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Abstract: A retrograde orbit of the planar three-body problem is a relative periodic
solution with two adjacent masses revolving around each other in one direction while
their mass center revolves around the third mass in the other direction. The orbit is said
to be prograde or direct if both revolutions follow the same direction. Let T > 0 and
φ ∈ [0, 2π) be fixed, and consider the rotating frame which rotates the inertia frame
about the origin with angular velocity φ

T . In a recent work of K.-C.Chen [5], the exis-
tence of action-minimizing retrograde orbits which are T -periodic on this rotation frame
were proved to exist for a large class of masses and a continuum of φ. In this paper we
generalize the main result in [5], provide some quantitative estimates for admissible
masses and mutual distances, and show miscellaneous examples of action-minimizing
retrograde orbits. We also show the existence of some prograde and retrograde solutions
with additional symmetries.

1. Introduction and Notations

The planar three-body problem concerns the motion of three masses m1,m2,m3 moving
in C in accordance with Newton’s law of universal gravitation:

mk ẍk = ∂

∂xk
U (x), k = 1, 2, 3, (1)

where xk ∈ C is the position of mk , x = (x1, x2, x3), and

U (x) = m1m2

|x1 − x2| +
m2m3

|x2 − x3| +
m1m3

|x1 − x3|
is the potential energy (negative Newtonian potential). Unless specified otherwise,
throughout this paper a “solution” of (1) is referred to a “classical solution” of (1).

A retrograde orbit of the planar three-body problem is a relative periodic solution of
(1) with two adjacent masses revolving around each other in one direction while their
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Fig. 1. Retrograde braids γ and γ ′

mass center revolves around the third mass in the other direction. The orbit is said to
be prograde or direct if both revolutions follow the same direction. By taking an appro-
priate rotating (synodic) coordinate system and adding a time axis, the trajectory of a
relative periodic orbit without collision traces out a pure braid within one period in the
three-dimensional space-time. By a pure braid we mean a braid which begins and ends
with the same space coordinates. Retrograde and prograde paths can be defined as the
collection of collision-free paths which trace out certain braid types in a suitable rotating
coordinate system, as illustrated in Fig. 1.

Being retrograde or prograde is a topological property. The idea of using braids to
describe topological types of planar periodic solutions is a natural one, see for instance
[17,18]. Whether or not a topological class of paths contains a true solution of (1) is
in general a difficult task to rigorously verify. The classical lunar theory and analysis
of relative equilibria produce numerous solutions that belong to three basic braid types
(in an appropriate coordinate frame); namely the prograde, retrograde, and trivial braid
types. Among them the prograde and retrograde braids are known to carry solutions for
certain masses and for a continuous family of rotating frames. Periodic solutions in other
braid classes have not received much rigorous treatment. The figure-8 orbit with equal
masses constructed by variational methods provides another example of allowable braid
class on both inertia and rotating frames [8,9]. This is a pioneering work which utilizes
minimizing methods on the three-body problem and initiates a sequel of research work
in the past decade. A vast amount of numerical solutions in various braid classes was
recently found for similar choreographic three-body problems [21], some of which may
find analytical counterparts in [1,10] but precise determination of topological types for
such orbits from equivariant problems and local deformation arguments are yet to be
found. Readers are referred to [7,10,14,15,22] for further bibliographies and historical
remarks.

The purpose of this paper is to extend the work in [5] which endeavors to prove the
existence and minimizing properties of retrograde orbits with various choices of masses.
We generalize the main result in [5], provide detailed descriptions and miscellaneous
samples of action-minimizing retrograde solutions as well as some prograde and ret-
rograde solutions with additional symmetries. Here we also provide some quantitative
estimates for the mutual distances of action-minimizing solutions.

In what follows we provide a more precise and formal definition for retrograde and
prograde paths in terms of braids. The definition is slightly more general than the defi-
nition in [5]. Fix φ ∈ [0, 2π) and the relative period T > 0, then consider the rotating
frame which rotates the inertia frame about the origin with angular velocity φ/T . The
class of T -periodic loops on this rotating frame is

Cφ,T := {x ∈ C(R,C3) : x(t + T ) = eφi x(t) ∀t ∈ R}.
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Let � := {x ∈ C
3 : xi = x j for some i �= j} be the variety of collision configurations.

The subset

C∗
φ,T := {x ∈ Cφ,T : x(t) ∈ C

3 \� for any t ∈ R}
of Cφ,T consists of collision-free paths. Each x = (x1, x2, x3) in C∗

φ,T corresponds to a
pure braid α = (α1, α2, α3) in C × [0, T ] with three threads

αk(t) = (e
−φt

T i xk(t), t) ∈ C × R, t ∈ [0, T ], k = 1, 2, 3.

This correspondence from C∗
φ,T to the class of pure braids in C × [0, T ] is clearly

bijective.
By relabeling indices if necessary, we may confine our path space to only those which

begin and end with collinear configurations and with a prescribed ordering:

C†
φ,T := {x ∈ C∗

φ,T : x(0) ∈ R
3, x3(0) < x2(0) < x1(0)}.

Let B = Bφ,T be the set of pure braids corresponding to C†
φ,T . Two pure braids in B

are considered equivalent if one can be continuously deformed to the other among the
set B. Let R and R′ be the equivalence classes of braids γ and γ ′ in Fig. 1. Retrograde
paths in C†

φ,T are defined as those which have their braids belonging to either R or R′.
In any two equivalence classes B1, B2 of braids we may pick representatives α1 in

B1, α2 in B2 such that α1(0) = α2(0). The standard definition of braids multiplication

(α1 · α2)(t) =
{
α1(2t), t ∈ [0, T/2]
α2(2t − T ), t ∈ (T/2, T ]

induces a well-defined multiplication and group structure for equivalence classes of B.
The multiplicative identity is called the trivial braid class belonging to which there is
a Euler’s relative equilibrium. Paths with braids belonging to inverses P, P′ of braid
classes R, R′ are called prograde paths (or direct paths) in Cφ,T . A representative γ−1

of P is depicted in Fig. 1. The concept of retrograde or prograde motion can be defined
for some spatial orbits but we shall focus on planar motions in this paper.

In [5] the author proved the existence and minimizing property of retrograde orbits
for various choices of masses and for a continuum of φ ∈ (0, π ]. In our present work we
extend the main result in [5] to a much larger class of masses and wider range of φ, see
Sects. 2 and 4 for details. Sections 5 and 8 contain miscellaneous examples of action-
minimizing orbits. In Sect. 9 we show some quantitative estimates of mutual distances
for these orbits. Sections 3, 6, 7 are devoted to proofs of our main theorems.

2. Main Theorems

In this section we state our main theorems on the existence of retrograde orbits for (1) in
C†
φ,T , and the existence of retrograde and prograde orbits with additional symmetries.

The variational problem described below resembles the one in [5] except that φ belongs
to (0, 2π) instead of (0, π ]. For convenience, and without loss of generality, throughout
the rest of this paper we set T = 1 and m3 = 1. From now on we drop T from the
notations for function spaces and denote Cφ,T , C∗

φ,T , C†
φ,T , Bφ,T respectively by Cφ ,

C∗
φ , C†

φ , Bφ .
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Let Rφ be the set of retrograde paths in C†
φ which corresponds to the braid class

R, a representative of which is the braid γ in Fig. 1. Paths in Rφ are initially aligned
in the order x3(0) < x2(0) < x1(0), curves x1 and x2 revolve clockwise around each
other while their center and x3 revolve counterclockwise around the origin. We may also
define Rφ as the path component of

(
eφti (1 + e−2π ti ), eφti (1 − e−2π ti ),−eφti

)

in the space C†
φ .

Each path in C∗
φ can be translated to a path with mass center at the origin without

altering its braid type; namely, suppose x ∈ C∗
φ has mass center x̂ ∈ C([0, 1],C), then

the new path (x1 − x̂, x2 − x̂, x3 − x̂) ∈ C∗
φ and x have the same braid type. Since the

center of mass is an integral of motion, it is natural to consider only paths staying inside
the configuration space

V := {x ∈ C
3 : m1x1 + m2x2 + m3x3 = 0}.

Equations (1) are the Euler-Lagrange equations for the action functionalA: H1
loc(R, V )

→ R ∪ {+∞} defined by

A(x) :=
∫ 1

0
K (ẋ) + U (x) dt,

where

K (ẋ) = 1

2

(
m1|ẋ1|2 + m2|ẋ2|2 + m3|ẋ3|2

)

is the kinetic energy of the path x . On H1
loc(R, V ) the action functional A can be written

A(x) = 1

M

∑
i< j

mi m j

∫ 1

0

1

2
|ẋi − ẋ j |2 +

M

|xi − x j | dt, (2)

where M = m1 + m2 + m3 is the total mass.
By choosing a sequence of motionless paths with greater and greater mutual dis-

tances, it can be easily seen that the infimum of A on H1
loc(R, V ) is zero, which is not

attained. To ensure solvability of the action-minimizing problem, we fix φ ∈ (0, 2π)
and consider the following subspace of Cφ :

Hφ := {x ∈ H1
loc(R, V ) : x(t + 1) = eφi x(t)}.

The conventional definition of inner product on the Sobolev space H1([0, 1], V ) defines
an inner product on Hφ as well. It can be verified that collision-free critical points of A
restricted to Hφ are indeed classical solutions of (1). Any path x in Hφ satisfies

〈x(0), x(1)〉 ≤ max{0, cosφ} |x(0)| · |x(1)|,
where 〈·, ·〉 denotes the standard scalar product on (R2)3. From this condition, the action
functional A restricted to Hφ is coercive (that is, A(x) → ∞ as ‖x‖H1 → ∞, see [3,
Prop. 2]) and therefore, by weak lower semicontinuity of A on Hφ and a standard argu-
ment in variational calculus, attains its infimum on Hφ .
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Consider a linear transformation σ on Hφ defined by

(σ · x)(t) := x(−t). (3)

It is an order-2 isometry on Hφ and, because of the rotational symmetry on Hφ , the
action functional A is σ -invariant. By Palais’ principle of symmetric criticality [19],
any collision-free critical point of A restricted to the subspace

H 〈σ 〉
φ := {x ∈ Hφ : σ · x = x}

of σ -invariant paths is also a critical point of A on Hφ , and hence solves (1).
Detailed descriptions and the variational principles mentioned in the above three

paragraphs can be found in [3–5].
In order to simplify the statements of our theorems, we define the following auxiliary

functions: J : [0, 1) → R+, ξ : R
2
+ × (0, 2) → R, and E : R

2
+ → (1, 2) by

J (s) :=
∫ 1

0

1

|1 − s e2π ti | dt, (4)

ξ(m1,m2, η) := 1

(m1 + m2 + 1)
1
3 (m1 + m2)

2
3

(
η

2 − η

) 2
3

, (5)

E(m1,m2) := 2
√

m1 + m2 + 1 (m1 + m2)√
m1 + m2 + 1 (m1 + m2) + max{m1,m2} 3

2

. (6)

Theorem 1. Given φ = ηπ , η ∈ (0, 2). Let m3 = 1 and let J , ξ = ξ(m1,m2, η), E be
as in (4), (5), (6). Suppose

η < E(m1,m2), (7)

η
2
3

{
m1m2

(m1+m2)ξ
+ 2

3 [m1 (J (m2ξ)− 1) + m2 (J (m1ξ)− 1)]
}
< (2 − η)

2
3 m1m2

+ min
{
(2

2
3 − (2 − η)

2
3 )m1m2, (2

2
3 − η

2
3 )m1, (2

2
3 − η

2
3 )m2

}
. (8)

Then the three-body problem (1) has a retrograde solution in C†
φ which minimizes the

action functional A in Rφ ∩ H 〈σ 〉
φ .

