
Digital Object Identifier (DOI) 10.1007/s00220-008-0687-y
Commun. Math. Phys. 287, 323–349 (2009) Communications in

Mathematical
Physics

Smooth Approximations and Exact Solutions
of the 3D Steady Axisymmetric Euler Equations

Quansen Jiu1,�, Zhouping Xin2,3,��

1 School of Mathematical Sciences, Capital Normal University,
Beijing 100048, PRC. E-mail: jiuqs@mail.cnu.edu.cn

2 IMS and Department of Mathematics, The Chinese University of Hong Kong,
Shatin, N.T., Hong Kong. E-mail: zpxin@ims.cuhk.edu.hk

3 Center for Nonlinear Studies, Northwest University, Xi’an 710069, PRC

Received: 18 February 2008 / Accepted: 22 August 2008
Published online: 20 November 2008 – © Springer-Verlag 2008

Abstract: In this paper, we prove that a class of C1-smooth approximate solutions
{uε, pε} to the 3D steady axisymmetric Euler equations will converge strongly to 0

in L2
loc(R

3). The main assumptions are that the approximate solutions have uniformly
finite energy and approach a constant state at far fields. We also show a Liouville type
theorem that there are no non-trivial C1-smooth exact solutions with finite energy and
uniform constant state at far fields.

1. Introduction

The three-dimensional (3D) incompressible steady Euler equations in R3 are{
(u · ∇)u + ∇ p = 0, x ∈ R3,

div u = 0.
(1.1)

Here u = (u1(x), u2(x), u3(x)) represents the velocity field and p = p(x) is the
pressure.

By an axisymmetric solution of (1.1), we mean that, in the cylindrical coordinate
system, the unknown functions u(x) and p(x) do not depend on θ -variable, that is,

u(x) = ur (r, z)er + uθ (r, z)eθ + uz(r, z)ez,

p(x) = p(r, z),

where

er = (cos θ, sin θ, 0), eθ = (− sin θ, cos θ, 0), ez = (0, 0, 1)
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form the standard orthogonal bases in the cylindrical coordinate system. Furthermore,
when uθ ≡ 0, which means that the axisymmetric flow has no swirls, the corresponding
3-D steady axisymetric Euler equations can be written as{

ur∂r ur + uz∂zur + ∂r p = 0,

ur∂r uz + uz∂zuz + ∂z p = 0.
(1.2)

And the incompressibility condition becomes

∂r (rur ) + ∂z(ruz) = 0. (1.3)

In this case, the vorticity of the velocity is given by

ω = ∇ × u = ωθeθ

with ωθ = ∂zur − ∂r uz .
When the initial data is a vortex-sheets data, the 2D Euler equations have global (in

time) weak solutions when the initial vorticity has a distinguished sign (see [2,7,16–
18,21]) or has a changing sign with reflection symmetry (see [14,15]). However, the
global existence of weak solutions for both general 2D and 3D Euler equations for
general vortex-sheets initial data is still an outstanding open problem. In particular, for
three-dimensional unsteady axisymmetric flows without swirls, this problem remains to
be solved even in the case that the initial vorticity is of one sign. It was shown in [3]
that, for the 3D unsteady axisymmetric Euler equations without swirls, a sequence of
approximate solutions generated by smoothing the initial data converges either strongly
in L2

loc(R
3 × (0,∞)) or weakly in L2

loc(R
3 × (0,∞)) to a limit which is not a classical

weak solution to the Euler equations under the additional assumption that the initial
vorticity has a distinguished sign. In other words, there is no concentration-cancellation
occurring for one-sign axisymmetric flows without swirls which is in sharp contrast to
the 2-D theory (see [5]). The authors proved in [12] that the approximate solutions,
generated by smoothing the initial data, converge strongly in L2([0, T ]; L2

loc(R
3)) pro-

vided that they have strong convergence in the region away from the symmetry axis.
This means that if there would appear singularity or energy lost in the process of limit for
the approximate solutions, it then must happen in the region away from the symmetry
axis. It is noted that there is no restriction on the signs of initial vorticity in [12]. The
convergence properties of the viscous approximations were studied in [11]. When the
initial vorticity has stronger assumptions (comparing with the vortex-sheets initial data),
the global existence of weak solutions was proved in [1] and the references therein.

For the two-dimensional steady Euler equations, DiPerna and Majda proved that,
even though there exist approximate solutions with energy concentration, the weak limit
of any approximate solutions is a weak solution, by using the shielding method (see
[4]). That is, concentration-cancellation occurs in this case. The reader may refer to [6]
for a more concise proof. However, for the three-dimensional steady equations, even for
the axisymmetric case, it is not known whether or not there exist approximate solutions
with energy concentration for the three-dimensional steady Euler equations. Recently,
the authors studied some convergence properties of the approximate solutions of the
3D steady Euler equations (1.1) and the 3D steady axisymmetric Euler equations with-
out swirls (1.2)–(1.3) (see [13]). In particular, in [13] the authors obtained a criterion
for strong convergence for approximate solutions by establishing a relation between
the energy distributions of the weak limit and the defect measure of the approximate
solutions.
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On the other hand, the existence of solutions of the 3D steady axisymmetric Euler
equations without swirls (1.2)–(1.3) has been widely studied (see [8,9,19,20]). In par-
ticular, the vortex rings, which are steady, axisymmetric solutions without swirls of
Eqs. (1.1), propagating with constant speed in the z-direction, has been extensively and
systematically investigated, based mainly on the variational approaches (see [8,9,19]
and references therein).

In this paper, we are mainly concerned with the strong convergence of C1-smooth
approximations and the existence of C1-smooth exact solutions with finite energy and
uniform constant states at the far field of the 3D steady axisymmetric Euler equations.
We will prove that any C1-approximations {uε, pε} to the 3D steady axisymmetric
Euler equations will converge strongly to 0 in L2

loc(R
3) under appropriate assumptions

on approximate solutions and error terms (see Theorem 5.2). The main assumptions
on approximate solutions are that the energy is finite and |uε| → 0 and pε → p0 as
r2 + z2 → ∞, where p0 is a constant. These kinds of approximate solutions correspond
to 3D steady vortex-sheets. At the end of the paper, we obtain a Liouville type theorem
that there will be no non-trivial C1 exact solutions with finite energy to the 3D steady axi-
symmetric Euler equations, which satisfy that |u| → 0 and p → p0 as r2 + z2 → ∞. The
Liouville theorem can be seen as a direct result of one of our main results (Theorem 5.2)
and can also be proved directly. Two proofs of the Liouville theorem are presented at
the end of the paper. It should be noted that contrary to the 3D steady axisymmetric
Euler equations, there exist non-trivial smooth exact solutions with finite energy and
there exist smooth approximate solutions with finite energy and energy concentrations
in the limit process to the 2D steady Euler equations (see [4]). Also, using the spherical
vortex ring given in [10], an example of approximate solutions of the 3D steady axi-
symmetric Euler equations which converge strongly to 0 in L2

loc(R
3) was constructed

in [13].
Our approach is mainly based on a deliberate construction of test functions and mak-

ing full use of structures of the axisymmetric Euler equations. Let φr (r, z), φz(r, z) ∈
C∞

0 (H̄) be two usual test functions which have compact support in [0,∞)× (−∞,∞)

and are divergence-free, that is, ∂r (rφr ) + ∂z(rφz) = 0 or r∂rφr + φr + r∂zφz = 0. Here
H = {(r, z)|(r, z) ∈ (0,∞)× (−∞,∞)} represents the (r, z)−plane. Then, it follows
from (1.2)–(1.3) that∫

H

(ur )
2

r
φr rdrdz =

∫
H

[(ur )
2 − (uz)

2]∂zφzrdrdz

+
∫

H
ur uz(∂rφz + ∂zφr )rdrdz. (1.4)

In particular, to study the convergence of the approximate solutions, (1.4) should be
written as ∫

H

(uεr )
2

r
φr rdrdz =

∫
H

[(uεr )2 − (uεz)
2]∂zφzrdrdz

+
∫

H
uεr uεz(∂rφz + ∂zφr )rdrdz + h(ε), (1.5)

where h(ε) is some error term satisfying h(ε) → 0 as ε → 0. In the limit ε → 0
(or its subsequence), there will appear more terms in the limit equation of (1.5), which
corresponds to the defect measures of uε. Denote by u the weak limit of uε in L2(R3).

