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Abstract: We give holomorphic Chern-Simons-like action functionals on supertwistor
space for self-dual supergravity theories in four dimensions, dealing with N = 0, . . . , 8
supersymmetries, the cases where different parts of the R-symmetry are gauged, and
with or without a cosmological constant. The gauge group is formally the group of
holomorphic Poisson transformations of supertwistor space where the form of the
Poisson structure determines the amount of R-symmetry gauged and the value of the
cosmological constant. We give a formulation in terms of a finite deformation of an
integrable ∂̄-operator on a supertwistor space, i.e., on regions in CP

3|8. For N = 0, we
also give a formulation that does not require the choice of a background.
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1. Introduction

Recently it has been discovered that N = 8 supergravity has better ultraviolet behaviour
than has hitherto been anticipated, [B-Betal06,BDR07 and GRV07]. This has led some
authors to speculate that it is possibly even finite. This improved behaviour relies on
exact cancellations that do not follow from standard supersymmetry arguments, [St06].
One possible explanation arises from twistor string theory, [W04 and B04]. The original
twistor string theories by Witten and Berkovits correspond to conformal supergravity
(together with supersymmetric Yang-Mills theory), [BW04]. By gauging certain sym-
metries of the Berkovits twistor string, [A-ZHM08] introduced a new family of twistor
string theories some of which have the appropriate field content for Einstein supergravity
(including N = 4 and N = 8). Such a twistor string formulation of Einstein supergravity
could be an explanation for the possible ultraviolet finiteness of N = 8 supergravity if it
were fully consistent in its quantum theory. However, it now appears that these twistor
string theories are chiral, [N08], unlike the original twistor string theories which were
parity invariant. It remains a major open question as to whether a twistor-string theory
exists that gives the full content of Einstein (super)-gravity even just at tree level.

An approach to understanding what the appropriate twistor string theory might be is
via a twistor action, [M05 and MS06] and [BMS07a,BMS07b]. Such actions have two
terms. The first on its own gives a kinetic term for all the fields, but with only the self-dual
part of the interactions. The second gives the remaining interactions of the full theory
and correspond to the instanton contribution in the twistor-string theory. In the case of
N = 4 supersymmetric Yang-Mills theory, the self-dual part of the action on twistor
space is a holomorphic Chern-Simons theory, [W04], see also [S95] for a closely related
harmonic superspace action. [BW04] gave a twistor action for self-dual N = 4 confor-
mal supergravity. The purpose of this paper is to give an analogous action in the case of
self-dual N = 8 Einstein supergravity. This action is special to N = 8 supergravity in
much the same way as Witten’s Chern-Simons action is special to N = 4 supersymmetric
Yang-Mills theory. It lends general support to the idea that twistor space has something
special to say about full N = 8 supergravity and is suggestive of the existence of an
underlying twistor string theory, perhaps even with explicit N = 8 supersymmetry as
opposed to those of [A-ZHM08] in which only N = 4 supersymmetry is manifest.

Penrose’s non-linear graviton construction [P76] reformulates the local data of a
four-metric with self-dual Weyl tensor into the complex structure of a deformed twis-
tor space, a three-dimensional complex manifold obtained by deforming a region in
CP

3. The space-time field equation in this case is the vanishing of the anti-self-dual part
of the Weyl tensor, and in the [AHS78] approach to twistor theory, this is reformulated
as the integrability of the twistor almost complex structure. [BW04] introduce a version
of conformal gravity with just self-dual interactions in which the underlying conformal
structure is self-dual, but in which there is also a linear anti-self dual conformal gravity
field (a linearised anti-self-dual Weyl tensor B) propagating on the self dual background.
This has a Lagrange multiplier action (analogous to a ‘BF’ action)

∫
(B,C−) d vol ,

where C− is the anti-self-dual part of the Weyl tensor, and (B,C−) is the natural pairing.
This can be extended to N = 4 supersymmetry. [BW04] gave a corresponding (super-
symmetric) twistor action of the form

∫
bN , where N is the Nijenhuis tensor of the

almost complex structure and b is a Lagrange multiplier that doubles up as the Penrose



Twistor Actions for Self-Dual Supergravities 99

transform of the field B when the field equations are satisfied. In the non-supersymmetric
case, this was extended to a twistor action for full (non-self-dual) conformal gravity in
[M05] with further supersymmetric extension and connections with twistor-string theory
in [MS08].

For Einstein gravity we wish to encode the vanishing of the Ricci tensor. In the
non-linear graviton this can be characterised by requiring that the twistor space admits
a fibration over a CP

1 together with a certain Poisson structure up the fibre. [W80]
extended this to the Einstein case, with a cosmological constant; in this case, the twistor
space is required to admit a holomorphic contact structure that is non-degenerate when
the cosmological constant is non-zero, see [WW90 and MW96] for textbook treatments.
So, for Einstein gravity, we are seeking a twistor action whose field equations not only
imply the integrability of an almost complex structure, but also the existence of some
compatible holomorphic geometric structure, for example the contact one-form in the
case of the cosmological constant, or the fibration together with a Poisson structure up
the fibres in the case of vanishing cosmological constant. The first task is to introduce
suitable variables that encode the almost complex structure together with the relevant
compatible geometric structure on the real six-manifold underlying the twistor space.
This turns out to be a one-form with values in a line bundle, and we write down the appro-
priate field equations that it must satisfy and an action (depending also on a Lagrange
multplier field) that gives rise to them; the Lagrange multiplier field again corresponds
to an anti-self-dual linear gravitational field propagating on the self-dual background via
the Penrose transform when the field equations are satisfied.

Our primary exposition will focus on the N = 8 supersymmetric cases, and
reduce them to the cases with lesser or no supersymmetry. Supersymmetric extensions
of Penrose’s non-linear graviton construction were first discussed by [M92a,M92b] (see
also [M91,M92c]) based on work by [M88] and developed further in [A-ZHM08] and
in [W07].1 That in [W07] gives a twistor description of four-dimensional N-extended,
possibly gauged, self-dual supergravity with and without cosmological constant in terms
of a deformed supertwistor space, a deformation of a region in CP

3|N endowed with
an even holomorphic contact structure. Here we also discuss the different gaugings in
the case without a cosmological constant. It is these the integrability of the almost com-
plex structures of these twistor spaces together with the holomorphy of the appropriate
geometric structures that correspond to the field equations for our twistor actions.

There are now a number of contexts arising from conventional string theory and
M-theory in which the task of finding variables and action principles whose field equations
encode the integrability of complex structures compatibly with some other geometric
structure. In particular Kodaira-Spencer theory, [BCOV94], leads to field equations that
imply the integrability of an almost complex structure compatible with a global holomor-
phic volume form on a six-manifold, yielding a Calabi-Yau structure. For a compendium
of such theories and relations between them, including conjectured relations to twistor-
string theory, see [DGNV05]. The situations considered here are distinct from those in
[DGNV05], but given that one of the form theories involved there is a self-dual form the-
ory of four-dimensional gravity including a cosmological constant (see also [A-ZH06])
there may well be some important connections between these ideas.

The paper is structured as follows. In §2, we first review the equations of self-dual
supergravity, with cosmological constant and gauged R-symmetry, and then go on to
review the various twistor constructions and give a brief proof of the version of the

1 See also [S06 and W06] and references therein for recent reviews of supertwistors and their application
to supersymmetric gauge theories.
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non-linear graviton construction for self-dual Einstein supergravity both with and with-
out cosmological constant and different gaugings. In §3, we study infinitesimal deforma-
tions and show that a deformation of the contact structure determines a deformation of the
almost complex structure. We develop a non-projective twistor formulation that shows
that this persists in the case of a finite deformation giving a compact form for the field
equations, i.e., the integrability condition for the almost complex structure. In the case of
maximal supersymmetry, N = 8, we present the twistor action and show that it gives the
appropriate field equations. We give a brief discussion of its invariance properties and
various reductions with lesser gauging, supersymmetry, or no cosmological constant.

A Chern-Simons action is always expressed in a given background frame and is not
manifestly gauge invariant. In this gravitational context, our action is similarly not man-
ifestly diffeomorphism invariant; we require the choice of some background, which we
take to be a solution to the field equations. However, we go some way towards an invariant
formulation. We give an invariant formulation of the field equations in general, but only
find an explicitly diffeomorphism invariant action in the N = 0 case with cosmological
constant. We prove that on any smooth manifold of dimension 4n + 2 equipped with
a complex one-form τ up to scale (i.e., a complex line subbundle of the complexified
cotangent bundle), then, if τ ∧ (dτ)n = 0, and a non-degeneracy condition is satisfied,
there is a unique integrable almost complex structure for which τ is proportional to a
non-degenerate holomorphic contact structure. This idea can be used to give a covariant
form of the field equations in general, and a covarant action in the N = 0 case.

