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Abstract: On the basis of the quantum white noise theory we introduce the notion of
creation- and annihilation-derivatives of Fock space operators and study the differen-
tiability of white noise operators. We define the Hitsuda–Skorohod quantum stochastic
integrals by the adjoint actions of quantum stochastic gradients and show explicit formu-
las for their creation- and annihilation-derivatives. As an application, we derive direct
formulas for the integrands in the quantum stochastic integral representation of a regular
quantum martingale.

1. Introduction

The representation theorem of regular quantum martingales, first proved by
Parthasarathy–Sinha [30,31], then by Meyer [22], and later extended by Attal [2] and Ji
[9] among others, says that a regular quantum martingale {Mt } takes the form:

Mt = λI +
∫ t

0
(Esd As + Fsd A∗

s + GsdΛs), (1.1)

where the right-hand side consists of the quantum stochastic integrals of Itô type against
the annihilation process {At }, creation process {A∗

t } and conservation (number) process
{Λt }, and the integrands {Et }, {Ft }, {Gt } are adapted processes uniquely determined by
{Mt }, see Theorem 6.3 for the precise statement based on the recent achievement by Ji
[9]. For more general discussions we refer to [14,15]. It has not been known, however,
how to express those integrands directly in terms of {Mt }. In this paper we develop a
new type of differential calculus for Fock space operators, in particular, for the Hitsuda–
Skorohod quantum stochastic integrals and, as an application, we derive direct formulas
for the integrands in (1.1).
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Our approach is based on the quantum white noise theory (e.g., [6,10,25]). Let
Γ (L2(R+)) be the Fock space over L2(R+) and equip it with the inclusion relations:

(E) ⊂ G ⊂ Γ (L2(R+)) ⊂ G∗ ⊂ (E)∗,

for details see Sect. 3. A continuous operator in L((E), (E)∗) is called a white noise
operator and a white noise operator in L(G,G∗) is called admissible. These spaces
of continuous operators enable us to treat many interesting unbounded operators in
Γ (L2(R+)) as continuous operators. The most basic white noise operators are the anni-
hilation and creation operators at a time t ∈ R+, which are denoted by at and a∗

t ,
respectively. The pair {at }, {a∗

t } is sometimes referred to as the quantum white noise.
As a consequence of the Fock expansion theorem for white noise operators [25],

every Ξ ∈ L((E), (E)∗) is considered as a “function” of quantum white noises:
Ξ = Ξ(a∗

s , at ; s, t ∈ R+). Then we are naturally led to a kind of functional
derivatives:

D+
t Ξ = δΞ

δa∗
t
, D−

t Ξ = δΞ

δat
. (1.2)

The former is called the pointwise creation-derivative and the latter the pointwise anni-
hilation-derivative. The heuristic notion in (1.2) will be formulated in two ways. In the
previous papers [11,12] (see also Sect. 3.1), the “smeared” derivatives D±

ζ Ξ are defined
for any white noise operator Ξ ∈ L((E), (E)∗). In this paper we shall prove that an
admissible white noise operator Ξ ∈ L(G,G∗) admits the pointwise derivatives D±

t Ξ

for a.e. t ∈ R+ (Theorem 3.9). These derivatives of Fock space operators are regarded as
quantum extensions of the classical stochastic derivatives widely known in the literature,
see e.g., [16,20,23].

On the other hand, in [13] we introduced Hitsuda–Skorohod quantum stochastic inte-
grals by means of the adjoint actions of quantum stochastic gradients. For a quantum
stochastic process Ξ = {Ξt } ∈ L2(R+,L((E), (E)∗)) the Hitsuda–Skorohod quantum
stochastic integrals δε(Ξ), ε ∈ {+,−, 0}, are defined as white noise operators and their
derivatives D±

ζ δ
ε(Ξ) are computed explicitly (Theorem 5.2). If Ξ = {Ξt } belongs to

L2(R+,L(G,G∗)), their Hitsuda–Skorohod quantum stochastic integrals δε(Ξ) admit
the pointwise derivatives D±

t δ
ε(Ξ) for a.e. t ∈ R+. We derive formulas for these deriv-

atives (Theorem 5.4) and, as a particular case, for an adapted process (Theorem 5.7).
Since the Hitsuda–Skorohod quantum stochastic integrals coincide with the ones of

Itô type when the integrands are adapted processes, the right-hand side of (1.1) are
expressible in terms of the Hitsuda–Skorohod quantum stochastic integrals. Then, by
repeated application of the differential operators D±

t the integrands in (1.1) are obtained:

Es = D−
s

[
Ms −

∫ s

0
D+

u Mud A∗
u

]
,

Fs = D+
s

[
Ms −

∫ s

0
D−

u Mud Au

]
, (1.3)

Gs = D+
s

[∫ s

0

{
D−

u

(
Mu −

∫ u

0
Evd Av −

∫ u

0
Fvd A∗

v

)}
du

]
.

The precise statement will be found in Theorem 6.6. The above direct formulas possess
a feature quite different from the method of Parthasarathy–Sinha [30] that takes a detour
through the classical Kunita–Watanabe theorem.
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This paper is organized as follows. In Sect. 2 we assemble some basic notions in
quantum white noise theory. In Sect. 3 we introduce the creation- and
annihilation-derivatives and the quantum stochastic gradients. In Sect. 4 we define the
Hitsuda–Skorohod quantum stochastic integrals by means of the adjoint actions of the
quantum stochastic gradients. In Sect. 5 we show several formulas for the creation-
and annihilation-derivatives of the Hitsuda–Skorohod quantum stochastic integrals. In
Sect. 6 we derive formulas (1.3) for the integrands of quantum stochastic integral repre-
sentation of a regular quantum martingale and discuss an example due to Parthasarathy
[28] along our approach.

2. Quantum White Noise Theory

2.1. Gelfand Triple over R+. Let H = L2(R+) be the (complex) Hilbert space of
L2-functions on R+ = [0,∞) with respect to the Lebesgue measure dt . Here t ∈ R+
stands for a time parameter. The norm of H is denoted by | · |0.

Let E = S(R+) be the space of C-valued continuous functions on R+ which are
obtained by restricting rapidly decreasing functions in S(R) to R+. Identifying E with
the quotient space S(R)/N (R+), where N (R+) is the space of rapidly decreasing func-
tions on R vanishing on R+, we furnish E with the natural topology. Thus E becomes a
nuclear Fréchet space.

In fact, E is topologized by the Hilbertian norms | · |p, p ∈ R, induced from the usual
norms of S(R) = proj lim p→∞ Sp(R), see [25, Chap. 1]. Then, as in the case of S(R),
the inequality

|ξ |p ≤ ρq |ξ |p+q , ξ ∈ E, p ∈ R, q ≥ 0,

holds with ρ = 1/2. For p ∈ R let E p denote the Hilbert space obtained by completing
E with respect to | · |p. Then these Hilbert spaces form a chain:

· · · ⊂ E p ⊂ · · · ⊂ E0 = H ⊂ · · · ⊂ E−p ⊂ · · · , (2.1)

where the inclusions are continuous and have dense images. We see by construction that

E = S(R+) ∼= proj lim
p→∞

E p

and its dual space (equipped with the strong dual topology) is obtained as

E∗ ∼= ind lim
p→∞ E−p.

Thus, we come to a complex Gelfand triple:

E = S(R+) ⊂ H = L2(R+) ⊂ E∗ = S ′(R+).

Here the notation S ′(R+) is reasonable, since E∗ is identified with the space of tempered
distributions in S ′(R) with supports contained in R+. The canonical C-bilinear form on
E∗ × E is denoted by 〈·, ·〉. Note that |ξ |20 = 〈ξ̄ , ξ 〉.
Notation 2.1. For two locally convex spaces X ,Y we denote by X ⊗ Y the completed
π -tensor product. If both X ,Y are Hilbert spaces, the Hilbert space tensor product is
denoted also by X ⊗Y . The use of the same symbol will cause no confusion by contexts.
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Notation 2.2. For two locally convex spaces X ,Y we denote by L(X ,Y) the space of
continuous linear maps from X into Y , equipped with the bounded convergence topol-
ogy. If both X ,Y are Hilbert spaces, let L2(X ,Y) denote the space of Hilbert–Schmidt
operators from X into Y .

Notation 2.3. Let H be a Hilbert space. Then L2(R+)⊗ H is identified with the Hilbert
space of H-valued L2-functions on R+, which is denoted by L2(R+,H). Applying this
notation in a slightly generalized context, for a locally convex space X we put

S(R+,X ) = S(R+)⊗ X , S ′(R+,X ∗) = S ′(R+)⊗ X ∗,

which are mutually dual spaces. Incidentally, it is possible to directly define an X -valued
rapidly decreasing function [32, Chap. 44], though we do not take this approach in this
paper. Furthermore, if X = proj lim p→∞ Xp is a countable Hilbert space, we set

L2(R+,X ) = proj lim
p→∞

L2(R+,Xp) ∼= proj lim
p→∞

L2(R+)⊗ Xp,

L2(R+,X ∗) = ind lim
p→∞ L2(R+,X−p) ∼= ind lim

p→∞ L2(R+)⊗ X−p.