A key point of this paper is to prove that
∫
{r≥r0>0}

u2
r

r2 rdrdz = 0 for any r0 > 0, where
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{r ≥ r0 > 0} = {(r, z)|(r, z) ∈ (0,∞) × (−∞,∞), r ≥ r0 > 0} is a domain away
from the symmetry axis in H . This can be obtained formally if we could choose the test
functions as φr = 1 and φz = 1 in (1.4) or in the limit equation of (1.5). However, the
test functions φr = 1 and φz = 1 do not satisfy the divergence-free condition and it is
illegitimate to take the limit in (1.5) with φr = 1 and φz = 1. Thus, we should construct
a new class of test functions which are divergence-free, decay at the far field and approx-
imate the test functions φr = 1, φz = 1 in the appropriate sense such that the terms on
the right-hand side of (1.4) or the limit of (1.5) will tend to zero in the approximation
of the test functions. However, it is noted that the test functions denoted by ϕr , ϕz we
construct in this paper do not belong to C∞

0 (H̄) which is required in the usual way.
Especially, the test functions ϕr will have singularity o( 1

r ) near the symmetry axis. Due
to this singularity, new difficulties will arise in our subsequent and rigorous analysis.
First, in integrations by parts, there will appear the boundary term of the pressure, which
is

∫
H p(0, z)∂zϕzrdrdz. Fortunately, by applying the special test functions we prove

that the sign of this term is unchanged. Second, we need to investigate the properties
of ur near the symmetry axis more carefully. Precisely, we will obtain the estimate∫

R3
1

1+x2
3
( ur

r )
2dx ≤ C with C an absolute constant. In the unsteady case, this estimate is

naturally satisfied for the vortex-sheets initial data (see [1,11]). In steady case, however,
it seems to be a nontrivial estimate. It is noted that other test functions such as those
used in [12] and [13] (see also Sect. 2 of this paper) can provide us with some balance
relations between the energy distributions of the velocity and the corresponding defect
measures (see Theorems 2.1, 2.3 in Sect. 2) but can not yield the desired result of the
vanishing of the right-hand side of (1.4).

The Liouville theorem, which says that there are no non-trivial C1-smooth exact
solutions with finite energy and uniform constant states at far fields of the 3D steady
axisymmetric Euler equations, is proved at the end of the paper. It can be seen as a
direct consequence of our results on the strong convergence of approximate solutions.
And it can also be proved in a direct way, avoiding the technical construction of the test
functions. It should be remarked that this direct method can not be applied to investigate
the strong convergence of approximate solutions since one should take the limit first in
the finite Radon space on both sides of (1.5) in order to study this problem. And in the
process of the limit, we should use suitable test functions.

The rest of this paper is organized as follows. In Sect. 2, we review a criterion for the
strong convergence of approximate solutions for the 3D steady Euler equations, which
has been obtained in [13]. In Sect. 3, we construct some special test functions which will
be needed later. It should be noted that these test functions do not satisfy the conditions
required in the usual definition of the weak solutions but they possess some special
features which are crucial in the analysis of the strong convergence of the approximate
solutions. In Sect. 4, we prove the strong convergence of uε1 and uε2 in the region away
from the symmetry axis. In Sect. 5, we first prove the strong convergence of uε1 and uε2
in L2

loc(R
3), then applying the criterion established in [13] for the strong convergence

of approximate solutions (see also Sect. 2), we obtain the strong convergence of uε in
L2

loc(R
3). Some appropriate conditions are imposed on the approximate solutions and

error terms. In the last, we prove the Liouville theorem which says that there are no
non-trivial C1-smooth exact solutions with finite energy and uniform constant states at
the far field to the 3D steady axisymmetric Euler equations. It can be seen as a direct
result of the strong convergence of approximate solutions and it can also be proved in a
direct way, avoiding the technical construction of the test functions.
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2. A Criterion on the Strong Convergence

In this section, we give a brief review of the results in [13] on the strong convergence of
approximate solutions to 3D steady Euler equations.

Similar to the unsteady case, approximate solutions for the 3D steady Euler
equations (1.1) can be defined in the usual way.

Definition 2.1 (General Case). Smooth vector-valued functions {uε} (ε ∈ J a parame-
ter) are called approximate solutions of (1.1) if the following conditions are satisfied:

(i) uε(x) is uniformly bounded in L2(R3) and divergence free (div uε = 0);
(ii) For any �(x) = (�1,�2,�3) ∈ C∞

0 (R
3) satisfying div� = 0, it holds that∫

R3
uε · (uε · ∇)�dx = h(ε) (2.1)

with h(ε) → 0 as ε → 0.

In particular, when the approximate solutions are axisymmetric, one can obtain
approximate solutions for the 3D steady axisymmetric Euler equations (1.2)–(1.3).

Definition 2.2 (Axisymmetric Case). Smooth vector-valued functions {uε} (ε ∈ J a
parameter) are called approximate solutions of the equations (1.2)–(1.3) if the follow-
ing conditions are satisfied:

(i) uε(x) is uniformly bounded in L2(R3) and divergence free (div uε = 0);
(ii) uε = uεr er + uεzez;

(iii) ωε = ∇ × uε = ωεθeθ ;
(iv) For φr (r, z), φz(r, z) ∈ C∞

0 (H̄), satisfying

∂r (rφr ) + ∂z(rφz) = 0, (2.2)

one has ∫
H

[(uεr )2∂rφr + (uεz)
2∂zφz]rdrdz

= −
∫

H
uεr uεz(∂rφz + ∂zφr )rdrdz + h(ε) (2.3)

with h(ε) → 0 as ε → 0. Here H = {(r, z)|(r, z) ∈ (0,∞) × (−∞,∞)} represents
the (r, z)−plane.

Formally, multiplying rφr and rφz on both sides of (1.2)1 and (1.2)2 respectively,
integrating the resulting equations on (0,∞) × (−∞,∞) with respect to r and z and
summing over them, one obtains (2.3) with h(ε) = 0.

It should be noted that the assumption that the approximate solutions uε in Definitions
1.1–1.2 are smooth is only made for convenience and can be dispensed with.

For a sequence of approximate solutions uε = (uε1, uε2, uε3) as in Definition 2.2,
which is expressed by uε = (uεr , 0, uεz) in the cylindrical coordinates systems, there
exists a subsequence of uε, still denoted by itself, converging weakly in L2(R3) and in
L2(H ; rdrdz). Precisely, as ε → 0+, one has

uε1 ⇀ u1, uε2 ⇀ u2, uε3 ⇀ u3 (2.4)
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weakly in L2(R3), and, in the cylindrical coordinates,

uεr ⇀ ur , uεz ⇀ uz (2.5)

weakly in L2(H ; rdrdz).
In what follows, a subsequence of approximate solutions will always be denoted by

itself for convenience unless stated otherwise.
Since (uε(x))2 are uniformly bounded in L1(R3), there exists a subsequence of

(uε(x))2 which converge weakly to a Radon measure. More precisely, as ε → 0+,

(uε1)
2 ⇀ u2

1 + µ1, (uε2)
2 ⇀ u2

2 + µ2, (uε3)
2 ⇀ u2

3 + µ3 (2.6)

weakly in M(R3)which is the space of finite Radon measures. Hereµi ≥ 0(i = 1, 2, 3)
is the defect measure of (uεi )

2(i = 1, 2, 3) respectively. The total variation of µi (i =
1, 2, 3), denoted by |µi |(i = 1, 2, 3), is finite.

A criterion on strong convergence of approximate solutions to the 3D steady axisym-
metric Euler equations is stated as (see [13])

Theorem 2.1. For any approximate solutions {uε} defined as in Definition 2.2, there
exists a subsequence of the approximate solutions satisfying (2.4)–(2.6). Moreover, it
holds that ∫

R3
u2

3dx − 1

2

∫
R3
(u2

1 + u2
2)dx + |µ3| − 1

2
(|µ1| + |µ2|) = 0. (2.7)

Consequently, if uε → u strongly in L2
loc(R

3), then∫
R3

u2
3dx − 1

2

∫
R3
(u2

1 + u2
2)dx = 0. (2.8)

Proof. We give a sketch of proof here and refer to [13] for more details. It suffices to
prove (2.7).