Theorem 1 provides a criterion on the masses (m1,m2) with which an action-
minimizing retrograde solution in C†

φ for (1) exists. Solutions obtained by Theorem 1
are periodic if φ/π is rational and are quasi-periodic if φ/π is irrational. The condition
(7) is fulfilled for all η ∈ (0, 1] and for some η ∈ (1, 2), depending on the values of m1
and m2. The condition (8) is also valid for a wide range of (m1,m2) when η ∈ (0, 1].
Roughly speaking, straightforward calculations show that the first term in the first line
of (8) is significantly dominated by the terms in the second line for most choices of
masses, and the remaining terms in the first line are generally very small since J (s) is
fairly close to 1 for most s ∈ (0, 1) (see the appendix of [5]).

We will see in Sect. 4 that the assumptions (7) and (8) in Theorem 1 are much less
restrictive than the conditions imposed to the main result in [5]. When η ∈ (0, 1], Prop-
osition 5 in Sect. 4 provides a precise and simple criterion for (m1,m2) to satisfy the
requirements of Theorem 1, and the theorem tells us that “most” choices of masses
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are admissible regardless of the value of η ∈ (0, 1]. Many numerical figures for these
retrograde action minimizers will be presented in Sect. 5.

In addition to the isometry σ given in (3), consider the linear transformation τ on Hφ
defined by

(τ · x)(t) := e− φ
2 i (x2, x1, x3)

(
t +

T

2

)
. (9)

It is another order-2 isometry on Hφ . The action functional A is τ -invariant provided
m1 = m2 = m. Let 〈σ, τ 〉 be the group of isometries on Hφ generated by σ and τ . Fol-
lowing again from Palais’ principle of symmetric criticality, any collision-free critical
point of A restricted to the subspace

H 〈σ,τ 〉
φ := {x ∈ Hφ : g · x = x for any g ∈ 〈σ, τ 〉}

of 〈σ, τ 〉-invariant paths is also a critical point of A on Hφ , and hence solves (1).

Theorem 2. Given φ = ηπ , η ∈ (0, 2). Let J , ξ be as in (4), (5) with m3 = 1 and
m1 = m2 = m. Suppose

η < 4
√

2m+1
2
√

2m+1+
√

m
, (10)

η
2
3

[
1
3 + 1

4ξ + 2
3 J (mξ)

]
< min

{
2

1
3 m + η

2
3 , m

2 (2 − η)
2
3 + 2

2
3

}
. (11)

Then the three-body problem (1) has a retrograde solution in C†
φ which minimizes the

action functional A in Rφ ∩ H 〈σ,τ 〉
φ .

The region of (m, η) which satisfies (11) extends the regions of admissible masses
given in Theorem 1. In particular, for fixed (m1,m2) the inequality (8) fails to hold if
η is sufficiently small, but (11) holds for arbitrarily small η as long as m is not close to
zero. Section 5 includes several numerical figures of the action-minimizing retrograde
solutions obtained by Theorem 2, and Sect. 8 shows the region of admissible (m, η).
The special case m1 = m2 = m3 = 1 includes part of the retrograde revolution family
discovered numerically by Broucke [2] and Hénon [12].

Let Pφ be the set of prograde paths in C†
φ corresponding to the braid class P, the

multiplicative inverse of R in B. Paths in Pφ are initially aligned in the order x3(0) <
x2(0) < x1(0), curves x1 and x2 revolve counterclockwise around each other while their
center and x3 revolve counterclockwise around the origin. We may also define Pφ as the
path component of

(
eφti (1 + e2π ti ), eφti (1 − e2π ti ),−eφti

)

in the space C†
φ .

Consider another auxiliary function ζ : R
2
+ × (0, 2) → R defined by

ζ(m, η) := 1

(2m + 1)
1
3 (2m)

2
3

(
η

2 + η

) 2
3

. (12)
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Theorem 3. Givenφ = ηπ , η ∈ (0, 2). Let m3 = 1, m1 = m2 = m, and J , ζ = ζ(m, η)
be as in (4), (12). Suppose

η
2
3

[
1

3
+

1

4ζ
+

2

3
J (mζ )

]
< min

{
2

1
3 m + η

2
3 ,

m

2
(2 + η)

2
3 + 2

2
3

}
. (13)

Then the three-body problem (1) has a prograde solution in C†
φ which minimizes the

action functional A in Pφ ∩ H 〈σ,τ 〉
φ .

In Sect. 8 we show the region of (m, η) which satisfies (13) and several numerical
figures for the action-minimizing prograde orbits obtained by Theorem 3. The special
case m1 = m2 = m3 = 1 includes part of the direct revolution family in [2].

3. Proof of Theorem 1

The proof presented here is an improvement of the proof for the main result in [5,
Theorem 5], where some estimates are refined here and the rotation angle φ ∈ (0, π ]
is extended to φ = ηπ ∈ (0, 2π). The lower bound estimate for action values over
collision paths in [5] is derived based on the symmetry constraint. Here we refine the
estimates by taking both the symmetry and topological constraints into consideration.
The improvement is significant especially when φ is away from π .

As observed earlier, the action functional A is coercive on Hφ and therefore it attains
its infimum on every weakly closed subset of Hφ . In particular, it attains its infimum

on the weak closure of Rφ ∩ H 〈σ 〉
φ at some zφ . Furthermore, as mentioned in the pre-

vious section, collision-free critical points of A on H 〈σ 〉
φ are solutions to (1), If zφ is

collision-free, then it certainly solves (1) since Rφ ∩ H 〈σ 〉
φ is relatively open in H 〈σ 〉

φ .
To prove Theorem 1, it is sufficient to prove that zφ does not belong to the weak

boundary ∂Rφ ∩ H 〈σ 〉
φ of Rφ ∩ H 〈σ 〉

φ under the assumptions (7), (8). What we will prove
is the inequality

inf
x∈Rφ∩H 〈σ 〉

φ

A(x) < inf
x∈∂Rφ∩H 〈σ 〉

φ

A(x) (14)

under the given conditions on φ and masses. This will be accomplished by providing
good estimates for both sides of (14).

A good lower bound estimate for the right side of (14) can be obtained by using a key
formula in [5], which is motivated by Gordon’s theorem [11], and which we describe in
Proposition 4 below.

Given any θ ∈ (0, π ], T > 0, consider the following path space:


T,θ := {r ∈ H1([0, T ],C) : 〈r(0), r(T )〉 = |r(0)||r(T )| cos θ},

∗

T,θ := {r ∈ 
T,θ : r(t) = 0 for some t ∈ [0, T ]}.
The symbol 〈·, ·〉 stands for the standard scalar product in R

2 ∼= C. Define the Keplerian
action functional Iµ,α,T : H1([0, T ],C) → R ∪ {+∞} by

Iµ,α,T (r) :=
∫ T

0

µ

2
|ṙ|2 +

α

|r| dt.
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Proposition 4. Let θ ∈ (0, π ], T > 0, µ > 0, α > 0 be constants. Then

inf
r∈
T,θ

Iµ,α,T (r) = 3

2
(µα2θ2T )

1
3 , (15)

inf
r∈
∗

T,θ

Iµ,α,T (r) = 3

2
(µα2π2T )

1
3 . (16)

Given x ∈ Rφ ∩ H 〈σ 〉
φ , according to σ -invariance and the definition of Hφ , all masses

are aligned on the real axis at t = 0, and

e− φ
2 i x(t) = e− φ

2 i x(−t) = e
φ
2 i x(−t) = e− φ

2 i x(1 − t). (17)

This tells us that x(t) and x(1 − t) are symmetric with respect to the line L φ
2

= {re
φ
2 i :

r ∈ R} and, in particular, all masses are aligned on L φ
2

when t = 1
2 . Furthermore,

I1,M,1(xi − x j ) = 2I1,M, 1
2
(xi − x j ) (18)

for each pair of i , j . Here M = m1 + m2 + 1 is the total mass.
Suppose x ∈ ∂Rφ , then xi (t) = x j (t) for some t ∈ [0, 1

2 ] and i �= j . Assume for
now i = 1, j = 2. Then

x1 − x2 ∈ 
∗
1
2 ,
φ
2

or 
∗
1
2 ,π− φ

2

,

x1 − x3, x2 − x3 ∈ 
 1
2 ,
φ
2

or 
 1
2 ,π− φ

2
.

If x1 − x3 belongs to 
 1
2 ,
φ
2

, then by Proposition 4 we have

I1,M, 1
2
(x1 − x3) ≥ 3

2

(
Mφ

2

) 2
3
(

1

2

) 1
3 = 3

4
M

2
3φ

2
3 .

If x1 − x3 belongs to 
 1
2 ,π− φ

2
, we claim that x1 and x3 actually collide on [0, 1

2 ], thus

x1 − x3 ∈ 
∗
1
2 ,π− φ

2
.

Suppose not, then x1(t)−x3(t) �= 0 for every t ∈ [0, 1
2 ], implying that x1(t)−x3(t) �= 0

for all t . All paths in a small C0-neighborhood of x would have the same value of
Deg(x1 − x3), the degree of x1(t)− x3(t) over [0, 1] on the rotating frame. The reflec-
tion symmetry (17) plus the condition x1 − x3 ∈ 
 1

2 ,π− φ
2

force x1 − x3 to have nonzero

winding number about the origin on the rotating frame over the time interval [0, 1].
This contradicts the assumption that x ∈ ∂Rφ , because any path y in Rφ must satisfy
Deg(y1−y3) = 0, and the weak limit (which is also the uniform limit) x of any sequence
y(n) in Rφ must either have Deg(x1 − x3) = 0 or x1(t) − x3(t) = 0 for some t . Now,
knowing that x1(t)− x3(t) = 0 for some t ∈ [0, 1

2 ], by Proposition 4 we obtain a larger
lower bound estimate for I1,M, 1

2
(x1 − x3):

I1,M, 1
2
(x1 − x3) ≥ 3

2
(Mπ)

2
3

(
1

2

) 1
3

.
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The same arguments and estimates hold for I1,M, 1
2
(x2 − x3).

By (2), (15), (16), and (17),

A(x) = 2
M

∑
i< j mi m j

∫ 1
2

0
1
2 |ẋi − ẋ j |2 + M

|xi −x j | dt

= 2
M

[
m1m2 I1,M, 1

2
(x1 − x2) + m1m3 I1,M, 1

2
(x1 − x3) + m2m3 I1,M, 1

2
(x2 − x3)

]

≥ 2
M

[
3
2 m1m2 M

2
3π

2
3
( 1

2

) 1
3 + 3

4 (m1m3 + m2m3)M
2
3φ

2
3

]

= 3
2

(
π2

M

) 1
3
[
2

2
3 m1m2 + η

2
3 (m1m3 + m2m3)

]
.

Now we consider the second case: x1(t) = x3(t) for some t ∈ [0, 1
2 ]. Then, as in the

previous case,

x1 − x3 ∈ 
∗
1
2 ,
φ
2

or 
∗
1
2 ,π− φ

2

,

x1 − x2, x2 − x3 ∈ 
 1
2 ,
φ
2

or 
 1
2 ,π− φ

2
.

If x2 − x3 belongs to 
 1
2 ,
φ
2

, then by Proposition 4 we have

I1,M, 1
2
(x2 − x3) ≥ 3

2

(
Mφ

2

) 2
3
(

1

2

) 1
3 = 3

4
M

2
3φ

2
3 .

If x2 − x3 belongs to 
 1
2 ,π− φ

2
, then following the arguments above, x2 and x3 actually

collide on [0, 1
2 ], and thus

x2 − x3 ∈ 
∗
1
2 ,π− φ

2
,

I1,M, 1
2
(x2 − x3) ≥ 3

2
(Mπ)

2
3

(
1

2

) 1
3

(
≥ 3

4
M

2
3φ

2
3

)
.

If x1 − x2 belongs to 
 1
2 ,π− φ

2
, then by Proposition 4 we have

I1,M, 1
2
(x1 − x2) ≥ 3

2

(
M(2π − φ)

2

) 2
3
(

1

2

) 1
3 = 3

4
M

2
3 (2π − φ)

2
3 .