Note that L2(R+,X ) ∼= L2(R+)⊗ X and L2(R+,X ∗) ∼= L2(R+)⊗ X ∗ do not hold in
general (see Notation 2.1).

2.2. Hida–Kubo–Takenaka Space over R+. The (Boson) Fock space over E p is defined
by

Γ (E p) =
{
φ = ( fn)

∞
n=0 ; fn ∈ E⊗̂n

p , ‖φ ‖2
p =

∞∑
n=0

n! | fn|2p < ∞
}
,

where E⊗̂n
p is the n-fold symmetric tensor power of the Hilbert space E p. Then, (2.1)

gives rise to a chain of Fock spaces:

· · · ⊂ Γ (E p) ⊂ · · · ⊂ Γ (H) ⊂ · · · ⊂ Γ (E−p) ⊂ · · · .
The limit spaces:

(E) = proj lim
p→∞

Γ (E p), (E)∗ = ind lim
p→∞ Γ (E−p),

are mutually dual spaces. It is known that (E) becomes a countably Hilbert nuclear
space. We thus obtain a complex Gelfand triple:

(E) ⊂ Γ (H) ⊂ (E)∗,

which is referred to as the Hida–Kubo–Takenaka space (over R+). By definition the
topology of (E) is defined by the norms

‖φ ‖2
p =

∞∑
n=0

n! | fn|2p, φ = ( fn) ∈ (E), p ∈ R. (2.2)
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On the other hand, for eachΦ ∈ (E)∗ there exists p ≥ 0 such thatΦ ∈ Γ (E−p). In this
case, we have

‖Φ ‖2−p =
∞∑

n=0

n! |Fn|2−p < ∞, Φ = (Fn).

The canonical C-bilinear form on (E)∗ × (E) takes the form:

〈〈Φ, φ〉〉 =
∞∑

n=0

n!〈Fn, fn〉, Φ = (Fn) ∈ (E)∗, φ = ( fn) ∈ (E).

2.3. White Noise Operators. A continuous linear operator in L((E), (E)∗) is called a
white noise operator. By the nuclear kernel theorem there exists a canonical isomor-
phism:

K : L((E), (E)∗) ∼=−→ (E)∗ ⊗ (E)∗, (2.3)

which is defined by

〈〈Ξφ, ψ〉〉 = 〈〈KΞ, ψ ⊗ φ〉〉, φ, ψ ∈ (E).
Now we recall the most fundamental white noise operators. With each x ∈ S ′(R+)

we associate the annihilation operator a(x) defined by

a(x) : φ = ( fn)
∞
n=0 �→ ((n + 1)x ⊗1 fn+1)

∞
n=0,

where x ⊗1 fn stands for the contraction. It is known that a(x) ∈ L((E), (E)). Its adjoint
operator a∗(x) ∈ L((E)∗, (E)∗) is called the creation operator and satisfies

a∗(x) : φ = ( fn)
∞
n=0 �→ (x⊗̂ fn−1)

∞
n=0,

understanding that f−1 = 0. The following precise norm estimates are useful.

Lemma 2.1. Let x ∈ S ′(R+) and φ ∈ (E). For any p ∈ R and q > 0 we have

‖ a(x)φ ‖p ≤ Cq | x |−(p+q) ‖φ ‖p+q ,
(2.4)∥∥ a∗(x)φ

∥∥
p ≤ Cq | x |p ‖φ ‖p+q ,

where Cq = supn≥0

√
n + 1 ρqn < ∞.

Lemma 2.2. If ζ ∈ S(R+), then a(ζ ) extends to a continuous linear operator from (E)∗
into itself (denoted by the same symbol) and a∗(ζ ) (restricted to (E)) is a continuous
linear operator from (E) into itself.

For t ∈ R+ we put

at = a(δt ), a∗
t = a∗(δt ).

The pair {at }, {a∗
t } is called the quantum white noise.

Lemma 2.3. The map t �→ at is an L((E), (E))-valued rapidly decreasing function,
i.e., is a member of S(R+,L((E), (E))) ∼= L((E),S(R+)⊗ (E)).

The proofs of the above lemmas are straightforward from definition and direct com-
putation, see also [25, Chap. 4].
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Remark 2.4. The white noise operators cover a wide class of Fock space operators and
provide a reasonable framework for quantum stochastic calculus. For example, if X ,Y
are locally convex spaces admitting continuous inclusions

(E) ⊂ X ⊂ (E)∗, (E) ⊂ Y ⊂ (E)∗,

then the space L(X ,Y) of continuous operators from X into Y is regarded as a sub-
space of L((E), (E)∗). Through the canonical isomorphism (2.3) the space of kernels
corresponding to L(X ,Y) is a subspace of (E)∗ ⊗ (E)∗. However, care must be used
in expressing the space of kernels in terms of tensor product Y ⊗ X ∗ when lack of
nuclearity [32, Chap. 50].

3. Differential Calculus for White Noise Operators

3.1. Annihilation- and Creation-Derivatives. By Lemma 2.2, for any white noise oper-
ator Ξ ∈ L((E), (E)∗) and ζ ∈ S(R+) the commutators

[a(ζ ),Ξ ] = a(ζ )Ξ −Ξa(ζ ), −[a∗(ζ ),Ξ ] = Ξa∗(ζ )− a∗(ζ )Ξ,

are well defined white noise operators, i.e., belong to L((E), (E)∗). We define

D+
ζ Ξ = [a(ζ ),Ξ ], D−

ζ Ξ = −[a∗(ζ ),Ξ ].

We call D+
ζ Ξ and D−

ζ Ξ the creation derivative and annihilation derivative ofΞ , respec-
tively. For brevity, both together are called the quantum white noise derivatives or qwn-
derivatives of Ξ .

Lemma 3.1. S(R+)×L((E), (E)∗) � (ζ,Ξ) �→ D±
ζ Ξ ∈ L((E), (E)∗) is a continuous

bilinear map.

Lemma 3.2. For any Ξ ∈ L((E), (E)∗) and ζ ∈ S(R+) it holds that

K(D+
ζ Ξ) = (a(ζ )⊗ I )KΞ − (I ⊗ a∗(ζ ))KΞ,

K(D−
ζ Ξ) = (I ⊗ a(ζ ))KΞ − (a∗(ζ )⊗ I )KΞ.

Lemma 3.1 is proved by direct estimate of norms [12] and Lemma 3.2 is immediate
from definition.

3.2. Admissible White Noise Operators. We shall introduce a reasonably large subspace
of L((E), (E)∗) for differential calculus. For p ∈ R we set

|||φ |||2p =
∞∑

n=0

n!e2pn| fn|20, φ = ( fn) ∈ Γ (H). (3.1)

For p ≥ 0 we define Gp = {φ = ( fn) ∈ Γ (H) ; |||φ |||p < ∞} and G−p to be the
completion of Γ (H) with respect to ||| · |||−p. Having thus obtained a chain of Hilbert
spaces:

· · · ⊂ Gp ⊂ · · · ⊂ G0 = Γ (H) ⊂ · · · ⊂ G−p ⊂ · · · ,
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we define

G = proj lim
p→∞

Gp, G∗ = ind lim
p→∞ G−p,

which are mutually dual spaces. Note that G is a countable Hilbert space but not a nuclear
space.

Lemma 3.3. Let p ≥ 0 and q ≥ p/(− log ρ). Then it holds that

|||φ |||p ≤ ‖φ‖q , φ ∈ (E).
Therefore, the canonical injection Γ (Eq) → Gp is a contraction.

Proof. Straightforward from the definitions of norms in (2.2) and (3.1). ��
From Lemma 3.3 we obtain the inclusions:

(E) ⊂ G ⊂ Γ (H) ⊂ G∗ ⊂ (E)∗.

Therefore, L(G,G∗) becomes a subspace of L((E), (E)∗). A white noise operator in the
former space is called admissible. Note that

L(G,G∗) =
⋃

p,q∈R

L(Gp,Gq) =
⋃
p≥0

L(Gp,G−p).

Lemma 3.4. For any p ≥ 0 there exists q ≥ max{p, p/(− log ρ)} such that

L(Gp,G−p) ⊂ L2(Γ (Eq),G−q).

Proof. Given p ≥ 0, set r = p/(− log ρ). We see from Lemma 3.3 that Γ (Er ) → Gp
is a contraction. It is known that there exists s = s(r) > 0 such that Γ (Er+s) → Γ (Er )

is of Hilbert–Schmidt class. Take q = max{r + s, p}. For any Ξ ∈ L(Gp,G−p) the
composition

Γ (Eq) → Γ (Er+s) → Γ (Er ) → Gp
Ξ−−→ G−p → G−q

is of Hilbert–Schmidt class, which means that Ξ ∈ L2(Γ (Eq),G−q). ��
Remark 3.5. The spaces G and G∗ have appeared along with classical and quantum
stochastic analysis, see e.g., [1,3,4,7,18,19]. The admissible white noise operators
L(G,G∗) play an essential role in the recent study of quantum martingales [9], see
also Sect. 6.