We choose the test functions in (2.3) as

φr = 1

2
rχ+(

r

η
)[χ( z − z0

η
) +

z − z0

η
χ ′( z − z0

η
)],

φz = −[χ+(
r

η
) +

r

2η
χ+

′( r

η
)](z − z0)χ(

z − z0

η
)

(2.9)

for any η > 0 and any fixed z0 ∈ R, where χ(s) and χ+(s) are the same as (3.20) and
(3.21) respectively. Then direct calculations lead to

φr

r
= 1

2
χ+(

r

η
)[χ( z − z0

η
) +

z − z0

η
χ ′( z − z0

η
)],

∂rφr = 1

2
(χ+(

r

η
) +

r

η
χ ′

+(
r

η
))[χ( z − z0

η
) +

z − z0

η
χ ′( z − z0

η
)],

∂zφz = −[χ+(
r

η
) +

r

2η
χ+

′( r

η
)][χ( z − z0

η
) +

z − z0

η
χ ′( z − z0

η
)], (2.10)

∂zφr = 1

2
rχ+(

r

η
)[2

η
χ ′( z − z0

η
) +

z − z0

η2 χ ′′( z − z0

η
)],

∂rφz = −[ 3

2η
χ ′

+(
r

η
) +

r

2η2χ+
′′( r

η
)](z − z0)χ(

z − z0

η
).
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Letting ε → 0+ in (2.3), one can obtain

1

2π
{
∫

R3
(u2

1 + u2
2)∂rφr dx +

∫
R3

u2
3∂zφzdx

+
∫

R3
∂rφr d(µ1 + µ2) +

∫
R3
∂zφzdµ3}

≤
∫

H
(u2

r + u2
z )(|∂zφr | + |∂rφz |)rdrdz

+
∫

H
(|∂zφr | + |∂rφz|)d(µ1 + µ2 + µ3). (2.11)

Substituting (2.10) into (2.11), and then letting η → ∞ on both sides of (2.11), one has∫
R3

u2
3dx − 1

2

∫
R3
(u2

1 + u2
2)dx + |µ3| − 1

2
(|µ1| + |µ2|) = 0.

Equation (2.7) thus follows. The proof of the theorem is completed. 	

If we choose the test functions in (2.1) as

�1 = α1x1χ+(
r

η
)[χ( x3

η
) +

x3

η
χ ′( x3

η
)],

�2 = α2x2χ+(
r

η
)[χ( x3

η
) +

x3

η
χ ′( x3

η
)], (2.12)

�3 = x3χ(
x3

η
)[α3χ+(

r

η
)− α1x2

1 + α2x2
2

ηr
χ ′

+(
r

η
)],

where αi ∈ R(i = 1, 2, 3) satisfying
∑3

i=1 αi = 0, and χ(s) and χ+(s) are defined as
in (3.20) and (3.21) respectively, then a similar approach gives

Theorem 2.2. For any approximate solutions {uε} defined as in Definition 2.1, there
exists a subsequence of the approximate solutions satisfying (2.4) and (2.6). Moreover,
we have

3∑
i=1

αi (Ei + |µi |) = 0, (2.13)

where, for i = 1, 2, or 3, Ei = ∫
R3 u2

i dx is the energy of the ith component of the limit,

µi is same as in (2.6), and αi is a real number satisfying
∑3

i=1 αi = 0. Consequently,
if uε → u strongly in L2

loc(R
3), then

E1 = E2 = E3. (2.14)

Theorem 2.3. Suppose that a vector function u = (u1, u2, u3) is a weak solution of
(1.1) in the sense that ∫

R3
u · (u · ∇)�dx = 0 (2.15)
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for any � = �(x) ∈ C∞
0 (R

3) satisfying div� = 0. Then

E1 = E2 = E3, (2.16)

where Ei (i = 1, 2, 3) are the same as in Theorem 2.2. Therefore, suppose that uε are
exact solutions of (1.1) in the sense that (2.1) holds with h(ε) = 0. Then,

Eε1 = Eε2 = Eε3, (2.17)

where Eεi = ∫
R3(uεi )

2dx(i = 1, 2, 3).

The detail of the proofs of Theorem 2.2 and Theorem 2.3 is referred to [13] and
omitted here. It should be remarked that Theorem 2.2 and Theorem 2.3 hold for any
n-dimensional (n ≥ 2) steady Euler equations.

3. A Special Class of Test Functions and Estimates

Suppose that the approximate solutions uε, pε ∈ C1(R3) satisfy{
uεr∂r uεr + uεz∂zuεr + ∂r pε = hεr (r, z),

uεr∂r uεz + uεz∂zuεz + ∂z pε = hεz(r, z),
(3.18)

and

∂r (ruεr ) + ∂z(ruεz) = 0, (3.19)

where hεr (r, z) and hεz(r, z) are some error terms.
To study the structures and properties of approximate solutions satisfying (3.18) and

(3.19), we need to construct a special class of test functions.
Let χ = χ(s) be a nonnegative smooth function satisfying{

χ(s) = 1, |s| ≤ 1,

χ(s) = 0, |s| > 2.
(3.20)

Denote by χ+(s) = χ(s)|s≥0 the restriction of χ(s) on {s ≥ 0}. Then{
χ+(s) = 1, 0 ≤ s ≤ 1,

χ(s) = 0, s > 2.
(3.21)

For any η > 1, we define

ψ(r, z) = zχ+(
r

η
) fη(z), (r, z) ∈ H,

with

fη(z) =
{

1, |z| ≤ η,

a1η
α1 |z|−α1 + a2η

α2 |z|−α2 + a3η
α3 |z|−α3, |z| ≥ η.

(3.22)

Here 1 ≤ α1 < α2 < α3 and a1, a2, a3 are constants to be determined such that fη(z) is
a C2−smooth function satisfying

fη(z) + z f ′
η(z) ≥ 0, z ∈ R, (3.23)

and

|z|| f ′
η(z)| + z2| f ′′

η (z)| ≤ C, z ∈ R (3.24)
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with C an absolute constant. To be more precise, we consider the case z ≥ 0 and the
case z ≤ 0 can be treated similarly. Note that when z ≥ η > 1 we have

fη(z) = a1η
α1 z−α1 + a2η

α2 z−α2 + a3η
α3 z−α3 ,

f ′
η(z) = −α1a1η

α1 z−α1−1 − α2a2η
α2 z−α2−1 − α3a3η

α3 z−α3−1,

f ′′
η (z) = α1(α1 + 1)a1η

α1 z−α1−2 + α2(α2 + 1)a2η
α2 z−α2−2

+α3(α3 + 1)a3η
α3 z−α3−2.

To guarantee that fη(z) ∈ C2(R), one requires that⎧⎪⎨
⎪⎩

a1 + a2 + a3 = 1,

α1a1 + α2a2 + α3a3 = 0,

α1(α1 + 1)a1 + α2(α2 + 1)a2 + α3(α3 + 1)a3 = 0.

(3.25)

Solving (3.25), one has⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1 = α2α3(α3−α2)
α2α3(α3−α2)+α1α3(α1−α3)+α1α2(α2−α1)

,

a2 = α1α3(α1−α3)
α2α3(α3−α2)+α1α3(α1−α3)+α1α2(α2−α1)

,

a3 = α1α2(α2−α1)
α2α3(α3−α2)+α1α3(α1−α3)+α1α2(α2−α1)

.

(3.26)

We note that (3.23) is clearly satisfied when z ≤ η. To guarantee that (3.23) is sat-
isfied for all z ∈ R, we choose some particular 1 ≤ α1 < α2 < α3, for example,
α1 = 1, α2 = 2, α3 = 10. Then for any z = aη with a ≥ 1, direct calculations show
that

fη(z) + z f ′
η(z)

= a1η
α1 z−α1(1 − α1) + a2η

α2 z−α2(1 − α2) + a3η
α3 z−α3(1 − α3)

= α2α3(α3 − α2)(1 − α1)a−α1 + α1α3(α1 − α3)(1 − α2)a−α2

α2α3(α3 − α2) + α1α3(α1 − α3) + α1α2(α2 − α1)

+
α1α2(α2 − α1)(1 − α3)a−α3

α2α3(α3 − α2) + α1α3(α1 − α3) + α1α2(α2 − α1)
,

and

α2α3(α3 − α2) + α1α3(α1 − α3) + α1α2(α2 − α1) = 72,

α2α3(α3 − α2)(1 − α1)a
−α1 = 0,

α1α3(α1 − α3)(1 − α2)a
−α2 = 90a−2,

α1α2(α2 − α1)(1 − α3)a
−α3 = −18a−10.