If x1 − x2 belongs to 
 1
2 ,
φ
2

, then x1 and x2 must collide on [0, 1
2 ], because otherwise

the reflection symmetry (17) plus the condition x1 − x2 ∈ 
 1
2 ,
φ
2

force x1 − x2 to have

an even winding number about the origin over the time interval [0, 1], contradicting the
assumption that x ∈ ∂Rφ . In this case we have

x1 − x2 ∈ 
∗
1
2 ,
φ
2
,

and therefore

I1,M, 1
2
(x1 − x2) ≥ 3

2
(Mπ)

2
3

(
1

2

) 1
3

(
≥ 3

4
M

2
3 (2π − φ)

2
3

)
.
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As in the previous case, by (2), (15), (16), and (17),

A(x)
= 2

M

[
m1m2 I1,M, 1

2
(x1 − x2) + m1m3 I1,M, 1

2
(x1 − x3) + m2m3 I1,M, 1

2
(x2 − x3)

]

≥ 2

M

[
3

4
m1m2 M

2
3 (2π − φ)

2
3 +

3

2
m1m3 M

2
3π

2
3

(
1

2

) 1
3

+
3

4
m2m3 M

2
3φ

2
3

]

= 3

2

(
π2

M

) 1
3 [
(2 − η)

2
3 m1m2 + 2

2
3 m1m3 + η

2
3 m2m3

]
.

The third case, x2(t) = x3(t) for some t ∈ [0, 1
2 ], is similar to the second case. In

this case we have

A(x)

≥ 2

M

[
3

4
m1m2 M

2
3 (2π − φ)

2
3 +

3

4
m1m3 M

2
3φ

2
3 +

3

2
m2m3 M

2
3π

2
3

(
1

2

) 1
3
]

= 3

2

(
π2

M

) 1
3 [
(2 − η)

2
3 m1m2 + η

2
3 m1m3 + 2

2
3 m2m3

]
.

Summarizing the above estimates, and by setting m3 = 1, we conclude that

inf
x∈∂Rφ∩H 〈σ 〉

φ

A(x)

≥ 3

2

(
π2

M

) 1
3

min
{

2
2
3 m1m2 + η

2
3 (m1 + m2), (2 − η)

2
3 m1m2 + 2

2
3 m1 + η

2
3 m2,

(2 − η)
2
3 m1m2 + η

2
3 m1 + 2

2
3 m2

}

= 3

2

(
π2

M

) 1
3 [
(2 − η)

2
3 m1m2 + η

2
3 (m1 + m2)

+ min
{
(2

2
3 − (2 − η)

2
3 )m1m2, (2

2
3 − η

2
3 )m1, (2

2
3 − η

2
3 )m2

}]
. (19)

This provides a lower bound estimate for the right side of (14).
Now we look for a good upper bound estimate for the left side of (14). Let

Q(t) := 1

(Mφ)
2
3

eφti ,

R(t) := 1

(m1 + m2)
2
3 (2π − φ)

2
3

e(φ−2π)ti ,

and consider an artificial path

x (φ)(t) = (x (φ)1 (t), x (φ)2 (t), x (φ)3 (t))

:= (Q(t) + m2 R(t), Q(t)− m1 R(t),− (m1 + m2) Q(t)) . (20)
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Then x (φ) has the initial ordering as required in the definition of C†
φ . Particles x (φ)1 and

x (φ)2 revolve clockwise about their mass center Q(t) along circular paths, while Q(t) and

x (φ)3 revolve counterclockwise along circular paths about the origin, which is exactly the

mass center of x (φ). Clearly x (φ) belongs to H 〈σ 〉
φ . The assumption (7) is equivalent to

max{m1,m2} 3
2√

M(m1 + m2)
<

2 − η

η
= 2π − φ

φ
,

or

max{m1,m2}|R(t)| = max{m1,m2}
(m1 + m2)

2
3 (2π − φ)

2
3

<

(
M

φ2

) 1
3 = M |Q(t)|.

This inequality is equivalent to the condition that the circular path x (φ)3 never touch the

line segment connecting x (φ)1 and x (φ)2 . From this observation we see that x (φ) belongs

to Rφ ∩ H 〈σ 〉
φ if and only if (7) holds.

Straightforward calculations show that

|ẋ (φ)1 |2 =
(
φ

M2

) 2
3

+ m2
2
(2π−φ) 2

3

(m1+m2)
4
3

− 2m2
φ

1
3 (2π−φ) 1

3

M
2
3 (m1+m2)

2
3

cos(2π t),

|ẋ (φ)2 |2 =
(
φ

M2

) 2
3

+ m2
1
(2π−φ) 2

3

(m1+m2)
4
3

+ 2m1
φ

1
3 (2π−φ) 1

3

M
2
3 (m1+m2)

2
3

cos(2π t),

|ẋ (φ)3 |2 = (m1 + m2)
2
(
φ

M2

) 2
3
,

K (ẋ (φ)) = 1
2

[
(m1 + m2)

(
φ2

M

) 1
3

+ m1m2(2π−φ) 2
3

(m1+m2)
1
3

]
.

Note that the last line is independent of time. It can be easily verified that (7) ensures
both m1ξ and m2ξ are strictly less than 1. The contribution of U (x (φ)) to the total action
can therefore be written∫ 1

0
U (x (φ)) dt

=
∫ 1

0

m1m2

|x (φ)1 − x (φ)2 |
+

m1

|x (φ)1 − x (φ)3 |
+

m2

|x (φ)2 − x (φ)3 |
dt

=
∫ 1

0

m1m2(2π − φ)
2
3

(m1 + m2)
1
3

+

(
φ2

M

) 1
3 m1

|1 − m2ξe−2π ti | +

(
φ2

M

) 1
3 m2

|1 − m1ξe−2π ti | dt

= m1m2(2π − φ)
2
3

(m1 + m2)
1
3

+

(
φ2

M

) 1
3

(m1 J (m2ξ) + m2 J (m1ξ)) .

Here ξ = ξ(m1,m2, η) is as in (5). Therefore,

inf
x∈Rφ∩H 〈σ 〉

φ

A(x) ≤ 3m1m2(2π−φ) 2
3

2(m1+m2)
1
3

+
(
φ2

M

) 1
3 [m1+m2

2 + m1 J (m2ξ) + m2 J (m1ξ)
]

=
(
η2π2

M

) 1
3
[

3m1m2
2(m1+m2)ξ

+ 3(m1+m2)
2 + m1 (J (m2ξ)− 1) + m2 (J (m1ξ)− 1)

]
. (21)
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The assumption (8) is easily seen to be equivalent to that the upper bound estimate in
(21) is strictly less than the lower bound estimate in (19). Therefore (8) implies our
desired inequality (14). This completes the proof for Theorem 1.

4. Region of Admissible Masses

The region of admissible (m1,m2) given by Theorem 1 depends on the choice of
φ = ηπ ∈ (0, 2π). The values of the function

E(m1,m2) = 2
√

M(m1 + m2)√
M(m1 + m2) + max{m1,m2} 3

2

are strictly between 1 and 2. The region of (m1,m2) satisfying (7) shrinks rapidly as the
angle φ approaches 2π . In fact, whenφ is close to 2π the braid type of the path x (φ) given
in the previous section is the same as the Euler relative equilibrium E3 which rotates
with angular velocity π − φ and which begins with ordering x2(0) < x3(0) < x1(0).

Figure 2 shows the regions of admissible masses determined by (8) with various φ,
which increases from 0.01π to 1.35π . The condition (7) is automatic when φ ∈ (0, π ].
When φ ∈ (π, 2π), the diagonal component of the region is the region of admissible
masses which satisfy both (7) and (8). This component is unbounded when φ ∈ (0, π ]
and it rapidly shrinks to a bounded region asφ increases until the region diminishes when
φ ≈ 1.38π . The two triangular regions which border coordinate axes with φ ≥ 1.2 are
regions where (8) holds but (7) fails.

The next proposition states that for any φ ∈ (0, π ], “most” choices of masses are
admissible. What we mean here is that, if a pair of positive masses (m1,m2) are ran-
domly chosen from a large ball on the m1m2-mass plane, the odds that they fall inside
the region of admissible masses is more than 0.5. For this purpose it is sufficient to show
that (8) is fulfilled whenever

2

5
≤ m1

m2
≤ 5

2

except possibly a bounded region in the m1m2-mass plane. One can easily verify that
the proportion of (m1,m2) in region {m1,m2 ≥ 0,m2

1 + m2
2 ≤ R2} satisfying the above

inequalities is approximately 51.55% when R is sufficiently large. In Proposition 5 we
replace the ratio bound 5/2 by 3, which allows us to improve the odds of choosing “good”
masses from at least 51.55% to at least 59.03%, regardless of the value of φ ∈ (0, π ].
This is far from optimal and significantly better bounds can be found when the estimates
are carried out for individual values ofφ. For example, in [5, Example 6] the ratio m1/m2
is bounded by 1/6 and 6 when φ = π , and the coverage of admissible masses satisfying
these specific bounds is approximately 78.97%.

Proposition 5. For any φ = ηπ ∈ (0, π ], the inequality (8) holds whenever

m1,m2 ≥ m := 2
2
3 − η

2
3

2
2
3 − (2 − η)

2
3

and
1

3
≤ m1

m2
≤ 3.

Proof. The inequality (8) is unchanged by swapping m1 and m2, thus we only need to
show that (8) holds whenever m ≤ m1 ≤ m2 ≤ 3m1.
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Fig. 2. Regions of admissible masses with φ equal (from top left to the bottom right) 0.01π , 0.05π , 0.1π ,
0.2π , 0.3π , 0.5π , 0.8π , 0.9π , 0.97π , π , 1.1π , 1.2π , 1.25π , 1.3π , 1.35π . The mass region for the first figure
is 0 < m1,m2 ≤ 100, the second one is 0 < m1,m2 ≤ 20, others are 0 < m1,m2 ≤ 8
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Let m1 = m, m2 = λm. Then λ ∈ [1, 3], η = φ/π ∈ (0, 1], and

ξ(m, λm, η) = 1

((1 + λ)m + 1)
1
3 (1 + λ)

2
3 m

2
3

(
η

2 − η

) 2
3

,

m ξ(m, λm, η) = m
1
3

((1 + λ)m + 1)
1
3 (1 + λ)

2
3

(
η

2 − η

) 2
3

<
1

1 + λ
. (22)

Putting the first line into (8), the inequality (8) can be rewritten

2η
2
3

3
[(J (λm ξ(m, λm, η))− 1) + λ (J (m ξ(m, λm, η))− 1)]

< (2 − η)
2
3 λm

(
1 −

(
1 +

1

(1 + λ)m

) 1
3
)

+ min
{
λm(2

2
3 − (2 − η)

2
3 ), 2

2
3 − η

2
3

}
.

(23)

Using (22) and the fact that J (0) = 1, J is monotonically increasing on [0, 1) (see
[5, Appendix]), the first line in (23) is bounded from above by

2

3

[(
J

(
λ

1 + λ

)
− 1

)
+ λ

(
J

(
1

1 + λ

)
− 1

)]

<
2

3

[(
J

(
3

4

)
− 1

)
+ 3

(
J

(
1

2

)
− 1

)]
(≈ 0.2907).

According to the definition of m we have

min
{
λm(2

2
3 − (2 − η)

2
3 ), 2

2
3 − η

2
3

}
= 2

2
3 − η

2
3 ,

from which the second line in (23) is bounded from below by

2
2
3 − η

2
3 − (2 − η)

2
3 λm

((
1 +

1

(1 + λ)m

) 1
3 − 1

)
> 2

2
3 − η

2
3 − (2 − η)

2
3

λ

3(1 + λ)

≥ 2
2
3 − η

2
3 − 1

4
(2 − η)

2
3 .

