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Abstract: We prove that a linear d-dimensional Schrödinger equation with an x-periodic
and t-quasiperiodic potential reduces to an autonomous equation for most values of the
frequency vector. The reduction is made by means of a non-autonomous linear trans-
formation of the space of x-periodic functions. This transformation is a quasiperiodic
function of t .

1. Results

We consider a linear Schrödinger equation on a d-dimensional torus with a non-
autonomous potential which is a quasiperiodic function of time:

u̇ = −i
(
�u − εV (ϕ0 + tω, x;ω)u

)
, u = u(t, x), x ∈ T

d = R
d/2πZ

d . (1.1)

Here 0 ≤ ε ≤ 1 and the frequency vector ω is regarded as a parameter: ω ∈ U ⊂ R
n ,

where U is an open subset of the ball {y ∈ R
d | |y| ≤ C}. The function V (ϕ, x;ω),

(ϕ, x, ω) ∈ T
n × T

d × U , is C1-smooth in all its variables and is analytic in (ϕ, x). For
some ρ > 0 it analytically in ϕ, x extends to the domain

T
n
ρ × T

d
ρ × U, T

n
ρ = {(a + ib) ∈ C

n/2πZ
n | |b| < ρ},

where it is bounded by C1, as well as its gradient in ω. We regard (1.1) as a linear
non-autonomous equation in the complex Hilbert space L2(Td) = L2(Td; C). By 〈·, ·〉
we denote the Hermitian L2-scalar product in L2(Td).

In this work we prove that Eq. (1.1) reduces to constant coefficients for ‘most values
of the parameter ω’. The result is stated in the theorem below. There by H p(Td) and
H p(Td ; R), p ∈ R, we denote the complex and real Sobolev spaces with the norm
‖ · ‖p , where

‖u‖2
p =

∫
|(−� + 1)p/2u(x)|2 dx = 〈(−� + 1)pu, u〉,
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and by ‖ · ‖p,p denote the norm in the space of linear operators in H p. The exponential
functions {es | s ∈ Z

d}, es(x) = (2π)−d/2eis·x , form a Hilbert basis of the space
L2(Td) and form an orthogonal basis of each Sobolev space. For any linear operator
B between Sobolev spaces (real or complex) we denote by (Bab, a, b ∈ Z

d) its matrix
with respect to this basis. By | · | we denote the Euclidean norm and the operator-norms
of finite-dimensional matrices.

Theorem 1.1. For any 0 < ε ≤ ε0, where ε0 > 0 is sufficiently small, there exists a Borel
set Uε ⊂ U, mes(U \Uε) ≤ K εκ, such that for ω ∈ Uε, ϕ ∈ T

n in the space L2(Td)

exists a complex-linear isomorphism �(ϕ) = �(ϕ)ε,ω which analytically depends on
ϕ ∈ T

n
ρ/2 and a bounded Hermitian operator Q = Qε,ω with the following property: a

curve v(t) = v(t, ·) ∈ L2(Td) satisfies the autonomous equation

v̇ = −i�v + iεQv (1.2)

if and only if u(t, ·) = �(ϕ0 + tω)v(t, ·) is a solution of (1.1).
The matrix (Qab) of operator Q satisfies

Qab = 0 if |a| �= |b|. (1.3)

For any p ∈ N operators Q and �(ϕ) meet the estimates

‖Q‖p,p = ‖Q‖0,0 ≤ K1, (1.4)

‖�(ϕ) − id ‖p,p ≤ εK2 ∀ϕ ∈ T
n
ρ/2. (1.5)

Moreover, Qε,ω and �(ϕ)ε,ω are operator-valued Lipschitz functions of ω ∈ Uε and

‖∇ω Q‖p,p ≤ K1, ‖∇ω�(ϕ)‖p,p ≤ εK2, (1.6)

for all ϕ ∈ T
n
ρ/2 and a.a. ω ∈ Uε.

The positive constants ε0, K and κ depend only on n, d, C, C1 and ρ, while K1 and
K2 also depend on ω and K2 depends on p.