3.3. Classical Stochastic Gradient Acting on G∗. First define

∇φ(t) = atφ, φ ∈ (E), t ∈ R+.

It follows from Lemma 2.3 that

∇ : (E) → S(R+, (E)) = S(R+)⊗ (E) (3.2)

becomes a continuous linear map. We extend the domain of ∇ to G∗, see also [1] where
a slightly different proof is found.
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Lemma 3.6. Let p ∈ R, r > 0 and set K (p, r) = supn (n + 1)e2p−2rn < ∞. Then, for
any φ ∈ (E) we have

‖∇φ‖2
L2(R+,G−p−r )

=
∫

R+

||| ∇φ(t) |||2−p−r dt ≤ K (p, r) |||φ |||2−p. (3.3)

Proof. Writing φ = ( fn), we have ∇φ(t) = ((n + 1) fn+1(t, ·)), where the right-hand
side has a pointwise meaning since fn is a continuous function on R

n
+. Then

∫
R+

||| ∇φ(t) |||2−p−r dt =
∞∑

n=0

n!e−2(p+r)n
∫

R+

|(n + 1) fn+1(t, ·)|20dt

=
∞∑

n=0

(n + 1)e2p−2rn × (n + 1)!e−2p(n+1)| fn+1|20

≤ K (p, r) |||φ |||2−p ,

which completes the proof. ��
Applying the usual approximation argument to (3.3), we obtain a continuous linear

map:

∇ : G−p → L2(R+,G−p−r ) ∼= L2(R+)⊗ G−p−r , (3.4)

for which the norm estimate (3.3) remains valid, where p ∈ R and r > 0. Finally, by
taking the inductive limit, the classical stochastic gradient

∇ : G∗ → L2(R+,G∗)

is defined and becomes a continuous linear map.
We see from (3.4) that ∇Φ(t) has a meaning as a G−p−r -valued L2-function in

t ∈ R+. Given ζ ∈ L2(R+), the linear map Gp+r � ψ �→ 〈〈∇Φ, ζ ⊗ ψ〉〉 is continuous.
Therefore there exists a unique Ψ ∈ G−p−r such that

〈〈∇Φ, ζ ⊗ ψ〉〉 = 〈〈Ψ, ψ〉〉, ψ ∈ Gp+r .

It is reasonable to write

Ψ =
∫

R+

ζ(t)∇Φ(t) dt.

As is easily seen, the Schwartz inequality holds:
∣∣∣∣
∣∣∣∣
∣∣∣∣
∫

R+

ζ(t)∇Φ(t) dt

∣∣∣∣
∣∣∣∣
∣∣∣∣−p−r

≤ |ζ |0 ||| ∇Φ |||L2(R+,G−p−r )
. (3.5)

Lemma 3.7. If ζ ∈ L2(R+), we have
∫

R+

ζ(t)∇Φ(t) dt = a(ζ )Φ, Φ ∈ G∗. (3.6)
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Proof. The left-hand side of (3.6) is denoted by Ψ = Ψ (Φ) for simplicity. Take p ∈ R

and r > 0 arbitrarily. We see from (3.3) and (3.5) that Φ �→ Ψ (Φ) is a continuous
linear map from G−p into G−p−r . As is easily verified, so is Φ �→ a(ζ )Φ. Hence it is
sufficient to verify (3.6) for an exponential vectorΦ = φξ with ξ running over E . Since
φξ ∈ (E), the left-hand side becomes

Ψ (φξ ) =
∫

R+

ζ(t)∇φξ (t) dt =
∫

R+

ζ(t)atφξ dt

=
∫

R+

ζ(t)ξ(t)φξ dt = 〈ζ, ξ 〉φξ .

On the other hand, as is well known, φξ is an eigenvector of a(ζ )with eigenvalue 〈ζ, ξ 〉.
Hence Ψ (φξ ) = a(ζ )φξ , which completes the proof. ��

Recall that an exponential vector φx ∈ (E)∗ is defined by φx = (x⊗n/n!)∞n=0 for
x ∈ S ′(R+). The set {φξ ; ξ ∈ S(R+)} spans a dense subspace of (E).

3.4. Pointwise QWN-Derivatives. Let Ξ ∈ L((E),G∗). Noting that the kernel KΞ
belongs to G∗ ⊗ (E)∗ on which ∇ ⊗ I acts, we obtain

(∇ ⊗ I )KΞ ∈ L2(R+,G∗)⊗ (E)∗ ∼= L2(R+,G∗ ⊗ (E)∗).

This means that [(∇⊗ I )KΞ ](t) is defined as a G∗⊗(E)∗-valued L2-function in t ∈ R+.
More precisely, by Lemma 3.6, for any p ∈ R and r > 0 we have

∫
R+

‖ [(∇ ⊗ I )KΞ ](t) ‖2
G−p−r ⊗Γ (E−p)

dt = ‖ (∇ ⊗ I )KΞ ‖2
L2(R+)⊗G−p−r ⊗Γ (E−p)

≤ K (p, r) ‖ KΞ ‖2
G−p⊗Γ (E−p)

= K (p, r) ‖Ξ ‖2
L2(Γ (E p),G−p)

. (3.7)

On the other hand, since a∗
t ∈ L((E)∗, (E)∗), we see that (I ⊗ a∗

t )KΞ is well defined
as a member of G∗ ⊗ (E)∗ for all t ∈ R+.

Lemma 3.8. ForΞ ∈ L((E),G∗) the map t �→ (I ⊗ a∗
t )KΞ is a member of L2(R+,G∗ ⊗

(E)∗). More precisely, for any p ≥ 1 and r > 0 there exists a constant number
L = L(p, r) > 0 such that

∫
R+

∥∥ (I ⊗ a∗
t )KΞ

∥∥2
G−p⊗Γ (E−p−r )

dt ≤ L(p, r) ‖Ξ ‖2
L2(Γ (E p),G−p)

. (3.8)

Proof. In view of L((E),G∗) ∼= G∗ ⊗ (E)∗, we choose p ≥ 1 such that KΞ ∈ G−p ⊗
Γ (E−p). Using the estimate

‖a∗
t φ‖−p−r ≤ Cr |δt |−p−r‖φ‖−p, φ ∈ (E), r > 0,

which follows from Lemma 2.1, we have
∫

R+

‖(I ⊗ a∗
t )KΞ‖2

G−p⊗Γ (E−p−r )
dt ≤ C2

r ‖KΞ‖2
G−p⊗Γ (E−p)

∫
R+

|δt |2−p−r dt.
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Putting

L(p, r) = C2
r

∫
R+

|δt |2−p−r dt,

we obtain (3.8). The above integral is finite since |δt |−q ≤ |δt |S−q (R) for all t ∈ R+ by
construction of the space E and

∫
R+

|δt |2−qdt ≤
∫

R

|δt |2S−q (R)
dt < ∞, q ≥ 1. (3.9)

In fact, the right-hand side of (3.9) is the square of the Hilbert–Schmidt norm of the
canonical injection Sq+s(R) → Ss(R) (the norm is independent of s), see e.g., [25,
Chap. 1]. ��

We have thus seen that t �→ [(∇ ⊗ I )KΞ ](t) − (I ⊗ a∗
t )KΞ is defined as a

G∗ ⊗ (E)∗-valued L2-function in t ∈ R+. We define D+
t Ξ by

K(D+
t Ξ) = [(∇ ⊗ I )KΞ ](t)− (I ⊗ a∗

t )KΞ. (3.10)

Then D+
t Ξ becomes an L((E),G∗)-valued L2-function in t ∈ R+. We call D+

t Ξ the
pointwise creation-derivative. Combining (3.7) and (3.8), we see that for any p ≥ 1 and
r > 0 there exists a constant number C = C(p, r) > 0 such that

∫
R+

‖D+
t Ξ‖2

L2(Γ (E p+r ),G−p−r )
dt ≤ C(p, r) ‖Ξ ‖2

L2(Γ (E p),G−p)
. (3.11)

By a parallel argument as above, for Ξ ∈ L(G, (E)∗) ∼= (E)∗ ⊗ G∗ we can define
D−

t Ξ by

K(D−
t Ξ) = [(I ⊗ ∇)KΞ ](t)− (a∗

t ⊗ I )KΞ.

Then D−
t Ξ is an L(G, (E)∗)-valued L2-function in t ∈ R+. We call D−

t Ξ the pointwise
annihilation-derivative. Moreover, for any p ≥ 1 and r > 0 we have

∫
R+

‖D−
t Ξ‖2

L2(Gp+r ,Γ (E−p−r ))
dt ≤ C(p, r) ‖Ξ ‖2

L2(Gp,Γ (E−p))
. (3.12)

In conclusion,

Theorem 3.9. Every admissible white noise operator Ξ ∈ L(G,G∗) is pointwisely
qwn-differentiable in the sense that D±

t Ξ ∈ L((E), (E)∗) is determined for a.e. t ∈ R+.
The norm estimates are given in (3.11) and (3.12).