Therefore, the inequality (23) follows easily if the function

2
2
3 − η

2
3 − 1

4
(2 − η)

2
3 − 2

3

[(
J

(
3

4

)
− 1

)
+ 3

(
J

(
1

2

)
− 1

)]

is positive for every η ∈ (0, 1]. The minimum of this function on (0, 1] occurs at η = 1
and the minimum value (≈ 0.0467) is indeed positive. This concludes the proof of
Proposition 5. ��

We remark here that Proposition 5 manifests what we asserted earlier: Theorem 1
is a substantial extension of the main result in [5]. It can be easily verified that, in [5,
Theorem 5] the region of admissible masses is bounded for most φ ∈ (0, π ] and the
region diminishes when φ is smaller than 0.38π , see Fig. 3 for examples. In [5] the angle
φ is confined to φ ≤ π but it can actually be extended to φ ≈ 1.16π . In contrast, for any
φ ∈ (0, π ], our theorem holds for “most” choices of masses. As φ increases beyond π ,
the region of admissible masses remains nonempty until φ ≈ 1.38π .
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Fig. 3. Regions of admissible masses given by [5, Theorem 5] with φ equal (from left to right) 0.5π , 0.8π ,
0.97π . Masses in these figures are bounded by 0 < m1,m2 ≤ 8

5. Retrograde Orbits with Various φ

The purpose of this section is to show miscellaneous samples of action-minimizing ret-
rograde solutions obtained in Theorem 1. This family of solutions are determined by
three parameters: m1, m2, φ. Tables of figures here are listed in the order of increasing
φ, masses m1 ≤ m2 are selected to illustrate deformation of action-minimizing orbits
as mass parameters vary.

Masses (m1,m2) are mostly selected from the following lists, in which (m1,m2) are
aligned in the same order as the figures.

(A) (0.2, 0.8) (0.4, 0.8) (0.6, 0.8) (0.8, 0.8)
(0.2, 0.6) (0.4, 0.6) (0.6, 0.6)
(0.2, 0.4) (0.4, 0.4)
(0.2, 0.2)

(B) (1, 7) (3, 7) (5, 7) (7, 7)
(1, 5) (3, 5) (5, 5)
(1, 3) (3, 3)
(1, 1)

(C) (0.01, 4) (0.1, 4) (0.5, 4) (0.8, 4)
(0.01, 1) (0.1, 1) (0.5, 1) (0.8, 1)

(D) (1, 100) (10, 100) (50, 100) (100, 100)

Lists (A) and (B) contain typical examples of masses with m1 ≤ m2 < 1 and 1 ≤
m1 ≤ m2. Numerical figures corresponding to lists (C), (D) illustrate how action-
minimizing orbits deform when m1 � 1 ≤ m2 or 1 � m2. A more complete catalog
of action-minimizing retrograde orbits is available at [13].

There is a total of 129 examples in this section, not all of them are covered by
Theorem 1, but nonetheless we put them in for the entirety of our graphics. Seventeen
examples in here fail to fulfill requirements in Theorem 1, ten of them are covered by
Theorem 2, another three of them can be obtained by choosing other test paths. The
remaining four examples without existence proof are:

(m1,m2, φ) = (0.2, 0.6, 2π/3), (0.2, 0.4, 2π/3), (0.2, 0.4, 3π/4), (0.2, 0.4, 4π/5).

All of these examples belong to class (B).
For brevity we put numerical data for all of our examples, such as their initial condi-

tions and action values, in the Appendix.
In Fig. 18 we skip the case (m1,m2, φ) = (1, 100, π) not only because this case is

not covered by our theorems, but also because we don’t think such a retrograde orbit
can even exist. If one looks at the trajectory of the first body on the rotating frame, the
loop deform across the third body as m1 decreases from 10 to 1, resulting in a solution
in a different topological class.
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Fig. 4. Action minimizing retrograde solutions with masses (m1,m2) = (0.5, 0.5), (1, 1), (2, 2), (4, 4) (first
row), (0.5, 8), (1, 8), (2, 8), (4, 8) (second row), φ = π/4

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Fig. 5. Action minimizing retrograde solutions with masses (m1,m2) = (0.2, 0.2), (0.4, 0.4), (0.6, 0.6),
(0.8, 0.8), φ = π/2

6. Proof of Theorem 2

The proof for Theorem 2 is similar to that of Theorem 1 but with some subtle improve-
ments on the lower bound estimates for A over collision paths.

As observed in Sect. 2, the action functional A attains its infimum on the weak clo-
sure of Rφ ∩ H 〈σ,τ 〉

φ . All we need to show is that, under the assumptions of φ and masses
in Theorem 2,

inf
x∈Rφ∩H 〈σ,τ 〉

φ

A(x) < inf
x∈∂Rφ∩H 〈σ,τ 〉

φ

A(x), (24)

and hence action minimizers do not fall on the weak boundary ∂Rφ ∩ H 〈σ,τ 〉
φ of Rφ ∩

H 〈σ,τ 〉
φ .

Given x ∈ Rφ ∩ H 〈σ,τ 〉
φ , according to τ -invariance and the definition of Hφ ,

x(t) = x(−t) = e− φ
2 i (x2, x1, x3)(−t +

1

2
),

where hence

e− φ
4 i x(t) = e− φ

4 i (x2, x1, x3)(−t +
1

2
). (25)



On Action-Minimizing Retrograde and Prograde Orbits 419

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Fig. 6. Action minimizing retrograde solutions with (m1,m2) in (B), φ = π/2

Combining with (17), we see that [0, 1
4 ] is a fundamental domain of the 〈σ, τ 〉-action;

x1(t) and x2(−t + 1
2 ) are symmetric with respect to the line L φ

4
= {re

φ
4 i : r ∈ R} as well

as x2(t) and x1(−t + 1
2 ), and the same for the curves x3(t) and x3(−t + 1

2 ). In particular,
x1(

1
4 ) and x2(

1
4 ) are symmetric with respect to L φ

4
. Moreover, for any t ∈ [0, 1

4 ],

|x1(t)− x2(t)| = |x1(−t +
1

2
)− x2(−t +

1

2
)|,

|ẋ1(t)− ẋ2(t)| = |ẋ1(−t +
1

2
)− ẋ2(−t +

1

2
)|,

implying that

I1,M, 1
2
(x1 − x2) = 2I1,M, 1

4
(x1 − x2), (26)

where M = 2m + 1 is the total mass.
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Fig. 7. Action minimizing retrograde solutions with (m1,m2) in (A), φ = 2π/3

Suppose x ∈ ∂Rφ , then xi (t) = x j (t) for some t ∈ [0, 1
4 ] and i �= j . One possibility

is i = 1, j = 2. In this case,

x1 − x2 ∈ 
∗
1
4 ,
π
2 − φ

4

or 
∗
1
4 ,
π
2 + φ4

,

x1 − x3, x2 − x3 ∈ 
 1
2 ,
φ
2

or 
 1
2 ,π− φ

2
.

As discussed in Sect. 3, due to our topological assumption, the case x1 − x3 ∈ 
 1
2 ,π− φ

2
(or x2 − x3 ∈ 
 1

2 ,π− φ
2

) forces x1 − x3 (or x2 − x3) to fall into the space 
∗
1
2 ,π− φ

2

. There-

fore, for any φ ∈ (0, 2π), I1,M, 1
2
(x1 − x3) and I1,M, 1

2
(x2 − x3) are both bounded from

below by

3

4
M

2
3φ

2
3 .

By (2), Proposition 4, (17), (25), and (26),

A(x) = 2

M

∑
i< j

mi m j

∫ 1
2

0

1

2
|ẋi − ẋ j |2 +

M

|xi − x j | dt
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Fig. 8. Action minimizing retrograde solutions with (m1,m2) in (B), φ = 2π/3

= 2

M

[
2m2 I1,M, 1

4
(x1 − x2) + m I1,M, 1

2
(x1 − x3) + m I1,M, 1

2
(x2 − x3)

]

≥ 2m

M

[
3m M

2
3π

2
3

(
1

4

) 1
3

+
3

2
M

2
3φ

2
3

]

= 3m

(
π2

M

) 1
3 [

2
1
3 m + η

2
3

]
.

The second possibility is i = 1, j = 3. In this case, by the τ -invariance x2 and x3
also collide at some t ∈ [ 1

4 ,
1
2 ]. Therefore,

x1 − x2 ∈ 
 1
4 ,
π
2 − φ

4
or 
 1

4 ,
π
2 + φ4

,

x1 − x3, x2 − x3 ∈ 
∗
1
2 ,
φ
2

or 
∗
1
2 ,π− φ

2

.
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Fig. 9. Action minimizing retrograde solutions with (m1,m2) in (A), φ = 3π/4

Then

A(x) = 2

M

∑
i< j

mi m j

∫ 1
2

0

1

2
|ẋi − ẋ j |2 +

M

|xi − x j | dt

= 2

M

[
2m2 I1,M, 1

4
(x1 − x2) + m I1,M, 1

2
(x1 − x3) + m I1,M, 1

2
(x2 − x3)

]

≥ 2m

M

[
3m M

2
3

(
π

2
− φ

4

) 2
3
(

1

4

) 1
3

+
3

2
M

2
3π

2
3

(
1

2

) 1
3

+
3

2
M

2
3π

2
3

(
1

2

) 1
3
]

= 3m

(
π2

M

) 1
3 [m

2
(2 − η)

2
3 + 2

2
3

]
.

The estimate for the third possibility i = 2, j = 3 is identical.
Summarizing these estimates, we conclude that

inf
x∈∂Rφ∩H 〈σ,τ 〉

φ

A(x) ≥ 3m

(
π2

M

) 1
3

min
{

2
1
3 m + η

2
3 ,

m

2
(2 − η)

2
3 + 2

2
3

}
. (27)
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Fig. 10. Action minimizing retrograde solutions with (m1,m2) in (B), φ = 3π/4

This provides a lower bound estimate for the right side of (24).
Observe that the path x (φ) given in (20) belongs to H 〈σ,τ 〉

φ . It actually belongs to Rφ
because (10) is identical to (7) in our case. Therefore, writing ξ = ξ(m,m, η) and by (21),

inf
x∈Rφ∩H 〈σ,τ 〉

φ

A(x)

≤
(
η2π2

M

) 1
3
[

3m1m2

2(m1 + m2)ξ
+

3(m1 + m2)

2
+ m1 (J (m2ξ)− 1) + m2 (J (m1ξ)− 1)

]

= m

(
η2π2

M

) 1
3
[

3

4ξ
+ 1 + 2J (mξ)

]
. (28)

The assumption (11) is equivalent to that of the upper bound estimate in (28) and is
strictly less than the lower bound estimate in (27). Therefore (11) implies (24). This
completes the proof for Theorem 2.
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Fig. 11. Action minimizing retrograde solutions with (m1,m2) in (A), φ = 4π/5

7. Proof of Theorem 3

The proof for Theorem 3 is similar to that of Theorem 2 but a prograde test path with
action value larger than that of x (φ) is inevitable. On the other hand, due to the topolog-
ical nature of prograde paths, the lower bound estimate on collision paths can also be
slightly improved.