Since operator Q is Hermitian and satisfies (1.3), then the spectrum of the linear oper-
ator in the r.h.s. of (1.2) is pure point and imaginary. So all solutions v(t) ∈ L2(Td) of
(1.2) are almost-periodic functions of t . Estimates (1.4), (1.5) imply that these solutions
are well localised in the Fourier presentation:

Corollary 1.2. For any p there exists ε′
0 > 0 and K3 > 0 such that for ω ∈ Uε every

solution u(t) of (1.1) with ε ≤ ε′
0 satisfies

(1 − K3ε)‖u(0)‖p ≤ ‖u(t)‖p ≤ (1 + K3ε)‖u(0)‖p ∀ t. (1.7)

Apart from p, the constant ε′
0 depends on n, d, C, C1 and ρ, while K3 also depends

on ω.

In particular, if u(0) = u(0, x) is a finite trigonometrical polynomial and u(t, x) =∑
us(t)eis·x , then

sup
t

|us(t)| ≤ C p|s|−p ∀ s, ∀ p. (1.8)

Such behaviour of solutions for a dynamical equation is called dynamical localisation.
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Remark 1. The linear operators in the r.h.s. of linear Hamiltonian equations (1.1) and
(1.2) are complex-linear Hermitian transformations. So the flow-maps of these equations
are complex-linear, symplectic and unitary. The conjugating transformations �(ϕ) are
complex linear. It can be shown that they also are symplectic. Hence, they are unitary.
So the conjugations respect all three structures, preserved by Eqs. (1.1) and (1.2).

Remark 2. In fact, the constant K1 does not depend on ω. Moreover, if we replace (1.5)
by the weaker estimate

‖�(ϕ) − id ‖p,p ≤ √
ε K ′

2 ∀ϕ ∈ T
n
ρ/2,

and similarly with (1.6), then the constant K ′
2 can be chosen ω-independent. See footnote

2 below.

Remark 3. The estimates (1.5)–(1.7) remain true with arbitrary p ≥ 0 if we replace the
Sobolev norms ‖ · ‖p and the operator norms ‖ · ‖p,p by the stronger norm [·]p, where

[u]2
p =

∑

s∈Z
d

|us |2e2
(

ln(|s|+1)
)p

, u(x) =
∑

s∈Z
d

useis·x ,

and by the corresponding operator-norm [·]p,p . Again the constants K2, K3 and ε′ depend
on p. In particular, (1.8) remains true if we replace its r.h.s. by C ′

p exp
(−(

ln(|s| + 1)
)p)

(p > 0 is any).

In the next section we derive Theorem 1.1 from an abstract theorem in [EK], prove
Corollary 1.2 and discuss Remark 3.

Related results. It was observed by N. Bogolyubov in 1960’s (see in [BMS69]) that
KAM-techniques apply to prove reducibility of non-autonomous finite-dimensional lin-
ear systems to constant coefficient equations. Such results are also contained in [Mos67].
Since then establishing the reducibility of finite-dimensional systems by means of the
KAM tools is an active field of research. For the case of partial differential equations the
techniques from ‘KAM for PDE’ theory were used by Bambusi and Graffi in [BG01]
to prove reducibility of the one-dimensional Schrödinger equation (1.1) to constant in
time coefficients. Their results are similar to those in Theorem 1.1 with d = 1.

The problem of growth of solutions for the linear Schrödinger equation with time-
quasiperiodic and with smooth bounded potentials was considered by J. Bourgain in
[Bou99a] and [Bou99b], respectively. In the first work it is shown that for a Diophan-
tine frequency vector ω Sobolev norms of any solution for (1.1) grow with t at most
logarithmically, while results of the second work imply that for any ω each Sobolev
norm grows slower than any positive degree of t . Corollary 1.2 specify these results for
‘typical’ vectors ω.

Corollary 1.2 shows that Sobolev norms of solutions for Eq. (1.1) remain bounded
in time, provided that the frequency vector ω is ‘typical’. In particular, it should be
non-resonant with the numbers {|s|2 | s ∈ Z

d}, forming the spectrum of the operator
−�. It turns out that the norms of the solutions may stay bounded also in the opposite
case when ω is completely resonant with the spectrum. Namely, W.-M. Wang [Wan07]
proved this for Eq. (1.1) where n = d = 1 and ω = 1.