In §5, we make some general concluding remarks. An action principle for N = 8 self-
dual supergravity with vanishing cosmological constant has been obtained by [KK98] in
harmonic superspace for split space-time signature.2 In that work, harmonic superspace
is the spin bundle of super space-time and in Euclidean signature, it can naturally be
identified with the supertwistor space. However, their action uses structures pulled back
from space-time (e.g., the Laplacian) that are not locally obtainable from the complex
structure and contact structure on twistor space. It is therefore not possible to regard
it as a twistor action. Nevertheless, their action is closely related to ours and we show
that theirs can be obtained from ours by gauge fixing in Appendix 5. In Appendix 5
we give a detailed discussion of the construction of the line bundle on a super-twistor
space whose total space corresponds to a non-projective twistor space. In Appendix 5,
we discuss some alternative twistor actions.

2. Twistor Constructions for Self-Dual Supergravity

We work throughout in a complex setting. This can be understood as arising from taking
a real analytic metric on a real space-time, and extending it to become a holomorphic
complex metric on some neighbourhood M of the real slice in complexified space-time.
We can straightforwardly restrict attention to Euclidean or split signature slice by requir-
ing invariance under appropriate anti-holomorphic involutions (for Euclidean signature,
these are discussed in Appendix 5). In the Euclidean case, one needs to restrict the
number of allowed supersymmetries N to be even.

2.1. Definitions, notation and conventions. We model our definition of chiral super
space-time on the paraconformal geometries of [BE91] (see also [W07]).

2 A similar action for N= 4 supersymmetric Yang-Mills theory was discovered in the context of harmonic
superspace by [S95].
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Definition 1. A right-chiral super space-time, M , is a split supermanifold of super-
dimension 4|2N on which we have an identification3 T M ∼=H ⊗ S̃ , where S̃ is the
right (dotted) spin bundle of rank 2|0 and H is the sum of the left spin bundle S and
the rank-0|N bundle of supersymmetry generators and so has rank 2|N. We will also
assume that S and H are endowed with choices of Berezinian forms (so that T M
does also).

This is the superspace one would obtain from a full super space-time by elimi-
nating the left-handed fermionic coordinates, leaving only the right-handed ones in
play. Being a split supermanifold, it is locally of the form C

4|2N with coordinates4

(xµν̇, θmν̇ ) := x M ν̇ with xµν̇ bosonic and θmν̇ fermionic where the indices range as fol-
lows: α, . . . , µ, . . . = 0, 1 for left-handed two-component spinors, α̇, . . . , µ̇, . . . = 0̇, 1̇
for right-handed spinors, i, . . . ,m, . . . = 1, . . . ,N indexing the supersymmetries and
A = (α, i), M = (µ,m); it will turn out in the following that it is natural, and sim-
plifying in this self-dual context to group together the supersymmetry index m and the
undotted spinor index µ into one index M . We use the convention that letters from the
middle of the alphabets are coordinate indices whereas letters from the beginning of the
alphabets are structure frame indices.

The identification T M ∼= H ⊗ S̃ will be specified by a choice of ‘structure co-
frame’ given by the indexed one-forms

E Aα̇ = dx M ν̇EM ν̇
Aα̇ . (2.1)

The dual vector fields will be denoted E Aα̇ , E Aα̇ E Bβ̇ = δα̇ β̇δA
B . When contracting

a vector field V with a differential one-form α we use the notation V α.
With the capital Roman indices A, B, . . . ranging over both the bosonic α, β, . . . and

the fermionic i, j, . . . indices we use the notation {AB . . .] for graded symmetrization
and [AB . . .} for graded skew symmetrization

T{A1 A2...An ] := 1
n!

∑
σ∈Pn

(−)σ̄ TAσ(1)Aσ(2)...Aσ(n) , (2.2a)

T[A1 A2...An} := 1
n!

∑
σ∈Pn

(−)σ̄+|σ |TAσ(1)Aσ(2)...Aσ(n) , (2.2b)

where Pn is the group of permutations of n letters, |σ | the number of transpositions in
σ and σ̄ the number of transpositions of odd indices.

For an index such as A that ranges over indices for both odd and even coordinates,
pA will denote the Graßmann parity of the index, pA = 0 for an even coordinate, and 1
for an odd one so that a graded skew form 	AB satisfies

	AB = −(−)pA pB	B A. (2.3)

We introduce εα̇β̇ = ε[α̇β̇] with ε0̇1̇ = −1 and εα̇γ̇ εγ̇ β̇ = δα̇ β̇ , and similarly for εαβ .
In the supersymmetric setting, there is a distinction between differential and integral

forms, the latter being required for integration, [M88]. Unless otherwise stated, all our
forms will be differential.

3 By T M we will mean T (1,0)M . There will be no role for anti-holomorphic objects on M .
4 The index structure on the bosonic coordinates in the curved case is not natural, but simplifies notation.
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2.2. Self-dual supergravity equations. We introduce connections on H and S̃ repre-
sented by connection one-forms ωA

B and ωα̇β̇ , respectively. These determine a connec-
tion ∇ on T M by

∇V Aα̇ = dV Aα̇ + V Bα̇ωB
A + V Aβ̇ωβ̇

α̇ (2.4)

so that it preserve the factorisation T M ∼=H ⊗ S̃ . The fermionic parts of ωA
B gauge

the R-symmetry.
In this supersymmetric context, a choice of scale or volume form on M is a section

of the Berezinian of 1M . We can assume that the Berezinians of H and S̃ have
been identified so that the scale is determined by a section of the Berezinian of either
H ∗ or S̃ ∗. The connections can be chosen uniquely so that they preserves these sec-
tions of the Berezinians of H ∗ and S̃ ∗ and so that the connection on T M has torsion
with vanishing supertrace.5 We assume from hereon that such choices have been made.
In the formulae that follow, we will also assume that the connection is torsion-free as
that is part of the self-dual Einstein condition (the torsion will not in general vanish on
the full super space-time, only on this right-chiral (or left-chiral) reduced supermani-
fold).

The curvature two-form RAα̇
Bβ̇ of ∇ decomposes into curvature two-forms for the

connections on H and S̃ ,

RAα̇
Bβ̇ = δA

B Rα̇
β̇ + δα̇

β̇ RA
B . (2.5)

Making explicit the form indices, we write the Ricci identities as

[∇Aα̇,∇Bβ̇}V Dδ̇ = (−)pC (pA+pB )V C δ̇RAα̇Bβ̇C
D

+ (−)pD(pA+pB )V Dγ̇ RAα̇Bβ̇γ̇
δ̇ , (2.6)

where V Aα̇ is a vector field on M .
In the torsion free case, using the algebraic Bianchi identities, Prop. 2.6 of [W07]

gives the decomposition of the curvature into irreducibles:

RAα̇Bβ̇C
D = −2(−)pC (pA+pB )RC[A|α̇β̇|δB}D + εα̇β̇ RABC

D, (2.7a)

RABC
D = CABC

D − 2(−)pC (pA+pB )	C{AδB]D, (2.7b)

RAα̇Bβ̇γ̇
δ̇ = CABα̇β̇γ̇

δ̇ + 2	ABδ(α̇
δ̇εβ̇)γ̇ + εα̇β̇ RABγ̇

δ̇ , (2.7c)

where the curvature tensors satisfy the algebraic conditions

RABα̇β̇ = RABα̇
γ̇ εγ̇ β̇ = RAB(α̇β̇),

CABC
D =C{ABC]D , (−)pC CABC

C = 0, 	AB =	[AB}. (2.8)

Here,	AB is a natural supersymmetric extension of the scalar curvature and will be set
equal to the cosmological constant when the field equations are satisfied. (See [W07]
for further details of the construction and properties of the connections.)

5 Special care needs to be taken for N= 4, [W07].
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Definition 2. A right-chiral superspace will be said to satisfy the N-extended self-dual
supergravity equations if
(i) the unique connection that preserves the given Berezinians of H ∗ and S̃ ∗ is

torsion-free and satisfies CABα̇β̇γ̇
δ̇ = 0,

(ii) RABα̇β̇ = 0,

(iii) preserves some P AB = P [AB} ∈ 	2H of rank 2|r and is flat on the odd (N− r)-
dimensional subspace of H ∗ that annihilates P AB.

When 	AB �= 0 it will be said to be Einstein, whereas if 	AB = 0 it will be said
to be vacuum. When r = 0, the connection on H is trivial in the odd directions and
the R-symmetry is ungauged; all supersymmetry generators are covariantly constant.
For r > 0, a subgroup of the R-symmetry is gauged with gauge group an extension of
SO(r,C), the subgroup of SO(N,C) that preserves Pi j the odd-odd part of P AB. For
r = N, the gauge group is SO(N,C).

Conformal supergravity corresponds to the more general situation where condition (i)
alone is satisfied, and a natural supersymmetric analogue of the hypercomplex case cor-
responds to conditions (i) and (ii). In this work, we shall mostly be concerned with the
situation where (i)–(iii) are satisfied simultaneously.

There is only one possibility for the gauging in the Einstein case as follows:

Lemma 1. Either P AB and 	AB both have maximal rank and can be chosen to be
multiples of each-other’s inverse, or 	AB = 0.

