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Abstract: We construct new explicit compact supersymmetric valid solutions with
non-zero field strength, non-flat instanton and constant dilaton to the heterotic equa-
tions of motion in dimension six. We present balanced Hermitian structures on com-
pact nilmanifolds in dimension six satisfying the heterotic supersymmetry equations
with non-zero flux, non-flat instanton and constant dilaton which obey the three-form
Bianchi identity with curvature term taken with respect to either the Levi-Civita, the
(+)-connection or the Chern connection. Among them, all our solutions with respect
to the (+)-connection on the compact nilmanifold M3 satisfy the heterotic equations of
motion.
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1. Introduction. Field and Killing-Spinor Equations

The bosonic fields of the ten-dimensional supergravity which arises as a low energy
effective theory of the heterotic string are the spacetime metric g, the NS three-form
field strength H , the dilaton φ and the gauge connection A with curvature F A. In this
paper, we consider the bosonic geometry to be of the form R1,9−d × Md , where the
bosonic fields are non-trivial only on Md , d ≤ 8. We consider the two connections

∇± = ∇g ± 1

2
H,

where ∇g is the Levi-Civita connection of the Riemannian metric g. Both connections
preserve the metric, ∇±g = 0, and have totally skew-symmetric torsion ±H , respec-
tively.

The Green-Schwarz anomaly cancellation mechanism requires that the three-form
Bianchi identity receives an α′ correction of the form

d H = α′

4
8π2(p1(Md) − p1(E)) = α′

4

(
T r(R ∧ R) − T r(F A ∧ F A)

)
, (1.1)

where p1(Md), p1(E) are the first Pontrjagin forms of Md with respect to a connection
∇ with curvature R and the vector bundle E with connection A, respectively.

A class of heterotic-string backgrounds for which the Bianchi identity of the three-form
H receives a correction of type (1.1) are those with (2,0) world-volume supersymmetry.
Such models were considered in [31]. The target-space geometry of (2,0)-supersym-
metric sigma models has been extensively investigated in [28,31,39]. Recently, there is
revived interest in these models [9,21–24] as string backgrounds and in connection to
heterotic-string compactifications with fluxes [2–5,8,19,20,36].

In writing (1.1) there is a subtlety to the choice of connection ∇ on Md since anoma-
lies can be cancelled independently of the choice [29]. Different connections correspond
to different regularization schemes in the two-dimensional worldsheet non-linear sigma
model. Hence the background fields given for the particular choice of ∇ must be related
to those for a different choice by a field redefinition [38]. Connections on Md proposed
to investigate the anomaly cancellation (1.1) are ∇g [23,39], ∇+ [9] and very recently
[14], ∇− [6,8,24,29,32,35], Chern connection ∇c when d = 6 [5,19,20,36,39].

A heterotic geometry will preserve supersymmetry if and only if, in 10 dimensions,
there exists at least one Majorana-Weyl spinor ε such that the supersymmetry variations
of the fermionic fields vanish, i.e. the following Killing-spinor equations hold [39]:

δλ = ∇mε =
(

∇g
m +

1

4
Hmnp�

np
)

ε = ∇+ε = 0,

δ� =
(

�m∂mφ − 1

12
Hmnp�

mnp
)

ε = (dφ − 1

2
H) · ε = 0, (1.2)

δξ = F A
mn�mnε = F A · ε = 0,

where λ,�, ξ are the gravitino, the dilatino and the gaugino fields, respectively and·
means Clifford action of forms on spinors.

The bosonic part of the ten-dimensional supergravity action in the string frame is
([6], R = R−)

S = 1

2k2

∫
d10x

√−ge−2φ

[
Scalg + 4(∇gφ)2− 1

2
|H |2− α′

4

(
T r |F A|2) − T r |R|2

)]
.

(1.3)
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The string frame field equations (the equations of motion induced from the action
(1.3)) of the heterotic string up to two-loops [30] in sigma model perturbation theory
are (we use the notations in [24])

Ricg
i j − 1

4
Himn Hmn

j + 2∇g
i ∇g

j φ − α′

4

[
(F A)imab(F A)mab

j − Rimnq Rmnq
j

]
= 0;

∇g
i (e−2φ Hi

jk) = 0; (1.4)

∇+
i (e−2φ(F A)i

j ) = 0.

The field equation of the dilaton φ is implied from the first two equations above.
The first compact torsional solutions for the heterotic/type I string were obtained via

duality from M-theory compactifications on K3 × K3 proposed in [13]. The metric was
first written down on the orientifold limit in [13] and such backgrounds have since been
studied (see [2,3] and references therein). The metric and the H -flux are derived by
applying a chain of supergravity dualities and the resulting geometry in the heterotic
theory is a T

2 bundle over a K3.
A compact example solving (1.2) and (1.1) with nonzero field strength, constant dil-

aton and taking R = R+, is constructed in [9] on the Iwasawa nilmanifold which is a
T

2 bundle over T
4. However, it has been pointed out in [23] that this example is not

a valid solution due to a sign error in the torsional equation derived from the first two
equations in (1.2) which leads to the opposite sign in the left hand side of (1.1). Compact
example of a balanced 6-manifold with constant dilaton non-trivial warped factor and
torsion generated by the Chern-Simons term only is presented very recently in [14].

Compact examples in dimension six solving (1.2) and (1.1) with non-zero flux H and
non-constant dilaton were constructed by Li and Yau [36] for U(4) and U(5) principal
bundles taking R = Rc-the curvature of the Chern connection in (1.1). Non-Kaehler
compact solutions of (1.2) and (1.1) on some torus bundles over Calabi-Yau 4-manifold
(K3 surfaces or complex torus) provided in [25] are presented by Fu and Yau [19,20]
using the Chern connection in (1.1). It is confirmed in [5] that the examples of torus
bundles over the complex torus can not be solutions to (1.2) and (1.1) taking with respect
to the curvature of the Chern connection R = Rc with α′ > 0 while some torus bundles
over K3 surfaces are valid solutions.

It is known [15,22] ([24] for dimension 6) that the equations of motion of type I
supergravity are automatically satisfied with R = 0 if one imposes, in addition to the
preserving supersymmetry equations (1.2), the three-form Bianchi identity (1.1) taking
with respect to a flat connection on T M , R = 0.

According to no-go (vanishing) theorems (a consequence of the equations of motion
[15,17]; a consequence of the supersymmetry [33,34] for the SU(n)-case and [23] for
the general case) there are no compact solutions with non-zero flux and non-constant
dilaton satisfying simultaneously the supersymmetry equations (1.2) and the three-form
Bianchi identity (1.1) with T r(R ∧ R) = 0.

