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Abstract: In this paper we address the question of the singular vortex dynamics
exhibited in [15], which generates a corner in finite time. The purpose is to prove that
under some appropriate small regular perturbation the corner still remains. Our approach
uses the Hasimoto transform and deals with the long range scattering properties of a
Gross-Pitaevski equation with time-variable coefficients.
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1. Introduction

In this paper we study the stability properties of selfsimilar solutions of the geometric
flow

χt = χx ∧ χxx . (1)

Here χ = χ(t, x) ∈ R
3, x denotes the arclength parameter and t the time variable.

The above equation was proposed by DaRios in 1906 [9] and re-derived by Arms and
Hama in 1965 [1] as an approximation of the dynamics of a vortex filament under Euler
equations. In this model χ(t, x) represents the support of the singular vectorial mea-
sure that describes the vorticity. The velocity field is then obtained from the Biot-Savart
integral and is singular at the points of the filament. Equation (1) follows from a Taylor
expansion around a given point. The first term is discarded by symmetry, and then, after
doing a re-normalization in time to avoid a logarithmic singularity, the second term gives
(1). Therefore just local effects are considered and for this reason this model is usually
known as the Localized Induction Approximation (LIA). We refer the reader to [3] and
[29] for an analysis and discussion about the limitations of this model and to [28] for a
survey about Da Rios’ work.

Starting with the work by Schwartz in [30] LIA has been also used as an approxi-
mation of the quantum vortex motion in superfluid Helium. In particular in the recent
work by T. Lipniacki [23,24], a detailed analysis of the selfsimilar solutions of (1) is
also made. A rather complete list of references about the use of LIA in this setting can
be found in these two papers.

Let us recall now that for a general curve in R
3, parametrized by arclength, its tangent

vector T , its normal vector n and its binormal b satisfy the Frenet system
⎛
⎝

T
n
b

⎞
⎠

x

=
⎛
⎝

0 c 0
−c 0 τ

0 −τ 0

⎞
⎠

⎛
⎝

T
n
b

⎞
⎠, (2)

where c is the curvature of the curve and τ its torsion. Then Eq. (1) can be rewritten as

χt = cb. (3)

This explains why the term binormal flow is sometimes used as a substitute to LIA.
Another relevant connection of (1) is obtained by computing the equation satisfied

by the tangent vector

T = χx .

An immediate calculation gives that T has to solve

Tt = T ∧ Txx . (4)

Notice that as a consequence the arclength parametrization is preserved and therefore T
gives a flow onto the unit sphere S

2. Equation (4) can be rewritten as

Tt = J Dx Tx , (5)

with J denoting the complex structure of the sphere and Dx the covariant derivative. With
this formulation we identify (5) as the Schrödinger map onto the sphere. This equation
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can be also seen as a simplification of the Landau-Lifchitz equation for ferromagnetism
(see [22]).

As we have already said our main interest is to study the selfsimilar solutions of the
binormal flow (1). Let us recall the known results about selfsimilar solutions. Although
there is a one parameter family of possible scalings that leave invariant the set of solu-
tions, there is only one which preserves the property that T (t, x) is in S

2. Namely, for
λ > 0, if χ(t, x) solves (1), so does

1

λ
χ(λ2t, λx).

Let us look for solutions of the type

χ(t, x) = √
t G

(
x√
t

)
.

After differentiation we get that G has to be a solution of the ODE

1

2
G − x

2
G ′ = G ′ ∧ G ′′.

Computing another derivative and with some abuse of notation we get that T (x) has to
solve

− x

2
T ′ = T ∧ T ′′ = (cb)′. (6)

Using the Frenet equations (2) it follows that

− x

2
cn = c′b − cτn.

As a conclusion we obtain a one parameter family of curves (see [6,20,21]) characterized
by

c(x) = a, τ (x) = x

2
. (7)

Let us notice that (6) implies
(

T +
2c

x
b

)′
= −2c

x2 b. (8)

We define (Ta, na, ba)(x) to be the unique solution of the Frenet system with curvature
and torsion as in (7), and initial data (Ta, na, ba)(0) = I3. By using the fact that the
binormal vector is unitary, an immediate consequence of (8) is that for any a ∈ R

+ there
exists a pair of unit vectors A±

a such that

lim
x→±∞ Ta(x) = A±

a . (9)

In [15] among other things, the following result is proved:

Theorem (Gutierrez-Rivas-Vega). Let a be a positive number, and let Ga be defined by
G ′

a = Ta with Ga(0) = 2a(0, 0, 1). Then
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(i)
∣∣∣√tGa

(
x√
t

)
− A+

a xI[0,∞)(x)− A−
a xI(−∞,0](x)

∣∣∣ ≤ 2a
√

t .

(ii) For any test function ψ(x) such that
∫ ∞

−∞
|ψ(x)| dx

1 + |x | < ∞,

we have

lim
t→0

∫ ∞

−∞

(
Ta

(
x√
t

)
− A+

aI[0,∞)(x)− A−
a I(−∞,0](x)

)
ψ(x)dx = 0. (10)

(iii) The relation between a and A±
a is

sin
θ

2
= e− a2

2 ,

where θ is the angle between the vectors A+
a and −A−

a .

Notice that (1) is invariant under rotations. As a conclusion, there exists a solution
χa of (1) with the initial condition

χa(0, x) = A+xI[0,∞)(x) + A−xI(−∞,0](x),

for any pair of unit vectors A±, different and non-opposite. This is deduced first by deter-
mining the number a such that (iii) holds for A±, then taking χa(x, t) = √

tGa(x/
√

t)
with Ga given in the theorem, and finally by applying to χa the rotation that sends A±
into A±

a .
Also notice that (1) is a time reversible flow because if χ(t, x) is a solution, so is

χ(−t,−x). Therefore if we look at (1) backwards in time with the initial condition at
t = 1 given by

χa(1, x) = Ga(x),

we get an example of a solution which is regular at t = 1, in fact real analytic, and that
develops a singularity in the shape of a corner at time zero.

The main result of this paper is given in Theorem 1.5 where we prove that under a
smallness assumption on a, there exist regular solutions χ of (1) for t > 0, perturbations
of χa , that still have a corner at t = 0.

Remark 1.1. Equation (5) suggests many possible generalizations by considering other
targets besides the sphere. Let us then introduce the notation

u ∧± v =
⎛
⎝

1 0 0
0 1 0
0 0 ±1

⎞
⎠ u ∧ v.

Therefore instead of (5) we write

Tt = T ∧± Txx , (11)

with T a map from R
2 onto the sphere S

2 or the hyperbolic plane H
2 depending on

which sign is considered in (11). The positive sign stands for S
2, and the negative one

for H
2. Analogously, since T = χx , we can obtain the equation

χt = χx ∧± χxx . (12)
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Similar calculations and results as in [15] were done by de la Hoz [10] for selfsimilar
solutions of (12) in the hyperbolic setting. The extra-difficulty is that there is a-priori
no control on the size of the euclidean length of the generalized binormal vectors.

In order to write our results we need to recall another remarkable connection of (12)
made by Hasimoto in [16]. It is as follows. Assume that χ is a regular solution of (12)
with a strictly positive curvature at all points. He defines the “filament function” as

u(t, x) = c(t, x) exp

⎧⎨
⎩i

x∫

0

τ(t, x ′)dx ′
⎫⎬
⎭. (13)

Then u solves the nonlinear Schrödinger equation

iut + uxx ± 1

2

(
|u|2 − A(t)

)
u = 0, (14)

with

A(t) =
(

±2
cxx − c τ 2

c
+ c2

)
(t, 0). (15)

Let us notice that the identity (15) provides us with some extra information on c and τ
at x = 0. This will be an important ingredient in the proof of Theorem 1.5.

As we see the focusing sign (+) is related to the sphere, while the defocusing sign
(-) is connected to hyperbolic space. The real coefficient A(t) can be easily eliminated
by an integrating factor so that (14) can be reduced to the well known cubic NLS. This
equation is completely integrable and among the infinitely many conserved quantities it
has, we want to recall that

∫
|u(t, x)|2dx (16)

is preserved. This quantity is related to the kinetic energy of the filament (see [27]).
The particular selfsimilar solution χa has as a filament function

ua(t, x) = a
ei x2

4t√
t
.

Therefore neither ua nor any of its derivatives are in L2. As a consequence none of the
other conserved quantities are finite for ua , included (16). However, we will see below
(20) that there is a natural energy asociated to ua .

Notice that ua is a solution of Eq. (14) with

A(t) = a2

t
,

and

ua(0, x) = aδ0.

Therefore, in order to study perturbations of the particular solution ua we have to study
(14) within a functional setting which includes functions of infinite energy. This was
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started in [33] and then extended in [13] and in [8] to the case of periodic boundary
conditions. None of these works consider initial data as singular as the delta-function
which is our interest here. There is an obstruction to do that, as it was observed in [19].
Using the so-called Galilean invariance the authors proved that the solution of (14) with
A(t) = 0 and u(0, x) = aδ0 either does not exist or is not unique. The reason is that the
natural candidate for such a solution is

a√
t
e±ia2 log t+i x2

4t ,

which has no limit as t goes to zero. As noticed, in our case the Hasimoto transform
leads to (14)-(15) with A(t) = a2

t and therefore we have the solution ua even at t = 0.
The study of the stability of ua was started in [2] where a weak stability result is

obtained. We proceed as follows. First notice that after a rescaling, (14) with A(t) = a2/t
can be rewritten as

iut + uxx ±
(

|u|2 − a2

t

)
u = 0. (17)

Consider u a solution of (17) for any x ∈ R and t > 0. Using the so called pseudo-con-
formal transformation we define a new unknown v as

u(t, x) = T v(t, x) = ei x2
4t√
t
v

(
1

t
,

x

t

)
. (18)

Then v solves

ivt + vxx ± 1

t

(
|v|2 − a2

)
v = 0, (19)

and va = a is a particular solution. A natural quantity associated to (19) is the normalized
energy

E(t) = 1

2

∫
|vx (t)|2 dx ∓ 1

4t

∫
(|v(t)|2 − a2)2 dx . (20)

An immediate calculation gives that

∂t E(t)∓ 1

4t2

∫
(|v|2 − a2)2 dx = 0.

In [2] we use this energy law to prove that (19) is globally (respectively locally) well
posed for t > t0 > 0 if E(v(t0, x)) < ∞ in the defocusing (respectively focusing)
settings. The global existence follows by proving the control

‖v(t)− a‖L2 < C
√

t .

