1, . . . , n, and
let gB ≥ g, gB > g on B, gB = g on BC . We want to prove that A+ ∩ (B × B) ⊂
J +
(M,gB ), from which it follows that (M, gB) is not causal whatever the choice of gB , and

hence (M, g) is not compactly stably causal, the desired contradiction. Let (y, z) ∈ A+,
y, z ∈ B, then by the limit curve theorem either (y, z) ∈ J + ⊂ J +

(M,gB ) or there are a
future inextendible g-causal curve σ y starting from y, and a past inextendible g-causal
curve σ z ending at z such that for every y′ ∈ σ y\{y} and z′ ∈ σ z\{z}, (y′, z′) ∈ A+.
At least a segment of σ y near y is timelike for (M, gB) and analogously for σ z , thus
(y, y′) ∈ I +

(M,gB ), and (z′, z) ∈ I +
(M,gB ) finally, since (y′, z′) ∈ A+ ⊂ J +

(M,gB ), we have
(y, z) ∈ I +

(M,gB ). ��
Remark 4. All the properties of the previous theorems differ. In [16] I gave an example
of non-K -causal A∞-causal spacetime. A closer inspection proves that it is actually
non-A∞-causal but compactly stably causal. Moreover, it is possible to construct an
example, similar to that of [16] which is A∞-causal but non-K -causal (simply repeat
the figure of [16] three times vertically, and then identify the holes cyclically). The
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Fig. 3. A A∞-causal but non-compactly stably causal spacetime. In order to construct the spacetime start
from R × S1 × R of coordinates (t, θ, z), θ ∈ [0, 1], and metric g = −dt2 + dθ2 + dz2, remove two spacelike
surfaces and identify, after a translation by an irrational number, two spacelike surfaces as done in the figure .
The coordinates (x, y) have been introduced on the identified surfaces so as to make the identification clear.
The spacetime is non-orientable but this feature is not essential. The spacetime is non-compactly stably causal
since any enlargement of the metric on K gives closed causal curves. Thanks to the translation by an irrational
number there cannot be closed chains of A+ related events

properties A∞-causality and compact stable causality differ because of the spacetime
example of Fig. 3. A consequence of these examples is the perhaps surprising fact that
compact stable causality differs from stable causality (see again the example of [16]).
This fact means that the behavior of the light cones near infinity is important in order to
determine if a spacetime is properly compactly stably causal or not.

4. The Proof and Some Physical Considerations

I start with a result due to Hawking [12] [11, Prop. 6.4.6] (he proved it with the stronger
but inessential assumption that every inextendible lightlike geodesic admits a pair of
conjugate points)

Lemma 2. A chronological spacetime without lightlike lines is strongly causal.

Proof. Recall that a spacetime is strongly causal if for every x ∈ M , and for every neigh-
borhood U 	 x there exists a neighborhood V ⊂ U , x ∈ V , such that any future-directed
causal curve with endpoints at V is entirely contained in U (see for instance [20, Lemma
3.22]). Thus if (M, g) were not strongly causal there would be a point x , a neighborhood
U 	 x , and a sequence of causal curves γn of starting event xn , ending event zn such
that xn → x , zn → x , and the curves γn are not entirely contained in U . Hence there are
the conditions required by the limit curve theorem [15, Theorem 3.1, case (2)] which
implies the existence of a lightlike line passing through x , a contradiction. ��

A fundamental step in the proof is

Theorem 5. If a spacetime does not have lightlike lines then the relation A+ = J̄ + is
transitive, that is K + = A+. Moreover, if the spacetime is also chronological then the
spacetime is K -causal.