Example 3.10. For ζ ∈ L2(R+), the annihilation and creation operators a±(ζ ) belong
to L(G,G∗). Their derivatives are given by

D±
t (a

±(ζ )) = D±
t

∫
R+

ζ(s)a±
s ds = ζ(t)I,

D±
t (a

∓(ζ )) = D±
t

∫
R+

ζ(s)a∓
s ds = 0.
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For the number operator we have

D+
t

∫
R+

a∗
s as ds = at , D−

t

∫
R+

a∗
s as ds = a∗

t .

Here the formal integral representations of white noise operators (the so-called integral
kernel operators [25]) give us a good intuition.

Proposition 3.11. The bilinear map in Lemma 3.1 yields the continuous bilinear maps:

L2(R+)× L((E),G∗) � (ζ,Ξ) �→ D+
ζ Ξ ∈ L((E),G∗),

L2(R+)× L(G, (E)∗) � (ζ,Ξ) �→ D−
ζ Ξ ∈ L(G, (E)∗).

Moreover, for ζ ∈ L2(R+) we have
∫

R+

ζ(t)D±
t Ξ dt = D±

ζ Ξ.

Proof. The continuity follows from direct norm estimates, of which argument is similar
to the case of D±

t Ξ . The integral formula is straightforward. ��

4. Quantum Stochastic Integrals

4.1. White Noise Integrals. As a general rule, a one-parameter family {Ξt } ⊂ L
((E), (E)∗) is called a quantum stochastic process, where t runs over an interval of
R+. Slightly generalizing this notation, we shall deal with an element Ξ ∈ L2(R+,L
((E), (E)∗)) also as a quantum stochastic process. For suchΞ we may choose p ≥ 0 such
that Ξ ∈ L2(R+,L2(Γ (E p), Γ (E−p))), which means that Ξt ∈ L2(Γ (E p), Γ (E−p))

makes sense only for a.e. t ∈ R+. Along this line an element of S ′(R+,L((E), (E)∗))
is called a generalized quantum stochastic process [26,27].

Let {Ξt } be a quantum stochastic process, where t runs over a (finite or infinite)
interval T ⊂ R+. If t �→ 〈〈Ξtφ, ψ〉〉 is integrable on T for any φ,ψ ∈ (E) and if the
bilinear form on (E)× (E) defined by

(φ,ψ) �→
∫

T
〈〈Ξtφ, ψ〉〉 dt

is continuous, then there exists a white noise operator ΞT ∈ L((E), (E)∗) such that

〈〈ΞTφ, ψ〉〉 =
∫

T
〈〈Ξtφ, ψ〉〉 dt, φ, ψ ∈ (E).

In this case, we say that {Ξt } is white noise integrable on T and write

ΞT =
∫

T
Ξt dt.

The white noise integrability can be checked with the famous characterization theo-
rem for operator symbols [5,24,25]. It is proved that the white noise integrals:

At =
∫ t

0
asds, A∗

t =
∫ t

0
a∗

s ds, Λt =
∫ t

0
a∗

s asds
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are defined. These are called respectively the annihilation process, the creation process
and the conservation process, which play an essential role in quantum stochastic calculus
[8,21,29].

As for Ξ = {Ξt } ∈ L2(R+,L((E), (E)∗)) we only mention the following

Proposition 4.1. For any Ξ ∈ L2(R+,L((E), (E)∗)) and ζ ∈ L2(R+) the quantum
stochastic process ζΞ = {ζ(t)Ξt } is white noise integrable on R+. In particular, every
Ξ ∈ L2(R+,L((E), (E)∗)) is white noise integrable on any finite interval.

4.2. Classical Hitsuda–Skorohod Integrals. Let δ denote the adjoint map of ∇ in (3.2).
Then

δ = ∇∗ : S ′(R+, (E)
∗) → (E)∗

becomes a continuous linear map. We call δ(Ψ ) ∈ (E)∗ the (classical) Hitsuda–
Skorohod integral ofΨ ∈ S ′(R+, (E)∗), though δ(Ψ ) is understood only through duality.

Proposition 4.2. If Ψ ∈ L2(R+, (E)∗), we have

〈〈δ(Ψ ), φ〉〉 =
∫

R+

〈〈Ψ (t), ∇φ(t)〉〉dt, φ ∈ (E).
Proof. It is sufficient to show that t �→ 〈〈Ψ (t), ∇φ(t)〉〉 is integrable on R+. This is in
fact immediate from (2.4) and (3.9) with the Schwartz inequality. ��

4.3. Quantum Hitsuda–Skorohod Integrals. The quantum Hitsuda–Skorohod integrals
are defined in the same spirit as the classical one, where the quantum stochastic gradients
are employed.

4.3.1. Creation Integrals The creation gradient ∇+ is by definition the composition of
linear maps:

∇+ : L((E)∗, (E)) ∼=−−→ (E)⊗ (E)
∇⊗I−−−→ (S(R+)⊗ (E))⊗ (E)

∼=−−→ S(R+)⊗ ((E)⊗ (E))
∼=−−→ S(R+,L((E)∗, (E))). (4.1)

The creation integral δ+ is defined to be its adjoint:

δ+ = (∇+)∗ : S ′(R+,L((E), (E)∗)) −→ L((E), (E)∗).
By definition one can check easily [13] that

〈〈δ+(Ξ)φ,ψ〉〉 = 〈〈Ξφ, ∇ψ〉〉 , Ξ ∈ S ′(R+,L((E), (E)∗)), φ, ψ ∈ (E).
If Ξ ∈ L2(R+,L((E), (E)∗)), the above identity becomes

〈〈δ+(Ξ)φ, ψ〉〉 =
∫

R+

〈〈Ξtφ, ∇ψ(t)〉〉 dt. (4.2)

Put (Ξφ)(t) = Ξtφ. Then, by Proposition 4.2, (4.2) becomes

=
∫

R+

〈〈(Ξφ)(t), ∇ψ(t)〉〉 dt = 〈〈Ξφ, ∇ψ〉〉 = 〈〈δ(Ξφ), ψ〉〉 .
Thus, we come to the relation between the creation integral and the classical Hitsuda–
Skorohod integral:

δ+(Ξ)φ = δ(Ξφ), Ξ ∈ L2(R+,L((E), (E)∗)), φ ∈ (E). (4.3)
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4.3.2. Annihilation Integrals The annihilation gradient ∇− is defined in a manner
similar to (4.1) as follows:

∇− : L((E)∗, (E)) ∼=−−→ (E)⊗ (E)
I⊗∇−−−→ (E)⊗ (S(R+)⊗ (E))

∼=−−→ S(R+)⊗ ((E)⊗ (E))
∼=−−→ S(R+,L((E)∗, (E))).

The annihilation integral δ− is by definition the adjoint map of the annihilation gradient:

δ− = (∇−)∗ : S ′(R+,L((E), (E)∗)) → L((E), (E)∗).
For Ξ ∈ L2(R+,L((E), (E)∗)) we have

〈〈δ−(Ξ)φ,ψ〉〉 =
∫

R+

〈〈Ξt (∇φ(t)), ψ〉〉 dt, φ, ψ ∈ (E), (4.4)

by definition. Hence,

δ−(Ξ)φ =
∫

R+

Ξt (∇φ(t)) dt, Ξ ∈ L2(R+,L((E), (E)∗)), φ ∈ (E). (4.5)

The creation and annihilation integrals are related directly. Comparing (4.2) and (4.4),
we obtain the simple formula:

(δ−(Ξ))∗ = δ+(Ξ∗), Ξ ∈ L2(R+,L((E), (E)∗)). (4.6)

4.3.3. Conservation Integrals

Lemma 4.3. ForΦ,Ψ ∈ S(R+, (E)) we defineΩ = Ω(Φ,Ψ ) ∈ S(R+, (E)⊗ (E)) by
Ω(t) = Φ(t)⊗ Ψ (t). Then, (Φ,Ψ ) �→ Ω(Φ,Ψ ) is a continuous bilinear map.

Proof. Consider firstΦ = ξ ⊗φ and Ψ = η⊗ψ , where ξ, η ∈ S(R+) and φ,ψ ∈ (E).
Then, Ω(Φ,Ψ ) = (ξη)⊗ φ ⊗ ψ and for any p ≥ 0 we have

‖Ω(ξ ⊗ φ, η ⊗ ψ)‖E p⊗Γ (E p)⊗Γ (E p) = |ξη|p‖φ‖p‖ψ‖p. (4.7)

Since the pointwise multiplication of S(R+) yields a continuous bilinear map, there exist
q > 0 and C = C(p, q) > 0 such that |ξη|p ≤ C |ξ |p+q |η|p+q for all ξ, η ∈ S(R+).
Hence (4.7) becomes

‖Ω(ξ ⊗ φ, η ⊗ ψ)‖E p⊗Γ (E p)⊗Γ (E p)

≤ C |ξ |p+q |η|p+q‖φ‖p‖ψ‖p

≤ C‖ξ ⊗ φ‖E p+q⊗Γ (E p+q )‖η ⊗ ψ‖E p+q⊗Γ (E p+q ).

