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Abstract: Let M be a closed surface. For a metric g on M , denote the Laplace-Beltrami
operator by � = �g . We define trace�−1 = ∫

M m(p) d A, where d A is the area ele-
ment for g and m(p) is the Robin constant at the point p ∈ M , that is the value of the
Green function G(p, q) at q = p after the logarithmic singularity has been subtracted
off. Since trace�−1 can also be obtained by regularization of the spectral zeta function,
it is a spectral invariant. Heuristically it represents the sum of squares of the wavelengths
of the surface. We define the �-mass of (M, g) to equal (trace�−1

g − trace�−1
S2,A

)/A,
where�S2,A is the Laplacian on the round sphere of area A. This is an analog for closed
surfaces of the ADM mass from general relativity. We show that if M has positive genus,
the minimum of the�-mass on each conformal class is negative and attained by a smooth
metric. For this minimizing metric, there is a sharp logarithmic Hardy-Littlewood-
Sobolev inequality and a Moser-Trudinger-Onofri type inequality.

Section 1. Introduction

Let M be a closed Riemann surface and let g be a metric on M compatible with the
complex structure. With respect to complex coordinates z, the metric g is the real part
of the Kähler metric

eu dz ⊗ dz̄,

for some smooth real valued function u on M . The area element is

d A = ieu

2
dz ∧ dz̄.

Denote the total area by A. The Laplace Beltrami operator for the metric g is given by

� = �g = −4e−u∂z∂z̄ .

� The author would like to acknowledge the support of the Institute for Advanced Study.
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(This is sometimes called the geometer’s Laplacian: note the sign.) The Green’s function
for the metric g is the smooth real valued function G on M × M\{(p, p) : p ∈ M} such
that

∫

M
G(p, q) � f (q) d A(q) = f (p) − 1

A

∫

M
f d A

for smooth functions f on M . It follows that G is symmetric,
∫

G(p, q) d A(q) = 0,
and

�pG(p, q) = − 1

A
when p �= q. (1.1)

For the smooth function f on M we define

�−1 f (p) =
∫

M
G(p, q) f (q) d A(q).

If d(p, q) is the geodesic distance between p and q in the metric g then there exists a
smooth function m on M such that

G(p, q) = 1

2π
log d(p, q) + m(p) + O(d(p, q)), as d(p, q) → 0.

The value m(p) is known as the Robin constant at p. We define

trace�−1
g =

∫

M
mg d A.

This is a spectral invariant for�, since it can be obtained from the spectral zeta function
associated to�, see [S1,S2,M3], or [Ok1]. Heuristically it represents the sum of squares
of the wavelengths of the surface (up to a constant). It is convenient to normalize to get
a scale invariant quantity. Indeed, define the �-mass to be

M(g) =
trace�−1

g − trace�−1
S2,A

A
,

where �S2,A is the Laplacian for the round metric on S2 with area A. Then the above
results show that M(g) is always positive when g is a metric on S2. In this paper we
show the following:

Theorem 1 (Negative mass theorem for positive genus surfaces). Given a metric g on
the closed surface M of positive genus, there exists a conformal metric eφg such that
M(eφg) < 0. In fact eφg can be chosen to minimize M within the conformal class.

When M is a torus, this was proved in [Ok2]. We remark that Theorem 1 fails on the
sphere. This follows from the logarithmic Hardy-Littlewood-Sobolev inequality for the
sphere [On,CL,B]:

Theorem (Morpurgo [M2]) For a metric g on the sphere S2, the value M(g) is strictly
positive unless g is round.

From [Ok1], we immediately obtain the following corollary to Theorem 1
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Corollary 2 (Analogs of Logarithmic HLS inequality and the Moser-Trudinger-Onofri
Inequality for general surfaces). If the metric g minimizes M within its conformal class,
then

1

4π

∫

M
ψ eψ d A − 1

A

∫

M
eψ�−1eψ d A ≥ 0

for all functions ψ : M → R with
∫

M eψ d A = A such that
∫

M ψ eψ d A is finite. Here,
d A and � are associated to g. Moreover, for ψ ∈ C∞(M),

1

16π

∫

M
ψ�ψ d A − log

(
1

A

∫

M
eψ d A

)

+
1

A

∫

M
ψ d A ≥ 0.