Therefore

fη(z) + z f ′
η(z) = 5a−2 − a−10

4
> 0

for all z = aη with a ≥ 1 and (3.23) is satisfied for all z ∈ R. Moreover, (3.24) is clearly
satisfied.
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Now we choose the test functions as follows:

rϕz = −∂rψ = − z

η
χ ′

+(
r

η
) fη(z), (3.27)

rϕr = ∂zψ = χ+(
r

η
) fη(z) + zχ+(

r

η
) f ′
η(z). (3.28)

In view of (3.23), one has rϕr ≥ 0. Note that the test functions defined in (3.27) and
(3.28) do not satisfy the conditions required in Definition 2.2. Especially, the test func-
tions ϕr has singularity o( 1

r ) near the symmetry axis. But for these test functions, we
have

Theorem 3.1. Suppose that the approximate solutions uε, pε ∈ C1(R3) satisfy (3.18)–
(3.19) and the following conditions:

‖uε‖L2(R3) ≤ C, (3.29)∫
R3

1

1 + x2
3

(
uεr
r
)2dx ≤ C, (3.30)

|uε| → 0, pε → p0 as r2 + z2 → ∞, (3.31)

where C(> 0) and p0 are some absolute constants. Suppose further that∫
H
(|hεz | +

|hεr |
r
)rdrdz ≤ C or

∫
H
(
|hεz |

r
+

|hεr |
r
)rdrdz ≤ C, (3.32)∫ z

−∞
hεz(0, z)dz ≤ 0 (3.33)

for all z ∈ R. Then for the test functions defined as in (3.27)–(3.28), it holds that∫
H
(uεr )

2ϕr drdz

≤
∫

H
|[(uεr )2 − (uεz)

2][1

η
χ ′

+(
r

η
) fη(z) +

z

η
χ ′

+(
r

η
) f ′
η(z)]|drdz

+
∫

H
|uεr uεz [−ϕz − z

η2χ
′′
+ (

r

η
) fη(z)]|drdz

+
∫

H
|uεr uεz [2χ+(

r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]|drdz + h(ε), (3.34)

where h(ε) = ∫
H |[hεr (r, z)ϕr + hεz(r, z)ϕz]|rdrdz.

Proof. Without loss of generality, we assume that

pε → 0 as r2 + z2 → ∞. (3.35)

Otherwise, one may replace pε by p̃ε = pε − p0 in (3.18).
Let p̄ε = pε − pε(0, z). Then{

uεr∂r uεr + uεz∂zuεr + ∂r p̄ε = hεr (r, z),

uεr∂r uεz + uεz∂zuεz + ∂z p̄ε + ∂z pε(0, z) = hεz(r, z).
(3.36)
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For the test functions rϕr and rϕz defined in (3.27) and (3.28), multiplying rϕr and rϕz
on both sides of (3.36)1 and (3.36)2 respectively and integrating on H , we have∫

H
[uεr∂r uεr + uεz∂zuεr + ∂r p̄ε]ϕr rdrdz =

∫
H

hεr (r, z)ϕr rdrdz, (3.37)∫
H

[uεr∂r uεz + uεz∂zuεz + ∂z p̄ε + ∂z pε(0, z)]ϕzrdrdz =
∫

H
hεz(r, z)ϕzrdrdz. (3.38)

Since uε ∈ C1(R3) and uε = uεr er + uεzez , so uεr |r=0 = 0. Formally, it follows from
(3.37) and (3.38) through integrating by parts that∫

H
[(uεr )2∂rϕr + (uεz)

2∂zϕz]rdrdz +
∫

H
pε(0, z)∂zϕzrdrdz

= −
∫

H
uεr uεz(∂rϕz + ∂zϕr )rdrdz + h̄(ε), (3.39)

where h̄(ε) = ∫
H [hεr (r, z)ϕr + hεz(r, z)ϕz]rdrdz.

It follows from (3.27) that

r∂rϕz = −ϕz − z

η2χ
′′
+ (

r

η
) fη(z), (3.40)

with

ϕz =

⎧⎪⎨
⎪⎩

0, 0 ≤ r ≤ η,

− z
rηχ

′
+(

r
η
) fη(z), η ≤ r ≤ 2η,

0, r ≥ 2η,

(3.41)

and

r∂zϕz = −1

η
χ ′

+(
r

η
) fη(z)− z

η
χ ′

+(
r

η
) f ′
η(z). (3.42)

While (3.28) yields

r∂rϕr = −ϕr +
1

η
χ ′

+(
r

η
) fη(z) +

z

η
χ ′

+(
r

η
) f ′
η(z), (3.43)

and

r∂zϕr = 2χ+(
r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z). (3.44)

Substitute (3.40)–(3.44) into (3.39) to obtain∫
H
(uεr )

2ϕr drdz =
∫

H
pε(0, z)∂zϕzrdrdz

+
∫

H
[(uεr )2 − (uεz)

2][1

η
χ ′

+(
r

η
) fη(z) +

z

η
χ ′

+(
r

η
) f ′
η(z)]drdz

+
∫

H
uεr uεz [−ϕz − z

η2χ
′′
+ (

r

η
) fη(z)]drdz

+
∫

H
uεr uεz [2χ+(

r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]drdz + h̄(ε). (3.45)
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In view of (3.36)2, one has

∂z pε(0, z) = −uεz(0, z)∂zuεz(0, z) + hεz(0, z). (3.46)

Thus

pε(0, z) = −1

2
(uεz(0, z))2 +

∫ z

−∞
hεz(0, z)dz ≤ 0, (3.47)

where the assumptions (3.31) and (3.33) have been used.
Thanks to (3.23), (3.42), we have

r∂zϕz = −1

η
χ ′

+(
r

η
) fη(z)− z

η
χ ′

+(
r

η
) f ′
η(z) ≥ 0, (3.48)

since χ ′
+(s) ≤ 0 for s ≥ 0. Thus, combining (3.47), (3.48) with (3.45) shows∫

H
(uεr )

2ϕr drdz

≤
∫

H
|[(uεr )2 − (uεz)

2][1

η
χ ′

+(
r

η
) fη(z) +

z

η
χ ′

+(
r

η
) f ′
η(z)]|drdz

+
∫

H
|uεr uεz [−ϕz − z

η2χ
′′
+ (

r

η
) fη(z)]|drdz

+
∫

H
|uεr uεz [2χ+(

r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]|drdz + h(ε)

≡ I, (3.49)

where h(ε) = ∫
H |[hεr (r, z)ϕr + hεz(r, z)ϕz]|rdrdz.

Each term on the right-hand side of (3.49) is well-defined. In fact, there exists a
constant C = C(η) such that∫

H
|[(uεr )2 − (uεz)

2][1

η
χ ′

+(
r

η
) fη(z) +

z

η
χ ′

+(
r

η
) f ′
η(z)]|drdz ≤ C(η)‖uε‖2

L2(R3)
;∫

H
|uεr uεz [−ϕz − z

η2χ
′′
+ (

r

η
) fη(z)]|drdz ≤ C(η)‖uε‖2

L2(R3)
.

Moreover, by (3.24), one has

|(1 + z2)
1
2 [2χ+(

r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]| ≤ C, (3.50)

and hence

|
∫

H
uεr uεz [2χ+(

r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]drdz|

≤ C(
∫

H

1

1 + z2 (
uεr
r
)2rdrdz)

1
2 (

∫
H
(uεz)

2rdrdz)
1
2 .

