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Abstract: We justify supercritical geometric optics in small time for the defocusing
semiclassical Nonlinear Schrödinger Equation for a large class of non-necessarily homo-
geneous nonlinearities. The case of a half-space with Neumann boundary condition is
also studied.

1. Introduction

We consider the nonlinear Schrödinger equation in � ⊂ R
d ,

iε
∂�ε

∂t
+

ε2

2
��ε − �ε f (|�ε|2) = 0, �ε : R

+ × � → C (1)

with an highly oscillating initial datum under the form

�ε|t=0 = �ε
0 = aε

0 exp

(
i

ε
ϕε

0

)
, (2)

where ϕε
0 is real-valued. We are interested in the semiclassical limit ε → 0. The non-

linear Schrödinger equation (1) appears, for instance, in optics, and also as a model
for Bose-Einstein condensates, with f (ρ) = ρ − 1, and the equation is termed the
Gross-Pitaevskii equation, or also with f (ρ) = ρ2 (see [13]). Some more complicated
nonlinearities are also used especially in low dimensions, see [12].

At first, let us focus on the case � = R
d . To guess the formal limit, when ε goes to

zero, it is classical to use the Madelung transform, i.e. to seek for a solution of (1) under
the form

�ε = √
ρε exp

(
i

ε
ϕε

)
.



504 D. Chiron, F. Rousset

By separating real and imaginary parts and by introducing uε ≡ ∇ϕε, this allows to
rewrite (1) as an hydrodynamical system,⎧⎪⎪⎨

⎪⎪⎩

∂tρ
ε + ∇ · (ρεuε

) = 0

∂t u
ε +

(
uε · ∇)

uε + ∇ (
f (ρε)

) = ε2

2
∇
(

�
√

ρε

√
ρε

)
.

(3)

The system (3) is a compressible Euler equation with an additional term in the right-hand
side called quantum pressure. As ε tends to 0, the quantum pressure is formally negligible
and (3) reduces to the (compressible) Euler equation,⎧⎨

⎩
∂tρ + ∇ · (ρu) = 0

∂t u + (u · ∇) u + ∇ ( f (ρ)) = 0.
(4)

The justification of this formal computation has received much interest recently. The
case of analytic data was solved in [7]. Then for data with Sobolev regularity and a
defocusing nonlinearity, so that (4) is hyperbolic, it was noticed by Grenier, [9], that it
is more convenient to use the transformation

�ε = aε exp

(
i
ϕε

ε

)
(5)

and to allow the amplitude aε to be complex. By using an identification between C and
R

2, this allows to rewrite (1) as
⎧⎪⎨
⎪⎩

∂t aε + uε · ∇aε +
aε

2
∇ · uε = ε

2
J �aε

∂t uε + (uε · ∇) uε + ∇ (
f (|aε|2)) = 0,

(6)

where J is the matrix of complex multiplication by i :

J =
(

0 −1
1 0

)
.

When ε = 0, we find the system⎧⎪⎨
⎪⎩

∂t a + u · ∇a +
a

2
∇ · u = 0

∂t u + (u · ∇) u + ∇ (
f (|a|2)) = 0,

(7)

which is another form of (4), since then (ρ ≡ |a|2, u) solves (4). The rigorous conver-
gence of (6) towards (7) provided the initial conditions suitably converge was rigorously
performed by Grenier [9] in the case f (ρ) = ρ (which corresponds to the cubic defo-
cusing NLS). More precisely, it was proven in [9] that there exists T > 0 independent
of ε such that the solution of (6) is uniformly bounded in Hs on [0, T ]. In terms of the
unknown �ε of (1), this gives that

sup
ε∈(0,1]

sup
[0,T ]

||�ε exp
(
−i

ϕ

ε

)
||Hs < +∞
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for every s where (a, u = ∇ϕ) is the solution of (7). Furthermore, the justification of
WKB expansions under the form

�ε −
(

m∑
k=0

εkak

)
e

iϕ
ε = O(εm)e

iϕ
ε

for every m was performed in [9]. The main idea in the work of Grenier [9] is to use the
symmetrizer

S ≡ diag

(
1, 1,

1

4 f ′(|a|2) , . . . ,
1

4 f ′(|a|2)
)

of the hyperbolic system (7) to get Hs energy estimates which are uniform in ε for
the singularly perturbed system (6). The case of nonlinearities for which f ′ vanishes at
zero (for instance the case f (ρ) = ρ2) was left open in [9]. The additional difficulty is
that for such nonlinearities, the system (7) is only weakly hyperbolic at a = 0 and in
particular the symmetrizer S becomes singular at a = 0.

In more recent works, see [1,14,19] it was proven that for every weak solution of (1)
with f (ρ) = ρ − 1 or f (ρ) = ρ, the limits as ε → 0,

|�ε|2 − ρ → 0 in L∞([0, T ], L2) εIm
(
�̄ε∇�ε

) − ρu → 0

in L∞([0, T ], L1
loc) (8)

hold under some suitable assumption on the initial data. The approach used in these
papers is completely different, and relies on the modulated energy method introduced
in [4]. The advantage of this powerful approach is that it allows to describe the limit
of weak solutions and to handle general nonlinearities once the existence of a global
weak solution in the energy space for (1) is known. Nevertheless, it does not give precise
qualitative information on the solution of (1), for example, it does not allow to prove that
the solution remains smooth on an interval of time independent of ε if the initial data
are smooth or to justify the WKB expansion up to arbitrary orders in smooth norms.

In the work [2], the possibility of getting the same result as in [9] for pure power
nonlinearities f (ρ) = ρσ in the case � = R

d was studied. It was first noticed that,
thanks to the result of [15], the system

⎧⎨
⎩

∂t a + ∇ϕ · ∇a +
a

2
�ϕ = 0

∂tϕ +
1

2
|∇ϕ|2 + f (|a|2) = 0,

(9)

with the initial condition (a, ϕ)/t=0 = (a0, ϕ0) ∈ H∞ has a unique smooth maximal
solution (a, ϕ) ∈ C

([0, T ∗[, Hs(Rd) × Hs−1(Rd)
)

for every s. It was then established:

Theorem 1 ([2]). Let d ≤ 3, σ ∈ N
∗ and initial data aε

0 , ϕε
0 ≡ ϕ0 in H∞ such that, for

some functions (ϕ0, a0) ∈ H∞,

|| aε
0 − a0 ||Hs = O(ε),

for every s ≥ 0. Then, there exists T ∗ > 0 such that (9) with f (ρ) = ρσ has a smooth
maximal solution (a, ϕ) ∈ C([0, T ∗[, H∞ × H∞). Moreover, there exists T ∈ (0, T ∗)
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independent of ε, such that the solution of (1), (2) remains smooth on [0, T ] and verifies
the estimate

sup
ε∈(0,1]

||�ε exp
(
−i

ϕ

ε

)
||L∞([0,T ],Hs ) < +∞, (10)

where

• if σ = 1, then s ∈ N is arbitrary,
• if σ = 2 and d = 1, then one can take s = 2,
• if σ = 2 and 2 ≤ d ≤ 3, then one can take s = 1,
• if σ ≥ 3 then one can take s = σ .

As emphasized in [2], in some cases, the global existence of smooth solutions is
already known for (1). For example, in the quintic case, σ = 2, global existence is
known for d ≤ 3 (see [6] for the difficult critical case d = 3), so that only the bound
(10) is interesting. Nevertheless, Theorem 1 may be also applied to cases where (1) is
H1 super-critical (σ ≥ 3, d = 3 for example) and hence the fact that it is possible to
construct a smooth solution on a time interval independent of ε is already interesting.
The main ingredient used in [2] is a subtle transformation of (1) into a perturbation of
a quasilinear symmetric hyperbolic system with non smooth coefficients when σ ≥ 2.

The first aim of this paper is to prove that the estimate (10) holds true for every s,
every dimension d and every nonlinearity f which satisfies the following assumption:

(A) f ∈ C∞ ([0, +∞)) , f (0) = 0, f ′ > 0 on (0, +∞), ∃n ∈ N
∗,

f (n)(0) = 0.

Note that we allow f ′ to vanish at the origin. The assumption (A) takes into account
in particular all the homogeneous polynomial nonlinearities f (ρ) = ρσ but also non-
linearities under the form f (ρ) = ρσ1 + ρσ2 or ρσ

1+ρ
for example. Our result reads:

Theorem 2. We assume (A), and consider an initial data (2) with ϕε
0 real-valued, aε

0 ,
ϕε

0 in H∞ such that, for some real-valued functions (ϕ0, a0) ∈ H∞, we have for every
s,

|| aε
0 − a0 ||Hs = O(ε) and ||ϕε

0 − ϕ0 ||Hs = O(ε).

Then, there exists T ∗ > 0 such that (7) with initial value (a0, ϕ0) has a unique smooth
maximal solution (a, ϕ) ∈ C([0, T ∗[, H∞ × H∞). Moreover, there exists T ∈ (0, T ∗]
such that for every ε ∈ (0, 1), the solution �ε to (1)–(2) exists at least on [0, T ] and
satisfies for every s,

sup
ε∈(0,1]

|| �ε exp

(
− i

ε
ϕ

)
||L∞([0,T ],Hs ) < +∞.

More precisely, there exists ϕε = ϕ + OH∞(ε) such that, for every s,

||�ε exp

(
− i

ε
ϕε

)
− a ||L∞([0,T ],Hs ) = O(ε). (11)
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Let us give a few comments on the statement of Theorem 2.
At first, note that Theorem 2 contains a result of local existence of smooth

solutions for (9) in the case of non necessarily homogeneous nonlinearities satisfying
(A). Since (a,∇ϕ) solves a compressible type Euler equation, the case of a homoge-
neous nonlinearity was studied in [15], and we thus give an extension of this result to
smooth non-linearities satisfying assumption (A). A precise statement of our result with
the required regularity of the initial data is given in Theorem 4 below. The new difficulty
when f is not homogeneous is that the nonlinear symmetrization does not seem to allow
to transform the problem into a classical symmetric or symmetrizable hyperbolic system
with smooth coefficients.

The correction of order ε that we have to add to the phase to get the estimate (11)
is expected. Indeed, a perturbation of order ε in the phase modifies the amplitude at the
leading order.

Our approach to prove Theorem 2 is completely different from the one of [2 and 9].
We do not work any more on the system (6) or any reformulation of (1) into a perturba-
tion of a quasilinear symmetric hyperbolic system, but directly on the NLS equation (1).
Basically, we first prove the linear stability for (1) in arbitrary Sobolev norms of a highly
oscillating solution of the form aeiϕ/ε and then use a fixed point argument to prove the
nonlinear stability. The crucial estimate of linear stability of a highly oscillating solution
is given in Lemma 1 and Theorem 3.

This actually allows to justify WKB expansions up to arbitrary orders (see
Theorem 5). Since we deal in this paper with sufficiently smooth and in particular
bounded solutions, the assumption (A) can be replaced by a local version where we
assume that f ′ > 0 on (0, β) with β independent of ε if the initial datum verifies
|a0|2 < β. Indeed, since a0 takes it values in the (weak) hyperbolic region of the limit
system (7), there still exists a local smooth solution of (7) defined on [0, T ] for some
T > 0 and the stability argument leading to Theorem 2 still holds. Consequently, our
result can also be applied to nonlinearities like f (ρ) = ρσ1 − ρσ2 for every σ2 > σ1,
provided |a0|2 ≤ β � 1. Note that when σ2 is too large, the classical global existence
result of weak solutions (see [8]) for (1) is not valid and hence it does not seem possible
to use the modulated energy method of [1,14] to investigate the semi-classical limit.

Finally, the last advantage of our approach is that it can be easily generalized to
the case of a domain with boundary and to non-zero condition at infinity. This will
be the aim of the second part of the paper. We shall restrict ourself to a physical case, the
Gross-Pitaevskii equation, i.e. f (ρ) = ρ − 1. The generalization to more general non-
linearities satisfying an assumption like (A) is rather straightforward. This simplifying
assumption is only made to avoid the multiplication of difficulties. Again to avoid too
many technicalities, we restrict ourselves to the simplest domain � = R

d
+ = R

d−1 ×
(0, +∞). For x ∈ R

d
+, we shall use the notation x = (y, z), y ∈ R

d−1, z > 0. We add
to (1) the Neumann boundary condition

∂z�
ε(t, y, 0) = 0. (12)

We also impose the following condition at infinity:

�ε(t, x) ∼ exp

(
−i t

|u∞|2
2ε

+ i
u∞ · x

ε

)
, |x | → +∞, (13)

that we can write in hydrodynamical variables
∣∣�ε(t, x)

∣∣2 → 1, uε(t, x) → u∞, |x | → +∞,



508 D. Chiron, F. Rousset

where u∞ is a constant vector. This condition appears naturally when we study a moving
obstacle in the fluid. Indeed, if we start from (1) with the Neumann boundary condition
on an obstacle moving at constant velocity and fluid at rest at infinity, then we can use
the Galilean invariance of (1) to transform the problem into the study of (1) in a fixed
domain but with the condition (13) at infinity.