As discussed before, the action functional A attains its infimum on the weak closure
of Pφ ∩ H 〈σ,τ 〉

φ and what we need to show is that

inf
x∈Pφ∩H 〈σ,τ 〉

φ

A(x) < inf
x∈∂Pφ∩H 〈σ,τ 〉

φ

A(x) (29)

under the assumptions of φ and masses in Theorem 3.
Let us first see how a “good” lower bound estimate for the right side of (29) can be

obtained. The estimate (27) is valid for A on ∂Pφ ∩ H 〈σ,τ 〉
φ as well, but we can do a bit

better than that. If x ∈ Pφ ∩ H 〈σ,τ 〉
φ , then clearly (17), (25), and (26) hold since they are

valid for any path in H 〈σ,τ 〉
φ .
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Fig. 12. Action minimizing retrograde solutions with (m1,m2) in (B), φ = 4π/5
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Fig. 13. Action minimizing retrograde solutions with (m1,m2) in (C), φ = 4π/5



426 K.-C. Chen, Y.-C. Lin

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Fig. 14. Action minimizing retrograde solutions with (m1,m2) in (D), φ = 4π/5
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Fig. 15. Action minimizing retrograde solutions with (m1,m2) in (A), φ = π

Suppose x ∈ ∂Pφ , then xi (t) = x j (t) for some t ∈ [0, 1
4 ] and i �= j . The estimate

for the first possibility i = 1, j = 2 is the same as the one obtained in Sect. 6:

A(x) ≥ 3m

(
π2

M

) 1
3 [

2
1
3 m + η

2
3

]
.

As before, M = 2m + 1 denotes the total mass.
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Fig. 16. Action minimizing retrograde solutions with (m1,m2) in (B), φ = π
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Fig. 17. Action minimizing retrograde solutions with (m1,m2) in (C), φ = π
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Fig. 18. Action minimizing retrograde solutions with (m1,m2) in (D), φ = π , except the case (m1,m2) =
(1, 100)
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Fig. 19. Action minimizing retrograde solutions with φ = 5π/4 and (m1,m2) = (0.5, 0.5), (1, 1), (2, 2),
(4, 4)

The second possibility we consider is that x1(t) = x3(t) for some t ∈ [0, 1
4 ] and

x1(t) �= x2(t) for any t ∈ [0, 1
4 ]. We claim that in this case we must have

x1 − x2 ∈ 
 1
4 ,
π
2 + φ4

.

To see this, consider any sequence x (n) in Pφ ∩ H 〈σ,τ 〉
φ which converges weakly to

x ∈ ∂Pφ . The symmetry conditions (17) and (25) force x (n)1 − x (n)2 , for each n, to turn
an angle π

2 counterclockwise on the rotating frame, and thus turn an angle π
2 + φ

4 coun-

terclockwise on the inertia frame. But since x (n)1 − x (n)2 converges uniformly on [0, 1
4 ]

to x1 − x2 which stays away from the origin for t ∈ [0, 1
4 ], x1 − x2 also turns an angle

π
2 counterclockwise on the rotating frame and an angle π

2 + φ
4 counterclockwise on the

inertia frame. This proves what we just claimed. Since x is τ -invariant, x2 and x3 collide
at some t ∈ [ 1

4 ,
1
2 ] and therefore

x1 − x3, x2 − x3 ∈ 
∗
1
2 ,
φ
2

or 
∗
1
2 ,π− φ

2
.

Then by (2), Proposition 4, (17), (25), and (26),

A(x) = 2

M

∑
i< j

mi m j

∫ 1
2

0

1

2
|ẋi − ẋ j |2 +

M

|xi − x j | dt

= 2

M

[
2m2 I1,M, 1

4
(x1 − x2) + m I1,M, 1

2
(x1 − x3) + m I1,M, 1

2
(x2 − x3)

]

≥ 2m

M

[
3m M

2
3

(
π

2
+
φ

4

) 2
3
(

1

4

) 1
3

+
3

2
M

2
3π

2
3

(
1

2

) 1
3

+
3

2
M

2
3π

2
3

(
1

2

) 1
3
]

= 3m

(
π2

M

) 1
3 [m

2
(2 + η)

2
3 + 2

2
3

]
.



On Action-Minimizing Retrograde and Prograde Orbits 429

The remaining possibility is that x2(t) = x3(t) for some t ∈ [0, 1
4 ] and x1(t) �= x2(t)

for any t ∈ [0, 1
4 ]. The resulting lower bound estimate for A(x) is clearly the same as

the second possibility.
Summarizing these estimates, we conclude that

inf
x∈∂Pφ∩H 〈σ,τ 〉

φ

A(x) ≥ 3m

(
π2

M

) 1
3

min
{

2
1
3 m + η

2
3 ,

m

2
(2 + η)

2
3 + 2

2
3

}
. (30)

This provides a lower bound estimate for the right side of (29). It is sharper than (27)
for the boundary of retrograde paths.

Now we take a prograde test path modified from x (φ) in (20) to acquire a good upper
bound estimate for the left side of (29). Let

Q(t) := 1

(Mφ)
2
3

eφti ,

P(t) := 1

(2m)
2
3 (2π+φ)

2
3

e(φ+2π)ti ,

and consider an artificial path

y(φ)(t) = (y(φ)1 (t), y(φ)2 (t), y(φ)3 (t))

:= (Q(t) + m P(t), Q(t)− m P(t),−2m Q(t)) . (31)

Then y(φ) has the same initial ordering as x (φ) and fulfills the requirement in the defi-
nition of C†

φ . Particles y(φ)1 and y(φ)2 revolve counterclockwise about their mass center

Q(t) along circular paths, while Q(t) and y(φ)3 revolve counterclockwise along circular

paths about the origin, the mass center of y(φ). The path y(φ) belongs to H 〈σ,τ 〉
φ , as does

x (φ). Note that η ∈ (0, 2) implies

(
φ

2(2π + φ)

) 2
3 =

(
η

2(2 + η)

) 2
3

<

(
2 +

1

m

) 1
3 =

(
M

m

) 1
3

.

Equivalently,

m|P(t)| = m

(2m)
2
3 (2π + φ)

2
3

<

(
M

φ2

) 1
3 = M |Q(t)|,

which ensures that y(φ)3 stays away from the binary y(φ)1 , y(φ)2 . This implies y(φ) ∈ Pφ .
Similar to the calculations for K (ẋ (φ)), we have

K (ẏ(φ)) = 1

2

⎡
⎣(m1 + m2)

(
φ2

M

) 1
3

+
m1m2(2π + φ)

2
3

(m1 + m2)
1
3

⎤
⎦

= 1

2

⎡
⎣2m

(
φ2

M

) 1
3

+
m2(2π + φ)

2
3

(2m)
1
3

⎤
⎦ .
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The contribution of U (y(φ)) to the total action can be written
∫ 1

0
U (y(φ)) dt

=
∫ 1

0

m2

|y(φ)1 − y(φ)2 |
+

m

|y(φ)1 − y(φ)3 |
+

m

|y(φ)2 − y(φ)3 |
dt

=
∫ 1

0

m2(2π + φ)
2
3

(2m)
1
3

+

(
φ2

M

) 1
3 m

|1 − mζe2π ti | +

(
φ2

M

) 1
3 m

|1 − mζe2π ti | dt

= m2(2π + φ)
2
3

(2m)
1
3

+ 2m

(
φ2

M

) 1
3

J (mζ ) .

Here ζ = ζ(m, η) is given in (12). Therefore,

inf
x∈Pφ∩H 〈σ,τ 〉

φ

A(x) ≤ 3m2(2π + φ)
2
3

2(2m)
1
3

+

(
φ2

M

) 1
3

[m + 2m J (mζ )] (32)

= m

(
η2π2

M

) 1
3
[

3

4ζ
+ 1 + 2J (mζ )

]
.

The assumption (13) is easily seen to be equivalent to that the upper bound estimate in
(32) is strictly less than the lower bound estimate in (30). Therefore (13) implies (29).
This completes the proof for Theorem 3.

8. Retrograde and Prograde Orbits with Additional Symmetries

The set of admissible (m, η) for action-minimizing retrograde orbits obtained by Theo-
rem 2, where m1 = m2 = m and m3 = 1, is the region below the cliff-like curve in the
first graph of Fig. 20. The nearly horizontal portion (η ≈ 1.45) which cuts out admissible
(m, η) with large η is due to the inequality (10). Similarly, the other graph of Fig. 20
shows the set of admissible (m, η) for action-minimizing prograde orbits obtained by
Theorem 3. The region is given by a single inequality (13). Note that these two curves
match at η = 0 since (11) and (13) are the same at this limiting case.

The variational problem studied throughout the paper can be also formulated as the
minimization problem of the action functional over relative periodic loops in Cφ,T or
C†
φ,T with φ ∈ (−2π, 2π). Retrograde paths in C†

φ,T are continuously deformed to pro-
grade paths as φ (or η) decreases continuously from positive values to negative values.
The borderline case φ = 0 is the only case without action minimizer, since it is the only
case without coercivity.

Figure 21 shows several numerical figures of action-minimizing prograde orbits
obtained in Theorem 3. More action-minimizing prograde orbits with m1 = m2 can be
found in [13]. Many examples of retrograde orbits with m1 = m2 are already included
in Sect. 5. In the order of their appearance, the set of (m, η) in Fig. 21 are

(1.5, 1.25) (2, 1.25)
(1, 1) (1.5, 1) (2, 1)

(0.5, 0.5) (1, 0.5) (1.5, 0.5) (2, 0.5)
(0.5, 0.25) (1, 0.25) (1.5, 0.25) (2, 0.25)
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Fig. 20. Admissible (m, η) given by Theorem 2 and Theorem 3 for retrograde (left) and prograde (right)

solutions in H 〈σ,τ 〉
φ

Numerical data for these orbits are listed on Table 18 in the Appendix. The cases
(0.5, 1.25), (1, 1.25), (0.5, 1) are missing because they do not fall inside our region
of admissible (m, η).

Similar to Proposition 5 we can now establish simple criteria for (m, η) to satisfy the
requirements in Theorem 2 and Theorem 3. The criterion in Proposition 6 for retrograde
orbits is far from sharp but it is easy to verify, and it shows in particular that the region
of admissible (m, η) contains a large rectangle of the form [m0,∞) × (0, 1]. Proposi-
tion 7 is similar to Proposition 6. For fixed m, as η approaches zero, our retrograde or
prograde orbits link to classical results by analytic continuation near infinity (see [22]
for references). For fixed η, as m approaches infinity, these orbits link to satellite orbits
of some restricted n-body problems, which can also be obtained by the minimization
method [6].

Proposition 6. Let J be as in (4). For any φ = ηπ ∈ (0, 2π), inequalities (10),(11)
hold whenever

m ≥ 2
2
3 − η

2
3

2
1
3 − 1

2 (2 − η)
2
3

and η ≤ 2
√

2m + 1√
2m + 1 +

√
2m
. (33)

Proof. The first inequality in (33) is equivalent to

min
{

2
1
3 m + η

2
3 ,

m

2
(2 − η)

2
3 + 2

2
3

}
= m

2
(2 − η)

2
3 + 2

2
3 .

Clearly (10) follows from the second inequality of (33), which also implies that

η2 − 4(2m + 1)η + 4(2m + 1) ≥ 0.

In fact the term on the right end of (33) is a root of this quadratic polynomial in η. Let
ξ be as in (5) with m1 = m2 = m. Then the above inequality can be also written

mξ = 1

2(1 + 1
2m )

1
3

(
η

2 − η

) 2
3 ≤ 1

2
.
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Fig. 21. Action-minimizing prograde orbits obtained in Theorem 3 with m1 ≤ m2

Recall that J is increasing on [0, 1). Therefore

J (mξ) ≤ J

(
1

2

)
.

Note that the second inequality of (33) is always valid if η ∈ (0, 1]. When η ∈ (1, 2),
(33) can be written

2
2
3 − η

2
3

2
1
3 − 1

2 (2 − η)
2
3

≤ m ≤ (2 − η)2

2
(
(2 − η)2 − η2

) .

The inequality for the two expressions in η fails if, say η ≥ 3/2. It can be easily verified
that

2
2
3 − η

2
3

3

(
1 + 2J

(
1

2

))
− 1

12
(2 − η)

2
3 > 0
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for η ∈ (0, 3/2) (in fact, this inequality holds whenever η < 1.8146). From this obser-
vation we have

2
2
3 − η

2
3

3

(
1 + 2J

(
1

2

))
>

1

12
(2 − η)

2
3 >

m

2

((
1 +

1

2m

) 1
3 − 1

)
(2 − η)

2
3 .