128 H. L. Eliasson, S. B. Kuksin

2. Proofs

Proof of Theorem 1.1. The operator � on torus has zero in its spectrum. This is inconve-
nient for some technical reasons. So we make the substitution u := e−i t/2u and re-write
Eq. (1.1) as

u̇ = −i
((

� − 1
2

)
u − εV (ϕ0 + tω, x;ω)u

)
. (2.1)

Below we usually do not indicate dependence of functions on the parameter ω.
Firstly we re-interpret Eq. (2.1) as an autonomous Hamiltonian system in an extended

phase-space. To do this we write u(x) = (
ξ(x) + iη(x)

)
/
√

2, where ξ and η are real
functions. Then (2.1) becomes

ξ̇ = −(
(−� + 1

2 )η + εV (ϕ0 + tω, x)η
)
,

η̇ = ( − � + 1
2

)
ξ + εV (ϕ0 + tω, x)ξ. (2.2)

Let us consider the space

Z = H1(Td; R) × H1(Td; R) × T
n × R

n = (ξ, η, ϕ, r).

We provide it with a symplectic structure, given by the two-form α2 ⊕ (dr ∧ dϕ),
where α2[(ξ1, η1), (ξ2, η2)] = 〈η1, ξ2〉−〈ξ1, η2〉 and 〈·, ·〉 stands for the usual L2-scalar
product.

The function hε
ω(ξ, η, ϕ, r),

hε
ω = ω · r +

1

2

∫ (
(|∇ξ |2 + |∇η|2) + 1

2 (|ξ |2 + |η|2) + εV (ϕ, x)(ξ2 + η2)
)

dx (2.3)

is analytic in Z . The symplectic structure above corresponds to the function hε
ω the

Hamiltonian equation

ξ̇ = −∇ηhε
ω = −(

(−� + 1
2 )η + εV (ϕ)η

)
,

η̇ = ∇ξ hε
ω = (

(−� + 1
2 )ξ + εV (ϕ)ξ

)
,

ϕ̇ = ∇r hε
ω = ω,

ṙ = −∇ϕhε
ω. (2.4)

The first three equations are independent from r and are equivalent to Eq. (2.2).
The Hamiltonian hε

ω is a perturbation of the integrable Hamiltonian h0
ω = h0

ω(ζ, r) =
hε

ω |ε=0 (which corresponds to the Schrödinger equation i u̇ = (� − 1/2)u) by the qua-
dratic in (ξ, η) function ε f . The function f is the quadratic form, corresponding to the
linear operator 1

2 Fϕ , where

Fϕ : (ξ(x), η(x)) �→ (V (ϕ, x)ξ(x), V (ϕ, x)η(x))

(this operator depends on the parameter ω). Write V (ϕ, x) as V = ∑
Vs(ϕ)eis·x . Then

Fϕ , regarded as an operator on vectors ζ =
(

ξ

η

)
∈ L2(Td; R) × L2(Td; R) (or on

complex vectors ζ ∈ L2(Td)× L2(Td)) has a matrix, formed by 2×2-blocks Fab(ϕ) =
Vb−a(ϕ)

(
1 0
0 1

)
. By the analyticity assumption,

|Vs(ϕ)|, |∇ωVs(ϕ)| ≤ C1e−ρ|s| ∀ s, ∀ϕ ∈ T
n
ρ, ∀ω ∈ U.
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We see that F = (Fab) is a Töplitz matrix, formed by diagonal 2 × 2-blocks, which has
finite exponential norm |F |ρ ,

|F |ρ = sup
a,b

∣
∣∣eρ|a−b||Fab|

∣
∣∣ . (2.5)

In the space of complex 2 × 2-matrices, provided with the scalar product Tr (t ĀB),

consider the orthogonal projection π on the subspace, generated by the matrices

(
1 0
0 1

)

and

(
0 1

−1 0

)
. For a matrix G, formed by 2×2-blocks Gab, we define πG as the matrix

(πG)ab = (πGab).

Note that a real matrix G, operating on vectors ζ =
(

ξ

η

)
, corresponds to a complex-

linear transformation, operating on complex vectors u = (ξ + iη)/
√

2, if and only if
πG = G. In particular, the matrix F satisfies π F = F .

These properties of matrix F imply that it is a special case of the Töplitz–Lipschitz
matrices, defined in [EK08,EK], and that for any 
 ∈ N its Töplitz–Lipschitz norm1

satisfies the estimates

〈F〉
,ρ, 〈∇ω F〉
,ρ ≤ C1 ∀ϕ ∈ T
n
ρ, ω ∈ U. (2.6)

In [EK] we study nonlinear Hamiltonian perturbations of infinite-dimensional linear
systems. Results of that work apply to perturbations H ε

ω of the Hamiltonian h0
ω as above,

H ε
ω(ζ, ϕ, r;ω) = h0

ω(ζ, r) + ε f (ζ, ϕ, r;ω), ζ =
(

ξ

η

)
.