This problem with such boundary conditions is physically meaningful since it can
be used to describe superfluids past an obstacle (we refer to [16] for example). The
semiclassical limit ε tends to zero was already studied in [14] by using the modulated
energy method. The limit (8) was proven with (ρ, u) the solution of the compressible
Euler equation with boundary condition u · n/∂� = 0, n being the normal to the bound-
ary. Note that the result of [14] is restricted to the two-dimensional case only in order
to have a global solution in the energy space of (1). By using more recent results on the
Cauchy problem, [3], one can also get the result in the three-dimensional case at least
when u∞ = 0. Our aim here is to give a more precise description of the convergence
which takes into account boundary layers. More precisely, since the solution of the Euler
system (9) cannot match the Neumann boundary condition ∂za(t, y, 0) = 0, a boundary
layer of weak amplitude ε and of size ε appears. They are formally described for example

in [16]. WKB expansions �ε = aεei ϕε

ε are thus to be sought under the form

aε =a0 +
m∑

k=1

εk
(

ak(t, x) + Ak(t, y,
z

ε
)
)

, ϕε =ϕ0 +
m∑

k=1

εk
(
ϕk(t, x)+
k(t, y,

z

ε
)
)

,

(14)

where the profiles Ak(t, y, Z), 
k(t, y, Z) are exponentially decreasing in the Z variable
and are chosen such that

∂zak(t, y, 0) + ∂Z Ak+1(t, y, 0) = 0, ∂zϕ
k(t, y, 0) + ∂Z
k+1(t, y, 0) = 0

so that the approximate WKB expansion �WKB = aε exp
( i

ε
ϕε
)

matches the Neumann
boundary condition (12). Our result (Theorem 6) is that under suitable assumptions on
the initial conditions, we have the nonlinear stability of WKB expansions: in partic-
ular we have the existence of a smooth solution for (1), (12), (13) on a time interval
independent of ε and the estimate

||�εe−i ϕε

ε − aε ||W 1,∞ � ε. (15)

Note that it is necessary to incorporate the boundary layer εA1 in order to get (15) since
its gradient has amplitude one in L∞. The case of Dirichlet boundary condition which
is also physically meaningful, we again refer to [16], seems more complicated to handle
since often in boundary layer theory in fluid mechanics the boundary layers involved
have amplitude one. This is left for future work.

The paper is organized as follows. In Sect. 2, we prove the linear stability in Hs of

an approximate WKB solution of (1) under the form aε exp
(

i ϕε

ε

)
in the case � = R

d .

This is the crucial part towards the proof of Theorem 2. Next in Sect. 3, we give the
construction of a WKB expansion up to arbitrary order and give the proof of the local
existence of a smooth solution for the compressible Euler equation with a pressure law
satisfying (A). In Sect. 4, we give the justification of WKB expansions at every order
and recover Theorem 2 as a particular case. This part uses in a classical way the linear
stability result and a fixed point argument. Finally, in Sect. 5, we study the problem in
the half-space with Neumann boundary condition.
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2. Linear Stability

In this section, we consider a smooth WKB approximate solution �a = aε exp
(

i ϕε

ε

)
of (1) such that

N L S(�a) = Rε exp

(
i
ϕε

ε

)
, (16)

where

N L S(�) ≡ iε∂t� +
ε2

2
�� − � f (|�|2).

Moreover, we also set

Rϕ ≡ ∂tϕ
ε +

1

2
|∇ϕε|2 + f (|aε|2), (17)

Ra ≡ ∂t a
ε + ∇ϕε · ∇aε +

1

2
aε�ϕε, (18)

so that

Rε = −aε Rϕ + iεRa +
ε2

2
�aε.

Looking for an exact solution of (1) under the form

�ε = �a + w ei ϕε

ε = (aε + w)ei ϕε

ε ,

we find that w solves the nonlinear Schrödinger equation

iε

(
∂tw + uε · ∇w +

1

2
w ∇ · uε

)
+

ε2

2
�w − 2(w, aε) f ′(|aε|2)aε

= Rϕw − Rε + Qε(w), (19)

where (·, ·) stands for the real scalar product in C � R
2, with

uε ≡ ∇ϕε

and the nonlinear term Qε(w) is defined by

Qε(w) ≡ (aε + w)
(

f (|aε + w|2) − f (|aε|2)
)

− 2(w, aε) f ′(|aε|2)aε. (20)

Of course, Rε will be very small and Rϕ (and Ra) are to be thought small (at least O(ε))
for applications to nonlinear stability results. Nevertheless, in this section the exact form
of these terms is not important. The way to construct an accurate WKB solution �a will
be explained in the next section.

Remark 1. If we work with a non-linearity f such that f (A2) = 0 for some A ∈ R, we
can impose a non-zero condition at infinity such as a0 ∈ A + H∞ and ∇ϕ0 ∈ U∞ + H∞
for some constant vector U∞ ∈ R

d . Since we can still look for the perturbation w in
Hs , this does not affect the proofs.
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Since we expect the correction term w to be small, we shall only consider in this
section the linearized equation

iε
∂w

∂t
+ Lε w = Rϕw + Fε, x ∈ R

d , (21)

where the linear operator Lε is defined as

Lε(w) ≡ ε2

2
�w + iε uε · ∇w +

iε

2
w ∇ · uε − 2 f ′(|aε|2)(w, aε)aε.

In this section, Fε is considered as a given source term. Of course, for the proof of
Theorem 2, we shall apply the result of this section to

Fε = −Rε + Qε(w). (22)

Furthermore, let us emphasize that at this stage, Rϕ is seen as a multiplicative operator
with no link with the vector field uε appearing in Lε, even though we will use this lemma
with uε = ∇ϕε. We notice that Lε is formally self-adjoint, but only the first and last
term give rise to a nonnegative quadratic functional. Indeed, the quadratic form (in H1)
associated to the operator

Sε w ≡ −ε2

2
�w + 2 f ′(|aε|2)(w, aε)aε

is, since f ′ ≥ 0,∫
Rd

(
w,Sε w

) = 1

2

∫
Rd

ε2|∇w|2 + 4 f ′(|aε|2)(w, aε)2 ≥ 0.

It is then natural to consider the (squared) norm
∫

Rd

(
w,Sε(w)

)
as a good energy for

the linearized equation (21). Consequently, we introduce the weighted norm

N ε(w) ≡ 1

2

∫
Rd

ε2|∇w|2 + 4 f ′(|aε|2)(w, aε)2 + K ε2|w|2

for every K > 0 (K will be chosen sufficiently large only in the next subsection).
Our first result of this section is a linear stability result in the energy norm N ε(w).

Lemma 1. Assume that uε : [0, T ] × R
d → R

d and aε : [0, T ] × R
d → C are smooth

and such that

M ≡ || ∇x uε ||L∞([0,T ]×Rd ) + || ∇x (∇ · uε) ||L∞([0,T ]×Rd ) + || |aε|2 ||L∞([0,T ]×Rd ) < +∞.

Let w ∈ C1([0, T ], H2) be a solution of (21). Then, there exists CM depending only on
d, f and M such that for every ε ∈ (0, 1], the solution w of (21) satisfies the energy
estimate

d

dt
N ε (w(t))≤CM

(
1+

1

ε
|| Ra(t) ||L∞ +

1

ε
|| Rϕ(t) ||W 1,∞+

1

ε2
|| Rϕ(t) ||L∞

)
N ε (w(t))

+ || Fε(t) ||2L2 −
∫

Rd

4

ε
f ′(|aε|2)(w, aε)(aε, i Fε) +

∫
Rd

(ε�w, i Fε).

(23)
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Note that it is very easy to get from (23) and the Gronwall inequality a classical
estimate of linear stability. Indeed, assuming that Ra = OL∞([0,T ],L∞)(ε) and Rϕ =
OL∞([0,T ],W 1,∞)(ε

2) (which is true if (aε, ϕε) come from the WKB method), we infer
from a crude estimate for the two last terms in (23) that for 0 ≤ t ≤ T ,

d

dt
N ε (w(t)) ≤ C N ε (w(t)) +

1

ε2
|| Fε(t) ||2H1 ,

which gives for 0 ≤ t ≤ T ,

N ε (w(t)) ≤ eCt
(

N ε (w(0)) +
1

ε2

∫ t

0
|| Fε(τ ) ||2H1 dτ

)
,

which is a more classical result of linear stability in the energy norm N ε(w) since the
amplification rate C is independent of ε. Nevertheless, to get Hs estimates and the best
nonlinear results as possible, it is important to have the special structure of the two last
terms in (23).

Modulated linearized functionals like N ε were also used in asymptotic problems in
fluid mechanics, see [10] for example.

2.1. Proof of Lemma 1. The norms L∞, W 1,∞, L2 ... always stand for the norms in the
x variable. At first, since Sε is self adjoint, we have

d

dt

∫
Rd

(
Sεw,w

) =
∫

Rd
2
(
Sεw, ∂tw

)
+ 2∂t

[
f ′(|aε|2)

]
(w, aε)2

+ 4 f ′(|aε|2)(w, aε)(w, ∂t a
ε). (24)

Next, we use (21) to express ∂tw as

∂tw = − i

ε
Sεw −

(
uε · ∇w +

1

2
w ∇ · uε

)
− i

ε
Rϕw − i

ε
Fε

to get

2
∫

Rd

(
Sεw, ∂tw

) = 2
∫

Rd

(
ε2

2
�w − 2 f ′(|aε|2)(w, aε)aε, uε · ∇w +

1

2
w ∇ · uε

+
i

ε
Rϕw +

i

ε
Fε

)
. (25)

We shall now estimate the various terms in the right-hand side of (25). Integrating by
parts, we get ∫

Rd

(
ε2 �w,

i

ε
Rϕw

)
= −ε

∫
Rd

(∇w, iw∇ Rϕ

)
≤ ε ||∇ Rϕ ||L∞||w||L2 ||∇w||L2

≤ 1

ε
||Rϕ ||W 1,∞ N ε(w).

Note that we have used that Rϕ is real-valued and thus that

(∇w, i Rϕ∇w) = 0
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for the first equality. We also easily obtain by integration by parts that

∫
Rd

(
ε2�w,w ∇ · uε

)
≤ C

(|| ∇ · uε ||L∞ + || ∇(∇ · uε) ||L∞
)(

ε2 || ∇w ||2L2 +ε2 ||w ||2L2

)
.

≤ CM N ε(w).

In the proof, CM is a harmless number which changes from line to line and which
depends only on M . In particular, it is independent of ε. Moreover, we can also write
for k = 1, . . . , d,

∫
Rd

(
∂2

kkw, uε · ∇w
)

= −
∫

Rd
uε · ∇ |∂kw|2

2
−
∫ (

∂kw, ∂kuε · ∇w
)

=
∫

Rd

|∂kw|2
2

∇ · uε −
∫

Rd

(
∂kw, ∂kuε · ∇w

)
,

and hence, we immediately infer

∫
Rd

(
ε2�w, uε · ∇w

)
≤ CM N ε(w).

Furthermore, from the inequality 2ab ≤ a2 + b2, there holds

− 4

ε

∫
Rd

f ′(|aε|2)(w, aε)
(
aε, i Rϕw

) ≤ CM

ε2 ||Rϕ ||L∞
∫

Rd

(
f ′(|aε|2)

) 1
2 ∣∣(w, aε)

∣∣ ε|w|

≤ CM

ε2 ||Rϕ ||L∞
∫

Rd
f ′(|aε|2)(w, aε)2 + ε2|w|2

≤ CM

ε2 ||Rϕ ||L∞ N ε(w). (26)

Consequently, we can replace (25) in (24) and use the above estimates to get

d

dt

∫
Rd

(
Sεw,w

)=
∫

Rd
4 f ′(|aε|2)(w, aε)

(
(w, ∂t a

ε)−
(

uε · ∇w+
1

2
w ∇ · uε, aε

))

+ 2
∫

Rd
∂t

[
f ′(|aε|2)

]
(w, aε)2 + E1, (27)

where E1 satisfies the estimate

E1 ≤ CM

(
1 +

1

ε
|| Rϕ ||W 1,∞ +

1

ε2
|| Rϕ ||L∞

)
N ε(w)

− 4

ε

∫
Rd

f ′(|aε|2)(w, aε)(aε, i Fε) +
∫

Rd
(ε�w, i Fε). (28)
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To estimate the first integral in the right-hand side of (27), we use Eq. (18) to get

4
∫

Rd
f ′(|aε|2)(w, aε)

(
(w, ∂t a

ε) −
(

uε · ∇w +
1

2
w ∇ · uε, aε

))

= 4
∫

Rd
f ′(|aε|2)(w, aε)

(
(w, Ra) − uε · ∇(w, aε) − (w, aε)∇ · uε

)

= 4
∫

Rd
f ′(|aε|2)(w, aε)(w, Ra) − 2

∫
Rd

f ′(|aε|2) uε · ∇
(
(w, aε)2

)

−4
∫

Rd
f ′(|aε|2)(w, aε)2 ∇ · uε

= 4
∫

Rd
f ′(|aε|2)(w, aε)(w, Ra) + 2

∫
Rd

(w, aε)2 uε · ∇
[

f ′(|aε|2)
]

− 2
∫

Rd
f ′(|aε|2)(w, aε)2 ∇ · uε.

To get the last line, we have integrated by parts the second integral. Note that the last
term is bounded by CM N ε(w), and, as for (26), that the first integral is bounded by
CM

ε
||Ra||L∞ N ε(w). Consequently, we can replace the above identity in (27) to get

d

dt

∫
Rd

(
Sεw,w

)=
∫

Rd
2(w, aε)2 (∂t +uε · ∇)

f ′(|aε|2)+E1+E2 =: I +E1+E2, (29)

where E2 is such that

E2 ≤ CM

(
1 +

1

ε
|| Ra ||L∞

)
N ε(w). (30)

To estimate I , we use again Eq. (18) which gives
(
∂t + uε · ∇)

f ′(|aε|2) = 2 f ′′(|aε|2) (aε, ∂t a
ε + uε · ∇aε

) = 2 f ′′(|aε|2)
×
(

Ra − 1

2
aε ∇ · uε, aε

)
,

and hence we find

I ≤ C
∫

Rd
|aε|2

∣∣∣ f ′′(|aε|2)
∣∣∣ (w, aε)2 + 4

∫
Rd

|aε| | f ′′(|aε|2)| (w, aε)2 |Ra |.

To conclude, we shall use Assumption (A). By defining n ∈ N
∗ the first integer such

that f (n)(0) = 0, we see from Taylor expansion that

f ′(ρ) = ρn−1q(ρ) (31)

for some smooth positive function q on [0, +∞). In particular, since q > 0, we have

ρ �→ ρ f ′′(ρ)

f ′(ρ)
= n − 1 + ρ

q ′(ρ)

q(ρ)
∈ C∞ ([0, +∞)) ,

which implies ∣∣ρ f ′′(ρ)
∣∣ ≤ CM f ′(ρ) for 0 ≤ ρ ≤ M. (32)
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This yields
∫

Rd
|aε|2 | f ′′(|aε|2)|(w, aε)2 ≤ CM

∫
Rd

(w, aε)2 f ′(|aε|2) ≤ CM N ε(w),

where, again, CM depends only on M . In a similar way, we also obtain
∫

Rd
(w, aε)2|aε| | f ′′(|aε|2)| |Ra | ≤ || Ra ||L∞

∫
Rd

|w| · ∣∣(w, aε)
∣∣ · |aε|2

∣∣∣ f ′′(|aε|2)
∣∣∣

≤ CM

ε
|| Ra ||L∞

∫
Rd

(ε|w|)
∣∣∣∣(w, aε)

√
f ′(|aε|2)

∣∣∣∣
≤ CM

ε
|| Ra ||L∞ N ε(w).