However, in the presence of a curvature term R the solution of the supersymmetry
equations (1.2) and the anomaly cancellation condition (1.1) obey the second and the
third equations of motion but do not always satisfy the Einstein equations of motion
(the first equation in (1.4)). If R is an SU(3)-instanton then (1.2) and (1.1) imply (1.4).
This can be seen from the considerations in the Appendix of [22]. We give a quadratic
expression for R which is a necessary and sufficient condition in order that (1.2) and
(1.1) imply (1.4) based on the properties of the special geometric structure induced from
the first two equations in (1.2). More precisely, we prove in Sect. 2.2 the following:
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Theorem 1.1. Let (M, J, g, F A, R) be a conformally balanced Hermitian manifold with
Kähler form F which solves the heterotic Killing spinor equations (1.2) and the anomaly
cancellation (1.1).

a) The Einstein equations of motion (the first equation in (1.4)) are a consequence of
the heterotic Killing spinor equations (1.2) and the anomaly cancellation (1.1) if
and only if the next identity holds

1

2

[
Rmsab Rpqab + Rmpab Rqsab + Rmqab Rspab

]
F pq J s

n = Rmpqr R pqr
n . (1.5)

• If R is (1, 1)-form, J s
m J p

n Rspab = Rmnab then (1.5) is equivalent to

Rmjab Rklab Fkl = 0. (1.6)

In particular, the Einstein equations of motion with respect to either the Chern
connection or the (–)-connection are a consequence of the heterotic Killing spinor
equations (1.2) and the anomaly cancellation (1.1) if and only if (1.6) holds.

• If R is an SU(3)-instanton then (1.5) holds.
b) If R− is an SU(3)-instanton, Hol(∇+) ⊂ su(3) and the manifold is compact then

the flux H vanishes, the dilaton is constant and the manifold is a Calabi-Yau space.

As a consequence of Theorem 1.1, considering solutions involving the Chern connection,
one may study stability of the tangent bundle.

The main goal of this paper is to construct explicit compact valid solutions with non-
zero field strength, non-flat instanton and constant dilaton to the heterotic equations of
motion (1.4) in dimension six. We present compact nilmanifolds in dimension six satis-
fying the heterotic supersymmetry equations (1.2) with non-zero flux H �= 0, non-flat
instanton F A �= 0 and constant dilaton obeying the three-form Bianchi identity (1.1)
with curvature term R = Rg , R = R+ or R = Rc. Some of them are torus bundles over
the complex torus but this does not violate the non-existence result in [5] since we use
a different curvature term (Rg or R+) in (1.1). In particular, we present a valid solution
on the Iwasawa manifold but with respect to a non-standard complex structure. We find
compact valid solutions to (1.2) with non-zero flux, non-flat instanton and constant dil-
aton satisfying the anomaly cancellation condition (1.1) using the curvature Rc of the
Chern connection on an S1 bundle over a 5-manifold which is a T

2 bundle over T
3. All

manifolds do not admit any Kaehler metric and seem to be the first explicit compact
valid supersymmetric heterotic solutions to (1.2) and (1.1) with non-zero flux, non-flat
instanton and constant dilaton in dimension six.

However, because of Theorem 1.1, the Einstein equations of motion (the first equation
in (1.4)) are not satisfied in most cases. Only the solutions constructed in Theorem 5.1
b), Theorem 5.2 b) on the compact nilmanifold M3 = �\H(2, 1) × S1, where H(2, 1)

is the 5-dimensional Heisenberg group and � is a lattice, solve in addition the heterotic
equations of motion (1.4) with non-zero fluxes and constant dilaton. It seems that these
are the first compact supersymmetric solutions to the heterotic equations of motion with
non-zero flux H �= 0, non-flat instanton F A �= 0 and constant dilaton in dimension six.

Our convention for the curvature is given in Sect. 3.

2. The Supersymmetry Equations in Dimension 6

Necessary and sufficient conditions to have a solution to the system of gravitino and
dilatino equations (the first two equations in (1.2)) in dimension 6 were derived by
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Strominger in [39] involving the notion of SU(n)-structure and then studied by many
authors [2,3,5,8,9,19–24,32,36].

2.1. SU(3)-structures in d = 6. Let (M, J, g) be an almost Hermitian 6-manifold
with Riemannian metric g and almost complex structure J , i.e. (J, g) define an U (3)-
structure. The Nijenhuis tensor N , the Kaehler form F and the Lee form θ are defined
by

N (·, ·) = [J ·, J ·] − [·, ·] − J [J ·, ·] − J [·, J ·], F(·, ·) = g(·, J ·), θ(·) = δF(J ·),
respectively, where ∗ is the Hodge operator and δ is the co-differential, δ = − ∗ d∗.

An SU(3)-structure is determined by an additional non-degenerate (3,0)-form
� = �+ + i �−, or equivalently by a non-trivial spinor. The subgroup of SO(6) fixing
the forms F and � simultaneously is SU(3). The Lie algebra of SU(3) is denoted su(3).

The failure of the holonomy group of the Levi-Civita connection to reduce to SU(3)
can be measured by the intrinsic torsion τ , which is identified with ∇g F or ∇g J and
can be decomposed into five classes [10], τ ∈ W1 ⊕ · · · ⊕ W5. The intrinsic torsion
of an U (n)-structure belongs to the first four components described by Gray-Hervella
[27]. The five components of an SU(3)-structure are first described by Chiossi-Salamon
[10] (for interpretation in physics see [9]) and are determined by d F, d�+, d�− as well
as by d F and N . The Hermitian manifolds belong to W3 ⊕ W4. In the paper we are
interested in the class W3 of balanced Hermitian manifolds [37] which is characterized
by the conditions N = 0, θ = 0 or, equivalently, N = 0, d ∗ F = 0.

Necessary conditions to solve the gravitino equation (the first equation in (1.2)) are
given in [18]. The presence of a parallel spinor in dimension 6 leads firstly to the reduc-
tion to U (3), i.e. the existence of an almost Hermitian structure, secondly to the existence
of a linear connection preserving the almost Hermitian structure with torsion 3-form and
thirdly to the reduction of the holonomy group of the torsion connection to SU(3), i.e.
its Ricci 2-form has to be identically zero. It is shown in [18] that there exists a unique
linear connection preserving an almost Hermitian structure having totally skew-sym-
metric torsion if and only if the Nijenhuis tensor is a 3-form, i.e. the intrinsic torsion
τ ∈ W1 ⊕ W3 ⊕ W4. The torsion connection ∇+ with torsion T is determined by

∇+ = ∇g +
1

2
T, T = Jd F + N = −d F(J ·, J ·, J ·) + N .

Necessary and sufficient conditions to solve the gravitino equation (the first equation in
(1.2)) in dimension 6 are given in [32]. Namely, there exists a unique linear connection
with torsion 3-form which preserves the almost Hermitian structure whose holonomy is
contained in SU(3) if and only if the first Chern class vanishes, c1(M, J ) = 0 and the
SU(3)-structure (M, g, F, �+, �−) satisfies the differential equations [32]

d�+ = θ ∧ �+ − 1

4
(N , �+) ∗ F, d�− = θ ∧ �− − 1

4
(N , �−) ∗ F. (2.1)

The torsion T is given by T = − ∗ d F + ∗(θ ∧ F) + 1
4 (N , �+)�+ + 1

4 (N , �−)�−.