Due to (3.32), one has h(ε) ≤ C . Consequently, using (3.29), (3.30), one has

|I | ≤ C, (3.51)

with C an absolute constant.
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To obtain (3.49) rigorously, we should prove that the left-hand side of (3.49) is
well-defined. To this end, we denote HM = (0,∞)× [−M,M] for any M > 0. Multi-
plying rϕr and rϕz on both sides of (3.36)1 and (3.36)2 respectively and integrating on
HM with respect to (r, z), we have∫

HM

[uεr∂r uεr + uεz∂zuεr + ∂r p̄ε]ϕr rdrdz =
∫

HM

hεr (r, z)ϕr rdrdz, (3.52)∫
HM

[uεr∂r uεz + uεz∂zuεz + ∂z p̄ε + ∂z pε(0, z)]ϕzrdrdz

=
∫

HM

hεz(r, z)ϕzrdrdz. (3.53)

Integrating by parts in (3.52) and (3.53) and then adding the resulting equations show
that ∫

HM

(uεr )
2ϕr drdz =

∫
HM

pε(0, z)∂zϕzrdrdz

+
∫

HM

[(uεr )2 − (uεz)
2][1

η
χ ′

+(
r

η
) fη(z) +

z

η
χ ′

+(
r

η
) f ′
η(z)]drdz

+
∫

HM

uεr uεz [−ϕz − z

η2χ
′′
+ (

r

η
) fη(z)]drdz

+
∫

HM

uεr uεz [2χ+(
r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]drdz

+ hM (ε) + SM
b , (3.54)

where hM (ε) = ∫
HM

[hεr (r, z)ϕr + hεz(r, z)ϕz]rdrdz and

SM
b = −

∫ ∞

0
[uεzuεr∂zϕr + (uεz)

2∂zϕz]|M
z=−Mrdr

−
∫ ∞

0
[( p̄ε + pε(0, z))∂zϕz]|M

z=−Mrdr

which is the boundary term. It follows from (3.47) and (3.48) that∫
HM

(uεr )
2ϕr drdz

≤
∫

HM

[(uεr )2 − (uεz)
2][1

η
χ ′

+(
r

η
) fη(z) +

z

η
χ ′

+(
r

η
) f ′
η(z)]drdz

+
∫

HM

uεr uεz [−ϕz − z

η2χ
′′
+ (

r

η
) fη(z)]drdz

+
∫

HM

uεr uεz [2χ+(
r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]drdz

+ hM (ε) + SM
b . (3.55)

Since

|SM
b | ≤ C max(|uε|2 + |pε|)|[

∫ ∞

0
(∂zϕr + ∂zϕz)rdr ]|M

z=−M |,
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it is clear to deduce that

|SM
b | → 0

for any fixed ε > 0 and η > 1 as M → ∞. Combining this with (3.51) and noting
that |hM (ε)| ≤ C by (3.33), we obtain that the term on the left-hand side of (3.55) is
uniformly bounded with respect to M . Therefore, taking the limit M → ∞ on both
sides of (3.55), we obtain (3.49). The proof of the theorem is finished. 	


4. Strong Convergence in Region Away From the Symmetry Axis

For any r0 > 0, we define �r0 = {x |x ∈ R3, x2
1 + x2

2 > r2
0 }. Then we have

Theorem 4.1. Suppose that the assumptions of Theorem 3.1 hold and h(ε) → 0 as
ε → 0, where h(ε) is same as in (3.34). Then

uε1 → 0, uε2 → 0 (4.1)

strongly in L2
loc(�r0) for any r0 > 0 as ε → 0.

Proof. Due to (3.23), for any r > 0, we have

ϕr = 1

r
χ+(

r

η
) fη(z) +

z

r
χ+(

r

η
) f ′
η(z) ≥ 0. (4.2)

For any r = rn = 1
n > 0(n = 1, 2, · · · ), it follows from (4.2) and (3.34) that

|
∫

{r≥rn}
(uεr )

2 1

r2χ+(
r

η
) fη(z)rdrdz|

≤ 1

r2
n

∫
H

|(uεr )2zχ+(
r

η
) f ′
η(z)|rdrdz

+
∫

H
|[(uεr )2 − (uεz)

2][ 1

rη
χ ′

+(
r

η
) fη(z) +

z

rη
χ ′

+(
r

η
) f ′
η(z)]|rdrdz

+
1

2

∫
H

|[(uεr )2 + (uεz)
2][ϕz

r
+

z

rη2χ
′′
+ (

r

η
) fη(z)]|rdrdz

+
∫

H
|uεr uεz [2χ+(

r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]|drdz + h(ε)

≡ I1 + I2 + I3 + I4 + h(ε). (4.3)

Note that

|I4| ≤ 1

2

∫
H

1

1 + z2 (
uεr
r
)2(1 + z2)

1
2 |[2χ+(

r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]|rdrdz

+
1

2

∫
H
(uεz)

2(1 + z2)
1
2 |[2χ+(

r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]|rdrdz

= 1

2

∫
{|z|≥η}

1

1 + z2 (
uεr
r
)2(1 + z2)

1
2 |[2χ+(

r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]|rdrdz

+
1

2

∫
{|z|≥η}

(uεz)
2(1 + z2)

1
2 |[2χ+(

r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]|rdrdz.
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Equation (4.3) becomes

|
∫

{r≥rn}
(uεr )

2 1

r2χ+(
r

η
) fη(z)rdrdz|

≤ 1

r2
n

∫
H

|(uεr )2zχ+(
r

η
) f ′
η(z)|rdrdz

+
∫

H
|[(uεr )2 − (uεz)

2][ 1

rη
χ ′

+(
r

η
) fη(z) +

z

rη
χ ′

+(
r

η
) f ′
η(z)]|rdrdz

+
1

2

∫
H

|[(uεr )2 + (uεz)
2][ϕz

r
+

z

rη2χ
′′
+ (

r

η
) fη(z)]|rdrdz

+
1

2

∫
{|z|≥η}

1

1 + z2 (
uεr
r
)2(1 + z2)

1
2 |[2χ+(

r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]|rdrdz

+
1

2

∫
{|z|≥η}

(uεz)
2(1 + z2)

1
2 |[2χ+(

r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]|rdrdz + h(ε)

≡ I1 + I2 + I3 + I5 + I6 + h(ε). (4.4)

Applying a diagonal procedure, taking the limit ε → 0, one can get

∫
{r≥rn}

(uεr )
2 1

r2χ+(
r

η
) fη(z)rdrdz

= 1

2π

∫
R3\{r≤rn}

[(uε1)2 + (uε2)
2] 1

r2χ+(
r

η
) fη(z)dx → I0

≡ 1

2π

∫
R3\{r≤rn}

[(u1)
2 + (u2)

2] 1

r2χ+(
r

η
) fη(z)dx

+
1

2π

∫
R3\{r≤rn}

1

r2χ+(
r

η
) fη(z)d(µ1 + µ2) (4.5)

for any rn = 1
n > 0(n = 1, 2, · · · ) and η > 0. Then we obtain

I0 → 1

2π

∫
R3\{r≤rn}

[(u1)
2 + (u2)

2] 1

r2 dx +
1

2π

∫
R3\{r≤rn}

1

r2 d(µ1 + µ2) (4.6)

as η → ∞.
I1, I2 and I3 can be treated in a similar way (see also the proof of Theorem 2.1).

Taking the limit ε → 0 first for any η > 1 and then taking the limit η → ∞ in I1, I2
and I3, we can obtain

I1 + I2 + I3 → 0. (4.7)

Now we consider the convergence of I5 and I6. Due to (3.30), we have
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1

1 + z2 (
uεr
r
)2rdrdz ⇀ g + µw (4.8)

weakly in M as ε → 0, where g ∈ L1(H) and µw is a Radon measure. Note that for
any fixed η > 1,

|(1 + z2)
1
2 [2χ+(

r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]| = O(

ηα1

|z|α1
)

as |z| → ∞. Then, taking the limit ε → 0 in I5 shows that

I5 → Ĩ5 ≡ 1

2

∫
{|z|≥η−1}

|g(1 + z2)
1
2 [2χ+(

r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]|rdrdz

+
1

2

∫
{|z|≥η−1}

|(1 + z2)
1
2 [2χ+(

r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]|dµw (4.9)

for any η > 1. Furthermore, thanks to (3.24), one has

|(1 + z2)
1
2 [2χ+(

r

η
) f ′
η(z) + zχ+(

r

η
) f ′′
η (z)]| ≤ C

with C an absolute constant, which yields

Ĩ5 → 0 (4.10)

as η → ∞. Similarly, taking the limit ε → 0 first for any η > 1 and then taking the
limit η → ∞ in I6, we obtain

I6 → 0. (4.11)

Combining (4.5)–(4.7) and (4.9)–(4.11), taking the limit (up to a subsequence) ε → 0
first for any η > 1 and then taking the limit η → ∞ in (4.4) show

1

2π

∫
R3\{r≤rn}

[(u1)
2 + (u2)

2] 1

r2 dx +
1

2π

∫
R3\{r≤rn}

1

r2 d(µ1 + µ2) = 0 (4.12)

for any rn = 1
n (n = 1, 2, · · · ). Therefore, for any r0 > 0, in the region �r0 = {x |x ∈

R3, x2
1 + x2

2 > r2
0 },

u1 = u2 = 0, x ∈ �r0 ,

and

µ1(�r0) = µ2(�r0) = 0.