Proof. Let us prove the transitivity of A+. Take two pairs (x, y) ∈ A+ and (y, z) ∈ A+

and two sequences of causal curves σn of endpoints (xn, yn) → (x, y), and γn of end-
points (y′

n, zn) → (y, z). Apply the limit curve theorem [15] to both sequences, and
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consider first the case in which the limit curve in both cases does not connect the limit
points. By the limit curve theorem, σn has a limit curve σ which is a past inextendible
causal curve ending at y. Analogously γn has a limit curve γ which is a future inex-
tendible causal curve starting from y. The inextendible curve γ ◦σ cannot be a lightlike
line, thus there are points x ′ ∈ σ\{y}, z′ ∈ γ \{y} such that (x ′, z′) ∈ I + and (pass to
a subsequence) points x ′

n ∈ σn , x ′
n → x ′ and z′

n ∈ γn , z′
n → z′. Since I + is open, for

sufficiently large n, (xn, zn) ∈ I + and finally (x, z) ∈ Ī + = A+.
If both limit curves join the limit points then clearly (x, z) ∈ J + ⊂ A+. If, say, σ

joins x to y but γ does not join y to z, take x ′
n ∈ I −(x), x ′

n → x , so that x ′
n � y and for

large n, x ′
n � y′

n ≤ zn , thus in the limit (x, z) ∈ A+. The remaining case is analogous.
Thus A+ is closed and transitive, hence A+ = K +.

Assume (M, g) is chronological, then by Lemma 2 (M, g) is strongly causal. The
relation A+ is antisymmetric indeed let (x, y) ∈ A+ and (y, x) ∈ A+, x �= y, and let
σn of endpoints (xn, yn) and γn of endpoints (y′

n, zn) be sequences of causal curves
whose endpoints converge to the initial pairs (xn, yn) → (x, y), (y′

n, zn) → (y, x).
Then we repeat the argument used above, that is we apply the limit curve theorem to
the accumulation point y. Call σ the limit causal curve for σn and analogously let γ be
the limit causal curve for γn . If σ connects x to y and γ connects y to x then there is
a closed causal curve on spacetime, a contradiction. Let U 	 x , V 	 y be two disjoint
causally convex neighborhoods. If σ connects x to y but γ does not connect y to x ,
then it is possible to argue as above, i.e. take x ′

k ∈ I −(x), x ′
k → x , then for sufficiently

large n, which we can choose so that n(k) > k, y′
n(k) ∈ I +(x ′

k) ∩ V , from which it fol-
lows that there is a sequence of causal curves of endpoints x ′

k , zn(k), intersecting V . But
(x ′

k, zn(k)) → (x, x) thus strong causality is violated at x . The case in which γ connects
y to x is analogous. The remaining case is that in which σ is past-inextendible and γ

is future-inextendible. Then γ ◦ σ is an inextendible causal curve which by assumption
is not a lightlike line. Moreover, since strong causality holds, this curve is not partially
imprisoned in any compact set, thus using the same argument as above (i.e. taking advan-
tage of the chronality of γ ◦ σ ) it follows that there is a sequence of causal curves of
endpoints xn , zn not all contained in a compact set. Again there is a contradiction with
the strong causality at x . ��

Clearly, if we could prove that K -causality is equivalent to stable causality then the
main theorem would follow. Seifert [24], even before the introduction of K -causality,
gave an argument which would have implied the equivalence. Unfortunately, he only
sketched the proof and a recent more detailed study [17] has shown that those arguments
were inconclusive. Fortunately, however, it is possible to circumvent this difficulty, and
avoid a direct proof of the equivalence between stable causality and K -causality, by
working on compact stable causality. Indeed, the previous result will be used in the
following weaker form:

Corollary 1. A chronological spacetime without lightlike lines is compactly stably
causal.

Now, the idea is to consider the property “(M, g) is compactly stably causal and
does not admit lightlike lines” to show that it is invariant under enlargement of the light
cones over compact sets (see Lemma 4). Then it is possible to enlarge the light cones in
a sequence of compact sets that cover M so as to obtain a causal spacetime with strictly
larger light cones (Theorem 6).

Lemma 3. On (M, g) let B be a relatively compact open set, let gn be a sequence of
metrics gn ≥ g, gn > g on B, gn = g on BC , gn+1 ≤ gn, and gn → g pointwisely on
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the appropriate tensor bundle. If (M, g) does not have lightlike lines then all but a finite
number of (M, gn) do not have lightlike lines.