Consequently, we have proven that

I ≤ CM

(
1 +

1

ε
|| Ra ||L∞

)
N ε(w). (33)

To get the result of Lemma 1, it remains to perform the L2 estimate. Taking the L2 scalar
product of (21) with iw and using that

(w, uε · ∇w +
1

2
w ∇ · uε) = 1

2
∇ ·

(
|w|2uε

)
,

we get

d

dt

(
ε2

2
||w||2L2

)
=
∫

Rd
ε(Fε, iw) + 2ε

∫
Rd

f ′(|aε|2)(w, aε)(aε, iw).

Note that we have once again used that Rϕ is real-valued and hence that (Rϕw, iw) = 0.
The first integral is clearly bounded by N ε(w) + || Fε ||2

L2 whereas for the second one,
we have∫

Rd
2ε f ′(|aε|2)(w, aε)(aε, iw) ≤ CM

∫
Rd

(
f ′(|aε|2)(w, aε)2 + ε2|w|2

)
≤ CM N ε(w).

As a consequence, we get

d

dt

(
ε2

2
|| w ||2L2

)
≤ CM N ε(w) + || Fε ||2L2 . (34)

Finally, we can collect (28), (29), (30), (33) and (34) to get (23). This completes the
proof. ��

2.2. Higher order estimates. Since our final aim is to prove Theorem 2 by a fixed
point argument, we also need to have Hs estimates for s sufficiently large for the
solution of the linear equation (21). This is the aim of the following. Note that the
term −2(w, aε) f ′(|aε|2)aε in (19) can be seen as a singular term with variable coeffi-
cients. Consequently, a crude way to get Hs estimates is to apply ε|α|∂α to the equation,
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the weight ε|α| being used to compensate the singular commutator when we take the
derivative of (19), and then to apply Lemma 1 to the resulting equation. Nevertheless,
it is possible to avoid the loss of ε|α| with more work by using more clever higher order
modulated functionals. We set N ε

1 ≡ N ε and, if s ∈ N, s ≥ 2, we define the following
weighted norm, where α ∈ N

d are multi-indices

N ε
s (w) ≡

∑
|α|≤s−1

N ε(∂αw) + K ||Re w||2Hs−2

= 1

2
ε2||∇w||2Hs−1 + 2

∑
|α|≤s−1

∫
Rd

f ′(|aε|2)(∂αw, aε)2 + K
(
ε2||w||2Hs−1

+ ||Re w||2Hs−2

)
. (35)

In this section, we shall use that

aε = a0 + εar

with a0 real-valued and

sup
ε∈(0,1]

||ar ||L∞([0,T ],W s,∞) ≤ C.

Note that this allows to write∫
Rd

f ′(|aε|2)(∂αw, aε)2 ≥ 1

2

∫
Rd

f ′(|aε|2)(a0)2|Re ∂αw|2 − Cε2||Re ∂αw||2L2 ,

and hence by choosing K sufficiently large (K > C) we get the lower bound

N ε
s (w) ≥ 1

2

∑
|α|≤s−1

N ε
(
∂α

x w
)

+
∑

|α|≤s−1

∫
Rd

f ′(|aε|2)(a0)2|Re ∂αw|2 dx . (36)

Note that we also have the equivalence of norms:

|| w ||2Hs ≤ 2

ε2 N ε
s (w), N ε

s (w) ≤ C(|aε|W s−1,∞) ||w ||2Hs + ||Re w||2Hs−2 . (37)

The main result of this section is:

Theorem 3. Let 0 < T < ∞, s ∈ N
∗, f satisfying (A) and w ∈ C1([0, T ], Hs) a

solution of (21) with uε : [0, T ] × R
d → R

d and aε : [0, T ] × R
d → C such that

M ≡ sup
0<ε<1

(|| uε ||L∞([0,T ],W s+1,∞(Rd )) + || aε ||L∞([0,T ],W s,∞(Rd ))

)
< +∞.

Assume finally that, for some a0 ∈ L∞([0, T ], W s,∞(Rd)) real-valued, aε verifies

aε = a0 + OW s,∞(ε) (38)

uniformly on [0, T ]. Then, there exists C, depending only on d, f and M, such that

d

dt
N ε

s (w(t)) ≤ C

(
1 +

1

ε
|| Ra(t) ||L∞ +

1

ε2
|| Rϕ(t) ||W s−1,∞

)
N ε

s (w(t))+C || Fε(t) ||2Hs

+
C

ε2
|| Im Fε(t) ||2Hs−1 .

Remark 2. In view of (38), aε is real up to O(ε), hence, in the integral in the right-hand
side of (23), the real and imaginary parts of Fε do not play the same role. This explains
that the estimate is better for Re Fε than for Im Fε. As a matter of fact, for s = 1,
Theorem 3 follows immediately from Lemma 1 and (38).
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2.3. Proof of Theorem 3. We estimate separately the two terms in N ε
s (w), when s ≥ 2

(otherwise, the result follows from Lemma 1 as we have seen). Let us set

(w) ≡ ||Re w||2Hs−2 .

Note that we have

(w) ≤ N ε
s (w). (39)

In the proof, C is a constant depending only on d, f and M .
We shall first prove that

d

dt
(w) ≤ C

(
1 +

1

ε2
|| Rϕ ||W s−2,∞

)
N ε

s (w) + C || Fε ||2Hs−2 +
C

ε2
|| Im Fε ||2Hs−2 .

(40)

For α ∈ N
d , we have

∂t
(
∂αw

)
+ uε · ∇ (

∂αw
) = iε

2
�(∂αw) − i

ε
∂α Fε − i

ε
∂α

(
Rϕw

)

−2i

ε
∂α

(
f ′(|aε|2)(aε, w)aε

)
− [

∂α, uε · ∇]
w − 1

2
∂α

(
w∇ · uε

)
. (41)

Next, by taking the real part of (41), we get

∂t
(
∂αRe w

)
+ uε · ∇ (

∂αRe w
) = − [

∂α, uε · ∇]
Re w − 1

2
∂α

(
Re w ∇ · uε

)
+ Rε,

where

Rε =Re

(
iε

2
�(∂αw) − i

ε
∂α Fε− i

ε
∂α

(
Rϕw

)− 2i

ε
∂α

(
f ′(|aε|2)(aε, w)aε

))
. (42)

By using (38), we have

Im ∂γ aε = O(ε), ∀γ, |γ | ≤ |α|
and

|(∂βaε, ∂γ w)| ≤ Cβ,γ

(|Re ∂γ w| + ε|∂γ w|) (43)

for every β, γ . Consequently, we immediately obtain for every α, |α| ≤ s − 2,

||Rε||L2 ≤C

(
ε||w||Hs +

||Rϕ ||W s−1,∞
ε2 ||w||Hs−2 +||Re w||Hs−2 +ε||w||Hs−2

)
+

1

ε
||Im Fε||Hs−2

≤ C

(
1 +

||Rϕ ||W s−2,∞
ε2

)
N ε

s (w)
1
2 +

1

ε
||Im Fε||Hs−2 .

Consequently, the standard L2 energy estimate for (42) gives

d

dt
||Re ∂αw||2L2 ≤ C

(
1 +

||Rϕ ||W s−1,∞
ε2

)
N ε

s (w) +
1

ε2 ||ImFε||2Hs−2 .
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Note that we have used that∫
Rd

(
uε · ∇ (

∂αRe w
)
, ∂αRe w

) = −1

2

∫
Rd

(∇ · uε)|∂αRe w|2.

Consequently, (40) is proven.
The next step is to estimate N ε(∂αw) for |α| ≤ s − 1. By applying ∂α to (21), we get

iε
∂(∂αw)

∂t
+ Lε

(
∂αw

) = Rϕ∂αw + F̃ε, (44)

where

F̃ε ≡ Cα + Dα + ∂α Fε + [∂α, Rϕ]w,

with

Cα ≡ 2 ∂α
(

f ′(|aε|2)aε(w, aε)
)

− 2 f ′(|aε|2)(∂αw, aε)aε,

Dα ≡ −iε
[
∂α, uε · ∇]

w − iε

2

[
∂α, ∇ · uε

]
w.

To estimate N ε(∂αw), we shall use Lemma 1. Towards this, we need to estimate the
commutators in the right-hand side of (44). For |α| ≤ s − 1, the following estimates
hold for Cα and Dα:

|| [∂α, Rϕ]w ||2H1 ≤ C || Rϕ ||2W s,∞ ||w ||2Hs ≤ C

ε2
|| Rϕ ||2W s,∞ N ε

s (w), (45)

|| Dα ||2H1 ≤ C ε2 ||w ||2Hs ≤ C N ε
s (w), (46)

||
(

i f ′(|aε|2) 1
2 aε,Dα

)
||2L2 ≤ Cε2 N ε

s (w), (47)

|| Cα ||2H1 ≤ C N ε
s (w), (48)

|| (iaε, Cα) ||2L2 ≤ Cε2 N ε
s (w). (49)

The estimates (45) and (46) follow easily from (37). For (47), we note that

1

ε

(
iaε,Dα

) = − (
aε, [∂α, uε · ∇]w) − 1

2

(
aε, [∂α,∇ · uε]w)

= −
∑
γ<α

(
α

γ

) (
∂α−γ uε

) · (aε,∇∂γ w
) − 1

2

∑
γ<α

(
α

γ

)
∂α−γ

(∇ · uε
) (

aε, ∂γ w
)

since uε is real. Next, we can use (38) and (43) again. In particular, in the above expan-
sion, the terms (aε, ∂γ w) are bounded in L2 by (w) + ε2||w||2

Hs−2 and thus by N ε
s (w).

Similarly, the terms (aε,∇∂γ w) are bounded in L2 by N ε
s (w) if |γ | ≤ s − 3. Conse-

quently, we get

||
(

i f ′(|aε|2) 1
2 aε,Dα

)
||2L2 ≤ C

⎛
⎝ ∑

|β|=s−1

∫
Rd

f ′(|aε|2)(∂βw, aε)2+N ε
s (w)

⎞
⎠≤C N ε

s (w),
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which yields (47). Next, we turn to Cα . The Leibnitz formula gives

Cα =
∑

α̃ < α,

α̃ + β + λ + µ = α

∗ ∂λ
[

f ′(|aε|2)
] (

∂α̃w, ∂βaε
)

∂µaε, (50)

where ∗ is a real coefficient depending only on α̃, β, λ and µ. Since |α̃| ≤ |α|−1 ≤ s−2,
we can use again (38) through (43) to get that

||Cα||2L2 ≤ C
(
(w) + ε2||w||2Hs

)
≤ C N ε

s (w).

Since (iaε, ∂µaε) = O(ε) thanks to (38), we also get (49). For the H1 norm, the same
argument yields

||Cα||2H1 ≤C

⎛
⎜⎜⎜⎝(w) + ε2||w||2Hs +

∑
|γ | = s − 1,

|β + λ + µ| = 1

∫
Rd

∣∣∂λ
[

f ′(|aε|2) ](∂γ w, ∂βaε
)
∂µaε

∣∣2
⎞
⎟⎟⎟⎠.

To estimate the last sum, we first consider the terms with β = 0. They are always
bounded by

C
∫

Rd

[
f ′(|aε|2) + |aε|2| f ′′(|aε|2)|

] (
∂γ w, aε

)2

with |γ | = s − 1 and hence, thanks to (32), they are bounded by

C
∫

Rd
f ′(|aε|2) (∂γ w, aε

)2
,

and hence by N ε
s (w). Next, we consider the terms with |β| = 1. Since then λ = µ = 0,

we have to estimate terms like

T =
∫

Rd
f ′(|aε|2) (∂γ w, ∂βaε

)2 |aε|2.

By using again (38) and (43), we get

T ≤ C
∫

Rd
f ′(|aε|2)|a0|2|Re ∂γ w|2 + Cε2||w||2Hs−1,

and hence, by using (36), we finally obain

T ≤ C N ε
s (w).

Consequently, (48) is proven. This ends the estimates of the commutators.
We are now able to establish:

d

dt
N ε

(
∂αw

) ≤ C

(
1 +

1

ε2
|| Rϕ ||W s−1,∞ +

1

ε
|| Ra ||L∞

)
N ε

s (w)

+ || Fε ||2Hs +
C

ε2
|| Im Fε ||2Hs−1 . (51)
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Indeed, from Lemma 1, we deduce

d

dt
N ε

(
∂αw

) ≤ C

(
1 +

1

ε
|| Rϕ ||W 1,∞ +

1

ε
|| Ra ||L∞ +

1

ε2
|| Rϕ ||L∞

)
N ε

(
∂αw

)

+ || F̃ε ||2L2 +
4

ε

∫
Rd

f ′(|aε|2)(∂αw, aε)
(

iaε, F̃ε
)

−
∫

Rd
(iε�∂αw, F̃ε). (52)

To estimate the right-hand side of (52), we first estimate || F̃ε ||2
L2 . Combining (45) and

(46) with (48), we infer

|| F̃ε ||2L2 ≤ || Fε ||2Hs−1 + C

(
1 +

1

ε2
|| Rϕ ||2W s−1,∞

)
N ε

s (w). (53)

Next, we turn to the term

4

ε

∫
Rd

f ′(|aε|2)(∂αw, aε)
(

iaε, F̃ε
)

= 4

ε

∫
Rd

f ′(|aε|2)(∂αw, aε)
(
iaε, Cα +Dα +∂α Fε

+ [∂α, Rϕ]w) ,

which splits as four integrals. For the first one, by (49) and Cauchy-Schwarz:

4

ε

∫
Rd

f ′(|aε|2)(∂αw, aε)
(
iaε, Cα

) ≤ C

(∫
Rd

f ′(|aε|2) (∂αw, aε
)2
) 1

2

N ε
s (w)

1
2

≤ C N ε
s (w).