Consequently,

uε1 → 0, uε2 → 0 (4.13)

strongly in L2
loc(�r0) as ε → 0. The proof of the theorem is finished. 	
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5. Strong Convergence in R3

Theorem 5.1. Under the assumptions of Theorem 4.1, it holds that

uε → 0 (5.1)

strongly in L2
loc(R

3) as ε → 0.

Proof. For any X3 >> 1 large enough and r0 > 0, we have∫
{|x3|≤X3,r≥0}

(uεr )
2rdrdz

≤
∫

{|x3|≤X3,r>r0}
(uεr )

2rdrdz +
∫

{|x3|≤X3,0≤r≤r0}
(uεr )

2rdrdz

≤
∫

{|x3|≤X3,r>r0}
(uεr )

2rdrdz + (1 + X2
3)

∫
{|x3|≤X3,0≤r≤r0}

(uεr )
2

1 + x2
3

rdrdz

≤
∫

{|x3|≤X3,r>r0}
(uεr )

2rdrdz + r2
0 (1 + X2

3)

∫
H

1

1 + x2
3

(
uεr
r
)2rdrdz

≤
∫

{|x3|≤X3,r>r0}
(uεr )

2rdrdz + r2
0 (1 + X2

3)C, (5.2)

where (3.30) has been used. For any δ0 > 0 and X3 >> 1, we choose r0 > 0 small
enough such that r2

0 (1 + X2
3)C ≤ δ0. Using (4.13) and taking the limit ε → 0 in (5.2)

yield ∫
{|x3|≤X3,r≥0}

(ur )
2rdrdz +

∫
{|x3|≤X3,r>0}

dµr ≤ δ0. (5.3)

Since δ0 is arbitrary, (5.3) shows that ur = 0 and µr = 0. Consequently,

uε1 → 0, uε2 → 0 (5.4)

strongly in L2
loc(R

3) as ε → 0. This, together with (2.7), shows that

∫
R3

u2
3dx + |µ3| = 0,

which implies

u3 = µ3 = 0. (5.5)

Consequently, combining (5.4) with (5.5) shows that

uε → 0 (5.6)

strongly in L2
loc(R

3) as ε → 0. The proof of the theorem is finished. 	

Now we investigate the validity of the condition (3.30).
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Lemma 5.1. Suppose that the approximate solutions uε, pε ∈ C2(R3) satisfy (3.18) and
(3.19) with hεr , hεz some error terms satisfying ∂zhεr , ∂r hεz ∈ C(H). Moreover, suppose
that

‖uε‖L2(R3) ≤ C, (5.7)

|ωεθ | ≤ C(ε), (r, z) ∈ H̄ = [0,∞)× (0,∞), (5.8)∫
H

|∂zhεr − ∂r hεz
r

|rdrdz ≤ C, (5.9)

|uε| → 0, as r2 + z2 → ∞, (5.10)

where C is an absolute constant and C(ε) is a constant which may depend on ε. Then
(3.30) holds.

Proof. It follows from (3.18) and (3.19) that

uεr∂r (
ωεθ

r
) + uεz∂z(

ωεθ

r
) = ∂zhεr − ∂r hεz

r
. (5.11)

Set ρ(x3) = ∫ x3
−∞

1
1+τ 2 dτ . For any η > 0, we define ϕ(r, z) = χ+(

r
η
)ρ(z) with χ+ the

same as in (3.21).
In the following, we will multiply the test functions rϕ(r, z) on both sides of (5.11)

and make the integration on H with respect to r and z. Similar as in the proof of
Theorem 3.1, especially as the rigorous derivation of (3.49), the proof can be completed
rigorously by integrating on HM = (0,∞)× [−M,M] instead of H and we will omit
the details for conciseness.

Multiplying rϕ(r, z) on both sides of (5.11), integrating the resulting identity with
respect to (r, z) over (0,∞)× (−∞,∞), and using (3.19) and (5.8), we obtain∫

H
uεrω

ε
θ∂rϕdrdz +

∫
H

uεzω
ε
θ∂zϕdrdz = −

∫
H

∂zhεr − ∂r hεz
r

ϕrdrdz. (5.12)

That is ∫
H

uεzω
ε
θχ+(

r

η
)ρ′(z)drdz

= −
∫

H
uεrω

ε
θ

1

η
χ ′

+(
r

η
)ρ(z)drdz

−
∫

H

∂zhεr − ∂r hεz
r

χ+(
r

η
)ρ(z)rdrdz. (5.13)

Note that ∫
H

uεzω
ε
θχ+(

r

η
)ρ′(z)drdz =

∫
H
ρ′uεz(∂zuεr − ∂r uεz)χ+(

r

η
)drdz

= 1

2

∫ ∞

−∞
ρ′(uεz)2(0, z)dz +

1

2

∫
H
ρ′(uεz)2

1

η
χ ′

+(
r

η
)drdz

−
∫

H
(ρ′′uεzuεr + ρ′uεr∂zuεz)χ+(

r

η
)drdz. (5.14)
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Therefore, one has

∫
H

uεzω
ε
θχ+(

r

η
)ρ′(z)drdz

≥ 1

2

∫
H
ρ′(uεz)2

1

η
χ ′

+(
r

η
)drdz

−
∫

H
(ρ′′uεzuεr + ρ′uεr (−

uεr
r

− ∂r uεr ))χ+(
r

η
)drdz

=
∫

H
ρ′ (uεr )2

r
χ+(

r

η
)drdz −

∫
H
ρ′′uεzuεrχ+(

r

η
)drdz

−1

2

∫
H
ρ′(uεr )2

1

η
χ ′

+(
r

η
)drdz +

1

2

∫
H
ρ′(uεz)2

1

η
χ ′

+(
r

η
)drdz. (5.15)

It follows from (5.13) and (5.15) that

∫
H
ρ′ (uεr )2

r
χ+(

r

η
)drdz −

∫
H
ρ′′uεzuεrχ+(

r

η
)drdz

≤ 1

2

∫
H
ρ′(uεr )2

1

η
χ ′

+(
r

η
)drdz − 1

2

∫
H
ρ′(uεz)2

1

η
χ ′

+(
r

η
)drdz

−
∫

H
uεrω

ε
θ

1

η
χ ′

+(
r

η
)ρ(z)drdz −

∫
H

∂zhεr − ∂r hεz
r

χ+(
r

η
)ρ(z)rdrdz. (5.16)

For any N > 1, we choose η > N large enough such that

|
∫

H
ρ′′uεzuεrχ+(

r

η
)drdz|

≤ |
∫ N

−N

∫ N

0
ρ′′uεzuεr drdz| +

∫
H\(−N ,N )×(0,N )

|ρ′′uεzuεr |drdz

= |
∫ N

−N

∫ N

0
ρ′′uεzuεr drdz| + [

∫ −N

−∞

∫ N

0
+

∫ ∞

N

∫ N

0
+

∫ −N

−∞

∫ ∞

N

+
∫ ∞

N

∫ ∞

N
+

∫ N

−N

∫ ∞

N
]| 2z

(1 + z2)2
uεzuεr |drdz

≡ |
∫ N

−N

∫ N

0
ρ′′uεzuεr drdz| +

5∑
i=1

Ii . (5.17)
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The following estimates are direct:

I1 =
∫ −N

−∞

∫ N

0
| 2z

(1 + z2)2
uεzuεr |drdz ≤ C max |uε|2 1

N
;

I2 =
∫ ∞

N

∫ N

0
| 2z

(1 + z2)2
uεzuεr |drdz ≤ C max |uε|2 1

N
;

I3 =
∫ −N

−∞

∫ ∞

N
| 2z

(1 + z2)2
uεzuεr |drdz

≤ C
1

N 4

∫ −N

−∞

∫ ∞

N
|uεzuεr |rdrdz ≤ C

1

N 4 ‖uε‖2
L2(R3)

;

I4 =
∫ ∞

N

∫ ∞

N
| 2z

(1 + z2)2
uεzuεr |drdz ≤ C

1

N 4 ‖uε‖2
L2(R3)

;

I5 =
∫ N

−N

∫ ∞

N
| 2z

(1 + z2)2
uεzuεr |drdz ≤ C

1

N 4 ‖uε‖2
L2(R3)

.