Proof. Condition (iii) of Def. 2 implies that (−)pC +pC (pD+pE )RABC
[D P E}C = 0, and

taking a supertrace gives the equation

0 = (−)pC (pA+pE )+pC +pB	C{Aδ[BB]P
E}C , (2.9)

which quickly leads to the condition that (−)pB	AB P BC is a multiple of δA
C . If this

multiple is non-zero, P AB and	AB have maximal rank and are multiples of each other’s
inverse. If this multiple is zero, the assumption on the rank of P AB implies that the rank
of 	AB is less than or equal to 0|N− r . The condition that the connection is flat on the
subspace of H ∗ that annihilates P AB implies that RABC

DeD = 0 for all eD such that
P ABeB = 0. Symmetrizing over ABC gives that CABC

DeD = 0 so we must also have
	C{AeD] = 0. Note that for N = 2 the multiple is always zero. 	


It is a consequence of the Bianchi identities that	AB is covariantly constant so that,
when non-zero, defining PAB as the inverse of P AB , we can set 	AB = 	PAB . When
	AB is non-trivial, the curvature is non-trivial on the odd directions of H , and so the
R-symmetry is therefore necessarily gauged with gauge group SO(N,C).

We will see in §3.1 in the discussion of the deformations of twistor space how the
different gaugings come about.

We also obtain (−)pC +pC (pD+pE )CABC
[D P E}C = 0 and∇[Aα̇CB}C D

E = 0. The field
equations of self-dual supergravity with zero cosmological constant lead to the Ricci
identities

[∇Aα̇,∇Bβ̇}V Dδ̇ = (−)pC (pA+pB )V C δ̇εα̇β̇CABC
D , (2.10)

which in turn imply Ricci-flatness of M .
The self-dual supergravity equations on chiral super space-time with vanishing cos-

mological constant first appeared in light-cone gauge and in their covariant formulation
in the work by [S92].6

6 See also [K79,K80,CDDG79,KNG92 and BS92].
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2.3. Twistor constructions. Flat supertwistor space is PT
′
[N] := CP

3|N \ CP
1|N with

homogeneous coordinates

Z I := (ωα, θ i , πα̇) = (ωA, πα̇), (2.11)

where ωα and πα̇ are bosonic coordinates and θ i fermionic ones.
The supertwistor correspondence is between right-chiral complexified super space-

time M[N] ∼= C
4|2N with coordinates (xαα̇, θ i α̇) = x Aα̇ , and is expressed by the inci-

dence relation

ωA = x Aα̇πα̇ . (2.12)

By holding x Aα̇ constant we see that points of M[N] correspond to CP
1s in supertwistor

space PT
′
[N] with homogeneous coordinates πα̇ . Alternatively, by holding Z I constant,

we see that points in PT
′
[N] correspond to (2|N)-dimensional isotropic superplanes. In

the curved case, both sides of the correspondence are deformed, but points of super
space-time still correspond to CP

1s in supertwistor space (and points of supertwistor
space to (2|N)-dimensional isotropic subsupermanifolds of M ).

Bosonic twistor space will be denoted by PT and will be a deformation of some
region in CP

3, whereas a supersymmetrically extended curved twistor space will be
denoted by PT and will be a deformation of a region in CP

3|N. Similarly, a bosonic
space-time will be denoted by M and a supersymmetric one (which will always in this
paper be right-chiral) by M .

We recall first Ward’s extension [W80] of [P76] non-linear graviton construction to
the case of non-zero cosmological constant:

Theorem 1. ([P76,W80]).

(i) There is a natural one-to-one correspondence between holomorphic conformal
structures [g] on some four-dimensional (complex) manifold M whose
anti-self-dual Weyl curvature vanishes, and three-dimensional complex manifolds
PT (the twistor space) containing a rational curve (a CP

1) with normal bundle
N ∼= O(1)⊕ O(1).

(ii) The existence of a conformal scale for which the trace-free Ricci tensor vanishes,
but for which the scalar curvature is non-vanishing, is equivalent to PT admitting
a non-degenerate contact structure.

(iii) The existence of a conformal scale for which the full Ricci tensor vanishes is equiv-
alent to PT admitting a fibration � : PT → CP

1 whose fibres admit a Poisson
structure with values in the pullback of O(−2) from CP

1.

Here, O(n) is the complex line bundle of Chern class n on CP
1.

The holomorphic contact structure is a rank-2 distribution D ⊂ T (1,0)PT in the holo-
morphic tangent bundle of PT . The quotient determines a line bundle L := T (1,0)PT/D.
It can be defined dually to be the kernel of a holomorphic (1, 0)-form τ defined up to
scale on PT , i.e. D = ker τ . If so, τ takes values in L since the map T (1,0)PT →
T (1,0)PT/D := L is then the contraction of a vector with the (1, 0)-form τ . The non-
degeneracy condition is that for any two vector fields X and Y in D, the Frobenius
form

� : D ∧ D → L := T (1,0)PT/D, with �(X,Y ) := [X,Y ] mod D (2.13)
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is non-degenerate on D. This is equivalent to τ ∧dτ �= 0. When it is everywhere degen-
erate, D determines a foliation whose leaves are the fibres of the projection� : PT →
CP

1 and τ is the pullback of the one-form πα̇dπα̇ from CP
1 and L becomes the pullback

of O(2) from CP
1. In the non-degenerate case, we can define a Poisson structure with

values in L∗ to be the inverse of � on D. This has an analogue also in the degenerate
case, now with values in O(−2) although its existence no longer follows from that of τ .

We can impose compatibility with, e.g., Euclidean reality conditions by requiring
the existence of an anti-holomorphic involution ρ : PT → PT without fixed points
sending the given Riemann sphere to itself via the antipodal map. This then induces a
corresponding involution on M fixing a real slice on which the metric g is real and of
Euclidean signature.

The above theorem has a supersymmetric extension as follows:

Theorem 2. (i) There is a natural one-to-one correspondence between conformally
self-dual holomorphic right-chiral space-times and complex supermanifolds PT
of dimension 3|N with an embedded rational curve (a Riemann sphere CP

1) with
normal bundle N ∼= O(1)⊕2|N.

(ii) Furthermore, M is a complex solution to the four-dimensional N-extended self-
dual supergravity equation with non-vanishing cosmological constant iff the twistor
space PT admits a non-degenerate even contact structure.

(iii) M is a complex solution to the four-dimensional N-extended self-dual supergravity
equation with vanishing cosmological constant iff the twistor space PT admits
a fibration � : PT → CP

1|N−r and a Poisson structure of rank 2|r tangent ot
the fibres with values in � ∗O(−2).

Here, O(n)⊕r |s := C
r |s ⊗O(n). The proof breaks up into three parts; further details

of the non-degenerate cosmological constant case are given in [W07].

Proof. Part (i). Let F = P(S̃ ∗) be the projective co-spin bundle over M with holo-
morphic projection p : F →M . Its fibres p−1(x) over x ∈M are complex projective
lines CP

1 with homogeneous fibre coordinates πα̇ . We define the twistor distribution to
be the rank-2|N distribution DF on F given by

DF := span{Ẽ A} := span

{
πα̇E Aα̇ + πα̇πγ̇ ωAα̇β̇

γ̇ ∂

∂πβ̇

}
, (2.14)

where the E Aα̇s are the frame fields and ωα̇β̇ is the connection one-form on S̃ . A few
lines of algebra show that DF is integrable if and only if the connection is
torsion-free and the CAB(α̇β̇γ̇ δ̇)-part of the curvature vanishes. In this case, the distribu-
tion DF defines a foliation of F . Working locally on M , the resulting quotient will
be our supertwistor space, a (3|N)-dimensional supermanifold denoted by PT . The
quotient map will be denoted by q : F → PT so that we have the double fibration

PT
q← F

p→ M . We note that we can form a non-projective supertwistor space T
by taking the quotient of S̃ ∗ by the distribution DF . The integral curves of the Euler
vector field ϒ̃ := πα̇∂/∂πα̇ are the fibres over P(S̃ ∗) and ϒ̃ descends to give a vector
field ϒ on T which determines the fibration T →PT .