Proof. If not we can, passing to a subsequence, assume that all (M, gn) have lightlike
lines. Denote γn a respective sequence of lightlike lines and assume there is one, say γn̄ ,
which does not intersect B. Since gn̄ and g coincide outside B, γn̄ is a g-causal curve.
Also it is g-achronal because if there are two points p, q ∈ γn̄ such that (p, q) ∈ I +

g then
as g ≤ gn̄ , (p, q) ∈ I +

gn̄
which is impossible because γn̄ is a lightlike line on (M, gn̄).

But γn̄ cannot be g-achronal as it would be a lightlike line of (M, g), thus the overall
contradiction proves that all γn intersect B. Without loss of generality we can assume
(pass to a subsequence if necessary) that there are xn ∈ B ∩ γn , and x ∈ B̄ such that
xn → x . By the limit curve theorem [15] there is an inextendible g-causal curve η

passing through x . If η is not g-achronal there are y, z ∈ η such that (y, z) ∈ I +
g ⊂ I +

gn

for every n. But since y and z are limit points of the sequence γn and I +
g (⊂ I +

gn
) is open,

some of the curves γn are not lightlike lines. The contradiction proves that η is not only
g-causal but also g-achronal, thus it is a lightlike line. Again this is impossible, thus the
assumption that an infinite number of (M, gn) does admit lightlike lines has lead to a
contradiction. ��
Lemma 4. If (M, g) is compactly stably causal and without lightlike lines then for every
relatively compact open set B it is possible to find a metric gB ≥ g such that gB > g
on B, gB = g outside B, and (M, gB) is compactly stably causal and without lightlike
lines.

Proof. Since (M, g) is compactly stably causal we can find g̃B such that g̃B > g on
B, g̃B = g outside B and (M, g̃B) is causal. Define gn = (1 − 1

n )g + 1
n g̃B so that

g ≤ gn ≤ g̃B satisfies the assumptions of the previous lemma. Thus there is a certain
element of the sequence, denote it gB , such that (M, gB) does not have lightlike lines
and since gB ≤ g̃B , (M, gB) is causal. But every causal spacetime without lightlike
lines is compactly stably causal, thus the thesis. ��
Theorem 6. If (M, g) is chronological and without lightlike lines then it is stably causal.

Proof. Let h be an auxiliary complete Riemannian metric, x0 ∈ M , and let Bk =
B(x0, k) be the open balls of radius k centered at x0. Define g1 = g. By the previous
lemma it is possible to find a metric g2 > g1 on B2, g2 = g1 outside B2, such that
(M, g2) is compactly stably causal and without lightlike lines. Next repeat the argument
for the relatively compact open set B3 with respect to the spacetime (M, g2): there is a
metric g3 > g2 on B3, g3 = g2(= g) outside B3, such that (M, g3) is compactly stably
causal and without lightlike lines. Continue in this way and find a sequence of metrics
gk+1 ≥ gk ≥ g, gk+1 > gk on Bk+1. The open sets A1 = B2, Ak = Bk+1\B̄k−1 for
k ≥ 2, cover M . Let {χk} be a partition of unity so that the support of χk is contained in
Ak , and define g̃ = ∑+∞

k=1 χk gk+2 (the sum has at most two non-vanishing terms at each
point) then g̃ > g, moreover at x ∈ Bk , g̃(x) ≤ gk+2(x), because for n > k, χn(x) = 0
(see Fig. 4). But (M, g̃) is causal because otherwise there is a closed g̃-causal curve σ ,
which being a closed set, is entirely contained in Bs for some s. Since g̃ ≤ gs+2 on Bs ,
this curve is gs+2-causal which contradicts the (compact stable) causality of (M, gs+2).
Thus since (M, g̃) is causal and g̃ > g, (M, g) is stably causal. ��
Remark 5. This result is sharp in the sense that causal continuity can not replace stable
causality in the statement of the theorem. Indeed, the 1+1 spacetime R × S1 of coor-
dinates (t, θ), θ ∈ [0, 2], metric ds2 = −dt2 + dθ2 with the timelike segment θ = 1,
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Fig. 4. The construction of the metric g̃ > g and of the causal spacetime (M, g̃) in the proof of Theorem 6

0 ≤ t ≤ 1, removed does not have lightlike lines, is chronological, and thus stably causal
(t is a time function) but it is not reflective and hence it is not causally continuous. Anal-
ogously, chronology can not be weakened to non-total viciousness indeed, for instance,
the spacetime of Fig. 5 is non-totally vicious, does not have lightlike lines but is not even
chronological. Nevertheless, it is possible to relax slightly the chronology condition by
asking, for instance, that the chronology violating set be confined in a compact set or
even more weakly to have a compact boundary (see the next section).