Necessary and sufficient conditions to solve the gravitino and dilatino equations
(the first two equations in (1.2)) are presented in [39]. The dilatino equation forces the
almost complex structure to be integrable (N = 0) and the Lee form to be closed (for
applications in physics the Lee form has to be exact) determined by the dilaton due to
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θ = 2dφ [39]. The three-form field strength is given by H = T = −d F(J ·, J ·, J ·) =
− ∗ d F + ∗(2dφ ∧ F). Solutions with constant dilaton are those with zero Lee form,
d Fn−1 = 0, i.e. balanced Hermitian manifolds.

When the almost complex structure is integrable, N = 0, the torsion connection ∇+

is also known as the Bismut connection (we shall call it the Bismut-Strominger (B-S)
connection) and was used by Bismut to prove a local index theorem for the Dolbeault
operator on non-Kaehler Hermitian manifolds [7]. This formula was recently applied
in string theory [3]. Vanishing theorems for the Dolbeault cohomology on compact
non-Kaehler Hermitian manifolds were found in terms of the B-S connection [1,33,34].

In addition to these equations, the vanishing of the gaugino variation (the third equa-
tion in (1.2)) requires the non-zero 2-form F A to be of instanton type ([12,23,39]).
A Donaldson-Uhlenbeck-Yau SU(3)-instanton i.e. the gauge field A is a connection on
a holomorphic vector bundle with curvature 2-form F A ∈ su(3). The SU(3)-instanton
condition can be written in local holomorphic coordinates in the form [12,39]

F A
αβ = F A

ᾱβ̄
= 0, F A

αβ̄
Fαβ̄ = 0.

2.2. Proof of Theorem 1.1 . A consequence of the gravitino and dilatino equations (the
first two equations in (1.2)) is the expression of the Ricci tensor Ric+

mn = R+
imnj g

i j of
the (+)-connection established in [34], Proposition 3.1:

Ric+
mn = −2∇+

mdφn − 1

4
dTmspq J s

n F pq

= −2∇g
mdφn + dφs T s

mn − 1

4
dTmspq J s

n F pq . (2.2)

The four-form dT = d Jd F is a (2,2)-form with respect to the complex structure J .
Therefore, the last term in (2.2) is symmetric.

On the other hand, the Ricci tensors of ∇g and ∇+ are connected by (see e.g. [18])

Ricg
mn = Ric+

mn +
1

4
Tmpq T pq

n − 1

2
∇+

s T s
mn,

Ric+
mn − Ric+

nm = ∇+
s T s

mn = ∇g
s T s

mn, (2.3)

Ricg
mn = 1

2
(Ric+

mn + Ric+
nm) +

1

4
Tmpq T pq

n . (2.4)

Substitute (2.2) into (2.4), insert the result into the first equation of (1.4) and use the
anomaly cancellation (1.1) to conclude (1.5). If R is a (1,1)-form then (1.6) is a conse-
quence of (1.5). It is well known that the curvature of the Chern connection Rc is always
a (1,1)-form. When Hol(∇+) ⊂ su(3) the curvature R− of the (–)-connection is also an
(1,1)-form. This follows from the well known identity

dTi jkl = 2R+
i jkl − 2R−

kli j (2.5)

and the fact that dT is a (2,2)-form. This completes the proof of a).
The proof of b) is essentially contained in [33,34]. Indeed, if Hol(∇+) ⊂ su(3)

and R− is an SU(3)-instanton, (2.5) yields dTispq F pq = 0, i.e. the manifold is almost
strong in the terminology of [34]. Then Corollary 4.2 a) in [34] asserts that there are no
holomorphic (3,0) forms which contradict the result in [39] except T = dφ = 0. This
completes the proof of Theorem 1.1.
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2.3. Heterotic supersymmetry with constant dilaton. We look for a compact Hermitian
6-manifold (M, J, g) which satisfies the following conditions:

a) Gravitino equation (the first equation in (1.2)): Hol(∇+) ⊂ su(3), i.e.

6∑
i=1

(�+)
Ei
J Ei

= 0, (2.6)

where {E1, . . . , E6} is an orthonormal basis on M .
b) Dilatino equation (the second equation in (1.2)) with constant dilaton: the Lee form

θ = 2dφ = 0, i.e. (M, J, g) is a balanced manifold.
c) Gaugino equation (the third equation in (1.2)): look for a Hermitian vector bundle

E of rank r over M equipped with an SU(3)-instanton, i.e. a connection A with
curvature 2-form �A satisfying

(�A)i
j (J Ek, J El) = (�A)i

j (Ek, El),

6∑
k=1

(�A)i
j (Ek, J Ek) = 0. (2.7)

d) Anomaly cancellation condition:

d H = dT = α′

4
8π2 (p1(M) − p1(A)), α′ > 0. (2.8)

3. General Preliminaries

For a linear connection ∇, the connection 1-forms ωi
j with respect to a fixed basis

E1, . . . , E6 are

ωi
j (Ek) = g(∇Ek E j , Ei )

since we write ∇X E j = ω1
j (X) E1 + · · · + ω6

j (X) E6.

The curvature 2-forms �i
j of ∇ are given in terms of the connection 1-forms ωi

j by

�i
j = dωi

j + ωi
k ∧ ωk

j , � j i = dω j i + ωki ∧ ω jk, Rl
i jk = �l

k(Ei , E j ), Ri jkl = Rs
i jk gls,

and the first Pontrjagin class is represented by the 4-form

p1(∇) = 1

8π2

∑
1≤i< j≤6

�i
j ∧ �i

j .