The real valued function f is C1-smooth in (ζ, ϕ, r;ω), is analytic in h = (ζ, ϕ, r) and
analytically in h extends to the complex domain O0(σ, ρ), where it is bounded by a
constant C1. Here for κ ≥ 0 and σ, ρ > 0 we denote

Oκ(σ, ρ) = {h | ‖ζ‖′
κ < σ, |Im ϕ| < ρ, |r | < σ 2},

where ‖η = ∑
ηses‖′

κ = (∑ |ηs |2e2κ|s|〈s〉2
)1/2 with 〈s〉 = max{|s|, 1}. It is assumed

that there exists γ > 0 such that for any 0 ≤ γ ′ ≤ γ and any h ∈ Oγ ′
(σ, ρ) we have

1 For the reader’s convenience we now define the Töplitz-Lipschitz norm 〈X〉
,ρ of a matrix X , assum-
ing for simplicity that d = 2 and X satisfies π X = X . A matrix X is called Töplitz at ∞ if the limit
Xab(c) = limt→∞ Xa+tc, b+tc exists for all a, b, c ∈ Z

d . Let D
(c) be the set of all (a, b) ∈ Z
d × Z

d such
that

|a = a′ + tc| ≥ 
(|a′| + |c|)|c|, |b = b′ + tc| ≥ 
(|b′| + |c|)|c|

and |a|
|c| ,

|b|
|c| ≥ 2
2. If X is Töplitz at ∞, we define

〈X〉
,ρ = sup
c �=0

sup
(a,b)∈D
(c)

|Xab − Xab(c)| · max

( |a|
|c| ,

|b|
|c|

)
eρ|a−b| + |X |ρ .

Note that if X is Töplitz, then it is Töplitz at infinity and the first term in the r.h.s. vanishes. So in this case
〈X〉
,ρ = |X |ρ .
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‖∇ζ f (h;ω)‖γ ′ ≤ C1 and that the Hessian ∇2
ζ f satisfies 〈∇2

ζ f 〉
,γ ′ ≤ C1 for some

 ≥ 3. Moreover it is also assumed that each component of the gradient ∇ω f possesses
the same properties.

Results of [EK] imply the following assertions concerning Hamiltonians H ε
ω:

Theorem 2.1. There is ε0 > 0 and for every ε ≤ ε0 there is a Borel set Uε ⊂ U, satis-
fying mes (U\Uε) ≤ K εκ, such that for all ω ∈ Uε the following holds: there exists an
analytical symplectic diffeomorphism � : O0(σ/2, ρ/2) → O0(σ, ρ) and a vector ω′
such that (h0

ω + ε f ) ◦ � equals (modulo a constant)

h0
ω′(ζ, r) +

1

2
ε〈H̃(ω′)ζ, ζ 〉 + f ′(h, ω′) =: h̃ε

ω′ .

Here

∇ζ f ′ = ∇r f ′ = ∇2
ζ f ′ = 0 for ζ = r = 0, (2.7)

and H̃ =
(

Q1 Q2
Qt

2 Q1

)
, where the operator Q = Q1 + i Q2 is a Hermitian operator in the

space L2(Td) such that its matrix satisfies (1.3). The transformation � = (�ζ ,�ϕ,�r )

satisfies

‖�ζ − ζ‖′
0 + |�ϕ − ϕ| + |�r − r | ≤ βε (2.8)

for all h ∈ O0(σ/2, ρ/2), and

‖H̃‖0,0 ≤ β.

The positive constants ε0, κ, K depend on n, d, C, C1, σ and ρ, while β also depends
on ω.2

Remark. The assertions of the theorem directly follow from Theorem 7.1 in [EK]. That
theorem deals with perturbations of integrable infinite-dimensional Hamiltonian sys-
tems of a rather general form and it applies to Hamiltonians H ε

ω as above if we specify
parameters of the theorem as follows:

H = 0, |A| = n, L = Z
d , �a(ω) = |a|2 + 1

2 (a ∈ Z
d), m∗ = 1, µ = σ 2

(we use the notations of [EK]).