Since F is a CP
1-bundle over M and the fibres are transverse to the distribution DF ,

the submanifolds q(p−1(x)) ↪→PT , for x ∈M , are CP
1s. In the other direction, the

supermanifolds p(q−1(Z)) ↪→M , for Z ∈PT , are the (2|N)-dimensional isotropic
subsupermanifolds of M given by the p projections of integral surfaces of DF .
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The inverse construction, i.e. starting from PT , follows by applying a supersymmet-
ric extension of Kodaira’s deformation theory ([W86]). This allows one to reconstruct
M as the moduli space of CP

1s that arise as deformations of the given CP
1 which

will correspond to some x ∈M . According to Kodaira theory, TxM ∼= H0(CP
1,N ),

where N is the normal bundle to the given CP
1 ⊂ PT , and in order that the moduli

space exist, we require the vanishing of the first cohomology of the normal bundle N .
If the given CP

1 arises as q(p−1(x)) for some x ∈ M , then N ∼= O(1)⊕2|N: this
can be seen by expressing it as the quotient of the horizontal tangent vectors to F at
p−1(x) ∼= CP

1, which can be represented by TxM , by DF ,

0 −→ DF |p−1(x) −→ TxM −→ q∗N −→ 0 . (2.15)

Since the twistor distribution DF restricted to the fibres p−1(x) over x ∈ M is
O(−1)⊕2|N, and TxM ∼= C

4|2N, N takes the form O(1)⊕2|N as stated above.
Kodaira theory in turn implies that we can reconstruct M as the moduli space of such
CP

1s, and that the construction is stable under deformations of the complex structure
on PT . Kodaira theory identifies the tangent bundle TxM with the sections of the
normal bundle, N ∼= O(1)⊕2|N, and these, by an extension of Liouville’s theorem
are linear functions of πα̇ , i.e., V Aα̇πα̇ where the A index is associated to a basis of
C

2|N. This gives the right-chiral manifold structure on M , and it is easily seen that lines
through a given point of PT correspond to an integrable (2|N)manifold that will be an
integral surface of the distribution DF . Thus DF is integrable and the M is therefore
conformally self-dual.
Part (ii). In the self-dual Einstein case with non-vanishing cosmological constant, we
may introduce a one-form of homogeneity 2 on F by

τ̃ := πα̇∇πα̇ = πα̇dπα̇ − ωα̇β̇πα̇πβ̇ , (2.16)

where ωα̇β̇ is the connection one-form on S̃ . The one-form τ automatically annihilates
horizontal vectors and hence the distribution DF . The form τ̃ descends to PT if and
only if dτ̃ is annihilated by DF also. This characterizes the self-dual Einstein equations
since when CABα̇β̇α̇δ̇ = 0, as follows from the conformal self-duality condition,

dτ̃ = ∇πα̇ ∧ ∇πα̇ + E Bβ̇ ∧ E Aα̇	ABπα̇πβ̇ − E Bγ̇ ∧ E A
γ̇ RABα̇β̇π

α̇πβ̇ , (2.17)

and this is annihilated by DF iff RABα̇β̇ = 0. Thus, τ̃ descends to PT , i.e., there exists
a one-form τ on PT such that τ̃ = q∗τ .

Non-degeneracy of the contact structure is the condition that dτ is non-degenerate
on the kernel D of τ , or equivalently, the condition that the three-form τ ∧ dτ should
be non-degenerate in the sense that for any vector X , X (τ ∧ dτ) = 0⇒ X = 0. This
non-degeneracy is equivalent to the non-degeneracy of 	AB on H . Thus, τ defines a
non-degenerate holomorphic contact structure on PT .
Part (iii). In the self-dual vacuum case, we see that the connection on S̃ is flat and a
basis for S̃ can be found so that it vanishes. In this basis, πα̇ are constant along the
horizontal distribution on F , and so along the distribution (2.14). They are therefore
the pullback of coordinates on PT . The condition that the connection is flat on the
annihilator of P AB in H ∗ means that there are N − r covariantly constant sections es

A
of the odd part of H ∗, s = r + 1, . . . ,N. The forms E Aα̇es

A are therefore constant and,
since the connection is torsion free, these forms are exact and equal to dθ sα̇ for some odd
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coordinates θ sα̇ . The N− r functions θ s = θ sα̇πα̇ can be seen to be constant also along
the twistor distribution (2.14). The global holomorphic coordinates (πα̇, θ s) define a
projection� :PT → CP

1|N−r as promised. We now define the Poisson structure by
considering a pair of local functions f, g on PT . Pulled back to F , they satisfy

πα̇E Aα̇ f = 0, πα̇E Aα̇g = 0 , (2.18)

and this implies that

E Aα̇ f = πα̇ f A, E Aα̇g = πα̇gA (2.19)

for some f A, gA of weight −1 in πα̇ (this follows from the standard fact that πα̇bα̇ =
0⇒ bα̇ = bπα̇ for some b which follows from the two-dimensionality of the spin space
and the skew symmetry of εα̇β̇ ). We define the Poisson bracket { f, g} of f with g to be

{ f, g} := (−)pA(p f +1) f A P AB gB . (2.20)

It is clear that this has weight −2 in πα̇ , but, as given, this expression only lives on F .
However, it is easily checked that, as a consequence of the covariant constancy of the
P AB , it is constant along the distribution (2.14) and descends to PT . 	


See Appendix 5 for more on the non-projective formulation.

3. Twistor Actions

In order to consider actions, we must allow our fields to go off-shell, and this is most
straightforwardly done in the Dolbeault setting. We can take an almost complex struc-
ture that is not necessarily integrable to be the off-shell field, and regard the integrability
condition to be part of the field equations. In the following we will see that if we require
the almost complex structure to be compatible with a Poisson structure or complex con-
tact structure and the almost complex structure can be encoded in a complex one-form
h defined up to scale.

In the following, we will mostly work ‘non-projectively’ i.e., on T[N] = C
4|N, or at

least using homogeneous coordinates. This can also be identified as the total space of
the line bundle O(−1) over PT. On this space, we have the Euler homogeneity vector
field ϒ , and a canonically defined holomorphic volume form  (an integral form in
this supersymmetric context) of weight 4 − N, the tautological form pulled back from
Ber(PT ) ∼= O(N − 4) satisfying Lϒ = (4 − N), where Lϒ is the Lie deriva-
tive along ϒ . Similarly, τ will be a well-defined differential one-form of weight 2. See
Appendix 5 for further discussion.

3.1. Deformations of twistor space. For simplicity, we take the supertwistor space
PT to be a deformation of flat twistor space PT

′
[N] with homogeneous coordinates as

in the flat case given by7

Z I = (ωα, θ i , πα̇) = (ωA, πα̇) = (Za, θ i ) , (3.1)

7 We could take a finite deformation of any curved integrable twistor space, but would then need more
coordinate patches.
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the latter form distinguishes between the odd, θ i and the even, Za coordinates. We also
assume that we are given an ‘infinity twistor’ a constant graded skew bi-vector

I I J := diag(P AB,	εα̇β̇ ), (3.2a)

where

P AB = diag(εαβ, Pi j ) and Pi j = P(i j). (3.2b)

When 	 = 0, we will take Pi j to be diagonal with r ones and N − r zeroes along the
diagonal.

We also introduce the graded Poisson structure on homogeneous functions f and g
by

[ f, g} := (−)pI (p f +1)(∂I f )I I J (∂J g), (3.3a)

where we introduce the notation

∂I := ∂

∂Z I
, and we will also use ∂̄ Ī :=

∂

∂ Z̄ Ī
. (3.3b)

Infinitesimally, a deformation of the almost complex structure is represented by a
holomorphic tangent bundle valued (0, 1)-form j , where the deformed and undeformed
anti-holomorphic exterior derivatives are related by ∂̄ = ∂̄0 + j . The first order part of the
integrability condition (assuming that ∂̄2

0 = 0) is ∂̄0 j = 0. An infinitesimal diffeomor-
phism induced by the real part of a (1, 0)-vector field X gives rise to the deformation
j := −∂̄0 X , so that the infinitesimal deformations of the complex structure modulo
those obtained by infinitesimal diffeomorphisms define an element of the Dolbeault
cohomology group H1(PT

′, T (1,0)PT).
In order to impose the Einstein or vacuum conditions, we will also demand that the

deformation preserves the Poisson structure � = −I J I ∂I ∧ ∂J of weight −2. In this
linearised context, we can ensure this by requiring that the deforming vector fields j
preserve the Poisson structure L j� = 0, where L is the Lie derivative. This will follow
if j is Hamiltonian with respect to�, i.e., if there exists a (0, 1)-form h of weight 2 such
that

j = � dh = (−)pI (∂I h)I I J ∂J . (3.4)

If h = ∂̄χ we see that j is ∂̄(�(χ)) and so is pure gauge. Thus such deformations
correspond to h taken to be Dolbeault representatives for elements of H1(PT

′,O(2)).
The Penrose transform gives the identification between elements of H1(PT

′,O(2)) and
linearised self-dual gravitational fields, [P68,P76] and in the supersymmetric case this
will give the whole associated linearised gravitational supermultiplet.

We now consider a finite deformation, again determined by h = d Z̄ āhā which, at
this stage, is an arbitrary (even) smooth function of (Z I , Z̄ ā) homogeneous of degree 2
in Z I and 0 in Z̄ Ī , holomorphic in the θ i s and satisfies Z̄ āhā = 0; we will never allow
any dependence on the complex conjugates of the fermionic cooordinates.

We then define the distribution T (0,1)PT of anti-holomorphic tangent vectors on
PT by

T (0,1)PT := span{D̄Ī } := span
{
∂̄ā + (−)pI (∂I hā)I

I J ∂J , ∂̄ī

}
. (3.5)
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This is to be understood as a finite perturbation of the standard complex structure on
flat supertwistor space with ∂̄-operator ∂̄0 = d Z̄ Ī ∂̄ Ī .8 The complex structure can be
equivalently determined by specifying the space of (1,0)-forms

(1,0)PT := span{DZ I } := span{dZ I + I I J ∂J h}. (3.6)

The integrability condition for this distribution is

I I J ∂J
(
∂̄āhb̄ − ∂̄b̄hā + [hā , hb̄}

) = 0 ⇐⇒ I IJ∂J
(
∂̄0h + 1

2 [h, h}) = 0, (3.7)

where the wedge product in the last expression is understood. When this equation is
satisfied, not only is the almost complex structure integrable, but also the Poisson bracket
of two holomorphic functions is again holomorphic. In the case that 	 = 0, when the
Poisson structure is degenerate, the coordinates πα̇ and θr+1, . . . , θN are holomorphic
and define a projection to CP

1|N−r as required for the characterization of a twistor space
for a self-dual vacuum solution. Thus, in this case, Eq. (3.7) is the main field equation.