For the second one, we use (47) and Cauchy-Schwarz, which gives

4

ε

∫
Rd

f ′(|aε|2) 1
2 (∂αw, aε)

(
i f ′(|aε|2) 1

2 aε,Dα
)

≤ C N ε
s (w).

For the third integral, we simply write, using once again (38),

1

ε
|| (iaε, ∂α Fε

) ||L2 ≤ C || Fε ||Hs−1 +
C

ε
|| Im Fε ||Hs−1 ,

which yields by Cauchy-Schwarz

4

ε

∫
Rd

f ′(|aε|2)(∂αw, aε)
(
iaε, ∂α Fε

) ≤ C N ε
s (w) + C || Fε ||2Hs−1 +

C

ε2
|| Im Fε ||2Hs−1 .

Finally, for the fourth integral, we have by (45),

4

ε

∫
Rd

f ′(|aε|2)(∂αw, aε)
(
iaε, [∂α, Rϕ]w) ≤ C

ε
|| Rϕ ||W s−1,∞ N ε(w).

By summing these estimates, we find

4

ε

∫
Rd

f ′(|aε|2)(∂αw, aε)
(

iaε, F̃ε
)

≤ C

(
1 +

1

ε
|| Rϕ ||W s−1,∞

)
N ε

s (w) + C || Fε ||2Hs−1

+
C

ε2
|| Im Fε ||2Hs−1 . (54)
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Finally, we handle the term

−
∫

Rd

(
iε�∂αw, F̃ε

)
= −

∫
Rd

(
iε�∂αw, Cα + Dα + ∂α Fε + [∂α, Rϕ]w) .

By using an integration by parts, we have

−
∫

Rd

(
iε�∂αw, F̃ε) ≤ || Cα ||2H1 + ||Dα ||2H1 + || [∂α, Rϕ]w ||2H1 + || Fε ||2Hs + C N ε

s (w)

≤ || Fε ||2Hs + C

(
1 +

1

ε2
|| Rϕ ||W s−1,∞

)
N ε

s (w)

thanks to (45), (46) and (48). Consequently, we can collect the last estimate and (52),
(53), (54) to get (51). This ends the proof of Theorem 3.

3. Construction of WKB Expansions

In this section, we construct an approximate solution of (1) using a WKB expansion. The
first step is to prove the local existence of smooth solutions of the limit hydrodynamical
system.

3.1. Well-posedness of the limit system. We consider the system
⎧⎪⎪⎨
⎪⎪⎩

∂t a + u · ∇a +
1

2
a ∇ · u = 0

∂t u + u · ∇u + ∇
(

f (a2)
)

= 0,

(55)

which is only weakly hyperbolic, with the pressure law f satisfying assumption (A)

and the initial condition (a, u)|t=0 = (a0, u0).

Theorem 4. Assume that f satisfies (A) and let s > 2 + d/2. Then, for every initial
condition (a0, u0) ∈ Hs × Hs with a0 ∈ R, there exists T > 0 and a unique solution
(a, u) of (55) such that (a, u) ∈ C([0, T ], Hs−1 × Hs) ∩ C1([0, T ], Hs−2 × Hs−1).

Let us remark that if n = 1, then f ′(0) > 0 and thus f ′ > 0 in [0, +∞) (by (A)). In

this case, (55) is symmetrizable (with the symmetrizer S = diag
(

1, 1
4 f ′(a2)

, . . . , 1
4 f ′(a2)

)
used in [9]) and the local existence and uniqueness for (55) follows easily.

Proof of Theorem 4. The first step is to rewrite the system by using more convenient
unknowns. At first, we notice that thanks to (A), we can write f under the form

f (ρ) = ρn f̃ (ρ),

with f̃ smooth on [0, +∞) and such that f̃ (0) = 0. Next, since we have by assumption
f (0) = 0 and f ′(ρ) > 0 for ρ = 0, we also have that f (ρ) > 0 for ρ > 0. This implies
that f̃ (ρ) > 0 for ρ ≥ 0. This allows to define a smooth function h on R by

h(a) ≡ a
[

f̃ (a2)
] 1

2n
. (56)



Geometric Optics and Boundary Layers for Nonlinear-Schrödinger Equations 521

Note that h(a) = 0 for a = 0. It is useful to notice that we can also write h under the
form

h(a) = sgn(a) f (a2)
1

2n ,

and hence that we have

h(a)2n = f (a2), a ∈ R.

Furthermore, since f ′ > 0 and f̃ (0) > 0 in (0, +∞), we deduce that h′(a) > 0 for a = 0

and that h′(0) =
[

f̃ (0)
] 1

2n
> 0, so that h′ > 0 on R. Thus h is a smooth diffeomorphism

from R to h(R). In particular, this allows to define a smooth positive function c on h(R)

such that
1

2
ah′(a) = h(a) c (h(a)) , ∀a ∈ R.

With this definition, (h, u), with h ≡ h(a), solves the system⎧⎪⎨
⎪⎩

∂t h + u · ∇h + hc(h)∇ · u = 0

∂t u + u · ∇u + ∇
(

h2n
)

= 0.

(57)

Since a is in Hs if and only if h is in Hs , we shall prove local existence of a smooth
solution for the weakly hyperbolic system (57). As we shall see below, the nonlinear
symmetrization method of [15] does not allow to reduce (57) to a symmetric or sym-
metrizable system with smooth coefficients except in the case where c(h) = c̃(hn) for
some smooth map c̃. Nevertheless, it will be still possible to use the same idea to prove
the existence of an energy estimate with loss for the system (57). When we are in such
a situation, the simplest way to construct a solution is to use the vanishing viscosity
method. Indeed, this approximation method allows to preserve the nonlinear energy
estimate verified by (57). We thus consider for ε > 0 the system⎧⎪⎨

⎪⎩
∂t hε + uε · ∇hε + hεc(hε)∇ · uε = ε �hε

∂t uε + uε · ∇uε + ∇
(

h2n
ε

)
= ε �uε .

(58)

The local existence of smooth solutions for this parabolic system is very easy to obtain.
Moreover, we note that hε remains nonnegative if the initial datum (hε)|t=0 is nonneg-
ative. In the following, we shall only prove an Hs energy estimate independent of ε

for this system which ensures that the solution remains smooth on an interval of time
independent of ε. The final step which consists in using the uniform bounds to pass to
the limit when ε goes to zero to get a solution of (57) is very classical and hence will
not be detailled. In the proof of the energy estimates, we shall omit the subscript ε for
notational convenience.

As in the work of [15], we introduce the unknown H ≡ hn = an f̃ (a2)
1
2 . Note that

by definition of h, H is in Hs as soon as a is in Hs . We get for (H, u) the system⎧⎪⎨
⎪⎩

∂t H + u · ∇H + nHc(h)∇ · u = ε nhn−1�h = ε
(
�H − n(n − 1)hn−2|∇h|2

)

∂t u + u · ∇u + 2H∇H = ε �u.

(59)
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Note that it does not seem possible to get a classical hyperbolic symmetric system (in
the case ε = 0) involving only H and u as in the case of homogeneous pressure laws

considered in [15]. Indeed, the coefficient c(h) = c(H
1
n ) is not (in general) a smooth

function of H . Nevertheless, it will be possible to prove that the system with unknowns
(h, H, u) though only weakly hyperbolic (when ε = 0) satisfies an energy estimate. We
notice that the symmetrizer

S ≡ diag
(

1,
n

2
c(h)Id

)
,

which is positive since c(h) is positive, symmetrizes the first order part of (59). We shall
first perform an Hs energy estimate (s > 2 + d/2) on (59) but we have to track carefully
the dependence on h in the energy estimates.

To prove our Hs energy estimate, we shall make extensive use of the following
classical (see [18] for example) tame estimates

|| f g ||Hk ≤ Ck
(|| f ||L∞ || g ||Hk + || f ||Hk || g ||L∞

)
, (60)

|| ∂α( f g)− f ∂αg ||L2 ≤Ck
(|| f ||Hk || g ||L∞ + || ∇ f ||L∞ || g ||Hk−1

)
, |α| ≤ k, (61)

|| F(u) ||Hk ≤ C(|| u ||L∞)(1 + || u ||Hk ) (62)

if F is smooth and such that F(0) = 0.
At first, we notice that (∂α H, ∂αu) for |α| ≤ s solves the system

⎧⎪⎨
⎪⎩

∂t∂
α H + u · ∇∂α H + nc(h) (∇ · u) ∂α H = ε

(
�∂α H − n(n − 1)∂α(hn−2|∇h|2))

− [∂α, u] · ∇H − n[∂α, Hc(h)]∇ · u

∂t∂
αu + u · ∇∂αu + 2H∇∂α H = ε �∂αu − [∂α, u] · ∇u − [∂α, 2H ]∇H.

By using (61) to estimate in L2 the commutators in the right hand-side, we get in a
classical way by integration by parts

d

dt

[
1

2

∫
Rd

|∂α H |2 +
n

2
c(h)|∂αu|2

]
+ ε

∫
Rd

|∇∂α H |2 +
n

2
c(h)|∇∂αu|2 (63)

≤ C0
(|| (h, u) ||W 1,∞

) ||V ||2Hs + Cα + ε Dα + Rα,

where V ≡ (H, u), C0 is a non-decreasing function depending only on f , s and d, and

Cα ≡ −n
∫

Rd
(∂α H) [∂α, Hc(h)](∇ · u),

Dα ≡ −n

2

∫
Rd

c′(h)
(
(∇h · ∇)∂αu

) · ∂αu − n(n − 1)

∫
Rd

∂α
(

hn−2|∇h|2
)

∂α H,

Rα ≡ n

4

∫
Rd

c′(h)∂t h|∂αu|2.

We have singled out the three terms above since they are the ones involving h which
must be estimated with care. Note that the estimate of Cα will be crucial since this
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term involves high order derivatives of h. Next, we can integrate (63) in time, sum the
estimates for |α| ≤ s and use that c(h) > 0, hence nc(h)/2 ≥ 1

C1(||h||L∞ )
to obtain

||V (t)||2Hs + ε

∫ t

0
||∇V (τ )||2Hs dτ

≤ C1 (||h||L∞)

(
||V (0)||2Hs +

∫ t

0
C0

(||(h, u)(τ )||W 1,∞
) ||V (τ )||2Hs + C(τ ) + εD(τ )

+ R(τ ) dτ

)
, (64)

with

C ≡
∑
|α|≤s

Cα, D ≡
∑
|α|≤s

Dα, R ≡
∑
|α|≤s

Rα.

��

Estimate for C. We claim that

C ≤ C0(||(h, u)||W 1,∞)
(
||V ||2Hs + ||h||2Hs−1

)
. (65)

The crucial point is that this estimate only involves the Hs−1 norm of h. This will allow
us to conclude by using that for the first equation in (59), the Hs−1 norm of h is controlled
by the Hs norm of u.

By using the commutator estimate (61), we have

C ≤ C ||H ||Hs
(||Hc(h)||Hs ||∇ · u||L∞ + ||∇ (Hc(h)) ||L∞ ||∇ · u||Hs−1

)
≤ C0

(||(h, u)||W 1,∞
) (||V ||2Hs + ||H ||Hs ||Hc(h)||Hs

)
.

To estimate the last term, we use that H = hn , which yields h∂i H = nH∂i h, thus

∂i (Hc(h)) = c(h)∂i H + c′(h)H∂i h = c(h)∂i H +
1

n
c′(h)h∂i H.

Consequently, by (60), (62), we get

||Hc(h)||Hs ≤ C ||c(h)∇H ||Hs−1 + C ||c′(h)h∇H ||Hs−1 ≤ C0
(||(h, u)||W 1,∞

)
(||H ||Hs + ||h||Hs−1

)
,

and (65) follows.

Estimate for D. The term D involves derivatives of u of order ≤ s + 1, and we shall use
the energy dissipation in (63). We prove that

C1(||h||L∞) ε D ≤ 1

2
ε ||∇V ||2Hs + ε C0(||h||W 1,∞)

(
||V ||2Hs + ||∇h||2Hs−1

)
. (66)

We have, on the one hand,∣∣∣∣
∫

Rd
c′(h)∇h · ∇∂αu · ∂αu

∣∣∣∣ ≤ C0(||h||W 1,∞)||∇u||Hs ||u||Hs

≤ C0(||h||W 1,∞)||∇V ||Hs ||V ||Hs .
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On the other hand, for the second term (which vanishes if n = 1), after one integration
by parts when |α| > 0, we get

n(n − 1)

∣∣∣∣
∫

Rd
∂α

(
hn−2|∇h|2

)
∂α H

∣∣∣∣ ≤ C ||∇H ||Hs ||hn−2|∇h|2||Hs−1

≤ C0(||h||W 1,∞) ||∇H ||Hs ||∇h||Hs−1,

and if α = 0, since H = hn and s ≥ 1,

n(n − 1)

∣∣∣∣
∫

Rd
hn−2|∇h|2 H

∣∣∣∣ = n − 1

n

∫
Rd

|∇H |2 ≤ C ||H ||2Hs .

Consequently,

ε D ≤ ε C0(||h||W 1,∞) ||∇V ||Hs
(||V ||Hs + ||∇h||Hs−1

)
+ ε C ||V ||2Hs ,

and (66) follows from the standard inequality, for a, b, θ > 0, ab ≤ θa2 + b2

4θ
.

Estimate for R. We prove that

C1(||h||L∞)R ≤ 1

2
ε ||∇V ||2Hs + C0(||(h, u)||W 1,∞) ||V ||2Hs . (67)

By using the first equation in (58) for h and an integration by parts, we find, as for
the first term in D,

Rα ≤ C0(||(h, u)||W 1,∞) ||V ||2Hs + ε
n

4

∫
Rd

c′(h)�h|∂αu|2

≤ C0(||(h, u)||W 1,∞) ||V ||2Hs − ε
n

4

∫
Rd

c′(h)
(
(∇h · ∇)∂αu

) · ∂αu

− ε
n

4

∫
Rd

c′′(g)|∇h|2 |∂αu|2

≤ C0(||(h, u)||W 1,∞)
(
||V ||2Hs + ε ||∇V ||Hs ||V ||Hs

)
.