Let (M, J, g) be a 6-dimensional Hermitian manifold. Consider the connections with
torsion ∇± given by ∇± = ∇g ± 1

2 T with torsion T given by

T = Jd F = − ∗ d F. (3.1)

Notice that ∇+ is precisely the B-S connection of the Hermitian structure.
The Chern connection ∇c is defined by

∇c = ∇g +
1

2
C, C(., ., .) = d F(J., ., .).

Observe that the tensor field C satisfies that C(X, ·, ·) = (J X�d F)(·, ·) is a 2-form
on M .
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Let us suppose that (J, g) is a left invariant Hermitian structure on a 6-dimensional
Lie group G and let {e1, . . . , e6} be an orthonormal basis of left invariant 1-forms, that
is, g = e1 ⊗ e1 + · · · + e6 ⊗ e6. Let

d ek =
∑

1≤i< j≤6

ak
i j ei ∧ e j , k = 1, . . . , 6,

be the structure equations in the basis {ek}.
Let us denote by {E1, . . . , E6} the dual basis. Since dek(Ei , E j ) = −ek([Ei , E j ]),

we have that the Levi-Civita connection 1-forms (ωg)i
j are

(ωg)i
j (Ek) = −1

2
(g(Ei , [E j , Ek]) − g(Ek, [Ei , E j ]) + g(E j , [Ek, Ei ]))

= 1

2
(ai

jk − ak
i j + a j

ki ). (3.2)

The connection 1-forms (ω±)i
j for the connections with torsion ∇± are given by

(ω±)i
j (Ek) = (ωg)i

j (Ek) +
1

2
(T ∓)i

j (Ek),

(T ±)i
j (Ek) = T ±(Ei , E j , Ek) = ∓d F(J Ei , J E j , J Ek). (3.3)

The connection 1-forms (ωc)i
j for the Chern connection ∇c are determined by

(ωc)i
j (Ek) = (ωg)i

j (Ek) +
1

2
Ci

j (Ek), Ci
j (Ek) = d F(J Ek, Ei , E j ). (3.4)

We shall focus on six-dimensional nilmanifolds M = �\G endowed with an invari-
ant (integrable almost) complex structure J . According to Proposition 6.1 in [16], for
invariant Hermitian metrics on compact nilmanifolds the balanced condition is equiva-
lent to Hol(∇+) ⊂ su(3). The equivalence of the conditions a) and b) in Subsect. 2.3
can also be derived from (2.1) and the fact, established in [16], that for any invariant
Hermitian structure on a nilmanifold the (3,0)-form � = �+ + i �− is closed.

3.1. Six-dimensional balanced Hermitian nilmanifolds. Next we review the main results
given in [40] concerning balanced J -Hermitian metrics on M in order to apply them to
the construction of solutions to Eqs. (2.6)-(2.8) above. First of all, if (M, J ) admits a
balanced J -Hermitian metric (not necessarily invariant) then the Lie algebra g of G is
isomorphic to h1, . . . , h6 or h−

19, where h1 = (0, 0, 0, 0, 0, 0) is the abelian Lie algebra
and

h2 = (0, 0, 0, 0, 12, 34),

h3 = (0, 0, 0, 0, 0, 12 + 34),

h4 = (0, 0, 0, 0, 12, 14 + 23),

h5 = (0, 0, 0, 0, 13 + 42, 14 + 23),

h6 = (0, 0, 0, 0, 12, 13),

h−
19 = (0, 0, 0, 12, 23, 14 − 35).

Here h5 is the Lie algebra underlying the Iwasawa manifold. For the canonical com-
plex structure J0 on h5 there exists a complex basis {ω j }3

j=1 of 1-forms of type (1,0)

satisfying dω1 = dω2 = 0 and dω3 = ω12.



Heterotic String Compactifications with Non-Zero Fluxes and Constant Dilaton 685

Since the Lie algebras h2, . . . , h6 are 2-step nilpotent, for any complex structure J
( �= J0 for h5) there is a basis {ω j }3

j=1 of (1,0)-forms such that

dω1 = dω2 = 0, dω3 = ρ ω12 + ω11̄ + B ω12̄ + D ω22̄, (3.5)

where B, D ∈ C, and ρ = 0, 1. In particular, J is a nilpotent complex structure on
h2, . . . , h6 in the sense [11]. Recall that a complex structure J on a 2n-dimensional
nilpotent Lie algebra g is called nilpotent if there is a basis {ω j }n

j=1 of (1,0)-forms

satisfying dω1 = 0 and

dω j ∈
∧2

(ω1, . . . , ω j−1, ω1, . . . , ω j−1),

for j = 2, . . . , n.
Any complex structure on the Lie algebra h−

19 is not nilpotent and there is a (1,0)-basis
{ω j }3

j=1 satisfying

dω1 = 0, dω2 = E ω13 + ω13̄, dω3 = C ω11̄ + ia ω12̄ − ia Ē ω21̄, (3.6)

where E ∈ C with |E | = 1, C̄ = C E and a ∈ R − {0}.
Now, the fundamental form F of any invariant J -Hermitian structure is given in terms

of the basis {ω j }3
j=1 by

2 F = i(r2ω11̄ + s2ω22̄ + t2ω33̄) + u ω12̄ − ū ω21̄ + v ω23̄ − v̄ ω32̄ + z ω13̄ − z̄ ω31̄,

(3.7)

where r, s, t ∈ R − {0} and u, v, z ∈ C must satisfy those restrictions coming from the
positive definiteness of the associated metric g(X, Y ) = −F(X, JY ). The following
result gives necessary and sufficient conditions, in terms of the different coefficients
involved, in order for the Hermitian structure to be balanced.

Proposition 3.1. [40]. In the notation above, we have:

(i) If J is a nonnilpotent complex structure defined by (3.6), then (J, F) is balanced
if and only if

z = −iuv/s2 and Cs2 + aĒu + aū = 0.

(ii) If J is a nilpotent complex structure defined by (3.5), then (J, F) is balanced if
and only if

s2t2 − |v|2 + D(r2t2 − |z|2) = B(i t2ū − vz̄).

4. The Iwasawa Manifold Revisited

Apart from the abelian Lie algebra, h5 is the only 6-dimensional nilpotent Lie algebra
which can be given a complex Lie algebra structure. The corresponding complex par-
allelizable nilmanifold is the well-known Iwasawa manifold. This manifold is studied
in [9]; however, as it is pointed out in the introduction, this example is not a valid solution
due to a sign error in the torsional equation. More generally, we show in Remark 4.1
that there are no valid solutions on the Iwasawa manifold with respect to the standard
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complex structure and any invariant compatible Hermitian metric, a fact which leads us
to study general complex nilmanifolds in the subsequent sections.

The standard complex structure J0 on h5 is defined by the following complex structure
equations:

dω1 = dω2 = 0, dω3 = ω12.

For any t �= 0, let us consider F given by

F = i

2
(ω11̄ + ω22̄ + t2 ω33̄).

It is easy to see that the Hermitian structure (J0, F) is balanced for any value of the
parameter.

Notice that the Iwasawa manifold is a T
2 bundle over T

4, where the parameter t
scales the fiber.

From a real point of view, let us consider the real basis of 1-forms {e1, . . . , e6} given
by

e1 + i e2 = ω1, e3 + i e4 = ω2, e5 + i e6 = t ω3.

Now, in terms of this basis, we have that the structure equations are

⎧
⎪⎨
⎪⎩

de1 = de2 = de3 = de4 = 0,

de5 = t e13 − t e24,

de6 = t e14 + t e23,

(4.1)

the complex structure J0 is given by J0e1 = −e2, J0e3 = −e4, J0e5 = −e6, the
J0-Hermitian metric g = e1 ⊗ e1 + · · · + e6 ⊗ e6 has the associated fundamental form
F = e12+e34+e56.The structure equations (4.1) give d F = t e136−t e145−t e235−t e246.
Apply (3.1) to verify that the torsion T of ∇+ satisfies

T = −t e135 − t e146 − t e236 + t e245, dT = −4t2e1234.