It is assumed in Theorem 7.1 that the eigenvalues �a(ω) of the quadratic in ζ part of
the integrable Hamiltonian h0

ω are exponentially close to squares |a|2, a ∈ Z
d .3 Now the

eigenvalues are those of the operator −�+1/2. So they are the shifted squares |a|2 +1/2
and do not have the required form. We claim that the arguments in [EK] remain valid in
this case. Indeed, the assumptions on eigenvalues �a are needed to estimate from below
the quantities |Dα|,

Dα = �a1 + α�a2 + s · ω, α = −1, 0, 1,

2 β may be chosen ω-independent if in the r.h.s.’s of (1.8) we replace βε by β
√

ε. This is a well known
property of the KAM arguments and it follows directly from the proof in [EK].

3 That is, �a(ω) = |a|2 + o(e− const |a|).
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where a1, a2 ∈ Z
d and s ∈ Z

n . The arguments, exploited in [EK] to estimate D1

and D0, use only the asymptotics �a ∼ |a|2, so they as well apply to the eigenvalues
�a = |a|2 + 1/2. The arguments, used to estimate D−1, are more delicate. But the quan-
tities D−1, calculated for eigenvalues �a = |a|2 + 1/2, are the same as for eigenvalues
�a = |a|2. So the arguments still apply. ��

The transformation � is obtained as a composition of infinitely many symplectic
transformations � j : h �→ h which iteratively put the Hamiltonian H ε

ω to forms, more
and more close to h̃ε

ω′ , and change a bit the original frequency vector ω. Each transfor-

mation � j (h) = (�
j
ζ (h),�

j
ϕ(h),�

j
r (h) has the form

�
j
ζ (h) = z j (ϕ) + D j (ϕ)ζ,

� j
ϕ(h) = a j (ϕ),

�
j
r (h) = b j (ζ, ϕ) + c j (ϕ)r, (2.9)

where b(ζ, ϕ) is quadratic in ζ and D j (ϕ) and c j (ϕ) are linear operators which are real
for real ϕ. The composition � = �1 ◦ �2 ◦ . . . also has the form (2.9). So

�ζ (h) = z(ϕ) + D(ϕ)ζ.

Estimate (2.8) implies that z(ϕ) ∈ H1(Td; R) and that D(ϕ) is a bounded linear
operator in H1 (note that the norm ‖ · ‖′

0 is equivalent to the Sobolev norm ‖ · ‖1). In
fact, z(ϕ) and D(ϕ) are smoother than that:

Lemma 2.2. For any integer p ≥ 0 there exists K = K(p) (depending on ω) such that
for any ϕ ∈ T

n
ρ/2 the maps z(ϕ) and D(ϕ) from the representation (2.9) for the map �

satisfy

‖z(ϕ)‖p, ‖D(ϕ) − id ‖p,p, ‖π D(ϕ) − id ‖p,p ≤ Kε; (2.10)

and

‖∇ωz(ϕ)‖p, ‖∇ω D(ϕ)‖p,p, ‖∇ωπ D(ϕ)‖p,p ≤ Kε. (2.11)

Remark 4. As in Theorem 2.1, if we replace the r.h.s’s of the two estimates by K√
ε,

then K may be chosen ω-independent.

Remark 5. Due to (2.7) the analytical torus �({0} × T
n × {0}) ⊂ O0(σ, p) is invariant

for the Hamiltonian system with the Hamiltonian H ε
ω. Since (2.10) holds for any p ∈ N,

then this torus is smooth in x . That is, it lies in C∞(Td; R
2) × T

n × R
n .

Proof of the lemma. The maps D j (ϕ), z j (ϕ) and other maps, entering the decomposi-
tion (2.9) for � j are analysed in Proposition 8.1, Corollary 8.2 and Proposition 8.4 of
[EK]. Let us define inductively the sequences ε j → 0, σ j → 0, ρ j → ρ/2 and γ j → 0
as follows:

ε1 = ε, σ1 = σ, ρ1 = ρ, γ1 = γ := ρ/2 ,

and for j ≥ 1

ε j+1 = exp(−τ
(

log ε−1
j )2), σ j+1 = ε

1/3+τ
j+1 σ j ,

γ j+1 = (log ε−1
j )−c1γ

c2
j , ρ j = (2−1 + 2− j )ρ,
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where τ = 1/30 and c1, c2 are some positive constants. Also for j ≥ 1 we set 
 j =
const γ −2

j . It is equivalent, up to constant factors, to the definition of these constants in

Sect. 8.3 of [EK], where µ j = σ 2
j for all j . These relations easily imply that for any

M ∈ N and k > 0 we have

exp(ln γ −1
j )M ≤ C(M, k)ε−k

j , ∀ j ≥ 1, (2.12)

We want to estimate the maps �
j
ζ .