Then, (66) follows as above from the inequality ab ≤ θa2 + b2

4θ
.

Summing (65), (66) and (67), inserting this into (64) and cancelling the terms
ε ||∇V ||2Hs , we infer

||V (t)||2Hs ≤ C1 (||h(t)||L∞)
(
||V (0)||2Hs

+
∫ t

0
C0(||(h, u)(τ )||W 1,∞)

[
||V (τ )||2Hs + ||h(τ )||2Hs−1 + ε||∇h(τ )||2Hs−1

]
dτ

)
. (68)

To close the estimate, it remains to evaluate ||h||2
Hs−1 and ε

∫ t
0 ||∇h||2

Hs−1 . We use the

standard Hs−1 estimate for the convection diffusion equation (58) which yields, as for
(63), for |α| ≤ s − 1,

d

dt

[
1

2

∫
Rd

|∂αh|2
]

+ ε

∫
Rd

|∂αh|2 ≤ C0
(|| (h, u) ||W 1,∞

) (||h||2Hs−1 + ||h||Hs−1 ||u||Hs

)
.
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Summing for |α| ≤ s − 1 and integrating in time, this yields

1

2
||h(t)||2Hs−1 + ε

∫ t

0
||∇h(τ )||2Hs−1 dτ

≤ 1

2
||h(0)||2Hs−1 +

∫ t

0
C0

(|| (h, u)(τ ) ||W 1,∞
) (||V (τ )||2Hs + ||h(τ )||2Hs−1

)
dτ. (69)

Finally, we can combine (68) and (69), to get

||V (t)||2Hs + ||h(t)||2Hs−1

≤ C0
(|| (h, u) ||L∞([0,t],W 1,∞)

) (||V (0)||2Hs + ||h(0)||2Hs−1

+
∫ t

0
||V (τ )||2Hs + ||h(τ )||2Hs−1 dτ

)
. (70)

Since Hs−1 is embedded in W 1,∞ for s > 2+d/2, we easily get by classical continuation
arguments and the Gronwall lemma that the solution of (58) is defined on an interval
of time [0, T ) independent of ε. Finally, (70) provides a uniform bound for (h, H, u)

in Hs−1 × Hs × Hs , which allows to prove in a classical way that (hε, uε) converges
towards a solution of (57). This ends the proof of the existence of solution.

To prove the uniqueness, it suffices to use the same method as above and perform an
L2 energy estimate on the system satisfied by h1 − h2, u1 − u2, H1 − H2. This is left to
the reader.

3.2. WKB expansions. We now turn to the construction of WKB expansions up to arbi-
trary order. Let us first notice that in Theorem 4, if the initial datum (a0, u0) is in
H∞ × H∞, then the solution (a, u) is in C0([0, T ], Hs−1 × Hs) for every s > 2 + d/2,
with T independent of s > 2 + d/2. In other words, the existence time of the maximal
solution in H∞ × H∞ is positive. This fact follows easily from (70) and the Gronwall
inequality (since Hs−1 ⊂ W 1,∞).

Lemma 2. Consider �ε
0 = aε

0eiϕε
0/ε with aε

0 ∈ H∞, ϕε
0 ∈ H∞ and that for some m ∈ N,

there exists an expansion

aε
0 =

m∑
k=0

εkak
0 + εm+1aε

0 , ϕε
0 =

m∑
k=0

εkϕk
0 + εm+1ϕε

0 (71)

with a0
0 ∈ R, ak

0 , ϕk
0 ∈ H∞, satisfying, for every s,

sup
ε∈(0,1)

(|| aε
0 ||Hs + || ϕε

0 ||Hs
)

< +∞. (72)

Let us denote 0 < T ∗ ≤ +∞ the existence time of the maximal smooth (i.e. H∞ × H∞)
solution (a0, ϕ0) for (55) with the initial condition (a0

0 , ϕ0
0). Then, there exists an approx-

imate smooth solution of (1) on [0, T ∗) under the form �a = aεeiϕε/ε, with aε, ϕε

∈ H∞ and aε complex-valued, solving⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ϕε

∂t
+ f (|aε|2) +

1

2
|∇ϕε|2 = Rm

ϕ

∂aε

∂t
+
(∇ϕε

) · ∇aε +
aε

2
�ϕε − ε

2
J�aε = Rm

a ,

(73)
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with the initial condition (aε, ϕε)/t=0 = (
aε

0, ϕ
ε
0

)
, and where, for every s and 0 < T <

T ∗,

sup
[0,T ]

(|| Rm
a ||Hs + || Rm

ϕ ||Hs
) ≤ Cs,T εm+2. (74)

Finally, for 0 < T < T ∗, aε verifies (38): aε − a0 = O(ε) in L∞([0, T ], W s,∞).

Note that �a is indeed an approximate solution of (1) since

iε
∂�a

∂t
+

ε2

2
��a − �a f (|�a |2) = (−iεRm

a + aε Rm
ϕ

)
exp

(
i
ϕε

ε

)
.

By using the notation of Sect. 2, we have Rε = −iεRm
a + aε Rm

ϕ , hence

sup
[0,T ]

|| Rε ||Hs ≤ Csε
m+2. (75)

Proof. As in [9], we look for expansions

aε =
m∑

k=0

εkak + εm+1am+1, ϕε =
m∑

k=0

εkϕk + εm+1ϕm+1.

This yields that (a0, ϕ0) solves the nonlinear system
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ϕ0

∂t
+ f (|a0|2) +

1

2
|∇ϕ0|2 = 0

∂a0

∂t
+
(
∇ϕ0

)
· ∇a0 +

a0

2
�ϕ0 = 0,

(76)

which is just (9), and that for 1 ≤ k ≤ m, (ak, ϕk) solves the linear system
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ϕk

∂t
+ 2 f ′(|a0|2)(a0, ak) + ∇ϕ0 · ∇ϕk = Sk

ϕ

∂ak

∂t
+
(
∇ϕ0

)
· ∇ak + ∇a0 · ∇ϕk +

a0

2
�ϕk +

ak

2
�ϕ0 = Sk

a ,

(77)

where the source terms (Sk
ϕ, Sk

a ) depend only on (a j , ϕ j )0≤ j≤k−1, and Sk
a is complex-

valued.
We first solve (76) (that is (9)) with the initial condition ϕ0

/t=0 = ϕ0
0 , a0

/t=0 = a0
0 . By

introducing u0 ≡ ∇ϕ0 and by taking the gradient of the first equation of (76), we find
⎧⎪⎪⎨
⎪⎪⎩

∂t a
0 + u0 · ∇a0 +

a0

2
∇ · u0 = 0

∂t u
0 + u0 · ∇u0 + ∇

(
f
(
(a0)2

))
= 0,

(78)

which is the compressible Euler type equation considered in the previous section. By
using Theorem 4, we get the existence of a smooth solution (a0, u0) ∈ Hs−1 × Hs for
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every s on [0, T ∗) (with T ∗ independent of s), with a0 real-valued. Finally, to get ϕ0, it
is natural to set

ϕ0(t, x) = ϕ0
0(x) −

∫ t

0

(
f
(
(a0)2

)
+

1

2
|u0|2

)
(τ, x) dτ,

and the same argument as in [2] yields u0 = ∇ϕ0.
We now turn to the resolution of (77). We solve it with the initial condition(

ϕk, ak
)
/t=0 = (

ϕk
0 , ak

0

)
. By introducing again uk ≡ ∇ϕk , we can take the gradient

in the first line of (77) to get
⎧⎪⎪⎨
⎪⎪⎩

∂t a
k + u0 · ∇ak +

a0

2
∇ · uk + uk · ∇a0 +

ak

2
∇ · u0 = Sk

a ,

∂t u
k + u0 · ∇uk + ∇

(
a0, f ′((a0)2)ak

)
+ uk · ∇u0 = ∇Sk

ϕ.

(79)

Again, since f ′ ((a0)2
)

can vanish, the symmetrization of this linear hyperbolic system
requires some care. We thus set

Fk(t, x) ≡
⎧⎨
⎩

√
2
(

f ′((a0)2)
) 1

2 ak if n is odd
√

2 a0
(

f ′((a0)2)

(a0)2

) 1
2

ak if n is even.

Note that in both cases, we have

Fk(t, x) = √
2 g(a0)ak

with g smooth. Indeed, as we have seen, we can write f ′(ρ) = ρn−1q(ρ) with q smooth
and positive, and we have in both cases :

g(a0) = (a0)n−1
(

q((a0)2)
) 1

2
. (80)

This is the natural generalization of the change of unknown used in [2]. Then, thanks to
the equation on a0, we get for (Fk, uk) the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t Fk + u0 · ∇Fk +
1√
2

a0g(a0)∇ · uk +
√

2 g(a0) uk · ∇a0

+
Fk

2

(
1 +

a0g′(a0)

g(a0)

)
∇ · u0 = √

2g(a0)Sk
a

∂t u
k + u0 · ∇uk +

1√
2

∇
(

a0g(a0), Fk
)

+ uk · ∇u0 = ∇Sk
ϕ.

Note that the coefficient a0g′(a0)

g(a0)
is smooth even when a0 vanishes since g is under the

form (80). We have obtained a linear symmetric hyperbolic system with a zero order
term and a source term Sk depending only on (a j , ϕ j ) for 0 ≤ j < k under the form

∂tU
k +

d∑
j=1

A j (t, x)∂ jU
k + L(t, x)U k = Sk, U k =

(
Fk

uk

)
,
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where A j (t, x) are smooth, real and symmetric and the matrix L is smooth. By the
classical theory, there exists, on [0, T ∗), a smooth solution (Fk, uk) in H∞ × H∞ of
this system. Once uk is built, we get ak by solving the transport equation for ak which
is given by the first line of (79). Finally, we deduce the phase ϕk by integrating in time
the first line of (77). We obtain

ϕk(t, x) = ϕk
0(x) −

∫ t

0

(
2 f ′(|a0|2)(a0, ak) + ∇ϕ0 · uk − Sk

ϕ

)
(τ, x)dτ.

Finally, we choose in a similar way (am+1, ϕm+1) that solve (77) with the initial con-
dition

(
am+1, ϕm+1

)
/t=0 = (

aε
0 ,ϕε

0

)
. Because of the assumption (72), we find that they

are also uniformly bounded in Hs−1 × Hs with respect to ε. This concludes the proof
of Lemma 2. ��

4. Nonlinear Stability

In this section, we give the proof of Theorem 2. We shall actually prove directly a more
precise version which states the existence of a WKB expansion to any order.

Theorem 5. Consider �ε
0 = aε

0eiϕε
0/ε with aε

0 ∈ H∞, ϕε
0 ∈ H∞ and that for some

m ∈ N, there exists an expansion (71) as in Lemma 2. We assume (A) and let (aε, ϕε) be
the smooth approximate solution given by Lemma 2 which is smooth on [0, T ∗). Then,

• if m = 0, there exists ε0 > 0 and T ∈ (0, T ∗) such that for every ε ∈ (0, ε0], the
solution of (1) with initial data �ε

0 remains smooth on [0, T ] and satisfies for every
s ∈ N, the estimate

|| �ε exp

(
− i

ε
ϕε

)
− aε ||L∞([0,T ],Hs ) ≤ Csε.

• if m ≥ 1, for every T ∈ (0, T ∗), there exists ε0(T ) > 0 such that for every
ε ∈ (0, ε0(T )], the solution of (1) with initial data �ε

0 remains smooth on [0, T ]
and satisfies for every s ∈ N, the estimate

|| �ε exp

(
− i

ε
ϕε

)
− aε ||L∞([0,T ],Hs ) ≤ Cs,T εm+1.

Note that Theorem 2 is actually the special case m = 0 in Theorem 5.

Proof of Theorem 5. Let s > d/2. We take (aε, ϕε) the approximate solutions given by
Lemma 2 and look for the solution of (1) under the form �ε = (aε + w)eiϕε/ε. We get
for w Eq. (21) with Fε given by (22) and the initial condition w/t=0 = 0. For s > d/2,
and every ε > 0, this semilinear equation is locally well-posed in Hs : we get very easily
that there exists for some T ε > 0 a unique maximal solution w ∈ C([0, T ε), Hs) of (21)
(see [5] for example). We shall prove that T ε is bounded from below by some T > 0 if
m = 0, and that T ε ≥ T for every T ∈ (0, T ∗) for ε sufficiently small if m ≥ 1. Let us
define

τ ε ≡ sup
{
τ ∈ (0, T ε), ∀t ∈ [0, τ ], 2N ε

s (w(t)) ≤ ε2m+4
}

.

Note that τ ε > 0 since w(0) = 0 and that by Sobolev embedding, we have, for t ≤ τ ε,

||w(t) ||2L∞ ≤ K 2ε−2 N ε
s (w(t)) ≤ K 2ε2m+2 ≤ K 2,

for some K independent of ε. ��
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We will apply Theorem 3 with Fε given by (22). To estimate Fε, we use the following
lemma:

Lemma 3. Let R > 0, s > d/2 and w such that ||w ||L∞ ≤ R, and Fε given by (22).
Then, for a constant C depending only on || aε(t) ||W s+2,∞ and R, we have

|| Fε ||2Hs +
1

ε2
|| ImFε ||2Hs−1 ≤Cε2m+4+Cε2m N ε

s (w)+C

[
N ε

s (w)

ε4 +

(
N ε

s (w)

ε4

)2
]

N ε
s (w).

We postpone the proof of Lemma 3 to the end of the section. We can first easily end
the proof of Theorem 5. Notice first that, by definition of �a , we have

Ra = Rm
a +

iε

2
�aε = OHk (ε

m+1) + OHk (ε) = OHk (ε),

for every k, uniformly for 0 ≤ t ≤ T , hence

1

ε
|| Ra(t) ||W s−1,∞ ≤ C.