Then, by definition of the π -tensor product, for Φ,Ψ ∈ S(R+, (E)) we have

‖Ω(Φ,Ψ )‖E p⊗Γ (E p)⊗Γ (E p) ≤ C‖Φ‖E p+q⊗πΓ (E p+q )‖Ψ ‖E p+q⊗πΓ (E p+q ) . (4.8)

Note that

S(R+)⊗ (E) ∼= proj lim
p→∞

E p ⊗π Γ (E p) ∼= proj lim
p→∞

E p ⊗ Γ (E p),
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which follows from the nuclearity of S(R+) (or (E)). Hence the assertion follows from
(4.8). ��

We need the “diagonalized” tensor product ∇ � ∇ of the stochastic gradients. For
each φ,ψ ∈ (E) we define

[(∇ � ∇)(φ ⊗ ψ)](t) = ∇φ(t)⊗ ∇ψ(t), t ∈ R+.

Noting that ∇φ,∇ψ ∈ S(R+, (E)), we have (∇ � ∇)(φ ⊗ ψ) = Ω(∇φ,∇ψ) by
Lemma 4.3. Therefore,

∇ � ∇ : (E)⊗ (E) → S(R+, (E)⊗ (E))

is a continuous linear map.
The conservation gradient is now defined by compositions of continuous linear maps:

∇0 : L((E)∗, (E)) ∼=−−→ (E)⊗ (E)
∇�∇−−−−→ S(R+)⊗ (E)⊗ (E)

∼=−−→ S(R+, (E)⊗ (E))
∼=−−→ S(R+,L((E)∗, (E))). (4.9)

The conservation integral δ0 is by definition the adjoint map of the creation gradient
∇0. Taking the adjoint map of (4.9), we have

δ0 = (∇0)∗ : S ′(R+,L((E), (E)∗)) → L((E), (E)∗).

For Ξ ∈ L2(R+,L((E), (E)∗)) we have

〈〈δ0(Ξ)φ, ψ〉〉 =
∫

R+

〈〈Ξt (∇φ(t)), ∇ψ(t)〉〉 dt, φ, ψ ∈ (E).

Therefore,

δ0(Ξ)φ = δ(Ξ∇φ), Ξ ∈ L2(R+,L((E), (E)∗)), φ ∈ (E), (4.10)

where Ξ∇φ is a classical stochastic process defined by [Ξ∇φ](t) = Ξt (∇φ(t)).
Remark 4.4. During the above discussion the domain of δε is taken as large as possible
in the sense that δε(Ξ) is defined as a white noise operator. This was achieved by taking
the smallest possible domain of ∇ε . From this aspect some regularity properties of the
quantum stochastic integrals δε(Ξ) are studied systematically in terms of extendability
of ∇ε , see [13] for details.

Remark 4.5. We see from (4.3), (4.5) and (4.10) that our definitions of the Hitsuda–
Skorohod quantum stochastic integrals coincide with the ones introduced by Belavkin
[3] and Lindsay [17] for a common integrand. In fact, their definition starts with the
right-hand sides of (4.3), (4.5) and (4.10) for suitably chosenΞ and φ. Our definition is
more direct thanks to the quantum stochastic gradients acting on white noise operators.
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5. Differential Calculus for Quantum Stochastic Integrals

5.1. QWN-Derivatives of Quantum Hitsuda–Skorohod Integrals. For each

Ξ ∈ L2(R+,L((E), (E)∗)) ∼= L2(R+, (E)
∗ ⊗ (E)∗)

we may choose p ≥ 0 such that

Ξ ∈ L2(R+,L2(Γ (E p), Γ (E−p))) ∼= L2(R+)⊗ L2(Γ (E p), Γ (E−p)).

In view of this identification, we write D±
ζ Ξ = (I ⊗ D±

ζ )Ξ for simplicity. Then D±
ζ Ξ ∈

L2(R+,L((E), (E)∗)) for all ζ ∈ S(R+).

Lemma 5.1. It holds that

∇[a∗(ζ )φ](t) = a∗(ζ )[∇φ(t)] + ζ(t)φ, φ ∈ (E), ζ ∈ S(R+).

Proof. This is nothing else but the canonical commutation relation [at , a∗(ζ )] = ζ(t)I .
Note that both at , a∗(ζ ) are members of L((E), (E)). ��
Theorem 5.2. Let ζ ∈ S(R+) and Ξ ∈ L2(R+,L((E), (E)∗)). It holds that

D+
ζ (δ

+(Ξ)) = δ+(D+
ζ Ξ) +

∫
R+

ζ(t)Ξt dt, (5.1)

D−
ζ (δ

+(Ξ)) = δ+(D−
ζ Ξ), (5.2)

D+
ζ (δ

−(Ξ)) = δ−(D+
ζ Ξ), (5.3)

D−
ζ (δ

−(Ξ)) = δ−(D−
ζ Ξ) +

∫
R+

ζ(t)Ξt dt. (5.4)

D+
ζ (δ

0(Ξ)) = δ0(D+
ζ Ξ) + δ−(ζΞ), (5.5)

D−
ζ (δ

0(Ξ)) = δ0(D−
ζ Ξ) + δ+(ζΞ), (5.6)

where ζΞ ∈ L2(R+,L((E), (E)∗) is defined by (ζΞ)(t) = ζ(t)Ξt .

Proof. We first prove (5.1). By applying Lemma 3.2 we have

K(D+
ζ (δ

+(Ξ))) = (a(ζ )⊗ I )K(δ+(Ξ))− (I ⊗ a∗(ζ ))K(δ+(Ξ)). (5.7)

Let φ,ψ ∈ (E). As for the first term in the right-hand side of (5.7), we have

〈〈(a(ζ )⊗ I )K(δ+(Ξ)), ψ ⊗ φ〉〉 = 〈〈K(δ+(Ξ)), a∗(ζ )ψ ⊗ φ〉〉
= 〈〈δ+(Ξ)φ, a∗(ζ )ψ〉〉
=

∫
R+

〈〈Ξtφ, [∇(a∗(ζ )ψ)](t)〉〉dt,

where the last equality is due to (4.2). By virtue of Lemma 5.1, the last integral becomes

=
∫

R+

〈〈Ξtφ, a∗(ζ )[∇ψ(t)]〉〉dt +
∫

R+

〈〈Ξtφ, ζ(t)ψ〉〉dt

= 〈〈δ+(a(ζ )Ξ)φ, ψ〉〉 +
∫

R+

ζ(t) 〈〈Ξtφ, ψ〉〉 dt. (5.8)
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Similarly, for the second term in the right-hand side of (5.7) we have

〈〈(I ⊗ a∗(ζ ))K(δ+(Ξ)), ψ ⊗ φ〉〉 = 〈〈δ+(Ξa(ζ ))φ, ψ〉〉. (5.9)

Inserting (5.8) and (5.9) into (5.7), we have

〈〈D+
ζ (δ

+(Ξ))φ, ψ〉〉 = 〈〈δ+(a(ζ )Ξ −Ξa(ζ ))φ, ψ〉〉 +
∫

R+

ζ(t) 〈〈Ξtφ, ψ〉〉 dt

= 〈〈δ+(D+
ζ Ξ)φ, ψ〉〉 +

∫
R+

ζ(t) 〈〈Ξtφ, ψ〉〉 dt,

which proves (5.1).
We next prove (5.5) by mimicking the above argument. In fact, we have

K(D+
ζ (δ

0(Ξ))) = (a(ζ )⊗ I )K(δ0(Ξ))− (I ⊗ a∗(ζ ))K(δ0(Ξ)). (5.10)

For any φ,ψ ∈ (E) we have

〈〈(a(ζ )⊗ I )K(δ0(Ξ)), ψ ⊗ φ〉〉 = 〈〈K(δ0(Ξ)), a∗(ζ )ψ ⊗ φ〉〉
= 〈〈δ0(Ξ)φ, a∗(ζ )ψ〉〉
=

∫
R+

〈〈Ξt (∇φ(t)), [∇a∗(ζ )ψ](t)〉〉dt.

By Lemma 5.1 the last expression becomes

=
∫

R+

〈〈a(ζ )Ξt (∇φ(t)), (∇ψ)(t)〉〉 dt +
∫

R+

ζ(t) 〈〈Ξt (∇φ(t)), ψ〉〉 dt

= 〈〈δ0(a(ζ )Ξ)φ, ψ〉〉 + 〈〈δ−(ζΞ)φ, ψ〉〉. (5.11)

On the other hand, one can see easily that

〈〈(I ⊗ a∗(ζ ))K(δ0(Ξ)), ψ ⊗ φ〉〉 = 〈〈δ0(Ξa(ζ ))φ, ψ〉〉. (5.12)

Inserting (5.11) and (5.12) into (5.10), we obtain

〈〈D+
ζ (δ

0(Ξ))φ, ψ〉〉 = 〈〈δ0(D+
ζ Ξ)φ, ψ〉〉 + 〈〈δ−(ζΞ)φ, ψ〉〉,

which shows (5.5). The rest is verified in a similar manner. ��

5.2. Pointwise QWN-Derivatives of Quantum Hitsuda–Skorohod Integrals. The formu-
las for pointwise qwn-derivatives (Theorem 5.4 below) formally follow from (5.1)–(5.6)
by setting ζ = δt . For mathematical rigor we repeat the argument in Sect. 3.4 at a level
of quantum stochastic processes.