Let us notice here that similar tools have been also used by Tsutsumi and Yajima in [32]
to prove scattering in L2 for NLS with H1 ∩� data.

Our first theorem can be seen as an extension of the results in [2]. We construct
modified wave operators for v − a in both focusing and defocusing cases, under some
smallness assumptions. Since we are working around a non-integrable particular solu-
tion, the source term of Eq. (19) is the linear one, with a coefficient with decay 1

t , that is
exactly the frame for long range effects for cubic 1-d NLS ([7,17,26]). Here the situation
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is different since the L∞-norm of the functions we are working with is not decaying
as t goes to infinity, being just bounded. A link can be made with the scattering for the
Gross-Pitaevskii equation around the constant solution ([14]), but still the situation is
pretty different.

Given u+ we define

v1(t, x) = a + e±ia2 log t ei t∂2
x u+(x).

Theorem 1.2. Let t0 > 0. There exists a constant a0 > 0 such that for all a < a0, and
for all u+ small in L1 ∩ L2 with respect to a0 and to t0, Eq. (19) has a unique solution

v − v1 ∈ C([t0,∞), L2(R)) ∩ L4([t0,∞), L∞(R)),

verifying, as t goes to infinity,

‖v(t)− v1(t)‖L2 + ‖v − v1‖L4((t,∞),L∞) = O(t− 1
4 ). (21)

Let us notice that the family of solutions we have found is such that

‖v(t)− a‖L2 = O(1),

as t goes to infinity, while as we said before, for a general solution of (19), with sign -,
we got in [2] only a control in O(

√
t).

Once v is obtained, we recover u by the pseudo-conformal transformation (18). If
we define

u1(t, x) = a
ei x2

4t√
t

+
e±ia2 log t

√
4π i

û+

(
− x

2

)
,

we get the following corollary from Theorem 1.2.

Corollary 1.3. Let t̃0 > 0. There exists a constant a0 > 0 such that for all a < a0, for
all u+ small in L1 ∩ L2 with respect to a0 and to T0, u+ in L2(x4dx), Eq. (17) has a
unique solution

u − u1 ∈ C((0, t̃0], L2(R)) ∩ L4((0, t̃0], L∞(R)),

verifying, as t goes to zero,

‖u(t)− u1(t)‖L2 + ‖u − u1‖L4((0,t),L∞) = O(t 1
4 ). (22)

In particular,
∥∥∥∥∥∥∥

∣∣∣∣∣∣
u(t, x)− a

ei x2
4t√
t

∣∣∣∣∣∣

2

−
∣∣∣û+

(
− x

2

)∣∣∣
2

∥∥∥∥∥∥∥
L1

= O(t 1
4 ), (23)

∥∥∥∥∥∥
u(t, x)− a

ei x2
4t√
t

∥∥∥∥∥∥
L2

= O(1), (24)

but there is no limit in L2 for u(t, x)− a ei x2
4t√
t

as t goes to zero.
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We shall prove below that although u does not have a trace at t = 0 we will be able to
construct a family of curves associated to u by the Hasimoto transform that do have a
limit at t = 0.

The proof of Theorem 1.2 goes as follows. We write

v − a = w.

If v solves (19) then w solves

iwt + wxx ± 1

t

(
|a + w|2 − a2

)
(a + w) = 0.

The source term includes therefore two linear terms, namely

a2

t
w, and

a2

t
w.

As a first guess we can treatw as a perturbation from a free evolution at t = ∞. Therefore
let us assume that for t large,

w(t) ≈ eit∂2
x u+,

where eit∂2
x u+ denotes the solution of the free Schrödinger equation with u+ as initial

condition. Then the two linear terms lead to the Duhamel integrals

a2
∫ ∞

t
ei(t−τ)∂2

x eiτ∂2
x u+

dτ

τ
,

and

a2
∫ ∞

t
ei(t−τ)∂2

x e−iτ∂2
x u+

dτ

τ
. (25)

Clearly there is no cancellation in the first integral which therefore diverges. As a con-
clusion, the initial ansatz has to be modified to

(v − a)e∓ia2 log t = w.

Doing this the second integral (25) still remains (in fact a harmless variation of it). But
in this case plenty of cancellations can be expected. We exploit them by the so-called
Strichartz estimates [31] (see the beginning of §2.1). Notice that we are in the one
dimension case and these estimates were proved by Fefferman and Stein in [11]. For our

later purposes the rate of decay of v − v1 is crucial. The power t− 1
4 is proved using the

mixed norm spaces L4L∞ − L4/3L1 introduced by Ginibre and Velo [12] and cannot
be improved if we use standard Strichartz estimates.

A natural question is how to construct the curves χ(t, x) from the solutions obtained
in Corollary 1.3. There could be a problem if we want to use the Frenet frame, because
we do not know if |u| �= 0, and so the torsion cannot be well-defined by (13). This can
be overcome by using another type of frames [18]. In [25] it is proved how to construct
χ(t, x) for t > 0 and therefore to solve (12) with regularity assumptions similar to those
given by Corollary 1.3. The necessary modifications are straightforward. However the
existence of a trace at t = 0 is very unclear. Moreover the − 1

4 rate of decay doesn’t
seem enough in order to prove that the formation of a corner is preserved.
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The main content of our second result is the improvement of the rate of decay of
v − v1 by strengthening the conditions on u+. As we said, the first test to be checked
is to obtain a better rate of convergence for the oscillatory integral (25). We are going
to proceed in a different way. Recall that if û+ denotes the Fourier transform of u we
obtain the identity

eit∂2
x u+ =

∫
e−i tξ2+i xξ û+(ξ)dξ.

Plugging this in the integral (25) we get after changing the order of integration
∫ ∞

t
ei(t−τ)∂2

x e−iτ∂2
x u+

dτ

τ
=

∫
eixξ û+(ξ)

∫ ∞

t
ei(t−2τ)ξ2 dτ

τ
dξ,

where the last integral has to be understood as an oscillatory one

lim
R→∞

∫ R

t
eiτξ2 dτ

τ
= eitξ2

tξ2 + remainder. (26)

This suggests to consider data u+ ∈ Ḣ−2 which we define as

û+

|ξ |2 ∈ L2. (27)

Similar conditions were assumed by Bourgain and Wang in [5].
For s, p ∈ N

∗ , W s,p is defined as

W s,p = { f | ∇k f ∈ L p, ∀ 0 ≤ k ≤ s},
and Hs = W s,2. We have the following theorem.

Theorem 1.4. Let t0 > 0, s ∈ N
∗. There exists a constant a0 > 0 such that for all

a < a0, for all u+ small in Ḣ−2 ∩ Hs ∩ W s,1 with respect to a0 and to t0, Eq. (19) has
a unique solution

v − v1 ∈ C([t0,∞), Hs(R)),

verifying, as t goes to infinity, and for all integer 0 < k ≤ s,

‖(v − v1)(t)‖L2 = O(t− 1
2 ) , ‖∇k(v − v1)(t)‖L2 = O(t−1). (28)

Notice that from (26)-(27) we expect a 1/t decay coming from the linear term. How-
ever, in Theorem 1.4 we obtain just 1/

√
t as the rate of the L2 convergence. The problem

comes now from the quadratic terms. They are the following:

2a

t
|w|2, and

a

t
w2.

Again the first one gives less cancellations than the second one. However the derivative
∂x |w|2 behaves better and a rate of decay 1/t is also proved in this case (see Lemma
2.1). Similar ideas have been used in [14].

Theorem 1.4 is enough for our purposes. First notice that by taking u+ small and reg-
ular enough, we get from Theorem 1.4 a solution v regular and not vanishing. Hence we
can define (§3.2) a regular curvature and torsion by taking respectively the modulus and
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the derivative of the phase of u = T (v). Then, we can use the Frenet frame to construct
(§3.3) a family of curves χ(t, x) that is a solution of the binormal flow for t > 0. To be
able to use the Frenet frame is particularly useful for us, because for example Eq. (8)
has a natural generalization, see (60), which plays an important role in proving that the
constructed family of curves is close to the selfsimilar one χa . Also, for proving this
final fact, the strong rates of decay of Theorem 1.4 are crucial.

Finally let us say that in the construction of the family of curves we shall deal just
with solutions of (1) and not of (12). The obstruction for doing it in the second case
is the same as the one mentioned before: there is no a-priori control on the size of the
euclidean length of the generalized binormal vector if we work in H

2. This does not
happen in the sphere setting where we are able to prove the existence of the trace of χ
at t = 0 from the uniform bound of the curvature obtained in §3.2 from Theorem 1.4,

|c(t, x)| < C√
t
.

Using this bound in (3) together with the fact that b is unitary, we get the integrability of
χt at t = 0, and therefore the existence of a curve χ0(x) = χ(0, x) follows immediately.

Our final result is the following one:

Theorem 1.5. We fix ε > 0, t̃0 > 0 and a positive number a such that a < a0, where a0
is the constant in Theorem 1.4. Let u+ be small enough in Ḣ−2 ∩ H3 ∩ W 3,1 with x2u+
be small enough in H1 in terms of ε, a and t̃0, and let v be the corresponding solution
obtained in Theorem 1.4. By using the Hasimoto transform, we construct from v a family
of curves χ(t, x) which solves for t̃0 > t > 0,

χt = c b,

and such that there exists a unique χ0 such that

|χ(t, x)− χ0(x)| < Ca
√

t

uniformly on x ∈ (−∞,∞).
Moreover χ0 is Lipschitz and for x > 0,

|χ0(x)− χ0(0)− A+
a x | < ε x,

and

|χ0(0)− χ0(−x)− A−
a x | < ε x,

with A+
a and A−

a the vectors given in (9) and that satisfy

sin
θ

2
= e− a2

2 ,

where θ is the angle between A+
a and −A−

a .

In the proof we show that the tangent vector of the binormal flow χ we construct is
close to the one of χa . We then prove that χ is close to χa even at time t = 0. We recall
here that

χa(0, x) = A+
a xI[0,∞)(x) + A−

a xI(−∞,0](x).
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As a conclusion of the statement of Theorem 1.5 we get that χ0(x) lies in the ε-cone
around χa(0, x), and therefore a corner is still formed for χ(t, x) at t = 0 and at x = 0.
The angle of this corner can be made as close as desired to the one in between A+

a and
−A−

a by taking ε small enough. The family of perturbations of χa that we obtain is
determined by the wave operator constructed in Theorem 1.4. A better description of the
allowed perturbations would be obtained if the asymptotic completeness of this wave
operator were proved. This will be done in a forthcoming paper.