Applying Theorem 3 and Lemma 3 with R ≡ K , we infer that for 0 ≤ t ≤ τ ε,

d

dt
N ε

s (w(t)) ≤ Cε2m+4 + Cε2m N ε
s (w(t)) ,

which gives immediately, since w/t=0 = 0, that

N ε
s (w(t)) ≤ Cε2m+4

(
eCε2m t − 1

)
≤ 1

2
ε2m+4

in the following cases:

• for m = 0, 0 ≤ t ≤ T with 0 < T < T ∗ sufficiently small independent of ε,
• for m ≥ 1, T ∈ (0, T ∗) is arbitrary, 0 ≤ t ≤ T and ε ≤ ε0(T ) with ε0(T ) sufficiently

small.

As a consequence, τ ε ≥ T as desired and

||w ||L∞([0,T ],Hs (Rd )) ≤ Cs,T εm+1.

It remains to prove Lemma 3.

Proof of Lemma 3. We recall that Fε is given by

Fε = Rε + Qε(w)= Rε + (aε + w)
(

f (|aε + w|2) − f (|aε|2)
)

− 2(w, aε) f ′(|aε|2)aε.

As a first try, we could use the rough estimate

Qε(w) = O(|w|2) as w → 0,

which would lead to

|| Qε ||2Hs +
1

ε2
|| Im Qε ||2Hs−1 ≤ C

ε2
||w ||4Hs ≤ C

ε6 N ε
s (w)2,
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which does not allow us conclude in the proof of Theorem 5 for m = 0 and does not give
the sharp result for the existence time if m = 1. To get the refined estimate of Lemma 3,
the idea is then to use a Taylor expansion for Qε w.r.t. w up to second order, and write

Qε(w) = |w|2 f ′(|aε|2)aε + 2 f ′(|aε|2)(w, aε)w + 2aε f ′′(|aε|2)(w, aε)2 + Gε(x, w),

so that for fixed x , we have as w → 0,

Gε(x, w) = O
(
|w|3

)
.

We turn now to estimate each term in Fε.
Estimate for Rε = iεRm

a − Rm
ϕ aε. Thanks to (75), we have

|| Rε ||2Hs ≤ Cε2m+4.

Moreover, since Rm
ϕ is real-valued and since, from (38), Im aε = OW s,∞(ε), we also

have

1

ε2
|| Im Rε ||2Hs−1 ≤ Cε2m+4

thanks to (74). We have thus proven that

|| Rε ||2Hs +
1

ε2
|| Im Rε ||2Hs−1 ≤ Cε2m+4.

Estimate for Gε(x, w). The estimate relies on Lemma 5 in the Appendix. Indeed, it is
clear from the Taylor formula that Gε may be written under the form

(Re w)2 h11 (x, w(x)) + (Re w) (Im w) h12 (x, w(x)) + (Im w)2 h22 (x, w(x)) ,

where h11, h12, h22 : R
d × C → C are of class C∞ and ∀x ∈ R

d , h11(x, 0) =
h12(x, 0) = h22(x, 0) = 0. Moreover, h11, h12 and h22 verify the hypothesis of Lemma 5
in the Appendix since aε ∈ L∞([0, T ], W s,∞). As a consequence, if || w ||L∞ ≤ R,

|| Gε ||Hs ≤ C ||w ||3Hs ,

which implies

|| Gε (x, w(x)) ||2Hs +
1

ε2
|| Im Gε (x, w(x)) ||2Hs−1 ≤ 2

ε2
|| Gε (x, w(x)) ||2Hs ≤ C

ε8 N ε
s (w)3.

The estimate for the quadratic terms in Qε(w) will rely crucially on the fact that aε

is real to first order and that (w, aε) is estimated in Hs−1 by N ε
s (w) and not just by

ε−2 N ε
s (w).

Estimate for Fε
1 ≡ |w|2 f ′(|aε|2)aε. We have

|| Fε
1 ||2Hs ≤ C

ε4 N ε
s (w)2,

and in view of (38), Im aε = OW s,∞(ε), thus

1

ε2
|| Im Fε

1 ||2Hs−1 ≤ C || |w|2 ||2Hs−1 ≤ C

ε4 N ε
s (w)2.
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Estimate for Fε
2 ≡ 2 f ′(|aε|2)(w, aε)w. We begin with the rough estimate

|| Fε
2 ||2Hs ≤ C

ε4 N ε
s (w)2.

Moreover, one has

|| f ′(|aε|2)(w, aε) ||2Hs−1 ≤ C N ε
s (w). (81)

Indeed, let µ ∈ N
d with |µ| ≤ s − 1. Then,

∂µ
(

f ′(|aε|2)(w, aε)
)

=
∑

α+β+λ=µ

∗ ∂λ
[

f ′(|aε|2)
] (

∂αw, ∂βaε
)
,

where ∗ is a coefficient depending only on α, β and λ. Since |µ| ≤ s − 1, the terms

(∂αw, ∂βaε) are bounded in L2 by (w)
1
2 + ε||w||Hs−2 as soon as |α| ≤ s − 2. The term

in the sum with |α| = s − 1 (hence µ = α and β = λ = 0) is f ′(|aε|2) (∂µw, aε) and
is bounded in L2 by N ε(∂µw). Hence, (81) follows.

As a consequence, by (60) and Sobolev embedding, we obtain

|| f ′(|aε|2)(w, aε)w ||Hs−1 ≤ Cs || w ||L∞
(
|| f ′(|aε|2)(w, aε) ||Hs−1 + ||w ||Hs−1

)

≤ C

ε2 N ε
s (w).

Consequently,

|| Fε
2 ||2Hs +

1

ε2
|| Im Fε

2 ||2Hs−1 ≤ C

ε4 N ε
s (w)2.

Estimate for Fε
3 ≡ 2aε f ′′(|aε|2)(w, aε)2. We find as for Fε

1 ,

|| Fε
3 ||2Hs ≤ C

ε4 N ε
s (w)2,

and once again in view of (38),

1

ε2
|| Im Fε

3 ||2Hs−1 ≤ C ||w ||4Hs−1 ≤ C

ε4 N ε
s (w)2.

We conclude the proof of Lemma 3 summing these estimates. ��

5. Geometric Optics in a Half-Space

In this section, we consider the Gross-Pitaevskii equation in a half-space in dimension
d ≤ 3,

G P(�ε) ≡ iε∂t�
ε +

ε2

2
��ε − �ε(|�ε|2 − 1) = 0, x ∈ R

d
+ ≡ R

d−1 × (0, +∞).

(82)

We consider the Neumann boundary condition (12) on the boundary and the condition
(13) at infinity, that is

∂�ε

∂n /∂R
d
+

= ∂�ε

∂z /z=0
= 0 and exp

(
i

2ε
|u∞|2 t − i

ε
u∞ · x

)
�ε → 1 |x | → +∞

by using the notation x = (y, z) ∈ R
d−1 × (0, +∞).
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5.1. Construction of the WKB expansion. In this section, we shall consider a smooth
solution (a, u), with a real-valued, of

⎧⎪⎨
⎪⎩

∂t a + u · ∇a +
1

2
a ∇ · u = 0

∂t u + u · ∇u + ∇(a2) = 0,

(83)

with the boundary condition ud(t, y, 0) = 0 and the condition at infinity

u(t, x) → u∞, a(t, x) → 1 when |x | → +∞.

Since we look for a real-valued, the resolution of this system is made in [14] (Theo-
rem 2). Given s ∈ N

∗, if the initial datum a0 is positive and (a0 −1, u0 −u∞) ∈ Hs , and
under some compatibility conditions for (a0, u0) on the boundary ∂R

d
+ of sufficiently

high order on the initial data, there exists T0 ∈ (0, +∞) and a solution (a, u) on [0, T0]
with (a − 1, u − u∞) ∈ C0([0, T0], Hs) ∩ C1([0, T0], Hs−1), such that

a(t, x) ≥ α > 0, ∀t ∈ [0, T0], ∀x ∈ R
d
+ (84)

for some α > 0. We also define the phase ϕ by

ϕ(t, x) ≡ ϕ0(x) −
∫ t

0

(
1

2
|u|2 + |a|2 − 1

)
(τ, x) dτ.

In view of the condition (13) at infinity, ϕ is not in Hs but ϕ(t, .)−u∞·x + t
2 |u∞|2 ∈ Hs .

As we have seen and as in [2], u = ∇ϕ.
The aim of this subsection is to prove the existence of the WKB expansion (which

involves boundary layers since the solution of (83) does not match the Neumann bound-
ary condition (12)) up to arbitrary orders for (82), (12), (13) starting from a smooth
(a, u) which verifies (84).

We define the set of boundary layer profiles Sexp as

Sexp =
{

A(t, y, Z) ∈ H∞(R+ × R
d−1 × R+), ∀k, α, l, ∃γ > 0, |∂k

t ∂α
y ∂ l

Z A|
≤ Ck,α,l exp(−γ Z)

}
.

Lemma 4. Let s ∈ N and m ∈ N
∗ be fixed. Then, there exists a smooth function �a,m =

aεei ϕε

ε on [0, Tm] verifying the Neumann condition (12) and the condition (13) at infinity
and such that �a,m is an approximate solution of (82) on [0, Tm]:

G P(�a,m) = εm Rεei ϕε

ε , (85)

where Rε can be written under the form

Rε = −aε
(

Rint,m
ϕ (t, x) + R�,m

ϕ (t, y,
z

ε
)
)

+ i
(
εRint,m

a (t, x) + R�,m
a (t, y,

z

ε
)
)

, (86)
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with Rint,m
ϕ , Rint,m

a smooth and uniformly bounded in Hs and R�,m
a (t, y, Z), R�,m

ϕ

(t, y, Z) ∈ Sexp. Moreover, aε is real-valued and aε, ϕε have smooth expansions under
the form

aε = a +
m−1∑
k=1

εk
(

ak(t, x) + Ak(t, y,
z

ε
)
)

+ εm Am(t, y,
z

ε
), (87)

ϕε = ϕ +
m−1∑
k=1

εk
(
ϕk(t, x) + 
k(t, y,

z

ε
)
)

+ εm
m(t, y,
z

ε
). (88)

The boundary layer profiles Ak(t, y, Z), 
k(t, y, Z) belong to Sexp and are such that

∂Z A1(t, y, 0) = −∂za(t, y, 0), ∂Z
1(t, y, 0) = −∂zϕ(t, y, 0),

∂Z Ak(t, y, 0) = −∂zak−1(t, y, 0), ∂Z
k(t, y, 0) = −∂zϕ
k−1(t, y, 0)

∀2 ≤ k ≤ m. (89)

Proof. Since �a,m = aε exp
(

i ϕε

ε

)
, we want to solve approximately

−aε

(
∂tϕ

ε +
1

2
|∇ϕε|2 + |aε|2 − 1

)
+ iε

(
∂t a

ε + ∇ϕε · ∇aε +
1

2
aε�ϕε

)

+
ε2

2
�aε = 0. (90)

Since, in this section, we are looking for aε real-valued, we can split the system (90)
into

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t a
ε + ∇ϕε · ∇aε +

1

2
aε�ϕε = 0

∂tϕ
ε +

1

2
|∇ϕε|2 + (aε)2 − 1 = ε2

2

�aε

aε

for t ≥ 0, x ∈ R
d
+. (91)

Note that in this section, the division by aε in the right-hand side of the second equation
of (91) is not a problem since a0 = a verifies (84) and hence does not vanish.

We thus plug the expansions (87), (88) in (91) and we cancel the powers of ε. To sep-
arate interior and boundary layer terms, we use the general theory of [11]. In particular,
we use that for every smooth function f and V ∈ Sexp, we have the expansion

f (u(t, x) + V (t, y, z/ε)) = f (u(t, x)) + f (u(t, y, 0) + V (t, y, z/ε)) − f (u(t, y, 0))

+ εR,

where R ∈ Sexp. This yields that the boundary layer part of f (u(t, x) + V (t, y, z/ε))
is given by f (u(t, y, 0) + V (t, y, z/ε)) − f (u(t, y, 0)). In the following, we use the
notation Wb = W (t, y, 0) for every W (t, x). At first, the ε−1 term in the equation only
gives

ab∂Z Z
1 = 0,
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and hence we have 
1 = 0, since ab ≥ α > 0 and 
1 ∈ Sexp. Note that this is coherent
with the fact that ud(t, y, 0) = (∂zϕ)b = 0 so that we do not need a boundary layer to
correct the boundary condition. The ε0 term gives, as expected,

⎧⎪⎪⎨
⎪⎪⎩

∂tϕ +
1

2
|∇ϕ|2 + a2 − 1 = 0

∂t a + ∇ϕ · ∇a +
1

2
a �ϕ = 0

for t ≥ 0, x ∈ R
d
+ (92)

for the interior part, and for the boundary layer terms, for (t, y) ∈ R
+ × R

d−1,

ab∂Z Z
2 = −(∂zϕ)b ∂Z A1 = 0 for Z > 0, (93)

since (∂zϕ)b = ud(t, y, 0) = 0. Consequently, we also find 
2 = 0. Next, the order ε

gives
⎧⎪⎨
⎪⎩

∂t a
1 + ∇ϕ · ∇a1 + ∇ϕ1 · ∇a +

1

2
(a�ϕ1 + a1�ϕ) = 0

∂tϕ
1 + 2a a1 + ∇ϕ · ∇ϕ1 = 0

for t ≥ 0, x ∈ R
d
+

in the interior and for the boundary layer terms⎧⎪⎪⎨
⎪⎪⎩

1

2
∂Z Z A1 = A1

(
∂tϕ +

1

2
|∇ϕ|2 + a2 − 1

)
b

+ 2a2
b A1 = 2a2

b A1

ab∂Z Z
3 = G3

for Z > 0,

(94)

where G3 ∈ Sexp depends only on (a, A1, a1) and (ϕ, ϕ1). Consequently, the boundary
layer A1 is given by

A1 ≡ (∂za)b

2ab
e−2ab Z

in order to match (89). Finally, the εk , k ≥ 2 terms give⎧⎪⎪⎨
⎪⎪⎩

∂tϕ
k + 2a ak + ∇ϕ · ∇ϕk = Sk

ϕ

∂t a
k + ∇ϕ · ∇ak + ∇a · ∇ϕk +

a

2
�ϕk +

ak

2
�ϕ = Sk

a

for t ≥ 0, x ∈ R
d
+

(95)

and ⎧⎨
⎩

∂Z Z Ak = 4a2
b Ak + Fk

∂Z Z
k = Gk
for Z > 0, (96)

where Sk
ϕ and Sk

a depend only on (a, ϕ) and (a j , ϕ j )1≤ j≤k−1; Fk ∈ Sexp depends
only on (a, ϕ), (a j , ϕ j , A j ,
 j )1≤ j≤k−1 and 
k ; and Gk ∈ Sexp depends on (a, ϕ),
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(a j , ϕ j , A j ,
 j )1≤ j≤k−1. Therefore, if we want to solve by induction these equations,
one has to determine first 
k , then (ak, ϕk) and finally Ak .