For some related results, see [Ch,CheC,DJLW,LL1,LL2,M2,M3,NT,Ok1,Ok2,OPS,
S2].

Remark. The quantity M(g) can be viewed as an analog of the ADM mass. Indeed,
writing K (p) for the Gaussian curvature of g at p, it is shown in [S1,S2], that for any
metric g on the 2-sphere, the natural analog of the ADM mass for metrics on the sphere
is the constant

mg(p) − 1

2π
�−1 K (p) = 1

A
trace�−1

g . (1.2)

Although the left-hand side of (1.2) is not constant in general for surfaces of higher
genus, the right-hand side can be thought of as the analog of the mass. (The left-hand
side of (1.2) is constant for the canonical metric, a fact we use in next section.) For a
probabilistic interpretation of trace�−1, see [DS1]. There it is shown that trace�−1 is
the constant term in an asymptotic expansion in ε, of the time it takes a Brownian particle
starting at a randomly chosen point on the surface to get ε-close to another randomly
chosen point.

Section 2. The Proof

There are two main ingredients in the proof of this result. The first is an identity con-
cerning the Arakelov Green’s function which is used in the construction of the Arakelov
metric. The second is a delicate result on the mean field equation on surfaces proved in
[DJLW]. That paper gives conditions under which a general mean field equation has a
solution. Here we show that for the particular case of the canonical metric on M and the
mean field equation arising from trace�−1, the conditions of the [DJLW] theorem are
satisfied. We start by recalling the way that Robin’s constant and the sum of squares of
the wavelengths change under a conformal change of the metric.

Proposition 2.1. Conformal change of the Robin constant. If φ is a smooth function
on M then

meφg(p) = mg(p) +
φ

4π
− 2

Aφ
(�−1

g eφ)(p) +
1

A2
φ

∫

M
eφ�−1

g eφ d A,

where

Aφ =
∫

M
eφ d A.

For the proof, see for example [S1,S2,M3] or [Ok1].
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Proposition 2.2. Conformal change of trace�−1 (Morpurgo’s Formula) Ifφ is a smooth
function on M, then

trace�−1
eφg

=
∫

M
mgeφ d A +

1

4π

∫

M
φ eφ d A − 1

Aφ

∫

M
eφ�−1

g eφ d A. (2.1)

Now we discuss the Canonical metric and the Arakelov Green’s function. We refer
the reader to [W] and [F] for more details on this subject. If M is a Riemann surface of
genus H , there exists a metric g on M known as the canonical metric which is com-
patible with the complex structure. It is defined by taking the Jacobian embedding of
the Riemann surface M into a 2H -dimensional torus, and pulling back the flat metric
on the torus to M . Indeed, let {A j , B j } be a symplectic homology basis for H1(M,Z)
satisfying the intersection pairings

#[Ai , A j ] = 0, #[Bi , B j ] = 0, #[Ai , B j ] = δi j .

Take a basis θ j for the space of homomorphic 1-forms satisfying
∫

A j

θk = δ jk .

Then the period matrix 
i j given by


i j =
∫

Bi

θ j

is positive definite. The Jacobian variety associated to M is

J (M) = C
H/(Zh +
Z

H ).

The Abel map gives an embedding of M into J (M),

I : z →
∫ z

z0

(θ1, . . . , θH ).

The canonical Kähler metric on M is given in terms of local holomorphic coordinates z
by

µ(z) dz ⊗ dz̄, where µ(z) = 1

H

⎛

⎝
H∑

j,k=1

(Im
)−1
jk

dθ j

dz

d θ̄k

d z̄

⎞

⎠ .

The real part of the Kähler metric is the Riemannian metric g. It can be checked that
this metric has unit area. The Green’s function for this metric is known as the Arakelov
Green’s function and the following result is well known.