In the Einstein case, we must produce a holomorphic contact structure. On the flat
twistor space, introduce the contact structure

τ0 = dZ I Z J IJ I , (3.8a)

where

(−)pK II K I K J = 	δI
J and II J = diag(	PAB, ε

α̇β̇ ). (3.8b)

For the Einstein case, from Thm. 2, we need to know that we have a holomorphic contact
structure on the deformed space. The deformed one can be taken to be

τ := DZ I Z J IJ I = dZ I Z JωJ I + Z J (−)pI IJ I I I K︸ ︷︷ ︸
= 	δJ

K

∂K h = τ0 + 2	h, (3.9)

where the last equation follows from the homogeneity relation Z I ∂I h = 2h. The con-
dition that ∂̄τ = 0⇔ D̄Ī dτ = 0 is

F (0,2) := ∂̄0h + 1
2 [h, h} = 0. (3.10)

Thus, integrability of the complex structure follows from the holomorphy of the contact
structure when	 �= 0. (When	 = 0, τ0 remains holomorphic trivially.) Thus, not only
is (3.10) our main equation in the Einstein case, it also implies (3.7) in the other cases,
and so we will focus on this as the main equation in what follows.

The choice of the Poisson structure reduces the diffeomorphism freedom to (infini-
tesimal) Hamiltonian coordinate transformations of the form

δZ I = [Z I , χ}� h �→ h + δh, with δh = ∂̄0χ + [h, χ}, (3.11)

where χ is some smooth function of weight 2. Under this transformation, the ‘curvature’
F (0,2) behaves as F (0,2) �→ F (0,2) + δF (0,2) with δF (0,2) = [F (0,2), χ}. Thus, the field
equation (3.10) is invariant under these transformations.

8 As in the linearised context, we eventually want to impose the Einstein condition on the space-time
manifold. Therefore, we are only interested in a subclass of (finite) deformations ∂̄0 �→ ∂̄0 + j with j given
by j = d Z̄ ā jā

I ∂I = d Z̄ ā(−)pI ∂I hā I I J ∂J .
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We can see that, at least in linear theory, h encodes a supergravity multiplet as follows.
The form h may be expanded in the odd coordinates as

h = h0 +
N∑

r=1

1
r ! θ

i1 · · · θ ir hi1···ir . (3.12)

If we further linearise (3.10) around the trivial solution h = 0, it tells us that ∂̄0h = 0,
or equivalently, ∂̄0h0 = 0 = ∂̄0hi1···ir . Because of the gauge invariance (3.11), which
at the linearised level reduces to δh = ∂̄0χ , we see that h0 ∈ H1(PT,O(2)) and
hi1···ir ∈ H1(PT,O(2 − r)), where PT represents the body of the supermanifold
PT (so that PT is a finite deformation of PT

′[0]). By virtue of the Penrose trans-
form, [P68], h0 corresponds on space-time to a helicity s = 2 field while hi1···ir to
a helicity s = (4 − r)/2 field. Hence, for maximal N = 8 supersymmetry, we find
(sm) = (−21,− 3

2 8,−128,− 1
2 56, 070,

1
2 56, 128,

3
2 8, 21) which is precisely the (on-shell)

spectrum of N = 8 Einstein supergravity; the subscript ‘m’ refers to the respective
multiplicity. Altogether, we see that a single element h ∈ H1(PT,O(2)) encodes the
full particle content of maximally supersymmetric linearised Einstein gravity in four
dimensions.

In this linearised context, it is straightforward to see how the gauging works. The
bundle of R-symmetry generators on twistor space is the tangent bundle to the odd
directions spanned by ∂/∂θ i . The linearised variation in the ∂̄-operator on this bun-
dle is Pik∂2h/∂θ j∂θk because the part of ∂̄ f i∂/∂θ i tangent to the odd directions is
(∂̄ f i + Pik∂2h/∂θ j∂θk f j )∂/∂θ

i . Because θ i anti-commute, ∂2h/∂θ i∂θ j is skew sym-
metric in i j . Thus, in the case of non-degenerate Pi j , this gives an element of the Lie
algebra of SO(N,C), and so corresponds to the maximal gauging of the R-symmetry,
with gauge group SO(N,C). When Pi j has rank r , for r < N, the gauging of the
R-symmetry will be reduced to the subgroup of SO(N,C) that preserves Pi j .

In Appendix 5, where we compare our approach with that of [KK98], we also make
some comments on the space-time fields in the non-linearised setting for zero cosmo-
logical constant.

3.2. Action functionals. We will be interested in integrating Lagrangian densities over
twistor space for which we will need the holomorphic volume integral form

N = D(DZ I ) = 1
4!εabcd Za DZb ∧ DZc ∧ DZd ⊗

N∏
i=1

Dθ i , (3.13)

which has weight 4 − N on account of the Berezinian integration rule
∫

dθ iθ j = δi j

implying d(λθ i ) = λ−1dθ i for λ ∈ C
∗. Here, we use Manin’s notation [M88] to denote

integral forms associated with a given basis of differential one-forms. We will not inte-
grate over any complex conjugated odd coordinates.

For maximal supersymmetry, N = 8, we can write down an action functional repro-
ducing the field equations (3.10) and hence also (3.7),

S[h] =
∫
8 ∧

(
h ∧ ∂̄0h + 1

3 h ∧ [h, h})

=
∫

(0)
8 ∧

(
h ∧ ∂̄0h + 1

3 h ∧ [h, h}), (3.14)
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where the integral form


(0)
8 = D(dZ I ) = 1

4!εabcd ZadZb ∧ dZc ∧ dZd ⊗
8∏

i=1

dθ i . (3.15)

It can be seen that the weights balance as h has weight 2, [·, ·} weight −2 and 8

(respectively, (0)8 ) has weight−4. This is the only value of N for which there is such a
balance.

The action (3.14) is invariant under (3.11). This follows from the Bianchi identity
for F (0,2),

∂̄0 F (0,2) + [h, F (0,2)} = 0, (3.16)

implied by the (graded) Jacobi identity for the Poisson structure.
It is clear that the almost complex structure, integrability conditions and action for-

mulation (the latter for N = 8) only depend on the Poisson structure I I J and not on II J
directly. It is also clear that if I I J is degenerate, the above field equations and action (the
latter for N = 8) all make good sense, although the action most directly yields (3.10)
rather than the superficially weaker Eq. (3.7), that is sufficient to determine the relevant
structures on the deformed twistor space.

The action (3.14) can be compared with the Kodaira-Spencer actions introduced in
[BCOV94], the compendium of topological M-theory related actions in [DGNV05] and
the Lagrange multiplier-type action involving the Nijenhuis tensor given in [BW04] in
the N = 4 case. Our action is local in contra-distinction with the non-local Kodaira-
Spencer action. Our action is given for a non-Calabi Yau space (due the isomorphism
(B.5), the holomorphic Berezinian is only trivial when N = 4). Ours is most closely
related to that in Berkovits & Witten, although our basic variable, the one-form h which
is a “potential” for the deformation j , considered in deformation theory (i.e. j is a
holomorphic derivative of h) and is most naturally expressed for N = 8 rather than
N = 4.

We close this subsection by discussing the cases with N < 8 supersymmetries. We
start from the action (3.14) with N = 8 but restrict the dependence of h on θ i by requiring
invariance under an SO(8−N,C) subgroup of the R-symmetry. Thus, we set

h = f + θN+1 · · · θ8 b, (3.17)

where f and b are now one forms depending on the bosonic twistor coordinates and
θ1, . . . , θN, f has weight 2, and b has weight N − 6. We can now integrate out the
anti-commuting variables θN+1, . . . , θ8 and integrate by parts to obtain the action

S[b, f ] =
∫
r ∧ b ∧ (

∂̄0 f + 1
2 [ f, f }). (3.18)

This action is now of ‘BF’ form where b acts as a Lagrange multiplier for the field
equation

∂̄0 f + 1
2 [ f, f } = 0. (3.19)

which, as we have seen, implies that integrability of the complex structure is compatible
with a holomorphic Poisson structure. Varying f yields the equation

∂̄ f b = 0 (3.20)
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and, together with the gauge freedom b �→ b+∂̄ f χ , this implies that b defines an element
of the cohomology group H1(PT ,O(N − 6)) and so is the Penrose transform of a
superfield of helicity −2 + N/2.

4. Covariant Approach, Covariant Action for N= 0 and Special Geometry

The above actions are non-covariant in the sense that they explicitly depend on the
chosen background one has started with so that diffeomorphism invariance is broken.
This is normal in the context of Chern-Simons actions for which a frame of the Yang-
Mills bundle must be chosen. Nevertheless, we will see that at least for τ non-degenerate
and N = 0 we can give a covariant version.