The paper is organized as follows. In the next section we give the results about the
wave operator. We start by writing the long-range profile that implies a modification of
the free evolution, and then we find the corresponding integral equation associated to
this profile. In the next subsections, §2.1 and §2.3, we solve this integral equation first
in the mixed norm spaces (Theorem 1.4), and then in the Sobolev spaces (Theorem 1.2).
Subsection §2.2 is devoted to the proof of Corollary 1.3.

Section §3 contains the construction of the family of curves χ associated to the solu-
tion v obtained in Theorem 1.4, and that solve (1). First, in §3.1 we obtain estimates
on v from Theorem 1.4. In §3.2, after defining the curvature and the torsion from v,
we compute their leading terms as t goes to zero. With this curvature and torsion, we
construct in §3.3 a binormal flow up to t = 0, as stated in the first part of Theorem 1.5.

Section §4 is devoted to the proof of the fact that the constructed flow χ is close to
χa . In the three first subsections we show that the tangent vector of χ is close to the one
of χa , and in §4.4 we conclude the second part of Theorem 1.5.

In the last section we derive some extra-information on χ(t, x). Finally in the Appen-
dix we sketch how to construct the tangent, normal and binormal vectors of a solution
of (1) from a solution of (14).

2. Modified Wave Operators

First we give the fixed point argument that we use to obtain the wave operator for our
problem. Subsection §2.1 contains the proof of Theorem 1.2 in mixed norm spaces, and
Subsect. §2.3 deals with the proof of Theorem 1.4 in the Sobolev space framework. In
Subsect. §2.2 we prove Corollary 1.3.

As usual for nonlinear Schrödinger equations, if we want a solution of Eq. (19) to
behave as t goes to infinity like a particular function v1, it is enough to find a fixed point
for the operator

Av(t) = v1(t) + i
∫ ∞

t
ei(t−τ)∂2

x

(
∓ (|v|

2 − a2)v

τ
− (i∂τ + ∂2

x )v1(τ )

)
dτ,

in a space defined around v1. We take as an ansatz for our problem

v1 = a + eit∂2
xω,

with

ω(t, ·) = u+(·)eiγ log t ,

and γ to be chosen later. It follows that

(i∂t + ∂2
x )v1 = eit∂2

x i∂tω = −γ
t

eit∂2
xω.
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So for v in some suitable space defined around v1, we shall have to estimate

Av − v1 = i
∫ ∞

t
ei(t−τ)∂2

x

×
(

∓
(
(|v|2 − a2)v

τ
− (|v1|2 − a2)v1

τ

)
+

(
∓ (|v1|2 − a2)v1

τ
+
γ

τ
eiτ∂2

xω

))
dτ.

The first term of the right hand side will be easier to treat than the last one. We compute

(|v1|2 − a2)v1 = (v1)
2v1 − a2v1

=
(

a2 + 2aeit∂2
xω + (eit∂2

xω)2
) (

a + eit∂2
xω

)
− a2(a + eit∂2

xω)

= a2eit∂2
xω + a2eit∂2

xω + 2a|eit∂2
xω|2 + a(eit∂2

xω)2 + |eit∂2
xω|2eit∂2

xω.

Here we make the choice γ = ±a2, to get rid of one of the linear terms. By doing this,
the only linear term left is out of resonance and the integral will converge.

In conclusion, we are choosing

v1 = a + eit∂2
xω,

with

ω(t, ·) = u+(·)e±ia2 log t ,

and we shall do a fixed point argument in spaces defined around v1, for the operator

Av = v1 ∓ i
∫ ∞

t
ei(t−τ)∂2

x

(
(|v|2 − a2)v

τ
− (|v1|2 − a2)v1

τ

)
dτ (29)

∓i
∫ ∞

t
ei(t−τ)∂2

x
a2eiτ∂2

xω + 2a|eiτ∂2
xω|2 + a(eiτ∂2

xω)2 + |eiτ∂2
xω|2eiτ∂2

xω

τ
dτ.

Let us finally recall the 1-D Strichartz estimates that will be used throughout this
section (see [12,31]). We have∥∥∥eit∂2

x f
∥∥∥

L p1 (R;Lq1 )
≤ C ‖ f ‖L2 , (30)

and the inhomogeneous version (1/r ′ := 1 − 1/r )∥∥∥∥
∫

I∩{s≤t}
ei(t−s)∂2

x F(s)ds

∥∥∥∥
L p1 (I,Lq1 )

≤ C ‖F‖
L p′

2 (I,Lq′
2 )
, (31)

for any admissible couples (pi , qi ), that is

2

pi
+

1

qi
= 1

2
, p ≥ 2.

The admissible couples we shall use here are (∞, 2) and (4,∞). Also, let us recall the
dispersion inequality

|eit∂2
x f | ≤ C√

t
‖ f ‖L1 . (32)

In particular,

|v1(t)| ≤ a + C
‖u+‖L1√

t
. (33)
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2.1. Modified wave operators in mixed norm spaces: proof of Theorem 1.2. Let t0 > 0.
We shall perform the fixed point argument for the operator (29) in the closed ball

X R =
{
v | ‖v‖X = sup

t∈[t0,∞[
tν‖v(t)− v1(t)‖L2 + tν‖v − v1‖L4((t,∞)L∞) ≤ R

}
,

with 0 < ν and R to be made precise later. Let us notice that in view of (33), a function
v ∈ X R satisfies

‖v(t)‖L∞ ≤‖v1(t)‖L∞ + ‖v(t)− v1(t)‖L∞ ≤a + C
‖u+‖L1√

t
+ ‖v(t)− v1(t)‖L∞ . (34)

We want, for a v ∈ X R , to estimate in X R ,

Av − v1 = ∓i
∫ ∞

t
ei(t−τ)∂2

x

(
(|v|2 − a2)v

τ
− (|v1|2 − a2)v1

τ

)
dτ

∓i
∫ ∞

t
ei(t−τ)∂2

x
a2eiτ∂2

xω + 2a|eiτ∂2
xω|2 + a(eiτ∂2

xω)2 + |eiτ∂2
xω|2eiτ∂2

xω

τ
dτ

= I + J3 + J2 + J1.

We denote here I to be the first term in the right-hand side, and Jk to be the parts of the
second term involving k-powers of eiτ∂2

xω.
For I we shall use the inhomogeneous Strichartz estimates (31),

‖I‖X =
∥∥∥∥
∫ ∞

t
ei(t−τ)∂2

x

(
(|v|2 − a2)v

τ
− (|v1|2 − a)2v1

τ

)
dτ

∥∥∥∥
X

≤ C sup
t0≤t

tν
∫ ∞

t
‖|v|2v − |v1|2v1 − a2(v − v1)‖L2

dτ

τ

≤ C sup
t0≤t

tν
∫ ∞

t
(a2 + ‖v1‖2

L∞ + ‖v‖2
L∞)‖v − v1‖L2

dτ

τ
.

Since v is in X R ,

‖I‖X ≤ C ‖v‖X sup
t0≤t

tν
∫ ∞

t
(a2 + ‖v1‖2

L∞ + ‖v‖2
L∞)

dτ

τ 1+ν ,

and by using (33) and (34),

‖I‖X ≤ C ‖v‖X

(
a2 +

‖u+‖2
L1

t0
+ sup

t0≤t
tν

∫ ∞

t
‖(v − v1)(τ )‖2

L∞
dτ

τ 1+ν

)
.

In the last integral we apply the Cauchy-Schwarz inequality to recover the L4L∞ norm,
and finally,

‖I‖X ≤ C ‖v‖X

(
a2 +

‖u+‖2
L1

t0
+

‖v‖2
X√

t0

)
.
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The contribution of the cubic power of e−i t∂2
xω is easy to estimate. By using the

inhomogeneous Strichartz estimates (31) and the dispersion inequality (32) we get

‖J3‖X =
∥∥∥∥∥
∫ ∞

t
ei(t−τ)∂2

x
|eiτ∂2

xω|2eiτ∂2
xω

τ
dτ

∥∥∥∥∥
X

≤ C sup
t0≤t

tν
∫ ∞

t
‖|eiτ∂2

xω|2eiτ∂2
xω|‖L2

dτ

τ

≤ C sup
t0≤t

tν
∫ ∞

t
‖eiτ∂2

xω‖2
L∞‖eiτ∂2

xω‖L2
dτ

τ

≤ C sup
t0≤t

tν
∫ ∞

t
‖u+‖2

L1‖u+‖L2
dτ

τ 2 ≤ C(u+) sup
t0≤t

tν

t
.

The quadratic terms can be handled in the same way, and we obtain

‖J2‖X =
∥∥∥∥∥
∫ ∞

t
ei(t−τ)∂2

x
2a|eiτ∂2

xω|2
τ

dτ

∥∥∥∥∥
X

≤ Ca ‖u+‖L1‖u+‖L2 sup
t0≤t

tν

t
1
2

.

So at the end we need to estimate only the linear term

J1 =
∫ ∞

t
ei(t−τ)∂2

x
a2eiτ∂2

xω

τ
dτ =

∫ ∞

t
ei(t−2τ)∂2

x

(
u+

a2

τ 1±ia2

)
dτ.

First we estimate its L2 norm in space. We use the conservation of the mass for the linear
evolution (30),

‖J1(t)‖L2 =
∥∥∥∥
∫ ∞

t
e−i2τ∂2

x

(
u+

a2

τ 1±ia2

)
dτ

∥∥∥∥
L2
,

and the inhomogeneous Strichartz estimates (31),

‖J1(t)‖L2 ≤ Ca2
∥∥∥∥

u+

τ

∥∥∥∥
L p′

((t,∞),Lq′
)

= Ca2 ‖u+‖Lq′

∥∥∥∥
1

τ

∥∥∥∥
L p′

(t,∞)

= Ca2 ‖u+‖Lq′
1

t
1
p

.

Therefore

sup
t0≤t

tν ‖J1(t)‖L2 ≤ Ca2 ‖u+‖Lq′ sup
t0≤t

tν

t
1
p

.

We need then u+ ∈ Lq ′
, ν < 1

p . From the admissibility relation, the best choice is p = 4.

Moreover, since u+ ∈ L1 ∩ L2, then by interpolation we have also u+ ∈ Lq ′
.

For estimating the L∞ norm in space of J1, we use the dispersion inequality (32),

‖J1(t)‖L∞ ≤ Ca2
∫ ∞

t

‖u+‖L1

τ(2τ − t)
1
2

dτ ≤ Ca2 ‖u+‖L1
1

t
1
2

.