Recall that a time function t : M → R is a continuous function which increases
on every causal curve, that is, if γ : B → M is a causal curve, b1 < b2 implies
t (γ (b1)) < t (γ (b2)). Hawking proved, improving previous results by Geroch [7], that
stable causality holds if and only if the spacetime admits a time function [9,11]. Actually
the time function can be chosen smooth with timelike gradient [4] (see also [25]). Thus
a corollary of Theorem 6 is

Theorem 7. If (M, g) is chronological and without lightlike lines then it admits a time
function (which can be chosen smooth with timelike gradient).

Recall also that if t is a time function then Fa = {p : t (p) > a} is an open future
set and Ḟa = {p : t (p) = a}. In particular, Sa = Ḟa is an acausal boundary (hence
edgeless), that is, Sa is a partial Cauchy hypersurface [11].

The great advantage of Theorem 7, is that it allows to considerably weaken the
causality and boundary conditions underlying most singularity theorems. These theo-
rems assume geodesic completeness along with other conditions (which often imply the
absence of lightlike lines) and derive from them some contradiction. Among the addi-
tional conditions most singularity theorems assume some of the following: (a) global
hyperbolicity, (b) a partial Cauchy hypersurface, (c) a compact achronal edgeless set, (d)
a trapped set. Often these global assumptions are made without any further justification,
in fact Senovilla in his review [26, pp. 803-8] expressed the opinion that these boundary
assumptions may represent the main weak point of singularity theorems. Fortunately,
Theorem 7 shows that in some respect the additional conditions are often redundant,
indeed if they include chronology and they imply the absence of lightlike lines (as in
Hawking and Penrose’s singularity theorem) then they also justify the presence of a
foliation of partial Cauchy hypersurfaces. Thus Theorem 7 can be used to weaken the
global assumptions made in singularity theorems.
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Fig. 5. The figure displays 1+1 Minkowski spacetime with two spacelike slices identified and a triangle
removed. If the angle at the top of the triangle is small enough there are no past lightlike rays

4.1. Absence of lightlike rays. In this section I am going to consider the implications
of the absence of lightlike rays. Recall that a future ray is a future-inextendible causal
curve which is achronal. Past rays are defined analogously. Choosing a point c ∈ (a, b)

in a lightlike line γ : (a, b) → M , the portion γ |[c,b) is a lightlike future ray while
γ |(a,c] is a lightlike past ray, thus

Lemma 5. The absence of lightlike future (or past) rays implies the absence of lightlike
lines.

Thus, assuming the absence of lightlike future rays one expects to obtain a stronger
property than stable causality. Indeed, we have (see also the related result [29, Prop. 4])

Theorem 8. If (M, g) is chronological and without future lightlike rays then it is globally
hyperbolic (and the only TIP is M). An analogous past version also holds.

Proof. Since there are no future rays then there are no lightlike lines and the space-
time is stably causal and admits a time function t . Let p ≤ q, we have to prove that
C = J−(q) ∩ J +(p) is compact. Take r ∈ I +(q) so that a = t (r) > t (q), and consider
the partial Cauchy surface Sa . Since C ⊂ I −(r), all the points in C stay in the past
set Pa = {x : t (x) < a}. The set H−(Sa) is generated by future lightlike rays (as Sa
is edgeless) and since by assumption there is no future lightlike ray, H−(Sa) is empty.
Thus C ⊂ Pa ⊂ D−(Sa) ⊂ D(Sa), the last set being globally hyperbolic. Note that
no causal curve from p can escape D(Sa) and hence Pa to return to q, as t is a time
function. Hence C = J−