To solve the cascade of equations by induction, we first determine (a1, ϕ1). As before,
we notice that (a1, u1 ≡ ∇ϕ1) solves a symmetrizable hyperbolic system (there is no
problem with the vacuum since we are in the same situation as in [9]). Since the condition
at infinity is already absorbed by (a, ϕ), one can look for (a1, u1) in Hs . Moreover, we
solve the system in R

d
+ with the boundary condition u1

d(t, y, 0) = 0 which is needed in
order to match (89) since we have already found that 
2 = 0. The existence of a smooth
solution for this linear system with the boundary condition u1

d(t, y, 0) = 0 which is
maximal dissipative and an initial condition satisfying suitable compatibility conditions
can be obtained by the classical theory [17]. Then, one finds ϕ1 by the formula

ϕ1(t, x) = ϕ1
0(x) −

∫ t

0

(
2a a1 + u · u1

)
(τ, x) dτ.

Furthermore, since F2 ∈ Sexp and ab ≥ α > 0, the first equation in (96) (with k = 2)
has a unique solution A2 ∈ Sexp. We have therefore found (a1, A1, ϕ1,
1, A2,
2).

We now proceed by induction. Assume that, for some m ≥ 2, we have deter-
mined (a j , ϕ j )1≤ j≤m−1 and (A j ,
 j )1≤ j≤m . Then, we wish to solve (95) and (96) with
k = m +1. Since Gm+1 is already determined and Gm+1 ∈ Sexp, the differential equation
∂Z Z
m+1 = Gm+1 has a unique solution in Sexp and

∂Z
m+1(t, y, Z) = −
∫ +∞

Z

Gm+1(t, y, ζ )

ab(t, y)
dζ.

This determines the boundary condition for um+1 ≡ ∇ϕm+1. Indeed, to match (89) we
shall need to impose

um+1
d (t, y, 0) = (∂zϕ

m+1)(t, y, 0)=−(∂Z 
m+1)(t, y, 0) =
∫ +∞

0

Gm−1(t, y, ζ )

ab(t, y)
dζ,

(97)

which is non-zero in general. We then solve (96) in the following way: (am+1, um+1 ≡
∇ϕm+1) still solves a linear symmetrizable hyperbolic system, with source terms Sm+1

ϕ

and Sm+1
a already known, with the maximal dissipative boundary condition (97). It has

then a smooth solution by the above mentioned theory. Then, we recover ϕm+1 as usual
by

ϕm+1(t, x) ≡ ϕm+1
0 (x) +

∫ t

0

(
Sm+1
ϕ − 2a am+1 − u · um+1

)
(τ, x) dτ.

Finally, the first equation in (96) (with k = m + 1) is a linear ODE for Am+1, with source
term Fm+1 ∈ Sexp now determined, for which we can write down explicitly the unique
exponentially decreasing solution satisfying ∂Z Ak(t, y, 0) = −∂zak(t, y, 0).

Consequently, we have constructed an approximate solution of (91) such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t a
ε + ∇ϕε · ∇aε +

1

2
aε�ϕε = εm

(
Rint,m

a (t, x) + ε−1 R�,m
a (t, y, z/ε)

)

∂tϕ
ε +

1

2
|∇ϕε|2 +

(
aε
)2 − 1 = ε2

2

�aε

aε
(t, x) + εm

(
Rint,m

ϕ (t, x) + R�,m
ϕ (t, y, z/ε)

)
,
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where Rint,m
a (t, x), Rint,m

ϕ (t, x) are smooth bounded functions and R�,m
a , R�,m

ϕ ∈ Sexp.
We can thus write the error Rε in the GP equation as

Rε(t, x) = εm
(
−aε

(
Rint,m

ϕ (t, x) + R�,m
ϕ (t, y, z/ε)

)
+ i

(
εRint,m

a (t, x)

+ R�,m
a (t, y, z/ε)

) )
.

This ends the proof of Lemma 4. ��

5.2. Validity of the WKB expansion. We shall now prove the stability of the WKB expan-
sion built in Lemma 4.

Theorem 6. Let �a,m = aεei ϕε

ε be a WKB expansion defined on [0, Tm] given by
Lemma 4. Then for d ≤ 3 and m ≥ 4 there exists a unique smooth solution �ε also
defined on [0, Tm] of (82), (12), (13) such that �ε

/t=0 = �
a,m
/t=0. Moreover, we have the

estimate

ε || �εe
−iϕε

ε − aε ||H1(Rd
+) + ε3 ||�εe−i ϕε

ε − aε ||H3(Rd
+) ≤ Cmεm− 1

2 , ∀t ∈ [0, Tm],
and in particular

||�εe−i ϕε

ε −
(

a + εA1
)

||W 1,∞(Rd
+) ≤ Cm max{ε, εm− 7

2 }. (98)

Remark 3. For simplicity, we have restricted ourselves to dimension d ≤ 3. Note how-
ever that it is possible to get Hs estimates for every s. By contrast with Theorem 2,
we emphasize that the initial condition in Theorem 6 is exactly the WKB approximate
solution �a,m . In particular, this initial datum has to verify some compatibility condition
on the boundary.

Proof. As in the proof of Theorem 5, we set

�ε = �a,m + w e
iϕε

ε

and we study the equation for w i.e. (19). Note that we are now seeking a w which
tends to zero at infinity since the boundary condition at infinity is already absorbed in
the WKB expansion. Again the first step is to get estimates for the linear equation (21)
in � with the Neumann boundary condition

∂zw(t, y, 0) = 0. (99)

As we can check in the proof of Lemma 1, in all the integration by parts that are per-
formed, the boundary terms vanish due to the Neumann boundary condition or the fact
that uε

d(t, y, 0) = 0, and hence the proof of the L2 stability will be almost the same
as the one in the whole space. Nevertheless, we have to pay attention to the presence
of boundary layer terms in the coefficients. At first, we note that since 
1 = 0 and

2 = 0 in the WKB expansion, we still have that M (which is defined in Lemma 1) is
independent of ε. Indeed, for the worst term which is ∇(∇ · uε), we have

∇(∇ · uε) = ∂Z Z Z
3 + ∇�ϕ + OL∞(ε).
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Next, keeping the definitions of Ra and Rϕ given in (17), (18) and by construction
of the WKB expansion, we have

||Ra||L∞ ≤ Cεm . (100)

Nevertheless, again by construction of the WKB expansion, we only have

Rϕ = Rm
ϕ +

ε2

2

�aε

aε
,

and due to the presence of boundary layers in aε, we can split Rϕ into

Rϕ = ε2 Rint
ϕ (t, y, z) + εR�

ϕ(t, y,
z

ε
), (101)

where Rint
ϕ is smooth and bounded, whereas R�

ϕ ∈ Sexp, and we see that ε ||R�
ϕ ||L∞ =

O(ε), ε ||∇ R�
ϕ ||L∞ = O(1), hence the estimate (23) of Lemma 1 would be useless.

Moreover, the fact that R�
ϕ belongs to Sexp does not seem to improve the estimates. The

way to overcome this difficulty seems to incorporate this new singular term into the
functional. Let us define the operator

Sε
+w = −ε2

2
�w + 2(w, aε)aε + εR�

ϕw,

our weighted norm in this section will be

N ε
+(w) =

∫
�

(
(Sε

+w,w) + K ε2 |w|2
)

dx

= 1

2

∫
�

(
ε2|∇w|2 + 4(w, aε)2 + 2εR�

ϕ |w|2 + 2K ε2|w|2
)

dx .

Note that Rϕ has no sign, nevertheless, N ε
+(w) can be bounded from below by a weighted

H1 norm if K is chosen sufficiently large. Indeed, since R�
ϕ belongs to Sexp we can write

2ε

∣∣∣∣
∫

�

R�
ϕ |w|2 dx

∣∣∣∣ ≤ Cε

∫
�

e
−γ z

ε |w|2 dx

and then use the one-dimensional Sobolev inequality

|w(t, y, z)|2 ≤ C

(∫
R+

|w(t, y, ζ )|2 dζ

) 1
2
(∫

R+

|∂zw(t, y, ζ )|2 dζ

) 1
2

to get

ε

∫
�

e− γ z
ε |w|2 ≤ Cε||w||L2 ||∇w||L2

∫
R+

e− γ z
ε dz ≤ Cε2 ||w||L2 ||∇w||L2 . (102)

In particular, we have proven that

2ε

∣∣∣∣
∫

�

R�
ϕ |w|2 dx

∣∣∣∣ ≤ Cε2 ||w||L2 ||∇w||L2 . (103)
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This yields thanks to the Young inequality

2ε

∣∣∣∣
∫

�

R�
ϕ |w|2 dx

∣∣∣∣ ≤ 1

2
ε2||∇w||2L2 + Cε2||w||2L2 , (104)

where C is independent of ε. Consequently, if K is chosen such that 2K > C , we get

N ε
+(w) ≥ C0

(
ε2||w||2H1 +

∫
�

(w, aε)2 dx

)
, C0 > 0.

Note that in this section, we have

aε = a + O(ε)

with a ≥ α; this finally yields that N ε
+(w) is equivalent to the weighted norm

N ε
+(w) ∼ ε2||w||2H1 + ||Re w||2L2 . (105)

The first step in the proof of Theorem 6 is to prove the equivalent of Lemma 1. We shall
prove the estimate

d

dt
N ε

+ (w(t)) ≤ C N ε
+ (w(t)) (106)

+ ||Fε||2L2 +
∫

�

4

ε
(w, aε)(iaε, Fε) −

∫
�

(iε�w, Fε) −
∫

�

(i Fε, R�
ϕw),

where C is independent of ε.

Proof of (106). The proof follows the same lines as the proof of Lemma 1. At first,
since Sε

+ is self adjoint, we have

d

dt

∫
�

(
Sε

+w,w
)

dx =
∫

�

(
2
(
Sε

+w, ∂tw
)

+ 4(w, aε)(w, ∂t a
ε) + 2ε ∂t R�

ϕ |w|2
)

dx .

Since ∂t R�
ϕ ∈ Sexp, we can still use (102) to get

2ε

∫
�

∂t R�
ϕ |w|2 ≤ C N ε

+(w).

Next, as in the proof of Lemma 1, we use (21) to express ∂tw as

∂tw = − i

ε
Sε

+w −
(

uε · ∇w +
1

2
w ∇ · uε

)
− i

ε2 Rint
ϕ

ε
w − i Fε

ε

to get

2
∫

�

(
∂tw,Sε

+w
)

dx = 2
∫

�

(
−
(

uε · ∇w +
1

2
w ∇ · uε

)
− iε2 Rint

ϕ

ε
w

− i
Fε

ε
,Sε

+w

)
dx . (107)
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Moreover, since Rint
ϕ and R�

ϕ are real, we have the cancellation
∫

�

(i Rint
ϕ w, R�

ϕw) dx = 0.

Therefore, the only terms in the right-hand side of (107) which are not present in (25)
are − ∫

�
(i Fε, R�

ϕw) and

I = −2
∫

�

(
uε · ∇w +

1

2
w ∇ · uε, εR�

ϕw

)
.

To estimate I, we note that we have a bound on the second term by using again (102).
It remains to estimate the first term. Integrating by parts and using that uε

d(t, y, 0) = 0,
we get

−2
∫

�

(
uε · ∇w, εR�

ϕw
) = ε

∫
�

∇ · (R�
ϕuε

) |w|2 =
∫

�

∇ · uε εR�
ϕ |w|2

+
∫

�

ε uε · ∇ R�
ϕ |w|2.

Again, the first term can be bounded thanks to (102). For the second one, we first notice
that since uε

d(t, y, 0) = 0 and R�
ϕ ∈ Sexp, we have

ε
∣∣uε · ∇ R�

ϕ

∣∣ ≤ Cε
(|∇y R�

ϕ | + |z∂z R�
ϕ |) ≤ Cεe− γ z

ε .

This finally yields

I ≤ C N ε
+(w),

thanks to a new use of (102).
The end of the proof of (106) is then exactly the same as the proof of Lemma 1, since

all the integration by parts do not create boundary terms either because of the Neumann
boundary condition or because uε

d vanishes on the boundary. ��

Higher order estimates. The estimates of higher order derivatives are more involved
than in the whole space. There are two main reasons. The first one is that there is a
new singular term εR�

ϕw which creates bad terms when we take the derivatives of the
equation. The second reason is that to recover estimates on the normal derivatives, we
need to use the equation which gives in particular that ε2∂2

z behaves like ε∂t and ε∇.
This anisotropy in the weights does not seem to allow to construct high order functionals
like N ε

s (w) which allows to get Hs estimates without additional loss of ε. Let us use the
notation

� = (�0, . . . , �d) = (
∂t ,∇y, p(z)∂z

)t
,

where the weight p(z) is given by p(z) = z/(1 + z). Note that we can apply � to the
equation since �w still satisfies the Neumann boundary condition. The use of � is clas-
sical in hyperbolic characteristic initial boundary value problems (see [17] for example)
The weighted norm that we shall estimate is

Y ε
+ (w) ≡ N ε

+(w) + N ε
+(ε�w).
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In dimension d ≤ 3, this is sufficient to get the nonlinear stability. We shall see in the
proof why the use of �d is necessary.

We shall prove that

d

dt
Y ε

+ (w) ≤ C
(
Y ε

+ (w) + Xε(Fε) + Xε(ε�Fε)
)

(108)

for some C > 0 independent of ε where we have set

Xε(F) ≡ ||F ||2H1 +
||F ||2

L2

ε
+

||Im F ||2
L2

ε2 .