Then

sup
t0≤t

tν ‖J1‖L4((t,∞)L∞) ≤ Ca2 ‖u+‖L1 sup
t0≤t

tν

t
1
4

.
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In conclusion, for u+ ∈ L1 ∩ L2, we have obtained

‖A(v)‖X ≤ ‖v‖X

(
a2 +

‖u+‖2
L1

t0
+

‖v‖2
X√

t0

)
+ C(u+) sup

t0≤t

tν

t
+ C(u+) a sup

t0≤t

tν

t
1
2

+C(u+) a2 sup
t0≤t

tν

t
1
4

.

Let ν = 1
4 . Then there exists a constant R small with respect to t0, and a positive small

constant a0, such that for all a ≤ a0 and all u+ small enough in L1 ∩ L2 with respect to
t0, a0 and R, we can apply the fixed point theorem in X R . We get then a unique solution
v of Eq. (19) such that

v − v1 ∈ C([t0,∞), L2(R)) ∩ L4([t0,∞), L∞(R)),

with the rate of decay (21), so the proof of Theorem 1.2 is complete.

2.2. Proof of Corollary 1.3. Let t̃0 > 0. We denote t0 = 1
t̃0

and we consider v to be the
corresponding solution of Theorem 1.2, satisfying the decay (21) as t goes to infinity,

‖v − v1‖L∞((t,∞),L2)∩L4((t,∞),L∞) = O(t− 1
4 ).

Then u, the pseudo-conformal transform of v, will satisfy Eq. (17). We want to show
the first assertion (22) of Corollary 1.3, namely the decay as t goes to zero,

‖u − u1‖L∞((0,t),L2)∩L4((0,t),L∞) = O(t 1
4 ).

The mixed normed spaces we are using are invariant under the pseudo-conformal trans-
formation T , and since

u = T (v), u1 = T

⎛
⎝a + e±ia2 log t ei x2

4t√
4π i t

û+

( x

2t

)⎞
⎠ ,

we notice that (22) is equivalent to have, as t goes to infinity,
∥∥∥∥∥∥
v(t, x)− a − e±ia2 log t ei x2

4t√
4π i t

û+

( x

2t

)
∥∥∥∥∥∥

L∞((t,∞),L2)∩L4((t,∞),L∞)

= O(t− 1
4 ).

In view of (21), this is equivalent to have this decay for the difference
∥∥∥∥∥∥
v1(t, x)− a − e±ia2 log t ei x2

4t√
4π i t

û+

( x

2t

)
∥∥∥∥∥∥

L∞((t,∞),L2)∩L4((t,∞),L∞)

= O(t− 1
4 ).

From the definition of v1, it is enough to prove
∥∥∥∥∥∥

eit∂2
x u+ − ei x2

4t√
4π i t

û+

( x

2t

)
∥∥∥∥∥∥

L∞((t,∞),L2)∩L4((t,∞),L∞)

= O(t− 1
4 ),
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which is one of the properties of the linear Schrödinger evolutions. On the one hand, in

L4((t,∞), L∞) both terms decay like t− 1
4 as t goes to infinity. On the other hand, the

expression of the free Schrödinger solution gives
∥∥∥∥∥∥

eit∂2
x u+ − ei x2

4t√
4π i t

û+

( x

2t

)
∥∥∥∥∥∥

L2

= 1√
4π t

∥∥∥∥
∫

e−i xy
2t ei y2

4t u+(y)dy − û+

( x

2t

)∥∥∥∥
L2

= 1√
4π t

∥∥∥∥∥
̂

ei ·2
4t u+(·)

( x

2t

)
− û+

( x

2t

)∥∥∥∥∥
L2

= c

∥∥∥∥
(

ei y2

4t − 1

)
u+(y)

∥∥∥∥
L2
.

If u+ is in L2 ∩ L2(y4dy), that is if û+ ∈ H2, then this difference is O(t−1). In conclu-
sion, the first part (22) of Corollary 1.3 is proved. Relation (23) is obtained from (22)
by using the general formula

‖| f |2 − |g|2‖L1 ≤ (‖ f ‖L2 + ‖g‖L2)‖ f − g‖L2 ,

and then (24) follows by the triangle inequality.

2.3. Modified wave operators in Sobolev spaces: proof of Theorem 1.4. Let t0 > 0,
s ∈ N

∗. In this subsection we shall perform the fixed point argument for the operator
(29) in the closed ball

YR =
{
v | ‖v‖Y = sup

t∈[t0,∞[
|t |ν‖(v − v1)(t)‖L2

+ �
1≤k≤s

sup
t∈[t0,∞[

|t |µ‖∇k(v − v1)(t)‖L2 ≤ R

}
,

for strictly positive ν, µ and R, to be made precise later. Let us notice that in one
dimension | f |2 ≤ ‖ f ‖L2‖ f ′‖L2 . Then, for v ∈ YR ,

|(v − v1)(t)| ≤ C R

t
µ+ν

2

, (35)

and

|∇k(v − v1)(t)| ≤ C ‖∇k+1(v − v1)(t))‖
1
2
L2‖∇k(v − v1)(t))‖

1
2
L2 ≤ C R

tµ
, (36)

for all 0 < k < s. Moreover, by using the dispersion inequality (32), for all 0 ≤ k ≤ s,

∣∣∣∇ke±ia2 log t ei t∂2
x u+

∣∣∣ ≤ C
‖∇ku+‖L1√

t
.

It follows that for v ∈ YR ,

|v(t)| ≤ |v1(t)| + |v(t)− v1(t)| ≤ a + C
‖u+‖L1√

t
+

C R

t
µ+ν

2

, (37)
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and that for all 0 < k ≤ s,

|∇kv(t)| ≤ C |∇kv1(t)| + |∇k(v − v1)(t)| ≤ C
‖∇ku+‖L1√

t
+

C R

tµ
. (38)

The proof follows as in Subsect. §2.1, by estimating the terms I and Jk in Y .
By using the conservation of the L2 norm of the free equation (30),

sup
t0≤t

tν‖I (t)‖L2 = sup
t0≤t

tν
∥∥∥∥
∫ ∞

t
ei(t−τ)∂2

x

(
(|v|2 − a2)v

τ
− (|v1|2 − a)2v1

τ

)
dτ

∥∥∥∥
L2

≤ C sup
t0≤t

tν
∫ ∞

t
‖|v|2v − |v1|2v1 − a2(v − v1)‖L2

dτ

τ

≤ C sup
t0≤t

tν
∫ ∞

t
(a2 + ‖v1‖2

L∞ + ‖v‖2
L∞)‖v − v1‖L2

dτ

τ
.

Since v is in YR ,

sup
t0≤t

tν‖I (t)‖L2 ≤ C ‖v‖Y sup
t0≤t

tν
∫ ∞

t
(a2 + ‖v1‖2

L∞ + ‖v‖2
L∞)

dτ

τ 1+ν .

By using the bound (33) on v1, and (37) on v, we get

sup
t0≤t

tν‖I (t)‖L2 ≤ C ‖v‖Y

(
a2 +

‖u+‖2
L1

t0
+
(C R)2

tµ+ν
0

)
.

For the L2 norm of the first derivative, we have

sup
t0≤t

tµ‖∇ I (t)‖L2 ≤ C sup
t0≤t

tµ
∫ ∞

t
‖∇(|v|2v − |v1|2v1)‖L2 + a2‖∇(v − v1)‖L2

dτ

τ

≤ Ca2‖v‖Y + C sup
t0≤t

tµ
∫ ∞

t
(‖v‖2

L∞‖∇(v − v1)‖L2

+(‖v‖L∞ + ‖v1‖L∞)‖∇v1‖L∞‖v − v1‖L2)
dτ

τ
.

By using again the fact that v ∈ YR and the bounds (33), (37), we obtain

sup
t0≤t

tµ‖∇ I (t)‖L2 ≤ C ‖v‖Y

(
a2 +

‖u+‖2
L1

t0
+
(C R)2

tµ+ν
0

) (
1 + sup

t0≤t

tµ

t
1
2 +ν

)
.

The higher order derivatives can be estimated similarly, and we get

‖I‖Y ≤ C ‖v‖Y

(
a2 +

‖u+‖2
L1

t0
+
(C R)2

tµ+ν
0

) (
1 + sup

t0≤t

tµ

t
1
2 +ν

)
.
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We estimate now J3 by using the invariance of the Hs norm for the free evolution,
and by using the fact that Hs(R) is an algebra,

‖J3(t)‖Hs =
∥∥∥∥∥
∫ ∞

t
ei(t−τ)∂2

x
|eiτ∂2

xω|2eiτ∂2
xω

τ
dτ

∥∥∥∥∥
Hs

≤ sup
t0≤t

tµ
∫ ∞

t
‖|eiτ∂2

xω|2eiτ∂2
xω|‖Hs

dτ

τ

≤ C
∫ ∞

t
‖eiτ∂2

xω‖2
L∞‖eiτ∂2

xω‖Hs
dτ

τ
≤ C

t
‖u+‖2

L1‖u+‖Hs .

We first consider the L2 norm of J2, that can be estimated as done in the previous
subsection §2.1,

sup
t0≤t

tν‖J2(t)‖L2 ≤ C a sup
t0≤t

tν
∫ ∞

t
‖|eiτ∂2

xω|2|‖L2
dτ

τ

≤ C a sup
t0≤t

tν
∫ ∞

t
‖eiτ∂2

xω‖L∞‖eiτ∂2
xω‖L2

dτ

τ
≤ C a ‖u+‖L1‖u+‖L2 sup

t0≤t
tν

∫ ∞

t

dτ

τ
3
2

= C a ‖u+‖L1‖u+‖L2 sup
t0≤t

tν

t
1
2

.

Of course, the derivatives can also be estimated in this way. Nevertheless, for our final
purpose of studying the binormal flow, we shall need more decay on the derivatives.
More precisely, we have the following lemma concerning J2(t).

Lemma 2.1. If u+ ∈ Ḣ−1 ∩ Ḣ s−1, then

�0<k≤s

∥∥∥∇k J2(t)
∥∥∥

2
� a

t

(
‖u+‖2

Ḣ−1 + ‖u+‖2
Ḣ s−1

)
. (39)

Proof. We have

∇k J2 = ∇ka
∫ ∞

t
ei(t−τ)∂2

x

(
eiτ∂2

xω
)2

τ
dτ + 2∇ka

∫ ∞

t
ei(t−τ)∂2

x

∣∣∣eiτ∂2
xω

∣∣∣2

τ
dτ.