Proposition 2.3. If M is a closed Riemann surface of genus H and if g is the canonical
metric on M with unit area, then the Robin constant m(p) for g satisfies

�m(p) = 2H − 2 +
K (p)

2π
.
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Proof of Proposition 2.3. The Gaussian curvature K is given by

2∂z∂z̄ logµ = −µK .

The Arakelov Green’s function is given by

G(z, w) = − 1

2π
log |E(z, w)| +

1

2

H∑

j,k=1

(Im
)−1
jk Im(Z − W ) j Im(Z − W )k

+
m(z)

2
− logµ(z)

8π
+

m(w)

2
− logµ(w)

8π
.

Here, Z = I (z) and W = I (w) and E(z, w) is the prime form which plays the role
of z − w, is holomorphic in z and w, and transforms as a (−1/2,−1/2) form in each
variable. We notice that log |E(z, w)| is harmonic, and so from (1.1) we have that for
w �= z,

µ(z) = 4∂z∂z̄G(z, w) = Hµ(z) + 2∂z∂z̄m(z) +
µ(z)K (z)

4π
.

Hence we see that

4µ−1∂z∂z̄m = 2 − 2H − K

2π
.

�	
Theorem 1 is now an application of the following result on the mean field equation

which is obtained from Theorem 1.2 of [DJLW] and its proof.

Theorem 2.4. [DJLW] Let (M, g) be a closed surface of unit area and let h be a smooth
positive function on M. Suppose p0 is a point at which 8πm+2 log h attains its maximum
value, and suppose in addition that

� log h(p0) < 8π − 2K (p0).

Then the minimum of the functional

J (u) = 1

16π

∫

M
|∇u|2 d A +

∫

M
u d A − log

∫

M
heu d A (2.2)

over functions u in the Sobolev space H1(M) is attained at a smooth function u satisfying

�u = 8πheu − 8π. (2.3)

Moreover, for this minimum point u we have

J (u) < −
(

1 + logπ + max
p∈M

(4πmg(p) + log h(p))

)

. (2.4)

Proof of Theorem 1. We take g to be the canonical metric on M , and we set

h = e−4πmg .
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Then by Proposition 2.3, we have

� log h = −4π�mg = 8π − 8πH − 2K < 8π − 2K .

Hence we obtain the conclusion of Theorem 2.4 From (2.3), the function u satisfies
∫

M
heu d A = 1.

From (2.2) and (2.3) we see that

J (u) = 1

2

∫

M
u(heu + 1) d A.

However, writing

φ = u − 4πmg,

we have
∫

M
eφ d A = 1,

and

�−1
g eφ = 1

8π

(

u −
∫

M
u

)

. (2.5)

Hence from (2.1),

trace�−1
eφg

= 1

8π

∫

M
u(heu + 1) = J (u)

4π
.

Now from (2.4) and the fact that

trace�−1
S2,1

= −1 − logπ

4π
,

we see that

trace�−1
eφg

< trace�−1
S2,1

.

In fact we remark that eφg minimizes trace�−1 among unit area metrics in the conformal
class of g. Indeed, from [Ok] Theorem 1, we conclude that the minimum of trace�−1

eψ g

among conformal factors with
∫

eψ = 1, must in fact be attained at a metric eψg with∫
M eψ d A = 1, which must also satisfy the Euler-Lagrange equation, namely that the

Robin constant meψ g(p) is constant:

�−1
g eψ = 1

8π

(

ψ + 4πmg −
∫

M
(ψ + 4πmg) d A

)

.

However, setting v = ψ + 4πmg , we find that v is a critical metric for J , and hence

trace�−1
eψ g

= J (v)

4π
≥ J (u)

4π
= trace�−1

eφg
.

We also remark that in general the metric eφg need not coincide with the canonical
metric or the constant curvature metric or the Arakelov metric, see [Ok2]. On a long
thin rectangular torus, the minimizer is close to being a round sphere with a short worm
hole joining the poles.
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