The geometric structure we are concerned with here is closely related to a (real)
six-dimensional special geometry introduced by [CE03]. In their geometry, a real rank-
4 distribution (subbundle of the tangent bundle) D is introduced and, if suitably non-
degenerate and satisfying a positivity condition, it is shown that there is a canonically
defined almost complex structure J for which the distribution is an almost complex con-
tact distribution. Furthermore, the obstruction to the integrability of J is identified. Our
situation is somewhat different in that the primary structure on a smooth manifold, P , is
a complex one-form τ defined up to complex rescalings (or more abstractly, a complex
line bundle L∗ ⊂ CT ∗P := C⊗ T ∗P). This is more information in the sense that D is
defined directly as the kernel of τ , but τ is only defined by D up to τ �→ aτ + bτ̄ , where
a, b are complex valued functions on P . Given D, there is a unique choice of τ that is
compatible with the Cap-Eastwood almost complex structure but a priori, one does not
know if that is the τ that has been chosen. Our analogue of the Cap-Eastwood theorem
works in higher dimensions also and we state it in greater generality than we need.

Theorem 3. Suppose that on a (smooth) manifold P of dimension 4n + 2 we are given
a complex line subbundle L∗ ⊂ CT ∗P, represented by a complex one-form τ defined
up to complex rescalings. Suppose further that

τ ∧ (dτ)n+1 = 0 and τ ∧ (dτ)n ∧ τ̄ ∧ (dτ̄ )n �= 0,

then there is a unique integrable almost complex structure for which τ is proportional to
a non-degenerate holomorphic contact structure. Here, (dτ)n := dτ∧· · ·∧dτ (n-times).

Proof. We claim that, with the assumptions above, the (2n +1)-form τ ∧(dτ)n is simple,
i.e., that the space of vectors X ∈ �(P,CTP) such that X (τ ∧ dτ) = 0 is (2n + 1)-
dimensional. This follows because the kernel of τ is (4n + 1)-dimensional, whereas dτ
defines a skew form on this kernel and so must have even rank. However, its rank is less
than 2n + 2 by τ ∧ (dτ)n+1 = 0 but greater than or equal to 2n because τ ∧ (dτ)n �= 0.
Hence, the kernel of τ ∧ (dτ)n is (2n + 1)-dimensional and we will take this kernel
to be the space of anti-holomorphic tangent vectors spanning T (0,1)P . The condition
that T (0,1)P should contain no real vectors follows from the second assumption of the
theorem.

We have that X (τ ∧ (dτ)n) = 0 ⇔ X (τ ∧ dτ) = 0 and we will use this latter
characterisation of T (0,1)P in the following.

We now consider the integrability of the distribution. Let X and Y satisfy

X (τ ∧ dτ) = 0 = Y (τ ∧ dτ). (4.1)
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Then clearly X τ = 0 = Y τ and

τ ∧ (X dτ) = 0 , (4.2)

so that X dτ ∝ τ and LXτ ∝ τ , and similarly for Y . Here, LX denotes the Lie
derivative along X . Thus,

[X,Y ] τ = X (Y τ)− Y (X τ)− X (Y dτ) = 0 , (4.3)

since X τ = 0 = Y τ by assumption and so X (Y dτ) = 0 from above. Further-
more,

[X,Y ] (τ ∧ dτ) = −τ ∧ ([X,Y ] dτ)

= −τ ∧ ([X,Y ] dτ + d([X,Y ] τ)

= −τ ∧ (L[X,Y ]τ) = −τ ∧ (LXLY τ − LY LXτ) = 0 , (4.4)

since LXτ = X dτ ∝ τ , so LXLY τ ∝ τ .
Thus, the almost complex structure is integrable. 	

In the twistor context, we will take P to be a six-dimensional manifold with topology

U × S2 with U ⊂ R
4 and, as before, we shall denote it by PT . With this theorem, then,

our data is simply a complex line subbundle L∗ ⊂ CT ∗PT represented by a differential
one-form τ with values in L subject to the open condition τ ∧ dτ ∧ τ̄ ∧ dτ̄ �= 0. We will
also require that the line bundle L has Chern class 2. The field equation is τ ∧(dτ)2 = 0.
The N = 0 action above is simply

S[b, τ ] =
∫

b ∧ τ ∧ (dτ)2 , (4.5)

where b ∈ 1 PT ⊗ (L∗)3 is a Lagrange multiplier. Clearly, the field equation obtained
by varying b is τ ∧ (dτ)2 = 0, as desired. The action is clearly diffeomorphism invari-
ant, and enjoys a gauge invariance given by τ �→ χτ and b �→ χ−3b, where χ is a
non-vanishing complex-valued function on PT . This gauge freedom corresponds to the
fact that τ takes values in a line bundle L which we shall also denote by O(2) since it
becomes that on-shell, and hence b is a differential one-form with values in O(−6).

The action is also invariant under b �→ b +γ , where γ ∧τ ∧ (dτ)2 = 0, and the space
of such γ is two-dimensional when the field equations are not satisfied, but three-dimen-
sional when they are. (When they are satisfied, this freedom can be used to ensure that b
is a (0, 1)-form.) There is also a gauge freedom in b obtained as follows. We can define a
partial connection ∂̄ on O(n) by defining for χ , now assumed to be a section of O(−6),
∂̄χ to be the differential one-form modulo the kernel of ∂̄χ �→ ∂̄χ ∧ τ ∧ (dτ)2 defined
by ∂̄χ ∧ τ ∧ (dτ)2 := d(χτ ∧ (dτ)2). It is clear from this definition that the integrand
of the action evaluated on such a b = ∂̄χ is a boundary integral and so this represents
a gauge freedom. On-shell, the above definition becomes trivial, and ∂̄χ needs to be
defined a little differently by ∂̄χ2/3 ∧ (τ ∧ dτ) := d(χ2/3τ ∧ dτ), and in this case it
leads to an honest ∂̄-operator on the line bundles O(n).

The field equation for b is

db ∧ τ ∧ dτ − 3
2 b ∧ (dτ)2 = 0 (4.6)
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and when the field equation for τ is satisfied, this is the ∂̄-closure condition for sections
of (0,1)PT ⊗ O(−6). Taking into account the gauge freedom b �→ b + ∂̄χ with χ a
section of O(−6), b will correspond to an element of H1(PT,O(−6)).

Thus, solutions to the field equations correspond to a complex three-dimensional
manifold PT with holomorphic contact structure τ , and the condition on the Chern
class of L implies that it satisfies the topological assumption of Ward’s theorem, so that,
if it contains a holomorphic rational curve of degree one in the S2-factor, then it corre-
sponds to a space-time M with self-dual Einstein metric. The field b ∈ H1(PT,O(−6))
then corresponds via the Penrose transform to a right-handed linearised gravitational
field propagating on that self-dual background. Thus, we have the self-dual sector of
non-supersymmetric Einstein gravity.

4.1. The supersymmetric case. In the supersymmetric situation, we will assume that
PT is a smooth supermanifold with six real bosonic dimensions and N complex fer-
mionic dimensions. Without loss of generality, we can always assume that the super-
manifold is split in the smooth category [B79], and that locally the odd coordinates are
θ i , i = 1, . . . ,N, and that we will only ever have holomorphic dependence on θ i , their
complex conjugates will not enter the formalism, so, in particular, the transition func-
tions for the supermanifold will be holomorphic in θ i .9 We can still encode the structure
of a supersymmetric non-linear graviton into a complex contact form τ as follows. We
will assume that τ is a complex differential one-form on the supermanifold PT , again
with only holomorphic dependence on the θ i , i.e., τ = dxaτa + dθ iτi , where the xas are
the real bosonic coordinates on PT , a = 1, . . . , 6, and τa and τi are holomorphic in θ i

with τi odd and τa even functions on PT . On the body of the supermanifold, θ i = 0,
we can assume that we have the equations τ ∧ (dτ)2 = 0 as before, but these will not
hold when θ i �= 0, even for standard flat supertwistor space as, in general, (dθ)n �= 0 ∀ n
for an odd variable θ . Thus, we cannot express the conditions we need quite so simply
in the supersymmetric case.

Nevertheless, much of Thm. 3 works in the supersymmetric case also. We will require
firstly, as a genericity assumption, that the complexified kernel CD of τ has dimension
5|2N (here we are taking ∂/∂θ i and ∂/∂θ̄ ī to be independent). Secondly, we require that
on this complexified kernel of τ , the two form dτ has rank 2|N so that the kernel of
τ ∧ dτ is 3|N-dimensional and further, that ker(τ ∧ dτ) has no real vectors, i.e.

ker(τ ∧ dτ) ∩ ker(τ ∧ dτ) = {0}. (4.7)

The fact that we have required that τ depends only on θ i and not θ̄ ī means that dτ
annihilates ∂/∂θ̄ ī , for i = 1, . . . ,N and so the rank of dτ is at most 5|N in any case.
With these assumptions, the proof of Thm. 3 follows without modification to show that
ker(τ ∧ dτ) is integrable and that τ is a holomorphic complex contact structure so that

T (0,1)PT := ker(τ ∧ dτ). (4.8)

The main field equation is therefore the condition that τ ∧ dτ annihilates a com-
plex distribution of dimension 3|N. In the supersymmetric context, we do not yet
have an equation on τ analogous to the bosonic equation τ ∧ (dτ)n+1 = 0 for higher
dimensional complex contact structures nor an action that produces this condition as its
Euler-Lagrange equation. As a consequence, we have so far been unable to find a covar-
iant supersymmetric action functional.