By using the Fourier transform in space, the first quadratic term is

∇k
∫ ∞

t
ei(t−τ)∂2

x

(
eiτ∂2

xω
)2

τ
dτ =

∫ ∞

t

∫
e−i(t−τ)ξ2

τ 1∓2ia2 |ξ |k eixξ ̂eiτ∂2
x u+ ∗ ̂eiτ∂2

x u+ dξ dτ

=
∫ ∞

t

∫ ∫
e−i tξ2−iτ(η2+(η−ξ)2−ξ2)

τ 1∓2ia2 |ξ |k eixξ û+(η)û+(η − ξ) dη dξ dτ.

We perform an integration by parts in time and get

∇k
∫ ∞

t
ei(t−τ)∂2

x

(
eiτ∂2

xω
)2

τ
dτ

= −
∫ ∫

e−i t (ξ2+2η(η−ξ))

t1∓2ia2 |ξ |k eixξ û+(η)û+(η − ξ)

2iη(η − ξ)
dη dξ

−(1 ∓ 2ia2)

∫ ∞

t

∫ ∫
e−i tξ2−2iτη(η−ξ)

τ 2∓2ia2 |ξ |k eixξ û+(η)û+(η − ξ)

2iη(η − ξ)
dη dξ dτ.
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Therefore, as t goes to infinity,

∥∥∥∥∥∥∥
∇ka

∫ ∞

t
ei(t−τ)∂2

x

(
eiτ∂2

xω
)2

τ
dτ

∥∥∥∥∥∥∥
2

� a

t

∥∥∥∥|ξ |k
(

û+

· ∗ û+

·
)
(ξ)

∥∥∥∥
L2
.

For k ≥ 1, Hk is an algebra, so we get

�0<k≤s

∥∥∥∥∥∥∥
∇ka

∫ ∞

t
ei(t−τ)∂2

x

(
eiτ∂2

xω
)2

τ
dτ

∥∥∥∥∥∥∥
2

� a

t

∥∥∥∥F
(

û+

·
)∥∥∥∥

2

Hk
� a

t

(
‖u+‖2

Ḣ−1 + ‖u+‖2
Ḣ k−1

)
.

The second quadratic term can be also estimated similarly and we get

∇k
∫ ∞

t
ei(t−τ)∂2

x

∣∣∣eiτ∂2
xω

∣∣∣2

τ
dτ =

∫ ∞

t

∫
|ξ |k e−i(t−τ)ξ2

τ
eixξ ̂eiτ∂2

x u+ ∗ ̂e−iτ∂2
x u+ dξ dτ

=
∫ ∞

t

∫ ∫
e−i tξ2−iτ(η2−(η−ξ)2−ξ2)

τ
|ξ |k eixξ û+(η)û+(η − ξ) dη dξ dτ

=
∫ ∫

e−i t (ξ2+2ξ(η−ξ))

t
|ξ |k eixξ û+(η)û+(η − ξ)

2iξ(η − ξ)
dη dξ

+
∫ ∞

t

∫ ∫
e−i tξ2−2iτξ(η−ξ)

τ 2 |ξ |k eixξ û+(η)û+(η − ξ)

2iξ(η − ξ)
dη dξ dτ.

For having a good bound, we need to avoid the powers of ξ in the denominator. That is
why the L2 norm was considered apart before this lemma, and the decay in time obtained
was weaker. So by taking k ≥ 1, we get

∥∥∥∥∥∥∥
∇ka

∫ ∞
t

ei(t−τ)∂2
x

∣∣∣eiτ∂2
x ω

∣∣∣2

τ
dτ

∥∥∥∥∥∥∥
2

� a

t

∥∥∥∥|ξ |k−1
(

û+ ∗ û+

·
)
(ξ)

∥∥∥∥
L2

= a

t

∥∥∥∥û+ F
(

û+

·
)∥∥∥∥

Ḣ k−1
.

For k = 1 we use the imbedding L∞(R) ⊂ H1(R) and we get the upper-bound
a
t ‖u+‖H1‖u+‖Ḣ−1 . For k ≥ 2 we use the fact that Hk−1(R) is an algebra, and we
get the upper-bound a

t ‖u+‖Hk−1

(‖u+‖Ḣ−1 + ‖u+‖Ḣ k−2

)
.

In conclusion, if

u+ ∈ Ḣ−1 ∩ Ḣ s−1,

then we can control in L2 the first and higher derivatives up to s of the quadratic terms,
like stated in the lemma. ��

The linear term J1 will be treated similarly. We have the following lemma.
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Lemma 2.2. If u+ ∈ Ḣ−2 ∩ Ḣ s−2, then

�0≤k≤s

∥∥∥∇k J1(t)
∥∥∥

2
� a2

t

(‖u+‖Ḣ−2 + ‖u+‖Ḣ s−2

)
. (40)

Proof. We write

J1(t) =
∫ ∞

t
ei(t−2τ)∂2

x

(
u+

τ 1±ia2

)
dτ =

∫ ∞

t

∫
e−i(t−2τ)ξ2

τ 1±ia2 eixξ û+(−ξ)dξdτ,

and we perform an integration by parts in τ ,

J1(t) =
∫

eitξ2

t1±ia2 eixξ û+(−ξ)
2iξ2 dξ + (1 ± ia2)

∫ ∞

t

∫
e−i(t−2τ)ξ2

τ 2±ia2 eixξ û+(−ξ)
2iξ2 dξdτ.

By Plancherel we get

‖J1(t)‖2 � a2

t

∥∥∥∥
û+(−ξ)
ξ2

∥∥∥∥
2
. (41)

Since derivatives in the space variable commutes with ei(t−τ)∂2
x , we obtain similarly for

k ∈ N
∗,

∥∥∥∇k J1(t)
∥∥∥

2
� a2

t

∥∥∥∥
û+(−ξ)
|ξ |2−k

∥∥∥∥
2
, (42)

and the lemma follows. ��
Summarizing, we have obtained that

‖A(v)‖Y ≤ C ‖v‖Y

(
a2 +

‖u+‖2
L1

t0
+
(C R)2

tµ+ν
0

)(
1 + sup

t0≤t

tµ

t
1
2 +ν

)

+C(u+) sup
t0≤t

tµ + tν

t
+ C(u+) a sup

t0≤t

tν

t
1
2

+ C(u+) a sup
t0≤t

tµ

t
+ C(u+) a2 sup

t0≤t

tµ + tν

t
,

with the constants depending on the Ḣ−2 ∩ Hs ∩ W s,1 norm of u+. The choice ν = 1
2

and µ = 1 from the statement of Theorem 1.4 satisfy 0 < ν ≤ 1
2 , 0 < µ ≤ 1 and

µ ≤ 1
2 + ν. Therefore there exists a positive constant R, small with respect to t0, and a

positive constant a0, such that for all a ≤ a0, and all u+ ∈ Ḣ−2 ∩ Hs ∩ W s,1 small with
respect to a0, t0 and R, we can apply the fixed point theorem in YR . We get this way a
solution v of Eq. (19) such that

v − v1 ∈ C([t0,∞), Hs(R)),

satisfying

‖(v − v1)(t)‖L2 ≤ R√
t
, ‖∇k(v − v1)(t)‖L2 ≤ R

t
, (43)

and the proof of Theorem 1.4 is complete.
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3. Construction of the Binormal Flow for Positive Times

In this section we show how to construct a binormal flow for all times t ≥ 0 from a
solution obtained in Theorem 1.4. The next section will contain the proof of the fact that
this new binormal flow is close to the selfsimilar one χa , and that a singularity is still
formed at time t = 0.

We fix ε > 0, a < a0 and t0 = 1/t̃0. With the notations of the previous section,
let R be small enough with respect to ε, t0 and a, and u+ ∈ Ḣ−2 ∩ Hs ∩ W s,1 small
with respect to ε, a, t0 and R. We consider the corresponding solution v of Theorem
1.4 with s = 3 and Eq. (17) with focusing sign +. We take s = 3 to have v smooth:

H3(R) ⊂ C 5
2 (R) is enough for our purposes. In Subsect. Sect. 3.1 we give some esti-

mates in time on v, v−a and v−v1, obtained from the statement of Theorem 1.4. Then,
we define in Sect. 3.2 a curvature and a torsion, and use these estimates for calculating
their leading terms as t goes to zero. These estimates will be used throughout the rest
of the paper. The last subsection Sect. 3.3 concerns the new binormal flow. Using the
curvature and the torsion, that are continuous for t > 0 but not at t = 0, the binormal
flow is constructed for all positive times. The estimates in §3.2 allow us to obtain a limit
at t = 0 for the flow of curves.

3.1. Estimates from Theorem 1.4. We define f by

v(t, y) = a + f (t, y),

that is

f (t, y) = eia2 log t ei t∂2
x u+(y) + (v − v1)(t, y).

Hereafter in this section, when for a given h we write the expression ∂x h
( 1

t ,
x
t

)
we shall

mean g′(x) with g(x) = h
( 1

t ,
x
t

)
.

When t goes to zero, we have different estimates for the two terms of f
( 1

t ,
x
t

)
. For

the second one we get from the estimates (43) on v − v1,
∥∥∥∥(v − v1)

(
1

t
,

x

t

)∥∥∥∥
L∞

≤ R t
3
4 ,

∥∥∥∥∂x (v − v1)

(
1

t
,

x

t

)∥∥∥∥
L∞

≤ R.

For the first term of f we have only the dispersion decay rate
∥∥∥e−ia2 log t ei 1

t ∂
2
x u+

( x

t

)∥∥∥
L∞ ≤ C(u+)

√
t,

∥∥∥∂x e−ia2 log t ei 1
t ∂

2
x u+

( x

t

)∥∥∥
L∞ ≤ C(u+)√

t
.

Since R is small enough with respect to t0 and a, and u+ is small with respect to R, t0
and a0, we get

∥∥∥∥ f

(
1

t
,

x

t

)∥∥∥∥
L∞

≤ C(R)
√

t,

∥∥∥∥∂x f

(
1

t
,

x

t

)∥∥∥∥
L∞

≤ C(R)√
t
. (44)

However, at x = 0 we get a better decay for the first derivative. From the expression
of the free Schrödinger evolution,

e−ia2 log t ei 1
t ∂

2
x u+

( x

t

)
= e−ia2 log t ei x2

4t√
i
t

∫
e−i xy

2 ei y2

4 t u+(y)dy,
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and taking x = 0,

∣∣∣∂x e−ia2 log t ei 1
t ∂

2
x u+

( x

t

)∣∣∣
x=0

= √
t

∣∣∣∣
∫

y

2
ei y2

4 t u+(y)dy

∣∣∣∣
≤ √

t‖yu+‖L1 ≤ √
t
(
‖y2u+‖L2 + ‖u+‖L2

)
.