D(Sa)(q) ∩ J +
D(Sa)(p) is compact. Finally, (M, g) has no TIP but

M because the boundary of any TIP is generated by future lightlike rays. ��
Note that in Theorem 8 chronology can not be weakened to non-total viciousness,

i.e. to the condition C �= M , where C is the chronology violating set. Indeed, Fig. 5
gives a counterexample (past case). Nevertheless, if one replaces the absence of future
lightlike rays with the absence of lightlike rays then the proof of Theorem 12 will show
that a non-totally vicious spacetime is chronological (by showing that Ċ, if non-empty,
contains a lightlike ray), and thus one has:

Theorem 9. If (M, g) is non-totally vicious and without lightlike rays then it is globally
hyperbolic (and there are no TIP or TIF but M).
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4.2. Physical considerations. Theorem 8 can be used as a singularity theorem though
the null convergence condition is not enough to guarantee that a future-complete future-
inextendible (affinely parametrized) lightlike geodesic γ : [a, +∞) → M admits a pair
of conjugate points. A sufficient condition is Tipler’s [29, Prop. 1]

lim
s→+∞ [(s − a)

∫ +∞

s
Rcdncnd ds′] > 1, (1)

where nc is the tangent vector to γ at γ (s). Weaker conditions were also considered by
Borde [5]. These conditions physically state that the energy density should not drop off
too sharply. The assumption is reasonable in those cases where the universe is contract-
ing (or taking the past version, expanding) as one would expect the energy density to
increase rather than decrease.

Thus we get the following singularity theorem (past version)

Theorem 10. The following conditions cannot all hold:

(i) (M, g) is past null geodesically complete,
(ii) (M, g) is chronological,

(iii) (M, g) is non-globally hyperbolic,
(iv) some energy condition which implies the presence of conjugate points in past-

complete past-inextendible lightlike geodesics (e.g.

lim
s→−∞ [(b − s)

∫ s

−∞
Rcdncnd ds′] > 1,

holds on any past-inextendible lightlike geodesic γ : (−∞, b) → M).

The nice feature of this theorem is that there is essentially no boundary assumption
and the causality conditions are quite weak. There is no assumption on the existence of
partial Cauchy surfaces or trapped sets. Of course, the strongest assumption which must
be physically justified is made in (iv) but the local expansion of the Universe together
with the cosmic background radiation, seem to support it. Then the theorem states that
under the said energy conditions the spacetime is either globally hyperbolic or has singu-
larities. Used in conjunction with Penrose’s (1965), and Hawking and Penrose’s (1970)
singularity theorems [11] it allows to characterize quite precisely what a spacetime looks
like if it contains trapped surfaces and it is still null geodesically complete.

We have

Theorem 11. Let (M, g) be a spacetime of dimension greater than 2. If

(i) (M, g) is null geodesically complete,
(ii) (M, g) is chronological,

(iii) there is a closed future trapped surface,
(iv) the timelike convergence, the generic condition, together with some energy con-

dition which implies the presence of conjugate points in past-complete past-
inextendible lightlike geodesics (e.g.

lim
s→−∞ [(b − s)

∫ s

−∞
Rcdncnd ds′] > 1,

holds on any past-inextendible lightlike geodesic γ : (−∞, b) → M),

then the spacetime is globally hyperbolic with compact space slices and has a incomplete
timelike line.



816 E. Minguzzi

Proof. The conditions (i), (ii) and (iv) imply (v): the spacetime is globally hyperbolic
(Theorem 10). The Cauchy hypersurfaces are either compact or non-compact. In the
latter case (iii) and (v) imply, by the Penrose singularity theorem, that the spacetime
is null geodesically incomplete. Thus (vi): the Cauchy hypersurfaces are compact. The
proof of the Hawking-Penrose theorem implies that (i), (ii), (iii) or (vi), and (iv) imply
that there is an incomplete timelike line. ��

Since the existence of trapped surfaces is a quite natural consequence of general
relativity if matter is concentrated enough, Theorem 8 supports the global hyperbo-
licity of the spacetime (and a closed space) provided it is null geodesically complete.
Since the conditions are quite reasonable one concludes that the spacetime is either null
geodesically incomplete or timelike geodesically incomplete (or both).