Consequently, one has from (5.17) that

|
∫

H
ρ′′uεzuεrχ+(

r

η
)drdz|

≤ |
∫ N

−N

∫ N

0
ρ′′uεzuεr drdz| + C

1

N
(max |uε|2 + ‖uε‖2

L2(R3)
) (5.18)

for any N > 1 and η > N . Combining (5.16) with (5.18), one has

∫ N

−N

∫ N

0
ρ′ (uεr )2

r
drdz

≤ |
∫ N

−N

∫ N

0
ρ′′uεzuεr drdz| + C

1

N
(max |uε|2 + ‖uε‖2

L2(R3)
)

+C
∫

H
|∂zhεr − ∂r hεz

r
|rdrdz + |J |, (5.19)

where

J ≡ 1

2

∫
H
ρ′(uεr )2

1

η
χ ′

+(
r

η
)drdz − 1

2

∫
H
ρ′(uεz)2

1

η
χ ′

+(
r

η
)drdz

−
∫

H
uεrω

ε
θ

1

η
χ ′

+(
r

η
)ρ(z)drdz. (5.20)
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The last term on the right-hand side of (5.20) can be rewritten as∫
H

uεrω
ε
θ

1

η
χ ′

+(
r

η
)ρ(z)drdz

=
∫

H
uεr (∂zuεr − ∂r uεz)

1

η
χ ′

+(
r

η
)ρ(z)drdz

= −1

2

∫
H
(uεr )

2 1

η
χ ′

+(
r

η
)ρ′(z)drdz +

∫
H
∂r uεr uεz

1

η
χ ′

+(
r

η
)ρ(z)drdz

+
∫

H
uεr uεz

1

η2χ
′′
+ (

r

η
)ρ(z)drdz

= −1

2

∫
H
(uεr )

2 1

η
χ ′

+(
r

η
)ρ′(z)drdz −

∫
H
(
uεr
r

+ ∂zuεz)u
ε
z

1

η
χ ′

+(
r

η
)ρ(z)drdz

+
∫

H
uεr uεz

1

η2χ
′′
+ (

r

η
)ρ(z)drdz

= −1

2

∫
H
(uεr )

2 1

η
χ ′

+(
r

η
)ρ′(z)drdz −

∫
H

uεr
r

uεz
1

η
χ ′

+(
r

η
)ρ(z)drdz

+
1

2

∫
H
(uεz)

2 1

η
χ ′

+(
r

η
)ρ′(z)drdz +

∫
H

uεr uεz
1

η2χ
′′
+ (

r

η
)ρ(z)drdz. (5.21)

It follows from (5.20) and (5.21) that

|J | ≤ C
1

η2 ‖uε‖2
L2(R3)

→ 0, (5.22)

as η → ∞.
Taking the limit η → ∞ on both sides of (5.19) yields∫ N

−N

∫ N

0
ρ′ (uεr )2

r
drdz ≤ |

∫ N

−N

∫ N

0
ρ′′uεzuεr drdz|

+C
1

N
(max |uε|2 + ‖uε‖2

L2(R3)
) + C

∫
H

|∂zhεr − ∂r hεz
r

|rdrdz (5.23)

for any N > 1.
Since ρ′(x3) > 0 for all x3 ∈ R, it follows from (5.23) and (5.9) that∫ N

−N

∫ N

0
ρ′ (uεr )2

r
drdz ≤ (

∫ N

−N

∫ N

0
ρ′ (uεr )2

r
drdz)

1
2 (

∫ N

−N

∫ N

0
(uεz)

2 (ρ
′′)2

ρ′ rdrdz)
1
2

+C
1

N
(max |uε|2 + ‖uε‖2

L2(R3)
) + C,

where C is an absolute constant independent of ε and N . By the Cauchy-Schwartz
inequality, we obtain∫ N

−N

∫ N

0
ρ′ (uεr )2

r
drdz ≤ C

1

N
(max |uε|2 + ‖uε‖2

L2(R3)
) + C, (5.24)

where C is an absolute constant independent of ε and N . Letting N → ∞ on both sides
of (5.24) yields (3.30) and the proof of the theorem is finished. 	
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Lemma 5.2. Suppose that the approximate solutions uε, pε ∈ C1(R3) satisfy (3.18)
and (3.19) with some error terms hεr and hεz satisfying hεr , hεz ∈ C1(H) and hεz |r=0 = 0.
Suppose further that (5.7),(5.9) and (5.10) are satisfied and pε → p0 as r2 + z2 → ∞,
where p0 is a constant. Then (3.30) holds.

Proof. Without loss of generality, we assume that

pε → 0 as r2 + z2 → ∞.

For any η > 0, we let ϕ(r, z) = χ+(
r
η
)ρ(z) be the same as in the proof of Lemma 5.1.

Similar to the proof of Lemma 5.1, it is assumed that the following integrations make
sense and the rigorous proof by integration on HM instead of H will be omitted for
conciseness.

Multiplying ∂zϕ and ∂rϕ on both sides of (3.36)1 and (3.36)2 respectively and inte-
grating on H , one may get∫

H
[uεr∂r uεr + uεz∂zuεr + ∂r p̄ε]∂zϕdrdz =

∫
H

hεr (r, z)∂zϕdrdz, (5.25)∫
H

[uεr∂r uεz + uεz∂zuεz + ∂z p̄ε + ∂z pε(0, z)]∂rϕdrdz

=
∫

H
hεz(r, z)∂rϕdrdz, (5.26)

where p̄ε = pε(r, z)− pε(0, z).
Since ∫

H
[uεr∂r uεr + uεz∂zuεr ]∂zϕdrdz

=
∫

H
uεr∂zuεr∂rϕdrdz +

∫
H

uεz∂zuεr∂zϕdrdz, (5.27)

and ∫
H

[uεr∂r uεz + uεz∂zuεz ]∂rϕdrdz

=
∫

H
uεr∂r uεz∂rϕdrdz +

∫
H

uεz∂r uεz∂zϕdrdz

+
1

2

∫ ∞

−∞
(uεz)

2(0, z)∂zϕ(0, z)dz, (5.28)

subtracting (5.26) from (5.25) and then integrating by parts, with help of (5.27) and
(5.28), one has∫

H
uεrω

ε
θ∂rϕdrdz +

∫
H

uεzω
ε
θ∂zϕdrdz − 1

2

∫ ∞

−∞
(uεz)

2(0, z)ρ′(z)dz

+
∫

H
pε(0, z)∂r∂zϕdrdz = −

∫
H

∂zhεr − ∂r hεz
r

ϕrdrdz. (5.29)

Moreover, since χ ′
+(s) ≤ 0 (s ∈ R), ρ′ > 0 and pε(0, z) ≤ 0 due to (3.46), (3.47) and

the assumption that hεz(0, z) = 0, it holds that∫
H

pε(0, z)∂r∂zϕ =
∫

H
pε(0, z)

1

η
χ ′

+(
r

η
)ρ′drdz ≥ 0. (5.30)
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It follows from (5.29), (5.30) and (5.14) that

−
∫

H
(ρ′′uεzuεr + ρ′uεr∂zuεz)χ+(

r

η
)drdz

≤ −
∫

H
uεrω

ε
θ∂rϕdrdz − 1

2

∫
H
ρ′(uεz)2

1

η
χ ′

+(
r

η
)drdz −

∫
H

∂zhεr − ∂r hεz
r

ϕrdrdz.

(5.31)

Noting that the left-hand side of (5.31) is

−
∫

H
(ρ′′uεzuεr + ρ′uεr (−

uεr
r

− ∂r uεr ))χ+(
r

η
)drdz

=
∫

H
ρ′ (uεr )2

r
χ+(

r

η
)drdz −

∫
H
ρ′′uεzuεrχ+(

r

η
)drdz − 1

2

∫
H
ρ′(uεr )2

1

η
χ ′

+(
r

η
)drdz,

(5.32)

one has

∫
H
ρ′ (uεr )2

r
χ+(

r

η
)drdz −

∫
H
ρ′′uεzuεrχ+(

r

η
)drdz

≤ 1

2

∫
H
ρ′(uεr )2

1

η
χ ′

+(
r

η
)drdz − 1

2

∫
H
ρ′(uεz)2

1

η
χ ′

+(
r

η
)drdz

−
∫

H
uεrω

ε
θ

1

η
χ ′

+(
r

η
)ρ(z)drdz −

∫
H

∂zhεr − ∂r hεz
r

χ+(
r

η
)ρ(z)rdrdz

≡ J −
∫

H

∂zhεr − ∂r hεz
r

χ+(
r

η
)ρ(z)rdrdz, (5.33)

where J is same as in (5.20). Using similar arguments as (5.17)–(5.22), we obtain (5.23)
from (5.33) and hence (5.24) by the Cauchy-Schwartz inequality. Letting N → ∞ on
both sides of (5.24) yields (3.30) and the proof of the theorem is finished. 	