Therefore at x = 0,
∣∣∣∣∂x f

(
1

t
,

x

t

)∣∣∣∣
x=0

≤ C(R). (45)

3.2. The curvature and the torsion. We start by defining a curvature and a torsion from
the solution v of Theorem 1.4. Let us recall that since v is a solution of the focusing
equation (19), then its pseudo-conformal transform

u(t, x) = ei x2
4t√
t
v

(
1

t
,

x

t

)
,

is a solution of

iut + uxx +

(
|u|2 − a2

t

)
u = 0.

Since v is regular enough and does not vanish, we can define two real functions τ and
φ such that for u,

u(t, x) = c(t, x)eiφ(t,x).

We define τ(t, x) := φx (t, x), so

u(t, x) = c(t, x)ei
∫ x

0 τ(t,s)ds+φ(t,0).

Then, the function

ũ(t, x) = c(t, x)ei
∫ x

0 τ(t,s)ds,

is a filament function, a solution of (14) with A(t) replaced by a2

t + φt (t, 0). As will
be seen in the next Subsect. §3.3, there exists a binormal flow of curves such that the
curvature and the torsion are c and τ .

As t goes to zero, we shall compute the leading terms of (c, τ ). We have

c(t, x) = |u(t, x)| = 1√
t

∣∣∣∣v
(

1

t
,

x

t

)∣∣∣∣ ,

and

τ(t, x) = �ux (t, x)

u(t, x)
= �

i x
2t v

( 1
t ,

x
t

)
+ ∂xv

( 1
t ,

x
t

)

v
( 1

t ,
x
t

) .
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Since v = a + f , the square of the curvature is

c2(t, x) = a2

t

(
1 +

2

a
� f +

| f |2
a2

) (
1

t
,

x

t

)
.

Because c and a are positive,

c(t, x)− a√
t

= 1

c + a/
√

t

(
2a

t
� f +

| f |2
t

)(
1

t
,

x

t

)
,

and in view of estimate (44) on f , we obtain the estimate on the curvature,
∣∣∣∣c(t, x)− a√

t

∣∣∣∣ ≤ 1√
t

∣∣∣∣
(

2� f +
| f |2

a

) (
1

t
,

x

t

)∣∣∣∣ ≤ C(R). (46)

We recall that R is small with respect to t0 and a. It follows that c > a/2
√

t . Hence
similarly, from ∂x c2 = 2c ∂x c, we get an estimate on the first derivative in space of the
curvature, by using (44),

|∂x c| ≤ 1√
t

∣∣∣∣∂x

(
2� f +

| f |2
a

) (
1

t
,

x

t

)∣∣∣∣ ≤ C(R)

t
. (47)

At x = 0 we can use (45) and get

|∂x c(t, 0)| ≤ 1√
t

∣∣∣∣∂x

(
2� f +

| f |2
a

) (
1

t
,

x

t

)∣∣∣∣ ≤ C(R)√
t
. (48)

The torsion is well defined and is given by

τ(t, x) = �
i x
2t

(
a + f

( 1
t ,

x
t

))
+ ∂x f

( 1
t ,

x
t

)

a + f
( 1

t ,
x
t

) .

Then

τ(t, x)− �
(

i x

2t
− 1

a
∂x f

(
1

t
,

x

t

))
= −�∂x f

( 1
t ,

x
t

)
f
( 1

t ,
x
t

)

a
(
a + f

( 1
t ,

x
t

)) ,

and so we get,
∣∣∣∣τ(t, x)− x

2t
− �

(
1

a
∂x f

(
1

t
,

x

t

))∣∣∣∣ ≤ 2

a2

∣∣∣∣∂x f

(
1

t
,

x

t

)
f

(
1

t
,

x

t

)∣∣∣∣ ≤ C(R)
√

t .

(49)

In particular, by (44) we get

∣∣∣τ(t, x)− x

2t

∣∣∣ ≤ C(R)√
t
, (50)

and by (45) we have at x = 0,

|τ(t, 0)| ≤ C(R). (51)
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Let us give also an estimate at x = 0. By the definition of u and φ we have

c(t, 0)eiφ(t,0) − a√
t

= u(t, 0)− a√
t

= 1√
t
(v − a)

(
1

t
, 0

)
= 1√

t
f

(
1

t
, 0

)
.

From estimates (44) on f we get that
∣∣∣∣c(t, 0)eiφ(t,0) − a√

t

∣∣∣∣ ≤ C(R),

and by using (46),

a√
t

∣∣∣eiφ(t,0) − 1
∣∣∣ ≤

∣∣∣∣
a√

t
− c(t, 0)

∣∣∣∣ +

∣∣∣∣c(t, 0)eiφ(t,0) − a√
t

∣∣∣∣ ≤ C(R).

Therefore, since R is small enough,

∣∣∣ei φ(t,0)2 − 1
∣∣∣ =

∣∣eiφ(t,0) − 1
∣∣

∣∣∣ei φ(t,0)2 + 1
∣∣∣

≤ C(R)
√

t . (52)

Finally, let us recall that the curvature and the torsion of the selfsimilar binormal flow
χa are

ca(t, x) = a√
t
, τa(t, x) = x

2t
. (53)

Therefore all the estimates in this subsection show that (c, τ ) is uniformly close to
(ca, τa). This will be used in the next section §4.

3.3. The integration of the binormal flow. From the curvature and the torsion defined
in the previous subsection, we shall construct a corresponding family of curves solution
of (1). We first construct its tangent, normal and binormal vectors (T, n, b)(t, x) in the
following way. For a given (T, n, b)(t̃0, 0), we define (T, n, b)(t, 0) by imposing

⎛
⎝

T
n
b

⎞
⎠

t

(t, 0) =

⎛
⎜⎜⎝

0 −c τ cx

c τ 0
(

cxx −cτ 2

c

)

−cx −
(

cxx −cτ 2

c

)
0

⎞
⎟⎟⎠

⎛
⎝

T
n
b

⎞
⎠ (t, 0). (54)

This is the system that the time derivatives of the tangent, normal, and binormal of a
binormal flow verifies. This will be proved in the Appendix.

Then, we construct (T, n, b)(t, x) from (T, n, b)(t, 0) by integrating the Frenet sys-
tem for fixed t ,

⎛
⎝

T
n
b

⎞
⎠

x

(t, x) =
⎛
⎝

0 c 0
−c 0 τ

0 −τ 0

⎞
⎠

⎛
⎝

T
n
b

⎞
⎠ (t, x).

This way T will solve (see the Appendix)

Tt = T ∧ Txx .
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With T constructed this way, for a given curve χ(t̃0, 0), we define for all t̃0 > t > 0,

χ(t, x) := χ(t̃0, 0)−
∫ t̃0

t
(cb)(t ′, 0)dt ′ +

∫ x

0
T (t, s)ds.

Using the Frenet system,

Tt = T ∧ Txx = T ∧ (cn)x = T ∧ (cx n + cτb) = −cτn + cx b,

and it follows that χ solves the binormal flow equation (3).
Therefore χ(t, x) is constructed for all times when the curvature and the torsion are

regular, that is for t > 0. Finally, by using (3) and the expression of the curvature (46)
we have

|χ(t1, x)− χ(t2, x)| =
∣∣∣∣
∫ t2

t1
c(t, x)b(t, x)dx

∣∣∣∣ ≤
∫ t2

t1

Ca√
t

dt −→
t1,t2→0

0. (55)

By denoting χ0(x) the limit at t = 0, we obtain similarly that for all x ∈ (−∞,∞),

|χ(t, x)− χ0(x)| ≤ Ca
√

t,

b and the first part of Theorem 1.5 is proved.

4. Formation of the Singularity for the Binormal Flow

In this section we shall prove the second part of the statement of Theorem 1.5. We shall
show that the binormal flow χ constructed in the previous section is close to the self-
similar one χa . This will allow us to conclude that a corner is still formed at time zero
at x = 0.

To this purpose, we start by showing that the tangent T of χ remains close to Ta , the
tangent of χa . This will be done in three steps in the next three subsections. First we
show that (T, n, b)(t, x) remains close to (Ta, na, ba)(t, x) at t = 0. Using this we show
in the second step that (T, n, b)(t, x) remains close to (Ta, na, ba)(t, x) for x �

√
t . In

particular, T (t, x) is close to Ta(t, x) for x �
√

t . This will imply in the final step that
T (t, x) is close to Ta(t, x) also for

√
t � x .

In the last subsection the information that T (t, x) is close to Ta(t, x) is used to show
that χ(0, x) is close to χa(0, x).

4.1. Estimates at (t, 0). Let us recall that in Subsect. 3.3 we have constructed
(T, n, b)(t, 0) by imposing (54),

⎛
⎝

T
n
b

⎞
⎠

t

(t, x) =
⎛
⎜⎝

0 −c τ cx

c τ 0 cxx −cτ 2

c

−cx − cxx −cτ 2

c 0

⎞
⎟⎠

⎛
⎝

T
n
b

⎞
⎠ (t, x).

As noticed when the curvature and the torsion have been defined in Subsect. 3.2, the
function

ũ(t, x) = c(t, x)ei
∫ x

0 τ(t,s)ds,
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is a filament function, solution of (14) with A(t) replaced by a2

t + φt (t, 0). It follows
that we have the condition (15)

a2

t
+ ∂tφ(t, 0) = 2

(
cxx − cτ 2

c

)
(t, 0) + c(t, 0)2.

Therefore we obtain
⎛
⎝

T
n
b

⎞
⎠

t

(t, 0) =
⎛
⎜⎝

0 −c τ cx

c τ 0 c2
a−c2

2 + φt
2

−cx − c2
a−c2

2 − φt
2 0

⎞
⎟⎠

⎛
⎝

T
n
b

⎞
⎠ (t, 0).

In order to get rid of the term φt (t, 0), we introduce

ñ + i b̃ = ei φ2 (n + ib).