Then

2
2
3 +

m

2
(2 − η)

2
3 >

η
2
3

3

(
1 + 2J

(
1

2

))
+

m

2

(
1 +

1

2m

) 1
3

(2 − η)
2
3

≥ η
2
3

3
(1 + 2J (mξ)) +

η
2
3

4ξ
.

This proves (11). ��
Proposition 7. Let J be as in (4). For any φ = ηπ ∈ (0, 2π), inequality (13) holds
whenever

m ≥ 2
2
3 − η

2
3

2
1
3 − 1

2 (2 + η)
2
3

and 0 < 2
2
3 − η

2
3

3

(
1 + 2J

(
1

2

))
− 1

12
(2 + η)

2
3 . (34)

Proof. The first inequality (34) is equivalent to

min
{

2
1
3 m + η

2
3 ,

m

2
(2 + η)

2
3 + 2

2
3

}
= m

2
(2 + η)

2
3 + 2

2
3 .

Let ζ be as in (12) with m1 = m2 = m. Then mζ is easily seen to be bounded from above
by 1/2 for every η ∈ (0, 2). Following the last paragraph in the proof of Proposition 6,
the inequality (34) is readily seen to imply (13). ��

The special case m = 1 is connected to many numerical discoveries by Broucke [2]
and Hénon [12]. In [12] Hénon shows the complete retrograde family for the special
case m1 = m2 = m3 = 1. As η decreases from 2 to a small positive number, the ret-
rograde orbit deforms from Schubart’s rectilinear orbit [20] to a retrograde orbit with a
tight binary (see [12, Fig.1-3]). Part of this family and some prograde orbits with equal
masses are also obtained by Broucke [2]. It is unknown whether this prograde family is
continuable to η = 2 as the retrograde family. Classical methods on existence of such
solutions apply to cases with small η.

Schubart’s orbit has recently received some rigorous treatments via topological [16]
and variational arguments [23]. This orbit falls on the boundary of retrograde paths in
C†

2π with x2 bouncing back and forth between x1 and x3. Within the class of prograde

and retrograde paths in C†
2π there are numerical solutions [2, Fig.9-10] whose rigorous

existence proofs are yet to be found.

9. Estimating Mutual Distances

This section is dedicated to providing quantitative estimates for the mutual distances of
action-minimizing orbits. Action-minimizing retrograde solutions have no tight bina-
ries, as we shall see in this section, and they are therefore different from those retrograde
solutions obtained by classical perturbation arguments. A brief explanation for this fact
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along with a crude estimate of upper and lower bounds for distance ratios can be found
in [5, §6]. The estimates supplied here are finer.

Let x ∈ Rφ ∩ H 〈σ 〉
φ be an action-minimizing retrograde solution obtained in Theo-

rem 1. Let

r i j = max
t∈[0,1] |xi (t)− x j (t)|, r i j = min

t∈[0,1] |xi (t)− x j (t)|. (35)

Writing xi −x j in polar form ri j eiθi j , then by σ -invariance and (17), θi j (
1
2 )−θi j (0) =

φ
2 or π − φ

2 . Let

ψ := π − |π − φ|
2

= min

{
φ

2
, π − φ

2

}
. (36)

Then
∫ 1

2

0

1

2
|ẋi − ẋ j |2 +

M

|xi − x j | dt =
∫ 1

2

0

1

2
(ṙ2

i j + r2
i j θ̇

2
i j ) +

M

ri j
dt

≥
(∫ 1

2

0
|ṙi j |dt

)2

+ r2
i j

(∫ 1
2

0
|θ̇i j |dt

)2

+
M

2r i j

≥ (r i j − r i j )
2 + r2

i jψ
2 +

M

2r i j

≥ ψ2r2
i j

ψ2 + 1
+

M

2r i j
.

Consequently,

A(x) = 2

M

∑
i< j

mi m j

∫ 1
2

0

1

2
|ẋi − ẋ j |2 +

M

|xi − x j | dt

≥ 1

M

∑
i< j

mi m j

(
2ψ2r2

i j

ψ2 + 1
+

M

ri j

)
. (37)

The elementary identity

min
s∈(0,∞)

{(
2ψ2

ψ2 + 1

)
s2 +

M

s

}
= 3

2

(
4ψ2 M2

ψ2 + 1

) 1
3

(38)

implies that, for any pair of i < j ,

A(x) ≥ mi m j

M

(
2ψ2r2

i j

ψ2 + 1
+

M

ri j

)
+

3

2M

(
4ψ2 M2

ψ2 + 1

) 1
3 ∑

k<l
(k,l) �=(i, j)

mkml . (39)

For any fixed masses and φ (and henceψ), the two positive solutions for the equation

(
2ψ2

ψ2 + 1

)
s2 +

M

s
=

(
M

mi m j

)
A(x)− 3

2mi m j

(
4ψ2 M2

ψ2 + 1

) 1
3 ∑

k<l
(k,l) �=(i, j)

mkml (40)
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in s are clearly lower and upper bounds for r i j . Summarizing these observations, we
obtain:

Proposition 8. Fix m1, m2 > 0, φ ∈ (0, 2π), and let x be an action-minimizing retro-
grade solution of the three-body problem in Rφ ∩ H 〈σ 〉

φ given by Theorem 1. Let r i j and
ψ be as in (35) and (36). Then for each pair of i < j from {1, 2, 3}, the two positive
solutions of identity (40) are lower and upper bounds for r i j .

The practical way of applying Proposition 8 is to choose an ideal retrograde path
xtest in Rφ ∩ H 〈σ 〉

φ and replace the A(x) in (40) by its upper bound A(xtest) = Atest.
The resulting bounds for r i j are of course not as sharp, but as indicated by the tables in
the Appendix, the test paths selected in Sect. 3 whose action values were given in (21)
provide fairly sharp upper bound estimates for A(x) for a wide range of masses and
rotation angles. They often provide satisfactory approximations for the bounds given in
Proposition 8. It is maybe surprising that the difference between the action value A(x)
and Atest is within 0.3% (many of them differ by less than 0.1%!) among most of the
examples given in this paper.

A recursive application of (37) leads to better estimates for mutual distances, as
explained below. Let αi j and βi j denote the lower and upper bounds for r i j obtained in
Proposition 8. For example, the case (m1,m2) = (3, 5) and φ = π gives

(α12, β12) ≈ (0.5320, 3.1920), (α23, β23) ≈ (0.2690, 4.7163),

(α13, β13) ≈ (0.1809, 5.8235).

Among our examples the ratios βi j/αi j range mostly from 5 to 70. The estimates αi j
and βi j for mutual distances can be refined by improving (39). The inequality (39) is
obtained from (38), but with Proposition 8 we may write

A(x) ≥ mi m j

M

(
2ψ2r2

i j

ψ2 + 1
+

M

ri j

)
+

∑
k<l

(k,l) �=(i, j)

mkml

M

(
2ψ2α2

kl

ψ2 + 1
+

M

βkl

)

and rewrite (40) accordingly. Once the new lower and upper bound estimates for each
r i j were obtained, still denote them by αi j and βi j , then we may repeat this process
and further improve the above inequality and αi j , βi j . Repetition of this process results
in finer and finer estimates for mutual distances. Numerical calculations show that this
procedure often lowers the ratios βi j/αi j by about 15%.

10. Appendix: Numerical Data

This Appendix contains numerical data for the orbits listed in Sect. 5 and 8. Most of the
data in here are accurate to the fourth decimal place. Readers may reproduce most of the
figures in Sect. 5 and Sect. 8 by using these initial data. However, a few examples are
highly unstable and initial data with much greater precision are needed if one wishes to
produce satisfactory numerical figures for their orbits. Our intention is to provide numer-
ical data that are satisfactory for the purpose of action value calculations. Numerical data
with higher precision can be found in [13].

On the tables of numerical data (Tables 1-16), A(x) is the numerical action value of
the action-minimizing retrograde orbits, the symbol Atest stands for the action value of
the test path (20) in Sect. 3, namely the upper bound for true action values of minimizers
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Table 1. Initial data and action values for solutions in Fig. 4 (φ = π/4)

(m1,m2) Initial Position Initial Velocity A(x) Atest Acoll

(0.5, 0.5)∗ (0.9013, 0.5831,−0.7422) (−0.3098i, 1.4767i,−0.5834i) 2.1833 2.1836 2.0269
(1, 1)∗ (0.7683, 0.3657,−1.1340) (−0.6741i, 1.5652i,−0.8911i) 5.4813 5.4835 5.3120
(2, 2) (0.6560, 0.1509,−1.6139) (−1.0976i, 1.7320i,−1.2688i) 14.7629 14.7690 14.9345
(4, 4) (0.5937,−0.0483,−2.1817) (−1.5523i, 1.9812i,−1.7154i) 42.3032 42.3052 44.1980
(0.5, 8) (0.8813, 0.2234,−2.2280) (−3.1719i, 0.4170i,−1.7502i) 14.2853 14.2861 14.7710
(1, 8) (0.8476, 0.1793,−2.2821) (−3.0628i, 0.6070i,−1.7929i) 23.3078 23.3108 24.2997
(2, 8) (0.7902, 0.1003,−2.3832) (−2.8635i, 0.9499i,−1.8722i) 40.4350 40.4530 42.4866
(4, 8) (0.7043,−0.0321,−2.5606) (−2.5229i, 1.5130i,−2.0125i) 71.8272 71.8428 76.0265

Table 2. Initial data and action values for solutions in Fig. 5 (φ = π/2)

(m1,m2) Initial Position Initial Velocity A(x) Atest Acoll

(0.8, 0.8) (0.5986, 0.1924,−0.6328) (−0.3905i, 1.6392i,−0.9990i) 4.6800 4.6824 4.7357
(0.6, 0.6)∗ (0.6240, 0.2587,−0.5296) (−0.2353i, 1.6294i,−0.8365i) 3.3097 3.3108 3.2839
(0.4, 0.4)∗ (0.6634, 0.3448,−0.4033) (−0.0238i, 1.6138i,−0.6360i) 2.0661 2.0673 2.0048
(0.2, 0.2)∗ (0.7190, 0.4701,−0.2378) (0.2751i, 1.5987i,−0.3748i) 0.9562 0.9567 0.9074

Table 3. Initial data and action values for solutions in Fig. 6 (φ = π/2)

(m1,m2) Initial Position Initial Velocity A(x) Atest Acoll

(1, 7) (0.7963, 0.0831,−1.3777) (−2.6569i, 0.6893i,−2.1683i) 22.5684 22.5853 23.4650
(3, 7) (0.6888,−0.0789,−1.5144) (−2.2898i, 1.3229i,−2.3910i) 50.2584 50.2830 53.0809
(5, 7) (0.6077,−0.2013,−1.6292) (−2.0423i, 1.8266i,−2.5749i) 74.8848 74.8949 79.6536
(7, 7) (0.5523,−0.3051,−1.7300) (−1.8303i, 2.2211i,−2.7353i) 97.2712 97.3335 104.019
(1, 5) (0.7449, 0.0956,−1.2227) (−2.2097i, 0.8273i,−1.9269i) 17.9843 17.9918 18.9882
(3, 5) (0.6177,−0.0931,−1.3875) (−1.8298i, 1.5358i,−2.1895i) 39.4550 39.4844 42.6424
(5, 5) (0.5315,−0.2280,−1.5179) (−1.5863i, 2.0665i,−2.4007i) 58.1129 58.1233 63.4343
(1, 3) (0.6782, 0.1148,−1.0225) (−1.6030i, 1.0717i,−1.6121i) 12.7300 12.7406 13.7021
(3, 3) (0.5249,−0.1148,−1.2302) (−1.2207i, 1.8692i,−1.9454i) 27.2922 27.2967 30.3876
(1, 1) (0.5792, 0.1403,−0.7195) (−0.5204i, 1.6567i,−1.1363i) 6.1754 6.1783 6.3521

in the inequality (21), and the symbol Acoll stands for the lower bound estimate for action
values over collision paths obtained in (19).