9 In a Dolbeault context, this assumption is, in effect a gauge choice.



Twistor Actions for Self-Dual Supergravities 115

5. Conclusions

Given that these actions are ‘Chern-Simons-like’ one is led to ask the extent to which
they can be interpreted coherently as holomorphic Chern-Simons theories. Clearly, in
some sense, the gauge group should be taken to be the diffeomorphisms of the supertw-
istor space that preserve the holomorphic Poisson structure. This is most easily made
sense of in a complexified context so that the holomorphic twistor variables are freed up
and become independent from the conjugate twistor variables. Then the theory becomes
a complexified Chern-Simons theory with gauge group the holomorphic contact trans-
formations of the holomorphic supertwistor space, a region in CP

3|8, on the conjugate
supertwistor space (which is just CP

3 as we have no anti-holomorphic fermionic coor-
dinates). A similar connection between the self-dual vacuum equations and a gauge
theory with a diffeomorphism group gauge group was given on space-time in [MN89]
(here the gauge theory was the self-dual Yang-Mills equations); see also [W07] for a
supersymmetric extension thereof.

The fact that Thm. 3 works in 4n + 2 dimensions is suggestive of applications of this
framework to the twistor theory for quaternionic Kähler manifolds with non-zero scalar
curvature in 4n dimensions. It is straightforward to write down a Lagrange multiplier
action

∫
b ∧ τ ∧ (dτ)n+1 analogous to our N = 0 action, but with b a (2n − 1)-form,

although in this context the interpretation of b is less clear.
An attractive feature is that we have a fully supersymmetrically invariant and Lorentz

invariant off-shell formulation of the theory. However, we have so far been unable to
find an action functional of N = 8 self-dual supergravity that does not depend on a
given integrable background. Such an action functional would, however, be desirable as
one would hope for an explicitly diffeomorphism invariant action principle for N = 8
self-dual supergravity. In particular, if one wishes to be able to extend the ideas to the
full theory along the lines of [M05] for conformal supergravity,10 then it would seem
awkward to have to identify a Minkowski background.

A task for the future is to start with the superfield expansions (in the non-linear
setting) of τ and h and reproduce the covariant form of the field equations and of the
action functional of N = 8 self-dual supergravity in four dimensions as given in [S92].11

In the zero cosmological constant case, our twistor action and field equations must cor-
respond via the Penrose transform to Siegel’s results.
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Appendix A. Prepotential Formulation

The subject of this appendix is the comparison of [KK98] approach with ours. Their
formulation is based on an anti-holomorphic involution which picks a real slice in com-
plexified space-time being of split signature. Pretty much the same holds true, however,

10 See also [A-ZH06] for a space-time action for expanding about the self-dual sector in the case of Einstein
gravity.

11 Similar expansions for certain supersymmetric gauge theories were performed in [PW04,PS05], Sämann
(2005), [PSW05 and LS06].
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for Euclidean signature and it is this latter case we are interested in here. As already
indicated, this works only for an even number of supersymmetries. In the following, we
shall use conventions from [W06].

A.1. Real structures on PT
′
[N] and M[N]. Let us first consider the supertwistor space

PT
′
[N] = CP

3|N\CP
1|N with (homogeneous) coordinates (ωA, πα̇) for flat super space-

time M[N] ∼= C
4|2N. An Euclidean signature real slice follows from the anti-holomor-

phic involution without fixed points ρ : PT
′
[N] → PT

′
[N] given by

(ω̂A, π̂α̇) := ρ(ωA, πα̇) := (ω̄BCB
A,Cα̇

β̇ π̄β̇ ), (A.1)

where bar denotes complex conjugation and (CA
B) = diag((Cαβ), (Ci

j )), with

(Cα
β) = ε, (Ci

j ) = diag(ε, . . . , ε︸ ︷︷ ︸
N
2 −times

), (Cα̇
β̇ ) = −ε, ε :=

(
0 1
−1 0

)
. (A.2)

We can extend ρ to a map from a holomorphic function f on PT
′
[N] another holomorphic

function by

ρ( f (· · · )) := f (ρ(· · · )). (A.3)

By virtue of the incidence relation, ωA = x Aα̇πα̇ , we obtain an induced involution on
M[N] explicitly given by

ρ(x Aα̇) = −x̄ Bβ̇CB
ACβ̇

α̇ . (A.4)

We shall use the same notation ρ for the anti-holomorphic involution induced on the
different (super)manifolds in the twistor correspondence. The fixed point set of this
involution, that is, ρ(x) = x for x ∈ M[N], defines Euclidean right-chiral superspace
M
ρ

[N] ∼= R
4|2N inside M[N].

Following [AHS78], the supertwistor space PT
′
[N] can be identified with

O(1)⊕2|N → CP
1 (A.5)

and so it can be covered by two (acyclic) coordinate patches U± and coordinatised by
(ωA±, π±), where ωA± are local fibre coordinates with ωA

+ := ωA/π0̇, ωA− := ωA/π1̇ and
π+ := π1̇/π0̇, π− := π0̇/π1̇ are the standard local holomorphic coordinates on CP

1,
with π+ = π−1− on U+ ∩U+ ⊂ PT

′
[N]. On the other hand, since PT

′
[N] is diffeomorphic

to M
ρ

[N] × S2 ∼= R
4|2N× S2, one may equivalently coordinatise it by using (x Aα̇, λ±),

where λ± are the standard local holomorphic coordinates on S2 ∼= CP
1. Note that

(ωA±, π±) = (x Aα̇λ±α̇ , λ±), where

(λα̇+) :=
(
λ+
−1

)
and (λα̇−) :=

(
1
−λ−

)
. (A.6)
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The explicit inverse transformation laws are simply

x Aα̇ = ωA±π̂ α̇± − ω̂A±πα̇±
π̂
β̇
±π±β̇

, (A.7)

where πα̇± are similarly defined as in (A.6). Altogether, we have obtained a
non-holomorphic fibration

π : PT
′
[N] → M

ρ

[N]. (A.8)

Introduce

(λ̂α̇+) :=
(

1
λ̄+

)
, (λ̂α̇−) :=

(
λ̄−
1

)
, γ−1± := λ̂α̇±λ±α̇ = 1 + λ±λ̄±, (A.9)

like for π̂ α̇± = ρ(πα̇±). Then, due to the above diffeomorphism, we have the following
transformation laws between the coordinate vector fields:

∂

∂ωA±
= γ±λ̂α̇±

∂

∂x Aα̇
, (A.10a)

∂

∂π+
= ∂

∂λ+
− γ+x A1̇λ̂α̇+

∂

∂x Aα̇
, (A.10b)

∂

∂π−
= ∂

∂λ−
− γ−x A0̇λ̂α̇−

∂

∂x Aα̇
(A.10c)

for the holomorphic tangent vector fields and

∂

∂ω̄ Ā±
= −γ±CA

Bλα̇±
∂

∂x Bα̇
, (A.10d)

∂

∂π̄+
= ∂

∂λ̄+
− γ+x A0̇λα̇+

∂

∂x Aα̇
, (A.10e)

∂

∂π̄−
= ∂

∂λ̄−
+ γ−x A1̇λα̇−

∂

∂x Aα̇
(A.10f)

for the anti-holomorphic ones.

A.2. Comparison of the two approaches. In what follows, we shall restrict our discussion
to the U+-patch only and for notational simplicity suppress the patch index. Of course,
a similar discussion carries over to the U−-patch.

To begin with, let us write down the field Eqs. (3.10) more explicitly. If we let the
deformation be h = dω̄ᾱhᾱ + dπ̄hπ̄ , they read as

∂

∂ω̄ᾱ
hβ̄ −

∂

∂ω̄β̄
hᾱ + [hᾱ, hβ̄} = 0, (A.11a)

∂

∂π̄
hᾱ − ∂

∂ω̄ᾱ
hπ̄ + [hπ̄ , hᾱ} = 0. (A.11b)
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Using the incidence relation ωA = x Aα̇πα̇ and the involutions introduced in the
preceding subsection, h can also be expressed in the coordinates (x Aα̇, λ) as

h = −γ λ̂β̇dxαβ̇ �α + dλ̄ �λ̄, (A.12)

where �α := −γ−1Cαβhβ̄ and �λ̄ := hπ̄ + γ xα0̇�α .
In order to compare our approach with those by [KK98], we notice that their formula-

tion deals with the ‘vacuum case’, i.e. with the case of vanishing cosmological constant.
Upon also recalling point (iii) of Thm. 2, we must therefore ensure that the fibration of
the supertwistor space is preserved, and so (i) h is of the form

h = −γ λ̂β̇dxαβ̇ �α, (A.13)

i.e. �λ̄ = 0⇔ hπ̄ = −γ xα0̇�α and (ii) the relative symplectic structure needs to be
preserved which amounts to requiring a degeneracy of the Poisson structure ω = (I I J )

introduced in Sect. 3.1 according to ω = (I AB). Notice further that �α must be of
weight 3 in order for h to be of weight 2.