A straightforward computation gives us

ñt + i b̃t = ei φ2

(
nt + ibt + i

φt

2
n − φt

2
b

)
= ei φ2 (cτ − icx )T − i

c2
a − c2

2
(ñ + i b̃),

and⎛
⎝

T
ñ
b̃

⎞
⎠

t

(t, 0)

=

⎛
⎜⎜⎜⎝

0 −c τ cos φ2 − cx sin φ
2 −c τ sin φ

2 + cx cos φ2

c τ cos φ2 + cx sin φ
2 0 c2

a−c2

2

c τ sin φ
2 − cx cos φ2 − c2

a−c2

2 0

⎞
⎟⎟⎟⎠

⎛
⎝

T
ñ
b̃

⎞
⎠ (t, 0).

We choose as an initial data (T, ñ, b̃)(t̃0, 0) = (Ta, na, ba)(t̃0, 0). Since (Ta, na, ba)

(t, 0) is the orthonormal basis of R
3, we obtain

∣∣∣∣∣∣
T − Ta
ñ − na

b̃ − ba

∣∣∣∣∣∣
(t, 0) ≤ 3

∫ t̃0

t

(
|c τ | + |cx | + |c2

a − c2|
)
(σ, 0) dσ.

From the expressions (46),(48),(51) of the curvature and the torsion at x = 0,
(
|c τ | + |cx | + |c2

a − c2|
)
(σ, 0) ≤ C(R)√

σ
.

Therefore we get
∣∣∣∣∣∣
T − Ta
ñ − na

b̃ − ba

∣∣∣∣∣∣
(t, 0) ≤ C(R), (56)

and the fact that (T, ñ, b̃)(t, 0) has a limit as t goes to zero. Finally,

|(n + ib)− (na + iba)| ≤ |(n + ib)− ei φ2 (n + ib)| + |(ñ + i b̃)− (na + iba)|,
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and in view of (52) and (56), we obtain
∣∣∣∣∣∣
T − Ta
n − na
b − ba

∣∣∣∣∣∣
(t, 0) ≤ C(R), (57)

and the fact that (T, n, b)(t, 0) has a limit as t goes to zero.

4.2. Estimates at (t, x) for x �
√

t . Let us denote

N = n + ib.

The tangent, normal and binormal were constructed in Subsect. 3.3 such that we can use
the Frenet system. This gives us

Nx = −cT + τb − iτn = −cT − iτN ,

so that

(N − Na)x = −(c − ca)T − ca(T − Ta)− i(τ − τa)N − iτa(N − Na).

In particular,

e−i x2
4t

(
ei x2

4t (N − Na)

)

x
= −(c − ca)T − ca(T − Ta)− i(τ − τa)N , (58)

and

(T − Ta)x = cn − cana = (c − ca)n + ca(n − na).

If we denote

�2 = |T − Ta |2 + |N − Na |2,
we can compute using (58),

�2
x = 2 < (c − ca)n + ca(n − na), T − Ta >

+2 < −(c − ca)T − ca(T − Ta)− i(τ − τa)N , N − Na > .

The tangent and the normal vectors are of norm 1, and |N | is bounded by 2, so

2��x ≤ 2|c − ca ||T − Ta | + ca |n − na ||T − Ta |
+2|c − ca ||N − Na | + ca |T − Ta ||N − Na | + |τ − τa ||N − Na |

≤ 2(|c − ca | + |τ − τa |)� + ca�
2.

Therefore
(

e
−x a

2
√

t �
)

x
≤ e

−x a
2
√

t (|c − ca | + |τ − τa |),
and so

�(t, x) ≤ e
x a

2
√

t �(t, 0) + e
x a

2
√

t

∫ x

0
e
−y a

2
√

t (|c − ca | + |τ − τa |)(t, y)dy.
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For x < M
√

t , with M to be chosen later, we have

�(t, x) ≤ e
Ma
2 �(t, 0) + e

Ma
2 M

√
t sup
0≤y≤M

√
t

(|c − ca | + |τ − τa |)(t, y).

Using the bounds (46), (50) of the curvature and torsion,

�(t, x) ≤ e
Ma
2 �(t, 0) + e

Ma
2 M C(R).

In the last subsection we shall choose M large, so we can write

�(t, x) ≤ eMa�(t, 0) + eMaC(R).

By (57), that is proved in the previous subsection, �(t, 0) ≤ C(R), and we get

�(t, x) ≤ eMaC(R).

In conclusion, in the region x ≤ M
√

t
∣∣∣∣∣∣

⎛
⎝

T − Ta
n − na
b − ba

⎞
⎠ (t, x)

∣∣∣∣∣∣
≤ eMaC(R). (59)

4.3. Estimates at (t, x) for
√

t � x . Using the Frenet system again we write

T (t, x ′)− T (t, x) =
∫ x ′

x
cn =

∫ x ′

x
c

(
1 − τ

τa

)
n +

c

τa
τn.

Since bx = −τn, we do an integration by parts in the last term,

T (t, x ′)− T (t, x) =
[
− c

τa
b

]x ′

x
+

∫ x ′

x
c
τa − τ

τa
n +

(
c

τa

)′
b,

and by using the explicit expression τa(t, x) = x
t ,

T (t, x ′) = T (t, x) +
2t c(t, x)

x
b(t, x)− 2t c(t, x ′)

x ′ b(t, x ′) (60)

+
∫ x ′

x

2t c

s

( s

2t
− τ

)
n +

(
2tc

s

)

s
b ds.

Now we write the difference

(T − Ta)(t, x ′) = (T − Ta)(t, x) +
2t (c − ca)

x
b

+
2tca

x
(b − ba)− 2t (c − ca)

x ′ b − 2tca

x ′ (b − ba)

+
∫ x ′

x

2t c

s

( s

2t
− τ

)
n +

(
2t (c − ca)

s

)

s
b +

(
2tca

s

)

s
(b − ba) ds.
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By choosing x ′ > x = M
√

t ,

|T − Ta |(t, x ′) ≤ |T − Ta |(t,M
√

t) +
4
√

t |c − ca |
M

+
8
√

tca

M

+

∣∣∣∣∣
∫ x ′

M
√

t

2t c

s

( s

2t
− τ

)
n +

(
2t (c−ca)

s

)

s
b +

(
2tca

s

)

s
(b−ba) ds

∣∣∣∣∣ .

The result (59) of the previous subsection together with the decay (46) of c − ca give us

|(T − Ta)(t, x ′)| ≤ eMa C(R) +
8a

M
(1 + C(R))

+

∣∣∣∣∣
∫ x ′

M
√

t

2t c

s

( s

2t
−τ

)
n +

(
2t (c−ca)

s

)

s
b +

(
2tca

s

)

s
(b−ba) ds

∣∣∣∣∣ .

(61)

We denote I1, I2 and I3 the integral terms.
The last term can be easily estimated by

|I3| =
∣∣∣∣∣
∫ x ′

M
√

t

(
2tca

s

)

s
(b − ba) ds

∣∣∣∣∣ ≤ 2

∣∣∣∣∣
∫ x ′

M
√

t

(
2a

√
t

s

)

s

∣∣∣∣∣ <
4a

M
.

Now we consider the second term in the integral

|I2| =
∣∣∣∣∣
∫ x ′

M
√

t

(
2t (c − ca)

s

)

s
b ds

∣∣∣∣∣ ≤
∫ x ′

M
√

t

∣∣∣∣
2t cs

s

∣∣∣∣ +

∣∣∣∣
2t (c − ca)

s2

∣∣∣∣ ds.

We have from the estimates (46) and (47) on the c − ca and on cx respectively,

∣∣∣∣
2t cs(t, s)

s

∣∣∣∣ ≤ C
√

t

s

∣∣∣∣∂s f

(
1

t
,

s

t

)∣∣∣∣ +
C

√
t

s

∣∣∣∣∂s | f |2
(

1

t
,

s

t

)∣∣∣∣ ,

and
∣∣∣∣
2t (c − ca)(t, s)

s2

∣∣∣∣ ≤ 2
√

t

s2 | f |
(

1

t
,

s

t

)
+

√
t | f |2 ( 1

t ,
s
t

)

s2 .

By using Cauchy-Schwarz’ inequality and the bounds (44) on f , we get

|I2| ≤
∫ x ′

M
√

t

C
√

t

s

∣∣∣∣∂s f

(
1

t
,

s

t

)∣∣∣∣ ds +
C(R)

M
.

Finally from the expression (49) of the torsion,

|I1| =
∣∣∣∣∣
∫ x ′

M
√

t

2tc(t, s)

s

( s

2t
− τ(t, s)

)∣∣∣∣∣ ≤ C

∣∣∣∣∣
∫ x ′

M
√

t

√
t

s
∂s f

(
1

t
,

s

t

)(
1 +

1

a
f

(
1

t
,

s

t

))∣∣∣∣∣

≤
∫ x ′

M
√

t

C
√

t

s

∣∣∣∣∂s f

(
1

t
,

s

t

)∣∣∣∣ ds +
C(R)

M
.
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In conclusion, we can transform (61) into

|(T − Ta)(t, x ′)| ≤ eMaO(R, u+)+
12a

M
(1+O(R, u+))+

∫ x ′

M
√

t

C
√

t

s

∣∣∣∣∂s f

(
1

t
,

s

t

)∣∣∣∣ ds.

(62)

Next we need the following lemma.

Lemma 4.1. The following estimate holds:
∫ x ′

x

C
√

t

s

∣∣∣∣∂s f

(
1

t
,

s

t

)∣∣∣∣ ds ≤ ‖û+‖L1(x,x ′) +
C(R)√

x
t.

Proof. Recall that f is given by

f (t, y) = eia2 log t ei t∂2
x u+(y) + (v − v1)(t, y).

Denote by A1 and A2 the two terms in the above sum.
The second one can be estimated easily by using the Cauchy-Schwarz inequality,

A2 =
∫ x ′

x

√
t

s

∣∣∣∣∂s(v − v1)

(
1

t
,

s

t

)∣∣∣∣ ds ≤ √
t

∥∥∥∥
1

s

∥∥∥∥
L2(x,x ′)

∥∥∥∥∂s(v − v1)

(
1

t
,

s

t

)∥∥∥∥
2
,

and the rate of decay of Theorem 1.4,

A2 ≤ √
t

1√
x

1

t

√
t C(R) t = C(R)√

x
t.