All the curvature forms (�c)i
j of the Chern connection vanish. In view of (3.2) and

(3.3), the non-zero curvature forms (�g)i
j and (�±)i

j for the Levi-Civita connection and
the connections ∇± are given by:

(�g)1
2 = t2

2
(e34 − e56), (�g)1

3 = − t2

4
(3e13 − e24), (�g)1

4 = − t2

4
(3e14 + e23),

(�g)1
5 = −(�g)2

6 = t2

4
(e15 − e26), (�g)1

6 = (�g)2
5 = t2

4
(e16 + e25),

(�g)2
3 = − t2

4
(e14 + 3e23),
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(�g)2
4 = t2

4
(e13−3e24), (�g)3

4 = t2

2
(e12−e56), (�g)3

5 = −(�g)4
6 = t2

4
(e35−e46),

(�g)3
6 = (�g)4

5 = t2

4
(e36 + e45), (�g)5

6 = − t2

2
(e12 + e34);

(�+)1
2 = 2t2e34, (�+)1

3 =(�+)2
4 =−t2(e13+e24), (�+)1

4 =−(�+)2
3 =−t2(e14−e23),

(�+)3
4 = 2t2e12, (�+)5

6 = −2t2(e12 + e34);
(�−)1

2 = (�−)3
4 = −2t2e56, (�−)1

3 = −(�−)2
4 = −t2(e13 − e24),

(�−)1
4 = (�−)2

3 = −t2(e14 + e23).

Clearly Hol(∇+) ⊂ su(3) and the Pontrjagin classes of the four connections are then
represented by

p1(∇g) = t4

4π2 e1234, p1(∇+) = 0, p1(∇−) = t4

π2 e1234, p1(∇c) = 0. (4.2)

4.1. Cardoso et al. abelian instanton. Cardoso et al. consider in [9] an abelian field
strength configuration with (1,1)-form

F = i f dz1 ∧ dz̄1−i f dz2 ∧ dz̄2 + eiγ

√
1

4
− f 2 dz1 ∧ dz̄2 − e−iγ

√
1

4
− f 2 dz2 ∧ dz̄1,

where the function f satisfies

i∂z2 f + ∂z1

(
e−iγ

√
1

4
− f 2

)
= 0, i∂z1 f + ∂z2

(
eiγ

√
1

4
− f 2

)
= 0.

Under these conditions one gets

T r F A ∧ F A = F ∧ F = −1

2
dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2.

Here dz1 and dz2 denote the (2,0)-forms at the level of the Lie group, which descend
to the forms ω1 and ω2 on the compact nilmanifold. Therefore, on the Iwasawa manifold
we have

T r F A ∧ F A = 1

2
ω11̄ ∧ ω22̄ = −2 e1234.

Now, taking A as one of these abelian instantons we have that

dT = −4t2e1234 = −16π2t2(p1(∇+) − p1(A)), (4.3)

which is not a valid solution for any t (see [23] for details). Moreover, the whole space of
complex structures compatible with the canonical metric obtained when t = 1 in (4.1)
is studied in [9] where the authors proved that the behavior is the same as in (4.3).
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Remark 4.1. It is not difficult to prove that any J0-Hermitian invariant metric g is equiv-
alent to one in the 1-parameter family given above. Since dT = −4t2e1234, in view
of (4.2) there is no way to find a satisfactory solution with (J0, g) as the underlying
Hermitian structure. Indeed, it is proved in [5] that torus bundles over the complex torus
can not be solutions to (1.2) and (1.1) taken with respect to the curvature of the Chern
connection R = Rc with α′ > 0. Since p1(∇c) = 0 and dT = −4t2e1234 we conclude
from (1.1) that p1(A) cannot be a positive multiple of e1234 for any SU(3)-instanton A
on the Iwasawa manifold which is a torus bundle over the complex torus. Hence, (1.1)
cannot be satisfied for any α′ > 0 neither for R = Rg nor for R = R± because of (4.2).

Therefore, in order to find solutions we need to consider other compact nilmanifolds
or metrics and/or complex structures different from the canonical ones on the nilmani-
fold underlying the Iwasawa manifold. In the following sections we show many explicit
solutions.

5. A Family of Balanced Hermitian Structures on the Lie Algebra h3

In this section we construct explicit solutions on a compact nilmanifold corresponding
to the Lie algebra h3. First we recall [40] that, up to equivalence, there exist two complex
structures J± on h3, namely

J± : dω1 = dω2 = 0, dω3 = ω11̄ ± ω22̄,

but only J− admits compatible balanced structures. Notice that the balanced condition
for J− given in Proposition 3.1 (ii) reduces to

(r2 − s2)t2 = |z|2 − |v|2.
For any t �= 0, let us consider the balanced structure F given by

F = i

2
(ω11̄ + ω22̄ + t2 ω33̄),

which corresponds to r = s = 1 and u = v = z = 0.
From a real point of view, let us consider the basis of 1-forms {e1, . . . , e6} given by

e1 + i e2 = ω1, e3 + i e4 = ω2, e5 + i e6 = t ω3.

Now, in terms of this basis, we have the structure equations
{

de1 = de2 = de3 = de4 = de5 = 0,

de6 = −2t e12 + 2t e34,
(5.1)

and the complex structure J = J− is given by Je1 = −e2, Je3 = −e4, Je5 = −e6. The
balanced J -Hermitian metric g = e1 ⊗ e1 + · · ·+ e6 ⊗ e6 has the associated fundamental
form F = e12 + e34 + e56. The structure equations (5.1) yield d F = 2t (e12 − e34)e5.
For the torsion T of ∇+ we calculate using (3.1), (3.2) and (3.3) that

T = −2t (e12 − e34)e6, dT = −8t2e1234, ∇+ T = 0.
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A direct calculation applying (3.2) and (3.3) shows that the non-zero curvature forms
(�g)i

j of the Levi-Civita connection ∇g are given by

(�g)1
2 = −t2(3 e12 − 2 e34), (�g)1

3 = t2e24, (�g)1
4 = −t2e23,

(�g)1
6 = t2e16, (�g)2

3 = −t2e14,

(�g)2
4 = t2e13, (�g)2

6 = t2e26,

(�g)3
4 = t2(2 e12 − 3 e34), (�g)3

6 = t2e36, (�g)4
6 = t2e46,

and the non-zero curvature forms (�+)i
j of the connection ∇+ are

(�+)1
2 = −(�+)3

4 = −4t2(e12 − e34). (5.2)

Therefore, (2.6) is satisfied and the Pontrjagin classes are represented by

p1(∇g) = −3t4

π2 e1234, p1(∇+) = −8t4

π2 e1234.