First we set

L2(R+,L(G,G∗)) =
⋃

p,q∈R

L2(R+,L(Gp,Gq)) =
⋃
p≥0

L2(R+,L(Gp,G−p)).

For Ξ = {Ξs} ∈ L2(R+,L(G,G∗)) we shall define D±
t Ξ .
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Lemma 5.3. For any p ≥ 0 there exists q ≥ max{p, p/(− log ρ)} such that

L2(R+,L(Gp,G−p)) ⊂ L2(R+,L2(Γ (Eq),G−q)).

Proof. Let Ξ ∈ L2(R+,L(Gp,G−p)). Then, Ξs ∈ L(Gp,G−p) for a.e. s ∈ R+. From
the proof of Lemma 3.4 we see that

‖Ξs‖L2(Γ (Eq ),G−q ) ≤ L(p, q)‖Ξs‖L(Gp,G−p), (5.13)

where L(p, q) > 0 is the Hilbert–Schmidt norm of Γ (Eq) → Γ (Er ), where
r = p/(− log ρ). Then the assertion follows by integrating (5.13). ��

Now letΞ = {Ξs} ∈ L2(R+,L(G,G∗)). With the help of Lemma 5.3 we may choose
p ≥ 1 satisfying Ξ ∈ L2(R+,L2(Γ (E p),G−p)). In particular, Ξs ∈ L2(Γ (E p),G−p)

for a.e. s ∈ R+. Then, by virtue of Theorem 3.9, for any r > 0 it holds that
∫

R+

‖D+
t Ξs‖2

L2(Γ (E p+r ),G−p−r )
dt ≤ C(p, r) ‖Ξs ‖2

L2(Γ (E p),G−p)
.

Integrating both sides with respect to s over R+, we obtain
∫

R+

∫
R+

‖D+
t Ξs‖2

L2(Γ (E p+r ),G−p−r )
dtds ≤ C(p, r) ‖Ξ ‖2

L2(R+,L2(Γ (E p),G−p))
.

By the Fubini theorem we see that for a.e. t ∈ R+, s �→ D+
t Ξs is an L2-function in

s ∈ R+ with values in L2(Γ (E p+r ),G−p−r ) ⊂ L((E),G∗). Thus the pointwise annihi-
lation-derivative D+

t Ξ ∈ L2(R+,L((E),G∗)) is defined for a.e. t ∈ R+.
In a similar manner, noting that L(G,G∗) ⊂ L(G, (E)∗), we define the pointwise

annihilation derivative D−
t Ξ ∈ L2(R+,L(G, (E)∗) for a.e. t ∈ R+.

Next, mimicking the argument in Sect. 4.3, we define the quantum stochastic gradi-
ents as continuous maps:

∇ε : L(G∗, (E)) → L2(R+,L(G∗, (E))),
L((E)∗,G) → L2(R+,L((E)∗,G)),

and by their adjoint actions the quantum Hitsuda–Skorohod integrals:

δε : L2(R+,L(G, (E)∗)) → L(G, (E)∗),
L2(R+,L((E),G∗)) → L((E),G∗), (5.14)

where ε ∈ {+,−, 0}, for more details see [13].

Theorem 5.4. Let Ξ ∈ L2(R+,L(G,G∗)). Then for a.e. t ∈ R+ we have

D+
t (δ

+(Ξ)) = δ+(D+
t Ξ) +Ξt , (5.15)

D−
t (δ

+(Ξ)) = δ+(D−
t Ξ), (5.16)

D+
t (δ

−(Ξ)) = δ−(D+
t Ξ), (5.17)

D−
t (δ

−(Ξ)) = δ−(D−
t Ξ) +Ξt , (5.18)

D+
t (δ

0(Ξ)) = δ0(D+
t Ξ) +Ξt at , (5.19)

D−
t (δ

0(Ξ)) = δ0(D−
t Ξ) + a∗

t Ξt . (5.20)
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Proof. We shall prove (5.15). Since L(G,G∗) ⊂ L((E),G∗), we see from (5.14)
that δ+(Ξ) ∈ L((E),G∗). Applying the creation derivative (see Sect. 3.4), we have
D+

t (δ
+(Ξ)) as an L((E),G∗)-valued L2-function in t . On the other hand, we see from

the above argument with (5.14) that δ+(D+
t Ξ) is L((E),G∗)-valued L2-function in t .

Thus, both sides of (5.15) are L((E),G∗)-valued L2-functions in t . It is then sufficient
to show their inner products with an arbitrary ζ ∈ L2(R+) coincide, which is immediate
from Theorem 5.2.

The proof of the rest is similar. For (5.19) and (5.20) we employ the following for-
mulas:

〈〈δ−(ζΞ)φ, ψ〉〉 =
∫

R+

ζ(t) 〈〈Ξt atφ, ψ〉〉 dt,

〈〈δ+(ζΞ)φ, ψ〉〉 =
∫

R+

ζ(t) 〈〈Ξtφ, atψ〉〉 dt =
∫

R+

ζ(t)〈〈a∗
t Ξtφ, ψ〉〉dt,

for φ,ψ ∈ (E). ��

5.3. QWN-Derivatives of Adapted Integrals. First we recall that for all t ∈ R+, the space
Gp admits a factorization

Gp = Gp([0, t])⊗ Gp([t,∞)), (5.21)

which is derived from L2(R+) = L2([0, t])⊕ L2([t,∞)). A quantum stochastic process
{Ξt }t≥0 ⊂ L(Gp,Gq) is said to be adapted if for all t ∈ R+, Ξt admits a factorization

Ξt = Ξ[0,t] ⊗ I[t ,

according to (5.21), where I[t is the identity operator on Gp([t,∞)).

Proposition 5.5. Let {Ξt } ∈ L(Gp,Gq) be an adapted process. Then, for any
ζ ∈ L2(R+), {D±

ζ Ξt } is an adapted process. In fact, for any t ∈ R+ we have

D+
ζ Ξt =

(
D+
ζ[0,t]Ξ[0,t]

)
⊗ I[t , D−

ζ Ξt =
(

D−
ζ[0,t]Ξ[0,t]

)
⊗ I[t , (5.22)

where Ξt = Ξ[0,t] ⊗ I[t and ζ[0,t] = ζ1[0,t].

Proof. By using the fact that for any ζ, ξ ∈ S(R+),

a(ζ )φξ = (
a(ζ[0,t])φξ[0,t]

) ⊗ φξ[t + φξ[0,t] ⊗ (
a(ζ[t )φξ[t

)
,

where ξ[t = ξ1[t,∞), we can easily see that for any ξ ∈ S(R+),

D+
ζ Ξtφξ =

((
D+
ζ[0,t]Ξ[0,t]

)
⊗ I[t

)
φξ .

Since {φξ ; ξ ∈ S(R+)} spans a dense subspace of Gp, the first relation in (5.22) follows
by continuity. The second relation is verified in a similar fashion. ��
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Proposition 5.6. Let {Ξt } ⊂ L(Gp,Gq) be an adapted process. Then for any s ≥ 0 and
ζ ∈ L2([s,∞)) we have

D±
ζ Ξs = 0.

Therefore, for any s ≥ 0 it holds that

D±
t Ξs = 0 for a.e. t ≥ s.

Proof. Since a(ζ )φ = 0 for all φ ∈ Gp([0, t]), D±
ζ[0,t]Ξ[0,t] = 0 on Gp([0, t]). Hence

the proof is obvious from (5.22). ��
Combining Theorem 5.4 and Proposition 5.6, we come to the following

Theorem 5.7. LetΞ ∈ L2(R+,L(Gp,Gq)) be an adapted process. Then for a.e. t ∈ R+
we have

D+
t (δ

+(Ξ)) = δ+(1[t,∞)D
+
t Ξ) +Ξt ,

D−
t (δ

+(Ξ)) = δ+(1[t,∞)D
−
t Ξ),

D+
t (δ

−(Ξ)) = δ−(1[t,∞)D
+
t Ξ),

D−
t (δ

−(Ξ)) = δ−(1[t,∞)D
−
t Ξ) +Ξt ,

D+
t (δ

0(Ξ)) = δ0(1[t,∞)D
+
t Ξ) +Ξt at ,

D−
t (δ

0(Ξ)) = δ0(1[t,∞)D
−
t Ξ) + a∗

t Ξt .

Remark 5.8. Let Ξ ∈ L2(R+,L((E), (E)∗)). Then {a∗
t Ξ}, {Ξt at } and {a∗

t Ξt at } are
white noise integrable on a finite interval. Moreover, it is easily checked that

δ+(1[0,t]Ξ) =
∫ t

0
a∗

sΞs ds, δ−(1[0,t]Ξ) =
∫ t

0
Ξsas ds,

δ0(1[0,t]Ξ) =
∫ t

0
a∗

sΞsas ds.