There are certain cases which need to be handled with care. Theorem 1 is readily
applied to cases where

A(x) < Atest < Acoll.

Those which fail to fulfill requirements in Theorem 1 are marked by either * or �. They
correspond respectively to

(m1,m2)∗ : Acoll < A(x) < Atest (41)

and

(m1,m2)� : A(x) < Acoll < Atest. (42)

In our examples there are 14 cases of (41), among them there are 10 cases whose
existence follow from Theorem 2 instead of Theorem 1. For such cases we may replace
Acoll by A∗

coll, the lower bound estimates for action values of collision paths obtained in
(27). From the first graph in Fig. 20 it is quite apparent that our examples with m1 = m2
are all covered by Theorem 2. We list the values of A∗

coll for these 10 cases in Table 17.
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Table 4. Initial data and action values for solutions in Fig. 7 (φ = 2π/3)

(m1,m2) Initial Position Initial Velocity A(x) Atest Acoll

(0.2, 0.8) (0.6865, 0.3135,−0.3881) (−0.5258i, 1.1535i,−0.8176i) 2.5833 2.5867 2.5976
(0.4, 0.8) (0.6281, 0.2348,−0.4391) (−0.4306i, 1.3744i,−0.9273i) 3.4582 3.4628 3.5223
(0.6, 0.8) (0.5817, 0.1696,−0.4847) (−0.3613i, 1.5521i,−1.0249i) 4.2648 4.2704 4.3988
(0.8, 0.8) (0.5434, 0.1139,−0.5259) (−0.3093i, 1.7006i,−1.1130i) 5.0204 5.0256 5.2344
(0.2, 0.6)∗ (0.6741, 0.3309,−0.3334) (−0.3076i, 1.2730i,−0.7023i) 2.1276 2.1311 2.1187
(0.4, 0.6) (0.6111, 0.2429,−0.3902) (−0.2076i, 1.5112i,−0.8237i) 2.8988 2.9047 2.9219
(0.6, 0.6) (0.5607, 0.1729,−0.4401) (−0.1468i, 1.6977i,−0.9305i) 3.6073 3.6120 3.6794
(0.2, 0.4)∗ (0.6554, 0.3485,−0.2705) (−0.0292i, 1.4398i,−0.5701i) 1.6369 1.6394 1.6090
(0.4, 0.4)∗ (0.5867, 0.2501,−0.3347) (0.0670i, 1.6989i,−0.7063i) 2.2982 2.3028 2.2867
(0.2, 0.2)∗ (0.6231, 0.3617,−0.1970) (0.3719i, 1.7032i,−0.4150i) 1.0945 1.0961 1.0606

Table 5. Initial data and action values for solutions in Fig. 8 (φ = 2π/3)

(m1,m2) Initial Position Initial Velocity A(x) Atest Acoll

(1, 7) (0.8193, 0.0461,−1.1421) (−2.5020i, 0.7013i,−2.4073) 23.1241 23.1600 23.8356
(3, 7) (0.7026,−0.1211,−1.2602) (−2.1812i, 1.3163i,−2.6706i) 49.1779 49.1903 51.4231
(5, 7) (0.6259,−0.2529,−1.3595) (−1.9253i, 1.7876i,−2.8867i) 72.2105 72.3221 76.1899
(7, 7) (0.5644,−0.3579,−1.4456) (−1.7419i, 2.1800i,−3.0670i) 93.2918 93.4163 98.9096
(1, 5) (0.7528, 0.0523,−1.0141) (−2.0771i, 0.8440i,−2.1428i) 18.4808 18.4997 19.2760
(3, 5) (0.6231,−0.1428,−1.1556) (−1.7254i, 1.5255i,−2.4516i) 38.7838 38.8214 41.3764
(5, 5) (0.5364,−0.2829,−1.2674) (−1.4950i, 2.0334i,−2.6918i) 56.4443 56.4514 60.8186
(1, 3) (0.6686, 0.0602,−0.8492) (−1.4832i, 1.0929i,−1.7955i) 13.1597 13.1775 14.1331
(3, 3) (0.5140,−0.1716,−1.0268) (−1.1400i, 1.8655i,−2.1764i) 27.1144 27.1280 30.1992
(1, 1) (0.5334, 0.0653,−0.5987) (−0.4353i, 1.7032i,−1.2679i) 6.5328 6.5436 6.9464

Table 6. Initial data and action values for solutions in Fig. 9 (φ = 3π/4)

(m1,m2) Initial Position Initial Velocity A(x) Atest Acoll

(0.2, 0.8) (0.6683, 0.2823,−0.3595) (−0.4735i, 1.1856i,−0.8538i) 2.7193 2.7253 2.7567
(0.4, 0.8) (0.6102, 0.2038,−0.4071) (−0.3842i, 1.4050i,−0.9704i) 3.5998 3.6077 3.7073
(0.6, 0.8) (0.5647, 0.1387,−0.4497) (−0.3179i, 1.5808i,−1.0739i) 4.4136 4.4216 4.6084
(0.8, 0.8) (0.5274, 0.0832,−0.4885) (−0.2686i, 1.7273i,−1.1669i) 5.1730 5.1832 5.4677
(0.2, 0.6) (0.6515, 0.2974,−0.3087) (−0.2599i, 1.3092i,−0.7336i) 2.2416 2.2468 2.2506
(0.4, 0.6) (0.5879, 0.2106,−0.3615) (−0.1688i, 1.5491i,−0.8620i) 3.0265 3.0325 3.0810
(0.6, 0.6) (0.5401, 0.1406,−0.4084) (−0.1072i, 1.7318i,−0.9747i) 3.7445 3.7517 3.8644
(0.2, 0.4)∗ (0.6282, 0.3121,−0.2505) (0.0157i, 1.4811i,−0.5956i) 1.7270 1.7306 1.7119
(0.4, 0.4) (0.5601, 0.2154,−0.3102) (0.1052i, 1.7422i,−0.7389i) 2.4074 2.4126 2.4186
(0.2, 0.2)∗ (0.5901, 0.3222,−0.1825) (0.4133i, 1.7532i,−0.4333i) 1.1585 1.1614 1.1323

Table 7. Initial data and action values for solutions in Fig. 10 (φ = 3π/4)

(m1,m2) Initial Position Initial Velocity A(x) Atest Acoll

(1, 7) (0.8366, 0.0314,−1.0566) (−2.4242i, 0.7065i,−2.5211i) 23.3797 23.3906 23.9582
(3, 7) (0.7193,−0.1411,−1.1705) (−2.1130i, 1.3068i,−2.8082i) 48.5301 48.5574 50.5045
(5, 7) (0.6378,−0.2750,−1.2642) (−1.8757i, 1.7738i,−3.0381i) 70.9024 70.9183 74.3437
(7, 7) (0.5751,−0.3828,−1.3461) (−1.6984i, 2.1598i,−3.2301i) 91.2663 91.3112 96.2175
(1, 5) (0.7639, 0.0351,−0.9395) (−2.0087i, 0.8507i,−2.2449i) 18.6978 18.7093 19.3712
(3, 5) (0.6311,−0.1639,−1.0738) (−1.6764i, 1.5214i,−2.5777i) 38.3957 38.4204 40.6749
(5, 5) (0.5450,−0.3088,−1.1812) (−1.4487i, 2.0154i,−2.8334i) 55.4811 55.5211 59.4243
(1, 3) (0.6702, 0.0391,−0.7874) (−1.4279i, 1.1037i,−1.8833i) 13.3502 13.3647 14.1970
(3, 3) (0.5162,−0.1977,−0.9555) (−1.0958i, 1.8597i,−2.2914i) 26.9694 26.9926 29.7414
(1, 1) (0.5193, 0.0369,−0.5562) (−0.3985i, 1.7280i,−1.3295i) 6.6987 6.7093 7.2245
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Table 8. Initial data and action values for solutions in Fig. 11 (φ = 4π/5)

(m1,m2) Initial Position Initial Velocity A(x) Atest Acoll

(0.2, 0.8) (0.6596, 0.2659,−0.3447) (−0.4437i, 1.2046i,−0.8749i) 2.7988 2.8064 2.8494
(0.4, 0.8) (0.6019, 0.1873,−0.3906) (−0.3569i, 1.4232i,−0.9958i) 3.6824 3.6923 3.8150
(0.6, 0.8) (0.5567, 0.1224,−0.4320) (−0.2937i, 1.5984i,−1.1025i) 4.4985 4.5097 4.7305
(0.8, 0.8) (0.5199, 0.0670,−0.4695) (−0.2461i, 1.7444i,−1.1986i) 5.2593 5.2748 5.6036
(0.2, 0.6) (0.6401, 0.2799,−0.2959) (−0.2335i, 1.3308i,−0.7518i) 2.3084 2.3144 2.3274
(0.4, 0.6) (0.5780, 0.1932,−0.3471) (−0.1430i, 1.5691i,−0.8843i) 3.0984 3.1071 3.1737
(0.6, 0.6) (0.5303, 0.1235,−0.3923) (−0.0846i, 1.7525i,−1.0007i) 3.8225 3.8331 3.9721
(0.2, 0.4)∗ (0.6146, 0.2930,−0.2401) (0.0413i, 1.5056i,−0.6105i) 1.7797 1.7840 1.7718
(0.4, 0.4) (0.5472, 0.1971,−0.2977) (0.1273i, 1.7677i,−0.7580i) 2.4695 2.4769 2.4953
(0.2, 0.2)∗ (0.5735, 0.3016,−0.1750) (0.4365i, 1.7828i,−0.4439i) 1.1956 1.1995 1.1741

Table 9. Initial data and action values for solutions in Fig. 12 (φ = 4π/5)

(m1,m2) Initial Position Initial Velocity A(x) Atest Acoll

(1, 7) (0.8522, 0.0231,−1.0141) (−2.3680i, 0.7080i,−2.5878i) 23.4679 23.5160 24.0139
(3, 7) (0.7315,−0.1527,−1.1255) (−2.0716i, 1.3007i,−2.8900i) 48.0762 48.1552 49.9255
(5, 7) (0.6477,−0.2887,−1.2178) (−1.8437i, 1.7637i,−3.1278i) 69.9367 70.0436 73.1992
(7, 7) (0.5847,−0.3994,−1.2971) (−1.6670i, 2.1427i,−3.3301i) 89.9079 90.0063 94.5573
(1, 5) (0.7752, 0.0253,−0.9016) (−1.9592i, 0.8529i,−2.3053i) 18.7932 18.8251 19.4144
(3, 5) (0.6384,−0.1766,−1.0323) (−1.6440i, 1.5175i,−2.6552i) 38.1218 38.1621 40.2327
(5, 5) (0.5518,−0.3241,−1.1383) (−1.4210i, 2.0049i,−2.9191i) 54.8522 54.9375 58.5601
(1, 3) (0.6750, 0.0273,−0.7569) (−1.3906i, 1.1083i,−1.9343i) 13.4283 13.4702 14.2260
(3, 3) (0.5195,−0.2126,−0.9206) (−1.0697i, 1.8559i,−2.3587i) 26.8477 26.8987 29.4530
(1, 1) (0.5133, 0.0214,−0.5347) (−0.3763i, 1.7429i,−1.3666i) 6.7864 6.8050 7.3865

Table 10. Initial data and action values for solutions in Fig. 13 (φ = 4π/5)