Proof of (108). As a preliminary, we shall rewrite (106) in a more convenient form. We
can use that aε = a + O(ε) with a real, perform an integration by parts and use (102) to
get from (106) that

d

dt
N ε

+ (w(t)) ≤ C N ε
+ (w(t)) + Xε(Fε), (109)

where

Xε(Fε) = ||Fε||2H1 +
||F ||2

L2

ε
+

||Im Fε||2
L2

ε2 .

To prove (108), we start with the estimate of N ε
+(ε∂tw). When we apply ε∂t to (21),

we find
(
iε∂t + Lε

)
ε∂tw = Rϕ ε∂tw + ε∂t Fε + C, (110)

where the commutator C can be split into

C = C1 + C2 + C3 (111)

with

C1 ≡ ε
(
∂t Rϕ

)
w,

C2 ≡ 2ε
(
(∂t a

ε, w)aε + (aε, w)∂t a
ε
)
,

C3 ≡ −iε2
(

∂t u
ε · ∇w +

1

2
∂t (∇ · uε) w

)
.

Consequently, we can apply (109) to (110) with the new source term ε∂t Fε + C to get

d

dt
N ε

+ (ε∂tw(t)) ≤ C N ε
+ (ε∂tw(t)) + Xε(ε∂t Fε) + Xε(C). (112)

Thus it remains to estimate Xε(C). Let us begin with Xε(C1). Thanks to the expansion
(101), we easily get

Xε(C1) � N ε
+(w) +

∫
�

|∂t R�
ϕ |2 ε4|w|2 + ε4|∇w|2) + ε4|∇∂t R�

ϕ |2 |w|2

� N ε
+(w). (113)
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Note that we could have a better estimate by using that R�
ϕ ∈ Sexp and (102). Next, we

turn to the estimate of Xε(C2). By using that aε = a + O(ε) with a real, we find

Xε(C2) � N ε
+(w) + ε||Re w||2L2 + ε2||∇w||2L2 � N ε(w). (114)

Note that the above estimate was sharp. This is for the estimate of this commutator C2
that we had to choose the weight ε in front of the time derivative. Finally, we estimate
Xε(C3) using that ∂t uε

d vanishes on the boundary which implies that

|∂t u
ε
d | � p(z).

Thanks to this remark, we find

Xε(C3) � N ε
+(w) + ε4||∇�w||2L2 � Y ε

+ (w). (115)

Note that this is for the control of this commutator that we are obliged to add the vector
field p(z)∂z in the definition of the functional space. Consequently, the combination of
(112), (113), (114) and (115) gives

d

dt
N ε

+ (ε∂tw(t)) � Y ε
+ (w(t)) + Xε(ε∂t Fε). (116)

The estimate of ε∇yw follows exactly the same lines, and we also find

d

dt
N ε

+

(
ε∇yw(t)

)
� Y ε

+ (w(t)) + Xε(ε∇y Fε). (117)

The estimate of ε�dw = εp(z)∂zw requires some additional work since the vector field
�d does not commute with the Laplacian. By applying ε�d to (21), we get(

iε∂t + Lε
)
ε�dw = Rϕε�dw + ε�d Fε + C + C4, (118)

where C is defined as in (111) above with ∂t replaced by �d and C4 is given by

C4 ≡ −ε3

2
[�d ,�]w = −ε3

2
(2 (∂z p) ∂zzw + (∂zz p) ∂zw) .

Next, we can apply (106) to get

d

dt
N ε

+ (ε�dw(t)) � N ε
+ (ε�dw(t)) + Xε(ε�d Fε) + Xε(C) + ||C4||2H1

+
4

ε

∫
�

(ε�dw, aε)(iaε, C4) −
∫

�

(
iC4, R�

ϕ ε�dw
)
.

Since one can easily check that Xε(C) still satisfies the bounds (113), (114), (115), we
obtain

d

dt
N ε

+ (ε�dw(t)) � Y ε
+ (w) + Xε(ε�d Fε) + ||C4||2H1

+
4

ε

∫
�

(ε�dw, aε)(iaε, C4) −
∫

�

(
iC4, R�

ϕ ε�dw
)
.

Next, we note that

||C4||2H1 � ε6||w||2H3

and that
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4

ε

∣∣∣∣
∫

�

(ε�dw, aε)(iaε, C4)

∣∣∣∣� 4

ε

∫
�

ε|∂zw| |p(z)C4| � ε2 N ε
+(w)

1
2
(||p∂zzw||L2 + ||∂zw||L2

)

� N ε
+(w)

1
2 Y ε

+ (w)
1
2 .

In a similar way, we also get

∣∣∣∣
∫

�

(
iC4, R�

ϕ ε�dw
)∣∣∣∣ � ε||∂zw||L2 ||p C4||L2 � Y ε

+ (w).

Consequently, we have proven that

d

dt
N ε

+ (ε�dw(t)) � Y ε
+ (w) + Xε(ε�d Fε) + ε6||w||2H3 . (119)

To conclude, it remains to estimate ε6||w||2
H3 . As usual, this is done thanks to Eq. (19)

and the standard regularity result for elliptic equations. We rewrite (19) as the equation

ε2�w = Gε, ∂zw(t, y, 0) = 0, (120)

where the source term enjoys the estimates

||Gε||2L2 � ε2||�w||2L2 + ||w||2L2 + ||Fε||2L2 ,

||∇Gε||2L2 � ε2||∇�w||2L2 + ||w||2H1 + ||∇Fε||2L2 .

Consequently, we get from (120) by standard elliptic regularity that

ε6||w||2H3 � Y ε
+ (w) + ||Fε||2H1 . (121)

By replacing this last estimate in (119), we finally obtain

d

dt
N ε

+ (ε�dw(t)) � Y ε
+ (w) + Xε(ε�d Fε) + ||Fε||2H1 . (122)

To conclude, it suffices to sum the estimates (109), (116), (117) and (122) to get
(108). ��

The estimate (108) is sufficient to prove the nonlinear stability stated in Theorem 6
for d ≤ 3. Nevertheless, it is possible to prove by induction that for every s,

d

dt

(∑
m≤s

N ε
+

(
(ε�)mw

))
�

∑
m≤s

(
Xε

(
(ε�)m Fε

)
+ N ε

+

(
(ε�)mw

))
.
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Nonlinear stability.. Thanks to (108) and the Gronwall inequality, we get for 0 ≤ T ≤
Tm , where Tm is the existence time of the approximate solution given by Lemma 4,

sup
[0,T ]

Y ε
+ (w) � Y ε

+ (0) + T eγ T sup
[0,T ]

(
Xε(Fε) + Xε(ε�Fε)

)

for some γ > 0 independent of ε. Combining this last estimate with (121), we get

sup
[0,T ]

Z ε
+(w) ≤ CTm

(
Y ε

+ (0) + sup
[0,T ]

(
Xε(Fε) + Xε(ε�Fε)

))
, (123)

with

Z ε
+(w) ≡ Y ε

+ (w) + ε6||w||2H3 .

Thanks to this a priori estimate, one can easily prove by standard fixed point argument
the existence of a unique solution of (19) with the Neumann condition ∂zw|z=0 = 0 on
some interval of time [0, T ε] ⊂ [0, Tm] such that Z ε

+(w) remains finite.
By using that w/t=0 = 0 and the equation to compute the time derivative, we find

Y ε
+ (w)/t=0 = N ε

+(ε∂tw)/t=0 ≤ CTm ε2m .

Moreover, using that Fε = εm Rε + Qε, we have thanks to (86) that

sup
[0,Tm ]

(
Xε

+(Rε) + Xε
+(�Rε)

) ≤ CTm ε2m−1.

Inserting this into (123) yields, for 0 ≤ t ≤ T ε,

sup
[0,T ]

Z ε
+(w) ≤ KTm ε2m−1 + CTm sup

[0,T ]
(
Xε(Qε) + Xε(ε�Qε)

)
. (124)

We can thus define τ ε ∈ (0, Tm] as the maximal time such that the solution w of (19)
satisfies Z ε

+(w(t)) ≤ 2KTm ε2m−1 on [0, τ ε]. As in the proof of Theorem 5, we shall
prove that for ε sufficiently small, we have τ ε = Tm . Here, the expression of Qε(w) is
given by

Qε(w) = aε|w|2 + 2(w, aε)w + w|w|2.
To conclude, we need to bound the right-hand side of (124). To estimate the nonlinear
term, we use that for d ≤ 3, we have

||w||2L∞ � ||∇2w|| ||w||H1,

which gives

||w||2L∞ � Z ε
+(w)

ε4 � ε2m−5 ∀t ∈ [0, τ ε).

We shall take m such that 2m > 5 in order to get ||w||L∞ ≤ 1 for t ∈ [0, τ ε). This
implies

||Qε||2H1 �
(
||w||2L∞ + ||w||4L∞

)
||w||2H1 � Z ε

+(w)2

ε6 .
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Next, since H1(Rd) ⊂ L4 for d ≤ 3, we also have

||Qε||2
L2

ε2 �
||w||4

H1

ε2 (1 + ||w||2L∞) � Z ε
+(w)2

ε6 .

Consequently, we have already proven that

Xε(Qε) � Z ε
+(w)2

ε6 . (125)

Next, we evaluate Xε(ε�Qε). At first, we write

ε2||�Qε||2H1 � ε2||�w||2H1

(
||w||2L∞ + ||w||4L∞

)
+ ε2||�w||2L4 ||∇w||2L4

(
1 + ||w||2L∞)

and by using for d ≤ 3, the Sobolev embedding H1 ⊂ L4 and the Gagliardo-Nirenberg
inequality

||∇ f ||2L4 � || f ||
1
2
H1 ||∇2 f ||

3
2
L2 ,

we get for 0 ≤ t ≤ τ ε:

ε2||�Qε||2H1 � Z ε
+(w)2

ε4 + ε2||∇w||2H1 ||w||
1
2
H1 ||∇2w||

3
2
L2 � Z ε

+(w)2

ε6 .

Finally, by similar arguments, we also have

||ε�Qε||2
L2

ε2 � ||�w||
1
2
L4 ||w||

1
2
L4 � ||�w||2H1 ||w||2H1 � Z ε

+(w)2

ε6 .

We have thus proven that

Xε(ε�Qε) � Z ε
+(w)2

ε6 . (126)

Consequently, inserting (125), (126) into (124), we get

sup
[0,τ ε]

Z ε
+(w)≤ KTm ε2m−1+CTm sup

[0,τ ε]
Z ε

+(w)2

ε6 ≤ KTm ε2m−1+2KTm CTm ε2m−7 sup
[0,τ ε]

Z ε
+(w).

By choosing m ≥ 4, this allows to get for ε sufficiently small that τ ε = Tm and that

sup
[0,Tm ]

Z ε
+(w) ≤ Cε2m−1.

Finally, the estimate (98) follows by Sobolev embedding. This ends the proof of
Theorem 6. ��
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A. A Lemma about Composition in Sobolev Spaces

During the proof of Lemma 3, we have used a result about composition in Sobolev
spaces. This result is very standard when h does not depend on x (see, for instance,
[18]).

Lemma 5. Let R > 0, s ∈ N and h = h(x, w) ∈ Cs+1(Rd ×R
2, R), satisfying h(x, 0) =

0 for all x ∈ R
d . Assume moreover

A≡ sup
{
|| ∂α

x ∂β
wh ||L∞(Rd×BR) , α ∈ N

d , β ∈ N
2, |α| ≤ s, |α| + |β| ≤ s + 1

}
< +∞.

Then, there exists C, depending only on A, s and R, such that, for any w ∈ Hs(Rd)

satisfying |w|L∞(Rd ) ≤ R, we have h (x, w(x)) ∈ Hs(Rd) and

|| h (x, w(x)) ||Hs ≤ C || w ||Hs .

Proof. The proof is by induction on s ∈ N and relies on the Gagliardo-Nirenberg
inequality. If s = 0, it suffices to notice that since h(x, 0) = 0, then for w ∈ BR ,

|h(x, w)| ≤ A|w|.
Assume then the result for s − 1 ∈ N. Let µ ∈ N

d with |µ| = s. One has easily

∂µ (h(x, w(x))) =
∑

∗ (∂α
x ∂β+γ

w h
)
(x, w(x))

(
∂βw1

)p (
∂γ w2

)q
,

where α ∈ N
d , α ≤ µ, β, γ ∈ N

2, p, q ∈ N
∗ depend on β and γ , |α| + p|β| + q|γ | = s,

and ∗ is a coefficient depending only on µ, α, β and γ . Furthermore, since w ∈ Hs ∩L∞,
the Gagliardo-Nirenberg inequality yields, for 1 ≤ k ≤ s,

||w ||
W k, 2s

k
≤ Ck,s ||w ||

k
s
Hs ||w ||1− k

s
L∞ .

As a consequence, by interpolation, if w ∈ Hs ∩ L∞ and || w ||L∞ ≤ R, then for γ ∈ N
d ,

|γ | ≤ s, and 2 ≤ p ≤ 2s
|γ | ,

|| ∂γ w ||L p ≤ Cs,p,R ||w ||
2
p
Hs .

Therefore, in view of |α| + p|β| + q|γ | = s, by the Hölder inequality, we can estimate
the terms in ∂µ (h(x, w(x))) for which α = µ (thus |α| < s) as

|| (∂α
x ∂β+γ

w h
)
(x, w(x))

(
∂βw1

)p (
∂γ w2

)q ||L2 ≤ A || ∂βw1 ||p

L
2 s−|α|

|β|
|| ∂γ w2 ||q

L
2 s−|α|

|γ |
≤ Cs,p,R A ||w ||Hs .

For the term for which α = µ, we note that since h(x, 0) = 0 for x ∈ R
d , then

(∂α
x h)(x, 0) = 0 for any x ∈ R

d , so that if w ∈ BR ⊂ R
2,∣∣(∂α

x h)(x, w)
∣∣ ≤ A|w|,

which implies

|| (∂α
x h) (x, w(x)) ||L2 ≤ A ||w ||L2 ≤ A ||w ||Hs .

Combining these two estimates gives

|| ∂µ (h(x, w(x))) ||L2 ≤ Cs,p,R A ||w ||Hs ,

and the proof of the lemma is complete. ��
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