Now, let us consider the new basis { f 1, . . . , f 6} given by f i = ei , for i = 1, . . . , 5,
and f 6 = 1

t e6. In terms of this basis, the structure equations (5.1) become

d f 1 = d f 2 = d f 3 = d f 4 = d f 5 = 0, d f 6 = −2 f 12 + 2 f 34,

and the family (Jt , gt ) of balanced Hermitian SU(3)-structures on h3 is given by

Jt f 1 = − f 2, Jt f 2 = f 1, Jt f 3 =− f 4, Jt f 4 = f 3, Jt f 5 =−t f 6, Jt f 6 = 1

t
f 5,

gt = f 1 ⊗ f 1 + · · · + f 5 ⊗ f 5 + t2 f 6 ⊗ f 6, Ft = f 12 + f 34 + t f 56.

Let us fix t ′ �= 0 and denote by ∇+
t ′ the connection corresponding to the balanced

structure (Jt ′ , gt ′) in the previous family. It follows from (5.2) that the non-zero curvature
forms (�+

t ′)
i
j of ∇+

t ′ are

(�+
t ′)

1
2 = −(�+

t ′)
3
4 = −4t ′2( f 12 − f 34).

Therefore, (2.6) and (2.7) are satisfied and ∇+
t ′ is an SU(3)-instanton with respect to any

other balanced structure in the family (Jt , gt ).
Let H(2, 1) denote the 5-dimensional generalized Heisenberg group, and let � be a

lattice of maximal rank. The nilpotent Lie algebra h3 is the Lie algebra underlying the
compact nilmanifold M3 = �\H(2, 1) × S1.

Theorem 5.1. In the notation above, for each t ′ �= t , we consider the SU(3)-instanton
∇+

t ′ . Then we have:

a) dT = 8π2t2

3t4−8t ′4 (p1(∇g
t ) − p1(∇+

t ′)),

b) dT = π2t2

t4−t ′4 (p1(∇+
t ) − p1(∇+

t ′)).

Hence, for any pair (t, t ′) such that 8t ′4 < 3t4 we obtain explicit valid solutions to the
heterotic supersymmetry equations (1.2) with non-zero flux H = T and constant dilaton
satisfying the three-form Bianchi identity (1.1) for the Levi-Civita connection and for
the (+)-connection on the compact nilmanifold M3.

The compact manifold (M3, g, J, A = ∇+
t ′ , R(∇+

t )) described in b) solves the equa-
tions of motion (1.4).
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Moreover, we can also use the abelian instanton A given in Subsect. 4.1 to find more
solutions. In fact, we can take dz1 and dz2 as (2,0)-forms at the level of the Lie group
H(2, 1) × R which descend to the forms ω1 and ω2 on the compact nilmanifold M3.

Theorem 5.2. In the notation above and taking A as the abelian SU(3)-instanton given
in [9] we have:

a) dT = 32π2t2

12t4−1
(p1(∇g

t ) − p1(A)),

b) dT = 32π2t2

32t4−1
(p1(∇+

t ) − p1(A)).

Thus, for any t such that 12t4 > 1 we obtain explicit valid solutions to the heterotic
supersymmetry equations (1.2) with non-zero flux H = T and constant dilaton satis-
fying the three-form Bianchi identity (1.1) for the Levi-Civita connection and for the
(+)-connection on the compact nilmanifold M3.

The space (M3, g, J, A, R(∇+
t )) described in b) is a compact solution to the equa-

tions of motion (1.4).

Remark 5.3. A direct calculation for ∇− and for the Chern connection ∇c shows that

p1(∇−) = 0, p1(∇c) = 0.

The nilmanifold M3 is a torus bundle over a complex torus, therefore we can use the
argument given in Remark 4.1 to conclude that the family above cannot provide any
solution for the connections ∇− and ∇c.

6. Balanced Hermitian Structures on the Lie Algebras h2, h4 and h5

In this section we construct explicit solutions on compact nilmanifolds corresponding
to the Lie algebras h2, h4 and h5.

Let us consider the complex structure equations

dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + b ω12̄ − ω22̄,

where b ∈ R. According to [40, Prop. 13], the Lie algebras underlying this 1-parameter
family of complex equations are:

h2, for b ∈ (−1, 1); h4, for b = ±1; h5, for any b such that b2 > 1. (6.1)

Notice that the latter condition defines a 1-parameter family of complex structures J on
the Iwasawa manifold which are not equivalent to the standard J0.

For any t �= 0, let us consider F given by

F = i

2
(ω11̄ + ω22̄ + t2 ω33̄).

Since D = −1, r = s = 1 and the coefficients u, v, z in (3.7) vanish, it follows from
Proposition 3.1 (ii) that all the Hermitian structures (J, F) are balanced.

Notice that the associated compact nilmanifolds are T
2 bundles over T

4 for any b,
whereas the parameter t scales the fiber.

In terms of the real basis of 1-forms {e1, . . . , e6} defined by

e1 + i e2 = ω1, e3 + i e4 = ω2, e5 + i e6 = t ω3,
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the structure equations are
⎧⎪⎨
⎪⎩

de1 = de2 = de3 = de4 = 0,

de5 = t (b + 1)e13 + t (b − 1)e24,

de6 = −2t e12 − t (b − 1)e14 + t (b + 1)e23 + 2t e34,

(6.2)

the complex structure J is given by Je1 = −e2, Je3 = −e4, Je5 = −e6, and the
balanced J -Hermitian metric g = e1 ⊗ e1 + · · ·+ e6 ⊗ e6 has the associated fundamental
form F = e12 + e34 + e56.

Use (6.2) to get d F = 2t e125 + t (b + 1)e136 + t (b − 1)e145 − t (b + 1)e235 +
t (b − 1)e246 − 2t e345. Due to (3.1) the torsion T of ∇+ satisfies

T = −2t e126 + t (b − 1)e135 − t (b + 1)e146 + t (b − 1)e236 + t (b + 1)e245 + 2t e346,

dT = −4t2(b2 + 3)e1234.

A direct calculation using (3.3) gives that the non-zero curvature forms (�+)i
j of the

connection ∇+ are:

(�+)1
2 = −4t2e12 − 2t2(b − 1)e14 + 2t2(b + 1)e23 + 6t2e34 − 2t2b2e56,

(�+)1
3 = (�+)2

4 = −t2(b2 + b + 1)e13 − t2(b2 − b + 1)e24,

(�+)1
4 = −(�+)2

3 =−2t2b e12 − t2(b2−b+1)e14+t2(b2+b+1)e23+2t2b e34+4t2b e56,

(�+)1
5 = (�+)2

6 = t2b e15 + t2b e26 − 2t2e46,

(�+)1
6 = −(�+)2

5 = −t2b e16 + t2b e25 + 2t2e36,

(�+)3
4 = 6t2 e12 + 2t2(b − 1)e14 − 2t2(b + 1)e23 − 4t2e34 + 2t2b2e56,

(�+)3
5 = (�+)4

6 = −2t2e26 + t2b e35 − t2b e46,

(�+)3
6 = −(�+)4

5 = 2t2e16 + t2b e36 + t2b e45,

(�+)5
6 = −(�+)1

2 − (�+)3
4 = −2t2e12 − 2t2e34.