For any j ≥ 1 the map � j is constructed in Proposition 8.1 of [EK] as a composi-
tion of n j = [log ε−1

j ] canonical transformations which are time-1-maps for additional
Hamiltonians sl(h), l = 1, . . . , n j . The Hamiltonians are functions of h, quadratic in ζ .
Norms of these functions, of their gradients and Hessians in ζ are estimated in Proposi-
tion 8.1. The ζ -components of flow-maps of such Hamiltonians are affine functions of
ζ and are studied in Sect. 8.1 of [EK] (see there estimates (49) and (50)). Combining
these results implies that the map �

j
ζ (h) = z j (ϕ) + D j (ϕ)ζ satisfies

‖z j (ϕ)‖′
γ j

≤ const γ −1
j σ−1

j ε j ≤
{

Cε j , j = 1,

Cε
1/2
j , j ≥ 2,

(2.13)

and

∣
∣D j (ϕ) − id

∣
∣ 1

2 γ j
≤ const 
2

jγ
−1
j σ−2

j ε j ≤
{

Cε j , j = 1,

Cε
1/4
j , j ≥ 2,

(2.14)

for any ϕ ∈ T
n
ρ/2 (we use (2.12) and notation (2.5)). The matrix-norm | · |γ majorises

the Sobolev operator-norms up to a factor:

‖G‖m,m ≤ Cmγ −m−d |G|γ ∀m ≥ 0 (2.15)

(see [EK08] and estimate (2) in [EK], where γ ′ = 0). Combining (2.14), (2.12) and the
last inequality we get that

‖D j (ϕ) − id ‖p,p ≤
{

C pε j , j = 1,

C pε
1/5
j , j ≥ 2,

(2.16)

for any ϕ ∈ T
n
ρ/2. Since ‖u‖p ≤ C pγ

2(1−p)‖u‖′
γ for any γ > 0, then, similarly,

‖z j (ϕ)‖p ≤
{

C pε j , j = 1,

C pε
1/3
j , j ≥ 2,

(2.17)

for any ϕ ∈ T
n
ρ/2. Since clearly |πG|γ ≤ C |G|γ , then the matrix π D j (ϕ) also satisfies

estimates (2.16).
As

�ζ (h) = z(ϕ) + D(ϕ)ζ = �1
ζ ◦ �2

ζ ◦ . . . , �
j
ζ = z j (ϕ) + D j (ϕ)ζ

and

π(AB) = π Aπ B + (1 − π)A(1 − π)B, (2.18)

then (2.16), its analogy for π D j (ϕ) and (2.17) imply (2.10). The maps D j (ϕ) and the
map D(ϕ) are real for real ϕ.



Reducibility of Linear Schrödinger Equations with Quasiperiodic Potentials 133

Relations (2.11) follow from similar estimates on ∇ωz j and ∇ω D j (ϕ) which can be
derived from the corresponding results in [EK] in the same way as above. ��

It was pointed out in a remark to Theorem 7.1 in [EK] that if the perturbation f is
independent from r and is quadratic in ζ (e.g. if H ε

ω = hε
ω, see (2.3)), then

i) the vector ω stays constant during the transformations � j ;
ii) in formula (2.9) for � j we have z j = 0, a j = 0 and c j = 0. So each transformation

� j has the form

(ζ, ϕ, r) �→ (
Dω(ϕ)ζ, ϕ, r +

1

2
〈ζ, Bω(ϕ)ζ 〉) (2.19)

with suitable linear operators Dω(ϕ) and Bω(ϕ).

Accordingly the limiting transformation � = �1 ◦ �2 ◦ . . . also has the form (2.19)
and ω′ = ω. So the transformed Hamiltonian h̃ε

ω = h̃ε
ω′ , as well as the original Ham-

iltonian H ε
ω, is linear in r and quadratic in ζ . Hence, in the expression for hε

ω we have
f ′ = 0.