Finally I would like to stress that the assumption of null geodesic completeness does
not lead to a spacetime picture which contradicts observations. Thus Theorems 8 and 6
may have a “positive” role in proving the good causal property of spacetime rather than
being used only to prove its singularity. As a matter of fact they can be used to do both
(Theorem 11).

5. The Non-Chronological Case

So far we have studied the consequence of the absence of lightlike lines under the assump-
tion of chronology. Let us consider the other possibility, namely non-chronological
spacetimes. Denote with C the chronology violating set, with Cα , C = ⋃

α Cα , its
(open) components and with Bαk the (closed) components of the respective boundaries
Ċα = ⋃

k Bαk .
The next result joins two theorems, one by Kriele [14, Theorem 4] who improved

previous results by Tipler [29] and the other by the author [15].

Theorem 12. A non-chronological spacetime without lightlike lines is either totally vi-
cious (i.e. C = M) or it has a non-empty chronology violating set C, the boundaries
Ċα of the components Cα , are disjoint and the components Bαk of those boundaries are
all non-compact. In particular non-totally vicious spacetimes without lightlike lines are
non-compact.

For the proof that the sets Ċα are disjoint I refer the reader to [15]. Instead, I elab-
orate on Kriele’s argument by giving a slightly different proof that the boundaries Bαk
are non-compact. Indeed, I can give a shorter proof thanks to the limit curve theorem
contained in [15] and to the results on totally imprisoned curves contained in [18].

Recall that in the chronology violating set C, Carter’s equivalence relation p ∼ q
iff p � q � p gives rise to open equivalence classes, moreover, since C is open, if
x ∈ Ċ it cannot be x ∈ C. We denote by Ω f (η) = ⋂

t∈R
η[t,+∞) the set of accumulation

points in the future of the causal curve η, and analogously in the past case. This set is
always closed, moreover, it is non-empty iff the curve is partially future imprisoned in
a compact set [18].

Proof. Assume that Bαk ⊂ Ċα is compact and let x ∈ Bαk . Let xn ∈ Cα be such that
xn → x , and let U 	 x be a convex set. There are closed timelike curves σn ⊂ Cα of
starting and ending point xn , which are necessarily not entirely contained in U (every
convex set is causal). Let z = x , then by the limit curve theorem [15] (point 2) there are
two cases (corresponding to 0 < b < +∞, or b = +∞ in that reference).
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Fig. 6. If (M, g) has a non-empty chronology violating set and has no lightlike line, (N , g|N ), with N any
component of the shaded region M\C̄, may admit lightlike lines (e.g. the causal curves γ1 or γ2)

In the first case there is a closed continuous causal curve γ ∈ C̄α passing through x .
It must be achronal since if p, q ∈ γ , p � q, then x ≤ p � q ≤ x and hence x � x
which implies x ∈ C a contradiction. Thus γ is a geodesic with no discontinuity in the
tangent vectors at x . It can be extended to a lightlike line γ by making infinite rounds
over γ (note that in this case Ω f (γ ) = Ωp(γ ) = γ ).

In the second case there are a future inextendible continuous causal curve γ x ⊂ C̄α

starting at x and a past inextendible continuous causal curve γ z ⊂ C̄α ending at x . If
γ x ∩ I +(x) �= ∅ and γ z ∩ I −(x) �= ∅ then for sufficiently large n, since I + is open,
it would be possible to complete a segment of γn to a closed timelike curve passing
through x , hence x ∈ C, a contradiction. Thus γ x or γ z , say γ x , is a lightlike ray. In
particular γ x being a lightlike ray is achronal and hence can not enter Cα , thus γ x ⊂ Bαk .
Now, since Bαk is compact and Bαk ∩ C = ∅, results on totally imprisoned causal curves
can be applied [18, Theorem 3.6]. In particular there is a minimal non-empty closed
achronal set Ω ⊂ Ω f (γ

x ) ⊂ Bαk such that through each point of Ω there passes one
and only one lightlike line; this line is entirely contained in Ω and for every line α ⊂ Ω ,
Ω f (α) = Ωp(α) = Ω . Just the existence of a lightlike line suffices to conclude the
proof that the boundaries Bαk are non-compact.