Similarly, applying (3.2), we calculate that the non-zero curvature forms (�g)i
j of

the Levi-Civita connection ∇g are:

(�g)1
2 = −3t2e12 − 3

2
t2(b − 1)e14 +

3

2
t2(b + 1)e23 − t2

2
(b2 − 5)e34 − t2

2
(b2 + 1)e56,

(�g)1
3 = −3

4
t2(b + 1)2e13 − t2

4
(b2 − 5)e24,

(�g)1
4 = −3

2
t2(b−1)e12 − 3

4
t2(b−1)2e14 +

t2

4
(b2−5)e23 +

3

2
t2(b−1)e34 + t2b e56,

(�g)1
5 = t2

4
(b + 1)2e15 − t2

4
(b − 1)2e26 +

t2

2
(b − 1)e46,

(�g)1
6 = t2

4
(b2 − 2b + 5)e16 +

t2

4
(b + 1)2e25 + t2e36 − t2

2
(b + 1)e45,

(�g)2
3 = 3

2
t2(b + 1)e12 +

t2

4
(b2 − 5)e14 − 3

4
t2(b + 1)2e23 − 3

2
t2(b + 1)e34 − t2b e56,

(�g)2
4 = − t2

4
(b2 − 5)e13 − 3

4
t2(b − 1)2e24,
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(�g)2
5 = t2

4
(b + 1)2e16 +

t2

4
(b − 1)2e25 − t2

2
(b + 1)e36,

(�g)2
6 = − t2

4
(b − 1)2e15 +

t2

4
(b2 + 2b + 5)e26 +

t2

2
(b − 1)e35 − t2e46,

(�g)3
4 = − t2

2
(b2 − 5)e12 +

3

2
t2(b − 1)e14 − 3

2
t2(b + 1)e23 − 3t2e34 +

t2

2
(b2 − 1)e56,

(�g)3
5 = t2

2
(b − 1)e26 +

t2

4
(b + 1)2e35 +

t2

4
(b2 − 1)e46,

(�g)3
6 = t2e16 − t2

2
(b + 1)e25 +

t2

4
(b2 + 2b + 5)e36 − t2

4
(b2 − 1)e45,

(�g)4
5 = − t2

2
(b + 1)e16 − t2

4
(b2 − 1)e36 +

t2

4
(b − 1)2e45,

(�g)4
6 = t2

2
(b − 1)e15 − t2e26 +

t2

4
(b2 − 1)e35 +

t2

4
(b2 − 2b + 5)e46,

(�g)5
6 = − t2

2
(b2 + 1)e12 + t2b e14 − t2b e23 +

t2

2
(b2 − 1)e34.

Hence, Hol(∇+) ⊂ su(3) and the Pontrjagin classes of the connections ∇g and ∇+

are represented by

p1(∇g) = − t4

4π2 (b4 + 4b2 + 11)e1234, p1(∇+) = − t4

π2 (b4 + 5b2 + 10)e1234.

As we mentioned above, h5 is the nilpotent Lie algebra underlying the Iwasawa mani-
fold. Notice that h2 is the Lie algebra of H3 × H3, where H3 is the Heisenberg group.
Let us denote by M2, M4, M5 any compact nilmanifold whose underlying Lie algebra is
isomorphic to h2, h4 or h5, respectively. We can take dz1 and dz2 as (2,0)-forms at the
level of the associated Lie group which descend to the forms ω1 and ω2 on M2, M4, M5,
so using again the abelian instanton given in Sect. 4 we get:

Theorem 6.1. In the notation above and taking A as the abelian SU(3)-instanton given
in [9] we have:

dT = 16π2t2(b2 + 3)

t4(b4 + 4b2 + 11) − 1
(p1(∇g) − p1(A)),

dT = 16π2t2(b2 + 3)

4t4(b4 + 5b2 + 10) − 1
(p1(∇+) − p1(A)).

For any b ∈ R we can choose t �= 0 such that

t4(b4 + 5b2 + 10) > 1/4 and t4(b4 + 4b2 + 11) > 1,

which, in view of (6.1), provides explicit valid solutions to the heterotic supersymmetry
equations (1.2) with non-zero flux H = T and constant dilaton satisfying the three-form
Bianchi identity (1.1) for the Levi-Civita connection and for the (+)-connection on the
compact nilmanifolds M2, M4, M5.
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Remark 6.2. Finally, a direct calculation for ∇− and for the Chern connection ∇c shows
that

p1(∇−) = t4

π2 (b2 + 3)e1234, p1(∇c) = 0.

Since M2, M4 and M5 are torus bundles over a complex torus, notice that the same
argument as in Remark 4.1 shows that the family above cannot provide any satisfactory
solution for the connections ∇− and ∇c.

7. The Space of Balanced Structures on h6

In this section we study the space of balanced Hermitian structures on the nilpotent Lie
algebra h6.

The complex equations

dω1 = dω2 = 0, dω3 = ω12 − ω21̄,

define a complex structure J on h6, and any complex structure on the Lie algebra h6 is
equivalent to J [40, Cor. 15]. Moreover, it is easy to see that any J -balanced structure
F is equivalent to one of the form

F = i

2
(ω11̄ + ω22̄ + t2 ω33̄),

for some t �= 0.
From a real point of view, the whole space of balanced Hermitian structures on h6 is

described as follows. Let us consider the basis of 1-forms {e1, . . . , e6} given by

e1 + i e2 = ω1, e3 + i e4 = ω2, e5 + i e6 = t ω3.

Now, in terms of this basis, we have the structure equations

⎧
⎪⎨
⎪⎩

de1 = de2 = de3 = de4 = 0,

de5 = 2t e13,

de6 = 2t e14.

(7.1)

The complex structure J is given by Je1 = −e2, Je3 = −e4, d Je5 = −e6, the J -
Hermitian metric g = e1 ⊗ e1 + · · · + e6 ⊗ e6 has the associated fundamental form
F = e12 + e34 + e56.

The structure equations (7.1) yield d F = 2t (e136 − e145). Consequently, applying
(3.1), we obtain that the torsion T of ∇+ satisfies

T = −2t (e236 − e245), dT = −8t2e1234.