If Ξ ∈ L2(R+,L(G,G∗)) is adapted, we have

δ+(1[0,t]Ξ) =
∫ t

0
Ξsd A∗

s , δ−(1[0,t]Ξ) =
∫ t

0
Ξsd As,

δ0(1[0,t]Ξ) =
∫ t

0
ΞsdΛs,

where the right-hand sides are quantum stochastic integrals of Itô type [9].

6. Application to Quantum Martingales

6.1. Regular Quantum Martingales. An adapted process {Mt }t≥0 ⊂ L(Gp,Gq) is called
a quantum martingale if

〈〈Mtφξs] , φηs] 〉〉 = 〈〈Msφξs] , φηs] 〉〉, ξ, η ∈ L2(R+), 0 ≤ s ≤ t.
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The above condition is equivalent to

〈〈Es Mt Esφξ , φη〉〉 = 〈〈Es MsEsφξ , φη〉〉, ξ, η ∈ H, 0 ≤ s ≤ t,

where Et is the conditional expectation defined by

EtΦ = Γ (1[0,t])Φ = (1⊗n
[0,t]Fn), Φ = (Fn) ∈ G∗.

After the recent work [9], a quantum martingale {Mt } ⊂ L(Gp,Gq) is said to be regular
with respect to a Radon measure m on R+, or simply regular if

||| (Mt − Ms)φ |||2q ≤ |||φ |||2p m([s, t]),∣∣∣∣∣∣ (M∗
t − M∗

s )ψ
∣∣∣∣∣∣2

−p ≤ |||ψ |||2−q m([s, t]),
for all φ ∈ Gp([0, s]), ψ ∈ G−q([0, s]) and 0 ≤ s < t .

Example 6.1. Let l,m ≥ 0 be integers. As is easily checked, for any p ∈ R and q > 0
there exists a constant C ≥ 0 such that

|||((A∗
t )

l Am
t − (A∗

s )
l Am

s )φ|||2p ≤ C |||φ |||2p+q (t
l − sl)sm

for all φ ∈ Gp+q([0, s]) and 0 ≤ s < t . Hence {(A∗
t )

l Am
t }t≥0 is a regular quantum

martingale in L(Gp+q ,Gp). In particular, so are the annihilation process {At } and the
creation process {A∗

t }.
Example 6.2. The conservation process {Λt }t≥0 is a regular quantum martingale in
L(Gp+q ,Gp) for any p ∈ R and q > 0. In fact,

||| (Λt −Λs)φ |||2p = 0

for all φ ∈ Gp+q([0, s]) and 0 ≤ s < t .

We now recall the fundamental result due to Ji [9].

Theorem 6.3. Let {Mt }t≥0 ⊂ L(Gp,Gq) be a quantum martingale, regular with respect
to a Radon measure m on R+. Then there exist adapted processes {Et }, {Ft }, {Gt } in
L(Gp,Gq) and λ ∈ C such that

Mt = λI +
∫ t

0
(Esd As + Fsd A∗

s + GsdΛs) (6.1)

as operators in L((E),G∗), and s �→ ‖Gs‖L(Gp,Gq ) is locally bounded and

max{‖Es‖2
L(Gp,Gq )

, ‖Fs‖2
L(Gp,Gq )

} ≤ m′
ac(s) for all s ≥ 0,

where m′
ac denotes the density of the absolutely continuous part of m. Such a triple

({Et }, {Ft }, {Gt }) is unique. Conversely, if {Mt } ⊂ L(Gp,Gq) admits the integral
representation (6.1) with adapted processes {Et }, {Ft }, {Gt } in L(Gp,Gq) such that
‖Es‖L(Gp,Gq ) and ‖Fs‖L(Gp,Gq ) are locally square integrable in s ∈ R+, then {Mt } is a
regular quantum martingale.

Remark 6.4. Recall that {At }, {A∗
t }, {Λt } are excluded from the class of regular quantum

martingales in the sense of Parthasarathy–Sinha [30] due to their unboundedness in the
Fock space Γ (L2(R+)). The choice of Fock chain {Gp} has the advantage of including
a wider class of regular quantum martingales possibly unbounded in Γ (L2(R+)).
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6.2. Calculating the Integrands. We are now in a position to discuss how the integrands
in (6.1) are obtained from {Mt }. We start with the following

Lemma 6.5. Let {Ξt } ⊂ L(Gp,Gq) be an adapted quantum stochastic process satisfying

∫ t

0
‖Ξs‖2

L(Gp,Gq )
ds < ∞ for all t ≥ 0.

Then for a.e. t ∈ R+ we have

D+
t (δ

+(Ξ1[0,t])) = Ξt , D−
t (δ

+(Ξ1[0,t])) = 0,

D+
t (δ

−(Ξ1[0,t])) = 0, D−
t (δ

−(Ξ1[0,t])) = Ξt ,

D+
t (δ

0(Ξ1[0,t])) = Ξt at , D−
t (δ

0(Ξ1[0,t])) = a∗
t Ξt .

Proof. Straightforward from Theorem 5.7. ��
Theorem 6.6. Let {Mt }t≥0 be a regular quantum martingale in L(Gp,Gq) with the inte-
gral representation:

Mt = λI +
∫ t

0
Esd As +

∫ t

0
Fsd A∗

s +
∫ t

0
GsdΛs, t ≥ 0, (6.2)

as described in Theorem 6.3. Then the integrands in (6.2) satisfy the following relations:

Es = D−
s

[
Ms −

∫ s

0
D+

u Mud A∗
u

]
, (6.3)

Fs = D+
s

[
Ms −

∫ s

0
D−

u Mud Au

]
, (6.4)

Gs = D+
s

[∫ s

0

{
D−

u

(
Mu −

∫ u

0
Evd Av −

∫ u

0
Fvd A∗

v

)}
du

]
. (6.5)

Proof. First note that (6.2) is written in the form:

Mt = λI + δ−(1[0,t]E) + δ+(1[0,t]F) + δ0(1[0,t]G).

Then, applying the formulas in Lemma 6.5, we have

D+
t Mt = Ft + Gt at , D−

t Mt = Et + a∗
t Gt ,

and hence,

Mt −
∫ t

0
D−

s Msd As = λI +
∫ t

0
Fsd A∗

s = λI + δ+(1[0,t]F),

Mt −
∫ t

0
D+

s Msd A∗
s = λI +

∫ t

0
Esd As = λI + δ−(1[0,t]E).

Applying the formulas in Lemma 6.5 again, we obtain

Et = D−
t

[
Mt −

∫ t

0
D+

s Msd A∗
s

]
, Ft = D+

t

[
Mt −

∫ t

0
D−

s Msd As

]
,
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which proves (6.3) and (6.4). On the other hand, it follows from (6.2) that
∫ t

0
GsdΛs = δ0(1[0,t]G) = Mt − λI −

∫ t

0
Esd As −

∫ t

0
Fsd A∗

s .

Applying D−
t leads

a∗
t Gt = D−

t

[
Mt −

∫ t

0
Eud Au −

∫ t

0
Fud A∗

u

]
.

Integrating both sides with respect to t , we come to
∫ t

0
Gsd A∗

s =
∫ t

0

{
D−

s

(
Ms −

∫ s

0
Eud Au −

∫ s

0
Fud A∗

u

)}
ds.

Finally, applying D+
t we have

Gt = D+
t

[∫ t

0

{
D−

s

(
Ms −

∫ s

0
Eud Au −

∫ s

0
Fud A∗

u

)}
ds

]
,

which proves (6.5). ��

6.3. An Example. We shall discuss an instructive example due to Parthasarathy [28]
along our approach.

Consider an operator K of Hilbert–Schmidt class on L2(R+) with the corresponding
integral kernel κ ∈ L2(R+ × R+), i.e.,

K ξ(u) =
∫ ∞

0
κ(u, v)ξ(v)dv, ξ ∈ L2(R+).

In the following we fix p ∈ R and q ≥ max{0, log ‖K‖op} arbitrarily, where ‖K‖op is the
operator norm of K . Then, the second quantization Γ (K ) is a member of L(Gp+q ,Gp),
as is seen from the obvious inequalities:

|||Γ (K )φ |||2p ≤
∞∑

n=0

n!e2pn‖K‖2n
op | fn|20 ≤ |||φ |||2p+q .

Define a quantum stochastic process {Mt } by

Mt = EtΓ (K )Et , t ≥ 0.

We shall see that for any p ∈ R there exists q ≥ 0 such that {Mt } is a regular quantum
martingale in L(Gp+q ,Gp). In fact, as is easily verified, {Mt } is a quantum martingale
with the property that ‖Mt‖L(Gp+q ,Gp) is locally bounded in t ∈ R+. We need to check
that {Mt } is regular. Note that for any 0 ≤ s < t and φ = ( fn) ∈ Gp([0, s]) we have

||| (Mt − Ms)φ |||2p =
∞∑

n=0

n!e2pn

∣∣∣∣∣
n∑

i=1

(
1⊗(n−i)
[0,t] ⊗ 1[s,t] ⊗ 1⊗(i−1)

[0,s]
)

K ⊗n fn

∣∣∣∣∣
2

0

≤ m([s, t])
∞∑

n=0

n!e2pnn‖K‖2(n−1)
op | fn|20,
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where m is a Radon measure on R+ defined by

m([s, t]) =
∫ t

s

∫ ∞

0
|κ(u, v)|2dvdu, 0 ≤ s < t.