Some algebra then reveals that in the ‘vacuum case’ the above equations for hᾱ and
hπ̄ translate into the following set:

εαβ ∂̄α�β + 1
2ε
αβ [�α,�β} = 0, (A.14a)

∂λ̄�α + γ−2εβγ (∂β�α)�γ = 0, (A.14b)

where ∂̄A := λα̇∂/∂x Aα̇ and ∂A := γ λ̂α̇∂/∂x Aα̇ .
Before going any further, let us say a few words about gauge symmetries. The original

equations for h transformed covariantly under gauge transformations of the form h �→
h + δh, with δh = ∂̄0χ + [h, χ} for some function χ of weight 2. However, the above
equations will no longer transform covariantly under generic gauge transformations,
since we have incorporated the constraint �λ̄ = 0. Nevertheless, some residual gauge
symmetry remains, and which is determined as follows. In order to preserve the con-
straint �λ̄ = 0, we must have δhπ̄ = −γ xα0̇δ�α , where δ�α = −γ−1Cαβδhβ̄ , i.e.
transformations of hπ̄ are determined by those of hᾱ . It is not difficult to verify that the
remaining gauge symmetry is given by the following transformation laws:

δ�α = −(∂̄αχ + [�α, χ}), with ∂λ̄χ + γ−2εβγ (∂βχ)�γ = 0. (A.15)

In particular, the last of these equations shows that the 2nd equation for �α from
above does not constrain �α any further, so that the only remaining field equation we
are left with is

εαβ ∂̄α�β + 1
2ε
αβ [�α,�β} = 0. (A.16)

Since in particular �α = ∂α� (see also [W85]), where � is some function of weight 4
(recall that �α is of weight 3) and ω = (I AB), we end up with

�� + 1
2ε
αβ(−)pA∂A∂α� I AB ∂B∂β� = 0 and � := εαβ ∂̄α∂β, (A.17)

which is [KK98] result.
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As before, in the case of maximal supersymmetry, N = 8, the field Eqs. (A.17) can
be derived from an action principle,

S[�] =
∫

d vol
{
��� + 1

3!ε
αβ(−)pA�∂A∂α� I AB ∂B∂β�

}
, (A.18a)

where the measure d vol is given by

d vol = d4x γ 2dλdλ̄ dθ1 · · · dθ8. (A.18b)

It remains to give the superfield expansion of �. For brevity, let us only discuss the
N = 8 case. We find

� = g + θ iψi + θ i1i2 A[i1i2] + θ i1i2i3χi1i2i3 + θ i1i2i3i4φi1i2i3i4

+ θi1i2i3 χ̃
i1i2i3 + θi1i2 Ãi1i2 + θi ψ̃

i + θ g̃, (A.19)

where

θ i1···ir := 1
r !θ

i1 · · · θ ir , for r = 1, . . . , 4, (A.20a)

θi1···i8−r := 1
r !εi1···i8−r i9−r ···i8θ

i9−r · · · θ i8 , for r = 5, . . . , 8. (A.20b)

Here, εi1···i8 = ε[i1···i8] and ε1···8 = 1. Keeping in mind (A.13), we find the following
space-time fields:

Table 1. Space-time fields and their helicities and multiplicities

Field g ψ A χ φ χ̃ Ã φ̃ g̃

Helicity 2 3
2 1 1

2 0 − 1
2 −1 − 3

2 −2
Multiplicity 1 8 28 56 70 56 28 8 1

Appendix B. Holomorphic Volume Forms and Non-Projective Twistor Space

It is often convenient to work on the non-projective twistor space T as many of the
geometric structures can be formulated globally there and sections of the line bundles
O(n) become ordinary functions of weight n under the action of the Euler vector field
ϒ = Z I ∂/∂Z I . In the curved case, as in the proof of Theorem 2, the non-projective
space can be defined as the quotient of the non-projective co-spin bundle S ∗ by DF .
We can also define it intrinsically as follows.

In the bosonic case, given a contact structure defined by a one-form τ with val-
ues in a line bundle L , we can see that τ ∧ dτ defines a (non-vanishing) section of
(3,0)PT ⊗ L2. Thus, we must have L−2 ∼= (3,0)PT . In the flat case, non-projective
twistor space T[0] ∼= C

4 is the total space of the (tautological) line bundle O(−1) over
the projective twistor space PT

′[0], and(3,0)PT
′[0] ∼= O(−4). In the general (non-super-

symmetric) case, we can define the non-projective twistor space T to be the total space
of the line bundle O(−1) now defined to be the 4th root of (3,0)PT . If so, we see that
L ∼= O(2). The non-projective space has an Euler vector field ϒ that generates the C

∗
action on the fibres of O(−1). The weights of functions and forms pulled back from
PT are translated into the weights along ϒ on the non-projective space. In this context,
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τ defines a 1-form of weight 2 on the non-projective space, and the non-degeneracy of
the contact structure translates into the condition that the two-form dτ is non-degenerate
as a two-form on T and being closed defines a holomorphic symplectic structure. Its
inverse � therefore defines a non-degenerate holomorphic Poisson structure on T of
weight −2. This descends to give a Poisson structure on PT with values in O(−2).

We can extend this reasoning to the supersymmetric case as follows. We again con-
sider a holomorphic differential one-form τ with values in a complex line bundle L . It
defines as its kernel the contact distribution D , which now is of rank 2|N, leading to a
short exact sequence as follows:

0 −→ D −→ T (1,0)PT −→ L −→ 0 . (B.1)

Since we assume that τ defines a non-degenerate holomorphic contact structure, dτ
provides a non-degenerate skew form on D . Taking its Berezinian, we get an element

Ber(dτ |D ) ∈ L 2−N⊗ (Ber D)−2. (B.2)

(This follows from the fact that in the definition of the Berezinian, the odd-odd part of the
matrix is inverted before its determinant is taken leading to inverse weights associated
to the odd directions relative to their bosonic counterparts.) When L has a square root,
we can take its square root to get an isomorphism

√
(Ber(dτ |D )) : Ber D → L 1−N/2 . (B.3)

The above exact sequence then gives an identification

Ber T (1,0)PT ∼= Ber D ⊗L ∼= L 2−N/2 , (B.4)

and so finally we obtain the isomorphism

Ber(PT ) := Ber(1,0)PT ∼= L N/2−2. (B.5)

We will take the body of the supertwistor space to have topology U × S2, where
U is an open subset of R

4 (or more generally the total space of the projective co-spin
bundle of a real smooth spin four-manifold M). The assumption on the normal bundle
of a rational curve in supertwistor space implies that the holomorphic Berezinian bun-
dle Ber(PT ) has Chern class N − 4, and with the topological assumptions we have
made, this will have an |N − 4|-th root and we may introduce the (consistent) notation
O(n) := (Ber(PT ))n/(N−4). Thus, L ∼= O(2) and Ber(PT ) ∼= O(N − 4).

Appendix C. Supersymmetric BF-Type Theory

In this appendix we wish to present an alternative interpretion of the holomorphic Chern-
Simons-type theory (3.14). We shall see that this theory can be viewed as a certain
supersymmetric holomorphic BF-type theory. In what follows, we will borrow ideas of
[W89].

To begin with, consider some (0|2)-dimensional space T with odd coordinates ψ1

and ψ2, which we collectively denote by ψα . On PT × T , we may introduce a
(0, 1)-form H of weight 2 according to

H = h + ψαχα + ψ1ψ2b. (C.1)
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Here, h and b are even and χα are odd (0, 1)-forms of weight 2 on PT . As before, we
assume that these fields have no dependence on the θ̄ ī coordinates.

In analogy to (3.14), we may consider the action functional

S[b, h, χα] =
∫

dψ1dψ2
∫

(0)
8 ∧

(
H ∧ ∂̄0 H + 1

3 H ∧ [H, H}). (C.2)

A short calculation reveals that this action reduces after integration over the ψα coordi-
nates to

S[h, b, χα] =
∫

(0)
8 ∧

{
b ∧ F (0,2) − 1

2ε
αβχα ∧ (∂̄0χβ + [h, χβ})

}
. (C.3)

The equations of motion that follow from this action are

F (0,2) = 0, (C.4a)

∂̄0b + [h, b} = 1
2ε
αβ [χα, χβ}, (C.4b)

∂̄0χα + [h, χα} = 0. (C.4c)

The first equation is the field equation (3.10). Note that for χα = 0 we get (3.18).
The supersymmetry transformations are straightforwardly worked out as they follow

from infinitesimal translations in the odd coordinates ψα . We find

δαh = χα, δαχβ = εαβb and δαb = 0, (C.5)

with {δα, δβ} = 0. Therefore, the supersymmetric holomorphic BF-type action (C.3)
can also be written as

S[h, b, χα] = − 1
2δ1δ2S[h], (C.6)

where S[h] is the action (3.14).
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