Remark 5.1. For unsteady 3D axisymmetric Euler equations with vortex-sheets initial
data, Chae and Imanuvilov proved in [1] that the smooth approximate solutions con-
structed through regularizing the initial data satisfy

∫ T

0

∫
R3

1

1 + x2
3

(
uεr
r
)2dx ≤ C,

where C is a constant depending on initial energy and total variation of initial vorticity.
Corresponding viscous approximations can be found in [11]. Lemma 5.1 and Lemma 5.2
above concern the steady approximations with error terms and in particular in Lemma 5.2
we only need that approximate solutions are C1-smooth.

Based on Theorem 5.1, Lemma 5.1 and Lemma 5.2, we have
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Theorem 5.2. i) Suppose that the approximate solutions uε, pε ∈ C2(R3) satisfy
(3.18) and (3.19) with error terms hεr and hεz satisfying ∂zhεr , ∂r hεz ∈ C(H). More-
over, suppose that

‖uε‖L2(R3) ≤ C, (5.34)

|ωεθ | ≤ C(ε), (r, z) ∈ H̄ = [0,∞)× (0,∞), (5.35)∫
H
(|hεz | +

|hεr |
r
)rdrdz ≤ C or

∫
H
(
|hεz |

r
+

|hεr |
r
)rdrdz ≤ C, (5.36)

∫
H

|∂zhεr − ∂r hεz
r

|rdrdz ≤ C, (5.37)

|uε| → 0, pε → p0, as r2 + z2 → ∞, (5.38)

where C, p0 are some constants and C(ε) is a constant which may depend on ε.
Then uε → 0 strongly in L2

loc(R
3).

ii) Suppose that the approximate solutions uε, pε ∈ C1(R3) satisfy (3.18) and (3.19)
with error terms hεr and hεz satisfying hεr , hεz ∈ C1(H) and hεz |r=0 = 0. Assume fur-
ther that (5.34) and (5.36)–(5.38) are satisfied. Then uε → 0 strongly in L2

loc(R
3).

Remark 5.2. Contrary to the 3D steady axisymmetric Euler equations, there exist non-
trivial smooth exact solutions with finite energy and there exist smooth approximate
solutions with finite energy appearing energy concentrations in the limit process to the
2D steady Euler equations (see [4]). More precisely, in 2D steady case, choose a velocity
field,

u(x) = r−2
(−x2

x1

) ∫ r

0
sω(s)ds,

satisfying suppω ⊂ {|x | ≤ 1} and
∫ 1

0 sω(s)ds = 0. Set uε(x) = ε−1u(x/ε). Then uε

are the exact solutions of the two-dimensional steady Euler equations. Moreover,∫
R2

|uε |2dx +
∫

R2
|∇uε |dx ≤ C,

and

uε ⇀ 0

weakly in L2(R2). However,

uε ⊗ uε ⇀ C1

(
δ0 0

0 δ0

)

weakly in M(�), the finite Radon space, where uε ⊗ uε = (uεi uεj ) is a 2 × 2 matrix,
δ0 is a Dirac measure supported at the origin and C1 is a positive constant.

Remark 5.3. Using the spherical vortex rings given in [10], an example of the approxi-
mate solutions of the 3D steady axisymmetric Euler equations which converge strongly
to 0 in L2

loc(R
3) was constructed in [13].

Based on Theorem 5.2 ii), we obtain a Liouville type theorem which reads:
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Theorem 5.3. Suppose that u, p ∈ C1(R3)are exact solutions of 3D steady axisymmetric
Euler equations (1.2)-(1.3) satisfying

‖u‖L2(R3) ≤ C,

|u| → 0, p → p0 as r2 + z2 → ∞,

where C and p0 are some constants. Then u ≡ 0 and p ≡ p0.

Proof (I). Taking uε = u, pε = p, hεr , hεz = 0 in Theorem 5.2 ii), we obtain that u ≡ 0
directly. While (1.1) and the fact that p → p0 as r2 + z2 → ∞ shows that p ≡ p0. The
proof of the theorem is complete. 	


The following is a direct proof of Theorem 5.3. The merit of this proof is that we do
not need the technical test functions above.

Proof (II). Without loss of generality, we assume that

p → 0 as r2 + z2 → ∞. (5.39)

Otherwise, one may replace p by p̃ = p − p0 in (1.2)–(1.3).
Let p̄ = p − p(0, z). Then it follows from (1.2)–(1.3) that{

ur∂r ur + uz∂zur + ∂r p̄ = 0,

ur∂r uz + uz∂zuz + ∂z p̄ + ∂z p(0, z) = 0.
(5.40)

Note that (5.40)1 can be rewritten as

(rur )∂r
ur

r
+ (ruz)∂z

ur

r
+

u2
r

r
= −∂r p̄. (5.41)

Integrating (5.41) with respect to r over [0, R], and then with respect to z over [−Z , Z ],
using (1.3) and the fact that ur (0, z) = 0, we have∫ Z

−Z
u2

r (R, z)dz +
∫ R

0
ur (r, z)uz(r, z)|Z

z=−Z dr +
∫ Z

−Z

∫ R

0

u2
r

r
drdz

= −
∫ Z

−Z
p̄(R, z)dz. (5.42)

Letting R → ∞ on both sides of (5.42), and using the fact that |u| → 0, p → 0 as

r2 + z2 → ∞, one can obtain∫ ∞

0
ur (r, z)uz(r, z)|Z

z=−Z dr +
∫ Z

−Z

∫ ∞

0

u2
r

r
drdz =

∫ Z

−Z
p(0, z)dz. (5.43)

Taking r = 0 on both sides of (5.40)2, one has

∂z p(0, z) = −uz(0, z)∂zuz(0, z), z ∈ (−∞,∞).

Thus

p(0, z) = −1

2
(uz(0, z))2 ≤ 0, z ∈ (−∞,∞). (5.44)
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Substitute (5.44) into (5.43) to obtain∫ Z

−Z

∫ ∞

0

u2
r

r
drdz ≤

∫ ∞

0
|ur (r, Z)uz(r, Z)|dr +

∫ ∞

0
|ur (r,−Z)uz(r,−Z)|dr.

(5.45)

Since u ∈ L2(R3), we have∫ ∞

−∞

∫ ∞

0
|ur (r, z)uz(r, z)|rdrdz < ∞.

Consequently,∫ ∞

−∞

∫ ∞

1
|ur (r, z)uz(r, z)|drdz ≤

∫ ∞

−∞

∫ ∞

1
|ur (r, z)uz(r, z)|rdrdz < ∞.

Thus there exists a sequence of number Zi > 0(i = 1, 2, · · · ) satisfying Zi → ∞ as
i → ∞ such that∫ ∞

1
|ur (r, Zi )uz(r, Zi )|dr +

∫ ∞

1
|ur (r,−Zi )uz(r,−Zi )|dr → 0 (5.46)

as i → ∞. Note that∫ ∞

0
|ur (r, Zi )uz(r, Zi )|dr = (

∫ 1

0
+

∫ ∞

1
)|ur (r, Zi )uz(r, Zi )|dr. (5.47)

Since u ∈ C1(R3) and |u| → 0, we obtain that∫ 1

0
|ur (r, Zi )uz(r, Zi )|dr → 0 (5.48)

as i → ∞. It follows from (5.46)–(5.48) that∫ ∞

0
|ur (r, Zi )uz(r, Zi )|dr → 0 (5.49)

as i → ∞. Similarly, one has∫ ∞

0
|ur (r,−Zi )uz(r,−Zi )|dr → 0 (5.50)

as i → ∞. Replacing Z by Zi in (5.45) and taking the limit i → ∞ on both sides of
(5.45), we obtain ∫ ∞

−∞

∫ ∞

0

u2
r

r
drdz = 0

and ur = 0. This, combined with (1.3), implies that ∂zuz = 0, from which we have
ur (r, z) = uz(r, z) = 0 for all (r, z) ∈ R+ × R. Equations (1.2) and the fact that p → p0
as r2 + z2 → ∞ show that p ≡ p0. The proof of the theorem is complete. 	
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