By using the expression of the free Schrödinger evolution,

A1 =
∫ x ′

x

√
t

s

∣∣∣∣∣∣
∂s

⎛
⎝ei s2

4t√
i
t

∫
e−i sy

2 ei y2

4 t u+(y)dy

⎞
⎠

∣∣∣∣∣∣
ds

=
∫ x ′

x

t

s

∣∣∣∣∂s

(
ei s2

4t

∫
e−i sy

2 ei y2

4 t u+(y)dy

)∣∣∣∣ ds

≤ 1

2

∫ x ′

x

∣∣∣∣
∫

e−i sy
2 ei y2

4 t u+(y)dy

∣∣∣∣ ds +
∫ x ′

x

t

s

∣∣∣∣
∫

e−i sy
2 ei y2

4 t yu+(y)dy

∣∣∣∣ ds

≤
∫ x ′

x

∣∣∣û+

( s

2

)∣∣∣ ds

2
+

∫ x ′

x

∣∣∣∣
∫

e−i sy
2

(
ei y2

4 t −1

)
u+(y)dy

∣∣∣∣
ds

2
+ t

∥∥∥∥
1

s

∥∥∥∥
L2(x,x ′)

‖yu+‖L2 .

In the second term we perform an integration by parts, and we obtain

A1 ≤ ‖û+‖L1(x,x ′) +
∫ x ′

x

1

s

∣∣∣∣
∫

e−i sy
2 ∂y

((
ei y2

4 t − 1

)
u+(y)

)
dy

∣∣∣∣ ds +
t√
x
‖yu+‖L2

≤ ‖û+‖L1(x,x ′) +

∥∥∥∥
1

s

∥∥∥∥
L2(x,x ′)

∥∥∥∥∂y

((
ei y2

4 t − 1

)
u+(y)

)∥∥∥∥
L2

+
t√
x
‖yu+‖L2

≤ ‖û+‖L1(x,x ′) +
1√
x

∥∥∥∥
(

ei y2

4 t − 1

)
∂yu+(y)

∥∥∥∥
L2

+
t√
x
‖yu+‖L2 +

t√
x
‖yu+‖L2 .

Since (1 + y2)u+ is in H1, the lemma follows. ��
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Let us first notice that in 1-D we can upper bound ‖û+‖L1 ≤ ‖u+‖Ḣ1 . Since M will
be chosen large, the lemma allows us to re-write (62) for all x ′ ≥ x = M

√
t ,

|(T − Ta)(t, x ′)| ≤ 12a

M
+ eMa C(R).

4.4. The formation of the singularity. Putting together the results of the three previous
subsections, we have obtained that for all ε > 0, and choosing first M large in terms of
ε and a, then R, and then u+ small in terms of ε, a and t0, we get that for all x and as t
goes to zero,

|T (t, x)− Ta(t, x)| ≤ ε.

Also notice that Lipschitz property of χ0 easily follows from (55).
For t > 0, x > 0,

χ(t, x)− χ(t, 0) =
∫ x

0
T (t, s) ds

= A+
a x +

∫ x

0
(T (t, s)− Ta(t, s)) ds +

∫ x

0
(Ta(t, s)− A+

a) ds,

so that,

|χ(t, x)− χ(t, 0)− A+
a x −

∫ x

0
(Ta(t, s)− A+

a) ds| ≤ εx .

As it was said in the Introduction the behaviour of Ta(t, s) as t goes to zero was studied
in [15]. We shall use (10) with ψ = I[0,x] to get

lim
t→0+

∫ x

0
(Ta(t, s)− A+

a) ds = 0.

Therefore, by letting t go to zero we get

|χ0(x)− χ0(0)− A+
a x | ≤ ε x,

and the proof of Theorem 1.4 is complete.

5. Further Properties of the Binormal Flow

In this section we shall prove that the tangent vector T (t, x) has a limit, for fixed t , as
|x | goes to infinity.

We have obtained in the previous subsection the identity (60),

T (t, x ′)− T (t, x) = 2t c(t, x)

x
b(t, x)− 2t c(t, x ′)

x ′ b(t, x ′)

+
∫ x ′

x

2t c

s

( s

2t
− τ

)
n −

(
2tc

s

)

s
b ds.
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We shall prove that the difference T (t, x ′)− T (t, x) goes to zero as x, x ′ go to infinity.
We recall the expression (46) of the curvature,

2t c(t, s) ≤ 2
√

ta + 2
√

t | f |
(

1

t
,

s

t

)
+ 2

√
t
| f |2 ( 1

t ,
s
t

)

a
.

In view of the estimates (44) on f , when x, x ′ go to infinity,

|T (t, x ′)− T (t, x)| �
∫ x ′

x

∣∣∣∣
2t c

s

( s

2t
− τ

)∣∣∣∣ +

∣∣∣∣
2t cs(t, s)

s

∣∣∣∣

+

∣∣∣∣
2t c(t, s)

s2

∣∣∣∣ ds = B1 + B2 + B3.

As before, the last term B3 is integrable on (x, x ′), and its integral goes to zero as
x, x ′ go to infinity.

By using the expression (45) of the derivative of the curvature,

B2 =
∫ x ′

x

∣∣∣∣
2t cs(t, s)

s

∣∣∣∣ ≤
∫ x ′

x

C
√

t

s

∣∣∣∣∂s f

(
1

t
,

s

t

)∣∣∣∣ +
∫ x ′

x

C
√

t

s

∣∣∣∣∂s | f |2
(

1

t
,

s

t

)∣∣∣∣ .

We apply the Cauchy-Schwarz inequality in both integrals, and use the estimates (44)
on f . On one hand,

∫ x ′

x

∣∣∣∣
2
√

t

s
∂s f

(
1

t
,

s

t

)∣∣∣∣ dy ≤ √
t

∥∥∥∥
1

s

∥∥∥∥
L2(x,x ′)

∥∥∥∥∂s f

(
1

t
,

s

t

)∥∥∥∥
L2

≤
∥∥∥∥

1

s

∥∥∥∥
L2(x,x ′)

C(R),

so as x, x ′ go to infinity, this integral goes to zero. On the other hand,

∫ x ′

x

C
√

t

s

∣∣∣∣∂s | f |2
(

1

t
,

s

t

)∣∣∣∣ ≤ C

√
t

x

∥∥∥∥ f

(
1

t
,

s

t

)∥∥∥∥
L2

∥∥∥∥∂s f

(
1

t
,

s

t

)∥∥∥∥
L2

≤
√

t

x
C(R),

so B2 goes to zero as x, x ′ go to infinity.
Finally, by using the torsion expression (49),

B1 =
∫ x ′

x

∣∣∣∣
2tc(t, s)

s

( s

2t
− τ(t, s)

)∣∣∣∣ ≤ C

∣∣∣∣
√

t

s
∂s f

(
1

t
,

s

t

) (
1 +

1

a
f

(
1

t
,

s

t

))∣∣∣∣ ,

so we can treat B1 similarly.
In conclusion, the difference T (t, x ′)− T (t, x) goes to zero as x ′, x go to infinity. It

follows that for all times there is a limit

A+(t) = lim
x→∞T (t, x).

The same argument can be done as x goes to −∞.
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6. Appendix

We recall here some general facts about the binormal flow. We show how from a
curvature and a torsion defined from a filament function, one can construct tangent,
normal and binormal vectors with the properties required by a binormal flow, and in
particular (4),

Tt = T ∧ Txx .

First, we shall compute the system of the derivatives in time of (T, n, b), the tangent,
normal and binormal vectors of a general binormal flow of curves. Since we have (4),
by using the Frenet system it follows that

Tt = T ∧ Txx = T ∧ (cn)x = T ∧ (cx n + cτb) = −cτn + cx b.

From

Tx = cn

we get

cnt = −ct n + (Tt )x = −ct n + (cx b − cτn)x
= −ct n + cxx b − cxτn − (cτ)x n + c2τT − cτ 2b.

The vector n is unitary, so < nt , n >= 0. Hence nt is decomposed only in T and b. We
have

nt = cτT +

(
cxx − cτ 2

c

)
b.

Therefore, since (T, n, b) form an orthonormal basis of R
3, the system of derivatives in

time of the tangent, normal and binormal vectors of a binormal flow is

⎛
⎝

T
n
b

⎞
⎠

t

(t, x) =

⎛
⎜⎜⎝

0 −c τ cx

c τ 0
(

cxx −cτ 2

c

)

−cx −
(

cxx −cτ 2

c

)
0

⎞
⎟⎟⎠

⎛
⎝

T
n
b

⎞
⎠ (t, x). (63)

Now, given a curvature and a torsion obtained by (13) from a solution of (14), we con-
struct (T, n, b) as explained in Subsect. §3.3. We fix an initial condition (T, n, b)(t̃0, 0).
Then we define (T, n, b)(t, 0) by imposing (63) at x = 0. Finally, (T, n, b)(t, x) is
obtained from (T, n, b)(t, 0) by integrating the Frenet system for fixed t . Showing that
T solves indeed

Tt = T ∧ Txx ,

is then equivalent to showing that

Tt = −cτn + cx b.

We shall prove actually that we have the whole system of derivatives in time (63).
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Let us introduce the notation (α, β, γ )(t, x) for those functions such that
⎛
⎝

T
n
b

⎞
⎠

t

(t, x) =
⎛
⎝

0 α β

−α 0 δ

−β −δ 0

⎞
⎠

⎛
⎝

T
n
b

⎞
⎠ (t, x).

By the way we have constructed T , it follows that (α, β, γ ) and (−cτ, cx ,
cxx −cτ 2

c ) are
the same at x = 0. An easy computation of the derivatives in time and in space of T and
of n shows that these functions solve

⎛
⎝
α

β

γ

⎞
⎠

x

(t, x) =
⎛
⎝

0 τ 0
−τ 0 c
0 −c 0

⎞
⎠

⎛
⎝
α

β

γ

⎞
⎠ (t, x) +

⎛
⎝

ct
0
τt

⎞
⎠ (t, x). (64)

Let us notice that since (c, τ ) were obtained by (13) from a solution of (14), they solve
DaRios-Betchov’s system [4,9],

{
ct = −2cx τ − c τx ,

τt =
(

cxx −c τ 2

c

)
x

+ cx c. (65)

A straightforward calculation shows then that (−cτ, cx ,
cxx −cτ 2

c ) is also a solution of

(64). Therefore, for fixed t , (α, β, γ ) and (−cτ, cx ,
cxx −cτ 2

c ) are two solutions of (64)
with the same initial data at x = 0. It follows that they coincide for all (t, x), so we obtain
the system of derivatives in time (63). In particular, we have indeed that T constructed
this way solves

Tt = T ∧ Txx .
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