The last statement in a slightly weaker form has been first obtained by Tipler [29,
Theorem 7]. It follows from the observation that a compact spacetime has a non-empty
chronology violating set C (see [11, Prop. 6.4.2]) thus either C = M or Ċ is non-empty
and compact in contradiction with the absence of lightlike lines. ��

These results restrict the possible chronology violation in spacetimes without light-
like lines, for instance they state that the chronology violation must extend to infinity. In
principle this fact does not mean that a chronology violating region can not develop from
regular data. For this to be the case stronger global assumptions than the only absence
of lightlike lines should be assumed [13,29].

Instead of trying to remove chronology violating sets altogether from the spacetime,
it is natural to consider what Theorem 6 may say in the cases of chronology violation.
The idea is that if (M, g) has a non-empty chronology violating set but M �= C̄, then
the spacetime (N , g|N ), where N is any connected components of M\C̄, has empty
chronology violating set.

However, even if (M, g) does not have lightlike lines, (N , g|N ) may have light-
like lines (see Fig. 6). This may happen because a lightlike line γ for (N , g|N ) is not
inextendible in M , and thus once extended it may enter the chronology violating set
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(the geodesic γ2 in the figure). Another possibility is that while γ is also inextendible in
M , the enlargement of the spacetime enlarges the set of timelike curves and hence the
possibilities that γ is not a line (the geodesic γ1 in the figure). Thus it is not possible
to infer from the absence of lightlike lines for (M, g) the same property for (N , g|N ).
Actually, neither the converse is true, the Misner spacetime (with region I = N , see
Fig. 32 of [11]) does not have lightlike lines but its analytic extension (I+II), where II
is the chronology violating set for I+II, does admit a lightlike line given by the Misner
boundary.

There is therefore no immediate way to apply Theorem 6 to the non-chronological
case apart from that of motivating on physical grounds that some component N does
not have lightlike lines.

6. Conclusions

A proof has been given that chronological spacetimes without lightlike lines are sta-
bly causal, and that non-totally vicious spacetimes without lightlike rays are globally
hyperbolic (together with some other variations). The properties: (i) chronology, (ii)
null convergence condition and (iii) null generic condition, are quite reasonable from
a physical point of view, moreover, for our purposes (ii) can be weakened to the aver-
aged null convergence condition. Assuming (i), (ii) and (iii), the result of the title of
this work translates into the physical statement that null geodesically complete space-
times are stably causal and therefore admit a time function. Since the existence of some
partial Cauchy surface is assumed in most singularity theorems, this result can be used
to weaken the assumptions of those theorems. This result may also prove important
when applied to the study of the real Universe. Indeed, let us recall that Hawking’s and
Hawking and Penrose’s theorems [11] suggest the existence of an incomplete causal
curve which however could well be timelike. In other words our Universe may perhaps
be geodesically null complete but timelike incomplete, in which case the main theorem
could be applied in the “positive” way to infer the existence of a time function for the
Universe. In fact Theorem 11 shows that the assumption of null geodesic completeness
leads to consequences that do not contradict physical observations.

Penrose’s singularity theorem seems to go against this conclusion as it predicts
null incompleteness in those cases in which closed trapped surfaces form. It must be
remarked, however, that Penrose’s theorem assumes the existence of a non-compact
Cauchy hypersurface, thus (i) it assumes the existence of a time function and hence it
cannot be used to dismiss the conclusion that a time function exists and (ii) for space-
times with compact slices its conclusions do not hold. Moreover, if the space slices are
compact, one can extract further information from the proof of Penrose’s theorem [22,
Theorem 14.61]. The result is that, roughly speaking, in such spacetimes black holes do
not exist. Closed trapped surfaces may form and locally they may resemble black holes
but the global behavior would be quite different. Indeed, their horizons would finally
join and swallow the whole spacetime. Thus, without an “exterior”, the “interior” could
not be distinguished from a usual spacetime.

In conclusion the theorems of this work can be used physically, either in the “negative”
way, to prove the existence of singularities or of chronology violating regions, or in the
“positive” way to argue for the existence of a time function or of global hyperbolicity. In
either case they throw new light on the existence and role of time at cosmological scales.
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