(m1,m2) Initial Position Initial Velocity A(x) Atest Acoll

(0.01, 4) (0.8464, 0.1833,−0.7417) (−1.9263i, 0.4705i,−1.8627i) 6.5852 6.5915 6.5966
(0.1, 4) (0.8334, 0.1669,−0.7508) (−1.9048i, 0.5208i,−1.8927i) 7.5217 7.5311 7.5846
(0.5, 4) (0.7816, 0.0998,−0.7899) (−1.8128i, 0.7291i,−2.0102i) 11.5279 11.5464 11.8468
(0.8, 4) (0.7460, 0.0550,−0.8170) (−1.7543i, 0.8726i,−2.0869i) 14.3917 14.4082 14.9185
(0.01, 1) (0.7389, 0.3361,−0.3435) (−0.7236i, 0.8704i,−0.8631i) 2.2552 2.2570 2.2596
(0.1, 1) (0.7072, 0.2944,−0.3652) (−0.6678i, 0.9894i,−0.9227i) 2.7424 2.7487 2.7806
(0.5, 1) (0.5994, 0.1492,−0.4489) (−0.4991i, 1.3968i,−1.1472i) 4.6924 4.7027 4.9462
(0.8, 1) (0.5438, 0.0677,−0.5028) (−0.4177i, 1.6184i,−1.2842i) 5.9801 5.9982 6.4401

Table 11. Initial data and action values for solutions in Fig. 14 (φ = 4π/5)

(m1,m2) Initial Position Initial Velocity A(x) Atest Acoll

(1, 100) (1.93617, 0.00572,−2.50767) (−7.06757, 0.13386,−6.31863) 137.950 138.0457 138.2022
(10, 100) (1.82450,−0.15637,−2.60800) (−6.70235, 0.73687,−6.66520) 821.639 822.4731 824.3510
(50, 100) (1.48170,−0.71128,−2.95672) (−5.46436, 2.80847,−7.62894) 3497.41 3499.1535 3511.6142
(100, 100) (1.22396,−1.19099,−3.29748) (−4.51049, 4.59515,−8.46580) 6305.41 6310.1779 6337.2166

For most of the cases we have numerical action values A(x) of true action minimizers
which are fairly close to Atest, and Acoll often stays well above action values of our test
path. This suggests that action-minimizers tend to be Keplerian-like for both the pair
m1, m1 and the pair m3, m1 + m2. Among the examples we have, there are 3 cases of
type (42), for which the relative motions of m1 and m2 are less like Keplerian orbits.
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Table 12. Initial data and action values for solutions in Fig. 15 (φ = π )

(m1,m2) Initial Position Initial Velocity A(x) Atest Acoll

(0.2, 0.8) (0.6387, 0.2122,−0.2975) (−0.3249i, 1.2793i,−0.9584i) 3.1012 3.1226 3.2024
(0.4, 0.8) (0.5822, 0.1326,−0.3390) (−0.2495i, 1.4969i,−1.0977i) 3.9938 4.0224 4.2254
(0.6, 0.8) (0.5382, 0.0673,−0.3768) (−0.1966i, 1.6709i,−1.2188i) 4.8164 4.8525 5.1956
(0.8, 0.8) (0.5016, 0.0115,−0.4104) (−0.1571i, 1.8181i,−1.3288i) 5.5925 5.6305 6.1211
(0.2, 0.6) (0.6116, 0.2231,−0.2562) (−0.1277i, 1.4129i,−0.8222i) 2.5582 2.5776 2.6199
(0.4, 0.6) (0.5511, 0.1362,−0.3021) (−0.0484i, 1.6529i,−0.9724i) 3.3703 3.3978 3.5267
(0.6, 0.6) (0.5043, 0.0663,−0.3423) (0.0020i, 1.8395i,−1.1049i) 4.1201 4.1501 4.3824
(0.2, 0.4) (0.5758, 0.2323,−0.2081) (0.1322i, 1.6018i,−0.6672i) 1.9766 1.9912 1.9999
(0.4, 0.4) (0.5112, 0.1369,−0.2592) (0.2109i, 1.8702i,−0.8324i) 2.7047 2.7266 2.7878
(0.2, 0.2)∗ (0.5231, 0.2354,−0.1517) (0.5179i, 1.9034i,−0.4843i) 1.3372 1.3473 1.3331

Table 13. Initial data and action values for solutions in Fig. 16 (φ = π )

(m1,m2) Initial Position Initial Velocity A(x) Atest Acoll

(1, 7) (0.9220,−0.0068,−0.8741) (−2.1389i, 0.7162i,−2.8744i) 23.8531 24.0013 24.1111
(3, 7) (0.7913,−0.1990,−0.9812) (−1.9004i, 1.2788i,−3.2504i) 46.2670 46.4415 47.3987
(5, 7) (0.7009,−0.3474,−1.0727) (−1.7008i, 1.7190i,−3.5293i) 66.1712 66.3543 68.3333
(7, 7) (0.6328,−0.4683,−1.1520) (−1.5428i, 2.0802i,−3.7615i) 84.3250 84.5245 87.5574
(1, 5) (0.8267,−0.0096,−0.7789) (−1.7628i, 0.8653i,−2.5638i) 19.1647 19.2727 19.4900
(3, 5) (0.6825,−0.2282,−0.9062) (−1.5003i, 1.4969i,−2.9836i) 36.9147 37.0432 38.3030
(5, 5) (0.5892,−0.3875,−1.0086) (−1.3056i, 1.9644i,−3.2936i) 52.3279 52.4590 54.8854
(1, 3) (0.7032,−0.0157,−0.6561) (−1.2328i, 1.1296i,−2.1559i) 13.7845 13.8756 14.2767
(3, 3) (0.5415,−0.2703,−0.8137) (−0.9641i, 1.8481i,−2.6519i) 26.3570 26.4648 28.1940
(1, 1) (0.5015,−0.0330,−0.4686) (−0.2861i, 1.8041i,−1.5180i) 7.1300 7.1751 8.0032

Table 14. Initial data and action values for solutions in figure 17 (φ = π )

(m1,m2) Initial Position Initial Velocity A(x) Atest Acoll

(0.01, 4)� (0.8967, 0.1574,−0.6386) (−1.6680i, 0.5064i,−2.0088i) 7.6246 7.6281 7.6266
(0.1, 4)� (0.8833, 0.1396,−0.6468) (−1.6576i, 0.5546i,−2.0526i) 8.4913 8.5276 8.5214
(0.5, 4) (0.8272, 0.0670,−0.6816) (−1.6039i, 0.7542i,−2.2150i) 12.2146 12.3038 12.3835
(0.8, 4) (0.7917, 0.0183,−0.7065) (−1.5567i, 0.8902i,−2.3154i) 14.8662 14.9676 15.1680
(0.01, 1) (0.7274, 0.2887,−0.2960) (−0.5776i, 0.9366i,−0.9308i) 2.6077 2.6114 2.6155
(0.1, 1) (0.6940, 0.2451,−0.3145) (−0.5304i, 1.0571i,−1.0040i) 3.0955 3.1115 3.1627
(0.5, 1) (0.5871, 0.0966,−0.3902) (−0.3866i, 1.4605i,−1.2672i) 5.0356 5.0710 5.4377
(0.8, 1) (0.5318, 0.0139,−0.4394) (−0.3200i, 1.6803i,−1.4243i) 6.3229 6.3670 7.0081

Table 15. Initial data and action values for solutions in Fig. 18 (φ = π )

(m1,m2) Initial Position Initial Velocity A(x) Atest Acoll

(10, 100)� (2.0561,−0.1833,−2.2351) (−6.26188, 0.7013,−7.5127) 746.294 747.3566 747.0770
(50, 100) (1.6666,−0.8074,−2.5932) (−5.13402, 2.6533,−8.6320) 3121.82 3122.6917 3129.5061
(100, 100) (1.3752,−1.3459,−2.9376) (−4.24437, 4.3405,−9.6090) 5616.38 5617.1174 5634.9039

Even though Theorem 1 does not apply to these cases, one can still choose test paths
carefully so that their action values are between A(x) and Acoll. In other words, we can
still establish existence of these orbits by selecting test paths that are sufficiently close
to true action-minimizers and by making use of (19).

Similar to the cases of retrograde orbits, on Table 18 of numerical data for prograde
orbits displayed in Figure 21, A(x) represents numerical action values of orbits obtained
in Theorem 3, Atest denotes action values of the test path (31) given by the lower bound
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Table 16. Initial data and action values for solutions in Fig. 19 (φ = 5π/4)

(m1,m2) Initial Position Initial Velocity A(x) Atest Acoll

(0.5, 0.5) (0.4918, 0.0426,−0.2672) (0.2015, 1.9829,−1.0922) 3.7236 3.8157 3.9768
(1, 1) (0.5089,−0.0918,−0.4170) (−0.1628, 1.8973,−1.7345) 7.5066 7.7055 7.9717
(2, 2) (0.5533,−0.2491,−0.6083) (−0.5640, 1.8414,−2.5549) 15.9065 16.2605 16.5537
(4, 4) (0.6338,−0.4240,−0.8392) (−0.9910, 1.8774,−3.5457) 36.5253 37.1206 37.4317

Table 17. Cases of type (41) with m = m1 = m2 from Tables 1-12. Here A∗
coll represents the lower bound

in (27)

(m, φ) (0.5, π/4) (1, π/4) (0.2, π/2) (0.4, π/2) (0.6, π/2)

A∗
coll 2.6222 7.3923 1.0147 2.3994 4.1143

(m, φ) (0.2, 2π/3) (0.4, 2π/3) (0.2, 3π/4) (0.2, 4π/5) (0.2, π)

A∗
coll 1.1679 2.6813 1.2396 1.2813 1.4404

Table 18. Initial data and action values for prograde solutions in Fig. 21

(m, η) Initial Position Initial Velocity A(x) Atest Acoll

(1.5, 1.25) (0.27877, 0.04165,−0.48063) (2.62717i,−1.44573i,−1.77216i) 18.0564 18.1397 18.5481
(2, 1.25) (0.27456, 0.00280,−0.55471) (2.66332i,−1.64288i,−2.04088i) 26.5282 26.6137 27.6994
(1, 1) (0.34357, 0.10696,−0.45053) (2.30073i,−0.93097i,−1.36976i) 9.7838 9.8075 10.0834
(1.5, 1) (0.32849, 0.04507,−0.56035) (2.33063i,−1.20013i,−1.69575i) 16.5371 16.5716 17.5727
(2, 1) (0.32038, 0.00197,−0.64470) (2.38571i,−1.40988i,−1.95166i) 24.4253 24.4555 26.4922
(0.5, 0.5) (0.59029, 0.34678,−0.46853) (1.77698i,−0.31495i,−0.73102i) 3.0921 3.0955 3.2175
(1, 0.5) (0.51250, 0.20293,−0.71543) (1.85867i,−0.74190i,−1.11677i) 7.5222 7.5254 8.4324
(1.5, 0.5) (0.47412, 0.11700,−0.88667) (1.93521i,−1.01320i,−1.38302i) 13.0854 13.0924 15.3226
(2, 0.5) (0.45209, 0.05747,−1.01911) (2.01149i,−1.21673i,−1.58952i) 19.6905 19.6961 23.7071
(0.5, 0.25) (0.87638, 0.60624,−0.74131) (1.54970i,−0.38575i,−0.58198i) 2.3955 2.3961 2.6222
(1, 0.25) (0.73855, 0.39467,−1.13322) (1.64887i,−0.76113i,−0.88774i) 6.1544 6.1587 7.3923
(1.5, 0.25) (0.66528, 0.27024,−1.40328) (1.74023i,−1.00711i,−1.09968i) 11.0275 11.0366 13.9051
(2, 0.25) (0.62206, 0.18484,−1.61379) (1.81864i,−1.18703i,−1.26322i) 16.8920 16.9142 21.9526

in (21), and Acoll stands for the lower bound estimates for action values of collision paths
obtained in (30). We list initial data to the fifth decimal place because of the instability
of many action-minimizing prograde orbits.
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