Replacing q with a larger one satisfying n‖K‖2(n−1)
op ≤ e2qn for all n ≥ 1 if necessary,

we obtain

||| (Mt − Ms)φ |||2p ≤ |||φ |||2p+q m([s, t]),
as desired. The second half of the regularity condition is verified similarly.

From Theorem 6.6 we see that Mt admits a unique integral representation as in (6.2).
In fact, for any ζ ∈ L2(R+) we have

a(ζ )Mt = Mt a

(
1[0,t]

∫ t

0
κ(u, ·)ζ(u)du

)
,

Mt a
∗(ζ ) = a∗

(
1[0,t]

∫ t

0
κ(·, v)ζ(v)du

)
Mt ,

which implies that for a.e. u ∈ R+,

D+
u Mu = Mu

(
a(1[0,u]κ(u, ·))− au

)
,

(6.6)
D−

u Mu = (
a∗(1[0,u]κ(·, u))− a∗

u

)
Mu .

Noting that ‖Mua(1[0,u]κ(u, ·))‖L(Gp,Gq ) is locally square integrable in u ∈ R+ for some
p, q ∈ R, we obtain

δ+(1[0,s](u)D+
u Mu) = δ+(1[0,s](u)Mua(1[0,u]κ(u, ·))− δ0(1[0,s](u)Mu),

where the integrals are taken with respect to u.
Now applying the formulas in (6.3) and in Lemma 6.5, we have

Es = D−
s

(
Ms − δ+(1[0,s](u)D+

u Mu)
)

= D−
s

(
Ms − δ+(1[0,s](u)Mua(1[0,u]κ(u, ·)) + δ0(1[0,s](u)Mu)

)

= a∗(1[0,s]κ(·, s))Ms .

Similarly, we obtain

Fs = Msa(1[0,s]κ(s, ·)).
On the other hand, we see from (6.6) and Lemma 6.5 that

D−
s

(
Ms −

∫ s

0
Eud Au −

∫ s

0
Fud A∗

u

)
= −a∗

s Ms .

Applying the formulas in (6.5) and Lemma 6.5, we come to

Gt = D+
t

[∫ t

0

{
D−

s

(
Ms −

∫ s

0
Eud Au −

∫ s

0
Fud A∗

u

)}
ds

]

= −D+
t

[∫ t

0
Msd A∗

s

]

= −Ms .
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Consequently, the stochastic integral representation of {Mt } is given by

Mt = I +
∫ t

0
a∗(1[0,s]κ(·, s))Msd As +

∫ t

0
Msa(1[0,s]κ(s, ·))d A∗

s −
∫ t

0
MsdΛs .

References

1. Aase, K., Øksendal, B., Privault, N., Ubøe, J.: White noise generalizations of the Clark–Haussmann–
Ocone theorem with application to mathematical finance. Finance Stochast. 4, 465–496 (2000)

2. Attal, S.: An algebra of non-commutative bounded semimartingales: square and angle quantum brack-
ets. J. Funct. Anal. 124, 292–332 (1994)

3. Belavkin, V.P.: A quantum nonadapted Ito formula and stochastic analysis in Fock scale. J. Funct.
Anal. 102, 414–447 (1991)

4. Benth, F.E., Potthoff, J.: On the martingale property for generalized stochastic processes. Stoch. Stoch.
Rep. 58, 349–367 (1996)

5. Chung, D.M., Chung, T.S., Ji, U.C.: A simple proof of analytic characterization theorem for operator
symbols. Bull. Korean Math. Soc. 34, 421–436 (1997)

6. Chung, D.M., Ji, U.C., Obata, N.: Quantum stochastic analysis via white noise operators in weighted
Fock space. Rev. Math. Phys. 14, 241–272 (2002)

7. Grothaus, M., Kondratiev, Yu.G., Streit, L.: Complex Gaussian analysis and the Bargmann–Segal
space. Meth. Funct. Anal. Top. 3, 46–64 (1997)

8. Hudson, R.L., Parthasarathy, K.R.: Quantum Ito’s formula and stochastic evolutions. Commun. Math.
Phys. 93, 301–323 (1984)

9. Ji, U.C.: Stochastic integral representation theorem for quantum semimartingales. J. Funct. Anal. 201,
1–29 (2003)

10. Ji, U.C., Obata, N.: Quantum white noise calculus. In: Non-Commutativity, Infinite-Dimensionality and
Probability at the Crossroads, eds. Obata, N., Matsui, T., Hora, A., River Edge, NJ: World Sci. Publishing,
2002, pp. 143–191

11. Ji, U.C., Obata, N.: Admissible white noise operators and their quantum white noise derivatives. In:
Infinite Dimensional Harmonic Analysis III, eds. Heyer, H. et al., RiverEdge, NJ: World Sci. Publishing,
2005, pp. 213–232

12. Ji, U.C., Obata, N.: Generalized white noise operators fields and quantum white noise derivatives. Sémi-
naires et Congrès 16, 17–33 (2007)

13. Ji, U.C., Obata, N.: Quantum stochastic gradients. Preprint, 2007
14. Ji, U.C., Sinha, K.B.: Integral representation of quantum martingales. Infin. Dimen. Anal. Quant. Probab.

Rel. Top. 8, 55–72 (2005)
15. Ji, U.C., Sinha, K.B.: Uniqueness of integrands in quantum stochastic integral. Infin. Dimen. Anal. Quant.

Probab. Rel. Top. 9, 607–616 (2006)
16. Kuo, H.-H.: White Noise Distribution Theory. Boca Raton, FL: CRC Press, 1996
17. Lindsay, J.M.: Quantum and non–causal stochastic integral. Probab. Th. Rel. Fields 97, 65–80 (1993)
18. Lindsay, J.M., Maassen, H.: An integral kernel approach to noise. In: Quantum Probability and Appli-

cations III, eds. Accardi, L., von Waldenfels, W., Lecture Notes in Math. 1303, Berlin-Heidelberg-
New York: Springer-Verlag, 1988, pp. 192–208

19. Lindsay, J.M., Parthasarathy, K.R.: Cohomology of power sets with applications in quantum probabil-
ity. Commun. Math. Phys. 124, 337–364 (1989)

20. Malliavin, P.: Stochastic Analysis. Berlin-Heidelberg-New York: Springer-Verlag, 1997
21. Meyer, P.-A.: Quantum Probability for Probabilists. Lect. Notes in Math. 1538, Berlin-Heidelberg-

New York: Springer-Verlag, 1993
22. Meyer, P.-A.: Représentation de martingales d’opérateurs. In: Séminaire de probabilités XXVII, Lect.

Notes in Math. 1557, Berlin-Heidelberg- New York: Springer-Verlag, 1994, pp. 97–105
23. Nualart, D.: The Malliavin Calculus and Related Topics. New York: Springer-Verlag, 1995
24. Obata, N.: An analytic characterization of symbols of operators on white noise functionals. J. Math. Soc.

Japan 45, 421–445 (1993)
25. Obata, N.: White Noise Calculus and Fock Space. Lect. Notes in Math. 1577, Berlin-Heidelberg-New

York: Springer-Verlag, 1994
26. Obata, N.: Generalized quantum stochastic processes on Fock space. Publ. RIMS, Kyoto Univ. 31,

667–702 (1995)
27. Obata, N.: Integral kernel operators on Fock space—Generalizations and applications to quantum dynam-

ics. Acta Appl. Math. 47, 49–77 (1997)



Derivatives and Quantum Martingales 775

28. Parthasarathy, K.R.: A remark on the paper “Une martingale d’opérateurs bornés, non représentable en
intégrale stochastique”, by Journe, J.L., Meyer, P.A. In: Séminaire de Probabilités XX 1984/85, eds.
Azéma, J., Yor, M., Lect. Notes in Math. 1204, Berlin-Heidelberg-New York: Springer-Verlag, 1986,
pp. 317–320

29. Parthasarathy, K.R.: An Introduction to Quantum Stochastic Calculus. Basel-Boston: Birkhäuser, 1992
30. Parthasarathy, K.R., Sinha, K.B.: Stochastic integral representation of bounded quantum martingales in

Fock space. J. Funct. Anal. 67, 126–151 (1986)
31. Parthasarathy, K.R., Sinha, K.B.: Representation of a class of quantum martingales II. In: Quantum

Probability and Applications III, eds. Accardi, L., von Waldenfels, W., Lect. Notes in Math. 1303,
Berlin-Heidelberg-New York: Springer-Verlag, 1988, pp. 232–250

32. Treves, F.: Topological Vector Spaces, Distributions and Kernels. London-New York: Academic Press,
1967

Communicated by A. Kupiainen


	Annihilation-Derivative, Creation-Derivativeand Representation of Quantum Martingales
	Abstract:
	Introduction
	Quantum White Noise Theory
	Differential Calculus for White Noise Operators
	Quantum Stochastic Integrals
	Differential Calculus for Quantum Stochastic Integrals
	Application to Quantum Martingales
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