Using (3.3) we calculate that the non-zero curvature forms (�+)i
j for the connection

∇+ are given by:
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(�+)1
2 = 2t2(e34 + e56), (�+)1

3 = (�+)2
4 = −t2(3e13 + e24),

(�+)1
4 = −(�+)2

3 = −t2(3e14 − e23),

(�+)1
5 = (�+)2

6 = t2(e15 − e26), (�+)1
6 = −(�+)2

5 = t2(e16 + e25),

(�+)3
4 = 2t2(e12 − e56),

(�+)3
5 = (�+)4

6 = t2(e35 + e46), (�+)3
6 = −(�+)4

5 = −t2(e36 − e45),

(�+)5
6 = −2t2(e12 + e34),

so (2.6) holds and the first Pontrjagin class is represented by

p1(∇+) = −2t4

π2 e1234.

Let us denote by M6 any compact nilmanifold whose underlying Lie algebra is iso-
morphic to h6. We can take dz1 and dz2 as (2,0)-forms at the level of the Lie group
corresponding to h6 which descend to the forms ω1 and ω2 on M6, so using again the
abelian instanton given in Sect. 4 we get:

Theorem 7.1. In the notation above and taking A as the abelian SU(3)-instanton given
in [9] we have:

dT = 32π2t2

8t4 − 1
(p1(∇+) − p1(A)).

Thus, for any t such that t4 > 1
8 we obtain explicit valid solutions to the heterotic super-

symmetry equations (1.2) with non-zero flux H = T and constant dilaton satisfying the
three-form Bianchi identity (1.1) for the (+)-connection on the compact nilmanifold M6.

Remark 7.2. The Pontrjagin classes of the Levi-Civita connection, ∇− and the Chern
connection are represented by

p1(∇g) = 0, p1(∇−) = 2t4

π2 e1234, p1(∇c) = 0.

Since the nilmanifold M6 is a torus bundle over a complex torus, the same argument as in
Remark 4.1 shows that there is no way to find a satisfactory solution for the connections
∇g , ∇− and ∇c on the whole space of invariant balanced Hermitian structures on M6.

8. Balanced Structures on the Lie Algebra h
−
19

In this section we construct compact valid solutions to (1.2) with non-zero flux and
constant dilaton satisfying anomaly cancellation condition (1.1) using the curvature Rc

of the Chern connection.
Consider the complex structure equations

dω1 = 0, dω2 = ω13 + ω13̄, dω3 = i(ω12̄ − ω21̄),

which in view of (3.6) correspond to a complex structure J on the 3-step nilpotent Lie
algebra h−

19.
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The associated real structure equations are
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

de1 = de2 = de5 = 0,

de3 = 2e15,

de4 = 2e25,

de6 = 2(e13 + e24),

(8.1)

and the complex structure J is given by Je1 = −e2, Je3 = −e4, Je5 = −e6. The
fundamental form F of the J -Hermitian metric g = e1 ⊗ e1 + · · · + e6 ⊗ e6 is given
by F = e12 + e34 + e56. It follows from Proposition 3.1 (i) that the structure (J, g) is
balanced.

The structure equations (8.1) imply d F = −2(e135 + e145 − e235 + e245). Apply (3.1)
to verify that the torsion T satisfies

T = 2(e136 + e146 − e236 + e246), dT = −8(e1234 + e1256).

Using (3.2), (3.3) and (3.4) we obtain that the non-zero curvature forms (�c)i
j and

(�+)i
j of the Chern connection and the (+)-connection are given by:

(�c)1
2 = −2e34 − 2e56, (�c)1

3 = (�c)2
4 = −e13 − e24,

(�c)1
4 = −(�c)2

3 = 2e13 + e14 − e23 + 2e24,

(�c)1
5 = (�c)2

6 = e16 − e25, (�c)1
6 = −(�c)2

5 = −e15 − e26,

(�c)3
4 = −2e12 + 2e56,

(�c)3
5 = (�c)4

6 = −e36 + e45, (�c)3
6 = −(�c)4

5 = e35 + e46,

(�c)5
6 = −(�c)1

2 − (�c)3
4 = 2e12 + 2e34;

(�+)1
2 = −2e34 + 2e56, (�+)1

3 = (�+)2
4 = −3e13 − 3e24,

(�+)1
4 = −(�+)2

3 =−2e13−e14+e23−2e24, (�+)1
5 = (�+)2

6 = −3e15 − 2e16 − e26,

(�+)1
6 = −(�+)2

5 = −e16 + 3e25 + 2e26, (�+)3
4 = −2e12 − 2e56,

(�+)3
5 = (�+)4

6 = e35 + 2e36 − e46, (�+)3
6 = −(�+)4

5 = −e36 − e45 − 2e46,

(�+)5
6 = −(�+)1

2 − (�+)3
4 = 2e12 + 2e34.

A direct calculation shows that the Pontrjagin classes are represented by

p1(∇+) = − 2

π2 (3e1234 + e1256), p1(∇c) = − 2

π2 (e1234 + e1256).

Let M19 be a compact nilmanifold corresponding to the Lie algebra h−
19. From (8.1)

we have that M19 is an S1-bundle over a compact 5-nilmanifold N , which is a T
2-bundle

over T
3.

Lemma 8.1. For each λ,µ ∈ R, let Aλ,µ be the U(3)-connection on M19 with respect
to structure (J, g) defined by the connection forms

(σ Aλ,µ)2
3 = (σ Aλ,µ)2

5 = (σ Aλ,µ)4
5 = −λ e1 − µ e6, (σ Aλ,µ)i

j = λ e1 + µ e6,

for 1 ≤ i < j ≤ 6 such that (i, j) �= (2, 3), (2, 5), (4, 5). Then, Aλ,µ is an SU(3)-
instanton and
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p1(Aλ,µ) = − 15

π2 µ2e1234.

Proof. A direct calculation shows that the curvature forms (�Aλ,µ)i
j of the connection

Aλ,µ are given by

(�Aλ,µ)2
3 = (�Aλ,µ)2

5 = (�Aλ,µ)4
5 = −2µ(e13 + e24), (�Aλ,µ)i

j = 2µ(e13 + e24),

for 1 ≤ i < j ≤ 6 such that (i, j) �= (2, 3), (2, 5), (4, 5). Now it is clear that Aλ,µ

satisfies (2.7). �
Theorem 8.2. Let Aλ,µ be the SU(3)-instanton above.

(i) If µ2 = 4
15 , then

dT = 4π2(p1(∇+) − p1(Aλ,µ)).

(ii) If µ = 0, then p1(Aλ,0) = 0 and

dT = 4π2 (p1(∇c) − p1(Aλ,0)).

Hence, we obtain explicit valid solutions to the heterotic supersymmetry equations (1.2)
with non-zero flux H = T and constant dilaton satisfying the three-form Bianchi identity
(1.1) for the Chern connection and the (+)-connection on the compact nilmanifold M19.

Remark 8.3. During the preparation of the paper we learned that a compact exam-
ple solving (1.2) with non-zero flux, constant dilaton satisfying (1.1) with respect to
a metric connection on the tangent bundle, and trivial instanton (A = 0) on M3 is
announced [26].
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