The equation with the Hamiltonian h̃ε
ω implies for v(t) = (

ξ(t)+ iη(t)
)
/
√

2 equation

v̇ = −i(� − 1
2 )v + iεQv. (2.20)

That is, we established reducibility of Eq. (2.1) to Eq. (2.20) by means of the linear over
real numbers operator �0(ϕ), defined as the composition

�0(ϕ) : u(x) = ξ + iη√
2

�→ Dω(ϕ)

(
ξ

η

)
=

(
ξ ′
η′

)
�→ ξ ′ + iη′

√
2

= v(x).

Next we replace the maps �0(ϕ) by complex-linear transformations which still
conjugate Eqs. (2.20) and (2.1). Let us rewrite these two equations as

Ẋ = QX

and

Ẏ = Pt Y,

respectively. Now we regard them as equations on operator-valued curves X (t) and Y (t),
formed by linear isomorphisms of the space L2(Td ). Consider the third equation

Ẇ = PW − WQ. (2.21)

Let X, Y, W be three operator-valued curves, formed by isomorphisms of L2(Td), sat-
isfying

Y X−1 = W.

Then if any two of them satisfy the corresponding equations, then the third one satisfies
the third equation.

Let X (t) be the fundamental solution of the first equation (i.e., X (0) = id) and
W 0(t) = �0(ϕt ), where ϕt = ϕ0 + ωt . Then Y = W 0 X satisfies the second equation.
So W 0 satisfies (2.21). Let us apply operator π (written in terms of the complex variable
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u = (ξ + iη)/
√

2) to (2.21). Since the operators Q and Pt are complex linear, then
πQ = Q, πPt = Pt and (2.18) implies that the complex-linear operator

W (t) := πW 0(t) = π�0(ϕ0 + ωt)

also satisfies (2.21). Relations (2.10) imply that the operator �(ϕ) = π�0(ϕ) satisfies
(1.5) for any integer p ≥ 0. In particular, the operator �(ϕ) : L2(Td) → L2(Td) is
invertible since ε is small. We have seen that �(ϕ) is a complex-linear transformation
which reduces Eq. (2.1) to (2.20). Inverting the substitution u := e−i t/2u we see that
�(ϕ) also reduces (1.1) to (1.2).

Estimate (1.4) with p = 0 follows from the estimate for H̃ in Theorem 2.1. Since
the operator Q satisfies (1.3), then ‖Q‖p,p = ‖Q‖0,0 for each p and (1.4) follows.

The estimates for ∇ω Q and ∇ω� follow from Theorem 2.1 by the same arguments.
��

Proof of Corollary 1.2. For any v = ∑
vses ∈ L2(Td) and k = 0, 1, 2, . . . denote

Vk = ∑
|s|2=k vses (if d ≤ 2, then Vk = 0 for some k). Then v = ∑

Vk and

‖v‖2
p =

∞∑

k=0

(1 + k)p‖Vk‖2
0

for each p. Since the operator Q is block-diagonal, then

〈QVk, Vl〉 = 0 if k �= l. (2.22)

Let v(t) be a solution of (1.2) and u(t) = �(ϕ0 + tω)v(t) be the corresponding
solution of (1.1). Take the 〈·, ·〉–scalar product of (1.2) with Vk . The imaginary part of
the obtained relation implies that

1

2

d

dt
‖Vk‖2

0 = Im

(

〈�v, Vk〉 − ε
∑

s

〈QVs, Vk〉
)

= Im (〈�Vk, Vk〉 − ε〈QVk, Vk〉)

(we use (2.22)). Since the operators � and Q are Hermitian, then the r.h.s. vanishes. So
‖Vk(t)‖0 = const for each k. Accordingly ‖v(t)‖p = const for each p and (1.7) follows
from (1.5) if we choose ε′

0 ≤ 1/2K2. ��

On Remark 3. Estimate (1.4) is valid for the norm [·]p,p since the operator Q is block-
diagonal. Estimate (1.5) holds for the same reason as before if instead of inequality
(2.15) we use its counterpart for the norms [·]p,p:

[A]p,p ≤ c1 exp
(

c2(ln γ −1)p
)

|A|γ ∀ p, γ > 0,

where c1, c2 are independent from γ . Finally, estimate (1.7) follows from (1.4) (1.5).
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